Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.167
      1 /*	$NetBSD: if_bge.c,v 1.167 2009/07/25 13:52:47 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.167 2009/07/25 13:52:47 msaitoh Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/device.h>
     96 #include <sys/socket.h>
     97 #include <sys/sysctl.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #if NRND > 0
    105 #include <sys/rnd.h>
    106 #endif
    107 
    108 #ifdef INET
    109 #include <netinet/in.h>
    110 #include <netinet/in_systm.h>
    111 #include <netinet/in_var.h>
    112 #include <netinet/ip.h>
    113 #endif
    114 
    115 /* Headers for TCP  Segmentation Offload (TSO) */
    116 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    117 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    118 #include <netinet/ip.h>			/* for struct ip */
    119 #include <netinet/tcp.h>		/* for struct tcphdr */
    120 
    121 
    122 #if NBPFILTER > 0
    123 #include <net/bpf.h>
    124 #endif
    125 
    126 #include <dev/pci/pcireg.h>
    127 #include <dev/pci/pcivar.h>
    128 #include <dev/pci/pcidevs.h>
    129 
    130 #include <dev/mii/mii.h>
    131 #include <dev/mii/miivar.h>
    132 #include <dev/mii/miidevs.h>
    133 #include <dev/mii/brgphyreg.h>
    134 
    135 #include <dev/pci/if_bgereg.h>
    136 #include <dev/pci/if_bgevar.h>
    137 
    138 #include <uvm/uvm_extern.h>
    139 #include <prop/proplib.h>
    140 
    141 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    142 
    143 
    144 /*
    145  * Tunable thresholds for rx-side bge interrupt mitigation.
    146  */
    147 
    148 /*
    149  * The pairs of values below were obtained from empirical measurement
    150  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    151  * interrupt for every N packets received, where N is, approximately,
    152  * the second value (rx_max_bds) in each pair.  The values are chosen
    153  * such that moving from one pair to the succeeding pair was observed
    154  * to roughly halve interrupt rate under sustained input packet load.
    155  * The values were empirically chosen to avoid overflowing internal
    156  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    157  * results in internal wrapping and higher interrupt rates.
    158  * The limit of 46 frames was chosen to match NFS workloads.
    159  *
    160  * These values also work well on bcm5701, bcm5704C, and (less
    161  * tested) bcm5703.  On other chipsets, (including the Altima chip
    162  * family), the larger values may overflow internal chip limits,
    163  * leading to increasing interrupt rates rather than lower interrupt
    164  * rates.
    165  *
    166  * Applications using heavy interrupt mitigation (interrupting every
    167  * 32 or 46 frames) in both directions may need to increase the TCP
    168  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    169  * full link bandwidth, due to ACKs and window updates lingering
    170  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    171  */
    172 static const struct bge_load_rx_thresh {
    173 	int rx_ticks;
    174 	int rx_max_bds; }
    175 bge_rx_threshes[] = {
    176 	{ 32,   2 },
    177 	{ 50,   4 },
    178 	{ 100,  8 },
    179 	{ 192, 16 },
    180 	{ 416, 32 },
    181 	{ 598, 46 }
    182 };
    183 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    184 
    185 /* XXX patchable; should be sysctl'able */
    186 static int	bge_auto_thresh = 1;
    187 static int	bge_rx_thresh_lvl;
    188 
    189 static int	bge_rxthresh_nodenum;
    190 
    191 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
    192 
    193 static int	bge_probe(device_t, cfdata_t, void *);
    194 static void	bge_attach(device_t, device_t, void *);
    195 static void	bge_release_resources(struct bge_softc *);
    196 static void	bge_txeof(struct bge_softc *);
    197 static void	bge_rxeof(struct bge_softc *);
    198 
    199 static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
    200 static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
    201 static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
    202 static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
    203 
    204 static void	bge_tick(void *);
    205 static void	bge_stats_update(struct bge_softc *);
    206 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    207 
    208 static int	bge_intr(void *);
    209 static void	bge_start(struct ifnet *);
    210 static int	bge_ioctl(struct ifnet *, u_long, void *);
    211 static int	bge_init(struct ifnet *);
    212 static void	bge_stop(struct ifnet *, int);
    213 static void	bge_watchdog(struct ifnet *);
    214 static int	bge_ifmedia_upd(struct ifnet *);
    215 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static void	bge_setmulti(struct bge_softc *);
    218 
    219 static void	bge_handle_events(struct bge_softc *);
    220 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    221 #if 0 /* XXX */
    222 static void	bge_free_jumbo_mem(struct bge_softc *);
    223 #endif
    224 static void	*bge_jalloc(struct bge_softc *);
    225 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    226 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    227 			       bus_dmamap_t);
    228 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    229 static int	bge_init_rx_ring_std(struct bge_softc *);
    230 static void	bge_free_rx_ring_std(struct bge_softc *);
    231 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    232 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    233 static void	bge_free_tx_ring(struct bge_softc *);
    234 static int	bge_init_tx_ring(struct bge_softc *);
    235 
    236 static int	bge_chipinit(struct bge_softc *);
    237 static int	bge_blockinit(struct bge_softc *);
    238 static int	bge_setpowerstate(struct bge_softc *, int);
    239 
    240 static void	bge_reset(struct bge_softc *);
    241 static void	bge_link_upd(struct bge_softc *);
    242 
    243 #define BGE_DEBUG
    244 #ifdef BGE_DEBUG
    245 #define DPRINTF(x)	if (bgedebug) printf x
    246 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    247 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    248 int	bgedebug = 0;
    249 int	bge_tso_debug = 0;
    250 #else
    251 #define DPRINTF(x)
    252 #define DPRINTFN(n,x)
    253 #define BGE_TSO_PRINTF(x)
    254 #endif
    255 
    256 #ifdef BGE_EVENT_COUNTERS
    257 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    258 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    259 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    260 #else
    261 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    262 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    263 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    264 #endif
    265 
    266 static const struct bge_product {
    267 	pci_vendor_id_t		bp_vendor;
    268 	pci_product_id_t	bp_product;
    269 	const char		*bp_name;
    270 } bge_products[] = {
    271 	/*
    272 	 * The BCM5700 documentation seems to indicate that the hardware
    273 	 * still has the Alteon vendor ID burned into it, though it
    274 	 * should always be overridden by the value in the EEPROM.  We'll
    275 	 * check for it anyway.
    276 	 */
    277 	{ PCI_VENDOR_ALTEON,
    278 	  PCI_PRODUCT_ALTEON_BCM5700,
    279 	  "Broadcom BCM5700 Gigabit Ethernet",
    280 	  },
    281 	{ PCI_VENDOR_ALTEON,
    282 	  PCI_PRODUCT_ALTEON_BCM5701,
    283 	  "Broadcom BCM5701 Gigabit Ethernet",
    284 	  },
    285 	{ PCI_VENDOR_ALTIMA,
    286 	  PCI_PRODUCT_ALTIMA_AC1000,
    287 	  "Altima AC1000 Gigabit Ethernet",
    288 	  },
    289 	{ PCI_VENDOR_ALTIMA,
    290 	  PCI_PRODUCT_ALTIMA_AC1001,
    291 	  "Altima AC1001 Gigabit Ethernet",
    292 	   },
    293 	{ PCI_VENDOR_ALTIMA,
    294 	  PCI_PRODUCT_ALTIMA_AC9100,
    295 	  "Altima AC9100 Gigabit Ethernet",
    296 	  },
    297 	{ PCI_VENDOR_BROADCOM,
    298 	  PCI_PRODUCT_BROADCOM_BCM5700,
    299 	  "Broadcom BCM5700 Gigabit Ethernet",
    300 	  },
    301 	{ PCI_VENDOR_BROADCOM,
    302 	  PCI_PRODUCT_BROADCOM_BCM5701,
    303 	  "Broadcom BCM5701 Gigabit Ethernet",
    304 	  },
    305 	{ PCI_VENDOR_BROADCOM,
    306 	  PCI_PRODUCT_BROADCOM_BCM5702,
    307 	  "Broadcom BCM5702 Gigabit Ethernet",
    308 	  },
    309 	{ PCI_VENDOR_BROADCOM,
    310 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    311 	  "Broadcom BCM5702X Gigabit Ethernet" },
    312 	{ PCI_VENDOR_BROADCOM,
    313 	  PCI_PRODUCT_BROADCOM_BCM5703,
    314 	  "Broadcom BCM5703 Gigabit Ethernet",
    315 	  },
    316 	{ PCI_VENDOR_BROADCOM,
    317 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    318 	  "Broadcom BCM5703X Gigabit Ethernet",
    319 	  },
    320 	{ PCI_VENDOR_BROADCOM,
    321 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    322 	  "Broadcom BCM5703 Gigabit Ethernet",
    323 	  },
    324    	{ PCI_VENDOR_BROADCOM,
    325 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    326 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    327 	  },
    328    	{ PCI_VENDOR_BROADCOM,
    329 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    330 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    331 	  },
    332    	{ PCI_VENDOR_BROADCOM,
    333 	  PCI_PRODUCT_BROADCOM_BCM5705,
    334 	  "Broadcom BCM5705 Gigabit Ethernet",
    335 	  },
    336    	{ PCI_VENDOR_BROADCOM,
    337 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    338 	  "Broadcom BCM5705K Gigabit Ethernet",
    339 	  },
    340    	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    342 	  "Broadcom BCM5705M Gigabit Ethernet",
    343 	  },
    344    	{ PCI_VENDOR_BROADCOM,
    345 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    346 	  "Broadcom BCM5705M Gigabit Ethernet",
    347 	  },
    348 	{ PCI_VENDOR_BROADCOM,
    349 	  PCI_PRODUCT_BROADCOM_BCM5714,
    350 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    351 	  },
    352 	{ PCI_VENDOR_BROADCOM,
    353 	  PCI_PRODUCT_BROADCOM_BCM5715,
    354 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    355 	  },
    356 	{ PCI_VENDOR_BROADCOM,
    357 	  PCI_PRODUCT_BROADCOM_BCM5789,
    358 	  "Broadcom BCM5789 Gigabit Ethernet",
    359 	  },
    360 	{ PCI_VENDOR_BROADCOM,
    361 	  PCI_PRODUCT_BROADCOM_BCM5721,
    362 	  "Broadcom BCM5721 Gigabit Ethernet",
    363 	  },
    364 	{ PCI_VENDOR_BROADCOM,
    365 	  PCI_PRODUCT_BROADCOM_BCM5722,
    366 	  "Broadcom BCM5722 Gigabit Ethernet",
    367 	  },
    368 	{ PCI_VENDOR_BROADCOM,
    369 	  PCI_PRODUCT_BROADCOM_BCM5750,
    370 	  "Broadcom BCM5750 Gigabit Ethernet",
    371 	  },
    372 	{ PCI_VENDOR_BROADCOM,
    373 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    374 	  "Broadcom BCM5750M Gigabit Ethernet",
    375 	  },
    376 	{ PCI_VENDOR_BROADCOM,
    377 	  PCI_PRODUCT_BROADCOM_BCM5751,
    378 	  "Broadcom BCM5751 Gigabit Ethernet",
    379 	  },
    380 	{ PCI_VENDOR_BROADCOM,
    381 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    382 	  "Broadcom BCM5751M Gigabit Ethernet",
    383 	  },
    384 	{ PCI_VENDOR_BROADCOM,
    385 	  PCI_PRODUCT_BROADCOM_BCM5752,
    386 	  "Broadcom BCM5752 Gigabit Ethernet",
    387 	  },
    388 	{ PCI_VENDOR_BROADCOM,
    389 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    390 	  "Broadcom BCM5752M Gigabit Ethernet",
    391 	  },
    392 	{ PCI_VENDOR_BROADCOM,
    393 	  PCI_PRODUCT_BROADCOM_BCM5753,
    394 	  "Broadcom BCM5753 Gigabit Ethernet",
    395 	  },
    396 	{ PCI_VENDOR_BROADCOM,
    397 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    398 	  "Broadcom BCM5753M Gigabit Ethernet",
    399 	  },
    400 	{ PCI_VENDOR_BROADCOM,
    401 	  PCI_PRODUCT_BROADCOM_BCM5754,
    402 	  "Broadcom BCM5754 Gigabit Ethernet",
    403 	},
    404 	{ PCI_VENDOR_BROADCOM,
    405 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    406 	  "Broadcom BCM5754M Gigabit Ethernet",
    407 	},
    408 	{ PCI_VENDOR_BROADCOM,
    409 	  PCI_PRODUCT_BROADCOM_BCM5755,
    410 	  "Broadcom BCM5755 Gigabit Ethernet",
    411 	},
    412 	{ PCI_VENDOR_BROADCOM,
    413 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    414 	  "Broadcom BCM5755M Gigabit Ethernet",
    415 	},
    416    	{ PCI_VENDOR_BROADCOM,
    417 	  PCI_PRODUCT_BROADCOM_BCM5780,
    418 	  "Broadcom BCM5780 Gigabit Ethernet",
    419 	  },
    420    	{ PCI_VENDOR_BROADCOM,
    421 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    422 	  "Broadcom BCM5780S Gigabit Ethernet",
    423 	  },
    424    	{ PCI_VENDOR_BROADCOM,
    425 	  PCI_PRODUCT_BROADCOM_BCM5782,
    426 	  "Broadcom BCM5782 Gigabit Ethernet",
    427 	},
    428 	{ PCI_VENDOR_BROADCOM,
    429 	  PCI_PRODUCT_BROADCOM_BCM5786,
    430 	  "Broadcom BCM5786 Gigabit Ethernet",
    431 	},
    432 	{ PCI_VENDOR_BROADCOM,
    433 	  PCI_PRODUCT_BROADCOM_BCM5787,
    434 	  "Broadcom BCM5787 Gigabit Ethernet",
    435 	},
    436 	{ PCI_VENDOR_BROADCOM,
    437 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    438 	  "Broadcom BCM5787M Gigabit Ethernet",
    439 	},
    440    	{ PCI_VENDOR_BROADCOM,
    441 	  PCI_PRODUCT_BROADCOM_BCM5788,
    442 	  "Broadcom BCM5788 Gigabit Ethernet",
    443 	  },
    444    	{ PCI_VENDOR_BROADCOM,
    445 	  PCI_PRODUCT_BROADCOM_BCM5789,
    446 	  "Broadcom BCM5789 Gigabit Ethernet",
    447 	  },
    448    	{ PCI_VENDOR_BROADCOM,
    449 	  PCI_PRODUCT_BROADCOM_BCM5901,
    450 	  "Broadcom BCM5901 Fast Ethernet",
    451 	  },
    452    	{ PCI_VENDOR_BROADCOM,
    453 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    454 	  "Broadcom BCM5901A2 Fast Ethernet",
    455 	  },
    456 	{ PCI_VENDOR_SCHNEIDERKOCH,
    457 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    458 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    459 	  },
    460 	{ PCI_VENDOR_3COM,
    461 	  PCI_PRODUCT_3COM_3C996,
    462 	  "3Com 3c996 Gigabit Ethernet",
    463 	  },
    464 	{ PCI_VENDOR_BROADCOM,
    465 	  PCI_PRODUCT_BROADCOM_BCM5906,
    466 	  "Broadcom BCM5906 Fast Ethernet",
    467 	  },
    468 	{ PCI_VENDOR_BROADCOM,
    469 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    470 	  "Broadcom BCM5906M Fast Ethernet",
    471 	  },
    472 	{ 0,
    473 	  0,
    474 	  NULL },
    475 };
    476 
    477 /*
    478  * XXX: how to handle variants based on 5750 and derivatives:
    479  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    480  * in general behave like a 5705, except with additional quirks.
    481  * This driver's current handling of the 5721 is wrong;
    482  * how we map ASIC revision to "quirks" needs more thought.
    483  * (defined here until the thought is done).
    484  */
    485 #define BGE_IS_5714_FAMILY(sc) \
    486 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    487 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    488 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    489 
    490 #define BGE_IS_5750_OR_BEYOND(sc)  \
    491 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    492 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    493 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    494 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    495 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    496 	 BGE_IS_5714_FAMILY(sc) )
    497 
    498 #define BGE_IS_5705_OR_BEYOND(sc)  \
    499 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
    500 	    (BGE_IS_5750_OR_BEYOND(sc)))
    501 
    502 #define BGE_IS_JUMBO_CAPABLE(sc)  \
    503 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700    || \
    504 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701    || \
    505 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703    || \
    506 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
    507 
    508 
    509 static const struct bge_revision {
    510 	uint32_t		br_chipid;
    511 	const char		*br_name;
    512 } bge_revisions[] = {
    513 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    514 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    515 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    516 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    517 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    518 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    519 	/* This is treated like a BCM5700 Bx */
    520 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    521 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    522 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    523 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    524 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    525 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    526 	{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
    527 	{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
    528 	{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
    529 	{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
    530 	{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
    531 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    532 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    533 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    534 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    535 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    536 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    537 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    538 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    539 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    540 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    541 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    542 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    543 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    544 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    545 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    546 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    547 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    548 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    549 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    550 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    551 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    552 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    553 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    554 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    555 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    556 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    557 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    558 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    559 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    560 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    561 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    562 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    563 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    564 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    565 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    566 	{ 0, NULL }
    567 };
    568 
    569 /*
    570  * Some defaults for major revisions, so that newer steppings
    571  * that we don't know about have a shot at working.
    572  */
    573 static const struct bge_revision bge_majorrevs[] = {
    574 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    575 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    576 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    577 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    578 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    579 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    580 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    581 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    582 	{ BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
    583 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    584 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    585 	/* 5754 and 5787 share the same ASIC ID */
    586 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    587 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    588 	{ 0, NULL }
    589 };
    590 
    591 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    592     bge_probe, bge_attach, NULL, NULL);
    593 
    594 static u_int32_t
    595 bge_readmem_ind(struct bge_softc *sc, int off)
    596 {
    597 	pcireg_t val;
    598 
    599 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    600 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    601 	return val;
    602 }
    603 
    604 static void
    605 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    606 {
    607 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    608 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    609 }
    610 
    611 #ifdef notdef
    612 static u_int32_t
    613 bge_readreg_ind(struct bge_softc *sc, int off)
    614 {
    615 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    616 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    617 }
    618 #endif
    619 
    620 static void
    621 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    622 {
    623 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    624 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    625 }
    626 
    627 static void
    628 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    629 {
    630 	CSR_WRITE_4(sc, off, val);
    631 }
    632 
    633 static void
    634 bge_writembx(struct bge_softc *sc, int off, int val)
    635 {
    636 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    637 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    638 
    639 	CSR_WRITE_4(sc, off, val);
    640 }
    641 
    642 static u_int8_t
    643 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    644 {
    645 	u_int32_t access, byte = 0;
    646 	int i;
    647 
    648 	/* Lock. */
    649 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    650 	for (i = 0; i < 8000; i++) {
    651 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    652 			break;
    653 		DELAY(20);
    654 	}
    655 	if (i == 8000)
    656 		return (1);
    657 
    658 	/* Enable access. */
    659 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    660 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    661 
    662 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    663 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    664 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    665 		DELAY(10);
    666 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    667 			DELAY(10);
    668 			break;
    669 		}
    670 	}
    671 
    672 	if (i == BGE_TIMEOUT * 10) {
    673 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    674 		return (1);
    675 	}
    676 
    677 	/* Get result. */
    678 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    679 
    680 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    681 
    682 	/* Disable access. */
    683 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    684 
    685 	/* Unlock. */
    686 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    687 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    688 
    689 	return (0);
    690 }
    691 
    692 /*
    693  * Read a sequence of bytes from NVRAM.
    694  */
    695 static int
    696 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
    697 {
    698 	int err = 0, i;
    699 	u_int8_t byte = 0;
    700 
    701 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    702 		return (1);
    703 
    704 	for (i = 0; i < cnt; i++) {
    705 		err = bge_nvram_getbyte(sc, off + i, &byte);
    706 		if (err)
    707 			break;
    708 		*(dest + i) = byte;
    709 	}
    710 
    711 	return (err ? 1 : 0);
    712 }
    713 
    714 /*
    715  * Read a byte of data stored in the EEPROM at address 'addr.' The
    716  * BCM570x supports both the traditional bitbang interface and an
    717  * auto access interface for reading the EEPROM. We use the auto
    718  * access method.
    719  */
    720 static u_int8_t
    721 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
    722 {
    723 	int i;
    724 	u_int32_t byte = 0;
    725 
    726 	/*
    727 	 * Enable use of auto EEPROM access so we can avoid
    728 	 * having to use the bitbang method.
    729 	 */
    730 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    731 
    732 	/* Reset the EEPROM, load the clock period. */
    733 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    734 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    735 	DELAY(20);
    736 
    737 	/* Issue the read EEPROM command. */
    738 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    739 
    740 	/* Wait for completion */
    741 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    742 		DELAY(10);
    743 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    744 			break;
    745 	}
    746 
    747 	if (i == BGE_TIMEOUT) {
    748 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    749 		return (0);
    750 	}
    751 
    752 	/* Get result. */
    753 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    754 
    755 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    756 
    757 	return (0);
    758 }
    759 
    760 /*
    761  * Read a sequence of bytes from the EEPROM.
    762  */
    763 static int
    764 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    765 {
    766 	int err = 0, i;
    767 	u_int8_t byte = 0;
    768 	char *dest = destv;
    769 
    770 	for (i = 0; i < cnt; i++) {
    771 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    772 		if (err)
    773 			break;
    774 		*(dest + i) = byte;
    775 	}
    776 
    777 	return (err ? 1 : 0);
    778 }
    779 
    780 static int
    781 bge_miibus_readreg(device_t dev, int phy, int reg)
    782 {
    783 	struct bge_softc *sc = device_private(dev);
    784 	u_int32_t val;
    785 	u_int32_t saved_autopoll;
    786 	int i;
    787 
    788 	/*
    789 	 * Broadcom's own driver always assumes the internal
    790 	 * PHY is at GMII address 1. On some chips, the PHY responds
    791 	 * to accesses at all addresses, which could cause us to
    792 	 * bogusly attach the PHY 32 times at probe type. Always
    793 	 * restricting the lookup to address 1 is simpler than
    794 	 * trying to figure out which chips revisions should be
    795 	 * special-cased.
    796 	 */
    797 	if (phy != 1)
    798 		return (0);
    799 
    800 	/* Reading with autopolling on may trigger PCI errors */
    801 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    802 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    803 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    804 		CSR_WRITE_4(sc, BGE_MI_MODE,
    805 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    806 		DELAY(40);
    807 	}
    808 
    809 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    810 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    811 
    812 	for (i = 0; i < BGE_TIMEOUT; i++) {
    813 		val = CSR_READ_4(sc, BGE_MI_COMM);
    814 		if (!(val & BGE_MICOMM_BUSY))
    815 			break;
    816 		delay(10);
    817 	}
    818 
    819 	if (i == BGE_TIMEOUT) {
    820 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    821 		val = 0;
    822 		goto done;
    823 	}
    824 
    825 	val = CSR_READ_4(sc, BGE_MI_COMM);
    826 
    827 done:
    828 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    829 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    830 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    831 		DELAY(40);
    832 	}
    833 
    834 	if (val & BGE_MICOMM_READFAIL)
    835 		return (0);
    836 
    837 	return (val & 0xFFFF);
    838 }
    839 
    840 static void
    841 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    842 {
    843 	struct bge_softc *sc = device_private(dev);
    844 	u_int32_t saved_autopoll;
    845 	int i;
    846 
    847 	if (phy!=1) {
    848 		return;
    849 	}
    850 
    851 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    852 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    853 		return;
    854 	}
    855 
    856 	/* Reading with autopolling on may trigger PCI errors */
    857 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    858 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    859 		delay(40);
    860 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    861 		CSR_WRITE_4(sc, BGE_MI_MODE,
    862 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    863 		delay(10); /* 40 usec is supposed to be adequate */
    864 	}
    865 
    866 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
    867 	    BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
    868 
    869 	for (i = 0; i < BGE_TIMEOUT; i++) {
    870 		delay(10);
    871 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    872 			delay(5);
    873 			CSR_READ_4(sc, BGE_MI_COMM);
    874 			break;
    875 		}
    876 	}
    877 
    878 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    879 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    880 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    881 		delay(40);
    882 	}
    883 
    884 	if (i == BGE_TIMEOUT)
    885 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    886 }
    887 
    888 static void
    889 bge_miibus_statchg(device_t dev)
    890 {
    891 	struct bge_softc *sc = device_private(dev);
    892 	struct mii_data *mii = &sc->bge_mii;
    893 
    894 	/*
    895 	 * Get flow control negotiation result.
    896 	 */
    897 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    898 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    899 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    900 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    901 	}
    902 
    903 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    904 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
    905 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
    906 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    907 	else
    908 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    909 
    910 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    911 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    912 	else
    913 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    914 
    915 	/*
    916 	 * 802.3x flow control
    917 	 */
    918 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
    919 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    920 	else
    921 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    922 
    923 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
    924 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    925 	else
    926 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    927 }
    928 
    929 /*
    930  * Update rx threshold levels to values in a particular slot
    931  * of the interrupt-mitigation table bge_rx_threshes.
    932  */
    933 static void
    934 bge_set_thresh(struct ifnet *ifp, int lvl)
    935 {
    936 	struct bge_softc *sc = ifp->if_softc;
    937 	int s;
    938 
    939 	/* For now, just save the new Rx-intr thresholds and record
    940 	 * that a threshold update is pending.  Updating the hardware
    941 	 * registers here (even at splhigh()) is observed to
    942 	 * occasionaly cause glitches where Rx-interrupts are not
    943 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    944 	 */
    945 	s = splnet();
    946 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    947 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    948 	sc->bge_pending_rxintr_change = 1;
    949 	splx(s);
    950 
    951 	 return;
    952 }
    953 
    954 
    955 /*
    956  * Update Rx thresholds of all bge devices
    957  */
    958 static void
    959 bge_update_all_threshes(int lvl)
    960 {
    961 	struct ifnet *ifp;
    962 	const char * const namebuf = "bge";
    963 	int namelen;
    964 
    965 	if (lvl < 0)
    966 		lvl = 0;
    967 	else if( lvl >= NBGE_RX_THRESH)
    968 		lvl = NBGE_RX_THRESH - 1;
    969 
    970 	namelen = strlen(namebuf);
    971 	/*
    972 	 * Now search all the interfaces for this name/number
    973 	 */
    974 	IFNET_FOREACH(ifp) {
    975 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    976 		      continue;
    977 		/* We got a match: update if doing auto-threshold-tuning */
    978 		if (bge_auto_thresh)
    979 			bge_set_thresh(ifp, lvl);
    980 	}
    981 }
    982 
    983 /*
    984  * Handle events that have triggered interrupts.
    985  */
    986 static void
    987 bge_handle_events(struct bge_softc *sc)
    988 {
    989 
    990 	return;
    991 }
    992 
    993 /*
    994  * Memory management for jumbo frames.
    995  */
    996 
    997 static int
    998 bge_alloc_jumbo_mem(struct bge_softc *sc)
    999 {
   1000 	char *ptr, *kva;
   1001 	bus_dma_segment_t	seg;
   1002 	int		i, rseg, state, error;
   1003 	struct bge_jpool_entry   *entry;
   1004 
   1005 	state = error = 0;
   1006 
   1007 	/* Grab a big chunk o' storage. */
   1008 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1009 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1010 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1011 		return ENOBUFS;
   1012 	}
   1013 
   1014 	state = 1;
   1015 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1016 	    BUS_DMA_NOWAIT)) {
   1017 		aprint_error_dev(sc->bge_dev,
   1018 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1019 		error = ENOBUFS;
   1020 		goto out;
   1021 	}
   1022 
   1023 	state = 2;
   1024 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1025 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1026 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1027 		error = ENOBUFS;
   1028 		goto out;
   1029 	}
   1030 
   1031 	state = 3;
   1032 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1033 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1034 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1035 		error = ENOBUFS;
   1036 		goto out;
   1037 	}
   1038 
   1039 	state = 4;
   1040 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1041 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1042 
   1043 	SLIST_INIT(&sc->bge_jfree_listhead);
   1044 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1045 
   1046 	/*
   1047 	 * Now divide it up into 9K pieces and save the addresses
   1048 	 * in an array.
   1049 	 */
   1050 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1051 	for (i = 0; i < BGE_JSLOTS; i++) {
   1052 		sc->bge_cdata.bge_jslots[i] = ptr;
   1053 		ptr += BGE_JLEN;
   1054 		entry = malloc(sizeof(struct bge_jpool_entry),
   1055 		    M_DEVBUF, M_NOWAIT);
   1056 		if (entry == NULL) {
   1057 			aprint_error_dev(sc->bge_dev,
   1058 			    "no memory for jumbo buffer queue!\n");
   1059 			error = ENOBUFS;
   1060 			goto out;
   1061 		}
   1062 		entry->slot = i;
   1063 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1064 				 entry, jpool_entries);
   1065 	}
   1066 out:
   1067 	if (error != 0) {
   1068 		switch (state) {
   1069 		case 4:
   1070 			bus_dmamap_unload(sc->bge_dmatag,
   1071 			    sc->bge_cdata.bge_rx_jumbo_map);
   1072 		case 3:
   1073 			bus_dmamap_destroy(sc->bge_dmatag,
   1074 			    sc->bge_cdata.bge_rx_jumbo_map);
   1075 		case 2:
   1076 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1077 		case 1:
   1078 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1079 			break;
   1080 		default:
   1081 			break;
   1082 		}
   1083 	}
   1084 
   1085 	return error;
   1086 }
   1087 
   1088 /*
   1089  * Allocate a jumbo buffer.
   1090  */
   1091 static void *
   1092 bge_jalloc(struct bge_softc *sc)
   1093 {
   1094 	struct bge_jpool_entry   *entry;
   1095 
   1096 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1097 
   1098 	if (entry == NULL) {
   1099 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1100 		return (NULL);
   1101 	}
   1102 
   1103 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1104 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1105 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1106 }
   1107 
   1108 /*
   1109  * Release a jumbo buffer.
   1110  */
   1111 static void
   1112 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1113 {
   1114 	struct bge_jpool_entry *entry;
   1115 	struct bge_softc *sc;
   1116 	int i, s;
   1117 
   1118 	/* Extract the softc struct pointer. */
   1119 	sc = (struct bge_softc *)arg;
   1120 
   1121 	if (sc == NULL)
   1122 		panic("bge_jfree: can't find softc pointer!");
   1123 
   1124 	/* calculate the slot this buffer belongs to */
   1125 
   1126 	i = ((char *)buf
   1127 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1128 
   1129 	if ((i < 0) || (i >= BGE_JSLOTS))
   1130 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1131 
   1132 	s = splvm();
   1133 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1134 	if (entry == NULL)
   1135 		panic("bge_jfree: buffer not in use!");
   1136 	entry->slot = i;
   1137 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1138 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1139 
   1140 	if (__predict_true(m != NULL))
   1141   		pool_cache_put(mb_cache, m);
   1142 	splx(s);
   1143 }
   1144 
   1145 
   1146 /*
   1147  * Intialize a standard receive ring descriptor.
   1148  */
   1149 static int
   1150 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1151 {
   1152 	struct mbuf		*m_new = NULL;
   1153 	struct bge_rx_bd	*r;
   1154 	int			error;
   1155 
   1156 	if (dmamap == NULL) {
   1157 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1158 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1159 		if (error != 0)
   1160 			return error;
   1161 	}
   1162 
   1163 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1164 
   1165 	if (m == NULL) {
   1166 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1167 		if (m_new == NULL)
   1168 			return (ENOBUFS);
   1169 
   1170 		MCLGET(m_new, M_DONTWAIT);
   1171 		if (!(m_new->m_flags & M_EXT)) {
   1172 			m_freem(m_new);
   1173 			return (ENOBUFS);
   1174 		}
   1175 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1176 
   1177 	} else {
   1178 		m_new = m;
   1179 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1180 		m_new->m_data = m_new->m_ext.ext_buf;
   1181 	}
   1182 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1183 	    m_adj(m_new, ETHER_ALIGN);
   1184 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1185 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1186 		return (ENOBUFS);
   1187 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1188 	    BUS_DMASYNC_PREREAD);
   1189 
   1190 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1191 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1192 	bge_set_hostaddr(&r->bge_addr,
   1193 	    dmamap->dm_segs[0].ds_addr);
   1194 	r->bge_flags = BGE_RXBDFLAG_END;
   1195 	r->bge_len = m_new->m_len;
   1196 	r->bge_idx = i;
   1197 
   1198 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1199 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1200 		i * sizeof (struct bge_rx_bd),
   1201 	    sizeof (struct bge_rx_bd),
   1202 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1203 
   1204 	return (0);
   1205 }
   1206 
   1207 /*
   1208  * Initialize a jumbo receive ring descriptor. This allocates
   1209  * a jumbo buffer from the pool managed internally by the driver.
   1210  */
   1211 static int
   1212 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1213 {
   1214 	struct mbuf *m_new = NULL;
   1215 	struct bge_rx_bd *r;
   1216 	void *buf = NULL;
   1217 
   1218 	if (m == NULL) {
   1219 
   1220 		/* Allocate the mbuf. */
   1221 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1222 		if (m_new == NULL)
   1223 			return (ENOBUFS);
   1224 
   1225 		/* Allocate the jumbo buffer */
   1226 		buf = bge_jalloc(sc);
   1227 		if (buf == NULL) {
   1228 			m_freem(m_new);
   1229 			aprint_error_dev(sc->bge_dev,
   1230 			    "jumbo allocation failed -- packet dropped!\n");
   1231 			return (ENOBUFS);
   1232 		}
   1233 
   1234 		/* Attach the buffer to the mbuf. */
   1235 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1236 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1237 		    bge_jfree, sc);
   1238 		m_new->m_flags |= M_EXT_RW;
   1239 	} else {
   1240 		m_new = m;
   1241 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1242 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1243 	}
   1244 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1245 	    m_adj(m_new, ETHER_ALIGN);
   1246 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1247 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1248 	    BUS_DMASYNC_PREREAD);
   1249 	/* Set up the descriptor. */
   1250 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1251 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1252 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1253 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1254 	r->bge_len = m_new->m_len;
   1255 	r->bge_idx = i;
   1256 
   1257 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1258 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1259 		i * sizeof (struct bge_rx_bd),
   1260 	    sizeof (struct bge_rx_bd),
   1261 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1262 
   1263 	return (0);
   1264 }
   1265 
   1266 /*
   1267  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1268  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1269  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1270  * the NIC.
   1271  */
   1272 static int
   1273 bge_init_rx_ring_std(struct bge_softc *sc)
   1274 {
   1275 	int i;
   1276 
   1277 	if (sc->bge_flags & BGE_RXRING_VALID)
   1278 		return 0;
   1279 
   1280 	for (i = 0; i < BGE_SSLOTS; i++) {
   1281 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1282 			return (ENOBUFS);
   1283 	}
   1284 
   1285 	sc->bge_std = i - 1;
   1286 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1287 
   1288 	sc->bge_flags |= BGE_RXRING_VALID;
   1289 
   1290 	return (0);
   1291 }
   1292 
   1293 static void
   1294 bge_free_rx_ring_std(struct bge_softc *sc)
   1295 {
   1296 	int i;
   1297 
   1298 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1299 		return;
   1300 
   1301 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1302 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1303 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1304 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1305 			bus_dmamap_destroy(sc->bge_dmatag,
   1306 			    sc->bge_cdata.bge_rx_std_map[i]);
   1307 		}
   1308 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1309 		    sizeof(struct bge_rx_bd));
   1310 	}
   1311 
   1312 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1313 }
   1314 
   1315 static int
   1316 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1317 {
   1318 	int i;
   1319 	volatile struct bge_rcb *rcb;
   1320 
   1321 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1322 		return 0;
   1323 
   1324 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1325 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1326 			return (ENOBUFS);
   1327 	};
   1328 
   1329 	sc->bge_jumbo = i - 1;
   1330 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1331 
   1332 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1333 	rcb->bge_maxlen_flags = 0;
   1334 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1335 
   1336 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1337 
   1338 	return (0);
   1339 }
   1340 
   1341 static void
   1342 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1343 {
   1344 	int i;
   1345 
   1346 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1347 		return;
   1348 
   1349 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1350 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1351 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1352 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1353 		}
   1354 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1355 		    sizeof(struct bge_rx_bd));
   1356 	}
   1357 
   1358 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1359 }
   1360 
   1361 static void
   1362 bge_free_tx_ring(struct bge_softc *sc)
   1363 {
   1364 	int i, freed;
   1365 	struct txdmamap_pool_entry *dma;
   1366 
   1367 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1368 		return;
   1369 
   1370 	freed = 0;
   1371 
   1372 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1373 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1374 			freed++;
   1375 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1376 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1377 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1378 					    link);
   1379 			sc->txdma[i] = 0;
   1380 		}
   1381 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1382 		    sizeof(struct bge_tx_bd));
   1383 	}
   1384 
   1385 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1386 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1387 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1388 		free(dma, M_DEVBUF);
   1389 	}
   1390 
   1391 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1392 }
   1393 
   1394 static int
   1395 bge_init_tx_ring(struct bge_softc *sc)
   1396 {
   1397 	int i;
   1398 	bus_dmamap_t dmamap;
   1399 	struct txdmamap_pool_entry *dma;
   1400 
   1401 	if (sc->bge_flags & BGE_TXRING_VALID)
   1402 		return 0;
   1403 
   1404 	sc->bge_txcnt = 0;
   1405 	sc->bge_tx_saved_considx = 0;
   1406 
   1407 	/* Initialize transmit producer index for host-memory send ring. */
   1408 	sc->bge_tx_prodidx = 0;
   1409 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1410 	/* 5700 b2 errata */
   1411 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1412 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1413 
   1414 	/* NIC-memory send ring not used; initialize to zero. */
   1415 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1416 	/* 5700 b2 errata */
   1417 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1418 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1419 
   1420 	SLIST_INIT(&sc->txdma_list);
   1421 	for (i = 0; i < BGE_RSLOTS; i++) {
   1422 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1423 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1424 		    &dmamap))
   1425 			return (ENOBUFS);
   1426 		if (dmamap == NULL)
   1427 			panic("dmamap NULL in bge_init_tx_ring");
   1428 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1429 		if (dma == NULL) {
   1430 			aprint_error_dev(sc->bge_dev,
   1431 			    "can't alloc txdmamap_pool_entry\n");
   1432 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1433 			return (ENOMEM);
   1434 		}
   1435 		dma->dmamap = dmamap;
   1436 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1437 	}
   1438 
   1439 	sc->bge_flags |= BGE_TXRING_VALID;
   1440 
   1441 	return (0);
   1442 }
   1443 
   1444 static void
   1445 bge_setmulti(struct bge_softc *sc)
   1446 {
   1447 	struct ethercom		*ac = &sc->ethercom;
   1448 	struct ifnet		*ifp = &ac->ec_if;
   1449 	struct ether_multi	*enm;
   1450 	struct ether_multistep  step;
   1451 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1452 	u_int32_t		h;
   1453 	int			i;
   1454 
   1455 	if (ifp->if_flags & IFF_PROMISC)
   1456 		goto allmulti;
   1457 
   1458 	/* Now program new ones. */
   1459 	ETHER_FIRST_MULTI(step, ac, enm);
   1460 	while (enm != NULL) {
   1461 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1462 			/*
   1463 			 * We must listen to a range of multicast addresses.
   1464 			 * For now, just accept all multicasts, rather than
   1465 			 * trying to set only those filter bits needed to match
   1466 			 * the range.  (At this time, the only use of address
   1467 			 * ranges is for IP multicast routing, for which the
   1468 			 * range is big enough to require all bits set.)
   1469 			 */
   1470 			goto allmulti;
   1471 		}
   1472 
   1473 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1474 
   1475 		/* Just want the 7 least-significant bits. */
   1476 		h &= 0x7f;
   1477 
   1478 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1479 		ETHER_NEXT_MULTI(step, enm);
   1480 	}
   1481 
   1482 	ifp->if_flags &= ~IFF_ALLMULTI;
   1483 	goto setit;
   1484 
   1485  allmulti:
   1486 	ifp->if_flags |= IFF_ALLMULTI;
   1487 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1488 
   1489  setit:
   1490 	for (i = 0; i < 4; i++)
   1491 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1492 }
   1493 
   1494 const int bge_swapbits[] = {
   1495 	0,
   1496 	BGE_MODECTL_BYTESWAP_DATA,
   1497 	BGE_MODECTL_WORDSWAP_DATA,
   1498 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1499 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1500 
   1501 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1502 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1503 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1504 
   1505 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1506 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1507 
   1508 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1509 
   1510 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1511 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1512 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1513 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1514 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1515 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1516 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1517 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1518 
   1519 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1520 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1521 };
   1522 
   1523 int bge_swapindex = 0;
   1524 
   1525 /*
   1526  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1527  * self-test results.
   1528  */
   1529 static int
   1530 bge_chipinit(struct bge_softc *sc)
   1531 {
   1532 	int			i;
   1533 	u_int32_t		dma_rw_ctl;
   1534 
   1535 
   1536 	/* Set endianness before we access any non-PCI registers. */
   1537 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1538 	    BGE_INIT);
   1539 
   1540 	/* Set power state to D0. */
   1541 	bge_setpowerstate(sc, 0);
   1542 
   1543 	/*
   1544 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1545 	 * self-tests passed.
   1546 	 */
   1547 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1548 		aprint_error_dev(sc->bge_dev,
   1549 		    "RX CPU self-diagnostics failed!\n");
   1550 		return (ENODEV);
   1551 	}
   1552 
   1553 	/* Clear the MAC control register */
   1554 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1555 
   1556 	/*
   1557 	 * Clear the MAC statistics block in the NIC's
   1558 	 * internal memory.
   1559 	 */
   1560 	for (i = BGE_STATS_BLOCK;
   1561 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1562 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1563 
   1564 	for (i = BGE_STATUS_BLOCK;
   1565 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1566 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1567 
   1568 	/* Set up the PCI DMA control register. */
   1569 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1570 	if (sc->bge_flags & BGE_PCIE) {
   1571 		/* Read watermark not used, 128 bytes for write. */
   1572 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1573 		    device_xname(sc->bge_dev)));
   1574 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1575 	} else if (sc->bge_flags & BGE_PCIX){
   1576 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1577 		    device_xname(sc->bge_dev)));
   1578 		/* PCI-X bus */
   1579 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1580 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1581 		    (0x0F);
   1582 		/*
   1583 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1584 		 * for hardware bugs, which means we should also clear
   1585 		 * the low-order MINDMA bits.  In addition, the 5704
   1586 		 * uses a different encoding of read/write watermarks.
   1587 		 */
   1588 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1589 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1590 			  /* should be 0x1f0000 */
   1591 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1592 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1593 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1594 		}
   1595 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1596 			dma_rw_ctl &=  0xfffffff0;
   1597 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1598 		}
   1599 		else if (BGE_IS_5714_FAMILY(sc)) {
   1600 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1601 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1602 			/* XXX magic values, Broadcom-supplied Linux driver */
   1603 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1604 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1605 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1606 			else
   1607 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1608 		}
   1609 	} else {
   1610 		/* Conventional PCI bus */
   1611 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1612 		    device_xname(sc->bge_dev)));
   1613 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1614 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1615 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1616 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1617 			dma_rw_ctl |= 0x0F;
   1618 	}
   1619 
   1620 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1621 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1622 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1623 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1624 
   1625 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1626 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1627 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1628 
   1629 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1630 
   1631 	/*
   1632 	 * Set up general mode register.
   1633 	 */
   1634 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1635 		    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1636 		    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1637 
   1638 	/*
   1639 	 * Disable memory write invalidate.  Apparently it is not supported
   1640 	 * properly by these devices.
   1641 	 */
   1642 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1643 
   1644 
   1645 #ifdef __brokenalpha__
   1646 	/*
   1647 	 * Must insure that we do not cross an 8K (bytes) boundary
   1648 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1649 	 * restriction on some ALPHA platforms with early revision
   1650 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1651 	 */
   1652 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1653 #endif
   1654 
   1655 	/* Set the timer prescaler (always 66MHz) */
   1656 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1657 
   1658 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1659 		DELAY(40);	/* XXX */
   1660 
   1661 		/* Put PHY into ready state */
   1662 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1663 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1664 		DELAY(40);
   1665 	}
   1666 
   1667 	return (0);
   1668 }
   1669 
   1670 static int
   1671 bge_blockinit(struct bge_softc *sc)
   1672 {
   1673 	volatile struct bge_rcb		*rcb;
   1674 	bus_size_t		rcb_addr;
   1675 	int			i;
   1676 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1677 	bge_hostaddr		taddr;
   1678 	u_int32_t		val;
   1679 
   1680 	/*
   1681 	 * Initialize the memory window pointer register so that
   1682 	 * we can access the first 32K of internal NIC RAM. This will
   1683 	 * allow us to set up the TX send ring RCBs and the RX return
   1684 	 * ring RCBs, plus other things which live in NIC memory.
   1685 	 */
   1686 
   1687 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1688 
   1689 	/* Configure mbuf memory pool */
   1690 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1691 		if (sc->bge_extram) {
   1692 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1693 			    BGE_EXT_SSRAM);
   1694 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1695 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1696 			else
   1697 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1698 		} else {
   1699 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1700 			    BGE_BUFFPOOL_1);
   1701 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1702 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1703 			else
   1704 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1705 		}
   1706 
   1707 		/* Configure DMA resource pool */
   1708 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1709 		    BGE_DMA_DESCRIPTORS);
   1710 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1711 	}
   1712 
   1713 	/* Configure mbuf pool watermarks */
   1714 #ifdef ORIG_WPAUL_VALUES
   1715 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1716 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1717 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1718 #else
   1719 
   1720 	/* new broadcom docs strongly recommend these: */
   1721 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1722 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1723 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1724 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1725 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1726 		} else {
   1727 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1728 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1729 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1730 		}
   1731 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1732 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1733 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1734 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1735 	} else {
   1736 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1737 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1738 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1739 	}
   1740 #endif
   1741 
   1742 	/* Configure DMA resource watermarks */
   1743 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1744 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1745 
   1746 	/* Enable buffer manager */
   1747 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1748 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1749 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1750 
   1751 		/* Poll for buffer manager start indication */
   1752 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1753 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1754 				break;
   1755 			DELAY(10);
   1756 		}
   1757 
   1758 		if (i == BGE_TIMEOUT) {
   1759 			aprint_error_dev(sc->bge_dev,
   1760 			    "buffer manager failed to start\n");
   1761 			return (ENXIO);
   1762 		}
   1763 	}
   1764 
   1765 	/* Enable flow-through queues */
   1766 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1767 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1768 
   1769 	/* Wait until queue initialization is complete */
   1770 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1771 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1772 			break;
   1773 		DELAY(10);
   1774 	}
   1775 
   1776 	if (i == BGE_TIMEOUT) {
   1777 		aprint_error_dev(sc->bge_dev,
   1778 		    "flow-through queue init failed\n");
   1779 		return (ENXIO);
   1780 	}
   1781 
   1782 	/* Initialize the standard RX ring control block */
   1783 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1784 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1785 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1786 	if (BGE_IS_5705_OR_BEYOND(sc))
   1787 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1788 	else
   1789 		rcb->bge_maxlen_flags =
   1790 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1791 	if (sc->bge_extram)
   1792 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1793 	else
   1794 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1795 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1796 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1797 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1798 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1799 
   1800 	if (BGE_IS_5705_OR_BEYOND(sc))
   1801 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1802 	else
   1803 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1804 
   1805 	/*
   1806 	 * Initialize the jumbo RX ring control block
   1807 	 * We set the 'ring disabled' bit in the flags
   1808 	 * field until we're actually ready to start
   1809 	 * using this ring (i.e. once we set the MTU
   1810 	 * high enough to require it).
   1811 	 */
   1812 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   1813 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1814 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1815 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1816 		rcb->bge_maxlen_flags =
   1817 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1818 			BGE_RCB_FLAG_RING_DISABLED);
   1819 		if (sc->bge_extram)
   1820 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1821 		else
   1822 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1823 
   1824 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1825 		    rcb->bge_hostaddr.bge_addr_hi);
   1826 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1827 		    rcb->bge_hostaddr.bge_addr_lo);
   1828 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1829 		    rcb->bge_maxlen_flags);
   1830 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1831 
   1832 		/* Set up dummy disabled mini ring RCB */
   1833 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1834 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1835 		    BGE_RCB_FLAG_RING_DISABLED);
   1836 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1837 		    rcb->bge_maxlen_flags);
   1838 
   1839 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1840 		    offsetof(struct bge_ring_data, bge_info),
   1841 		    sizeof (struct bge_gib),
   1842 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1843 	}
   1844 
   1845 	/*
   1846 	 * Set the BD ring replenish thresholds. The recommended
   1847 	 * values are 1/8th the number of descriptors allocated to
   1848 	 * each ring.
   1849 	 */
   1850 	i = BGE_STD_RX_RING_CNT / 8;
   1851 
   1852 	/*
   1853 	 * Use a value of 8 for the following chips to workaround HW errata.
   1854 	 * Some of these chips have been added based on empirical
   1855 	 * evidence (they don't work unless this is done).
   1856 	 */
   1857 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1858 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1859 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1860 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1861 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1862 		i = 8;
   1863 
   1864 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1865 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   1866 
   1867 	/*
   1868 	 * Disable all unused send rings by setting the 'ring disabled'
   1869 	 * bit in the flags field of all the TX send ring control blocks.
   1870 	 * These are located in NIC memory.
   1871 	 */
   1872 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1873 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1874 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1875 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   1876 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1877 		rcb_addr += sizeof(struct bge_rcb);
   1878 	}
   1879 
   1880 	/* Configure TX RCB 0 (we use only the first ring) */
   1881 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1882 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1883 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1884 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1885 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1886 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1887 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   1888 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1889 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1890 
   1891 	/* Disable all unused RX return rings */
   1892 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1893 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1894 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1895 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1896 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1897 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1898                                      BGE_RCB_FLAG_RING_DISABLED));
   1899 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1900 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1901 		    (i * (sizeof(u_int64_t))), 0);
   1902 		rcb_addr += sizeof(struct bge_rcb);
   1903 	}
   1904 
   1905 	/* Initialize RX ring indexes */
   1906 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1907 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1908 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1909 
   1910 	/*
   1911 	 * Set up RX return ring 0
   1912 	 * Note that the NIC address for RX return rings is 0x00000000.
   1913 	 * The return rings live entirely within the host, so the
   1914 	 * nicaddr field in the RCB isn't used.
   1915 	 */
   1916 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1917 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1918 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1919 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1920 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1921 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1922 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1923 
   1924 	/* Set random backoff seed for TX */
   1925 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1926 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1927 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1928 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1929 	    BGE_TX_BACKOFF_SEED_MASK);
   1930 
   1931 	/* Set inter-packet gap */
   1932 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1933 
   1934 	/*
   1935 	 * Specify which ring to use for packets that don't match
   1936 	 * any RX rules.
   1937 	 */
   1938 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1939 
   1940 	/*
   1941 	 * Configure number of RX lists. One interrupt distribution
   1942 	 * list, sixteen active lists, one bad frames class.
   1943 	 */
   1944 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1945 
   1946 	/* Inialize RX list placement stats mask. */
   1947 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1948 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1949 
   1950 	/* Disable host coalescing until we get it set up */
   1951 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1952 
   1953 	/* Poll to make sure it's shut down. */
   1954 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1955 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1956 			break;
   1957 		DELAY(10);
   1958 	}
   1959 
   1960 	if (i == BGE_TIMEOUT) {
   1961 		aprint_error_dev(sc->bge_dev,
   1962 		    "host coalescing engine failed to idle\n");
   1963 		return (ENXIO);
   1964 	}
   1965 
   1966 	/* Set up host coalescing defaults */
   1967 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1968 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1969 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1970 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1971 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1972 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1973 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1974 	}
   1975 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1976 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1977 
   1978 	/* Set up address of statistics block */
   1979 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1980 		bge_set_hostaddr(&taddr,
   1981 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1982 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1983 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1984 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1985 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1986 	}
   1987 
   1988 	/* Set up address of status block */
   1989 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1990 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1991 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1992 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1993 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1994 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1995 
   1996 	/* Turn on host coalescing state machine */
   1997 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1998 
   1999 	/* Turn on RX BD completion state machine and enable attentions */
   2000 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2001 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2002 
   2003 	/* Turn on RX list placement state machine */
   2004 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2005 
   2006 	/* Turn on RX list selector state machine. */
   2007 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2008 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2009 
   2010 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2011 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2012 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2013 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2014 
   2015 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2016 	    val |= BGE_PORTMODE_TBI;
   2017 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2018 	    val |= BGE_PORTMODE_GMII;
   2019 	else
   2020 	    val |= BGE_PORTMODE_MII;
   2021 
   2022 	/* Turn on DMA, clear stats */
   2023 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2024 
   2025 
   2026 	/* Set misc. local control, enable interrupts on attentions */
   2027 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2028 
   2029 #ifdef notdef
   2030 	/* Assert GPIO pins for PHY reset */
   2031 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2032 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2033 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2034 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2035 #endif
   2036 
   2037 #if defined(not_quite_yet)
   2038 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2039 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2040 		sc->bge_local_ctrl_reg |=
   2041 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2042 	}
   2043 #endif
   2044 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2045 
   2046 	/* Turn on DMA completion state machine */
   2047 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2048 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2049 
   2050 	/* Turn on write DMA state machine */
   2051 	{
   2052 		uint32_t bge_wdma_mode =
   2053 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2054 
   2055 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2056 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2057 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2058 			bge_wdma_mode |= (1 << 29);
   2059 
   2060 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2061         }
   2062 
   2063 	/* Turn on read DMA state machine */
   2064 	{
   2065 		uint32_t dma_read_modebits;
   2066 
   2067 		dma_read_modebits =
   2068 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2069 
   2070 		if ((sc->bge_flags & BGE_PCIE) && 0) {
   2071 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2072 		} else if (BGE_IS_5705_OR_BEYOND(sc)) {
   2073 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   2074 		}
   2075 
   2076 		/* XXX broadcom-supplied linux driver; undocumented */
   2077 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   2078  			/*
   2079 			 * XXX: magic values.
   2080 			 * From Broadcom-supplied Linux driver;  apparently
   2081 			 * required to workaround a DMA bug affecting TSO
   2082 			 * on bcm575x/bcm5721?
   2083 			 */
   2084 			dma_read_modebits |= (1 << 27);
   2085 		}
   2086 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2087 	}
   2088 
   2089 	/* Turn on RX data completion state machine */
   2090 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2091 
   2092 	/* Turn on RX BD initiator state machine */
   2093 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2094 
   2095 	/* Turn on RX data and RX BD initiator state machine */
   2096 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2097 
   2098 	/* Turn on Mbuf cluster free state machine */
   2099 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2100 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2101 
   2102 	/* Turn on send BD completion state machine */
   2103 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2104 
   2105 	/* Turn on send data completion state machine */
   2106 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   2107 
   2108 	/* Turn on send data initiator state machine */
   2109 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   2110 		/* XXX: magic value from Linux driver */
   2111 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2112 	} else {
   2113 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2114 	}
   2115 
   2116 	/* Turn on send BD initiator state machine */
   2117 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2118 
   2119 	/* Turn on send BD selector state machine */
   2120 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2121 
   2122 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2123 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2124 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2125 
   2126 	/* ack/clear link change events */
   2127 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2128 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2129 	    BGE_MACSTAT_CFG_CHANGED);
   2130 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2131 
   2132 	/* Enable PHY auto polling (for MII/GMII only) */
   2133 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2134 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2135  	} else {
   2136 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2137 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2138 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2139 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2140 			    BGE_EVTENB_MI_INTERRUPT);
   2141 	}
   2142 
   2143 	/*
   2144 	 * Clear any pending link state attention.
   2145 	 * Otherwise some link state change events may be lost until attention
   2146 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2147 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2148 	 * state change attentions implies clearing pending attention.
   2149 	 */
   2150 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2151 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2152 	    BGE_MACSTAT_LINK_CHANGED);
   2153 
   2154 	/* Enable link state change attentions. */
   2155 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2156 
   2157 	return (0);
   2158 }
   2159 
   2160 static const struct bge_revision *
   2161 bge_lookup_rev(uint32_t chipid)
   2162 {
   2163 	const struct bge_revision *br;
   2164 
   2165 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2166 		if (br->br_chipid == chipid)
   2167 			return (br);
   2168 	}
   2169 
   2170 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2171 		if (br->br_chipid == BGE_ASICREV(chipid))
   2172 			return (br);
   2173 	}
   2174 
   2175 	return (NULL);
   2176 }
   2177 
   2178 static const struct bge_product *
   2179 bge_lookup(const struct pci_attach_args *pa)
   2180 {
   2181 	const struct bge_product *bp;
   2182 
   2183 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2184 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2185 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2186 			return (bp);
   2187 	}
   2188 
   2189 	return (NULL);
   2190 }
   2191 
   2192 static int
   2193 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2194 {
   2195 #ifdef NOTYET
   2196 	u_int32_t pm_ctl = 0;
   2197 
   2198 	/* XXX FIXME: make sure indirect accesses enabled? */
   2199 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2200 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2201 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2202 
   2203 	/* clear the PME_assert bit and power state bits, enable PME */
   2204 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2205 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2206 	pm_ctl |= (1 << 8);
   2207 
   2208 	if (powerlevel == 0) {
   2209 		pm_ctl |= PCIM_PSTAT_D0;
   2210 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2211 		    pm_ctl, 2);
   2212 		DELAY(10000);
   2213 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2214 		DELAY(10000);
   2215 
   2216 #ifdef NOTYET
   2217 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2218 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2219 #endif
   2220 		DELAY(40); DELAY(40); DELAY(40);
   2221 		DELAY(10000);	/* above not quite adequate on 5700 */
   2222 		return 0;
   2223 	}
   2224 
   2225 
   2226 	/*
   2227 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2228 	 * GMII gpio pins. Example code assumes all hardware vendors
   2229 	 * followed Broadom's sample pcb layout. Until we verify that
   2230 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2231 	 */
   2232 	aprint_error_dev(sc->bge_dev,
   2233 	    "power state %d unimplemented; check GPIO pins\n",
   2234 	    powerlevel);
   2235 #endif
   2236 	return EOPNOTSUPP;
   2237 }
   2238 
   2239 
   2240 /*
   2241  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2242  * against our list and return its name if we find a match. Note
   2243  * that since the Broadcom controller contains VPD support, we
   2244  * can get the device name string from the controller itself instead
   2245  * of the compiled-in string. This is a little slow, but it guarantees
   2246  * we'll always announce the right product name.
   2247  */
   2248 static int
   2249 bge_probe(device_t parent, cfdata_t match, void *aux)
   2250 {
   2251 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2252 
   2253 	if (bge_lookup(pa) != NULL)
   2254 		return (1);
   2255 
   2256 	return (0);
   2257 }
   2258 
   2259 static void
   2260 bge_attach(device_t parent, device_t self, void *aux)
   2261 {
   2262 	struct bge_softc	*sc = device_private(self);
   2263 	struct pci_attach_args	*pa = aux;
   2264 	prop_dictionary_t dict;
   2265 	const struct bge_product *bp;
   2266 	const struct bge_revision *br;
   2267 	pci_chipset_tag_t	pc;
   2268 	pci_intr_handle_t	ih;
   2269 	const char		*intrstr = NULL;
   2270 	bus_dma_segment_t	seg;
   2271 	int			rseg;
   2272 	u_int32_t		hwcfg = 0;
   2273 	u_int32_t		command;
   2274 	struct ifnet		*ifp;
   2275 	u_int32_t		misccfg;
   2276 	void *			kva;
   2277 	u_char			eaddr[ETHER_ADDR_LEN];
   2278 	pcireg_t		memtype;
   2279 	bus_addr_t		memaddr;
   2280 	bus_size_t		memsize;
   2281 	u_int32_t		pm_ctl;
   2282 
   2283 	bp = bge_lookup(pa);
   2284 	KASSERT(bp != NULL);
   2285 
   2286 	sc->sc_pc = pa->pa_pc;
   2287 	sc->sc_pcitag = pa->pa_tag;
   2288 	sc->bge_dev = self;
   2289 
   2290 	aprint_naive(": Ethernet controller\n");
   2291 	aprint_normal(": %s\n", bp->bp_name);
   2292 
   2293 	/*
   2294 	 * Map control/status registers.
   2295 	 */
   2296 	DPRINTFN(5, ("Map control/status regs\n"));
   2297 	pc = sc->sc_pc;
   2298 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2299 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2300 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2301 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2302 
   2303 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2304 		aprint_error_dev(sc->bge_dev,
   2305 		    "failed to enable memory mapping!\n");
   2306 		return;
   2307 	}
   2308 
   2309 	DPRINTFN(5, ("pci_mem_find\n"));
   2310 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2311  	switch (memtype) {
   2312 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2313 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2314 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2315 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2316 		    &memaddr, &memsize) == 0)
   2317 			break;
   2318 	default:
   2319 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2320 		return;
   2321 	}
   2322 
   2323 	DPRINTFN(5, ("pci_intr_map\n"));
   2324 	if (pci_intr_map(pa, &ih)) {
   2325 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2326 		return;
   2327 	}
   2328 
   2329 	DPRINTFN(5, ("pci_intr_string\n"));
   2330 	intrstr = pci_intr_string(pc, ih);
   2331 
   2332 	DPRINTFN(5, ("pci_intr_establish\n"));
   2333 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2334 
   2335 	if (sc->bge_intrhand == NULL) {
   2336 		aprint_error_dev(sc->bge_dev,
   2337 		    "couldn't establish interrupt%s%s\n",
   2338 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2339 		return;
   2340 	}
   2341 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2342 
   2343 	/*
   2344 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2345 	 * can clobber the chip's PCI config-space power control registers,
   2346 	 * leaving the card in D3 powersave state.
   2347 	 * We do not have memory-mapped registers in this state,
   2348 	 * so force device into D0 state before starting initialization.
   2349 	 */
   2350 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2351 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2352 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2353 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2354 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2355 
   2356 	/*
   2357 	 * Save ASIC rev.
   2358 	 */
   2359 	sc->bge_chipid =
   2360 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2361 	    BGE_PCIMISCCTL_ASICREV;
   2362 
   2363 	/*
   2364 	 * Detect PCI-Express devices
   2365 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2366 	 */
   2367 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2368 	        NULL, NULL) != 0)
   2369 		sc->bge_flags |= BGE_PCIE;
   2370 
   2371 	/*
   2372 	 * PCI-X check.
   2373 	 */
   2374 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2375 		BGE_PCISTATE_PCI_BUSMODE) == 0)
   2376 		sc->bge_flags |= BGE_PCIX;
   2377 
   2378 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2379 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2380 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2381 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2382 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2383 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2384 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2385 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2386 
   2387 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   2388 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2389 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2390 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2391 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2392 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2393 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2394 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2395 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2396 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2397 	}
   2398 
   2399 	/* Try to reset the chip. */
   2400 	DPRINTFN(5, ("bge_reset\n"));
   2401 	bge_reset(sc);
   2402 
   2403 	if (bge_chipinit(sc)) {
   2404 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2405 		bge_release_resources(sc);
   2406 		return;
   2407 	}
   2408 
   2409 	/*
   2410 	 * Get station address from the EEPROM.
   2411 	 */
   2412 	if (bge_get_eaddr(sc, eaddr)) {
   2413 		aprint_error_dev(sc->bge_dev,
   2414 		"failed to reade station address\n");
   2415 		bge_release_resources(sc);
   2416 		return;
   2417 	}
   2418 
   2419 	br = bge_lookup_rev(sc->bge_chipid);
   2420 
   2421 	if (br == NULL) {
   2422 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2423 		    sc->bge_chipid >> 16);
   2424 	} else {
   2425 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2426 		    br->br_name, sc->bge_chipid >> 16);
   2427 	}
   2428 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2429 
   2430 	/* Allocate the general information block and ring buffers. */
   2431 	if (pci_dma64_available(pa))
   2432 		sc->bge_dmatag = pa->pa_dmat64;
   2433 	else
   2434 		sc->bge_dmatag = pa->pa_dmat;
   2435 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2436 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2437 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2438 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2439 		return;
   2440 	}
   2441 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2442 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2443 			   sizeof(struct bge_ring_data), &kva,
   2444 			   BUS_DMA_NOWAIT)) {
   2445 		aprint_error_dev(sc->bge_dev,
   2446 		    "can't map DMA buffers (%zu bytes)\n",
   2447 		    sizeof(struct bge_ring_data));
   2448 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2449 		return;
   2450 	}
   2451 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2452 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2453 	    sizeof(struct bge_ring_data), 0,
   2454 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2455 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2456 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2457 				 sizeof(struct bge_ring_data));
   2458 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2459 		return;
   2460 	}
   2461 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2462 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2463 			    sizeof(struct bge_ring_data), NULL,
   2464 			    BUS_DMA_NOWAIT)) {
   2465 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2466 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2467 				 sizeof(struct bge_ring_data));
   2468 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2469 		return;
   2470 	}
   2471 
   2472 	DPRINTFN(5, ("bzero\n"));
   2473 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2474 
   2475 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2476 
   2477 	/* Try to allocate memory for jumbo buffers. */
   2478 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2479 		if (bge_alloc_jumbo_mem(sc)) {
   2480 			aprint_error_dev(sc->bge_dev,
   2481 			    "jumbo buffer allocation failed\n");
   2482 		} else
   2483 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2484 	}
   2485 
   2486 	/* Set default tuneable values. */
   2487 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2488 	sc->bge_rx_coal_ticks = 150;
   2489 	sc->bge_rx_max_coal_bds = 64;
   2490 #ifdef ORIG_WPAUL_VALUES
   2491 	sc->bge_tx_coal_ticks = 150;
   2492 	sc->bge_tx_max_coal_bds = 128;
   2493 #else
   2494 	sc->bge_tx_coal_ticks = 300;
   2495 	sc->bge_tx_max_coal_bds = 400;
   2496 #endif
   2497 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   2498 		sc->bge_tx_coal_ticks = (12 * 5);
   2499 		sc->bge_tx_max_coal_bds = (12 * 5);
   2500 			aprint_verbose_dev(sc->bge_dev,
   2501 			    "setting short Tx thresholds\n");
   2502 	}
   2503 
   2504 	/* Set up ifnet structure */
   2505 	ifp = &sc->ethercom.ec_if;
   2506 	ifp->if_softc = sc;
   2507 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2508 	ifp->if_ioctl = bge_ioctl;
   2509 	ifp->if_stop = bge_stop;
   2510 	ifp->if_start = bge_start;
   2511 	ifp->if_init = bge_init;
   2512 	ifp->if_watchdog = bge_watchdog;
   2513 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2514 	IFQ_SET_READY(&ifp->if_snd);
   2515 	DPRINTFN(5, ("strcpy if_xname\n"));
   2516 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2517 
   2518 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2519 		sc->ethercom.ec_if.if_capabilities |=
   2520 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2521 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2522 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2523 	sc->ethercom.ec_capabilities |=
   2524 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2525 
   2526 	if (sc->bge_flags & BGE_PCIE)
   2527 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2528 
   2529 	/*
   2530 	 * Do MII setup.
   2531 	 */
   2532 	DPRINTFN(5, ("mii setup\n"));
   2533 	sc->bge_mii.mii_ifp = ifp;
   2534 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2535 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2536 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2537 
   2538 	/*
   2539 	 * Figure out what sort of media we have by checking the
   2540 	 * hardware config word in the first 32k of NIC internal memory,
   2541 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2542 	 * cards, this value appears to be unset. If that's the
   2543 	 * case, we have to rely on identifying the NIC by its PCI
   2544 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2545 	 */
   2546 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2547 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2548 	} else {
   2549 		bge_read_eeprom(sc, (void *)&hwcfg,
   2550 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2551 		hwcfg = be32toh(hwcfg);
   2552 	}
   2553 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2554 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2555 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2556 		if (BGE_IS_5714_FAMILY(sc))
   2557 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2558 		else
   2559 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2560 	}
   2561 
   2562 	/* set phyflags before mii_attach() */
   2563 	dict = device_properties(self);
   2564 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2565 
   2566 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2567 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2568 		    bge_ifmedia_sts);
   2569 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2570 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2571 			    0, NULL);
   2572 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2573 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2574 		/* Pretend the user requested this setting */
   2575 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2576 	} else {
   2577 		/*
   2578 		 * Do transceiver setup.
   2579 		 */
   2580 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2581 			     bge_ifmedia_sts);
   2582 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2583 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2584 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2585 
   2586 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2587 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2588 			ifmedia_add(&sc->bge_mii.mii_media,
   2589 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2590 			ifmedia_set(&sc->bge_mii.mii_media,
   2591 				    IFM_ETHER|IFM_MANUAL);
   2592 		} else
   2593 			ifmedia_set(&sc->bge_mii.mii_media,
   2594 				    IFM_ETHER|IFM_AUTO);
   2595 	}
   2596 
   2597 	/*
   2598 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2599 	 * been observed in the first few bytes of some received packets.
   2600 	 * Aligning the packet buffer in memory eliminates the corruption.
   2601 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2602 	 * which do not support unaligned accesses, we will realign the
   2603 	 * payloads by copying the received packets.
   2604 	 */
   2605 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2606 		sc->bge_flags & BGE_PCIX)
   2607 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2608 
   2609 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2610 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2611 
   2612 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2613 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2614 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2615 		sc->bge_flags |= BGE_IS_5788;
   2616 
   2617 	/*
   2618 	 * Call MI attach routine.
   2619 	 */
   2620 	DPRINTFN(5, ("if_attach\n"));
   2621 	if_attach(ifp);
   2622 	DPRINTFN(5, ("ether_ifattach\n"));
   2623 	ether_ifattach(ifp, eaddr);
   2624 #if NRND > 0
   2625 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2626 		RND_TYPE_NET, 0);
   2627 #endif
   2628 #ifdef BGE_EVENT_COUNTERS
   2629 	/*
   2630 	 * Attach event counters.
   2631 	 */
   2632 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2633 	    NULL, device_xname(sc->bge_dev), "intr");
   2634 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2635 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2636 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2637 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2638 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2639 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2640 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2641 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2642 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2643 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2644 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2645 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2646 #endif /* BGE_EVENT_COUNTERS */
   2647 	DPRINTFN(5, ("callout_init\n"));
   2648 	callout_init(&sc->bge_timeout, 0);
   2649 
   2650 	if (!pmf_device_register(self, NULL, NULL))
   2651 		aprint_error_dev(self, "couldn't establish power handler\n");
   2652 	else
   2653 		pmf_class_network_register(self, ifp);
   2654 }
   2655 
   2656 static void
   2657 bge_release_resources(struct bge_softc *sc)
   2658 {
   2659 	if (sc->bge_vpd_prodname != NULL)
   2660 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2661 
   2662 	if (sc->bge_vpd_readonly != NULL)
   2663 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2664 }
   2665 
   2666 static void
   2667 bge_reset(struct bge_softc *sc)
   2668 {
   2669 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2670 	int i, val;
   2671 	void (*write_op)(struct bge_softc *, int, int);
   2672 
   2673 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2674 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2675 	    	if (sc->bge_flags & BGE_PCIE) {
   2676 			write_op = bge_writemem_direct;
   2677 		} else {
   2678 			write_op = bge_writemem_ind;
   2679 		}
   2680 	} else {
   2681 		write_op = bge_writereg_ind;
   2682 	}
   2683 
   2684 
   2685 	/* Save some important PCI state. */
   2686 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2687 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2688 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2689 
   2690 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2691 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2692 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2693 
   2694 	/* Disable fastboot on controllers that support it. */
   2695 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2696 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2697 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2698 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2699 
   2700 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2701 	/*
   2702 	 * XXX: from FreeBSD/Linux; no documentation
   2703 	 */
   2704 	if (sc->bge_flags & BGE_PCIE) {
   2705 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2706 			/* PCI Express 1.0 system */
   2707 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2708 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2709 			/*
   2710 			 * Prevent PCI Express link training
   2711 			 * during global reset.
   2712 			 */
   2713 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2714 			val |= (1<<29);
   2715 		}
   2716 	}
   2717 
   2718 	/*
   2719 	 * Set GPHY Power Down Override to leave GPHY
   2720 	 * powered up in D0 uninitialized.
   2721 	 */
   2722 	if (BGE_IS_5705_OR_BEYOND(sc))
   2723 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   2724 
   2725 	/* Issue global reset */
   2726 	write_op(sc, BGE_MISC_CFG, val);
   2727 
   2728 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2729 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2730 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2731 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2732 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2733 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2734 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2735 	}
   2736 
   2737 	DELAY(1000);
   2738 
   2739 	/*
   2740 	 * XXX: from FreeBSD/Linux; no documentation
   2741 	 */
   2742 	if (sc->bge_flags & BGE_PCIE) {
   2743 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2744 			pcireg_t reg;
   2745 
   2746 			DELAY(500000);
   2747 			/* XXX: Magic Numbers */
   2748 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
   2749 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
   2750 			    reg | (1 << 15));
   2751 		}
   2752 		/*
   2753 		 * XXX: Magic Numbers.
   2754 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2755 		 * Should be replaced with references to PCI config-space
   2756 		 * capability block for PCI-Express.
   2757 		 */
   2758 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2759 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2760 
   2761 	}
   2762 
   2763 	/* Reset some of the PCI state that got zapped by reset */
   2764 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2765 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2766 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2767 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   2768 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   2769 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   2770 
   2771 	/* Enable memory arbiter. */
   2772 	{
   2773 		uint32_t marbmode = 0;
   2774 		if (BGE_IS_5714_FAMILY(sc)) {
   2775 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2776 		}
   2777  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2778 	}
   2779 
   2780 
   2781 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2782 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2783 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2784 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2785 				break;
   2786 			DELAY(100);
   2787 		}
   2788 		if (i == BGE_TIMEOUT) {
   2789 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2790 			return;
   2791 		}
   2792 	} else {
   2793 		/*
   2794 		 * Write the magic number to the firmware mailbox at 0xb50
   2795 		 * so that the driver can synchronize with the firmware.
   2796 		 */
   2797 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2798 
   2799 		/*
   2800 		 * Poll the value location we just wrote until
   2801 		 * we see the 1's complement of the magic number.
   2802 		 * This indicates that the firmware initialization
   2803 		 * is complete.
   2804 		 */
   2805 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2806 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2807 			if (val == ~BGE_MAGIC_NUMBER)
   2808 				break;
   2809 			DELAY(1000);
   2810 		}
   2811 
   2812 		if (i >= BGE_TIMEOUT) {
   2813 			aprint_error_dev(sc->bge_dev,
   2814 			    "firmware handshake timed out, val = %x\n", val);
   2815 			/*
   2816 			 * XXX: occasionally fired on bcm5721, but without
   2817 			 * apparent harm.  For now, keep going if we timeout
   2818 			 * against PCI-E devices.
   2819 			 */
   2820 			if ((sc->bge_flags & BGE_PCIE) == 0)
   2821 				  return;
   2822 		}
   2823 	}
   2824 
   2825 	/*
   2826 	 * XXX Wait for the value of the PCISTATE register to
   2827 	 * return to its original pre-reset state. This is a
   2828 	 * fairly good indicator of reset completion. If we don't
   2829 	 * wait for the reset to fully complete, trying to read
   2830 	 * from the device's non-PCI registers may yield garbage
   2831 	 * results.
   2832 	 */
   2833 	for (i = 0; i < 10000; i++) {
   2834 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2835 		    BGE_PCI_PCISTATE);
   2836 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2837 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2838 			break;
   2839 		DELAY(10);
   2840 	}
   2841 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2842 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2843 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2844 	}
   2845 
   2846 	/* Enable memory arbiter. */
   2847 	/* XXX why do this twice? */
   2848 	{
   2849 		uint32_t marbmode = 0;
   2850 		if (BGE_IS_5714_FAMILY(sc)) {
   2851 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2852 		}
   2853  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2854 	}
   2855 
   2856 	/* Fix up byte swapping */
   2857 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2858 
   2859 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2860 
   2861 	/*
   2862 	 * The 5704 in TBI mode apparently needs some special
   2863 	 * adjustment to insure the SERDES drive level is set
   2864 	 * to 1.2V.
   2865 	 */
   2866 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   2867 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2868 		u_int32_t serdescfg;
   2869 
   2870 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   2871 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   2872 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   2873 	}
   2874 
   2875 	/* XXX: from FreeBSD/Linux; no documentation */
   2876 	if (sc->bge_flags & BGE_PCIE &&
   2877 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2878 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2879 	DELAY(10000);
   2880 }
   2881 
   2882 /*
   2883  * Frame reception handling. This is called if there's a frame
   2884  * on the receive return list.
   2885  *
   2886  * Note: we have to be able to handle two possibilities here:
   2887  * 1) the frame is from the jumbo recieve ring
   2888  * 2) the frame is from the standard receive ring
   2889  */
   2890 
   2891 static void
   2892 bge_rxeof(struct bge_softc *sc)
   2893 {
   2894 	struct ifnet *ifp;
   2895 	int stdcnt = 0, jumbocnt = 0;
   2896 	bus_dmamap_t dmamap;
   2897 	bus_addr_t offset, toff;
   2898 	bus_size_t tlen;
   2899 	int tosync;
   2900 
   2901 	ifp = &sc->ethercom.ec_if;
   2902 
   2903 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2904 	    offsetof(struct bge_ring_data, bge_status_block),
   2905 	    sizeof (struct bge_status_block),
   2906 	    BUS_DMASYNC_POSTREAD);
   2907 
   2908 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2909 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2910 	    sc->bge_rx_saved_considx;
   2911 
   2912 #if NRND > 0
   2913 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   2914 		rnd_add_uint32(&sc->rnd_source, tosync);
   2915 #endif
   2916 
   2917 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2918 
   2919 	if (tosync < 0) {
   2920 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2921 		    sizeof (struct bge_rx_bd);
   2922 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2923 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2924 		tosync = -tosync;
   2925 	}
   2926 
   2927 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2928 	    offset, tosync * sizeof (struct bge_rx_bd),
   2929 	    BUS_DMASYNC_POSTREAD);
   2930 
   2931 	while(sc->bge_rx_saved_considx !=
   2932 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2933 		struct bge_rx_bd	*cur_rx;
   2934 		u_int32_t		rxidx;
   2935 		struct mbuf		*m = NULL;
   2936 
   2937 		cur_rx = &sc->bge_rdata->
   2938 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2939 
   2940 		rxidx = cur_rx->bge_idx;
   2941 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2942 
   2943 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2944 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2945 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2946 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2947 			jumbocnt++;
   2948 			bus_dmamap_sync(sc->bge_dmatag,
   2949 			    sc->bge_cdata.bge_rx_jumbo_map,
   2950 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   2951 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   2952 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2953 				ifp->if_ierrors++;
   2954 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2955 				continue;
   2956 			}
   2957 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2958 					     NULL)== ENOBUFS) {
   2959 				ifp->if_ierrors++;
   2960 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2961 				continue;
   2962 			}
   2963 		} else {
   2964 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2965 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2966 
   2967 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2968 			stdcnt++;
   2969 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2970 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2971 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   2972 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2973 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   2974 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2975 				ifp->if_ierrors++;
   2976 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2977 				continue;
   2978 			}
   2979 			if (bge_newbuf_std(sc, sc->bge_std,
   2980 			    NULL, dmamap) == ENOBUFS) {
   2981 				ifp->if_ierrors++;
   2982 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2983 				continue;
   2984 			}
   2985 		}
   2986 
   2987 		ifp->if_ipackets++;
   2988 #ifndef __NO_STRICT_ALIGNMENT
   2989                 /*
   2990                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2991                  * the Rx buffer has the layer-2 header unaligned.
   2992                  * If our CPU requires alignment, re-align by copying.
   2993                  */
   2994 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   2995 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   2996                                 cur_rx->bge_len);
   2997 			m->m_data += ETHER_ALIGN;
   2998 		}
   2999 #endif
   3000 
   3001 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3002 		m->m_pkthdr.rcvif = ifp;
   3003 
   3004 #if NBPFILTER > 0
   3005 		/*
   3006 		 * Handle BPF listeners. Let the BPF user see the packet.
   3007 		 */
   3008 		if (ifp->if_bpf)
   3009 			bpf_mtap(ifp->if_bpf, m);
   3010 #endif
   3011 
   3012 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3013 
   3014 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3015 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3016 		/*
   3017 		 * Rx transport checksum-offload may also
   3018 		 * have bugs with packets which, when transmitted,
   3019 		 * were `runts' requiring padding.
   3020 		 */
   3021 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3022 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3023 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3024 			m->m_pkthdr.csum_data =
   3025 			    cur_rx->bge_tcp_udp_csum;
   3026 			m->m_pkthdr.csum_flags |=
   3027 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3028 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3029 		}
   3030 
   3031 		/*
   3032 		 * If we received a packet with a vlan tag, pass it
   3033 		 * to vlan_input() instead of ether_input().
   3034 		 */
   3035 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3036 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3037 		}
   3038 
   3039 		(*ifp->if_input)(ifp, m);
   3040 	}
   3041 
   3042 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3043 	if (stdcnt)
   3044 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3045 	if (jumbocnt)
   3046 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3047 }
   3048 
   3049 static void
   3050 bge_txeof(struct bge_softc *sc)
   3051 {
   3052 	struct bge_tx_bd *cur_tx = NULL;
   3053 	struct ifnet *ifp;
   3054 	struct txdmamap_pool_entry *dma;
   3055 	bus_addr_t offset, toff;
   3056 	bus_size_t tlen;
   3057 	int tosync;
   3058 	struct mbuf *m;
   3059 
   3060 	ifp = &sc->ethercom.ec_if;
   3061 
   3062 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3063 	    offsetof(struct bge_ring_data, bge_status_block),
   3064 	    sizeof (struct bge_status_block),
   3065 	    BUS_DMASYNC_POSTREAD);
   3066 
   3067 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3068 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3069 	    sc->bge_tx_saved_considx;
   3070 
   3071 #if NRND > 0
   3072 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3073 		rnd_add_uint32(&sc->rnd_source, tosync);
   3074 #endif
   3075 
   3076 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3077 
   3078 	if (tosync < 0) {
   3079 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3080 		    sizeof (struct bge_tx_bd);
   3081 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3082 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3083 		tosync = -tosync;
   3084 	}
   3085 
   3086 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3087 	    offset, tosync * sizeof (struct bge_tx_bd),
   3088 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3089 
   3090 	/*
   3091 	 * Go through our tx ring and free mbufs for those
   3092 	 * frames that have been sent.
   3093 	 */
   3094 	while (sc->bge_tx_saved_considx !=
   3095 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3096 		u_int32_t		idx = 0;
   3097 
   3098 		idx = sc->bge_tx_saved_considx;
   3099 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3100 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3101 			ifp->if_opackets++;
   3102 		m = sc->bge_cdata.bge_tx_chain[idx];
   3103 		if (m != NULL) {
   3104 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3105 			dma = sc->txdma[idx];
   3106 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3107 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3108 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3109 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3110 			sc->txdma[idx] = NULL;
   3111 
   3112 			m_freem(m);
   3113 		}
   3114 		sc->bge_txcnt--;
   3115 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3116 		ifp->if_timer = 0;
   3117 	}
   3118 
   3119 	if (cur_tx != NULL)
   3120 		ifp->if_flags &= ~IFF_OACTIVE;
   3121 }
   3122 
   3123 static int
   3124 bge_intr(void *xsc)
   3125 {
   3126 	struct bge_softc *sc;
   3127 	struct ifnet *ifp;
   3128 	uint32_t statusword;
   3129 
   3130 	sc = xsc;
   3131 	ifp = &sc->ethercom.ec_if;
   3132 
   3133 	/* It is possible for the interrupt to arrive before
   3134 	 * the status block is updated prior to the interrupt.
   3135 	 * Reading the PCI State register will confirm whether the
   3136 	 * interrupt is ours and will flush the status block.
   3137 	 */
   3138 
   3139 	/* read status word from status block */
   3140 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3141 
   3142 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3143 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3144 		/* Ack interrupt and stop others from occuring. */
   3145 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3146 
   3147 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3148 
   3149 		/* clear status word */
   3150 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3151 
   3152 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3153 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3154 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3155 			bge_link_upd(sc);
   3156 
   3157 		if (ifp->if_flags & IFF_RUNNING) {
   3158 			/* Check RX return ring producer/consumer */
   3159 			bge_rxeof(sc);
   3160 
   3161 			/* Check TX ring producer/consumer */
   3162 			bge_txeof(sc);
   3163 		}
   3164 
   3165 		if (sc->bge_pending_rxintr_change) {
   3166 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3167 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3168 			uint32_t junk;
   3169 
   3170 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3171 			DELAY(10);
   3172 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3173 
   3174 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3175 			DELAY(10);
   3176 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3177 
   3178 			sc->bge_pending_rxintr_change = 0;
   3179 		}
   3180 		bge_handle_events(sc);
   3181 
   3182 		/* Re-enable interrupts. */
   3183 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3184 
   3185 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3186 			bge_start(ifp);
   3187 
   3188 		return (1);
   3189 	} else
   3190 		return (0);
   3191 }
   3192 
   3193 static void
   3194 bge_tick(void *xsc)
   3195 {
   3196 	struct bge_softc *sc = xsc;
   3197 	struct mii_data *mii = &sc->bge_mii;
   3198 	int s;
   3199 
   3200 	s = splnet();
   3201 
   3202 	bge_stats_update(sc);
   3203 
   3204 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3205 		/*
   3206 		 * Since in TBI mode auto-polling can't be used we should poll
   3207 		 * link status manually. Here we register pending link event
   3208 		 * and trigger interrupt.
   3209 		 */
   3210 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3211 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3212 	} else {
   3213 		/*
   3214 		 * Do not touch PHY if we have link up. This could break
   3215 		 * IPMI/ASF mode or produce extra input errors.
   3216 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3217 		 */
   3218 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3219 			mii_tick(mii);
   3220 	}
   3221 
   3222 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3223 
   3224 	splx(s);
   3225 }
   3226 
   3227 static void
   3228 bge_stats_update(struct bge_softc *sc)
   3229 {
   3230 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3231 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3232 	bus_size_t rstats = BGE_RX_STATS;
   3233 
   3234 #define READ_RSTAT(sc, stats, stat) \
   3235 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3236 
   3237 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   3238 		ifp->if_collisions +=
   3239 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3240 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3241 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3242 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3243 
   3244 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3245 			      READ_RSTAT(sc, rstats, outXoffSent));
   3246 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3247 			      READ_RSTAT(sc, rstats, outXonSent));
   3248 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3249 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3250 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3251 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3252 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3253 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3254 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3255 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3256 		return;
   3257 	}
   3258 
   3259 #undef READ_RSTAT
   3260 #define READ_STAT(sc, stats, stat) \
   3261 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3262 
   3263 	ifp->if_collisions +=
   3264 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3265 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3266 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3267 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3268 	  ifp->if_collisions;
   3269 
   3270 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3271 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3272 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3273 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3274 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3275 		      READ_STAT(sc, stats,
   3276 		      		xoffPauseFramesReceived.bge_addr_lo));
   3277 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3278 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3279 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3280 		      READ_STAT(sc, stats,
   3281 		      		macControlFramesReceived.bge_addr_lo));
   3282 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3283 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3284 
   3285 #undef READ_STAT
   3286 
   3287 #ifdef notdef
   3288 	ifp->if_collisions +=
   3289 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3290 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3291 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3292 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3293 	   ifp->if_collisions;
   3294 #endif
   3295 }
   3296 
   3297 /*
   3298  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3299  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3300  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3301  * the hardware checksum assist gives incorrect results (possibly
   3302  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3303  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3304  */
   3305 static inline int
   3306 bge_cksum_pad(struct mbuf *pkt)
   3307 {
   3308 	struct mbuf *last = NULL;
   3309 	int padlen;
   3310 
   3311 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3312 
   3313 	/* if there's only the packet-header and we can pad there, use it. */
   3314 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3315 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3316 		last = pkt;
   3317 	} else {
   3318 		/*
   3319 		 * Walk packet chain to find last mbuf. We will either
   3320 		 * pad there, or append a new mbuf and pad it
   3321 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3322 		 */
   3323 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3324 	      	       continue; /* do nothing */
   3325 		}
   3326 
   3327 		/* `last' now points to last in chain. */
   3328 		if (M_TRAILINGSPACE(last) < padlen) {
   3329 			/* Allocate new empty mbuf, pad it. Compact later. */
   3330 			struct mbuf *n;
   3331 			MGET(n, M_DONTWAIT, MT_DATA);
   3332 			if (n == NULL)
   3333 				return ENOBUFS;
   3334 			n->m_len = 0;
   3335 			last->m_next = n;
   3336 			last = n;
   3337 		}
   3338 	}
   3339 
   3340 	KDASSERT(!M_READONLY(last));
   3341 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3342 
   3343 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3344 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3345 	last->m_len += padlen;
   3346 	pkt->m_pkthdr.len += padlen;
   3347 	return 0;
   3348 }
   3349 
   3350 /*
   3351  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3352  */
   3353 static inline int
   3354 bge_compact_dma_runt(struct mbuf *pkt)
   3355 {
   3356 	struct mbuf	*m, *prev;
   3357 	int 		totlen, prevlen;
   3358 
   3359 	prev = NULL;
   3360 	totlen = 0;
   3361 	prevlen = -1;
   3362 
   3363 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3364 		int mlen = m->m_len;
   3365 		int shortfall = 8 - mlen ;
   3366 
   3367 		totlen += mlen;
   3368 		if (mlen == 0) {
   3369 			continue;
   3370 		}
   3371 		if (mlen >= 8)
   3372 			continue;
   3373 
   3374 		/* If we get here, mbuf data is too small for DMA engine.
   3375 		 * Try to fix by shuffling data to prev or next in chain.
   3376 		 * If that fails, do a compacting deep-copy of the whole chain.
   3377 		 */
   3378 
   3379 		/* Internal frag. If fits in prev, copy it there. */
   3380 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3381 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3382 			prev->m_len += mlen;
   3383 			m->m_len = 0;
   3384 			/* XXX stitch chain */
   3385 			prev->m_next = m_free(m);
   3386 			m = prev;
   3387 			continue;
   3388 		}
   3389 		else if (m->m_next != NULL &&
   3390 			     M_TRAILINGSPACE(m) >= shortfall &&
   3391 			     m->m_next->m_len >= (8 + shortfall)) {
   3392 		    /* m is writable and have enough data in next, pull up. */
   3393 
   3394 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3395 			    shortfall);
   3396 			m->m_len += shortfall;
   3397 			m->m_next->m_len -= shortfall;
   3398 			m->m_next->m_data += shortfall;
   3399 		}
   3400 		else if (m->m_next == NULL || 1) {
   3401 		  	/* Got a runt at the very end of the packet.
   3402 			 * borrow data from the tail of the preceding mbuf and
   3403 			 * update its length in-place. (The original data is still
   3404 			 * valid, so we can do this even if prev is not writable.)
   3405 			 */
   3406 
   3407 			/* if we'd make prev a runt, just move all of its data. */
   3408 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3409 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3410 
   3411 			if ((prev->m_len - shortfall) < 8)
   3412 				shortfall = prev->m_len;
   3413 
   3414 #ifdef notyet	/* just do the safe slow thing for now */
   3415 			if (!M_READONLY(m)) {
   3416 				if (M_LEADINGSPACE(m) < shorfall) {
   3417 					void *m_dat;
   3418 					m_dat = (m->m_flags & M_PKTHDR) ?
   3419 					  m->m_pktdat : m->dat;
   3420 					memmove(m_dat, mtod(m, void*), m->m_len);
   3421 					m->m_data = m_dat;
   3422 				    }
   3423 			} else
   3424 #endif	/* just do the safe slow thing */
   3425 			{
   3426 				struct mbuf * n = NULL;
   3427 				int newprevlen = prev->m_len - shortfall;
   3428 
   3429 				MGET(n, M_NOWAIT, MT_DATA);
   3430 				if (n == NULL)
   3431 				   return ENOBUFS;
   3432 				KASSERT(m->m_len + shortfall < MLEN
   3433 					/*,
   3434 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3435 
   3436 				/* first copy the data we're stealing from prev */
   3437 				memcpy(n->m_data, prev->m_data + newprevlen,
   3438 				    shortfall);
   3439 
   3440 				/* update prev->m_len accordingly */
   3441 				prev->m_len -= shortfall;
   3442 
   3443 				/* copy data from runt m */
   3444 				memcpy(n->m_data + shortfall, m->m_data,
   3445 				    m->m_len);
   3446 
   3447 				/* n holds what we stole from prev, plus m */
   3448 				n->m_len = shortfall + m->m_len;
   3449 
   3450 				/* stitch n into chain and free m */
   3451 				n->m_next = m->m_next;
   3452 				prev->m_next = n;
   3453 				/* KASSERT(m->m_next == NULL); */
   3454 				m->m_next = NULL;
   3455 				m_free(m);
   3456 				m = n;	/* for continuing loop */
   3457 			}
   3458 		}
   3459 		prevlen = m->m_len;
   3460 	}
   3461 	return 0;
   3462 }
   3463 
   3464 /*
   3465  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3466  * pointers to descriptors.
   3467  */
   3468 static int
   3469 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   3470 {
   3471 	struct bge_tx_bd	*f = NULL;
   3472 	u_int32_t		frag, cur;
   3473 	u_int16_t		csum_flags = 0;
   3474 	u_int16_t		txbd_tso_flags = 0;
   3475 	struct txdmamap_pool_entry *dma;
   3476 	bus_dmamap_t dmamap;
   3477 	int			i = 0;
   3478 	struct m_tag		*mtag;
   3479 	int			use_tso, maxsegsize, error;
   3480 
   3481 	cur = frag = *txidx;
   3482 
   3483 	if (m_head->m_pkthdr.csum_flags) {
   3484 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3485 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3486 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3487 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3488 	}
   3489 
   3490 	/*
   3491 	 * If we were asked to do an outboard checksum, and the NIC
   3492 	 * has the bug where it sometimes adds in the Ethernet padding,
   3493 	 * explicitly pad with zeros so the cksum will be correct either way.
   3494 	 * (For now, do this for all chip versions, until newer
   3495 	 * are confirmed to not require the workaround.)
   3496 	 */
   3497 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3498 #ifdef notyet
   3499 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3500 #endif
   3501 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3502 		goto check_dma_bug;
   3503 
   3504 	if (bge_cksum_pad(m_head) != 0) {
   3505 	    return ENOBUFS;
   3506 	}
   3507 
   3508 check_dma_bug:
   3509 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3510 		goto doit;
   3511 
   3512 	/*
   3513 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3514 	 * less than eight bytes.  If we encounter a teeny mbuf
   3515 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3516 	 */
   3517 	if (bge_compact_dma_runt(m_head) != 0)
   3518 		return ENOBUFS;
   3519 
   3520 doit:
   3521 	dma = SLIST_FIRST(&sc->txdma_list);
   3522 	if (dma == NULL)
   3523 		return ENOBUFS;
   3524 	dmamap = dma->dmamap;
   3525 
   3526 	/*
   3527 	 * Set up any necessary TSO state before we start packing...
   3528 	 */
   3529 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3530 	if (!use_tso) {
   3531 		maxsegsize = 0;
   3532 	} else {	/* TSO setup */
   3533 		unsigned  mss;
   3534 		struct ether_header *eh;
   3535 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3536 		struct mbuf * m0 = m_head;
   3537 		struct ip *ip;
   3538 		struct tcphdr *th;
   3539 		int iphl, hlen;
   3540 
   3541 		/*
   3542 		 * XXX It would be nice if the mbuf pkthdr had offset
   3543 		 * fields for the protocol headers.
   3544 		 */
   3545 
   3546 		eh = mtod(m0, struct ether_header *);
   3547 		switch (htons(eh->ether_type)) {
   3548 		case ETHERTYPE_IP:
   3549 			offset = ETHER_HDR_LEN;
   3550 			break;
   3551 
   3552 		case ETHERTYPE_VLAN:
   3553 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3554 			break;
   3555 
   3556 		default:
   3557 			/*
   3558 			 * Don't support this protocol or encapsulation.
   3559 			 */
   3560 			return (ENOBUFS);
   3561 		}
   3562 
   3563 		/*
   3564 		 * TCP/IP headers are in the first mbuf; we can do
   3565 		 * this the easy way.
   3566 		 */
   3567 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3568 		hlen = iphl + offset;
   3569 		if (__predict_false(m0->m_len <
   3570 				    (hlen + sizeof(struct tcphdr)))) {
   3571 
   3572 			aprint_debug_dev(sc->bge_dev,
   3573 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3574 			    "not handled yet\n",
   3575 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3576 #ifdef NOTYET
   3577 			/*
   3578 			 * XXX jonathan (at) NetBSD.org: untested.
   3579 			 * how to force  this branch to be taken?
   3580 			 */
   3581 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3582 
   3583 			m_copydata(m0, offset, sizeof(ip), &ip);
   3584 			m_copydata(m0, hlen, sizeof(th), &th);
   3585 
   3586 			ip.ip_len = 0;
   3587 
   3588 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3589 			    sizeof(ip.ip_len), &ip.ip_len);
   3590 
   3591 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3592 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3593 
   3594 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3595 			    sizeof(th.th_sum), &th.th_sum);
   3596 
   3597 			hlen += th.th_off << 2;
   3598 			iptcp_opt_words	= hlen;
   3599 #else
   3600 			/*
   3601 			 * if_wm "hard" case not yet supported, can we not
   3602 			 * mandate it out of existence?
   3603 			 */
   3604 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3605 
   3606 			return ENOBUFS;
   3607 #endif
   3608 		} else {
   3609 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3610 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3611 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3612 
   3613 			/* Total IP/TCP options, in 32-bit words */
   3614 			iptcp_opt_words = (ip_tcp_hlen
   3615 					   - sizeof(struct tcphdr)
   3616 					   - sizeof(struct ip)) >> 2;
   3617 		}
   3618 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3619 			th->th_sum = 0;
   3620 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3621 		} else {
   3622 			/*
   3623 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3624 			 * Requires TSO firmware patch for 5701/5703/5704.
   3625 			 */
   3626 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3627 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3628 		}
   3629 
   3630 		mss = m_head->m_pkthdr.segsz;
   3631 		txbd_tso_flags |=
   3632 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3633 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3634 
   3635 		/*
   3636 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3637 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3638 		 * the NIC copies 40 bytes of IP/TCP header from the
   3639 		 * supplied header into the IP/TCP header portion of
   3640 		 * each post-TSO-segment. If the supplied packet has IP or
   3641 		 * TCP options, we need to tell the NIC to copy those extra
   3642 		 * bytes into each  post-TSO header, in addition to the normal
   3643 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3644 		 * Unfortunately, the driver encoding of option length
   3645 		 * varies across different ASIC families.
   3646 		 */
   3647 		tcp_seg_flags = 0;
   3648 		if (iptcp_opt_words) {
   3649 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
   3650 				tcp_seg_flags =
   3651 					iptcp_opt_words << 11;
   3652 			} else {
   3653 				txbd_tso_flags |=
   3654 					iptcp_opt_words << 12;
   3655 			}
   3656 		}
   3657 		maxsegsize = mss | tcp_seg_flags;
   3658 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3659 
   3660 	}	/* TSO setup */
   3661 
   3662 	/*
   3663 	 * Start packing the mbufs in this chain into
   3664 	 * the fragment pointers. Stop when we run out
   3665 	 * of fragments or hit the end of the mbuf chain.
   3666 	 */
   3667 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3668 	    BUS_DMA_NOWAIT);
   3669 	if (error) {
   3670 		return (ENOBUFS);
   3671 	}
   3672 	/*
   3673 	 * Sanity check: avoid coming within 16 descriptors
   3674 	 * of the end of the ring.
   3675 	 */
   3676 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3677 		BGE_TSO_PRINTF(("%s: "
   3678 		    " dmamap_load_mbuf too close to ring wrap\n",
   3679 		    device_xname(sc->bge_dev)));
   3680 		goto fail_unload;
   3681 	}
   3682 
   3683 	mtag = sc->ethercom.ec_nvlans ?
   3684 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3685 
   3686 
   3687 	/* Iterate over dmap-map fragments. */
   3688 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3689 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3690 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3691 			break;
   3692 
   3693 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3694 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3695 
   3696 		/*
   3697 		 * For 5751 and follow-ons, for TSO we must turn
   3698 		 * off checksum-assist flag in the tx-descr, and
   3699 		 * supply the ASIC-revision-specific encoding
   3700 		 * of TSO flags and segsize.
   3701 		 */
   3702 		if (use_tso) {
   3703 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3704 				f->bge_rsvd = maxsegsize;
   3705 				f->bge_flags = csum_flags | txbd_tso_flags;
   3706 			} else {
   3707 				f->bge_rsvd = 0;
   3708 				f->bge_flags =
   3709 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3710 			}
   3711 		} else {
   3712 			f->bge_rsvd = 0;
   3713 			f->bge_flags = csum_flags;
   3714 		}
   3715 
   3716 		if (mtag != NULL) {
   3717 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3718 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3719 		} else {
   3720 			f->bge_vlan_tag = 0;
   3721 		}
   3722 		cur = frag;
   3723 		BGE_INC(frag, BGE_TX_RING_CNT);
   3724 	}
   3725 
   3726 	if (i < dmamap->dm_nsegs) {
   3727 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3728 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3729 		goto fail_unload;
   3730 	}
   3731 
   3732 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3733 	    BUS_DMASYNC_PREWRITE);
   3734 
   3735 	if (frag == sc->bge_tx_saved_considx) {
   3736 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3737 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3738 
   3739 		goto fail_unload;
   3740 	}
   3741 
   3742 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3743 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3744 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3745 	sc->txdma[cur] = dma;
   3746 	sc->bge_txcnt += dmamap->dm_nsegs;
   3747 
   3748 	*txidx = frag;
   3749 
   3750 	return (0);
   3751 
   3752 fail_unload:
   3753 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3754 
   3755 	return ENOBUFS;
   3756 }
   3757 
   3758 /*
   3759  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3760  * to the mbuf data regions directly in the transmit descriptors.
   3761  */
   3762 static void
   3763 bge_start(struct ifnet *ifp)
   3764 {
   3765 	struct bge_softc *sc;
   3766 	struct mbuf *m_head = NULL;
   3767 	u_int32_t prodidx;
   3768 	int pkts = 0;
   3769 
   3770 	sc = ifp->if_softc;
   3771 
   3772 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3773 		return;
   3774 
   3775 	prodidx = sc->bge_tx_prodidx;
   3776 
   3777 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3778 		IFQ_POLL(&ifp->if_snd, m_head);
   3779 		if (m_head == NULL)
   3780 			break;
   3781 
   3782 #if 0
   3783 		/*
   3784 		 * XXX
   3785 		 * safety overkill.  If this is a fragmented packet chain
   3786 		 * with delayed TCP/UDP checksums, then only encapsulate
   3787 		 * it if we have enough descriptors to handle the entire
   3788 		 * chain at once.
   3789 		 * (paranoia -- may not actually be needed)
   3790 		 */
   3791 		if (m_head->m_flags & M_FIRSTFRAG &&
   3792 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3793 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3794 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3795 				ifp->if_flags |= IFF_OACTIVE;
   3796 				break;
   3797 			}
   3798 		}
   3799 #endif
   3800 
   3801 		/*
   3802 		 * Pack the data into the transmit ring. If we
   3803 		 * don't have room, set the OACTIVE flag and wait
   3804 		 * for the NIC to drain the ring.
   3805 		 */
   3806 		if (bge_encap(sc, m_head, &prodidx)) {
   3807 			ifp->if_flags |= IFF_OACTIVE;
   3808 			break;
   3809 		}
   3810 
   3811 		/* now we are committed to transmit the packet */
   3812 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3813 		pkts++;
   3814 
   3815 #if NBPFILTER > 0
   3816 		/*
   3817 		 * If there's a BPF listener, bounce a copy of this frame
   3818 		 * to him.
   3819 		 */
   3820 		if (ifp->if_bpf)
   3821 			bpf_mtap(ifp->if_bpf, m_head);
   3822 #endif
   3823 	}
   3824 	if (pkts == 0)
   3825 		return;
   3826 
   3827 	/* Transmit */
   3828 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3829 	/* 5700 b2 errata */
   3830 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   3831 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3832 
   3833 	sc->bge_tx_prodidx = prodidx;
   3834 
   3835 	/*
   3836 	 * Set a timeout in case the chip goes out to lunch.
   3837 	 */
   3838 	ifp->if_timer = 5;
   3839 }
   3840 
   3841 static int
   3842 bge_init(struct ifnet *ifp)
   3843 {
   3844 	struct bge_softc *sc = ifp->if_softc;
   3845 	const u_int16_t *m;
   3846 	int s, error = 0;
   3847 
   3848 	s = splnet();
   3849 
   3850 	ifp = &sc->ethercom.ec_if;
   3851 
   3852 	/* Cancel pending I/O and flush buffers. */
   3853 	bge_stop(ifp, 0);
   3854 	bge_reset(sc);
   3855 	bge_chipinit(sc);
   3856 
   3857 	/*
   3858 	 * Init the various state machines, ring
   3859 	 * control blocks and firmware.
   3860 	 */
   3861 	error = bge_blockinit(sc);
   3862 	if (error != 0) {
   3863 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3864 		    error);
   3865 		splx(s);
   3866 		return error;
   3867 	}
   3868 
   3869 	ifp = &sc->ethercom.ec_if;
   3870 
   3871 	/* Specify MTU. */
   3872 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3873 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3874 
   3875 	/* Load our MAC address. */
   3876 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3877 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3878 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3879 
   3880 	/* Enable or disable promiscuous mode as needed. */
   3881 	if (ifp->if_flags & IFF_PROMISC) {
   3882 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3883 	} else {
   3884 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3885 	}
   3886 
   3887 	/* Program multicast filter. */
   3888 	bge_setmulti(sc);
   3889 
   3890 	/* Init RX ring. */
   3891 	bge_init_rx_ring_std(sc);
   3892 
   3893 	/*
   3894 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   3895 	 * memory to insure that the chip has in fact read the first
   3896 	 * entry of the ring.
   3897 	 */
   3898 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   3899 		u_int32_t		v, i;
   3900 		for (i = 0; i < 10; i++) {
   3901 			DELAY(20);
   3902 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   3903 			if (v == (MCLBYTES - ETHER_ALIGN))
   3904 				break;
   3905 		}
   3906 		if (i == 10)
   3907 			aprint_error_dev(sc->bge_dev,
   3908 			    "5705 A0 chip failed to load RX ring\n");
   3909 	}
   3910 
   3911 	/* Init jumbo RX ring. */
   3912 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3913 		bge_init_rx_ring_jumbo(sc);
   3914 
   3915 	/* Init our RX return ring index */
   3916 	sc->bge_rx_saved_considx = 0;
   3917 
   3918 	/* Init TX ring. */
   3919 	bge_init_tx_ring(sc);
   3920 
   3921 	/* Turn on transmitter */
   3922 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3923 
   3924 	/* Turn on receiver */
   3925 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3926 
   3927 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3928 
   3929 	/* Tell firmware we're alive. */
   3930 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3931 
   3932 	/* Enable host interrupts. */
   3933 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3934 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3935 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3936 
   3937 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   3938 		goto out;
   3939 
   3940 	ifp->if_flags |= IFF_RUNNING;
   3941 	ifp->if_flags &= ~IFF_OACTIVE;
   3942 
   3943 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3944 
   3945 out:
   3946 	splx(s);
   3947 
   3948 	return error;
   3949 }
   3950 
   3951 /*
   3952  * Set media options.
   3953  */
   3954 static int
   3955 bge_ifmedia_upd(struct ifnet *ifp)
   3956 {
   3957 	struct bge_softc *sc = ifp->if_softc;
   3958 	struct mii_data *mii = &sc->bge_mii;
   3959 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3960 	int rc;
   3961 
   3962 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3963 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3964 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3965 			return (EINVAL);
   3966 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3967 		case IFM_AUTO:
   3968 			/*
   3969 			 * The BCM5704 ASIC appears to have a special
   3970 			 * mechanism for programming the autoneg
   3971 			 * advertisement registers in TBI mode.
   3972 			 */
   3973 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3974 				u_int32_t sgdig;
   3975 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   3976 				if (sgdig & BGE_SGDIGSTS_DONE) {
   3977 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   3978 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   3979 					sgdig |= BGE_SGDIGCFG_AUTO |
   3980 					    BGE_SGDIGCFG_PAUSE_CAP |
   3981 					    BGE_SGDIGCFG_ASYM_PAUSE;
   3982 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   3983 					    sgdig | BGE_SGDIGCFG_SEND);
   3984 					DELAY(5);
   3985 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   3986 				}
   3987 			}
   3988 			break;
   3989 		case IFM_1000_SX:
   3990 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3991 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3992 				    BGE_MACMODE_HALF_DUPLEX);
   3993 			} else {
   3994 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3995 				    BGE_MACMODE_HALF_DUPLEX);
   3996 			}
   3997 			break;
   3998 		default:
   3999 			return (EINVAL);
   4000 		}
   4001 		/* XXX 802.3x flow control for 1000BASE-SX */
   4002 		return (0);
   4003 	}
   4004 
   4005 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4006 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4007 		return 0;
   4008 
   4009 	/*
   4010 	 * Force an interrupt so that we will call bge_link_upd
   4011 	 * if needed and clear any pending link state attention.
   4012 	 * Without this we are not getting any further interrupts
   4013 	 * for link state changes and thus will not UP the link and
   4014 	 * not be able to send in bge_start. The only way to get
   4015 	 * things working was to receive a packet and get a RX intr.
   4016 	 */
   4017 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4018 	    sc->bge_flags & BGE_IS_5788)
   4019 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4020 	else
   4021 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4022 
   4023 	return rc;
   4024 }
   4025 
   4026 /*
   4027  * Report current media status.
   4028  */
   4029 static void
   4030 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4031 {
   4032 	struct bge_softc *sc = ifp->if_softc;
   4033 	struct mii_data *mii = &sc->bge_mii;
   4034 
   4035 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4036 		ifmr->ifm_status = IFM_AVALID;
   4037 		ifmr->ifm_active = IFM_ETHER;
   4038 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4039 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4040 			ifmr->ifm_status |= IFM_ACTIVE;
   4041 		ifmr->ifm_active |= IFM_1000_SX;
   4042 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4043 			ifmr->ifm_active |= IFM_HDX;
   4044 		else
   4045 			ifmr->ifm_active |= IFM_FDX;
   4046 		return;
   4047 	}
   4048 
   4049 	mii_pollstat(mii);
   4050 	ifmr->ifm_status = mii->mii_media_status;
   4051 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4052 	    sc->bge_flowflags;
   4053 }
   4054 
   4055 static int
   4056 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4057 {
   4058 	struct bge_softc *sc = ifp->if_softc;
   4059 	struct ifreq *ifr = (struct ifreq *) data;
   4060 	int s, error = 0;
   4061 	struct mii_data *mii;
   4062 
   4063 	s = splnet();
   4064 
   4065 	switch(command) {
   4066 	case SIOCSIFFLAGS:
   4067 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4068 			break;
   4069 		if (ifp->if_flags & IFF_UP) {
   4070 			/*
   4071 			 * If only the state of the PROMISC flag changed,
   4072 			 * then just use the 'set promisc mode' command
   4073 			 * instead of reinitializing the entire NIC. Doing
   4074 			 * a full re-init means reloading the firmware and
   4075 			 * waiting for it to start up, which may take a
   4076 			 * second or two.
   4077 			 */
   4078 			if (ifp->if_flags & IFF_RUNNING &&
   4079 			    ifp->if_flags & IFF_PROMISC &&
   4080 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4081 				BGE_SETBIT(sc, BGE_RX_MODE,
   4082 				    BGE_RXMODE_RX_PROMISC);
   4083 			} else if (ifp->if_flags & IFF_RUNNING &&
   4084 			    !(ifp->if_flags & IFF_PROMISC) &&
   4085 			    sc->bge_if_flags & IFF_PROMISC) {
   4086 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4087 				    BGE_RXMODE_RX_PROMISC);
   4088 			} else if (!(sc->bge_if_flags & IFF_UP))
   4089 				bge_init(ifp);
   4090 		} else {
   4091 			if (ifp->if_flags & IFF_RUNNING)
   4092 				bge_stop(ifp, 1);
   4093 		}
   4094 		sc->bge_if_flags = ifp->if_flags;
   4095 		error = 0;
   4096 		break;
   4097 	case SIOCSIFMEDIA:
   4098 		/* XXX Flow control is not supported for 1000BASE-SX */
   4099 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4100 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4101 			sc->bge_flowflags = 0;
   4102 		}
   4103 
   4104 		/* Flow control requires full-duplex mode. */
   4105 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4106 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4107 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4108 		}
   4109 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4110 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4111 				/* We can do both TXPAUSE and RXPAUSE. */
   4112 				ifr->ifr_media |=
   4113 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4114 			}
   4115 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4116 		}
   4117 		/* FALLTHROUGH */
   4118 	case SIOCGIFMEDIA:
   4119 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4120 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4121 			    command);
   4122 		} else {
   4123 			mii = &sc->bge_mii;
   4124 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4125 			    command);
   4126 		}
   4127 		break;
   4128 	default:
   4129 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4130 			break;
   4131 
   4132 		error = 0;
   4133 
   4134 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4135 			;
   4136 		else if (ifp->if_flags & IFF_RUNNING)
   4137 			bge_setmulti(sc);
   4138 		break;
   4139 	}
   4140 
   4141 	splx(s);
   4142 
   4143 	return (error);
   4144 }
   4145 
   4146 static void
   4147 bge_watchdog(struct ifnet *ifp)
   4148 {
   4149 	struct bge_softc *sc;
   4150 
   4151 	sc = ifp->if_softc;
   4152 
   4153 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4154 
   4155 	ifp->if_flags &= ~IFF_RUNNING;
   4156 	bge_init(ifp);
   4157 
   4158 	ifp->if_oerrors++;
   4159 }
   4160 
   4161 static void
   4162 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4163 {
   4164 	int i;
   4165 
   4166 	BGE_CLRBIT(sc, reg, bit);
   4167 
   4168 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4169 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4170 			return;
   4171 		delay(100);
   4172 		if (sc->bge_flags & BGE_PCIE)
   4173 		  DELAY(1000);
   4174 	}
   4175 
   4176 	/*
   4177 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4178 	 * on some environment (and once after boot?)
   4179 	 */
   4180 	if (reg != BGE_SRS_MODE)
   4181 		aprint_error_dev(sc->bge_dev,
   4182 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4183 		    (u_long)reg, bit);
   4184 }
   4185 
   4186 /*
   4187  * Stop the adapter and free any mbufs allocated to the
   4188  * RX and TX lists.
   4189  */
   4190 static void
   4191 bge_stop(struct ifnet *ifp, int disable)
   4192 {
   4193 	struct bge_softc *sc = ifp->if_softc;
   4194 
   4195 	callout_stop(&sc->bge_timeout);
   4196 
   4197 	/*
   4198 	 * Disable all of the receiver blocks
   4199 	 */
   4200 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4201 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4202 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4203 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4204 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4205 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4206 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4207 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4208 
   4209 	/*
   4210 	 * Disable all of the transmit blocks
   4211 	 */
   4212 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4213 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4214 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4215 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4216 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4217 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4218 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4219 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4220 
   4221 	/*
   4222 	 * Shut down all of the memory managers and related
   4223 	 * state machines.
   4224 	 */
   4225 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4226 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4227 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4228 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4229 
   4230 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4231 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4232 
   4233 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   4234 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4235 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4236 	}
   4237 
   4238 	/* Disable host interrupts. */
   4239 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4240 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4241 
   4242 	/*
   4243 	 * Tell firmware we're shutting down.
   4244 	 */
   4245 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4246 
   4247 	/* Free the RX lists. */
   4248 	bge_free_rx_ring_std(sc);
   4249 
   4250 	/* Free jumbo RX list. */
   4251 	bge_free_rx_ring_jumbo(sc);
   4252 
   4253 	/* Free TX buffers. */
   4254 	bge_free_tx_ring(sc);
   4255 
   4256 	/*
   4257 	 * Isolate/power down the PHY.
   4258 	 */
   4259 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4260 		mii_down(&sc->bge_mii);
   4261 
   4262 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4263 
   4264 	/* Clear MAC's link state (PHY may still have link UP). */
   4265 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4266 
   4267 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4268 }
   4269 
   4270 static void
   4271 bge_link_upd(struct bge_softc *sc)
   4272 {
   4273 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4274 	struct mii_data *mii = &sc->bge_mii;
   4275 	u_int32_t status;
   4276 	int link;
   4277 
   4278 	/* Clear 'pending link event' flag */
   4279 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4280 
   4281 	/*
   4282 	 * Process link state changes.
   4283 	 * Grrr. The link status word in the status block does
   4284 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4285 	 * according to all available information. Hence, we have
   4286 	 * to enable MII interrupts in order to properly obtain
   4287 	 * async link changes. Unfortunately, this also means that
   4288 	 * we have to read the MAC status register to detect link
   4289 	 * changes, thereby adding an additional register access to
   4290 	 * the interrupt handler.
   4291 	 */
   4292 
   4293 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4294 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4295 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4296 			mii_pollstat(mii);
   4297 
   4298 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4299 			    mii->mii_media_status & IFM_ACTIVE &&
   4300 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4301 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4302 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4303 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4304 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4305 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4306 
   4307 			/* Clear the interrupt */
   4308 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4309 			    BGE_EVTENB_MI_INTERRUPT);
   4310 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4311 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4312 			    BRGPHY_INTRS);
   4313 		}
   4314 		return;
   4315 	}
   4316 
   4317 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4318 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4319 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4320 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4321 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4322 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4323 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4324 					    BGE_MACMODE_TBI_SEND_CFGS);
   4325 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4326 				if_link_state_change(ifp, LINK_STATE_UP);
   4327 			}
   4328 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4329 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4330 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4331 		}
   4332         /*
   4333 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4334 	 * This should not happen since mii callouts are locked now, but
   4335 	 * we keep this check for debug.
   4336 	 */
   4337 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4338 		/*
   4339 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4340 		 * bit in status word always set. Workaround this bug by
   4341 		 * reading PHY link status directly.
   4342 		 */
   4343 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4344 		    BGE_STS_LINK : 0;
   4345 
   4346 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4347 			mii_pollstat(mii);
   4348 
   4349 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4350 			    mii->mii_media_status & IFM_ACTIVE &&
   4351 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4352 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4353 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4354 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4355 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4356 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4357 		}
   4358 	}
   4359 
   4360 	/* Clear the attention */
   4361 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4362 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4363 	    BGE_MACSTAT_LINK_CHANGED);
   4364 }
   4365 
   4366 static int
   4367 sysctl_bge_verify(SYSCTLFN_ARGS)
   4368 {
   4369 	int error, t;
   4370 	struct sysctlnode node;
   4371 
   4372 	node = *rnode;
   4373 	t = *(int*)rnode->sysctl_data;
   4374 	node.sysctl_data = &t;
   4375 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4376 	if (error || newp == NULL)
   4377 		return (error);
   4378 
   4379 #if 0
   4380 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4381 	    node.sysctl_num, rnode->sysctl_num));
   4382 #endif
   4383 
   4384 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4385 		if (t < 0 || t >= NBGE_RX_THRESH)
   4386 			return (EINVAL);
   4387 		bge_update_all_threshes(t);
   4388 	} else
   4389 		return (EINVAL);
   4390 
   4391 	*(int*)rnode->sysctl_data = t;
   4392 
   4393 	return (0);
   4394 }
   4395 
   4396 /*
   4397  * Set up sysctl(3) MIB, hw.bge.*.
   4398  *
   4399  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4400  */
   4401 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4402 {
   4403 	int rc, bge_root_num;
   4404 	const struct sysctlnode *node;
   4405 
   4406 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4407 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4408 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4409 		goto err;
   4410 	}
   4411 
   4412 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4413 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4414 	    SYSCTL_DESCR("BGE interface controls"),
   4415 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4416 		goto err;
   4417 	}
   4418 
   4419 	bge_root_num = node->sysctl_num;
   4420 
   4421 	/* BGE Rx interrupt mitigation level */
   4422 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4423 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4424 	    CTLTYPE_INT, "rx_lvl",
   4425 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4426 	    sysctl_bge_verify, 0,
   4427 	    &bge_rx_thresh_lvl,
   4428 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4429 	    CTL_EOL)) != 0) {
   4430 		goto err;
   4431 	}
   4432 
   4433 	bge_rxthresh_nodenum = node->sysctl_num;
   4434 
   4435 	return;
   4436 
   4437 err:
   4438 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4439 }
   4440 
   4441 static int
   4442 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
   4443 {
   4444 	u_int32_t mac_addr;
   4445 
   4446 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4447 	if ((mac_addr >> 16) == 0x484b) {
   4448 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4449 		ether_addr[1] = (uint8_t)mac_addr;
   4450 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4451 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4452 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4453 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4454 		ether_addr[5] = (uint8_t)mac_addr;
   4455 		return (0);
   4456 	}
   4457 	return (1);
   4458 }
   4459 
   4460 static int
   4461 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
   4462 {
   4463 	int mac_offset = BGE_EE_MAC_OFFSET;
   4464 
   4465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4466 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4467 	}
   4468 
   4469 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4470 	    ETHER_ADDR_LEN));
   4471 }
   4472 
   4473 static int
   4474 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
   4475 {
   4476 
   4477 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4478 		return (1);
   4479 	}
   4480 
   4481 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4482 	   ETHER_ADDR_LEN));
   4483 }
   4484 
   4485 static int
   4486 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
   4487 {
   4488 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4489 		/* NOTE: Order is critical */
   4490 		bge_get_eaddr_mem,
   4491 		bge_get_eaddr_nvram,
   4492 		bge_get_eaddr_eeprom,
   4493 		NULL
   4494 	};
   4495 	const bge_eaddr_fcn_t *func;
   4496 
   4497 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4498 		if ((*func)(sc, eaddr) == 0)
   4499 			break;
   4500 	}
   4501 	return (*func == NULL ? ENXIO : 0);
   4502 }
   4503