if_bge.c revision 1.164 1 /* $NetBSD: if_bge.c,v 1.164 2009/04/23 10:47:44 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.164 2009/04/23 10:47:44 msaitoh Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114
115 /* Headers for TCP Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h> /* for struct ip */
119 #include <netinet/tcp.h> /* for struct tcphdr */
120
121
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134
135 #include <dev/pci/if_bgereg.h>
136 #include <dev/pci/if_bgevar.h>
137
138 #include <uvm/uvm_extern.h>
139 #include <prop/proplib.h>
140
141 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
142
143
144 /*
145 * Tunable thresholds for rx-side bge interrupt mitigation.
146 */
147
148 /*
149 * The pairs of values below were obtained from empirical measurement
150 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
151 * interrupt for every N packets received, where N is, approximately,
152 * the second value (rx_max_bds) in each pair. The values are chosen
153 * such that moving from one pair to the succeeding pair was observed
154 * to roughly halve interrupt rate under sustained input packet load.
155 * The values were empirically chosen to avoid overflowing internal
156 * limits on the bcm5700: inreasing rx_ticks much beyond 600
157 * results in internal wrapping and higher interrupt rates.
158 * The limit of 46 frames was chosen to match NFS workloads.
159 *
160 * These values also work well on bcm5701, bcm5704C, and (less
161 * tested) bcm5703. On other chipsets, (including the Altima chip
162 * family), the larger values may overflow internal chip limits,
163 * leading to increasing interrupt rates rather than lower interrupt
164 * rates.
165 *
166 * Applications using heavy interrupt mitigation (interrupting every
167 * 32 or 46 frames) in both directions may need to increase the TCP
168 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
169 * full link bandwidth, due to ACKs and window updates lingering
170 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
171 */
172 static const struct bge_load_rx_thresh {
173 int rx_ticks;
174 int rx_max_bds; }
175 bge_rx_threshes[] = {
176 { 32, 2 },
177 { 50, 4 },
178 { 100, 8 },
179 { 192, 16 },
180 { 416, 32 },
181 { 598, 46 }
182 };
183 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
184
185 /* XXX patchable; should be sysctl'able */
186 static int bge_auto_thresh = 1;
187 static int bge_rx_thresh_lvl;
188
189 static int bge_rxthresh_nodenum;
190
191 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
192
193 static int bge_probe(device_t, cfdata_t, void *);
194 static void bge_attach(device_t, device_t, void *);
195 static void bge_release_resources(struct bge_softc *);
196 static void bge_txeof(struct bge_softc *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static int bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
200 static int bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
201 static int bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
202 static int bge_get_eaddr(struct bge_softc *, u_int8_t[]);
203
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static void bge_setmulti(struct bge_softc *);
218
219 static void bge_handle_events(struct bge_softc *);
220 static int bge_alloc_jumbo_mem(struct bge_softc *);
221 #if 0 /* XXX */
222 static void bge_free_jumbo_mem(struct bge_softc *);
223 #endif
224 static void *bge_jalloc(struct bge_softc *);
225 static void bge_jfree(struct mbuf *, void *, size_t, void *);
226 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
227 bus_dmamap_t);
228 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
229 static int bge_init_rx_ring_std(struct bge_softc *);
230 static void bge_free_rx_ring_std(struct bge_softc *);
231 static int bge_init_rx_ring_jumbo(struct bge_softc *);
232 static void bge_free_rx_ring_jumbo(struct bge_softc *);
233 static void bge_free_tx_ring(struct bge_softc *);
234 static int bge_init_tx_ring(struct bge_softc *);
235
236 static int bge_chipinit(struct bge_softc *);
237 static int bge_blockinit(struct bge_softc *);
238 static int bge_setpowerstate(struct bge_softc *, int);
239
240 static void bge_reset(struct bge_softc *);
241 static void bge_link_upd(struct bge_softc *);
242
243 #define BGE_DEBUG
244 #ifdef BGE_DEBUG
245 #define DPRINTF(x) if (bgedebug) printf x
246 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
247 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
248 int bgedebug = 0;
249 int bge_tso_debug = 0;
250 #else
251 #define DPRINTF(x)
252 #define DPRINTFN(n,x)
253 #define BGE_TSO_PRINTF(x)
254 #endif
255
256 #ifdef BGE_EVENT_COUNTERS
257 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
258 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
259 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
260 #else
261 #define BGE_EVCNT_INCR(ev) /* nothing */
262 #define BGE_EVCNT_ADD(ev, val) /* nothing */
263 #define BGE_EVCNT_UPD(ev, val) /* nothing */
264 #endif
265
266 static const struct bge_product {
267 pci_vendor_id_t bp_vendor;
268 pci_product_id_t bp_product;
269 const char *bp_name;
270 } bge_products[] = {
271 /*
272 * The BCM5700 documentation seems to indicate that the hardware
273 * still has the Alteon vendor ID burned into it, though it
274 * should always be overridden by the value in the EEPROM. We'll
275 * check for it anyway.
276 */
277 { PCI_VENDOR_ALTEON,
278 PCI_PRODUCT_ALTEON_BCM5700,
279 "Broadcom BCM5700 Gigabit Ethernet",
280 },
281 { PCI_VENDOR_ALTEON,
282 PCI_PRODUCT_ALTEON_BCM5701,
283 "Broadcom BCM5701 Gigabit Ethernet",
284 },
285 { PCI_VENDOR_ALTIMA,
286 PCI_PRODUCT_ALTIMA_AC1000,
287 "Altima AC1000 Gigabit Ethernet",
288 },
289 { PCI_VENDOR_ALTIMA,
290 PCI_PRODUCT_ALTIMA_AC1001,
291 "Altima AC1001 Gigabit Ethernet",
292 },
293 { PCI_VENDOR_ALTIMA,
294 PCI_PRODUCT_ALTIMA_AC9100,
295 "Altima AC9100 Gigabit Ethernet",
296 },
297 { PCI_VENDOR_BROADCOM,
298 PCI_PRODUCT_BROADCOM_BCM5700,
299 "Broadcom BCM5700 Gigabit Ethernet",
300 },
301 { PCI_VENDOR_BROADCOM,
302 PCI_PRODUCT_BROADCOM_BCM5701,
303 "Broadcom BCM5701 Gigabit Ethernet",
304 },
305 { PCI_VENDOR_BROADCOM,
306 PCI_PRODUCT_BROADCOM_BCM5702,
307 "Broadcom BCM5702 Gigabit Ethernet",
308 },
309 { PCI_VENDOR_BROADCOM,
310 PCI_PRODUCT_BROADCOM_BCM5702X,
311 "Broadcom BCM5702X Gigabit Ethernet" },
312 { PCI_VENDOR_BROADCOM,
313 PCI_PRODUCT_BROADCOM_BCM5703,
314 "Broadcom BCM5703 Gigabit Ethernet",
315 },
316 { PCI_VENDOR_BROADCOM,
317 PCI_PRODUCT_BROADCOM_BCM5703X,
318 "Broadcom BCM5703X Gigabit Ethernet",
319 },
320 { PCI_VENDOR_BROADCOM,
321 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
322 "Broadcom BCM5703 Gigabit Ethernet",
323 },
324 { PCI_VENDOR_BROADCOM,
325 PCI_PRODUCT_BROADCOM_BCM5704C,
326 "Broadcom BCM5704C Dual Gigabit Ethernet",
327 },
328 { PCI_VENDOR_BROADCOM,
329 PCI_PRODUCT_BROADCOM_BCM5704S,
330 "Broadcom BCM5704S Dual Gigabit Ethernet",
331 },
332 { PCI_VENDOR_BROADCOM,
333 PCI_PRODUCT_BROADCOM_BCM5705,
334 "Broadcom BCM5705 Gigabit Ethernet",
335 },
336 { PCI_VENDOR_BROADCOM,
337 PCI_PRODUCT_BROADCOM_BCM5705K,
338 "Broadcom BCM5705K Gigabit Ethernet",
339 },
340 { PCI_VENDOR_BROADCOM,
341 PCI_PRODUCT_BROADCOM_BCM5705M,
342 "Broadcom BCM5705M Gigabit Ethernet",
343 },
344 { PCI_VENDOR_BROADCOM,
345 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
346 "Broadcom BCM5705M Gigabit Ethernet",
347 },
348 { PCI_VENDOR_BROADCOM,
349 PCI_PRODUCT_BROADCOM_BCM5714,
350 "Broadcom BCM5714/5715 Gigabit Ethernet",
351 },
352 { PCI_VENDOR_BROADCOM,
353 PCI_PRODUCT_BROADCOM_BCM5715,
354 "Broadcom BCM5714/5715 Gigabit Ethernet",
355 },
356 { PCI_VENDOR_BROADCOM,
357 PCI_PRODUCT_BROADCOM_BCM5789,
358 "Broadcom BCM5789 Gigabit Ethernet",
359 },
360 { PCI_VENDOR_BROADCOM,
361 PCI_PRODUCT_BROADCOM_BCM5721,
362 "Broadcom BCM5721 Gigabit Ethernet",
363 },
364 { PCI_VENDOR_BROADCOM,
365 PCI_PRODUCT_BROADCOM_BCM5722,
366 "Broadcom BCM5722 Gigabit Ethernet",
367 },
368 { PCI_VENDOR_BROADCOM,
369 PCI_PRODUCT_BROADCOM_BCM5750,
370 "Broadcom BCM5750 Gigabit Ethernet",
371 },
372 { PCI_VENDOR_BROADCOM,
373 PCI_PRODUCT_BROADCOM_BCM5750M,
374 "Broadcom BCM5750M Gigabit Ethernet",
375 },
376 { PCI_VENDOR_BROADCOM,
377 PCI_PRODUCT_BROADCOM_BCM5751,
378 "Broadcom BCM5751 Gigabit Ethernet",
379 },
380 { PCI_VENDOR_BROADCOM,
381 PCI_PRODUCT_BROADCOM_BCM5751M,
382 "Broadcom BCM5751M Gigabit Ethernet",
383 },
384 { PCI_VENDOR_BROADCOM,
385 PCI_PRODUCT_BROADCOM_BCM5752,
386 "Broadcom BCM5752 Gigabit Ethernet",
387 },
388 { PCI_VENDOR_BROADCOM,
389 PCI_PRODUCT_BROADCOM_BCM5752M,
390 "Broadcom BCM5752M Gigabit Ethernet",
391 },
392 { PCI_VENDOR_BROADCOM,
393 PCI_PRODUCT_BROADCOM_BCM5753,
394 "Broadcom BCM5753 Gigabit Ethernet",
395 },
396 { PCI_VENDOR_BROADCOM,
397 PCI_PRODUCT_BROADCOM_BCM5753M,
398 "Broadcom BCM5753M Gigabit Ethernet",
399 },
400 { PCI_VENDOR_BROADCOM,
401 PCI_PRODUCT_BROADCOM_BCM5754,
402 "Broadcom BCM5754 Gigabit Ethernet",
403 },
404 { PCI_VENDOR_BROADCOM,
405 PCI_PRODUCT_BROADCOM_BCM5754M,
406 "Broadcom BCM5754M Gigabit Ethernet",
407 },
408 { PCI_VENDOR_BROADCOM,
409 PCI_PRODUCT_BROADCOM_BCM5755,
410 "Broadcom BCM5755 Gigabit Ethernet",
411 },
412 { PCI_VENDOR_BROADCOM,
413 PCI_PRODUCT_BROADCOM_BCM5755M,
414 "Broadcom BCM5755M Gigabit Ethernet",
415 },
416 { PCI_VENDOR_BROADCOM,
417 PCI_PRODUCT_BROADCOM_BCM5780,
418 "Broadcom BCM5780 Gigabit Ethernet",
419 },
420 { PCI_VENDOR_BROADCOM,
421 PCI_PRODUCT_BROADCOM_BCM5780S,
422 "Broadcom BCM5780S Gigabit Ethernet",
423 },
424 { PCI_VENDOR_BROADCOM,
425 PCI_PRODUCT_BROADCOM_BCM5782,
426 "Broadcom BCM5782 Gigabit Ethernet",
427 },
428 { PCI_VENDOR_BROADCOM,
429 PCI_PRODUCT_BROADCOM_BCM5786,
430 "Broadcom BCM5786 Gigabit Ethernet",
431 },
432 { PCI_VENDOR_BROADCOM,
433 PCI_PRODUCT_BROADCOM_BCM5787,
434 "Broadcom BCM5787 Gigabit Ethernet",
435 },
436 { PCI_VENDOR_BROADCOM,
437 PCI_PRODUCT_BROADCOM_BCM5787M,
438 "Broadcom BCM5787M Gigabit Ethernet",
439 },
440 { PCI_VENDOR_BROADCOM,
441 PCI_PRODUCT_BROADCOM_BCM5788,
442 "Broadcom BCM5788 Gigabit Ethernet",
443 },
444 { PCI_VENDOR_BROADCOM,
445 PCI_PRODUCT_BROADCOM_BCM5789,
446 "Broadcom BCM5789 Gigabit Ethernet",
447 },
448 { PCI_VENDOR_BROADCOM,
449 PCI_PRODUCT_BROADCOM_BCM5901,
450 "Broadcom BCM5901 Fast Ethernet",
451 },
452 { PCI_VENDOR_BROADCOM,
453 PCI_PRODUCT_BROADCOM_BCM5901A2,
454 "Broadcom BCM5901A2 Fast Ethernet",
455 },
456 { PCI_VENDOR_SCHNEIDERKOCH,
457 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
458 "SysKonnect SK-9Dx1 Gigabit Ethernet",
459 },
460 { PCI_VENDOR_3COM,
461 PCI_PRODUCT_3COM_3C996,
462 "3Com 3c996 Gigabit Ethernet",
463 },
464 { PCI_VENDOR_BROADCOM,
465 PCI_PRODUCT_BROADCOM_BCM5906,
466 "Broadcom BCM5906 Fast Ethernet",
467 },
468 { PCI_VENDOR_BROADCOM,
469 PCI_PRODUCT_BROADCOM_BCM5906M,
470 "Broadcom BCM5906M Fast Ethernet",
471 },
472 { 0,
473 0,
474 NULL },
475 };
476
477 /*
478 * XXX: how to handle variants based on 5750 and derivatives:
479 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
480 * in general behave like a 5705, except with additional quirks.
481 * This driver's current handling of the 5721 is wrong;
482 * how we map ASIC revision to "quirks" needs more thought.
483 * (defined here until the thought is done).
484 */
485 #define BGE_IS_5714_FAMILY(sc) \
486 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
487 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \
488 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
489
490 #define BGE_IS_5750_OR_BEYOND(sc) \
491 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
493 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
494 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
495 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
496 BGE_IS_5714_FAMILY(sc) )
497
498 #define BGE_IS_5705_OR_BEYOND(sc) \
499 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
500 (BGE_IS_5750_OR_BEYOND(sc)))
501
502 static const struct bge_revision {
503 uint32_t br_chipid;
504 const char *br_name;
505 } bge_revisions[] = {
506 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
507 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
508 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
509 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
510 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
511 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
512 /* This is treated like a BCM5700 Bx */
513 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
514 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
515 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
516 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
517 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
518 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
519 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
520 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
521 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
522 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
523 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
524 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
525 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
526 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
527 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
528 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
529 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
530 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
531 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
532 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
533 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
534 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
535 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
536 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
537 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
538 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
539 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
540 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
541 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
542 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
543 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
544 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
545 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
546 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
547 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
548 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
549 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
550 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
551 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
552 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
553 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
554 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
555 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
556 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
557 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
558 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
559 { 0, NULL }
560 };
561
562 /*
563 * Some defaults for major revisions, so that newer steppings
564 * that we don't know about have a shot at working.
565 */
566 static const struct bge_revision bge_majorrevs[] = {
567 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
568 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
569 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
570 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
571 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
572 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
573 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
574 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
575 { BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
576 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
577 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
578 /* 5754 and 5787 share the same ASIC ID */
579 { BGE_ASICREV_BCM5787, "unknown BCM5787/5787" },
580 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
581 { 0, NULL }
582 };
583
584 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
585 bge_probe, bge_attach, NULL, NULL);
586
587 static u_int32_t
588 bge_readmem_ind(struct bge_softc *sc, int off)
589 {
590 pcireg_t val;
591
592 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
593 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
594 return val;
595 }
596
597 static void
598 bge_writemem_ind(struct bge_softc *sc, int off, int val)
599 {
600 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
601 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
602 }
603
604 #ifdef notdef
605 static u_int32_t
606 bge_readreg_ind(struct bge_softc *sc, int off)
607 {
608 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
609 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
610 }
611 #endif
612
613 static void
614 bge_writereg_ind(struct bge_softc *sc, int off, int val)
615 {
616 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
617 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
618 }
619
620 static void
621 bge_writemem_direct(struct bge_softc *sc, int off, int val)
622 {
623 CSR_WRITE_4(sc, off, val);
624 }
625
626 static void
627 bge_writembx(struct bge_softc *sc, int off, int val)
628 {
629 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
630 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
631
632 CSR_WRITE_4(sc, off, val);
633 }
634
635 static u_int8_t
636 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
637 {
638 u_int32_t access, byte = 0;
639 int i;
640
641 /* Lock. */
642 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
643 for (i = 0; i < 8000; i++) {
644 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
645 break;
646 DELAY(20);
647 }
648 if (i == 8000)
649 return (1);
650
651 /* Enable access. */
652 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
653 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
654
655 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
656 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
657 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
658 DELAY(10);
659 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
660 DELAY(10);
661 break;
662 }
663 }
664
665 if (i == BGE_TIMEOUT * 10) {
666 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
667 return (1);
668 }
669
670 /* Get result. */
671 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
672
673 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
674
675 /* Disable access. */
676 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
677
678 /* Unlock. */
679 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
680 CSR_READ_4(sc, BGE_NVRAM_SWARB);
681
682 return (0);
683 }
684
685 /*
686 * Read a sequence of bytes from NVRAM.
687 */
688 static int
689 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
690 {
691 int err = 0, i;
692 u_int8_t byte = 0;
693
694 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
695 return (1);
696
697 for (i = 0; i < cnt; i++) {
698 err = bge_nvram_getbyte(sc, off + i, &byte);
699 if (err)
700 break;
701 *(dest + i) = byte;
702 }
703
704 return (err ? 1 : 0);
705 }
706
707 /*
708 * Read a byte of data stored in the EEPROM at address 'addr.' The
709 * BCM570x supports both the traditional bitbang interface and an
710 * auto access interface for reading the EEPROM. We use the auto
711 * access method.
712 */
713 static u_int8_t
714 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
715 {
716 int i;
717 u_int32_t byte = 0;
718
719 /*
720 * Enable use of auto EEPROM access so we can avoid
721 * having to use the bitbang method.
722 */
723 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
724
725 /* Reset the EEPROM, load the clock period. */
726 CSR_WRITE_4(sc, BGE_EE_ADDR,
727 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
728 DELAY(20);
729
730 /* Issue the read EEPROM command. */
731 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
732
733 /* Wait for completion */
734 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
735 DELAY(10);
736 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
737 break;
738 }
739
740 if (i == BGE_TIMEOUT) {
741 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
742 return (0);
743 }
744
745 /* Get result. */
746 byte = CSR_READ_4(sc, BGE_EE_DATA);
747
748 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
749
750 return (0);
751 }
752
753 /*
754 * Read a sequence of bytes from the EEPROM.
755 */
756 static int
757 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
758 {
759 int err = 0, i;
760 u_int8_t byte = 0;
761 char *dest = destv;
762
763 for (i = 0; i < cnt; i++) {
764 err = bge_eeprom_getbyte(sc, off + i, &byte);
765 if (err)
766 break;
767 *(dest + i) = byte;
768 }
769
770 return (err ? 1 : 0);
771 }
772
773 static int
774 bge_miibus_readreg(device_t dev, int phy, int reg)
775 {
776 struct bge_softc *sc = device_private(dev);
777 u_int32_t val;
778 u_int32_t saved_autopoll;
779 int i;
780
781 /*
782 * Broadcom's own driver always assumes the internal
783 * PHY is at GMII address 1. On some chips, the PHY responds
784 * to accesses at all addresses, which could cause us to
785 * bogusly attach the PHY 32 times at probe type. Always
786 * restricting the lookup to address 1 is simpler than
787 * trying to figure out which chips revisions should be
788 * special-cased.
789 */
790 if (phy != 1)
791 return (0);
792
793 /* Reading with autopolling on may trigger PCI errors */
794 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
795 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
796 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
797 CSR_WRITE_4(sc, BGE_MI_MODE,
798 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
799 DELAY(40);
800 }
801
802 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
803 BGE_MIPHY(phy)|BGE_MIREG(reg));
804
805 for (i = 0; i < BGE_TIMEOUT; i++) {
806 val = CSR_READ_4(sc, BGE_MI_COMM);
807 if (!(val & BGE_MICOMM_BUSY))
808 break;
809 delay(10);
810 }
811
812 if (i == BGE_TIMEOUT) {
813 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
814 val = 0;
815 goto done;
816 }
817
818 val = CSR_READ_4(sc, BGE_MI_COMM);
819
820 done:
821 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
822 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
823 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
824 DELAY(40);
825 }
826
827 if (val & BGE_MICOMM_READFAIL)
828 return (0);
829
830 return (val & 0xFFFF);
831 }
832
833 static void
834 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
835 {
836 struct bge_softc *sc = device_private(dev);
837 u_int32_t saved_autopoll;
838 int i;
839
840 if (phy!=1) {
841 return;
842 }
843
844 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
845 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
846 return;
847 }
848
849 /* Reading with autopolling on may trigger PCI errors */
850 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
851 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
852 delay(40);
853 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
854 CSR_WRITE_4(sc, BGE_MI_MODE,
855 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
856 delay(10); /* 40 usec is supposed to be adequate */
857 }
858
859 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
860 BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
861
862 for (i = 0; i < BGE_TIMEOUT; i++) {
863 delay(10);
864 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
865 delay(5);
866 CSR_READ_4(sc, BGE_MI_COMM);
867 break;
868 }
869 }
870
871 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
872 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
873 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
874 delay(40);
875 }
876
877 if (i == BGE_TIMEOUT)
878 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
879 }
880
881 static void
882 bge_miibus_statchg(device_t dev)
883 {
884 struct bge_softc *sc = device_private(dev);
885 struct mii_data *mii = &sc->bge_mii;
886
887 /*
888 * Get flow control negotiation result.
889 */
890 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
891 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
892 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
893 mii->mii_media_active &= ~IFM_ETH_FMASK;
894 }
895
896 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
897 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
898 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
899 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
900 else
901 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
902
903 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
904 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
905 else
906 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
907
908 /*
909 * 802.3x flow control
910 */
911 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
912 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
913 else
914 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
915
916 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
917 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
918 else
919 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
920 }
921
922 /*
923 * Update rx threshold levels to values in a particular slot
924 * of the interrupt-mitigation table bge_rx_threshes.
925 */
926 static void
927 bge_set_thresh(struct ifnet *ifp, int lvl)
928 {
929 struct bge_softc *sc = ifp->if_softc;
930 int s;
931
932 /* For now, just save the new Rx-intr thresholds and record
933 * that a threshold update is pending. Updating the hardware
934 * registers here (even at splhigh()) is observed to
935 * occasionaly cause glitches where Rx-interrupts are not
936 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
937 */
938 s = splnet();
939 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
940 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
941 sc->bge_pending_rxintr_change = 1;
942 splx(s);
943
944 return;
945 }
946
947
948 /*
949 * Update Rx thresholds of all bge devices
950 */
951 static void
952 bge_update_all_threshes(int lvl)
953 {
954 struct ifnet *ifp;
955 const char * const namebuf = "bge";
956 int namelen;
957
958 if (lvl < 0)
959 lvl = 0;
960 else if( lvl >= NBGE_RX_THRESH)
961 lvl = NBGE_RX_THRESH - 1;
962
963 namelen = strlen(namebuf);
964 /*
965 * Now search all the interfaces for this name/number
966 */
967 IFNET_FOREACH(ifp) {
968 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
969 continue;
970 /* We got a match: update if doing auto-threshold-tuning */
971 if (bge_auto_thresh)
972 bge_set_thresh(ifp, lvl);
973 }
974 }
975
976 /*
977 * Handle events that have triggered interrupts.
978 */
979 static void
980 bge_handle_events(struct bge_softc *sc)
981 {
982
983 return;
984 }
985
986 /*
987 * Memory management for jumbo frames.
988 */
989
990 static int
991 bge_alloc_jumbo_mem(struct bge_softc *sc)
992 {
993 char *ptr, *kva;
994 bus_dma_segment_t seg;
995 int i, rseg, state, error;
996 struct bge_jpool_entry *entry;
997
998 state = error = 0;
999
1000 /* Grab a big chunk o' storage. */
1001 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1002 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1003 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1004 return ENOBUFS;
1005 }
1006
1007 state = 1;
1008 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1009 BUS_DMA_NOWAIT)) {
1010 aprint_error_dev(sc->bge_dev,
1011 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1012 error = ENOBUFS;
1013 goto out;
1014 }
1015
1016 state = 2;
1017 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1018 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1019 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1020 error = ENOBUFS;
1021 goto out;
1022 }
1023
1024 state = 3;
1025 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1026 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1027 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1028 error = ENOBUFS;
1029 goto out;
1030 }
1031
1032 state = 4;
1033 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1034 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1035
1036 SLIST_INIT(&sc->bge_jfree_listhead);
1037 SLIST_INIT(&sc->bge_jinuse_listhead);
1038
1039 /*
1040 * Now divide it up into 9K pieces and save the addresses
1041 * in an array.
1042 */
1043 ptr = sc->bge_cdata.bge_jumbo_buf;
1044 for (i = 0; i < BGE_JSLOTS; i++) {
1045 sc->bge_cdata.bge_jslots[i] = ptr;
1046 ptr += BGE_JLEN;
1047 entry = malloc(sizeof(struct bge_jpool_entry),
1048 M_DEVBUF, M_NOWAIT);
1049 if (entry == NULL) {
1050 aprint_error_dev(sc->bge_dev,
1051 "no memory for jumbo buffer queue!\n");
1052 error = ENOBUFS;
1053 goto out;
1054 }
1055 entry->slot = i;
1056 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1057 entry, jpool_entries);
1058 }
1059 out:
1060 if (error != 0) {
1061 switch (state) {
1062 case 4:
1063 bus_dmamap_unload(sc->bge_dmatag,
1064 sc->bge_cdata.bge_rx_jumbo_map);
1065 case 3:
1066 bus_dmamap_destroy(sc->bge_dmatag,
1067 sc->bge_cdata.bge_rx_jumbo_map);
1068 case 2:
1069 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1070 case 1:
1071 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1072 break;
1073 default:
1074 break;
1075 }
1076 }
1077
1078 return error;
1079 }
1080
1081 /*
1082 * Allocate a jumbo buffer.
1083 */
1084 static void *
1085 bge_jalloc(struct bge_softc *sc)
1086 {
1087 struct bge_jpool_entry *entry;
1088
1089 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1090
1091 if (entry == NULL) {
1092 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1093 return (NULL);
1094 }
1095
1096 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1097 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1098 return (sc->bge_cdata.bge_jslots[entry->slot]);
1099 }
1100
1101 /*
1102 * Release a jumbo buffer.
1103 */
1104 static void
1105 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1106 {
1107 struct bge_jpool_entry *entry;
1108 struct bge_softc *sc;
1109 int i, s;
1110
1111 /* Extract the softc struct pointer. */
1112 sc = (struct bge_softc *)arg;
1113
1114 if (sc == NULL)
1115 panic("bge_jfree: can't find softc pointer!");
1116
1117 /* calculate the slot this buffer belongs to */
1118
1119 i = ((char *)buf
1120 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1121
1122 if ((i < 0) || (i >= BGE_JSLOTS))
1123 panic("bge_jfree: asked to free buffer that we don't manage!");
1124
1125 s = splvm();
1126 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1127 if (entry == NULL)
1128 panic("bge_jfree: buffer not in use!");
1129 entry->slot = i;
1130 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1131 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1132
1133 if (__predict_true(m != NULL))
1134 pool_cache_put(mb_cache, m);
1135 splx(s);
1136 }
1137
1138
1139 /*
1140 * Intialize a standard receive ring descriptor.
1141 */
1142 static int
1143 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1144 {
1145 struct mbuf *m_new = NULL;
1146 struct bge_rx_bd *r;
1147 int error;
1148
1149 if (dmamap == NULL) {
1150 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1151 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1152 if (error != 0)
1153 return error;
1154 }
1155
1156 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1157
1158 if (m == NULL) {
1159 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1160 if (m_new == NULL)
1161 return (ENOBUFS);
1162
1163 MCLGET(m_new, M_DONTWAIT);
1164 if (!(m_new->m_flags & M_EXT)) {
1165 m_freem(m_new);
1166 return (ENOBUFS);
1167 }
1168 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1169
1170 } else {
1171 m_new = m;
1172 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1173 m_new->m_data = m_new->m_ext.ext_buf;
1174 }
1175 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1176 m_adj(m_new, ETHER_ALIGN);
1177 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1178 BUS_DMA_READ|BUS_DMA_NOWAIT))
1179 return (ENOBUFS);
1180 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1181 BUS_DMASYNC_PREREAD);
1182
1183 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1184 r = &sc->bge_rdata->bge_rx_std_ring[i];
1185 bge_set_hostaddr(&r->bge_addr,
1186 dmamap->dm_segs[0].ds_addr);
1187 r->bge_flags = BGE_RXBDFLAG_END;
1188 r->bge_len = m_new->m_len;
1189 r->bge_idx = i;
1190
1191 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1192 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1193 i * sizeof (struct bge_rx_bd),
1194 sizeof (struct bge_rx_bd),
1195 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1196
1197 return (0);
1198 }
1199
1200 /*
1201 * Initialize a jumbo receive ring descriptor. This allocates
1202 * a jumbo buffer from the pool managed internally by the driver.
1203 */
1204 static int
1205 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1206 {
1207 struct mbuf *m_new = NULL;
1208 struct bge_rx_bd *r;
1209 void *buf = NULL;
1210
1211 if (m == NULL) {
1212
1213 /* Allocate the mbuf. */
1214 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1215 if (m_new == NULL)
1216 return (ENOBUFS);
1217
1218 /* Allocate the jumbo buffer */
1219 buf = bge_jalloc(sc);
1220 if (buf == NULL) {
1221 m_freem(m_new);
1222 aprint_error_dev(sc->bge_dev,
1223 "jumbo allocation failed -- packet dropped!\n");
1224 return (ENOBUFS);
1225 }
1226
1227 /* Attach the buffer to the mbuf. */
1228 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1229 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1230 bge_jfree, sc);
1231 m_new->m_flags |= M_EXT_RW;
1232 } else {
1233 m_new = m;
1234 buf = m_new->m_data = m_new->m_ext.ext_buf;
1235 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1236 }
1237 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1238 m_adj(m_new, ETHER_ALIGN);
1239 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1240 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1241 BUS_DMASYNC_PREREAD);
1242 /* Set up the descriptor. */
1243 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1244 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1245 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1246 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1247 r->bge_len = m_new->m_len;
1248 r->bge_idx = i;
1249
1250 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1251 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1252 i * sizeof (struct bge_rx_bd),
1253 sizeof (struct bge_rx_bd),
1254 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1255
1256 return (0);
1257 }
1258
1259 /*
1260 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1261 * that's 1MB or memory, which is a lot. For now, we fill only the first
1262 * 256 ring entries and hope that our CPU is fast enough to keep up with
1263 * the NIC.
1264 */
1265 static int
1266 bge_init_rx_ring_std(struct bge_softc *sc)
1267 {
1268 int i;
1269
1270 if (sc->bge_flags & BGE_RXRING_VALID)
1271 return 0;
1272
1273 for (i = 0; i < BGE_SSLOTS; i++) {
1274 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1275 return (ENOBUFS);
1276 }
1277
1278 sc->bge_std = i - 1;
1279 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1280
1281 sc->bge_flags |= BGE_RXRING_VALID;
1282
1283 return (0);
1284 }
1285
1286 static void
1287 bge_free_rx_ring_std(struct bge_softc *sc)
1288 {
1289 int i;
1290
1291 if (!(sc->bge_flags & BGE_RXRING_VALID))
1292 return;
1293
1294 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1295 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1296 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1297 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1298 bus_dmamap_destroy(sc->bge_dmatag,
1299 sc->bge_cdata.bge_rx_std_map[i]);
1300 }
1301 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1302 sizeof(struct bge_rx_bd));
1303 }
1304
1305 sc->bge_flags &= ~BGE_RXRING_VALID;
1306 }
1307
1308 static int
1309 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1310 {
1311 int i;
1312 volatile struct bge_rcb *rcb;
1313
1314 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1315 return 0;
1316
1317 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1318 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1319 return (ENOBUFS);
1320 };
1321
1322 sc->bge_jumbo = i - 1;
1323 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1324
1325 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1326 rcb->bge_maxlen_flags = 0;
1327 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1328
1329 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1330
1331 return (0);
1332 }
1333
1334 static void
1335 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1336 {
1337 int i;
1338
1339 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1340 return;
1341
1342 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1343 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1344 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1345 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1346 }
1347 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1348 sizeof(struct bge_rx_bd));
1349 }
1350
1351 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1352 }
1353
1354 static void
1355 bge_free_tx_ring(struct bge_softc *sc)
1356 {
1357 int i, freed;
1358 struct txdmamap_pool_entry *dma;
1359
1360 if (!(sc->bge_flags & BGE_TXRING_VALID))
1361 return;
1362
1363 freed = 0;
1364
1365 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1366 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1367 freed++;
1368 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1369 sc->bge_cdata.bge_tx_chain[i] = NULL;
1370 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1371 link);
1372 sc->txdma[i] = 0;
1373 }
1374 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1375 sizeof(struct bge_tx_bd));
1376 }
1377
1378 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1379 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1380 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1381 free(dma, M_DEVBUF);
1382 }
1383
1384 sc->bge_flags &= ~BGE_TXRING_VALID;
1385 }
1386
1387 static int
1388 bge_init_tx_ring(struct bge_softc *sc)
1389 {
1390 int i;
1391 bus_dmamap_t dmamap;
1392 struct txdmamap_pool_entry *dma;
1393
1394 if (sc->bge_flags & BGE_TXRING_VALID)
1395 return 0;
1396
1397 sc->bge_txcnt = 0;
1398 sc->bge_tx_saved_considx = 0;
1399
1400 /* Initialize transmit producer index for host-memory send ring. */
1401 sc->bge_tx_prodidx = 0;
1402 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1403 /* 5700 b2 errata */
1404 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1405 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1406
1407 /* NIC-memory send ring not used; initialize to zero. */
1408 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1409 /* 5700 b2 errata */
1410 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1411 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1412
1413 SLIST_INIT(&sc->txdma_list);
1414 for (i = 0; i < BGE_RSLOTS; i++) {
1415 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1416 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1417 &dmamap))
1418 return (ENOBUFS);
1419 if (dmamap == NULL)
1420 panic("dmamap NULL in bge_init_tx_ring");
1421 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1422 if (dma == NULL) {
1423 aprint_error_dev(sc->bge_dev,
1424 "can't alloc txdmamap_pool_entry\n");
1425 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1426 return (ENOMEM);
1427 }
1428 dma->dmamap = dmamap;
1429 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1430 }
1431
1432 sc->bge_flags |= BGE_TXRING_VALID;
1433
1434 return (0);
1435 }
1436
1437 static void
1438 bge_setmulti(struct bge_softc *sc)
1439 {
1440 struct ethercom *ac = &sc->ethercom;
1441 struct ifnet *ifp = &ac->ec_if;
1442 struct ether_multi *enm;
1443 struct ether_multistep step;
1444 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1445 u_int32_t h;
1446 int i;
1447
1448 if (ifp->if_flags & IFF_PROMISC)
1449 goto allmulti;
1450
1451 /* Now program new ones. */
1452 ETHER_FIRST_MULTI(step, ac, enm);
1453 while (enm != NULL) {
1454 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1455 /*
1456 * We must listen to a range of multicast addresses.
1457 * For now, just accept all multicasts, rather than
1458 * trying to set only those filter bits needed to match
1459 * the range. (At this time, the only use of address
1460 * ranges is for IP multicast routing, for which the
1461 * range is big enough to require all bits set.)
1462 */
1463 goto allmulti;
1464 }
1465
1466 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1467
1468 /* Just want the 7 least-significant bits. */
1469 h &= 0x7f;
1470
1471 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1472 ETHER_NEXT_MULTI(step, enm);
1473 }
1474
1475 ifp->if_flags &= ~IFF_ALLMULTI;
1476 goto setit;
1477
1478 allmulti:
1479 ifp->if_flags |= IFF_ALLMULTI;
1480 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1481
1482 setit:
1483 for (i = 0; i < 4; i++)
1484 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1485 }
1486
1487 const int bge_swapbits[] = {
1488 0,
1489 BGE_MODECTL_BYTESWAP_DATA,
1490 BGE_MODECTL_WORDSWAP_DATA,
1491 BGE_MODECTL_BYTESWAP_NONFRAME,
1492 BGE_MODECTL_WORDSWAP_NONFRAME,
1493
1494 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1495 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1496 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1497
1498 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1499 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1500
1501 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1502
1503 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1504 BGE_MODECTL_BYTESWAP_NONFRAME,
1505 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1506 BGE_MODECTL_WORDSWAP_NONFRAME,
1507 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1508 BGE_MODECTL_WORDSWAP_NONFRAME,
1509 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1510 BGE_MODECTL_WORDSWAP_NONFRAME,
1511
1512 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1513 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1514 };
1515
1516 int bge_swapindex = 0;
1517
1518 /*
1519 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1520 * self-test results.
1521 */
1522 static int
1523 bge_chipinit(struct bge_softc *sc)
1524 {
1525 int i;
1526 u_int32_t dma_rw_ctl;
1527
1528
1529 /* Set endianness before we access any non-PCI registers. */
1530 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1531 BGE_INIT);
1532
1533 /* Set power state to D0. */
1534 bge_setpowerstate(sc, 0);
1535
1536 /*
1537 * Check the 'ROM failed' bit on the RX CPU to see if
1538 * self-tests passed.
1539 */
1540 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1541 aprint_error_dev(sc->bge_dev,
1542 "RX CPU self-diagnostics failed!\n");
1543 return (ENODEV);
1544 }
1545
1546 /* Clear the MAC control register */
1547 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1548
1549 /*
1550 * Clear the MAC statistics block in the NIC's
1551 * internal memory.
1552 */
1553 for (i = BGE_STATS_BLOCK;
1554 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1555 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1556
1557 for (i = BGE_STATUS_BLOCK;
1558 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1559 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1560
1561 /* Set up the PCI DMA control register. */
1562 if (sc->bge_flags & BGE_PCIE) {
1563 u_int32_t device_ctl;
1564
1565 /* From FreeBSD */
1566 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1567 device_xname(sc->bge_dev)));
1568 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1569 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1570 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1571
1572 /* jonathan: alternative from Linux driver */
1573 #define DMA_CTRL_WRITE_PCIE_H20MARK_128 0x00180000
1574 #define DMA_CTRL_WRITE_PCIE_H20MARK_256 0x00380000
1575
1576 dma_rw_ctl = 0x76000000; /* XXX XXX XXX */;
1577 device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1578 BGE_PCI_CONF_DEV_CTRL);
1579 aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1580
1581 if ((device_ctl & 0x00e0) && 0) {
1582 /*
1583 * XXX jonathan (at) NetBSD.org:
1584 * This clause is exactly what the Broadcom-supplied
1585 * Linux does; but given overall register programming
1586 * by if_bge(4), this larger DMA-write watermark
1587 * value causes bcm5721 chips to totally wedge.
1588 */
1589 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1590 } else {
1591 dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1592 }
1593 } else if (sc->bge_flags & BGE_PCIX){
1594 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1595 device_xname(sc->bge_dev)));
1596 /* PCI-X bus */
1597 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1598 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1599 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1600 (0x0F);
1601 /*
1602 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1603 * for hardware bugs, which means we should also clear
1604 * the low-order MINDMA bits. In addition, the 5704
1605 * uses a different encoding of read/write watermarks.
1606 */
1607 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1608 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1609 /* should be 0x1f0000 */
1610 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1611 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1612 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1613 }
1614 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1615 dma_rw_ctl &= 0xfffffff0;
1616 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1617 }
1618 else if (BGE_IS_5714_FAMILY(sc)) {
1619 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1620 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1621 /* XXX magic values, Broadcom-supplied Linux driver */
1622 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1623 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1624 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1625 else
1626 dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1627 }
1628 } else {
1629 /* Conventional PCI bus */
1630 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1631 device_xname(sc->bge_dev)));
1632 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1633 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1634 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1635 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1636 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1637 dma_rw_ctl |= 0x0F;
1638 }
1639
1640 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1641 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1642 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1643 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1644
1645 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1646 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1647 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1648
1649 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1650
1651 /*
1652 * Set up general mode register.
1653 */
1654 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1655 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1656 BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1657
1658 /*
1659 * Disable memory write invalidate. Apparently it is not supported
1660 * properly by these devices.
1661 */
1662 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1663
1664
1665 #ifdef __brokenalpha__
1666 /*
1667 * Must insure that we do not cross an 8K (bytes) boundary
1668 * for DMA reads. Our highest limit is 1K bytes. This is a
1669 * restriction on some ALPHA platforms with early revision
1670 * 21174 PCI chipsets, such as the AlphaPC 164lx
1671 */
1672 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1673 #endif
1674
1675 /* Set the timer prescaler (always 66MHz) */
1676 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1677
1678 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1679 DELAY(40); /* XXX */
1680
1681 /* Put PHY into ready state */
1682 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1683 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1684 DELAY(40);
1685 }
1686
1687 return (0);
1688 }
1689
1690 static int
1691 bge_blockinit(struct bge_softc *sc)
1692 {
1693 volatile struct bge_rcb *rcb;
1694 bus_size_t rcb_addr;
1695 int i;
1696 struct ifnet *ifp = &sc->ethercom.ec_if;
1697 bge_hostaddr taddr;
1698 u_int32_t val;
1699
1700 /*
1701 * Initialize the memory window pointer register so that
1702 * we can access the first 32K of internal NIC RAM. This will
1703 * allow us to set up the TX send ring RCBs and the RX return
1704 * ring RCBs, plus other things which live in NIC memory.
1705 */
1706
1707 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1708
1709 /* Configure mbuf memory pool */
1710 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1711 if (sc->bge_extram) {
1712 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1713 BGE_EXT_SSRAM);
1714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1715 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1716 else
1717 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1718 } else {
1719 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1720 BGE_BUFFPOOL_1);
1721 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1722 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1723 else
1724 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1725 }
1726
1727 /* Configure DMA resource pool */
1728 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1729 BGE_DMA_DESCRIPTORS);
1730 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1731 }
1732
1733 /* Configure mbuf pool watermarks */
1734 #ifdef ORIG_WPAUL_VALUES
1735 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1736 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1737 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1738 #else
1739
1740 /* new broadcom docs strongly recommend these: */
1741 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1742 if (ifp->if_mtu > ETHER_MAX_LEN) {
1743 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1744 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1745 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1746 } else {
1747 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1748 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1749 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1750 }
1751 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1752 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1753 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1754 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1755 } else {
1756 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1757 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1758 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1759 }
1760 #endif
1761
1762 /* Configure DMA resource watermarks */
1763 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1764 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1765
1766 /* Enable buffer manager */
1767 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1768 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1769 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1770
1771 /* Poll for buffer manager start indication */
1772 for (i = 0; i < BGE_TIMEOUT; i++) {
1773 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1774 break;
1775 DELAY(10);
1776 }
1777
1778 if (i == BGE_TIMEOUT) {
1779 aprint_error_dev(sc->bge_dev,
1780 "buffer manager failed to start\n");
1781 return (ENXIO);
1782 }
1783 }
1784
1785 /* Enable flow-through queues */
1786 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1787 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1788
1789 /* Wait until queue initialization is complete */
1790 for (i = 0; i < BGE_TIMEOUT; i++) {
1791 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1792 break;
1793 DELAY(10);
1794 }
1795
1796 if (i == BGE_TIMEOUT) {
1797 aprint_error_dev(sc->bge_dev,
1798 "flow-through queue init failed\n");
1799 return (ENXIO);
1800 }
1801
1802 /* Initialize the standard RX ring control block */
1803 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1804 bge_set_hostaddr(&rcb->bge_hostaddr,
1805 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1806 if (BGE_IS_5705_OR_BEYOND(sc))
1807 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1808 else
1809 rcb->bge_maxlen_flags =
1810 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1811 if (sc->bge_extram)
1812 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1813 else
1814 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1815 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1816 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1817 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1818 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1819
1820 if (BGE_IS_5705_OR_BEYOND(sc))
1821 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1822 else
1823 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1824
1825 /*
1826 * Initialize the jumbo RX ring control block
1827 * We set the 'ring disabled' bit in the flags
1828 * field until we're actually ready to start
1829 * using this ring (i.e. once we set the MTU
1830 * high enough to require it).
1831 */
1832 if (!BGE_IS_5705_OR_BEYOND(sc)) {
1833 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1834 bge_set_hostaddr(&rcb->bge_hostaddr,
1835 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1836 rcb->bge_maxlen_flags =
1837 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1838 BGE_RCB_FLAG_RING_DISABLED);
1839 if (sc->bge_extram)
1840 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1841 else
1842 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1843
1844 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1845 rcb->bge_hostaddr.bge_addr_hi);
1846 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1847 rcb->bge_hostaddr.bge_addr_lo);
1848 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1849 rcb->bge_maxlen_flags);
1850 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1851
1852 /* Set up dummy disabled mini ring RCB */
1853 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1854 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1855 BGE_RCB_FLAG_RING_DISABLED);
1856 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1857 rcb->bge_maxlen_flags);
1858
1859 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1860 offsetof(struct bge_ring_data, bge_info),
1861 sizeof (struct bge_gib),
1862 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1863 }
1864
1865 /*
1866 * Set the BD ring replenish thresholds. The recommended
1867 * values are 1/8th the number of descriptors allocated to
1868 * each ring.
1869 */
1870 i = BGE_STD_RX_RING_CNT / 8;
1871
1872 /*
1873 * Use a value of 8 for the following chips to workaround HW errata.
1874 * Some of these chips have been added based on empirical
1875 * evidence (they don't work unless this is done).
1876 */
1877 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1878 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1879 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1880 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1881 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1882 i = 8;
1883
1884 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1885 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
1886
1887 /*
1888 * Disable all unused send rings by setting the 'ring disabled'
1889 * bit in the flags field of all the TX send ring control blocks.
1890 * These are located in NIC memory.
1891 */
1892 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1893 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1894 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1895 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1896 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1897 rcb_addr += sizeof(struct bge_rcb);
1898 }
1899
1900 /* Configure TX RCB 0 (we use only the first ring) */
1901 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1902 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1903 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1904 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1905 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1906 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1907 if (!(BGE_IS_5705_OR_BEYOND(sc)))
1908 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1909 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1910
1911 /* Disable all unused RX return rings */
1912 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1913 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1914 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1915 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1916 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1917 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1918 BGE_RCB_FLAG_RING_DISABLED));
1919 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1920 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1921 (i * (sizeof(u_int64_t))), 0);
1922 rcb_addr += sizeof(struct bge_rcb);
1923 }
1924
1925 /* Initialize RX ring indexes */
1926 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1927 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1928 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1929
1930 /*
1931 * Set up RX return ring 0
1932 * Note that the NIC address for RX return rings is 0x00000000.
1933 * The return rings live entirely within the host, so the
1934 * nicaddr field in the RCB isn't used.
1935 */
1936 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1937 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1938 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1939 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1940 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1941 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1942 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1943
1944 /* Set random backoff seed for TX */
1945 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1946 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1947 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1948 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1949 BGE_TX_BACKOFF_SEED_MASK);
1950
1951 /* Set inter-packet gap */
1952 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1953
1954 /*
1955 * Specify which ring to use for packets that don't match
1956 * any RX rules.
1957 */
1958 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1959
1960 /*
1961 * Configure number of RX lists. One interrupt distribution
1962 * list, sixteen active lists, one bad frames class.
1963 */
1964 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1965
1966 /* Inialize RX list placement stats mask. */
1967 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1968 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1969
1970 /* Disable host coalescing until we get it set up */
1971 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1972
1973 /* Poll to make sure it's shut down. */
1974 for (i = 0; i < BGE_TIMEOUT; i++) {
1975 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1976 break;
1977 DELAY(10);
1978 }
1979
1980 if (i == BGE_TIMEOUT) {
1981 aprint_error_dev(sc->bge_dev,
1982 "host coalescing engine failed to idle\n");
1983 return (ENXIO);
1984 }
1985
1986 /* Set up host coalescing defaults */
1987 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1988 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1989 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1990 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1991 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
1992 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1993 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1994 }
1995 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1996 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1997
1998 /* Set up address of statistics block */
1999 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2000 bge_set_hostaddr(&taddr,
2001 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2002 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2003 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2004 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2005 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2006 }
2007
2008 /* Set up address of status block */
2009 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2010 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2011 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2012 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2013 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2014 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2015
2016 /* Turn on host coalescing state machine */
2017 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2018
2019 /* Turn on RX BD completion state machine and enable attentions */
2020 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2021 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2022
2023 /* Turn on RX list placement state machine */
2024 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2025
2026 /* Turn on RX list selector state machine. */
2027 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2028 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2029
2030 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2031 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2032 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2033 BGE_MACMODE_FRMHDR_DMA_ENB;
2034
2035 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2036 val |= BGE_PORTMODE_TBI;
2037 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2038 val |= BGE_PORTMODE_GMII;
2039 else
2040 val |= BGE_PORTMODE_MII;
2041
2042 /* Turn on DMA, clear stats */
2043 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2044
2045
2046 /* Set misc. local control, enable interrupts on attentions */
2047 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2048
2049 #ifdef notdef
2050 /* Assert GPIO pins for PHY reset */
2051 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2052 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2053 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2054 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2055 #endif
2056
2057 #if defined(not_quite_yet)
2058 /* Linux driver enables enable gpio pin #1 on 5700s */
2059 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2060 sc->bge_local_ctrl_reg |=
2061 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2062 }
2063 #endif
2064 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2065
2066 /* Turn on DMA completion state machine */
2067 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2068 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2069
2070 /* Turn on write DMA state machine */
2071 {
2072 uint32_t bge_wdma_mode =
2073 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2074
2075 /* Enable host coalescing bug fix; see Linux tg3.c */
2076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2077 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2078 bge_wdma_mode |= (1 << 29);
2079
2080 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2081 }
2082
2083 /* Turn on read DMA state machine */
2084 {
2085 uint32_t dma_read_modebits;
2086
2087 dma_read_modebits =
2088 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2089
2090 if ((sc->bge_flags & BGE_PCIE) && 0) {
2091 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2092 } else if (BGE_IS_5705_OR_BEYOND(sc)) {
2093 dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
2094 }
2095
2096 /* XXX broadcom-supplied linux driver; undocumented */
2097 if (BGE_IS_5750_OR_BEYOND(sc)) {
2098 /*
2099 * XXX: magic values.
2100 * From Broadcom-supplied Linux driver; apparently
2101 * required to workaround a DMA bug affecting TSO
2102 * on bcm575x/bcm5721?
2103 */
2104 dma_read_modebits |= (1 << 27);
2105 }
2106 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2107 }
2108
2109 /* Turn on RX data completion state machine */
2110 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2111
2112 /* Turn on RX BD initiator state machine */
2113 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2114
2115 /* Turn on RX data and RX BD initiator state machine */
2116 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2117
2118 /* Turn on Mbuf cluster free state machine */
2119 if (!(BGE_IS_5705_OR_BEYOND(sc)))
2120 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2121
2122 /* Turn on send BD completion state machine */
2123 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2124
2125 /* Turn on send data completion state machine */
2126 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2127
2128 /* Turn on send data initiator state machine */
2129 if (BGE_IS_5750_OR_BEYOND(sc)) {
2130 /* XXX: magic value from Linux driver */
2131 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2132 } else {
2133 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2134 }
2135
2136 /* Turn on send BD initiator state machine */
2137 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2138
2139 /* Turn on send BD selector state machine */
2140 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2141
2142 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2143 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2144 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2145
2146 /* ack/clear link change events */
2147 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2148 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2149 BGE_MACSTAT_CFG_CHANGED);
2150 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2151
2152 /* Enable PHY auto polling (for MII/GMII only) */
2153 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2154 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2155 } else {
2156 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2157 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2158 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2159 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2160 BGE_EVTENB_MI_INTERRUPT);
2161 }
2162
2163 /*
2164 * Clear any pending link state attention.
2165 * Otherwise some link state change events may be lost until attention
2166 * is cleared by bge_intr() -> bge_link_upd() sequence.
2167 * It's not necessary on newer BCM chips - perhaps enabling link
2168 * state change attentions implies clearing pending attention.
2169 */
2170 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2171 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2172 BGE_MACSTAT_LINK_CHANGED);
2173
2174 /* Enable link state change attentions. */
2175 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2176
2177 return (0);
2178 }
2179
2180 static const struct bge_revision *
2181 bge_lookup_rev(uint32_t chipid)
2182 {
2183 const struct bge_revision *br;
2184
2185 for (br = bge_revisions; br->br_name != NULL; br++) {
2186 if (br->br_chipid == chipid)
2187 return (br);
2188 }
2189
2190 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2191 if (br->br_chipid == BGE_ASICREV(chipid))
2192 return (br);
2193 }
2194
2195 return (NULL);
2196 }
2197
2198 static const struct bge_product *
2199 bge_lookup(const struct pci_attach_args *pa)
2200 {
2201 const struct bge_product *bp;
2202
2203 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2204 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2205 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2206 return (bp);
2207 }
2208
2209 return (NULL);
2210 }
2211
2212 static int
2213 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2214 {
2215 #ifdef NOTYET
2216 u_int32_t pm_ctl = 0;
2217
2218 /* XXX FIXME: make sure indirect accesses enabled? */
2219 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2220 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2221 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2222
2223 /* clear the PME_assert bit and power state bits, enable PME */
2224 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2225 pm_ctl &= ~PCIM_PSTAT_DMASK;
2226 pm_ctl |= (1 << 8);
2227
2228 if (powerlevel == 0) {
2229 pm_ctl |= PCIM_PSTAT_D0;
2230 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2231 pm_ctl, 2);
2232 DELAY(10000);
2233 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2234 DELAY(10000);
2235
2236 #ifdef NOTYET
2237 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2238 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2239 #endif
2240 DELAY(40); DELAY(40); DELAY(40);
2241 DELAY(10000); /* above not quite adequate on 5700 */
2242 return 0;
2243 }
2244
2245
2246 /*
2247 * Entering ACPI power states D1-D3 is achieved by wiggling
2248 * GMII gpio pins. Example code assumes all hardware vendors
2249 * followed Broadom's sample pcb layout. Until we verify that
2250 * for all supported OEM cards, states D1-D3 are unsupported.
2251 */
2252 aprint_error_dev(sc->bge_dev,
2253 "power state %d unimplemented; check GPIO pins\n",
2254 powerlevel);
2255 #endif
2256 return EOPNOTSUPP;
2257 }
2258
2259
2260 /*
2261 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2262 * against our list and return its name if we find a match. Note
2263 * that since the Broadcom controller contains VPD support, we
2264 * can get the device name string from the controller itself instead
2265 * of the compiled-in string. This is a little slow, but it guarantees
2266 * we'll always announce the right product name.
2267 */
2268 static int
2269 bge_probe(device_t parent, cfdata_t match, void *aux)
2270 {
2271 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2272
2273 if (bge_lookup(pa) != NULL)
2274 return (1);
2275
2276 return (0);
2277 }
2278
2279 static void
2280 bge_attach(device_t parent, device_t self, void *aux)
2281 {
2282 struct bge_softc *sc = device_private(self);
2283 struct pci_attach_args *pa = aux;
2284 prop_dictionary_t dict;
2285 const struct bge_product *bp;
2286 const struct bge_revision *br;
2287 pci_chipset_tag_t pc;
2288 pci_intr_handle_t ih;
2289 const char *intrstr = NULL;
2290 bus_dma_segment_t seg;
2291 int rseg;
2292 u_int32_t hwcfg = 0;
2293 u_int32_t command;
2294 struct ifnet *ifp;
2295 u_int32_t misccfg;
2296 void * kva;
2297 u_char eaddr[ETHER_ADDR_LEN];
2298 pcireg_t memtype;
2299 bus_addr_t memaddr;
2300 bus_size_t memsize;
2301 u_int32_t pm_ctl;
2302
2303 bp = bge_lookup(pa);
2304 KASSERT(bp != NULL);
2305
2306 sc->sc_pc = pa->pa_pc;
2307 sc->sc_pcitag = pa->pa_tag;
2308 sc->bge_dev = self;
2309
2310 aprint_naive(": Ethernet controller\n");
2311 aprint_normal(": %s\n", bp->bp_name);
2312
2313 /*
2314 * Map control/status registers.
2315 */
2316 DPRINTFN(5, ("Map control/status regs\n"));
2317 pc = sc->sc_pc;
2318 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2319 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2320 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2321 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2322
2323 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2324 aprint_error_dev(sc->bge_dev,
2325 "failed to enable memory mapping!\n");
2326 return;
2327 }
2328
2329 DPRINTFN(5, ("pci_mem_find\n"));
2330 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2331 switch (memtype) {
2332 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2333 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2334 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2335 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2336 &memaddr, &memsize) == 0)
2337 break;
2338 default:
2339 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2340 return;
2341 }
2342
2343 DPRINTFN(5, ("pci_intr_map\n"));
2344 if (pci_intr_map(pa, &ih)) {
2345 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2346 return;
2347 }
2348
2349 DPRINTFN(5, ("pci_intr_string\n"));
2350 intrstr = pci_intr_string(pc, ih);
2351
2352 DPRINTFN(5, ("pci_intr_establish\n"));
2353 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2354
2355 if (sc->bge_intrhand == NULL) {
2356 aprint_error_dev(sc->bge_dev,
2357 "couldn't establish interrupt%s%s\n",
2358 intrstr ? " at " : "", intrstr ? intrstr : "");
2359 return;
2360 }
2361 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2362
2363 /*
2364 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2365 * can clobber the chip's PCI config-space power control registers,
2366 * leaving the card in D3 powersave state.
2367 * We do not have memory-mapped registers in this state,
2368 * so force device into D0 state before starting initialization.
2369 */
2370 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2371 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2372 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2373 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2374 DELAY(1000); /* 27 usec is allegedly sufficent */
2375
2376 /*
2377 * Save ASIC rev.
2378 */
2379 sc->bge_chipid =
2380 pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2381 BGE_PCIMISCCTL_ASICREV;
2382
2383 /*
2384 * Detect PCI-Express devices
2385 * XXX: guessed from Linux/FreeBSD; no documentation
2386 */
2387 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2388 NULL, NULL) != 0)
2389 sc->bge_flags |= BGE_PCIE;
2390
2391 /*
2392 * PCI-X check.
2393 */
2394 if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2395 BGE_PCISTATE_PCI_BUSMODE) == 0)
2396 sc->bge_flags |= BGE_PCIX;
2397
2398 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2399 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2400 sc->bge_flags |= BGE_PHY_CRC_BUG;
2401 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2402 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2403 sc->bge_flags |= BGE_PHY_ADC_BUG;
2404 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2405 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2406
2407 if (BGE_IS_5705_OR_BEYOND(sc)) {
2408 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2409 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2410 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2411 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2412 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2413 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2414 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2415 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2416 sc->bge_flags |= BGE_PHY_BER_BUG;
2417 }
2418
2419 /* Try to reset the chip. */
2420 DPRINTFN(5, ("bge_reset\n"));
2421 bge_reset(sc);
2422
2423 if (bge_chipinit(sc)) {
2424 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2425 bge_release_resources(sc);
2426 return;
2427 }
2428
2429 /*
2430 * Get station address from the EEPROM.
2431 */
2432 if (bge_get_eaddr(sc, eaddr)) {
2433 aprint_error_dev(sc->bge_dev,
2434 "failed to reade station address\n");
2435 bge_release_resources(sc);
2436 return;
2437 }
2438
2439 br = bge_lookup_rev(sc->bge_chipid);
2440
2441 if (br == NULL) {
2442 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2443 sc->bge_chipid >> 16);
2444 } else {
2445 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2446 br->br_name, sc->bge_chipid >> 16);
2447 }
2448 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2449
2450 /* Allocate the general information block and ring buffers. */
2451 if (pci_dma64_available(pa))
2452 sc->bge_dmatag = pa->pa_dmat64;
2453 else
2454 sc->bge_dmatag = pa->pa_dmat;
2455 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2456 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2457 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2458 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2459 return;
2460 }
2461 DPRINTFN(5, ("bus_dmamem_map\n"));
2462 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2463 sizeof(struct bge_ring_data), &kva,
2464 BUS_DMA_NOWAIT)) {
2465 aprint_error_dev(sc->bge_dev,
2466 "can't map DMA buffers (%zu bytes)\n",
2467 sizeof(struct bge_ring_data));
2468 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2469 return;
2470 }
2471 DPRINTFN(5, ("bus_dmamem_create\n"));
2472 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2473 sizeof(struct bge_ring_data), 0,
2474 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2475 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2476 bus_dmamem_unmap(sc->bge_dmatag, kva,
2477 sizeof(struct bge_ring_data));
2478 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2479 return;
2480 }
2481 DPRINTFN(5, ("bus_dmamem_load\n"));
2482 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2483 sizeof(struct bge_ring_data), NULL,
2484 BUS_DMA_NOWAIT)) {
2485 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2486 bus_dmamem_unmap(sc->bge_dmatag, kva,
2487 sizeof(struct bge_ring_data));
2488 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2489 return;
2490 }
2491
2492 DPRINTFN(5, ("bzero\n"));
2493 sc->bge_rdata = (struct bge_ring_data *)kva;
2494
2495 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2496
2497 /* Try to allocate memory for jumbo buffers. */
2498 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
2499 if (bge_alloc_jumbo_mem(sc)) {
2500 aprint_error_dev(sc->bge_dev,
2501 "jumbo buffer allocation failed\n");
2502 } else
2503 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2504 }
2505
2506 /* Set default tuneable values. */
2507 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2508 sc->bge_rx_coal_ticks = 150;
2509 sc->bge_rx_max_coal_bds = 64;
2510 #ifdef ORIG_WPAUL_VALUES
2511 sc->bge_tx_coal_ticks = 150;
2512 sc->bge_tx_max_coal_bds = 128;
2513 #else
2514 sc->bge_tx_coal_ticks = 300;
2515 sc->bge_tx_max_coal_bds = 400;
2516 #endif
2517 if (BGE_IS_5705_OR_BEYOND(sc)) {
2518 sc->bge_tx_coal_ticks = (12 * 5);
2519 sc->bge_tx_max_coal_bds = (12 * 5);
2520 aprint_verbose_dev(sc->bge_dev,
2521 "setting short Tx thresholds\n");
2522 }
2523
2524 /* Set up ifnet structure */
2525 ifp = &sc->ethercom.ec_if;
2526 ifp->if_softc = sc;
2527 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2528 ifp->if_ioctl = bge_ioctl;
2529 ifp->if_stop = bge_stop;
2530 ifp->if_start = bge_start;
2531 ifp->if_init = bge_init;
2532 ifp->if_watchdog = bge_watchdog;
2533 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2534 IFQ_SET_READY(&ifp->if_snd);
2535 DPRINTFN(5, ("strcpy if_xname\n"));
2536 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2537
2538 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2539 sc->ethercom.ec_if.if_capabilities |=
2540 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2541 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2542 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2543 sc->ethercom.ec_capabilities |=
2544 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2545
2546 if (sc->bge_flags & BGE_PCIE)
2547 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2548
2549 /*
2550 * Do MII setup.
2551 */
2552 DPRINTFN(5, ("mii setup\n"));
2553 sc->bge_mii.mii_ifp = ifp;
2554 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2555 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2556 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2557
2558 /*
2559 * Figure out what sort of media we have by checking the
2560 * hardware config word in the first 32k of NIC internal memory,
2561 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2562 * cards, this value appears to be unset. If that's the
2563 * case, we have to rely on identifying the NIC by its PCI
2564 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2565 */
2566 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2567 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2568 } else {
2569 bge_read_eeprom(sc, (void *)&hwcfg,
2570 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2571 hwcfg = be32toh(hwcfg);
2572 }
2573 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2574 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2575 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2576 if (BGE_IS_5714_FAMILY(sc))
2577 sc->bge_flags |= BGE_PHY_FIBER_MII;
2578 else
2579 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2580 }
2581
2582 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2583 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2584 bge_ifmedia_sts);
2585 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2586 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2587 0, NULL);
2588 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2589 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2590 /* Pretend the user requested this setting */
2591 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2592 } else {
2593 /*
2594 * Do transceiver setup.
2595 */
2596 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2597 bge_ifmedia_sts);
2598 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2599 MII_PHY_ANY, MII_OFFSET_ANY,
2600 MIIF_FORCEANEG|MIIF_DOPAUSE);
2601
2602 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2603 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2604 ifmedia_add(&sc->bge_mii.mii_media,
2605 IFM_ETHER|IFM_MANUAL, 0, NULL);
2606 ifmedia_set(&sc->bge_mii.mii_media,
2607 IFM_ETHER|IFM_MANUAL);
2608 } else
2609 ifmedia_set(&sc->bge_mii.mii_media,
2610 IFM_ETHER|IFM_AUTO);
2611 }
2612
2613 /*
2614 * When using the BCM5701 in PCI-X mode, data corruption has
2615 * been observed in the first few bytes of some received packets.
2616 * Aligning the packet buffer in memory eliminates the corruption.
2617 * Unfortunately, this misaligns the packet payloads. On platforms
2618 * which do not support unaligned accesses, we will realign the
2619 * payloads by copying the received packets.
2620 */
2621 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2622 sc->bge_flags & BGE_PCIX)
2623 sc->bge_flags |= BGE_RX_ALIGNBUG;
2624
2625 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2626 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2627
2628 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2629 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2630 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2631 sc->bge_flags |= BGE_IS_5788;
2632
2633 /*
2634 * Call MI attach routine.
2635 */
2636 DPRINTFN(5, ("if_attach\n"));
2637 if_attach(ifp);
2638 DPRINTFN(5, ("ether_ifattach\n"));
2639 ether_ifattach(ifp, eaddr);
2640 #if NRND > 0
2641 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2642 RND_TYPE_NET, 0);
2643 #endif
2644 #ifdef BGE_EVENT_COUNTERS
2645 /*
2646 * Attach event counters.
2647 */
2648 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2649 NULL, device_xname(sc->bge_dev), "intr");
2650 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2651 NULL, device_xname(sc->bge_dev), "tx_xoff");
2652 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2653 NULL, device_xname(sc->bge_dev), "tx_xon");
2654 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2655 NULL, device_xname(sc->bge_dev), "rx_xoff");
2656 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2657 NULL, device_xname(sc->bge_dev), "rx_xon");
2658 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2659 NULL, device_xname(sc->bge_dev), "rx_macctl");
2660 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2661 NULL, device_xname(sc->bge_dev), "xoffentered");
2662 #endif /* BGE_EVENT_COUNTERS */
2663 DPRINTFN(5, ("callout_init\n"));
2664 callout_init(&sc->bge_timeout, 0);
2665
2666 if (!pmf_device_register(self, NULL, NULL))
2667 aprint_error_dev(self, "couldn't establish power handler\n");
2668 else
2669 pmf_class_network_register(self, ifp);
2670
2671 dict = device_properties(self);
2672 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2673 }
2674
2675 static void
2676 bge_release_resources(struct bge_softc *sc)
2677 {
2678 if (sc->bge_vpd_prodname != NULL)
2679 free(sc->bge_vpd_prodname, M_DEVBUF);
2680
2681 if (sc->bge_vpd_readonly != NULL)
2682 free(sc->bge_vpd_readonly, M_DEVBUF);
2683 }
2684
2685 static void
2686 bge_reset(struct bge_softc *sc)
2687 {
2688 u_int32_t cachesize, command, pcistate, new_pcistate;
2689 int i, val;
2690 void (*write_op)(struct bge_softc *, int, int);
2691
2692 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2693 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2694 if (sc->bge_flags & BGE_PCIE) {
2695 write_op = bge_writemem_direct;
2696 } else {
2697 write_op = bge_writemem_ind;
2698 }
2699 } else {
2700 write_op = bge_writereg_ind;
2701 }
2702
2703
2704 /* Save some important PCI state. */
2705 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2706 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2707 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2708
2709 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2710 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2711 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2712
2713 /* Disable fastboot on controllers that support it. */
2714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2715 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2716 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2717 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2718
2719 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2720 /*
2721 * XXX: from FreeBSD/Linux; no documentation
2722 */
2723 if (sc->bge_flags & BGE_PCIE) {
2724 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2725 /* PCI Express 1.0 system */
2726 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2727 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2728 /*
2729 * Prevent PCI Express link training
2730 * during global reset.
2731 */
2732 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2733 val |= (1<<29);
2734 }
2735 }
2736
2737 /*
2738 * Set GPHY Power Down Override to leave GPHY
2739 * powered up in D0 uninitialized.
2740 */
2741 if (BGE_IS_5705_OR_BEYOND(sc))
2742 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
2743
2744 /* Issue global reset */
2745 write_op(sc, BGE_MISC_CFG, val);
2746
2747 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2748 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2749 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2750 i | BGE_VCPU_STATUS_DRV_RESET);
2751 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2752 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2753 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2754 }
2755
2756 DELAY(1000);
2757
2758 /*
2759 * XXX: from FreeBSD/Linux; no documentation
2760 */
2761 if (sc->bge_flags & BGE_PCIE) {
2762 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2763 pcireg_t reg;
2764
2765 DELAY(500000);
2766 /* XXX: Magic Numbers */
2767 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2768 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2769 reg | (1 << 15));
2770 }
2771 /*
2772 * XXX: Magic Numbers.
2773 * Sets maximal PCI-e payload and clears any PCI-e errors.
2774 * Should be replaced with references to PCI config-space
2775 * capability block for PCI-Express.
2776 */
2777 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2778 BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2779
2780 }
2781
2782 /* Reset some of the PCI state that got zapped by reset */
2783 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2784 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2785 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2786 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2787 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2788 write_op(sc, BGE_MISC_CFG, (65 << 1));
2789
2790 /* Enable memory arbiter. */
2791 {
2792 uint32_t marbmode = 0;
2793 if (BGE_IS_5714_FAMILY(sc)) {
2794 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2795 }
2796 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2797 }
2798
2799
2800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2801 for (i = 0; i < BGE_TIMEOUT; i++) {
2802 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2803 if (val & BGE_VCPU_STATUS_INIT_DONE)
2804 break;
2805 DELAY(100);
2806 }
2807 if (i == BGE_TIMEOUT) {
2808 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2809 return;
2810 }
2811 } else {
2812 /*
2813 * Write the magic number to the firmware mailbox at 0xb50
2814 * so that the driver can synchronize with the firmware.
2815 */
2816 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2817
2818 /*
2819 * Poll the value location we just wrote until
2820 * we see the 1's complement of the magic number.
2821 * This indicates that the firmware initialization
2822 * is complete.
2823 */
2824 for (i = 0; i < BGE_TIMEOUT; i++) {
2825 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2826 if (val == ~BGE_MAGIC_NUMBER)
2827 break;
2828 DELAY(1000);
2829 }
2830
2831 if (i >= BGE_TIMEOUT) {
2832 aprint_error_dev(sc->bge_dev,
2833 "firmware handshake timed out, val = %x\n", val);
2834 /*
2835 * XXX: occasionally fired on bcm5721, but without
2836 * apparent harm. For now, keep going if we timeout
2837 * against PCI-E devices.
2838 */
2839 if ((sc->bge_flags & BGE_PCIE) == 0)
2840 return;
2841 }
2842 }
2843
2844 /*
2845 * XXX Wait for the value of the PCISTATE register to
2846 * return to its original pre-reset state. This is a
2847 * fairly good indicator of reset completion. If we don't
2848 * wait for the reset to fully complete, trying to read
2849 * from the device's non-PCI registers may yield garbage
2850 * results.
2851 */
2852 for (i = 0; i < 10000; i++) {
2853 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2854 BGE_PCI_PCISTATE);
2855 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2856 (pcistate & ~BGE_PCISTATE_RESERVED))
2857 break;
2858 DELAY(10);
2859 }
2860 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2861 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2862 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2863 }
2864
2865 /* Enable memory arbiter. */
2866 /* XXX why do this twice? */
2867 {
2868 uint32_t marbmode = 0;
2869 if (BGE_IS_5714_FAMILY(sc)) {
2870 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2871 }
2872 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2873 }
2874
2875 /* Fix up byte swapping */
2876 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2877
2878 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2879
2880 /*
2881 * The 5704 in TBI mode apparently needs some special
2882 * adjustment to insure the SERDES drive level is set
2883 * to 1.2V.
2884 */
2885 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
2886 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2887 u_int32_t serdescfg;
2888
2889 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2890 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2891 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2892 }
2893
2894 /* XXX: from FreeBSD/Linux; no documentation */
2895 if (sc->bge_flags & BGE_PCIE &&
2896 sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2897 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2898 DELAY(10000);
2899 }
2900
2901 /*
2902 * Frame reception handling. This is called if there's a frame
2903 * on the receive return list.
2904 *
2905 * Note: we have to be able to handle two possibilities here:
2906 * 1) the frame is from the jumbo recieve ring
2907 * 2) the frame is from the standard receive ring
2908 */
2909
2910 static void
2911 bge_rxeof(struct bge_softc *sc)
2912 {
2913 struct ifnet *ifp;
2914 int stdcnt = 0, jumbocnt = 0;
2915 bus_dmamap_t dmamap;
2916 bus_addr_t offset, toff;
2917 bus_size_t tlen;
2918 int tosync;
2919
2920 ifp = &sc->ethercom.ec_if;
2921
2922 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2923 offsetof(struct bge_ring_data, bge_status_block),
2924 sizeof (struct bge_status_block),
2925 BUS_DMASYNC_POSTREAD);
2926
2927 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2928 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2929 sc->bge_rx_saved_considx;
2930
2931 #if NRND > 0
2932 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
2933 rnd_add_uint32(&sc->rnd_source, tosync);
2934 #endif
2935
2936 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2937
2938 if (tosync < 0) {
2939 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2940 sizeof (struct bge_rx_bd);
2941 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2942 toff, tlen, BUS_DMASYNC_POSTREAD);
2943 tosync = -tosync;
2944 }
2945
2946 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2947 offset, tosync * sizeof (struct bge_rx_bd),
2948 BUS_DMASYNC_POSTREAD);
2949
2950 while(sc->bge_rx_saved_considx !=
2951 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2952 struct bge_rx_bd *cur_rx;
2953 u_int32_t rxidx;
2954 struct mbuf *m = NULL;
2955
2956 cur_rx = &sc->bge_rdata->
2957 bge_rx_return_ring[sc->bge_rx_saved_considx];
2958
2959 rxidx = cur_rx->bge_idx;
2960 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2961
2962 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2963 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2964 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2965 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2966 jumbocnt++;
2967 bus_dmamap_sync(sc->bge_dmatag,
2968 sc->bge_cdata.bge_rx_jumbo_map,
2969 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
2970 BGE_JLEN, BUS_DMASYNC_POSTREAD);
2971 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2972 ifp->if_ierrors++;
2973 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2974 continue;
2975 }
2976 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2977 NULL)== ENOBUFS) {
2978 ifp->if_ierrors++;
2979 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2980 continue;
2981 }
2982 } else {
2983 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2984 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2985
2986 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2987 stdcnt++;
2988 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2989 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2990 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
2991 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2992 bus_dmamap_unload(sc->bge_dmatag, dmamap);
2993 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2994 ifp->if_ierrors++;
2995 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2996 continue;
2997 }
2998 if (bge_newbuf_std(sc, sc->bge_std,
2999 NULL, dmamap) == ENOBUFS) {
3000 ifp->if_ierrors++;
3001 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3002 continue;
3003 }
3004 }
3005
3006 ifp->if_ipackets++;
3007 #ifndef __NO_STRICT_ALIGNMENT
3008 /*
3009 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3010 * the Rx buffer has the layer-2 header unaligned.
3011 * If our CPU requires alignment, re-align by copying.
3012 */
3013 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3014 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3015 cur_rx->bge_len);
3016 m->m_data += ETHER_ALIGN;
3017 }
3018 #endif
3019
3020 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3021 m->m_pkthdr.rcvif = ifp;
3022
3023 #if NBPFILTER > 0
3024 /*
3025 * Handle BPF listeners. Let the BPF user see the packet.
3026 */
3027 if (ifp->if_bpf)
3028 bpf_mtap(ifp->if_bpf, m);
3029 #endif
3030
3031 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3032
3033 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3034 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3035 /*
3036 * Rx transport checksum-offload may also
3037 * have bugs with packets which, when transmitted,
3038 * were `runts' requiring padding.
3039 */
3040 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3041 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3042 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3043 m->m_pkthdr.csum_data =
3044 cur_rx->bge_tcp_udp_csum;
3045 m->m_pkthdr.csum_flags |=
3046 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3047 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3048 }
3049
3050 /*
3051 * If we received a packet with a vlan tag, pass it
3052 * to vlan_input() instead of ether_input().
3053 */
3054 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3055 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3056 }
3057
3058 (*ifp->if_input)(ifp, m);
3059 }
3060
3061 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3062 if (stdcnt)
3063 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3064 if (jumbocnt)
3065 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3066 }
3067
3068 static void
3069 bge_txeof(struct bge_softc *sc)
3070 {
3071 struct bge_tx_bd *cur_tx = NULL;
3072 struct ifnet *ifp;
3073 struct txdmamap_pool_entry *dma;
3074 bus_addr_t offset, toff;
3075 bus_size_t tlen;
3076 int tosync;
3077 struct mbuf *m;
3078
3079 ifp = &sc->ethercom.ec_if;
3080
3081 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3082 offsetof(struct bge_ring_data, bge_status_block),
3083 sizeof (struct bge_status_block),
3084 BUS_DMASYNC_POSTREAD);
3085
3086 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3087 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3088 sc->bge_tx_saved_considx;
3089
3090 #if NRND > 0
3091 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3092 rnd_add_uint32(&sc->rnd_source, tosync);
3093 #endif
3094
3095 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3096
3097 if (tosync < 0) {
3098 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3099 sizeof (struct bge_tx_bd);
3100 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3101 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3102 tosync = -tosync;
3103 }
3104
3105 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3106 offset, tosync * sizeof (struct bge_tx_bd),
3107 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3108
3109 /*
3110 * Go through our tx ring and free mbufs for those
3111 * frames that have been sent.
3112 */
3113 while (sc->bge_tx_saved_considx !=
3114 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3115 u_int32_t idx = 0;
3116
3117 idx = sc->bge_tx_saved_considx;
3118 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3119 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3120 ifp->if_opackets++;
3121 m = sc->bge_cdata.bge_tx_chain[idx];
3122 if (m != NULL) {
3123 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3124 dma = sc->txdma[idx];
3125 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3126 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3127 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3128 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3129 sc->txdma[idx] = NULL;
3130
3131 m_freem(m);
3132 }
3133 sc->bge_txcnt--;
3134 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3135 ifp->if_timer = 0;
3136 }
3137
3138 if (cur_tx != NULL)
3139 ifp->if_flags &= ~IFF_OACTIVE;
3140 }
3141
3142 static int
3143 bge_intr(void *xsc)
3144 {
3145 struct bge_softc *sc;
3146 struct ifnet *ifp;
3147 uint32_t statusword;
3148
3149 sc = xsc;
3150 ifp = &sc->ethercom.ec_if;
3151
3152 /* It is possible for the interrupt to arrive before
3153 * the status block is updated prior to the interrupt.
3154 * Reading the PCI State register will confirm whether the
3155 * interrupt is ours and will flush the status block.
3156 */
3157
3158 /* read status word from status block */
3159 statusword = sc->bge_rdata->bge_status_block.bge_status;
3160
3161 if ((statusword & BGE_STATFLAG_UPDATED) ||
3162 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3163 /* Ack interrupt and stop others from occuring. */
3164 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3165
3166 BGE_EVCNT_INCR(sc->bge_ev_intr);
3167
3168 /* clear status word */
3169 sc->bge_rdata->bge_status_block.bge_status = 0;
3170
3171 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3172 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3173 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3174 bge_link_upd(sc);
3175
3176 if (ifp->if_flags & IFF_RUNNING) {
3177 /* Check RX return ring producer/consumer */
3178 bge_rxeof(sc);
3179
3180 /* Check TX ring producer/consumer */
3181 bge_txeof(sc);
3182 }
3183
3184 if (sc->bge_pending_rxintr_change) {
3185 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3186 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3187 uint32_t junk;
3188
3189 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3190 DELAY(10);
3191 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3192
3193 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3194 DELAY(10);
3195 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3196
3197 sc->bge_pending_rxintr_change = 0;
3198 }
3199 bge_handle_events(sc);
3200
3201 /* Re-enable interrupts. */
3202 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3203
3204 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3205 bge_start(ifp);
3206
3207 return (1);
3208 } else
3209 return (0);
3210 }
3211
3212 static void
3213 bge_tick(void *xsc)
3214 {
3215 struct bge_softc *sc = xsc;
3216 struct mii_data *mii = &sc->bge_mii;
3217 int s;
3218
3219 s = splnet();
3220
3221 bge_stats_update(sc);
3222
3223 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3224 /*
3225 * Since in TBI mode auto-polling can't be used we should poll
3226 * link status manually. Here we register pending link event
3227 * and trigger interrupt.
3228 */
3229 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3230 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3231 } else {
3232 /*
3233 * Do not touch PHY if we have link up. This could break
3234 * IPMI/ASF mode or produce extra input errors.
3235 * (extra input errors was reported for bcm5701 & bcm5704).
3236 */
3237 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3238 mii_tick(mii);
3239 }
3240
3241 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3242
3243 splx(s);
3244 }
3245
3246 static void
3247 bge_stats_update(struct bge_softc *sc)
3248 {
3249 struct ifnet *ifp = &sc->ethercom.ec_if;
3250 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3251 bus_size_t rstats = BGE_RX_STATS;
3252
3253 #define READ_RSTAT(sc, stats, stat) \
3254 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3255
3256 if (BGE_IS_5705_OR_BEYOND(sc)) {
3257 ifp->if_collisions +=
3258 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3259 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3260 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3261 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3262
3263 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3264 READ_RSTAT(sc, rstats, outXoffSent));
3265 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3266 READ_RSTAT(sc, rstats, outXonSent));
3267 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3268 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3269 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3270 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3271 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3272 READ_RSTAT(sc, rstats, macControlFramesReceived));
3273 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3274 READ_RSTAT(sc, rstats, xoffStateEntered));
3275 return;
3276 }
3277
3278 #undef READ_RSTAT
3279 #define READ_STAT(sc, stats, stat) \
3280 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3281
3282 ifp->if_collisions +=
3283 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3284 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3285 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3286 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3287 ifp->if_collisions;
3288
3289 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3290 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3291 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3292 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3293 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3294 READ_STAT(sc, stats,
3295 xoffPauseFramesReceived.bge_addr_lo));
3296 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3297 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3298 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3299 READ_STAT(sc, stats,
3300 macControlFramesReceived.bge_addr_lo));
3301 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3302 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3303
3304 #undef READ_STAT
3305
3306 #ifdef notdef
3307 ifp->if_collisions +=
3308 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3309 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3310 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3311 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3312 ifp->if_collisions;
3313 #endif
3314 }
3315
3316 /*
3317 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3318 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3319 * but when such padded frames employ the bge IP/TCP checksum offload,
3320 * the hardware checksum assist gives incorrect results (possibly
3321 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3322 * If we pad such runts with zeros, the onboard checksum comes out correct.
3323 */
3324 static inline int
3325 bge_cksum_pad(struct mbuf *pkt)
3326 {
3327 struct mbuf *last = NULL;
3328 int padlen;
3329
3330 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3331
3332 /* if there's only the packet-header and we can pad there, use it. */
3333 if (pkt->m_pkthdr.len == pkt->m_len &&
3334 M_TRAILINGSPACE(pkt) >= padlen) {
3335 last = pkt;
3336 } else {
3337 /*
3338 * Walk packet chain to find last mbuf. We will either
3339 * pad there, or append a new mbuf and pad it
3340 * (thus perhaps avoiding the bcm5700 dma-min bug).
3341 */
3342 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3343 continue; /* do nothing */
3344 }
3345
3346 /* `last' now points to last in chain. */
3347 if (M_TRAILINGSPACE(last) < padlen) {
3348 /* Allocate new empty mbuf, pad it. Compact later. */
3349 struct mbuf *n;
3350 MGET(n, M_DONTWAIT, MT_DATA);
3351 if (n == NULL)
3352 return ENOBUFS;
3353 n->m_len = 0;
3354 last->m_next = n;
3355 last = n;
3356 }
3357 }
3358
3359 KDASSERT(!M_READONLY(last));
3360 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3361
3362 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3363 memset(mtod(last, char *) + last->m_len, 0, padlen);
3364 last->m_len += padlen;
3365 pkt->m_pkthdr.len += padlen;
3366 return 0;
3367 }
3368
3369 /*
3370 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3371 */
3372 static inline int
3373 bge_compact_dma_runt(struct mbuf *pkt)
3374 {
3375 struct mbuf *m, *prev;
3376 int totlen, prevlen;
3377
3378 prev = NULL;
3379 totlen = 0;
3380 prevlen = -1;
3381
3382 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3383 int mlen = m->m_len;
3384 int shortfall = 8 - mlen ;
3385
3386 totlen += mlen;
3387 if (mlen == 0) {
3388 continue;
3389 }
3390 if (mlen >= 8)
3391 continue;
3392
3393 /* If we get here, mbuf data is too small for DMA engine.
3394 * Try to fix by shuffling data to prev or next in chain.
3395 * If that fails, do a compacting deep-copy of the whole chain.
3396 */
3397
3398 /* Internal frag. If fits in prev, copy it there. */
3399 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3400 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3401 prev->m_len += mlen;
3402 m->m_len = 0;
3403 /* XXX stitch chain */
3404 prev->m_next = m_free(m);
3405 m = prev;
3406 continue;
3407 }
3408 else if (m->m_next != NULL &&
3409 M_TRAILINGSPACE(m) >= shortfall &&
3410 m->m_next->m_len >= (8 + shortfall)) {
3411 /* m is writable and have enough data in next, pull up. */
3412
3413 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3414 shortfall);
3415 m->m_len += shortfall;
3416 m->m_next->m_len -= shortfall;
3417 m->m_next->m_data += shortfall;
3418 }
3419 else if (m->m_next == NULL || 1) {
3420 /* Got a runt at the very end of the packet.
3421 * borrow data from the tail of the preceding mbuf and
3422 * update its length in-place. (The original data is still
3423 * valid, so we can do this even if prev is not writable.)
3424 */
3425
3426 /* if we'd make prev a runt, just move all of its data. */
3427 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3428 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3429
3430 if ((prev->m_len - shortfall) < 8)
3431 shortfall = prev->m_len;
3432
3433 #ifdef notyet /* just do the safe slow thing for now */
3434 if (!M_READONLY(m)) {
3435 if (M_LEADINGSPACE(m) < shorfall) {
3436 void *m_dat;
3437 m_dat = (m->m_flags & M_PKTHDR) ?
3438 m->m_pktdat : m->dat;
3439 memmove(m_dat, mtod(m, void*), m->m_len);
3440 m->m_data = m_dat;
3441 }
3442 } else
3443 #endif /* just do the safe slow thing */
3444 {
3445 struct mbuf * n = NULL;
3446 int newprevlen = prev->m_len - shortfall;
3447
3448 MGET(n, M_NOWAIT, MT_DATA);
3449 if (n == NULL)
3450 return ENOBUFS;
3451 KASSERT(m->m_len + shortfall < MLEN
3452 /*,
3453 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3454
3455 /* first copy the data we're stealing from prev */
3456 memcpy(n->m_data, prev->m_data + newprevlen,
3457 shortfall);
3458
3459 /* update prev->m_len accordingly */
3460 prev->m_len -= shortfall;
3461
3462 /* copy data from runt m */
3463 memcpy(n->m_data + shortfall, m->m_data,
3464 m->m_len);
3465
3466 /* n holds what we stole from prev, plus m */
3467 n->m_len = shortfall + m->m_len;
3468
3469 /* stitch n into chain and free m */
3470 n->m_next = m->m_next;
3471 prev->m_next = n;
3472 /* KASSERT(m->m_next == NULL); */
3473 m->m_next = NULL;
3474 m_free(m);
3475 m = n; /* for continuing loop */
3476 }
3477 }
3478 prevlen = m->m_len;
3479 }
3480 return 0;
3481 }
3482
3483 /*
3484 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3485 * pointers to descriptors.
3486 */
3487 static int
3488 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3489 {
3490 struct bge_tx_bd *f = NULL;
3491 u_int32_t frag, cur;
3492 u_int16_t csum_flags = 0;
3493 u_int16_t txbd_tso_flags = 0;
3494 struct txdmamap_pool_entry *dma;
3495 bus_dmamap_t dmamap;
3496 int i = 0;
3497 struct m_tag *mtag;
3498 int use_tso, maxsegsize, error;
3499
3500 cur = frag = *txidx;
3501
3502 if (m_head->m_pkthdr.csum_flags) {
3503 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3504 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3505 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3506 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3507 }
3508
3509 /*
3510 * If we were asked to do an outboard checksum, and the NIC
3511 * has the bug where it sometimes adds in the Ethernet padding,
3512 * explicitly pad with zeros so the cksum will be correct either way.
3513 * (For now, do this for all chip versions, until newer
3514 * are confirmed to not require the workaround.)
3515 */
3516 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3517 #ifdef notyet
3518 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3519 #endif
3520 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3521 goto check_dma_bug;
3522
3523 if (bge_cksum_pad(m_head) != 0) {
3524 return ENOBUFS;
3525 }
3526
3527 check_dma_bug:
3528 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3529 goto doit;
3530
3531 /*
3532 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3533 * less than eight bytes. If we encounter a teeny mbuf
3534 * at the end of a chain, we can pad. Otherwise, copy.
3535 */
3536 if (bge_compact_dma_runt(m_head) != 0)
3537 return ENOBUFS;
3538
3539 doit:
3540 dma = SLIST_FIRST(&sc->txdma_list);
3541 if (dma == NULL)
3542 return ENOBUFS;
3543 dmamap = dma->dmamap;
3544
3545 /*
3546 * Set up any necessary TSO state before we start packing...
3547 */
3548 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3549 if (!use_tso) {
3550 maxsegsize = 0;
3551 } else { /* TSO setup */
3552 unsigned mss;
3553 struct ether_header *eh;
3554 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3555 struct mbuf * m0 = m_head;
3556 struct ip *ip;
3557 struct tcphdr *th;
3558 int iphl, hlen;
3559
3560 /*
3561 * XXX It would be nice if the mbuf pkthdr had offset
3562 * fields for the protocol headers.
3563 */
3564
3565 eh = mtod(m0, struct ether_header *);
3566 switch (htons(eh->ether_type)) {
3567 case ETHERTYPE_IP:
3568 offset = ETHER_HDR_LEN;
3569 break;
3570
3571 case ETHERTYPE_VLAN:
3572 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3573 break;
3574
3575 default:
3576 /*
3577 * Don't support this protocol or encapsulation.
3578 */
3579 return (ENOBUFS);
3580 }
3581
3582 /*
3583 * TCP/IP headers are in the first mbuf; we can do
3584 * this the easy way.
3585 */
3586 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3587 hlen = iphl + offset;
3588 if (__predict_false(m0->m_len <
3589 (hlen + sizeof(struct tcphdr)))) {
3590
3591 aprint_debug_dev(sc->bge_dev,
3592 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3593 "not handled yet\n",
3594 m0->m_len, hlen+ sizeof(struct tcphdr));
3595 #ifdef NOTYET
3596 /*
3597 * XXX jonathan (at) NetBSD.org: untested.
3598 * how to force this branch to be taken?
3599 */
3600 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3601
3602 m_copydata(m0, offset, sizeof(ip), &ip);
3603 m_copydata(m0, hlen, sizeof(th), &th);
3604
3605 ip.ip_len = 0;
3606
3607 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3608 sizeof(ip.ip_len), &ip.ip_len);
3609
3610 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3611 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3612
3613 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3614 sizeof(th.th_sum), &th.th_sum);
3615
3616 hlen += th.th_off << 2;
3617 iptcp_opt_words = hlen;
3618 #else
3619 /*
3620 * if_wm "hard" case not yet supported, can we not
3621 * mandate it out of existence?
3622 */
3623 (void) ip; (void)th; (void) ip_tcp_hlen;
3624
3625 return ENOBUFS;
3626 #endif
3627 } else {
3628 ip = (struct ip *) (mtod(m0, char *) + offset);
3629 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3630 ip_tcp_hlen = iphl + (th->th_off << 2);
3631
3632 /* Total IP/TCP options, in 32-bit words */
3633 iptcp_opt_words = (ip_tcp_hlen
3634 - sizeof(struct tcphdr)
3635 - sizeof(struct ip)) >> 2;
3636 }
3637 if (BGE_IS_5750_OR_BEYOND(sc)) {
3638 th->th_sum = 0;
3639 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3640 } else {
3641 /*
3642 * XXX jonathan (at) NetBSD.org: 5705 untested.
3643 * Requires TSO firmware patch for 5701/5703/5704.
3644 */
3645 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3646 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3647 }
3648
3649 mss = m_head->m_pkthdr.segsz;
3650 txbd_tso_flags |=
3651 BGE_TXBDFLAG_CPU_PRE_DMA |
3652 BGE_TXBDFLAG_CPU_POST_DMA;
3653
3654 /*
3655 * Our NIC TSO-assist assumes TSO has standard, optionless
3656 * IPv4 and TCP headers, which total 40 bytes. By default,
3657 * the NIC copies 40 bytes of IP/TCP header from the
3658 * supplied header into the IP/TCP header portion of
3659 * each post-TSO-segment. If the supplied packet has IP or
3660 * TCP options, we need to tell the NIC to copy those extra
3661 * bytes into each post-TSO header, in addition to the normal
3662 * 40-byte IP/TCP header (and to leave space accordingly).
3663 * Unfortunately, the driver encoding of option length
3664 * varies across different ASIC families.
3665 */
3666 tcp_seg_flags = 0;
3667 if (iptcp_opt_words) {
3668 if ( BGE_IS_5705_OR_BEYOND(sc)) {
3669 tcp_seg_flags =
3670 iptcp_opt_words << 11;
3671 } else {
3672 txbd_tso_flags |=
3673 iptcp_opt_words << 12;
3674 }
3675 }
3676 maxsegsize = mss | tcp_seg_flags;
3677 ip->ip_len = htons(mss + ip_tcp_hlen);
3678
3679 } /* TSO setup */
3680
3681 /*
3682 * Start packing the mbufs in this chain into
3683 * the fragment pointers. Stop when we run out
3684 * of fragments or hit the end of the mbuf chain.
3685 */
3686 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3687 BUS_DMA_NOWAIT);
3688 if (error) {
3689 return (ENOBUFS);
3690 }
3691 /*
3692 * Sanity check: avoid coming within 16 descriptors
3693 * of the end of the ring.
3694 */
3695 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3696 BGE_TSO_PRINTF(("%s: "
3697 " dmamap_load_mbuf too close to ring wrap\n",
3698 device_xname(sc->bge_dev)));
3699 goto fail_unload;
3700 }
3701
3702 mtag = sc->ethercom.ec_nvlans ?
3703 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3704
3705
3706 /* Iterate over dmap-map fragments. */
3707 for (i = 0; i < dmamap->dm_nsegs; i++) {
3708 f = &sc->bge_rdata->bge_tx_ring[frag];
3709 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3710 break;
3711
3712 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3713 f->bge_len = dmamap->dm_segs[i].ds_len;
3714
3715 /*
3716 * For 5751 and follow-ons, for TSO we must turn
3717 * off checksum-assist flag in the tx-descr, and
3718 * supply the ASIC-revision-specific encoding
3719 * of TSO flags and segsize.
3720 */
3721 if (use_tso) {
3722 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3723 f->bge_rsvd = maxsegsize;
3724 f->bge_flags = csum_flags | txbd_tso_flags;
3725 } else {
3726 f->bge_rsvd = 0;
3727 f->bge_flags =
3728 (csum_flags | txbd_tso_flags) & 0x0fff;
3729 }
3730 } else {
3731 f->bge_rsvd = 0;
3732 f->bge_flags = csum_flags;
3733 }
3734
3735 if (mtag != NULL) {
3736 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3737 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3738 } else {
3739 f->bge_vlan_tag = 0;
3740 }
3741 cur = frag;
3742 BGE_INC(frag, BGE_TX_RING_CNT);
3743 }
3744
3745 if (i < dmamap->dm_nsegs) {
3746 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3747 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3748 goto fail_unload;
3749 }
3750
3751 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3752 BUS_DMASYNC_PREWRITE);
3753
3754 if (frag == sc->bge_tx_saved_considx) {
3755 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3756 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3757
3758 goto fail_unload;
3759 }
3760
3761 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3762 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3763 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3764 sc->txdma[cur] = dma;
3765 sc->bge_txcnt += dmamap->dm_nsegs;
3766
3767 *txidx = frag;
3768
3769 return (0);
3770
3771 fail_unload:
3772 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3773
3774 return ENOBUFS;
3775 }
3776
3777 /*
3778 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3779 * to the mbuf data regions directly in the transmit descriptors.
3780 */
3781 static void
3782 bge_start(struct ifnet *ifp)
3783 {
3784 struct bge_softc *sc;
3785 struct mbuf *m_head = NULL;
3786 u_int32_t prodidx;
3787 int pkts = 0;
3788
3789 sc = ifp->if_softc;
3790
3791 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3792 return;
3793
3794 prodidx = sc->bge_tx_prodidx;
3795
3796 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3797 IFQ_POLL(&ifp->if_snd, m_head);
3798 if (m_head == NULL)
3799 break;
3800
3801 #if 0
3802 /*
3803 * XXX
3804 * safety overkill. If this is a fragmented packet chain
3805 * with delayed TCP/UDP checksums, then only encapsulate
3806 * it if we have enough descriptors to handle the entire
3807 * chain at once.
3808 * (paranoia -- may not actually be needed)
3809 */
3810 if (m_head->m_flags & M_FIRSTFRAG &&
3811 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3812 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3813 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3814 ifp->if_flags |= IFF_OACTIVE;
3815 break;
3816 }
3817 }
3818 #endif
3819
3820 /*
3821 * Pack the data into the transmit ring. If we
3822 * don't have room, set the OACTIVE flag and wait
3823 * for the NIC to drain the ring.
3824 */
3825 if (bge_encap(sc, m_head, &prodidx)) {
3826 ifp->if_flags |= IFF_OACTIVE;
3827 break;
3828 }
3829
3830 /* now we are committed to transmit the packet */
3831 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3832 pkts++;
3833
3834 #if NBPFILTER > 0
3835 /*
3836 * If there's a BPF listener, bounce a copy of this frame
3837 * to him.
3838 */
3839 if (ifp->if_bpf)
3840 bpf_mtap(ifp->if_bpf, m_head);
3841 #endif
3842 }
3843 if (pkts == 0)
3844 return;
3845
3846 /* Transmit */
3847 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3848 /* 5700 b2 errata */
3849 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
3850 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3851
3852 sc->bge_tx_prodidx = prodidx;
3853
3854 /*
3855 * Set a timeout in case the chip goes out to lunch.
3856 */
3857 ifp->if_timer = 5;
3858 }
3859
3860 static int
3861 bge_init(struct ifnet *ifp)
3862 {
3863 struct bge_softc *sc = ifp->if_softc;
3864 const u_int16_t *m;
3865 int s, error = 0;
3866
3867 s = splnet();
3868
3869 ifp = &sc->ethercom.ec_if;
3870
3871 /* Cancel pending I/O and flush buffers. */
3872 bge_stop(ifp, 0);
3873 bge_reset(sc);
3874 bge_chipinit(sc);
3875
3876 /*
3877 * Init the various state machines, ring
3878 * control blocks and firmware.
3879 */
3880 error = bge_blockinit(sc);
3881 if (error != 0) {
3882 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3883 error);
3884 splx(s);
3885 return error;
3886 }
3887
3888 ifp = &sc->ethercom.ec_if;
3889
3890 /* Specify MTU. */
3891 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3892 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3893
3894 /* Load our MAC address. */
3895 m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3896 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3897 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3898
3899 /* Enable or disable promiscuous mode as needed. */
3900 if (ifp->if_flags & IFF_PROMISC) {
3901 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3902 } else {
3903 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3904 }
3905
3906 /* Program multicast filter. */
3907 bge_setmulti(sc);
3908
3909 /* Init RX ring. */
3910 bge_init_rx_ring_std(sc);
3911
3912 /*
3913 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3914 * memory to insure that the chip has in fact read the first
3915 * entry of the ring.
3916 */
3917 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3918 u_int32_t v, i;
3919 for (i = 0; i < 10; i++) {
3920 DELAY(20);
3921 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3922 if (v == (MCLBYTES - ETHER_ALIGN))
3923 break;
3924 }
3925 if (i == 10)
3926 aprint_error_dev(sc->bge_dev,
3927 "5705 A0 chip failed to load RX ring\n");
3928 }
3929
3930 /* Init jumbo RX ring. */
3931 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3932 bge_init_rx_ring_jumbo(sc);
3933
3934 /* Init our RX return ring index */
3935 sc->bge_rx_saved_considx = 0;
3936
3937 /* Init TX ring. */
3938 bge_init_tx_ring(sc);
3939
3940 /* Turn on transmitter */
3941 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3942
3943 /* Turn on receiver */
3944 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3945
3946 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3947
3948 /* Tell firmware we're alive. */
3949 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3950
3951 /* Enable host interrupts. */
3952 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3953 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3954 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3955
3956 if ((error = bge_ifmedia_upd(ifp)) != 0)
3957 goto out;
3958
3959 ifp->if_flags |= IFF_RUNNING;
3960 ifp->if_flags &= ~IFF_OACTIVE;
3961
3962 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3963
3964 out:
3965 splx(s);
3966
3967 return error;
3968 }
3969
3970 /*
3971 * Set media options.
3972 */
3973 static int
3974 bge_ifmedia_upd(struct ifnet *ifp)
3975 {
3976 struct bge_softc *sc = ifp->if_softc;
3977 struct mii_data *mii = &sc->bge_mii;
3978 struct ifmedia *ifm = &sc->bge_ifmedia;
3979 int rc;
3980
3981 /* If this is a 1000baseX NIC, enable the TBI port. */
3982 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3983 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3984 return (EINVAL);
3985 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3986 case IFM_AUTO:
3987 /*
3988 * The BCM5704 ASIC appears to have a special
3989 * mechanism for programming the autoneg
3990 * advertisement registers in TBI mode.
3991 */
3992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3993 u_int32_t sgdig;
3994 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
3995 if (sgdig & BGE_SGDIGSTS_DONE) {
3996 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3997 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3998 sgdig |= BGE_SGDIGCFG_AUTO |
3999 BGE_SGDIGCFG_PAUSE_CAP |
4000 BGE_SGDIGCFG_ASYM_PAUSE;
4001 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4002 sgdig | BGE_SGDIGCFG_SEND);
4003 DELAY(5);
4004 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4005 }
4006 }
4007 break;
4008 case IFM_1000_SX:
4009 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4010 BGE_CLRBIT(sc, BGE_MAC_MODE,
4011 BGE_MACMODE_HALF_DUPLEX);
4012 } else {
4013 BGE_SETBIT(sc, BGE_MAC_MODE,
4014 BGE_MACMODE_HALF_DUPLEX);
4015 }
4016 break;
4017 default:
4018 return (EINVAL);
4019 }
4020 /* XXX 802.3x flow control for 1000BASE-SX */
4021 return (0);
4022 }
4023
4024 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4025 if ((rc = mii_mediachg(mii)) == ENXIO)
4026 return 0;
4027
4028 /*
4029 * Force an interrupt so that we will call bge_link_upd
4030 * if needed and clear any pending link state attention.
4031 * Without this we are not getting any further interrupts
4032 * for link state changes and thus will not UP the link and
4033 * not be able to send in bge_start. The only way to get
4034 * things working was to receive a packet and get a RX intr.
4035 */
4036 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4037 sc->bge_flags & BGE_IS_5788)
4038 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4039 else
4040 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4041
4042 return rc;
4043 }
4044
4045 /*
4046 * Report current media status.
4047 */
4048 static void
4049 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4050 {
4051 struct bge_softc *sc = ifp->if_softc;
4052 struct mii_data *mii = &sc->bge_mii;
4053
4054 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4055 ifmr->ifm_status = IFM_AVALID;
4056 ifmr->ifm_active = IFM_ETHER;
4057 if (CSR_READ_4(sc, BGE_MAC_STS) &
4058 BGE_MACSTAT_TBI_PCS_SYNCHED)
4059 ifmr->ifm_status |= IFM_ACTIVE;
4060 ifmr->ifm_active |= IFM_1000_SX;
4061 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4062 ifmr->ifm_active |= IFM_HDX;
4063 else
4064 ifmr->ifm_active |= IFM_FDX;
4065 return;
4066 }
4067
4068 mii_pollstat(mii);
4069 ifmr->ifm_status = mii->mii_media_status;
4070 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4071 sc->bge_flowflags;
4072 }
4073
4074 static int
4075 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4076 {
4077 struct bge_softc *sc = ifp->if_softc;
4078 struct ifreq *ifr = (struct ifreq *) data;
4079 int s, error = 0;
4080 struct mii_data *mii;
4081
4082 s = splnet();
4083
4084 switch(command) {
4085 case SIOCSIFFLAGS:
4086 if ((error = ifioctl_common(ifp, command, data)) != 0)
4087 break;
4088 if (ifp->if_flags & IFF_UP) {
4089 /*
4090 * If only the state of the PROMISC flag changed,
4091 * then just use the 'set promisc mode' command
4092 * instead of reinitializing the entire NIC. Doing
4093 * a full re-init means reloading the firmware and
4094 * waiting for it to start up, which may take a
4095 * second or two.
4096 */
4097 if (ifp->if_flags & IFF_RUNNING &&
4098 ifp->if_flags & IFF_PROMISC &&
4099 !(sc->bge_if_flags & IFF_PROMISC)) {
4100 BGE_SETBIT(sc, BGE_RX_MODE,
4101 BGE_RXMODE_RX_PROMISC);
4102 } else if (ifp->if_flags & IFF_RUNNING &&
4103 !(ifp->if_flags & IFF_PROMISC) &&
4104 sc->bge_if_flags & IFF_PROMISC) {
4105 BGE_CLRBIT(sc, BGE_RX_MODE,
4106 BGE_RXMODE_RX_PROMISC);
4107 } else if (!(sc->bge_if_flags & IFF_UP))
4108 bge_init(ifp);
4109 } else {
4110 if (ifp->if_flags & IFF_RUNNING)
4111 bge_stop(ifp, 1);
4112 }
4113 sc->bge_if_flags = ifp->if_flags;
4114 error = 0;
4115 break;
4116 case SIOCSIFMEDIA:
4117 /* XXX Flow control is not supported for 1000BASE-SX */
4118 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4119 ifr->ifr_media &= ~IFM_ETH_FMASK;
4120 sc->bge_flowflags = 0;
4121 }
4122
4123 /* Flow control requires full-duplex mode. */
4124 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4125 (ifr->ifr_media & IFM_FDX) == 0) {
4126 ifr->ifr_media &= ~IFM_ETH_FMASK;
4127 }
4128 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4129 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4130 /* We can do both TXPAUSE and RXPAUSE. */
4131 ifr->ifr_media |=
4132 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4133 }
4134 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4135 }
4136 /* FALLTHROUGH */
4137 case SIOCGIFMEDIA:
4138 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4139 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4140 command);
4141 } else {
4142 mii = &sc->bge_mii;
4143 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4144 command);
4145 }
4146 break;
4147 default:
4148 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4149 break;
4150
4151 error = 0;
4152
4153 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4154 ;
4155 else if (ifp->if_flags & IFF_RUNNING)
4156 bge_setmulti(sc);
4157 break;
4158 }
4159
4160 splx(s);
4161
4162 return (error);
4163 }
4164
4165 static void
4166 bge_watchdog(struct ifnet *ifp)
4167 {
4168 struct bge_softc *sc;
4169
4170 sc = ifp->if_softc;
4171
4172 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4173
4174 ifp->if_flags &= ~IFF_RUNNING;
4175 bge_init(ifp);
4176
4177 ifp->if_oerrors++;
4178 }
4179
4180 static void
4181 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4182 {
4183 int i;
4184
4185 BGE_CLRBIT(sc, reg, bit);
4186
4187 for (i = 0; i < BGE_TIMEOUT; i++) {
4188 if ((CSR_READ_4(sc, reg) & bit) == 0)
4189 return;
4190 delay(100);
4191 if (sc->bge_flags & BGE_PCIE)
4192 DELAY(1000);
4193 }
4194
4195 aprint_error_dev(sc->bge_dev,
4196 "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4197 }
4198
4199 /*
4200 * Stop the adapter and free any mbufs allocated to the
4201 * RX and TX lists.
4202 */
4203 static void
4204 bge_stop(struct ifnet *ifp, int disable)
4205 {
4206 struct bge_softc *sc = ifp->if_softc;
4207
4208 callout_stop(&sc->bge_timeout);
4209
4210 /*
4211 * Disable all of the receiver blocks
4212 */
4213 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4214 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4215 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4216 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4217 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4218 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4219 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4220 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4221
4222 /*
4223 * Disable all of the transmit blocks
4224 */
4225 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4226 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4227 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4228 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4229 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4230 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4231 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4232 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4233
4234 /*
4235 * Shut down all of the memory managers and related
4236 * state machines.
4237 */
4238 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4239 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4240 if (!(BGE_IS_5705_OR_BEYOND(sc)))
4241 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4242
4243 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4244 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4245
4246 if (!(BGE_IS_5705_OR_BEYOND(sc))) {
4247 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4248 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4249 }
4250
4251 /* Disable host interrupts. */
4252 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4253 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4254
4255 /*
4256 * Tell firmware we're shutting down.
4257 */
4258 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4259
4260 /* Free the RX lists. */
4261 bge_free_rx_ring_std(sc);
4262
4263 /* Free jumbo RX list. */
4264 bge_free_rx_ring_jumbo(sc);
4265
4266 /* Free TX buffers. */
4267 bge_free_tx_ring(sc);
4268
4269 /*
4270 * Isolate/power down the PHY.
4271 */
4272 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4273 mii_down(&sc->bge_mii);
4274
4275 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4276
4277 /* Clear MAC's link state (PHY may still have link UP). */
4278 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4279
4280 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4281 }
4282
4283 static void
4284 bge_link_upd(struct bge_softc *sc)
4285 {
4286 struct ifnet *ifp = &sc->ethercom.ec_if;
4287 struct mii_data *mii = &sc->bge_mii;
4288 u_int32_t status;
4289 int link;
4290
4291 /* Clear 'pending link event' flag */
4292 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4293
4294 /*
4295 * Process link state changes.
4296 * Grrr. The link status word in the status block does
4297 * not work correctly on the BCM5700 rev AX and BX chips,
4298 * according to all available information. Hence, we have
4299 * to enable MII interrupts in order to properly obtain
4300 * async link changes. Unfortunately, this also means that
4301 * we have to read the MAC status register to detect link
4302 * changes, thereby adding an additional register access to
4303 * the interrupt handler.
4304 */
4305
4306 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4307 status = CSR_READ_4(sc, BGE_MAC_STS);
4308 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4309 mii_pollstat(mii);
4310
4311 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4312 mii->mii_media_status & IFM_ACTIVE &&
4313 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4314 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4315 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4316 (!(mii->mii_media_status & IFM_ACTIVE) ||
4317 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4318 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4319
4320 /* Clear the interrupt */
4321 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4322 BGE_EVTENB_MI_INTERRUPT);
4323 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4324 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4325 BRGPHY_INTRS);
4326 }
4327 return;
4328 }
4329
4330 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4331 status = CSR_READ_4(sc, BGE_MAC_STS);
4332 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4333 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4334 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4335 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4336 BGE_CLRBIT(sc, BGE_MAC_MODE,
4337 BGE_MACMODE_TBI_SEND_CFGS);
4338 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4339 if_link_state_change(ifp, LINK_STATE_UP);
4340 }
4341 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4342 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4343 if_link_state_change(ifp, LINK_STATE_DOWN);
4344 }
4345 /*
4346 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4347 * This should not happen since mii callouts are locked now, but
4348 * we keep this check for debug.
4349 */
4350 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4351 /*
4352 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4353 * bit in status word always set. Workaround this bug by
4354 * reading PHY link status directly.
4355 */
4356 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4357 BGE_STS_LINK : 0;
4358
4359 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4360 mii_pollstat(mii);
4361
4362 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4363 mii->mii_media_status & IFM_ACTIVE &&
4364 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4365 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4366 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4367 (!(mii->mii_media_status & IFM_ACTIVE) ||
4368 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4369 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4370 }
4371 }
4372
4373 /* Clear the attention */
4374 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4375 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4376 BGE_MACSTAT_LINK_CHANGED);
4377 }
4378
4379 static int
4380 sysctl_bge_verify(SYSCTLFN_ARGS)
4381 {
4382 int error, t;
4383 struct sysctlnode node;
4384
4385 node = *rnode;
4386 t = *(int*)rnode->sysctl_data;
4387 node.sysctl_data = &t;
4388 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4389 if (error || newp == NULL)
4390 return (error);
4391
4392 #if 0
4393 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4394 node.sysctl_num, rnode->sysctl_num));
4395 #endif
4396
4397 if (node.sysctl_num == bge_rxthresh_nodenum) {
4398 if (t < 0 || t >= NBGE_RX_THRESH)
4399 return (EINVAL);
4400 bge_update_all_threshes(t);
4401 } else
4402 return (EINVAL);
4403
4404 *(int*)rnode->sysctl_data = t;
4405
4406 return (0);
4407 }
4408
4409 /*
4410 * Set up sysctl(3) MIB, hw.bge.*.
4411 *
4412 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4413 */
4414 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4415 {
4416 int rc, bge_root_num;
4417 const struct sysctlnode *node;
4418
4419 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4420 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4421 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4422 goto err;
4423 }
4424
4425 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4426 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4427 SYSCTL_DESCR("BGE interface controls"),
4428 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4429 goto err;
4430 }
4431
4432 bge_root_num = node->sysctl_num;
4433
4434 /* BGE Rx interrupt mitigation level */
4435 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4437 CTLTYPE_INT, "rx_lvl",
4438 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4439 sysctl_bge_verify, 0,
4440 &bge_rx_thresh_lvl,
4441 0, CTL_HW, bge_root_num, CTL_CREATE,
4442 CTL_EOL)) != 0) {
4443 goto err;
4444 }
4445
4446 bge_rxthresh_nodenum = node->sysctl_num;
4447
4448 return;
4449
4450 err:
4451 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4452 }
4453
4454 static int
4455 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4456 {
4457 u_int32_t mac_addr;
4458
4459 mac_addr = bge_readmem_ind(sc, 0x0c14);
4460 if ((mac_addr >> 16) == 0x484b) {
4461 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4462 ether_addr[1] = (uint8_t)mac_addr;
4463 mac_addr = bge_readmem_ind(sc, 0x0c18);
4464 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4465 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4466 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4467 ether_addr[5] = (uint8_t)mac_addr;
4468 return (0);
4469 }
4470 return (1);
4471 }
4472
4473 static int
4474 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4475 {
4476 int mac_offset = BGE_EE_MAC_OFFSET;
4477
4478 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4479 mac_offset = BGE_EE_MAC_OFFSET_5906;
4480 }
4481
4482 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4483 ETHER_ADDR_LEN));
4484 }
4485
4486 static int
4487 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4488 {
4489
4490 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4491 return (1);
4492 }
4493
4494 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4495 ETHER_ADDR_LEN));
4496 }
4497
4498 static int
4499 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4500 {
4501 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4502 /* NOTE: Order is critical */
4503 bge_get_eaddr_mem,
4504 bge_get_eaddr_nvram,
4505 bge_get_eaddr_eeprom,
4506 NULL
4507 };
4508 const bge_eaddr_fcn_t *func;
4509
4510 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4511 if ((*func)(sc, eaddr) == 0)
4512 break;
4513 }
4514 return (*func == NULL ? ENXIO : 0);
4515 }
4516