Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.171
      1 /*	$NetBSD: if_bge.c,v 1.171 2010/01/24 15:29:10 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.171 2010/01/24 15:29:10 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/in_systm.h>
    110 #include <netinet/in_var.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 /* Headers for TCP  Segmentation Offload (TSO) */
    115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117 #include <netinet/ip.h>			/* for struct ip */
    118 #include <netinet/tcp.h>		/* for struct tcphdr */
    119 
    120 
    121 #include <net/bpf.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/mii/mii.h>
    128 #include <dev/mii/miivar.h>
    129 #include <dev/mii/miidevs.h>
    130 #include <dev/mii/brgphyreg.h>
    131 
    132 #include <dev/pci/if_bgereg.h>
    133 #include <dev/pci/if_bgevar.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 #include <prop/proplib.h>
    137 
    138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    139 
    140 
    141 /*
    142  * Tunable thresholds for rx-side bge interrupt mitigation.
    143  */
    144 
    145 /*
    146  * The pairs of values below were obtained from empirical measurement
    147  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    148  * interrupt for every N packets received, where N is, approximately,
    149  * the second value (rx_max_bds) in each pair.  The values are chosen
    150  * such that moving from one pair to the succeeding pair was observed
    151  * to roughly halve interrupt rate under sustained input packet load.
    152  * The values were empirically chosen to avoid overflowing internal
    153  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    154  * results in internal wrapping and higher interrupt rates.
    155  * The limit of 46 frames was chosen to match NFS workloads.
    156  *
    157  * These values also work well on bcm5701, bcm5704C, and (less
    158  * tested) bcm5703.  On other chipsets, (including the Altima chip
    159  * family), the larger values may overflow internal chip limits,
    160  * leading to increasing interrupt rates rather than lower interrupt
    161  * rates.
    162  *
    163  * Applications using heavy interrupt mitigation (interrupting every
    164  * 32 or 46 frames) in both directions may need to increase the TCP
    165  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    166  * full link bandwidth, due to ACKs and window updates lingering
    167  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    168  */
    169 static const struct bge_load_rx_thresh {
    170 	int rx_ticks;
    171 	int rx_max_bds; }
    172 bge_rx_threshes[] = {
    173 	{ 32,   2 },
    174 	{ 50,   4 },
    175 	{ 100,  8 },
    176 	{ 192, 16 },
    177 	{ 416, 32 },
    178 	{ 598, 46 }
    179 };
    180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    181 
    182 /* XXX patchable; should be sysctl'able */
    183 static int	bge_auto_thresh = 1;
    184 static int	bge_rx_thresh_lvl;
    185 
    186 static int	bge_rxthresh_nodenum;
    187 
    188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    189 
    190 static int	bge_probe(device_t, cfdata_t, void *);
    191 static void	bge_attach(device_t, device_t, void *);
    192 static void	bge_release_resources(struct bge_softc *);
    193 static void	bge_txeof(struct bge_softc *);
    194 static void	bge_rxeof(struct bge_softc *);
    195 
    196 static int 	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    197 static int 	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    198 static int 	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    199 static int 	bge_get_eaddr(struct bge_softc *, uint8_t[]);
    200 
    201 static void	bge_tick(void *);
    202 static void	bge_stats_update(struct bge_softc *);
    203 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    204 
    205 static int	bge_intr(void *);
    206 static void	bge_start(struct ifnet *);
    207 static int	bge_ioctl(struct ifnet *, u_long, void *);
    208 static int	bge_init(struct ifnet *);
    209 static void	bge_stop(struct ifnet *, int);
    210 static void	bge_watchdog(struct ifnet *);
    211 static int	bge_ifmedia_upd(struct ifnet *);
    212 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    213 
    214 static void	bge_setmulti(struct bge_softc *);
    215 
    216 static void	bge_handle_events(struct bge_softc *);
    217 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    218 #if 0 /* XXX */
    219 static void	bge_free_jumbo_mem(struct bge_softc *);
    220 #endif
    221 static void	*bge_jalloc(struct bge_softc *);
    222 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    223 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    224 			       bus_dmamap_t);
    225 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    226 static int	bge_init_rx_ring_std(struct bge_softc *);
    227 static void	bge_free_rx_ring_std(struct bge_softc *);
    228 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    229 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    230 static void	bge_free_tx_ring(struct bge_softc *);
    231 static int	bge_init_tx_ring(struct bge_softc *);
    232 
    233 static int	bge_chipinit(struct bge_softc *);
    234 static int	bge_blockinit(struct bge_softc *);
    235 static int	bge_setpowerstate(struct bge_softc *, int);
    236 
    237 static void	bge_reset(struct bge_softc *);
    238 static void	bge_link_upd(struct bge_softc *);
    239 
    240 #define BGE_DEBUG
    241 #ifdef BGE_DEBUG
    242 #define DPRINTF(x)	if (bgedebug) printf x
    243 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    244 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    245 int	bgedebug = 0;
    246 int	bge_tso_debug = 0;
    247 #else
    248 #define DPRINTF(x)
    249 #define DPRINTFN(n,x)
    250 #define BGE_TSO_PRINTF(x)
    251 #endif
    252 
    253 #ifdef BGE_EVENT_COUNTERS
    254 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    255 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    256 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    257 #else
    258 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    259 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    260 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    261 #endif
    262 
    263 static const struct bge_product {
    264 	pci_vendor_id_t		bp_vendor;
    265 	pci_product_id_t	bp_product;
    266 	const char		*bp_name;
    267 } bge_products[] = {
    268 	/*
    269 	 * The BCM5700 documentation seems to indicate that the hardware
    270 	 * still has the Alteon vendor ID burned into it, though it
    271 	 * should always be overridden by the value in the EEPROM.  We'll
    272 	 * check for it anyway.
    273 	 */
    274 	{ PCI_VENDOR_ALTEON,
    275 	  PCI_PRODUCT_ALTEON_BCM5700,
    276 	  "Broadcom BCM5700 Gigabit Ethernet",
    277 	  },
    278 	{ PCI_VENDOR_ALTEON,
    279 	  PCI_PRODUCT_ALTEON_BCM5701,
    280 	  "Broadcom BCM5701 Gigabit Ethernet",
    281 	  },
    282 	{ PCI_VENDOR_ALTIMA,
    283 	  PCI_PRODUCT_ALTIMA_AC1000,
    284 	  "Altima AC1000 Gigabit Ethernet",
    285 	  },
    286 	{ PCI_VENDOR_ALTIMA,
    287 	  PCI_PRODUCT_ALTIMA_AC1001,
    288 	  "Altima AC1001 Gigabit Ethernet",
    289 	   },
    290 	{ PCI_VENDOR_ALTIMA,
    291 	  PCI_PRODUCT_ALTIMA_AC9100,
    292 	  "Altima AC9100 Gigabit Ethernet",
    293 	  },
    294 	{ PCI_VENDOR_BROADCOM,
    295 	  PCI_PRODUCT_BROADCOM_BCM5700,
    296 	  "Broadcom BCM5700 Gigabit Ethernet",
    297 	  },
    298 	{ PCI_VENDOR_BROADCOM,
    299 	  PCI_PRODUCT_BROADCOM_BCM5701,
    300 	  "Broadcom BCM5701 Gigabit Ethernet",
    301 	  },
    302 	{ PCI_VENDOR_BROADCOM,
    303 	  PCI_PRODUCT_BROADCOM_BCM5702,
    304 	  "Broadcom BCM5702 Gigabit Ethernet",
    305 	  },
    306 	{ PCI_VENDOR_BROADCOM,
    307 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    308 	  "Broadcom BCM5702X Gigabit Ethernet" },
    309 	{ PCI_VENDOR_BROADCOM,
    310 	  PCI_PRODUCT_BROADCOM_BCM5703,
    311 	  "Broadcom BCM5703 Gigabit Ethernet",
    312 	  },
    313 	{ PCI_VENDOR_BROADCOM,
    314 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    315 	  "Broadcom BCM5703X Gigabit Ethernet",
    316 	  },
    317 	{ PCI_VENDOR_BROADCOM,
    318 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    319 	  "Broadcom BCM5703 Gigabit Ethernet",
    320 	  },
    321    	{ PCI_VENDOR_BROADCOM,
    322 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    323 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    324 	  },
    325    	{ PCI_VENDOR_BROADCOM,
    326 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    327 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    328 	  },
    329    	{ PCI_VENDOR_BROADCOM,
    330 	  PCI_PRODUCT_BROADCOM_BCM5705,
    331 	  "Broadcom BCM5705 Gigabit Ethernet",
    332 	  },
    333    	{ PCI_VENDOR_BROADCOM,
    334 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    335 	  "Broadcom BCM5705K Gigabit Ethernet",
    336 	  },
    337    	{ PCI_VENDOR_BROADCOM,
    338 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    339 	  "Broadcom BCM5705M Gigabit Ethernet",
    340 	  },
    341    	{ PCI_VENDOR_BROADCOM,
    342 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    343 	  "Broadcom BCM5705M Gigabit Ethernet",
    344 	  },
    345 	{ PCI_VENDOR_BROADCOM,
    346 	  PCI_PRODUCT_BROADCOM_BCM5714,
    347 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    348 	  },
    349 	{ PCI_VENDOR_BROADCOM,
    350 	  PCI_PRODUCT_BROADCOM_BCM5715,
    351 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
    352 	  },
    353 	{ PCI_VENDOR_BROADCOM,
    354 	  PCI_PRODUCT_BROADCOM_BCM5789,
    355 	  "Broadcom BCM5789 Gigabit Ethernet",
    356 	  },
    357 	{ PCI_VENDOR_BROADCOM,
    358 	  PCI_PRODUCT_BROADCOM_BCM5721,
    359 	  "Broadcom BCM5721 Gigabit Ethernet",
    360 	  },
    361 	{ PCI_VENDOR_BROADCOM,
    362 	  PCI_PRODUCT_BROADCOM_BCM5722,
    363 	  "Broadcom BCM5722 Gigabit Ethernet",
    364 	  },
    365 	{ PCI_VENDOR_BROADCOM,
    366 	  PCI_PRODUCT_BROADCOM_BCM5750,
    367 	  "Broadcom BCM5750 Gigabit Ethernet",
    368 	  },
    369 	{ PCI_VENDOR_BROADCOM,
    370 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    371 	  "Broadcom BCM5750M Gigabit Ethernet",
    372 	  },
    373 	{ PCI_VENDOR_BROADCOM,
    374 	  PCI_PRODUCT_BROADCOM_BCM5751,
    375 	  "Broadcom BCM5751 Gigabit Ethernet",
    376 	  },
    377 	{ PCI_VENDOR_BROADCOM,
    378 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    379 	  "Broadcom BCM5751M Gigabit Ethernet",
    380 	  },
    381 	{ PCI_VENDOR_BROADCOM,
    382 	  PCI_PRODUCT_BROADCOM_BCM5752,
    383 	  "Broadcom BCM5752 Gigabit Ethernet",
    384 	  },
    385 	{ PCI_VENDOR_BROADCOM,
    386 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    387 	  "Broadcom BCM5752M Gigabit Ethernet",
    388 	  },
    389 	{ PCI_VENDOR_BROADCOM,
    390 	  PCI_PRODUCT_BROADCOM_BCM5753,
    391 	  "Broadcom BCM5753 Gigabit Ethernet",
    392 	  },
    393 	{ PCI_VENDOR_BROADCOM,
    394 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    395 	  "Broadcom BCM5753M Gigabit Ethernet",
    396 	  },
    397 	{ PCI_VENDOR_BROADCOM,
    398 	  PCI_PRODUCT_BROADCOM_BCM5754,
    399 	  "Broadcom BCM5754 Gigabit Ethernet",
    400 	},
    401 	{ PCI_VENDOR_BROADCOM,
    402 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    403 	  "Broadcom BCM5754M Gigabit Ethernet",
    404 	},
    405 	{ PCI_VENDOR_BROADCOM,
    406 	  PCI_PRODUCT_BROADCOM_BCM5755,
    407 	  "Broadcom BCM5755 Gigabit Ethernet",
    408 	},
    409 	{ PCI_VENDOR_BROADCOM,
    410 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    411 	  "Broadcom BCM5755M Gigabit Ethernet",
    412 	},
    413    	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5780,
    415 	  "Broadcom BCM5780 Gigabit Ethernet",
    416 	  },
    417    	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    419 	  "Broadcom BCM5780S Gigabit Ethernet",
    420 	  },
    421    	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5782,
    423 	  "Broadcom BCM5782 Gigabit Ethernet",
    424 	},
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5786,
    427 	  "Broadcom BCM5786 Gigabit Ethernet",
    428 	},
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5787,
    431 	  "Broadcom BCM5787 Gigabit Ethernet",
    432 	},
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    435 	  "Broadcom BCM5787M Gigabit Ethernet",
    436 	},
    437    	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5788,
    439 	  "Broadcom BCM5788 Gigabit Ethernet",
    440 	  },
    441    	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5789,
    443 	  "Broadcom BCM5789 Gigabit Ethernet",
    444 	  },
    445    	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5901,
    447 	  "Broadcom BCM5901 Fast Ethernet",
    448 	  },
    449    	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    451 	  "Broadcom BCM5901A2 Fast Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_SCHNEIDERKOCH,
    454 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    455 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_3COM,
    458 	  PCI_PRODUCT_3COM_3C996,
    459 	  "3Com 3c996 Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5906,
    463 	  "Broadcom BCM5906 Fast Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    467 	  "Broadcom BCM5906M Fast Ethernet",
    468 	  },
    469 	{ 0,
    470 	  0,
    471 	  NULL },
    472 };
    473 
    474 /*
    475  * XXX: how to handle variants based on 5750 and derivatives:
    476  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    477  * in general behave like a 5705, except with additional quirks.
    478  * This driver's current handling of the 5721 is wrong;
    479  * how we map ASIC revision to "quirks" needs more thought.
    480  * (defined here until the thought is done).
    481  */
    482 #define BGE_IS_5714_FAMILY(sc) \
    483 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
    484 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
    485 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
    486 
    487 #define BGE_IS_5750_OR_BEYOND(sc)  \
    488 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
    489 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
    490 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
    491 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
    492 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
    493 	 BGE_IS_5714_FAMILY(sc) )
    494 
    495 #define BGE_IS_5705_OR_BEYOND(sc)  \
    496 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \
    497 	    (BGE_IS_5750_OR_BEYOND(sc)))
    498 
    499 #define BGE_IS_JUMBO_CAPABLE(sc)  \
    500 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700    || \
    501 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701    || \
    502 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703    || \
    503 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
    504 
    505 
    506 static const struct bge_revision {
    507 	uint32_t		br_chipid;
    508 	const char		*br_name;
    509 } bge_revisions[] = {
    510 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    511 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    512 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    513 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    514 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    515 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    516 	/* This is treated like a BCM5700 Bx */
    517 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    518 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    519 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    520 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    521 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    522 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    523 	{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
    524 	{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
    525 	{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
    526 	{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
    527 	{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
    528 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    529 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    530 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    531 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    532 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    533 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    534 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    535 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    536 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    537 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    538 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    539 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    540 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    541 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    542 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    543 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    544 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    545 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    546 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    547 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    548 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    549 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    550 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    551 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    552 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    553 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    554 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    555 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    556 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    557 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    558 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    559 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    560 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    561 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    562 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    563 	{ 0, NULL }
    564 };
    565 
    566 /*
    567  * Some defaults for major revisions, so that newer steppings
    568  * that we don't know about have a shot at working.
    569  */
    570 static const struct bge_revision bge_majorrevs[] = {
    571 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    572 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    573 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    574 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    575 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    576 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    577 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    578 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    579 	{ BGE_ASICREV_BCM5752, "unknown BCM5752 family" },
    580 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    581 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    582 	/* 5754 and 5787 share the same ASIC ID */
    583 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    584 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    585 	{ 0, NULL }
    586 };
    587 
    588 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    589     bge_probe, bge_attach, NULL, NULL);
    590 
    591 static uint32_t
    592 bge_readmem_ind(struct bge_softc *sc, int off)
    593 {
    594 	pcireg_t val;
    595 
    596 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    597 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    598 	return val;
    599 }
    600 
    601 static void
    602 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    603 {
    604 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    605 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    606 }
    607 
    608 #ifdef notdef
    609 static uint32_t
    610 bge_readreg_ind(struct bge_softc *sc, int off)
    611 {
    612 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    613 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    614 }
    615 #endif
    616 
    617 static void
    618 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    619 {
    620 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    621 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    622 }
    623 
    624 static void
    625 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    626 {
    627 	CSR_WRITE_4(sc, off, val);
    628 }
    629 
    630 static void
    631 bge_writembx(struct bge_softc *sc, int off, int val)
    632 {
    633 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    634 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    635 
    636 	CSR_WRITE_4(sc, off, val);
    637 }
    638 
    639 static uint8_t
    640 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    641 {
    642 	uint32_t access, byte = 0;
    643 	int i;
    644 
    645 	/* Lock. */
    646 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    647 	for (i = 0; i < 8000; i++) {
    648 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    649 			break;
    650 		DELAY(20);
    651 	}
    652 	if (i == 8000)
    653 		return 1;
    654 
    655 	/* Enable access. */
    656 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    657 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    658 
    659 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    660 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    661 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    662 		DELAY(10);
    663 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    664 			DELAY(10);
    665 			break;
    666 		}
    667 	}
    668 
    669 	if (i == BGE_TIMEOUT * 10) {
    670 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    671 		return 1;
    672 	}
    673 
    674 	/* Get result. */
    675 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    676 
    677 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    678 
    679 	/* Disable access. */
    680 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    681 
    682 	/* Unlock. */
    683 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    684 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    685 
    686 	return 0;
    687 }
    688 
    689 /*
    690  * Read a sequence of bytes from NVRAM.
    691  */
    692 static int
    693 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    694 {
    695 	int err = 0, i;
    696 	uint8_t byte = 0;
    697 
    698 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    699 		return 1;
    700 
    701 	for (i = 0; i < cnt; i++) {
    702 		err = bge_nvram_getbyte(sc, off + i, &byte);
    703 		if (err)
    704 			break;
    705 		*(dest + i) = byte;
    706 	}
    707 
    708 	return (err ? 1 : 0);
    709 }
    710 
    711 /*
    712  * Read a byte of data stored in the EEPROM at address 'addr.' The
    713  * BCM570x supports both the traditional bitbang interface and an
    714  * auto access interface for reading the EEPROM. We use the auto
    715  * access method.
    716  */
    717 static uint8_t
    718 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    719 {
    720 	int i;
    721 	uint32_t byte = 0;
    722 
    723 	/*
    724 	 * Enable use of auto EEPROM access so we can avoid
    725 	 * having to use the bitbang method.
    726 	 */
    727 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    728 
    729 	/* Reset the EEPROM, load the clock period. */
    730 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    731 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    732 	DELAY(20);
    733 
    734 	/* Issue the read EEPROM command. */
    735 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    736 
    737 	/* Wait for completion */
    738 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    739 		DELAY(10);
    740 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    741 			break;
    742 	}
    743 
    744 	if (i == BGE_TIMEOUT) {
    745 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    746 		return 0;
    747 	}
    748 
    749 	/* Get result. */
    750 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    751 
    752 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    753 
    754 	return 0;
    755 }
    756 
    757 /*
    758  * Read a sequence of bytes from the EEPROM.
    759  */
    760 static int
    761 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    762 {
    763 	int err = 0, i;
    764 	uint8_t byte = 0;
    765 	char *dest = destv;
    766 
    767 	for (i = 0; i < cnt; i++) {
    768 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    769 		if (err)
    770 			break;
    771 		*(dest + i) = byte;
    772 	}
    773 
    774 	return (err ? 1 : 0);
    775 }
    776 
    777 static int
    778 bge_miibus_readreg(device_t dev, int phy, int reg)
    779 {
    780 	struct bge_softc *sc = device_private(dev);
    781 	uint32_t val;
    782 	uint32_t saved_autopoll;
    783 	int i;
    784 
    785 	/*
    786 	 * Broadcom's own driver always assumes the internal
    787 	 * PHY is at GMII address 1. On some chips, the PHY responds
    788 	 * to accesses at all addresses, which could cause us to
    789 	 * bogusly attach the PHY 32 times at probe type. Always
    790 	 * restricting the lookup to address 1 is simpler than
    791 	 * trying to figure out which chips revisions should be
    792 	 * special-cased.
    793 	 */
    794 	if (phy != 1)
    795 		return 0;
    796 
    797 	/* Reading with autopolling on may trigger PCI errors */
    798 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    799 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    800 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    801 		CSR_WRITE_4(sc, BGE_MI_MODE,
    802 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    803 		DELAY(40);
    804 	}
    805 
    806 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    807 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    808 
    809 	for (i = 0; i < BGE_TIMEOUT; i++) {
    810 		val = CSR_READ_4(sc, BGE_MI_COMM);
    811 		if (!(val & BGE_MICOMM_BUSY))
    812 			break;
    813 		delay(10);
    814 	}
    815 
    816 	if (i == BGE_TIMEOUT) {
    817 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    818 		val = 0;
    819 		goto done;
    820 	}
    821 
    822 	val = CSR_READ_4(sc, BGE_MI_COMM);
    823 
    824 done:
    825 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    826 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    827 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    828 		DELAY(40);
    829 	}
    830 
    831 	if (val & BGE_MICOMM_READFAIL)
    832 		return 0;
    833 
    834 	return (val & 0xFFFF);
    835 }
    836 
    837 static void
    838 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    839 {
    840 	struct bge_softc *sc = device_private(dev);
    841 	uint32_t saved_autopoll;
    842 	int i;
    843 
    844 	if (phy!=1) {
    845 		return;
    846 	}
    847 
    848 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    849 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    850 		return;
    851 	}
    852 
    853 	/* Reading with autopolling on may trigger PCI errors */
    854 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    855 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    856 		delay(40);
    857 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    858 		CSR_WRITE_4(sc, BGE_MI_MODE,
    859 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    860 		delay(10); /* 40 usec is supposed to be adequate */
    861 	}
    862 
    863 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
    864 	    BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
    865 
    866 	for (i = 0; i < BGE_TIMEOUT; i++) {
    867 		delay(10);
    868 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    869 			delay(5);
    870 			CSR_READ_4(sc, BGE_MI_COMM);
    871 			break;
    872 		}
    873 	}
    874 
    875 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    876 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    877 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    878 		delay(40);
    879 	}
    880 
    881 	if (i == BGE_TIMEOUT)
    882 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    883 }
    884 
    885 static void
    886 bge_miibus_statchg(device_t dev)
    887 {
    888 	struct bge_softc *sc = device_private(dev);
    889 	struct mii_data *mii = &sc->bge_mii;
    890 
    891 	/*
    892 	 * Get flow control negotiation result.
    893 	 */
    894 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    895 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    896 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    897 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    898 	}
    899 
    900 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    901 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
    902 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
    903 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    904 	else
    905 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    906 
    907 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
    908 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    909 	else
    910 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    911 
    912 	/*
    913 	 * 802.3x flow control
    914 	 */
    915 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
    916 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    917 	else
    918 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    919 
    920 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
    921 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    922 	else
    923 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    924 }
    925 
    926 /*
    927  * Update rx threshold levels to values in a particular slot
    928  * of the interrupt-mitigation table bge_rx_threshes.
    929  */
    930 static void
    931 bge_set_thresh(struct ifnet *ifp, int lvl)
    932 {
    933 	struct bge_softc *sc = ifp->if_softc;
    934 	int s;
    935 
    936 	/* For now, just save the new Rx-intr thresholds and record
    937 	 * that a threshold update is pending.  Updating the hardware
    938 	 * registers here (even at splhigh()) is observed to
    939 	 * occasionaly cause glitches where Rx-interrupts are not
    940 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    941 	 */
    942 	s = splnet();
    943 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    944 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    945 	sc->bge_pending_rxintr_change = 1;
    946 	splx(s);
    947 
    948 	 return;
    949 }
    950 
    951 
    952 /*
    953  * Update Rx thresholds of all bge devices
    954  */
    955 static void
    956 bge_update_all_threshes(int lvl)
    957 {
    958 	struct ifnet *ifp;
    959 	const char * const namebuf = "bge";
    960 	int namelen;
    961 
    962 	if (lvl < 0)
    963 		lvl = 0;
    964 	else if (lvl >= NBGE_RX_THRESH)
    965 		lvl = NBGE_RX_THRESH - 1;
    966 
    967 	namelen = strlen(namebuf);
    968 	/*
    969 	 * Now search all the interfaces for this name/number
    970 	 */
    971 	IFNET_FOREACH(ifp) {
    972 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    973 		      continue;
    974 		/* We got a match: update if doing auto-threshold-tuning */
    975 		if (bge_auto_thresh)
    976 			bge_set_thresh(ifp, lvl);
    977 	}
    978 }
    979 
    980 /*
    981  * Handle events that have triggered interrupts.
    982  */
    983 static void
    984 bge_handle_events(struct bge_softc *sc)
    985 {
    986 
    987 	return;
    988 }
    989 
    990 /*
    991  * Memory management for jumbo frames.
    992  */
    993 
    994 static int
    995 bge_alloc_jumbo_mem(struct bge_softc *sc)
    996 {
    997 	char *ptr, *kva;
    998 	bus_dma_segment_t	seg;
    999 	int		i, rseg, state, error;
   1000 	struct bge_jpool_entry   *entry;
   1001 
   1002 	state = error = 0;
   1003 
   1004 	/* Grab a big chunk o' storage. */
   1005 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1006 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1007 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1008 		return ENOBUFS;
   1009 	}
   1010 
   1011 	state = 1;
   1012 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1013 	    BUS_DMA_NOWAIT)) {
   1014 		aprint_error_dev(sc->bge_dev,
   1015 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1016 		error = ENOBUFS;
   1017 		goto out;
   1018 	}
   1019 
   1020 	state = 2;
   1021 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1022 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1023 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1024 		error = ENOBUFS;
   1025 		goto out;
   1026 	}
   1027 
   1028 	state = 3;
   1029 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1030 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1031 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1032 		error = ENOBUFS;
   1033 		goto out;
   1034 	}
   1035 
   1036 	state = 4;
   1037 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1038 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1039 
   1040 	SLIST_INIT(&sc->bge_jfree_listhead);
   1041 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1042 
   1043 	/*
   1044 	 * Now divide it up into 9K pieces and save the addresses
   1045 	 * in an array.
   1046 	 */
   1047 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1048 	for (i = 0; i < BGE_JSLOTS; i++) {
   1049 		sc->bge_cdata.bge_jslots[i] = ptr;
   1050 		ptr += BGE_JLEN;
   1051 		entry = malloc(sizeof(struct bge_jpool_entry),
   1052 		    M_DEVBUF, M_NOWAIT);
   1053 		if (entry == NULL) {
   1054 			aprint_error_dev(sc->bge_dev,
   1055 			    "no memory for jumbo buffer queue!\n");
   1056 			error = ENOBUFS;
   1057 			goto out;
   1058 		}
   1059 		entry->slot = i;
   1060 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1061 				 entry, jpool_entries);
   1062 	}
   1063 out:
   1064 	if (error != 0) {
   1065 		switch (state) {
   1066 		case 4:
   1067 			bus_dmamap_unload(sc->bge_dmatag,
   1068 			    sc->bge_cdata.bge_rx_jumbo_map);
   1069 		case 3:
   1070 			bus_dmamap_destroy(sc->bge_dmatag,
   1071 			    sc->bge_cdata.bge_rx_jumbo_map);
   1072 		case 2:
   1073 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1074 		case 1:
   1075 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1076 			break;
   1077 		default:
   1078 			break;
   1079 		}
   1080 	}
   1081 
   1082 	return error;
   1083 }
   1084 
   1085 /*
   1086  * Allocate a jumbo buffer.
   1087  */
   1088 static void *
   1089 bge_jalloc(struct bge_softc *sc)
   1090 {
   1091 	struct bge_jpool_entry   *entry;
   1092 
   1093 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1094 
   1095 	if (entry == NULL) {
   1096 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1097 		return NULL;
   1098 	}
   1099 
   1100 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1101 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1102 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1103 }
   1104 
   1105 /*
   1106  * Release a jumbo buffer.
   1107  */
   1108 static void
   1109 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1110 {
   1111 	struct bge_jpool_entry *entry;
   1112 	struct bge_softc *sc;
   1113 	int i, s;
   1114 
   1115 	/* Extract the softc struct pointer. */
   1116 	sc = (struct bge_softc *)arg;
   1117 
   1118 	if (sc == NULL)
   1119 		panic("bge_jfree: can't find softc pointer!");
   1120 
   1121 	/* calculate the slot this buffer belongs to */
   1122 
   1123 	i = ((char *)buf
   1124 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1125 
   1126 	if ((i < 0) || (i >= BGE_JSLOTS))
   1127 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1128 
   1129 	s = splvm();
   1130 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1131 	if (entry == NULL)
   1132 		panic("bge_jfree: buffer not in use!");
   1133 	entry->slot = i;
   1134 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1135 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1136 
   1137 	if (__predict_true(m != NULL))
   1138   		pool_cache_put(mb_cache, m);
   1139 	splx(s);
   1140 }
   1141 
   1142 
   1143 /*
   1144  * Intialize a standard receive ring descriptor.
   1145  */
   1146 static int
   1147 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1148 {
   1149 	struct mbuf		*m_new = NULL;
   1150 	struct bge_rx_bd	*r;
   1151 	int			error;
   1152 
   1153 	if (dmamap == NULL) {
   1154 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1155 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1156 		if (error != 0)
   1157 			return error;
   1158 	}
   1159 
   1160 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1161 
   1162 	if (m == NULL) {
   1163 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1164 		if (m_new == NULL)
   1165 			return ENOBUFS;
   1166 
   1167 		MCLGET(m_new, M_DONTWAIT);
   1168 		if (!(m_new->m_flags & M_EXT)) {
   1169 			m_freem(m_new);
   1170 			return ENOBUFS;
   1171 		}
   1172 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1173 
   1174 	} else {
   1175 		m_new = m;
   1176 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1177 		m_new->m_data = m_new->m_ext.ext_buf;
   1178 	}
   1179 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1180 	    m_adj(m_new, ETHER_ALIGN);
   1181 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1182 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1183 		return ENOBUFS;
   1184 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1185 	    BUS_DMASYNC_PREREAD);
   1186 
   1187 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1188 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1189 	bge_set_hostaddr(&r->bge_addr,
   1190 	    dmamap->dm_segs[0].ds_addr);
   1191 	r->bge_flags = BGE_RXBDFLAG_END;
   1192 	r->bge_len = m_new->m_len;
   1193 	r->bge_idx = i;
   1194 
   1195 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1196 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1197 		i * sizeof (struct bge_rx_bd),
   1198 	    sizeof (struct bge_rx_bd),
   1199 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1200 
   1201 	return 0;
   1202 }
   1203 
   1204 /*
   1205  * Initialize a jumbo receive ring descriptor. This allocates
   1206  * a jumbo buffer from the pool managed internally by the driver.
   1207  */
   1208 static int
   1209 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1210 {
   1211 	struct mbuf *m_new = NULL;
   1212 	struct bge_rx_bd *r;
   1213 	void *buf = NULL;
   1214 
   1215 	if (m == NULL) {
   1216 
   1217 		/* Allocate the mbuf. */
   1218 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1219 		if (m_new == NULL)
   1220 			return ENOBUFS;
   1221 
   1222 		/* Allocate the jumbo buffer */
   1223 		buf = bge_jalloc(sc);
   1224 		if (buf == NULL) {
   1225 			m_freem(m_new);
   1226 			aprint_error_dev(sc->bge_dev,
   1227 			    "jumbo allocation failed -- packet dropped!\n");
   1228 			return ENOBUFS;
   1229 		}
   1230 
   1231 		/* Attach the buffer to the mbuf. */
   1232 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1233 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1234 		    bge_jfree, sc);
   1235 		m_new->m_flags |= M_EXT_RW;
   1236 	} else {
   1237 		m_new = m;
   1238 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1239 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1240 	}
   1241 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1242 	    m_adj(m_new, ETHER_ALIGN);
   1243 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1244 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1245 	    BUS_DMASYNC_PREREAD);
   1246 	/* Set up the descriptor. */
   1247 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1248 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1249 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1250 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1251 	r->bge_len = m_new->m_len;
   1252 	r->bge_idx = i;
   1253 
   1254 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1255 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1256 		i * sizeof (struct bge_rx_bd),
   1257 	    sizeof (struct bge_rx_bd),
   1258 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1259 
   1260 	return 0;
   1261 }
   1262 
   1263 /*
   1264  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1265  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1266  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1267  * the NIC.
   1268  */
   1269 static int
   1270 bge_init_rx_ring_std(struct bge_softc *sc)
   1271 {
   1272 	int i;
   1273 
   1274 	if (sc->bge_flags & BGE_RXRING_VALID)
   1275 		return 0;
   1276 
   1277 	for (i = 0; i < BGE_SSLOTS; i++) {
   1278 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1279 			return ENOBUFS;
   1280 	}
   1281 
   1282 	sc->bge_std = i - 1;
   1283 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1284 
   1285 	sc->bge_flags |= BGE_RXRING_VALID;
   1286 
   1287 	return 0;
   1288 }
   1289 
   1290 static void
   1291 bge_free_rx_ring_std(struct bge_softc *sc)
   1292 {
   1293 	int i;
   1294 
   1295 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1296 		return;
   1297 
   1298 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1299 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1300 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1301 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1302 			bus_dmamap_destroy(sc->bge_dmatag,
   1303 			    sc->bge_cdata.bge_rx_std_map[i]);
   1304 		}
   1305 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1306 		    sizeof(struct bge_rx_bd));
   1307 	}
   1308 
   1309 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1310 }
   1311 
   1312 static int
   1313 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1314 {
   1315 	int i;
   1316 	volatile struct bge_rcb *rcb;
   1317 
   1318 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1319 		return 0;
   1320 
   1321 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1322 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1323 			return ENOBUFS;
   1324 	};
   1325 
   1326 	sc->bge_jumbo = i - 1;
   1327 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1328 
   1329 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1330 	rcb->bge_maxlen_flags = 0;
   1331 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1332 
   1333 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1334 
   1335 	return 0;
   1336 }
   1337 
   1338 static void
   1339 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1340 {
   1341 	int i;
   1342 
   1343 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1344 		return;
   1345 
   1346 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1347 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1348 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1349 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1350 		}
   1351 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1352 		    sizeof(struct bge_rx_bd));
   1353 	}
   1354 
   1355 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1356 }
   1357 
   1358 static void
   1359 bge_free_tx_ring(struct bge_softc *sc)
   1360 {
   1361 	int i, freed;
   1362 	struct txdmamap_pool_entry *dma;
   1363 
   1364 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1365 		return;
   1366 
   1367 	freed = 0;
   1368 
   1369 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1370 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1371 			freed++;
   1372 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1373 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1374 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1375 					    link);
   1376 			sc->txdma[i] = 0;
   1377 		}
   1378 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1379 		    sizeof(struct bge_tx_bd));
   1380 	}
   1381 
   1382 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1383 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1384 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1385 		free(dma, M_DEVBUF);
   1386 	}
   1387 
   1388 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1389 }
   1390 
   1391 static int
   1392 bge_init_tx_ring(struct bge_softc *sc)
   1393 {
   1394 	int i;
   1395 	bus_dmamap_t dmamap;
   1396 	struct txdmamap_pool_entry *dma;
   1397 
   1398 	if (sc->bge_flags & BGE_TXRING_VALID)
   1399 		return 0;
   1400 
   1401 	sc->bge_txcnt = 0;
   1402 	sc->bge_tx_saved_considx = 0;
   1403 
   1404 	/* Initialize transmit producer index for host-memory send ring. */
   1405 	sc->bge_tx_prodidx = 0;
   1406 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1407 	/* 5700 b2 errata */
   1408 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1409 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1410 
   1411 	/* NIC-memory send ring not used; initialize to zero. */
   1412 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1413 	/* 5700 b2 errata */
   1414 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1415 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1416 
   1417 	SLIST_INIT(&sc->txdma_list);
   1418 	for (i = 0; i < BGE_RSLOTS; i++) {
   1419 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1420 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1421 		    &dmamap))
   1422 			return ENOBUFS;
   1423 		if (dmamap == NULL)
   1424 			panic("dmamap NULL in bge_init_tx_ring");
   1425 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1426 		if (dma == NULL) {
   1427 			aprint_error_dev(sc->bge_dev,
   1428 			    "can't alloc txdmamap_pool_entry\n");
   1429 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1430 			return ENOMEM;
   1431 		}
   1432 		dma->dmamap = dmamap;
   1433 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1434 	}
   1435 
   1436 	sc->bge_flags |= BGE_TXRING_VALID;
   1437 
   1438 	return 0;
   1439 }
   1440 
   1441 static void
   1442 bge_setmulti(struct bge_softc *sc)
   1443 {
   1444 	struct ethercom		*ac = &sc->ethercom;
   1445 	struct ifnet		*ifp = &ac->ec_if;
   1446 	struct ether_multi	*enm;
   1447 	struct ether_multistep  step;
   1448 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1449 	uint32_t		h;
   1450 	int			i;
   1451 
   1452 	if (ifp->if_flags & IFF_PROMISC)
   1453 		goto allmulti;
   1454 
   1455 	/* Now program new ones. */
   1456 	ETHER_FIRST_MULTI(step, ac, enm);
   1457 	while (enm != NULL) {
   1458 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1459 			/*
   1460 			 * We must listen to a range of multicast addresses.
   1461 			 * For now, just accept all multicasts, rather than
   1462 			 * trying to set only those filter bits needed to match
   1463 			 * the range.  (At this time, the only use of address
   1464 			 * ranges is for IP multicast routing, for which the
   1465 			 * range is big enough to require all bits set.)
   1466 			 */
   1467 			goto allmulti;
   1468 		}
   1469 
   1470 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1471 
   1472 		/* Just want the 7 least-significant bits. */
   1473 		h &= 0x7f;
   1474 
   1475 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1476 		ETHER_NEXT_MULTI(step, enm);
   1477 	}
   1478 
   1479 	ifp->if_flags &= ~IFF_ALLMULTI;
   1480 	goto setit;
   1481 
   1482  allmulti:
   1483 	ifp->if_flags |= IFF_ALLMULTI;
   1484 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1485 
   1486  setit:
   1487 	for (i = 0; i < 4; i++)
   1488 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1489 }
   1490 
   1491 const int bge_swapbits[] = {
   1492 	0,
   1493 	BGE_MODECTL_BYTESWAP_DATA,
   1494 	BGE_MODECTL_WORDSWAP_DATA,
   1495 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1496 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1497 
   1498 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1499 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1500 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1501 
   1502 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1503 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1504 
   1505 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1506 
   1507 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1508 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1509 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1510 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1511 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1512 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1513 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1514 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1515 
   1516 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1517 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1518 };
   1519 
   1520 int bge_swapindex = 0;
   1521 
   1522 /*
   1523  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1524  * self-test results.
   1525  */
   1526 static int
   1527 bge_chipinit(struct bge_softc *sc)
   1528 {
   1529 	int			i;
   1530 	uint32_t		dma_rw_ctl;
   1531 
   1532 
   1533 	/* Set endianness before we access any non-PCI registers. */
   1534 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1535 	    BGE_INIT);
   1536 
   1537 	/* Set power state to D0. */
   1538 	bge_setpowerstate(sc, 0);
   1539 
   1540 	/*
   1541 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1542 	 * self-tests passed.
   1543 	 */
   1544 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1545 		aprint_error_dev(sc->bge_dev,
   1546 		    "RX CPU self-diagnostics failed!\n");
   1547 		return ENODEV;
   1548 	}
   1549 
   1550 	/* Clear the MAC control register */
   1551 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1552 
   1553 	/*
   1554 	 * Clear the MAC statistics block in the NIC's
   1555 	 * internal memory.
   1556 	 */
   1557 	for (i = BGE_STATS_BLOCK;
   1558 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1559 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1560 
   1561 	for (i = BGE_STATUS_BLOCK;
   1562 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1563 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1564 
   1565 	/* Set up the PCI DMA control register. */
   1566 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1567 	if (sc->bge_flags & BGE_PCIE) {
   1568 		/* Read watermark not used, 128 bytes for write. */
   1569 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1570 		    device_xname(sc->bge_dev)));
   1571 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1572 	} else if (sc->bge_flags & BGE_PCIX) {
   1573 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1574 		    device_xname(sc->bge_dev)));
   1575 		/* PCI-X bus */
   1576 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1577 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1578 		    (0x0F);
   1579 		/*
   1580 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1581 		 * for hardware bugs, which means we should also clear
   1582 		 * the low-order MINDMA bits.  In addition, the 5704
   1583 		 * uses a different encoding of read/write watermarks.
   1584 		 */
   1585 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1586 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1587 			  /* should be 0x1f0000 */
   1588 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1589 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1590 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1591 		}
   1592 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1593 			dma_rw_ctl &=  0xfffffff0;
   1594 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1595 		}
   1596 		else if (BGE_IS_5714_FAMILY(sc)) {
   1597 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
   1598 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
   1599 			/* XXX magic values, Broadcom-supplied Linux driver */
   1600 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1601 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
   1602 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1603 			else
   1604 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
   1605 		}
   1606 	} else {
   1607 		/* Conventional PCI bus */
   1608 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1609 		    device_xname(sc->bge_dev)));
   1610 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1611 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1612 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1613 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1614 			dma_rw_ctl |= 0x0F;
   1615 	}
   1616 
   1617 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1618 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1619 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1620 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1621 
   1622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1623 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1624 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1625 
   1626 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1627 
   1628 	/*
   1629 	 * Set up general mode register.
   1630 	 */
   1631 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1632 		    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1633 		    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1634 
   1635 	/*
   1636 	 * Disable memory write invalidate.  Apparently it is not supported
   1637 	 * properly by these devices.
   1638 	 */
   1639 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1640 
   1641 
   1642 #ifdef __brokenalpha__
   1643 	/*
   1644 	 * Must insure that we do not cross an 8K (bytes) boundary
   1645 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1646 	 * restriction on some ALPHA platforms with early revision
   1647 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1648 	 */
   1649 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1650 #endif
   1651 
   1652 	/* Set the timer prescaler (always 66MHz) */
   1653 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1654 
   1655 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1656 		DELAY(40);	/* XXX */
   1657 
   1658 		/* Put PHY into ready state */
   1659 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1660 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1661 		DELAY(40);
   1662 	}
   1663 
   1664 	return 0;
   1665 }
   1666 
   1667 static int
   1668 bge_blockinit(struct bge_softc *sc)
   1669 {
   1670 	volatile struct bge_rcb		*rcb;
   1671 	bus_size_t		rcb_addr;
   1672 	int			i;
   1673 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1674 	bge_hostaddr		taddr;
   1675 	uint32_t		val;
   1676 
   1677 	/*
   1678 	 * Initialize the memory window pointer register so that
   1679 	 * we can access the first 32K of internal NIC RAM. This will
   1680 	 * allow us to set up the TX send ring RCBs and the RX return
   1681 	 * ring RCBs, plus other things which live in NIC memory.
   1682 	 */
   1683 
   1684 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1685 
   1686 	/* Configure mbuf memory pool */
   1687 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1688 		if (sc->bge_extram) {
   1689 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1690 			    BGE_EXT_SSRAM);
   1691 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1692 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1693 			else
   1694 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1695 		} else {
   1696 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1697 			    BGE_BUFFPOOL_1);
   1698 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1699 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1700 			else
   1701 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1702 		}
   1703 
   1704 		/* Configure DMA resource pool */
   1705 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1706 		    BGE_DMA_DESCRIPTORS);
   1707 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1708 	}
   1709 
   1710 	/* Configure mbuf pool watermarks */
   1711 #ifdef ORIG_WPAUL_VALUES
   1712 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1713 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1714 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1715 #else
   1716 
   1717 	/* new broadcom docs strongly recommend these: */
   1718 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1719 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1720 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1721 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1722 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1723 		} else {
   1724 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1725 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1726 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1727 		}
   1728 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1729 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1730 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1731 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1732 	} else {
   1733 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1734 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1735 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1736 	}
   1737 #endif
   1738 
   1739 	/* Configure DMA resource watermarks */
   1740 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1741 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1742 
   1743 	/* Enable buffer manager */
   1744 	if (!BGE_IS_5705_OR_BEYOND(sc)) {
   1745 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1746 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1747 
   1748 		/* Poll for buffer manager start indication */
   1749 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1750 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1751 				break;
   1752 			DELAY(10);
   1753 		}
   1754 
   1755 		if (i == BGE_TIMEOUT) {
   1756 			aprint_error_dev(sc->bge_dev,
   1757 			    "buffer manager failed to start\n");
   1758 			return ENXIO;
   1759 		}
   1760 	}
   1761 
   1762 	/* Enable flow-through queues */
   1763 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1764 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1765 
   1766 	/* Wait until queue initialization is complete */
   1767 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1768 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1769 			break;
   1770 		DELAY(10);
   1771 	}
   1772 
   1773 	if (i == BGE_TIMEOUT) {
   1774 		aprint_error_dev(sc->bge_dev,
   1775 		    "flow-through queue init failed\n");
   1776 		return ENXIO;
   1777 	}
   1778 
   1779 	/* Initialize the standard RX ring control block */
   1780 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1781 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1782 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1783 	if (BGE_IS_5705_OR_BEYOND(sc))
   1784 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1785 	else
   1786 		rcb->bge_maxlen_flags =
   1787 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1788 	if (sc->bge_extram)
   1789 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1790 	else
   1791 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1792 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1793 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1794 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1795 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1796 
   1797 	if (BGE_IS_5705_OR_BEYOND(sc))
   1798 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1799 	else
   1800 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1801 
   1802 	/*
   1803 	 * Initialize the jumbo RX ring control block
   1804 	 * We set the 'ring disabled' bit in the flags
   1805 	 * field until we're actually ready to start
   1806 	 * using this ring (i.e. once we set the MTU
   1807 	 * high enough to require it).
   1808 	 */
   1809 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   1810 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1811 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1812 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1813 		rcb->bge_maxlen_flags =
   1814 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1815 			BGE_RCB_FLAG_RING_DISABLED);
   1816 		if (sc->bge_extram)
   1817 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1818 		else
   1819 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1820 
   1821 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1822 		    rcb->bge_hostaddr.bge_addr_hi);
   1823 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1824 		    rcb->bge_hostaddr.bge_addr_lo);
   1825 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1826 		    rcb->bge_maxlen_flags);
   1827 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1828 
   1829 		/* Set up dummy disabled mini ring RCB */
   1830 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1831 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1832 		    BGE_RCB_FLAG_RING_DISABLED);
   1833 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1834 		    rcb->bge_maxlen_flags);
   1835 
   1836 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1837 		    offsetof(struct bge_ring_data, bge_info),
   1838 		    sizeof (struct bge_gib),
   1839 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1840 	}
   1841 
   1842 	/*
   1843 	 * Set the BD ring replenish thresholds. The recommended
   1844 	 * values are 1/8th the number of descriptors allocated to
   1845 	 * each ring.
   1846 	 */
   1847 	i = BGE_STD_RX_RING_CNT / 8;
   1848 
   1849 	/*
   1850 	 * Use a value of 8 for the following chips to workaround HW errata.
   1851 	 * Some of these chips have been added based on empirical
   1852 	 * evidence (they don't work unless this is done).
   1853 	 */
   1854 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   1855 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   1856 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   1857 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   1858 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   1859 		i = 8;
   1860 
   1861 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1862 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   1863 
   1864 	/*
   1865 	 * Disable all unused send rings by setting the 'ring disabled'
   1866 	 * bit in the flags field of all the TX send ring control blocks.
   1867 	 * These are located in NIC memory.
   1868 	 */
   1869 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1870 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1871 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1872 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   1873 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1874 		rcb_addr += sizeof(struct bge_rcb);
   1875 	}
   1876 
   1877 	/* Configure TX RCB 0 (we use only the first ring) */
   1878 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1879 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1880 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1881 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1882 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1883 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1884 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   1885 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1886 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1887 
   1888 	/* Disable all unused RX return rings */
   1889 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1890 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1891 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1892 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1893 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1894 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1895                                      BGE_RCB_FLAG_RING_DISABLED));
   1896 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1897 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1898 		    (i * (sizeof(uint64_t))), 0);
   1899 		rcb_addr += sizeof(struct bge_rcb);
   1900 	}
   1901 
   1902 	/* Initialize RX ring indexes */
   1903 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1904 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1905 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1906 
   1907 	/*
   1908 	 * Set up RX return ring 0
   1909 	 * Note that the NIC address for RX return rings is 0x00000000.
   1910 	 * The return rings live entirely within the host, so the
   1911 	 * nicaddr field in the RCB isn't used.
   1912 	 */
   1913 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1914 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1915 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1916 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1917 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1918 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1919 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1920 
   1921 	/* Set random backoff seed for TX */
   1922 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1923 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   1924 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   1925 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   1926 	    BGE_TX_BACKOFF_SEED_MASK);
   1927 
   1928 	/* Set inter-packet gap */
   1929 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1930 
   1931 	/*
   1932 	 * Specify which ring to use for packets that don't match
   1933 	 * any RX rules.
   1934 	 */
   1935 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1936 
   1937 	/*
   1938 	 * Configure number of RX lists. One interrupt distribution
   1939 	 * list, sixteen active lists, one bad frames class.
   1940 	 */
   1941 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1942 
   1943 	/* Inialize RX list placement stats mask. */
   1944 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1945 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1946 
   1947 	/* Disable host coalescing until we get it set up */
   1948 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1949 
   1950 	/* Poll to make sure it's shut down. */
   1951 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1952 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1953 			break;
   1954 		DELAY(10);
   1955 	}
   1956 
   1957 	if (i == BGE_TIMEOUT) {
   1958 		aprint_error_dev(sc->bge_dev,
   1959 		    "host coalescing engine failed to idle\n");
   1960 		return ENXIO;
   1961 	}
   1962 
   1963 	/* Set up host coalescing defaults */
   1964 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1965 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1966 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1967 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1968 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1969 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1970 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1971 	}
   1972 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1973 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1974 
   1975 	/* Set up address of statistics block */
   1976 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   1977 		bge_set_hostaddr(&taddr,
   1978 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1979 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1980 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1981 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1982 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1983 	}
   1984 
   1985 	/* Set up address of status block */
   1986 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1987 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1988 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1989 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1990 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1991 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1992 
   1993 	/* Turn on host coalescing state machine */
   1994 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1995 
   1996 	/* Turn on RX BD completion state machine and enable attentions */
   1997 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1998 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   1999 
   2000 	/* Turn on RX list placement state machine */
   2001 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2002 
   2003 	/* Turn on RX list selector state machine. */
   2004 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2005 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2006 
   2007 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2008 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2009 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2010 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2011 
   2012 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2013 	    val |= BGE_PORTMODE_TBI;
   2014 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2015 	    val |= BGE_PORTMODE_GMII;
   2016 	else
   2017 	    val |= BGE_PORTMODE_MII;
   2018 
   2019 	/* Turn on DMA, clear stats */
   2020 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2021 
   2022 
   2023 	/* Set misc. local control, enable interrupts on attentions */
   2024 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2025 
   2026 #ifdef notdef
   2027 	/* Assert GPIO pins for PHY reset */
   2028 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2029 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2030 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2031 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2032 #endif
   2033 
   2034 #if defined(not_quite_yet)
   2035 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2036 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2037 		sc->bge_local_ctrl_reg |=
   2038 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2039 	}
   2040 #endif
   2041 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2042 
   2043 	/* Turn on DMA completion state machine */
   2044 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2045 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2046 
   2047 	/* Turn on write DMA state machine */
   2048 	{
   2049 		uint32_t bge_wdma_mode =
   2050 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2051 
   2052 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2053 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2054 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2055 			bge_wdma_mode |= (1 << 29);
   2056 
   2057 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2058         }
   2059 
   2060 	/* Turn on read DMA state machine */
   2061 	{
   2062 		uint32_t dma_read_modebits;
   2063 
   2064 		dma_read_modebits =
   2065 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2066 
   2067 		if ((sc->bge_flags & BGE_PCIE) && 0) {
   2068 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2069 		} else if (BGE_IS_5705_OR_BEYOND(sc)) {
   2070 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
   2071 		}
   2072 
   2073 		/* XXX broadcom-supplied linux driver; undocumented */
   2074 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   2075  			/*
   2076 			 * XXX: magic values.
   2077 			 * From Broadcom-supplied Linux driver;  apparently
   2078 			 * required to workaround a DMA bug affecting TSO
   2079 			 * on bcm575x/bcm5721?
   2080 			 */
   2081 			dma_read_modebits |= (1 << 27);
   2082 		}
   2083 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2084 	}
   2085 
   2086 	/* Turn on RX data completion state machine */
   2087 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2088 
   2089 	/* Turn on RX BD initiator state machine */
   2090 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2091 
   2092 	/* Turn on RX data and RX BD initiator state machine */
   2093 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2094 
   2095 	/* Turn on Mbuf cluster free state machine */
   2096 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   2097 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2098 
   2099 	/* Turn on send BD completion state machine */
   2100 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2101 
   2102 	/* Turn on send data completion state machine */
   2103 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   2104 
   2105 	/* Turn on send data initiator state machine */
   2106 	if (BGE_IS_5750_OR_BEYOND(sc)) {
   2107 		/* XXX: magic value from Linux driver */
   2108 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2109 	} else {
   2110 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2111 	}
   2112 
   2113 	/* Turn on send BD initiator state machine */
   2114 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2115 
   2116 	/* Turn on send BD selector state machine */
   2117 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2118 
   2119 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2120 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2121 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2122 
   2123 	/* ack/clear link change events */
   2124 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2125 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2126 	    BGE_MACSTAT_CFG_CHANGED);
   2127 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2128 
   2129 	/* Enable PHY auto polling (for MII/GMII only) */
   2130 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2131 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2132  	} else {
   2133 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2134 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2135 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2136 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2137 			    BGE_EVTENB_MI_INTERRUPT);
   2138 	}
   2139 
   2140 	/*
   2141 	 * Clear any pending link state attention.
   2142 	 * Otherwise some link state change events may be lost until attention
   2143 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2144 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2145 	 * state change attentions implies clearing pending attention.
   2146 	 */
   2147 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2148 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2149 	    BGE_MACSTAT_LINK_CHANGED);
   2150 
   2151 	/* Enable link state change attentions. */
   2152 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2153 
   2154 	return 0;
   2155 }
   2156 
   2157 static const struct bge_revision *
   2158 bge_lookup_rev(uint32_t chipid)
   2159 {
   2160 	const struct bge_revision *br;
   2161 
   2162 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2163 		if (br->br_chipid == chipid)
   2164 			return br;
   2165 	}
   2166 
   2167 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2168 		if (br->br_chipid == BGE_ASICREV(chipid))
   2169 			return br;
   2170 	}
   2171 
   2172 	return NULL;
   2173 }
   2174 
   2175 static const struct bge_product *
   2176 bge_lookup(const struct pci_attach_args *pa)
   2177 {
   2178 	const struct bge_product *bp;
   2179 
   2180 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2181 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2182 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2183 			return bp;
   2184 	}
   2185 
   2186 	return NULL;
   2187 }
   2188 
   2189 static int
   2190 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2191 {
   2192 #ifdef NOTYET
   2193 	uint32_t pm_ctl = 0;
   2194 
   2195 	/* XXX FIXME: make sure indirect accesses enabled? */
   2196 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2197 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2198 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2199 
   2200 	/* clear the PME_assert bit and power state bits, enable PME */
   2201 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2202 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2203 	pm_ctl |= (1 << 8);
   2204 
   2205 	if (powerlevel == 0) {
   2206 		pm_ctl |= PCIM_PSTAT_D0;
   2207 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2208 		    pm_ctl, 2);
   2209 		DELAY(10000);
   2210 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2211 		DELAY(10000);
   2212 
   2213 #ifdef NOTYET
   2214 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2215 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2216 #endif
   2217 		DELAY(40); DELAY(40); DELAY(40);
   2218 		DELAY(10000);	/* above not quite adequate on 5700 */
   2219 		return 0;
   2220 	}
   2221 
   2222 
   2223 	/*
   2224 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2225 	 * GMII gpio pins. Example code assumes all hardware vendors
   2226 	 * followed Broadom's sample pcb layout. Until we verify that
   2227 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2228 	 */
   2229 	aprint_error_dev(sc->bge_dev,
   2230 	    "power state %d unimplemented; check GPIO pins\n",
   2231 	    powerlevel);
   2232 #endif
   2233 	return EOPNOTSUPP;
   2234 }
   2235 
   2236 
   2237 /*
   2238  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2239  * against our list and return its name if we find a match. Note
   2240  * that since the Broadcom controller contains VPD support, we
   2241  * can get the device name string from the controller itself instead
   2242  * of the compiled-in string. This is a little slow, but it guarantees
   2243  * we'll always announce the right product name.
   2244  */
   2245 static int
   2246 bge_probe(device_t parent, cfdata_t match, void *aux)
   2247 {
   2248 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2249 
   2250 	if (bge_lookup(pa) != NULL)
   2251 		return 1;
   2252 
   2253 	return 0;
   2254 }
   2255 
   2256 static void
   2257 bge_attach(device_t parent, device_t self, void *aux)
   2258 {
   2259 	struct bge_softc	*sc = device_private(self);
   2260 	struct pci_attach_args	*pa = aux;
   2261 	prop_dictionary_t dict;
   2262 	const struct bge_product *bp;
   2263 	const struct bge_revision *br;
   2264 	pci_chipset_tag_t	pc;
   2265 	pci_intr_handle_t	ih;
   2266 	const char		*intrstr = NULL;
   2267 	bus_dma_segment_t	seg;
   2268 	int			rseg;
   2269 	uint32_t		hwcfg = 0;
   2270 	uint32_t		command;
   2271 	struct ifnet		*ifp;
   2272 	uint32_t		misccfg;
   2273 	void *			kva;
   2274 	u_char			eaddr[ETHER_ADDR_LEN];
   2275 	pcireg_t		memtype;
   2276 	bus_addr_t		memaddr;
   2277 	bus_size_t		memsize;
   2278 	uint32_t		pm_ctl;
   2279 
   2280 	bp = bge_lookup(pa);
   2281 	KASSERT(bp != NULL);
   2282 
   2283 	sc->sc_pc = pa->pa_pc;
   2284 	sc->sc_pcitag = pa->pa_tag;
   2285 	sc->bge_dev = self;
   2286 
   2287 	aprint_naive(": Ethernet controller\n");
   2288 	aprint_normal(": %s\n", bp->bp_name);
   2289 
   2290 	/*
   2291 	 * Map control/status registers.
   2292 	 */
   2293 	DPRINTFN(5, ("Map control/status regs\n"));
   2294 	pc = sc->sc_pc;
   2295 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2296 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2297 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2298 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2299 
   2300 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2301 		aprint_error_dev(sc->bge_dev,
   2302 		    "failed to enable memory mapping!\n");
   2303 		return;
   2304 	}
   2305 
   2306 	DPRINTFN(5, ("pci_mem_find\n"));
   2307 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2308  	switch (memtype) {
   2309 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2310 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2311 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2312 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2313 		    &memaddr, &memsize) == 0)
   2314 			break;
   2315 	default:
   2316 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2317 		return;
   2318 	}
   2319 
   2320 	DPRINTFN(5, ("pci_intr_map\n"));
   2321 	if (pci_intr_map(pa, &ih)) {
   2322 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2323 		return;
   2324 	}
   2325 
   2326 	DPRINTFN(5, ("pci_intr_string\n"));
   2327 	intrstr = pci_intr_string(pc, ih);
   2328 
   2329 	DPRINTFN(5, ("pci_intr_establish\n"));
   2330 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2331 
   2332 	if (sc->bge_intrhand == NULL) {
   2333 		aprint_error_dev(sc->bge_dev,
   2334 		    "couldn't establish interrupt%s%s\n",
   2335 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2336 		return;
   2337 	}
   2338 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2339 
   2340 	/*
   2341 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2342 	 * can clobber the chip's PCI config-space power control registers,
   2343 	 * leaving the card in D3 powersave state.
   2344 	 * We do not have memory-mapped registers in this state,
   2345 	 * so force device into D0 state before starting initialization.
   2346 	 */
   2347 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2348 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2349 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2350 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2351 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2352 
   2353 	/*
   2354 	 * Save ASIC rev.
   2355 	 */
   2356 	sc->bge_chipid =
   2357 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
   2358 	    BGE_PCIMISCCTL_ASICREV;
   2359 
   2360 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2361 	        NULL, NULL) != 0) {
   2362 		/* PCIe */
   2363 		sc->bge_flags |= BGE_PCIE;
   2364 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2365 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2366 		/* PCI-X */
   2367 		sc->bge_flags |= BGE_PCIX;
   2368 	}
   2369 
   2370 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2371 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2372 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2373 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2374 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2375 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2376 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2377 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2378 
   2379 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   2380 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2381 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2382 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2383 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2384 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2385 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2386 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2387 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2388 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2389 	}
   2390 
   2391 	/* Try to reset the chip. */
   2392 	DPRINTFN(5, ("bge_reset\n"));
   2393 	bge_reset(sc);
   2394 
   2395 	if (bge_chipinit(sc)) {
   2396 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2397 		bge_release_resources(sc);
   2398 		return;
   2399 	}
   2400 
   2401 	/*
   2402 	 * Get station address from the EEPROM.
   2403 	 */
   2404 	if (bge_get_eaddr(sc, eaddr)) {
   2405 		aprint_error_dev(sc->bge_dev,
   2406 		"failed to read station address\n");
   2407 		bge_release_resources(sc);
   2408 		return;
   2409 	}
   2410 
   2411 	br = bge_lookup_rev(sc->bge_chipid);
   2412 
   2413 	if (br == NULL) {
   2414 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
   2415 		    sc->bge_chipid >> 16);
   2416 	} else {
   2417 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
   2418 		    br->br_name, sc->bge_chipid >> 16);
   2419 	}
   2420 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2421 
   2422 	/* Allocate the general information block and ring buffers. */
   2423 	if (pci_dma64_available(pa))
   2424 		sc->bge_dmatag = pa->pa_dmat64;
   2425 	else
   2426 		sc->bge_dmatag = pa->pa_dmat;
   2427 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2428 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2429 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2430 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2431 		return;
   2432 	}
   2433 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2434 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2435 			   sizeof(struct bge_ring_data), &kva,
   2436 			   BUS_DMA_NOWAIT)) {
   2437 		aprint_error_dev(sc->bge_dev,
   2438 		    "can't map DMA buffers (%zu bytes)\n",
   2439 		    sizeof(struct bge_ring_data));
   2440 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2441 		return;
   2442 	}
   2443 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2444 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2445 	    sizeof(struct bge_ring_data), 0,
   2446 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2447 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2448 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2449 				 sizeof(struct bge_ring_data));
   2450 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2451 		return;
   2452 	}
   2453 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2454 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2455 			    sizeof(struct bge_ring_data), NULL,
   2456 			    BUS_DMA_NOWAIT)) {
   2457 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2458 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2459 				 sizeof(struct bge_ring_data));
   2460 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2461 		return;
   2462 	}
   2463 
   2464 	DPRINTFN(5, ("bzero\n"));
   2465 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2466 
   2467 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2468 
   2469 	/* Try to allocate memory for jumbo buffers. */
   2470 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2471 		if (bge_alloc_jumbo_mem(sc)) {
   2472 			aprint_error_dev(sc->bge_dev,
   2473 			    "jumbo buffer allocation failed\n");
   2474 		} else
   2475 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2476 	}
   2477 
   2478 	/* Set default tuneable values. */
   2479 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2480 	sc->bge_rx_coal_ticks = 150;
   2481 	sc->bge_rx_max_coal_bds = 64;
   2482 #ifdef ORIG_WPAUL_VALUES
   2483 	sc->bge_tx_coal_ticks = 150;
   2484 	sc->bge_tx_max_coal_bds = 128;
   2485 #else
   2486 	sc->bge_tx_coal_ticks = 300;
   2487 	sc->bge_tx_max_coal_bds = 400;
   2488 #endif
   2489 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   2490 		sc->bge_tx_coal_ticks = (12 * 5);
   2491 		sc->bge_tx_max_coal_bds = (12 * 5);
   2492 			aprint_verbose_dev(sc->bge_dev,
   2493 			    "setting short Tx thresholds\n");
   2494 	}
   2495 
   2496 	/* Set up ifnet structure */
   2497 	ifp = &sc->ethercom.ec_if;
   2498 	ifp->if_softc = sc;
   2499 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2500 	ifp->if_ioctl = bge_ioctl;
   2501 	ifp->if_stop = bge_stop;
   2502 	ifp->if_start = bge_start;
   2503 	ifp->if_init = bge_init;
   2504 	ifp->if_watchdog = bge_watchdog;
   2505 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2506 	IFQ_SET_READY(&ifp->if_snd);
   2507 	DPRINTFN(5, ("strcpy if_xname\n"));
   2508 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2509 
   2510 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2511 		sc->ethercom.ec_if.if_capabilities |=
   2512 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2513 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2514 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2515 	sc->ethercom.ec_capabilities |=
   2516 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2517 
   2518 	if (sc->bge_flags & BGE_PCIE)
   2519 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2520 
   2521 	/*
   2522 	 * Do MII setup.
   2523 	 */
   2524 	DPRINTFN(5, ("mii setup\n"));
   2525 	sc->bge_mii.mii_ifp = ifp;
   2526 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2527 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2528 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2529 
   2530 	/*
   2531 	 * Figure out what sort of media we have by checking the
   2532 	 * hardware config word in the first 32k of NIC internal memory,
   2533 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2534 	 * cards, this value appears to be unset. If that's the
   2535 	 * case, we have to rely on identifying the NIC by its PCI
   2536 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2537 	 */
   2538 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2539 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2540 	} else {
   2541 		bge_read_eeprom(sc, (void *)&hwcfg,
   2542 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2543 		hwcfg = be32toh(hwcfg);
   2544 	}
   2545 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2546 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2547 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2548 		if (BGE_IS_5714_FAMILY(sc))
   2549 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2550 		else
   2551 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2552 	}
   2553 
   2554 	/* set phyflags before mii_attach() */
   2555 	dict = device_properties(self);
   2556 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2557 
   2558 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2559 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2560 		    bge_ifmedia_sts);
   2561 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2562 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2563 			    0, NULL);
   2564 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2565 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2566 		/* Pretend the user requested this setting */
   2567 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2568 	} else {
   2569 		/*
   2570 		 * Do transceiver setup.
   2571 		 */
   2572 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2573 			     bge_ifmedia_sts);
   2574 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2575 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2576 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2577 
   2578 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2579 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2580 			ifmedia_add(&sc->bge_mii.mii_media,
   2581 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2582 			ifmedia_set(&sc->bge_mii.mii_media,
   2583 				    IFM_ETHER|IFM_MANUAL);
   2584 		} else
   2585 			ifmedia_set(&sc->bge_mii.mii_media,
   2586 				    IFM_ETHER|IFM_AUTO);
   2587 	}
   2588 
   2589 	/*
   2590 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2591 	 * been observed in the first few bytes of some received packets.
   2592 	 * Aligning the packet buffer in memory eliminates the corruption.
   2593 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2594 	 * which do not support unaligned accesses, we will realign the
   2595 	 * payloads by copying the received packets.
   2596 	 */
   2597 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2598 		sc->bge_flags & BGE_PCIX)
   2599 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2600 
   2601 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2602 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2603 
   2604 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2605 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2606 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2607 		sc->bge_flags |= BGE_IS_5788;
   2608 
   2609 	/*
   2610 	 * Call MI attach routine.
   2611 	 */
   2612 	DPRINTFN(5, ("if_attach\n"));
   2613 	if_attach(ifp);
   2614 	DPRINTFN(5, ("ether_ifattach\n"));
   2615 	ether_ifattach(ifp, eaddr);
   2616 #if NRND > 0
   2617 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2618 		RND_TYPE_NET, 0);
   2619 #endif
   2620 #ifdef BGE_EVENT_COUNTERS
   2621 	/*
   2622 	 * Attach event counters.
   2623 	 */
   2624 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2625 	    NULL, device_xname(sc->bge_dev), "intr");
   2626 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2627 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2628 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2629 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2630 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2631 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2632 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2633 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2634 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2635 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2636 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2637 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2638 #endif /* BGE_EVENT_COUNTERS */
   2639 	DPRINTFN(5, ("callout_init\n"));
   2640 	callout_init(&sc->bge_timeout, 0);
   2641 
   2642 	if (pmf_device_register(self, NULL, NULL))
   2643 		pmf_class_network_register(self, ifp);
   2644 	else
   2645 		aprint_error_dev(self, "couldn't establish power handler\n");
   2646 }
   2647 
   2648 static void
   2649 bge_release_resources(struct bge_softc *sc)
   2650 {
   2651 	if (sc->bge_vpd_prodname != NULL)
   2652 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2653 
   2654 	if (sc->bge_vpd_readonly != NULL)
   2655 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2656 }
   2657 
   2658 static void
   2659 bge_reset(struct bge_softc *sc)
   2660 {
   2661 	uint32_t cachesize, command, pcistate, new_pcistate;
   2662 	int i, val;
   2663 	void (*write_op)(struct bge_softc *, int, int);
   2664 
   2665 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2666 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2667 	    	if (sc->bge_flags & BGE_PCIE) {
   2668 			write_op = bge_writemem_direct;
   2669 		} else {
   2670 			write_op = bge_writemem_ind;
   2671 		}
   2672 	} else {
   2673 		write_op = bge_writereg_ind;
   2674 	}
   2675 
   2676 
   2677 	/* Save some important PCI state. */
   2678 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2679 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2680 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2681 
   2682 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2683 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2684 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2685 
   2686 	/* Disable fastboot on controllers that support it. */
   2687 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2688 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2689 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
   2690 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2691 
   2692 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2693 	/*
   2694 	 * XXX: from FreeBSD/Linux; no documentation
   2695 	 */
   2696 	if (sc->bge_flags & BGE_PCIE) {
   2697 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2698 			/* PCI Express 1.0 system */
   2699 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2700 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2701 			/*
   2702 			 * Prevent PCI Express link training
   2703 			 * during global reset.
   2704 			 */
   2705 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2706 			val |= (1<<29);
   2707 		}
   2708 	}
   2709 
   2710 	/*
   2711 	 * Set GPHY Power Down Override to leave GPHY
   2712 	 * powered up in D0 uninitialized.
   2713 	 */
   2714 	if (BGE_IS_5705_OR_BEYOND(sc))
   2715 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   2716 
   2717 	/* Issue global reset */
   2718 	write_op(sc, BGE_MISC_CFG, val);
   2719 
   2720 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2721 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2722 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2723 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2724 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2725 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2726 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2727 	}
   2728 
   2729 	DELAY(1000);
   2730 
   2731 	/*
   2732 	 * XXX: from FreeBSD/Linux; no documentation
   2733 	 */
   2734 	if (sc->bge_flags & BGE_PCIE) {
   2735 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2736 			pcireg_t reg;
   2737 
   2738 			DELAY(500000);
   2739 			/* XXX: Magic Numbers */
   2740 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2741 			    BGE_PCI_UNKNOWN0);
   2742 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2743 			    BGE_PCI_UNKNOWN0,
   2744 			    reg | (1 << 15));
   2745 		}
   2746 		/*
   2747 		 * XXX: Magic Numbers.
   2748 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2749 		 * Should be replaced with references to PCI config-space
   2750 		 * capability block for PCI-Express.
   2751 		 */
   2752 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2753 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2754 
   2755 	}
   2756 
   2757 	/* Reset some of the PCI state that got zapped by reset */
   2758 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2759 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2760 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2761 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   2762 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   2763 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   2764 
   2765 	/* Enable memory arbiter. */
   2766 	{
   2767 		uint32_t marbmode = 0;
   2768 		if (BGE_IS_5714_FAMILY(sc)) {
   2769 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2770 		}
   2771  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2772 	}
   2773 
   2774 
   2775 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2776 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2777 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2778 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2779 				break;
   2780 			DELAY(100);
   2781 		}
   2782 		if (i == BGE_TIMEOUT) {
   2783 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2784 			return;
   2785 		}
   2786 	} else {
   2787 		/*
   2788 		 * Write the magic number to the firmware mailbox at 0xb50
   2789 		 * so that the driver can synchronize with the firmware.
   2790 		 */
   2791 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2792 
   2793 		/*
   2794 		 * Poll the value location we just wrote until
   2795 		 * we see the 1's complement of the magic number.
   2796 		 * This indicates that the firmware initialization
   2797 		 * is complete.
   2798 		 */
   2799 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2800 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2801 			if (val == ~BGE_MAGIC_NUMBER)
   2802 				break;
   2803 			DELAY(1000);
   2804 		}
   2805 
   2806 		if (i >= BGE_TIMEOUT) {
   2807 			aprint_error_dev(sc->bge_dev,
   2808 			    "firmware handshake timed out, val = %x\n", val);
   2809 			/*
   2810 			 * XXX: occasionally fired on bcm5721, but without
   2811 			 * apparent harm.  For now, keep going if we timeout
   2812 			 * against PCI-E devices.
   2813 			 */
   2814 			if ((sc->bge_flags & BGE_PCIE) == 0)
   2815 				  return;
   2816 		}
   2817 	}
   2818 
   2819 	/*
   2820 	 * XXX Wait for the value of the PCISTATE register to
   2821 	 * return to its original pre-reset state. This is a
   2822 	 * fairly good indicator of reset completion. If we don't
   2823 	 * wait for the reset to fully complete, trying to read
   2824 	 * from the device's non-PCI registers may yield garbage
   2825 	 * results.
   2826 	 */
   2827 	for (i = 0; i < 10000; i++) {
   2828 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2829 		    BGE_PCI_PCISTATE);
   2830 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2831 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2832 			break;
   2833 		DELAY(10);
   2834 	}
   2835 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2836 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2837 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   2838 	}
   2839 
   2840 	/* Enable memory arbiter. */
   2841 	/* XXX why do this twice? */
   2842 	{
   2843 		uint32_t marbmode = 0;
   2844 		if (BGE_IS_5714_FAMILY(sc)) {
   2845 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   2846 		}
   2847  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   2848 	}
   2849 
   2850 	/* Fix up byte swapping */
   2851 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2852 
   2853 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2854 
   2855 	/*
   2856 	 * The 5704 in TBI mode apparently needs some special
   2857 	 * adjustment to insure the SERDES drive level is set
   2858 	 * to 1.2V.
   2859 	 */
   2860 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   2861 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2862 		uint32_t serdescfg;
   2863 
   2864 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   2865 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   2866 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   2867 	}
   2868 
   2869 	/* XXX: from FreeBSD/Linux; no documentation */
   2870 	if (sc->bge_flags & BGE_PCIE &&
   2871 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2872 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2873 	DELAY(10000);
   2874 }
   2875 
   2876 /*
   2877  * Frame reception handling. This is called if there's a frame
   2878  * on the receive return list.
   2879  *
   2880  * Note: we have to be able to handle two possibilities here:
   2881  * 1) the frame is from the jumbo recieve ring
   2882  * 2) the frame is from the standard receive ring
   2883  */
   2884 
   2885 static void
   2886 bge_rxeof(struct bge_softc *sc)
   2887 {
   2888 	struct ifnet *ifp;
   2889 	int stdcnt = 0, jumbocnt = 0;
   2890 	bus_dmamap_t dmamap;
   2891 	bus_addr_t offset, toff;
   2892 	bus_size_t tlen;
   2893 	int tosync;
   2894 
   2895 	ifp = &sc->ethercom.ec_if;
   2896 
   2897 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2898 	    offsetof(struct bge_ring_data, bge_status_block),
   2899 	    sizeof (struct bge_status_block),
   2900 	    BUS_DMASYNC_POSTREAD);
   2901 
   2902 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2903 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2904 	    sc->bge_rx_saved_considx;
   2905 
   2906 #if NRND > 0
   2907 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   2908 		rnd_add_uint32(&sc->rnd_source, tosync);
   2909 #endif
   2910 
   2911 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2912 
   2913 	if (tosync < 0) {
   2914 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2915 		    sizeof (struct bge_rx_bd);
   2916 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2917 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2918 		tosync = -tosync;
   2919 	}
   2920 
   2921 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2922 	    offset, tosync * sizeof (struct bge_rx_bd),
   2923 	    BUS_DMASYNC_POSTREAD);
   2924 
   2925 	while (sc->bge_rx_saved_considx !=
   2926 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2927 		struct bge_rx_bd	*cur_rx;
   2928 		uint32_t		rxidx;
   2929 		struct mbuf		*m = NULL;
   2930 
   2931 		cur_rx = &sc->bge_rdata->
   2932 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2933 
   2934 		rxidx = cur_rx->bge_idx;
   2935 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2936 
   2937 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2938 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2939 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2940 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2941 			jumbocnt++;
   2942 			bus_dmamap_sync(sc->bge_dmatag,
   2943 			    sc->bge_cdata.bge_rx_jumbo_map,
   2944 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   2945 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   2946 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2947 				ifp->if_ierrors++;
   2948 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2949 				continue;
   2950 			}
   2951 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2952 					     NULL)== ENOBUFS) {
   2953 				ifp->if_ierrors++;
   2954 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2955 				continue;
   2956 			}
   2957 		} else {
   2958 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2959 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2960 
   2961 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2962 			stdcnt++;
   2963 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2964 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2965 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   2966 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2967 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   2968 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2969 				ifp->if_ierrors++;
   2970 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2971 				continue;
   2972 			}
   2973 			if (bge_newbuf_std(sc, sc->bge_std,
   2974 			    NULL, dmamap) == ENOBUFS) {
   2975 				ifp->if_ierrors++;
   2976 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2977 				continue;
   2978 			}
   2979 		}
   2980 
   2981 		ifp->if_ipackets++;
   2982 #ifndef __NO_STRICT_ALIGNMENT
   2983                 /*
   2984                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2985                  * the Rx buffer has the layer-2 header unaligned.
   2986                  * If our CPU requires alignment, re-align by copying.
   2987                  */
   2988 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   2989 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   2990                                 cur_rx->bge_len);
   2991 			m->m_data += ETHER_ALIGN;
   2992 		}
   2993 #endif
   2994 
   2995 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2996 		m->m_pkthdr.rcvif = ifp;
   2997 
   2998 		/*
   2999 		 * Handle BPF listeners. Let the BPF user see the packet.
   3000 		 */
   3001 		if (ifp->if_bpf)
   3002 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   3003 
   3004 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3005 
   3006 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3007 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3008 		/*
   3009 		 * Rx transport checksum-offload may also
   3010 		 * have bugs with packets which, when transmitted,
   3011 		 * were `runts' requiring padding.
   3012 		 */
   3013 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3014 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3015 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3016 			m->m_pkthdr.csum_data =
   3017 			    cur_rx->bge_tcp_udp_csum;
   3018 			m->m_pkthdr.csum_flags |=
   3019 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3020 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3021 		}
   3022 
   3023 		/*
   3024 		 * If we received a packet with a vlan tag, pass it
   3025 		 * to vlan_input() instead of ether_input().
   3026 		 */
   3027 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3028 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3029 		}
   3030 
   3031 		(*ifp->if_input)(ifp, m);
   3032 	}
   3033 
   3034 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3035 	if (stdcnt)
   3036 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3037 	if (jumbocnt)
   3038 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3039 }
   3040 
   3041 static void
   3042 bge_txeof(struct bge_softc *sc)
   3043 {
   3044 	struct bge_tx_bd *cur_tx = NULL;
   3045 	struct ifnet *ifp;
   3046 	struct txdmamap_pool_entry *dma;
   3047 	bus_addr_t offset, toff;
   3048 	bus_size_t tlen;
   3049 	int tosync;
   3050 	struct mbuf *m;
   3051 
   3052 	ifp = &sc->ethercom.ec_if;
   3053 
   3054 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3055 	    offsetof(struct bge_ring_data, bge_status_block),
   3056 	    sizeof (struct bge_status_block),
   3057 	    BUS_DMASYNC_POSTREAD);
   3058 
   3059 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3060 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3061 	    sc->bge_tx_saved_considx;
   3062 
   3063 #if NRND > 0
   3064 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3065 		rnd_add_uint32(&sc->rnd_source, tosync);
   3066 #endif
   3067 
   3068 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3069 
   3070 	if (tosync < 0) {
   3071 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3072 		    sizeof (struct bge_tx_bd);
   3073 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3074 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3075 		tosync = -tosync;
   3076 	}
   3077 
   3078 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3079 	    offset, tosync * sizeof (struct bge_tx_bd),
   3080 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3081 
   3082 	/*
   3083 	 * Go through our tx ring and free mbufs for those
   3084 	 * frames that have been sent.
   3085 	 */
   3086 	while (sc->bge_tx_saved_considx !=
   3087 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3088 		uint32_t		idx = 0;
   3089 
   3090 		idx = sc->bge_tx_saved_considx;
   3091 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3092 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3093 			ifp->if_opackets++;
   3094 		m = sc->bge_cdata.bge_tx_chain[idx];
   3095 		if (m != NULL) {
   3096 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3097 			dma = sc->txdma[idx];
   3098 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3099 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3100 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3101 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3102 			sc->txdma[idx] = NULL;
   3103 
   3104 			m_freem(m);
   3105 		}
   3106 		sc->bge_txcnt--;
   3107 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3108 		ifp->if_timer = 0;
   3109 	}
   3110 
   3111 	if (cur_tx != NULL)
   3112 		ifp->if_flags &= ~IFF_OACTIVE;
   3113 }
   3114 
   3115 static int
   3116 bge_intr(void *xsc)
   3117 {
   3118 	struct bge_softc *sc;
   3119 	struct ifnet *ifp;
   3120 	uint32_t statusword;
   3121 
   3122 	sc = xsc;
   3123 	ifp = &sc->ethercom.ec_if;
   3124 
   3125 	/* It is possible for the interrupt to arrive before
   3126 	 * the status block is updated prior to the interrupt.
   3127 	 * Reading the PCI State register will confirm whether the
   3128 	 * interrupt is ours and will flush the status block.
   3129 	 */
   3130 
   3131 	/* read status word from status block */
   3132 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3133 
   3134 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3135 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3136 		/* Ack interrupt and stop others from occuring. */
   3137 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3138 
   3139 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3140 
   3141 		/* clear status word */
   3142 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3143 
   3144 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3145 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3146 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3147 			bge_link_upd(sc);
   3148 
   3149 		if (ifp->if_flags & IFF_RUNNING) {
   3150 			/* Check RX return ring producer/consumer */
   3151 			bge_rxeof(sc);
   3152 
   3153 			/* Check TX ring producer/consumer */
   3154 			bge_txeof(sc);
   3155 		}
   3156 
   3157 		if (sc->bge_pending_rxintr_change) {
   3158 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3159 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3160 			uint32_t junk;
   3161 
   3162 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3163 			DELAY(10);
   3164 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3165 
   3166 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3167 			DELAY(10);
   3168 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3169 
   3170 			sc->bge_pending_rxintr_change = 0;
   3171 		}
   3172 		bge_handle_events(sc);
   3173 
   3174 		/* Re-enable interrupts. */
   3175 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3176 
   3177 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3178 			bge_start(ifp);
   3179 
   3180 		return 1;
   3181 	} else
   3182 		return 0;
   3183 }
   3184 
   3185 static void
   3186 bge_tick(void *xsc)
   3187 {
   3188 	struct bge_softc *sc = xsc;
   3189 	struct mii_data *mii = &sc->bge_mii;
   3190 	int s;
   3191 
   3192 	s = splnet();
   3193 
   3194 	bge_stats_update(sc);
   3195 
   3196 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3197 		/*
   3198 		 * Since in TBI mode auto-polling can't be used we should poll
   3199 		 * link status manually. Here we register pending link event
   3200 		 * and trigger interrupt.
   3201 		 */
   3202 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3203 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3204 	} else {
   3205 		/*
   3206 		 * Do not touch PHY if we have link up. This could break
   3207 		 * IPMI/ASF mode or produce extra input errors.
   3208 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3209 		 */
   3210 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3211 			mii_tick(mii);
   3212 	}
   3213 
   3214 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3215 
   3216 	splx(s);
   3217 }
   3218 
   3219 static void
   3220 bge_stats_update(struct bge_softc *sc)
   3221 {
   3222 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3223 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3224 	bus_size_t rstats = BGE_RX_STATS;
   3225 
   3226 #define READ_RSTAT(sc, stats, stat) \
   3227 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3228 
   3229 	if (BGE_IS_5705_OR_BEYOND(sc)) {
   3230 		ifp->if_collisions +=
   3231 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3232 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3233 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3234 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3235 
   3236 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3237 			      READ_RSTAT(sc, rstats, outXoffSent));
   3238 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3239 			      READ_RSTAT(sc, rstats, outXonSent));
   3240 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3241 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3242 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3243 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3244 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3245 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3246 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3247 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3248 		return;
   3249 	}
   3250 
   3251 #undef READ_RSTAT
   3252 #define READ_STAT(sc, stats, stat) \
   3253 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3254 
   3255 	ifp->if_collisions +=
   3256 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3257 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3258 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3259 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3260 	  ifp->if_collisions;
   3261 
   3262 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3263 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3264 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3265 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3266 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3267 		      READ_STAT(sc, stats,
   3268 		      		xoffPauseFramesReceived.bge_addr_lo));
   3269 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3270 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3271 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3272 		      READ_STAT(sc, stats,
   3273 		      		macControlFramesReceived.bge_addr_lo));
   3274 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3275 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3276 
   3277 #undef READ_STAT
   3278 
   3279 #ifdef notdef
   3280 	ifp->if_collisions +=
   3281 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3282 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3283 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3284 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3285 	   ifp->if_collisions;
   3286 #endif
   3287 }
   3288 
   3289 /*
   3290  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3291  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3292  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3293  * the hardware checksum assist gives incorrect results (possibly
   3294  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3295  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3296  */
   3297 static inline int
   3298 bge_cksum_pad(struct mbuf *pkt)
   3299 {
   3300 	struct mbuf *last = NULL;
   3301 	int padlen;
   3302 
   3303 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3304 
   3305 	/* if there's only the packet-header and we can pad there, use it. */
   3306 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3307 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3308 		last = pkt;
   3309 	} else {
   3310 		/*
   3311 		 * Walk packet chain to find last mbuf. We will either
   3312 		 * pad there, or append a new mbuf and pad it
   3313 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3314 		 */
   3315 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3316 	      	       continue; /* do nothing */
   3317 		}
   3318 
   3319 		/* `last' now points to last in chain. */
   3320 		if (M_TRAILINGSPACE(last) < padlen) {
   3321 			/* Allocate new empty mbuf, pad it. Compact later. */
   3322 			struct mbuf *n;
   3323 			MGET(n, M_DONTWAIT, MT_DATA);
   3324 			if (n == NULL)
   3325 				return ENOBUFS;
   3326 			n->m_len = 0;
   3327 			last->m_next = n;
   3328 			last = n;
   3329 		}
   3330 	}
   3331 
   3332 	KDASSERT(!M_READONLY(last));
   3333 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3334 
   3335 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3336 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3337 	last->m_len += padlen;
   3338 	pkt->m_pkthdr.len += padlen;
   3339 	return 0;
   3340 }
   3341 
   3342 /*
   3343  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3344  */
   3345 static inline int
   3346 bge_compact_dma_runt(struct mbuf *pkt)
   3347 {
   3348 	struct mbuf	*m, *prev;
   3349 	int 		totlen, prevlen;
   3350 
   3351 	prev = NULL;
   3352 	totlen = 0;
   3353 	prevlen = -1;
   3354 
   3355 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3356 		int mlen = m->m_len;
   3357 		int shortfall = 8 - mlen ;
   3358 
   3359 		totlen += mlen;
   3360 		if (mlen == 0) {
   3361 			continue;
   3362 		}
   3363 		if (mlen >= 8)
   3364 			continue;
   3365 
   3366 		/* If we get here, mbuf data is too small for DMA engine.
   3367 		 * Try to fix by shuffling data to prev or next in chain.
   3368 		 * If that fails, do a compacting deep-copy of the whole chain.
   3369 		 */
   3370 
   3371 		/* Internal frag. If fits in prev, copy it there. */
   3372 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3373 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3374 			prev->m_len += mlen;
   3375 			m->m_len = 0;
   3376 			/* XXX stitch chain */
   3377 			prev->m_next = m_free(m);
   3378 			m = prev;
   3379 			continue;
   3380 		}
   3381 		else if (m->m_next != NULL &&
   3382 			     M_TRAILINGSPACE(m) >= shortfall &&
   3383 			     m->m_next->m_len >= (8 + shortfall)) {
   3384 		    /* m is writable and have enough data in next, pull up. */
   3385 
   3386 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3387 			    shortfall);
   3388 			m->m_len += shortfall;
   3389 			m->m_next->m_len -= shortfall;
   3390 			m->m_next->m_data += shortfall;
   3391 		}
   3392 		else if (m->m_next == NULL || 1) {
   3393 		  	/* Got a runt at the very end of the packet.
   3394 			 * borrow data from the tail of the preceding mbuf and
   3395 			 * update its length in-place. (The original data is still
   3396 			 * valid, so we can do this even if prev is not writable.)
   3397 			 */
   3398 
   3399 			/* if we'd make prev a runt, just move all of its data. */
   3400 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3401 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3402 
   3403 			if ((prev->m_len - shortfall) < 8)
   3404 				shortfall = prev->m_len;
   3405 
   3406 #ifdef notyet	/* just do the safe slow thing for now */
   3407 			if (!M_READONLY(m)) {
   3408 				if (M_LEADINGSPACE(m) < shorfall) {
   3409 					void *m_dat;
   3410 					m_dat = (m->m_flags & M_PKTHDR) ?
   3411 					  m->m_pktdat : m->dat;
   3412 					memmove(m_dat, mtod(m, void*), m->m_len);
   3413 					m->m_data = m_dat;
   3414 				    }
   3415 			} else
   3416 #endif	/* just do the safe slow thing */
   3417 			{
   3418 				struct mbuf * n = NULL;
   3419 				int newprevlen = prev->m_len - shortfall;
   3420 
   3421 				MGET(n, M_NOWAIT, MT_DATA);
   3422 				if (n == NULL)
   3423 				   return ENOBUFS;
   3424 				KASSERT(m->m_len + shortfall < MLEN
   3425 					/*,
   3426 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3427 
   3428 				/* first copy the data we're stealing from prev */
   3429 				memcpy(n->m_data, prev->m_data + newprevlen,
   3430 				    shortfall);
   3431 
   3432 				/* update prev->m_len accordingly */
   3433 				prev->m_len -= shortfall;
   3434 
   3435 				/* copy data from runt m */
   3436 				memcpy(n->m_data + shortfall, m->m_data,
   3437 				    m->m_len);
   3438 
   3439 				/* n holds what we stole from prev, plus m */
   3440 				n->m_len = shortfall + m->m_len;
   3441 
   3442 				/* stitch n into chain and free m */
   3443 				n->m_next = m->m_next;
   3444 				prev->m_next = n;
   3445 				/* KASSERT(m->m_next == NULL); */
   3446 				m->m_next = NULL;
   3447 				m_free(m);
   3448 				m = n;	/* for continuing loop */
   3449 			}
   3450 		}
   3451 		prevlen = m->m_len;
   3452 	}
   3453 	return 0;
   3454 }
   3455 
   3456 /*
   3457  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3458  * pointers to descriptors.
   3459  */
   3460 static int
   3461 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3462 {
   3463 	struct bge_tx_bd	*f = NULL;
   3464 	uint32_t		frag, cur;
   3465 	uint16_t		csum_flags = 0;
   3466 	uint16_t		txbd_tso_flags = 0;
   3467 	struct txdmamap_pool_entry *dma;
   3468 	bus_dmamap_t dmamap;
   3469 	int			i = 0;
   3470 	struct m_tag		*mtag;
   3471 	int			use_tso, maxsegsize, error;
   3472 
   3473 	cur = frag = *txidx;
   3474 
   3475 	if (m_head->m_pkthdr.csum_flags) {
   3476 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3477 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3478 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3479 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3480 	}
   3481 
   3482 	/*
   3483 	 * If we were asked to do an outboard checksum, and the NIC
   3484 	 * has the bug where it sometimes adds in the Ethernet padding,
   3485 	 * explicitly pad with zeros so the cksum will be correct either way.
   3486 	 * (For now, do this for all chip versions, until newer
   3487 	 * are confirmed to not require the workaround.)
   3488 	 */
   3489 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3490 #ifdef notyet
   3491 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3492 #endif
   3493 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3494 		goto check_dma_bug;
   3495 
   3496 	if (bge_cksum_pad(m_head) != 0)
   3497 	    return ENOBUFS;
   3498 
   3499 check_dma_bug:
   3500 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3501 		goto doit;
   3502 
   3503 	/*
   3504 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3505 	 * less than eight bytes.  If we encounter a teeny mbuf
   3506 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3507 	 */
   3508 	if (bge_compact_dma_runt(m_head) != 0)
   3509 		return ENOBUFS;
   3510 
   3511 doit:
   3512 	dma = SLIST_FIRST(&sc->txdma_list);
   3513 	if (dma == NULL)
   3514 		return ENOBUFS;
   3515 	dmamap = dma->dmamap;
   3516 
   3517 	/*
   3518 	 * Set up any necessary TSO state before we start packing...
   3519 	 */
   3520 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3521 	if (!use_tso) {
   3522 		maxsegsize = 0;
   3523 	} else {	/* TSO setup */
   3524 		unsigned  mss;
   3525 		struct ether_header *eh;
   3526 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3527 		struct mbuf * m0 = m_head;
   3528 		struct ip *ip;
   3529 		struct tcphdr *th;
   3530 		int iphl, hlen;
   3531 
   3532 		/*
   3533 		 * XXX It would be nice if the mbuf pkthdr had offset
   3534 		 * fields for the protocol headers.
   3535 		 */
   3536 
   3537 		eh = mtod(m0, struct ether_header *);
   3538 		switch (htons(eh->ether_type)) {
   3539 		case ETHERTYPE_IP:
   3540 			offset = ETHER_HDR_LEN;
   3541 			break;
   3542 
   3543 		case ETHERTYPE_VLAN:
   3544 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3545 			break;
   3546 
   3547 		default:
   3548 			/*
   3549 			 * Don't support this protocol or encapsulation.
   3550 			 */
   3551 			return ENOBUFS;
   3552 		}
   3553 
   3554 		/*
   3555 		 * TCP/IP headers are in the first mbuf; we can do
   3556 		 * this the easy way.
   3557 		 */
   3558 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3559 		hlen = iphl + offset;
   3560 		if (__predict_false(m0->m_len <
   3561 				    (hlen + sizeof(struct tcphdr)))) {
   3562 
   3563 			aprint_debug_dev(sc->bge_dev,
   3564 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3565 			    "not handled yet\n",
   3566 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3567 #ifdef NOTYET
   3568 			/*
   3569 			 * XXX jonathan (at) NetBSD.org: untested.
   3570 			 * how to force  this branch to be taken?
   3571 			 */
   3572 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3573 
   3574 			m_copydata(m0, offset, sizeof(ip), &ip);
   3575 			m_copydata(m0, hlen, sizeof(th), &th);
   3576 
   3577 			ip.ip_len = 0;
   3578 
   3579 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3580 			    sizeof(ip.ip_len), &ip.ip_len);
   3581 
   3582 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3583 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3584 
   3585 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3586 			    sizeof(th.th_sum), &th.th_sum);
   3587 
   3588 			hlen += th.th_off << 2;
   3589 			iptcp_opt_words	= hlen;
   3590 #else
   3591 			/*
   3592 			 * if_wm "hard" case not yet supported, can we not
   3593 			 * mandate it out of existence?
   3594 			 */
   3595 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3596 
   3597 			return ENOBUFS;
   3598 #endif
   3599 		} else {
   3600 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3601 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3602 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3603 
   3604 			/* Total IP/TCP options, in 32-bit words */
   3605 			iptcp_opt_words = (ip_tcp_hlen
   3606 					   - sizeof(struct tcphdr)
   3607 					   - sizeof(struct ip)) >> 2;
   3608 		}
   3609 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3610 			th->th_sum = 0;
   3611 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3612 		} else {
   3613 			/*
   3614 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3615 			 * Requires TSO firmware patch for 5701/5703/5704.
   3616 			 */
   3617 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3618 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3619 		}
   3620 
   3621 		mss = m_head->m_pkthdr.segsz;
   3622 		txbd_tso_flags |=
   3623 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3624 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3625 
   3626 		/*
   3627 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3628 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3629 		 * the NIC copies 40 bytes of IP/TCP header from the
   3630 		 * supplied header into the IP/TCP header portion of
   3631 		 * each post-TSO-segment. If the supplied packet has IP or
   3632 		 * TCP options, we need to tell the NIC to copy those extra
   3633 		 * bytes into each  post-TSO header, in addition to the normal
   3634 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3635 		 * Unfortunately, the driver encoding of option length
   3636 		 * varies across different ASIC families.
   3637 		 */
   3638 		tcp_seg_flags = 0;
   3639 		if (iptcp_opt_words) {
   3640 			if (BGE_IS_5705_OR_BEYOND(sc)) {
   3641 				tcp_seg_flags =
   3642 					iptcp_opt_words << 11;
   3643 			} else {
   3644 				txbd_tso_flags |=
   3645 					iptcp_opt_words << 12;
   3646 			}
   3647 		}
   3648 		maxsegsize = mss | tcp_seg_flags;
   3649 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3650 
   3651 	}	/* TSO setup */
   3652 
   3653 	/*
   3654 	 * Start packing the mbufs in this chain into
   3655 	 * the fragment pointers. Stop when we run out
   3656 	 * of fragments or hit the end of the mbuf chain.
   3657 	 */
   3658 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3659 	    BUS_DMA_NOWAIT);
   3660 	if (error)
   3661 		return ENOBUFS;
   3662 	/*
   3663 	 * Sanity check: avoid coming within 16 descriptors
   3664 	 * of the end of the ring.
   3665 	 */
   3666 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3667 		BGE_TSO_PRINTF(("%s: "
   3668 		    " dmamap_load_mbuf too close to ring wrap\n",
   3669 		    device_xname(sc->bge_dev)));
   3670 		goto fail_unload;
   3671 	}
   3672 
   3673 	mtag = sc->ethercom.ec_nvlans ?
   3674 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3675 
   3676 
   3677 	/* Iterate over dmap-map fragments. */
   3678 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3679 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3680 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3681 			break;
   3682 
   3683 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3684 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3685 
   3686 		/*
   3687 		 * For 5751 and follow-ons, for TSO we must turn
   3688 		 * off checksum-assist flag in the tx-descr, and
   3689 		 * supply the ASIC-revision-specific encoding
   3690 		 * of TSO flags and segsize.
   3691 		 */
   3692 		if (use_tso) {
   3693 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3694 				f->bge_rsvd = maxsegsize;
   3695 				f->bge_flags = csum_flags | txbd_tso_flags;
   3696 			} else {
   3697 				f->bge_rsvd = 0;
   3698 				f->bge_flags =
   3699 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3700 			}
   3701 		} else {
   3702 			f->bge_rsvd = 0;
   3703 			f->bge_flags = csum_flags;
   3704 		}
   3705 
   3706 		if (mtag != NULL) {
   3707 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3708 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3709 		} else {
   3710 			f->bge_vlan_tag = 0;
   3711 		}
   3712 		cur = frag;
   3713 		BGE_INC(frag, BGE_TX_RING_CNT);
   3714 	}
   3715 
   3716 	if (i < dmamap->dm_nsegs) {
   3717 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3718 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3719 		goto fail_unload;
   3720 	}
   3721 
   3722 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3723 	    BUS_DMASYNC_PREWRITE);
   3724 
   3725 	if (frag == sc->bge_tx_saved_considx) {
   3726 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3727 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3728 
   3729 		goto fail_unload;
   3730 	}
   3731 
   3732 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3733 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3734 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3735 	sc->txdma[cur] = dma;
   3736 	sc->bge_txcnt += dmamap->dm_nsegs;
   3737 
   3738 	*txidx = frag;
   3739 
   3740 	return 0;
   3741 
   3742 fail_unload:
   3743 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3744 
   3745 	return ENOBUFS;
   3746 }
   3747 
   3748 /*
   3749  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3750  * to the mbuf data regions directly in the transmit descriptors.
   3751  */
   3752 static void
   3753 bge_start(struct ifnet *ifp)
   3754 {
   3755 	struct bge_softc *sc;
   3756 	struct mbuf *m_head = NULL;
   3757 	uint32_t prodidx;
   3758 	int pkts = 0;
   3759 
   3760 	sc = ifp->if_softc;
   3761 
   3762 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3763 		return;
   3764 
   3765 	prodidx = sc->bge_tx_prodidx;
   3766 
   3767 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3768 		IFQ_POLL(&ifp->if_snd, m_head);
   3769 		if (m_head == NULL)
   3770 			break;
   3771 
   3772 #if 0
   3773 		/*
   3774 		 * XXX
   3775 		 * safety overkill.  If this is a fragmented packet chain
   3776 		 * with delayed TCP/UDP checksums, then only encapsulate
   3777 		 * it if we have enough descriptors to handle the entire
   3778 		 * chain at once.
   3779 		 * (paranoia -- may not actually be needed)
   3780 		 */
   3781 		if (m_head->m_flags & M_FIRSTFRAG &&
   3782 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3783 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3784 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3785 				ifp->if_flags |= IFF_OACTIVE;
   3786 				break;
   3787 			}
   3788 		}
   3789 #endif
   3790 
   3791 		/*
   3792 		 * Pack the data into the transmit ring. If we
   3793 		 * don't have room, set the OACTIVE flag and wait
   3794 		 * for the NIC to drain the ring.
   3795 		 */
   3796 		if (bge_encap(sc, m_head, &prodidx)) {
   3797 			ifp->if_flags |= IFF_OACTIVE;
   3798 			break;
   3799 		}
   3800 
   3801 		/* now we are committed to transmit the packet */
   3802 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3803 		pkts++;
   3804 
   3805 		/*
   3806 		 * If there's a BPF listener, bounce a copy of this frame
   3807 		 * to him.
   3808 		 */
   3809 		if (ifp->if_bpf)
   3810 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
   3811 	}
   3812 	if (pkts == 0)
   3813 		return;
   3814 
   3815 	/* Transmit */
   3816 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3817 	/* 5700 b2 errata */
   3818 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   3819 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3820 
   3821 	sc->bge_tx_prodidx = prodidx;
   3822 
   3823 	/*
   3824 	 * Set a timeout in case the chip goes out to lunch.
   3825 	 */
   3826 	ifp->if_timer = 5;
   3827 }
   3828 
   3829 static int
   3830 bge_init(struct ifnet *ifp)
   3831 {
   3832 	struct bge_softc *sc = ifp->if_softc;
   3833 	const uint16_t *m;
   3834 	int s, error = 0;
   3835 
   3836 	s = splnet();
   3837 
   3838 	ifp = &sc->ethercom.ec_if;
   3839 
   3840 	/* Cancel pending I/O and flush buffers. */
   3841 	bge_stop(ifp, 0);
   3842 	bge_reset(sc);
   3843 	bge_chipinit(sc);
   3844 
   3845 	/*
   3846 	 * Init the various state machines, ring
   3847 	 * control blocks and firmware.
   3848 	 */
   3849 	error = bge_blockinit(sc);
   3850 	if (error != 0) {
   3851 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   3852 		    error);
   3853 		splx(s);
   3854 		return error;
   3855 	}
   3856 
   3857 	ifp = &sc->ethercom.ec_if;
   3858 
   3859 	/* Specify MTU. */
   3860 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3861 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   3862 
   3863 	/* Load our MAC address. */
   3864 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   3865 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3866 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3867 
   3868 	/* Enable or disable promiscuous mode as needed. */
   3869 	if (ifp->if_flags & IFF_PROMISC) {
   3870 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3871 	} else {
   3872 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3873 	}
   3874 
   3875 	/* Program multicast filter. */
   3876 	bge_setmulti(sc);
   3877 
   3878 	/* Init RX ring. */
   3879 	bge_init_rx_ring_std(sc);
   3880 
   3881 	/*
   3882 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   3883 	 * memory to insure that the chip has in fact read the first
   3884 	 * entry of the ring.
   3885 	 */
   3886 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   3887 		uint32_t		v, i;
   3888 		for (i = 0; i < 10; i++) {
   3889 			DELAY(20);
   3890 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   3891 			if (v == (MCLBYTES - ETHER_ALIGN))
   3892 				break;
   3893 		}
   3894 		if (i == 10)
   3895 			aprint_error_dev(sc->bge_dev,
   3896 			    "5705 A0 chip failed to load RX ring\n");
   3897 	}
   3898 
   3899 	/* Init jumbo RX ring. */
   3900 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3901 		bge_init_rx_ring_jumbo(sc);
   3902 
   3903 	/* Init our RX return ring index */
   3904 	sc->bge_rx_saved_considx = 0;
   3905 
   3906 	/* Init TX ring. */
   3907 	bge_init_tx_ring(sc);
   3908 
   3909 	/* Turn on transmitter */
   3910 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3911 
   3912 	/* Turn on receiver */
   3913 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3914 
   3915 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3916 
   3917 	/* Tell firmware we're alive. */
   3918 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3919 
   3920 	/* Enable host interrupts. */
   3921 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3922 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3923 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3924 
   3925 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   3926 		goto out;
   3927 
   3928 	ifp->if_flags |= IFF_RUNNING;
   3929 	ifp->if_flags &= ~IFF_OACTIVE;
   3930 
   3931 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3932 
   3933 out:
   3934 	splx(s);
   3935 
   3936 	return error;
   3937 }
   3938 
   3939 /*
   3940  * Set media options.
   3941  */
   3942 static int
   3943 bge_ifmedia_upd(struct ifnet *ifp)
   3944 {
   3945 	struct bge_softc *sc = ifp->if_softc;
   3946 	struct mii_data *mii = &sc->bge_mii;
   3947 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3948 	int rc;
   3949 
   3950 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3951 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3952 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3953 			return EINVAL;
   3954 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   3955 		case IFM_AUTO:
   3956 			/*
   3957 			 * The BCM5704 ASIC appears to have a special
   3958 			 * mechanism for programming the autoneg
   3959 			 * advertisement registers in TBI mode.
   3960 			 */
   3961 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3962 				uint32_t sgdig;
   3963 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   3964 				if (sgdig & BGE_SGDIGSTS_DONE) {
   3965 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   3966 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   3967 					sgdig |= BGE_SGDIGCFG_AUTO |
   3968 					    BGE_SGDIGCFG_PAUSE_CAP |
   3969 					    BGE_SGDIGCFG_ASYM_PAUSE;
   3970 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   3971 					    sgdig | BGE_SGDIGCFG_SEND);
   3972 					DELAY(5);
   3973 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   3974 				}
   3975 			}
   3976 			break;
   3977 		case IFM_1000_SX:
   3978 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3979 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3980 				    BGE_MACMODE_HALF_DUPLEX);
   3981 			} else {
   3982 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3983 				    BGE_MACMODE_HALF_DUPLEX);
   3984 			}
   3985 			break;
   3986 		default:
   3987 			return EINVAL;
   3988 		}
   3989 		/* XXX 802.3x flow control for 1000BASE-SX */
   3990 		return 0;
   3991 	}
   3992 
   3993 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3994 	if ((rc = mii_mediachg(mii)) == ENXIO)
   3995 		return 0;
   3996 
   3997 	/*
   3998 	 * Force an interrupt so that we will call bge_link_upd
   3999 	 * if needed and clear any pending link state attention.
   4000 	 * Without this we are not getting any further interrupts
   4001 	 * for link state changes and thus will not UP the link and
   4002 	 * not be able to send in bge_start. The only way to get
   4003 	 * things working was to receive a packet and get a RX intr.
   4004 	 */
   4005 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4006 	    sc->bge_flags & BGE_IS_5788)
   4007 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4008 	else
   4009 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4010 
   4011 	return rc;
   4012 }
   4013 
   4014 /*
   4015  * Report current media status.
   4016  */
   4017 static void
   4018 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4019 {
   4020 	struct bge_softc *sc = ifp->if_softc;
   4021 	struct mii_data *mii = &sc->bge_mii;
   4022 
   4023 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4024 		ifmr->ifm_status = IFM_AVALID;
   4025 		ifmr->ifm_active = IFM_ETHER;
   4026 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4027 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4028 			ifmr->ifm_status |= IFM_ACTIVE;
   4029 		ifmr->ifm_active |= IFM_1000_SX;
   4030 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4031 			ifmr->ifm_active |= IFM_HDX;
   4032 		else
   4033 			ifmr->ifm_active |= IFM_FDX;
   4034 		return;
   4035 	}
   4036 
   4037 	mii_pollstat(mii);
   4038 	ifmr->ifm_status = mii->mii_media_status;
   4039 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4040 	    sc->bge_flowflags;
   4041 }
   4042 
   4043 static int
   4044 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4045 {
   4046 	struct bge_softc *sc = ifp->if_softc;
   4047 	struct ifreq *ifr = (struct ifreq *) data;
   4048 	int s, error = 0;
   4049 	struct mii_data *mii;
   4050 
   4051 	s = splnet();
   4052 
   4053 	switch (command) {
   4054 	case SIOCSIFFLAGS:
   4055 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4056 			break;
   4057 		if (ifp->if_flags & IFF_UP) {
   4058 			/*
   4059 			 * If only the state of the PROMISC flag changed,
   4060 			 * then just use the 'set promisc mode' command
   4061 			 * instead of reinitializing the entire NIC. Doing
   4062 			 * a full re-init means reloading the firmware and
   4063 			 * waiting for it to start up, which may take a
   4064 			 * second or two.
   4065 			 */
   4066 			if (ifp->if_flags & IFF_RUNNING &&
   4067 			    ifp->if_flags & IFF_PROMISC &&
   4068 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4069 				BGE_SETBIT(sc, BGE_RX_MODE,
   4070 				    BGE_RXMODE_RX_PROMISC);
   4071 			} else if (ifp->if_flags & IFF_RUNNING &&
   4072 			    !(ifp->if_flags & IFF_PROMISC) &&
   4073 			    sc->bge_if_flags & IFF_PROMISC) {
   4074 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4075 				    BGE_RXMODE_RX_PROMISC);
   4076 			} else if (!(sc->bge_if_flags & IFF_UP))
   4077 				bge_init(ifp);
   4078 		} else {
   4079 			if (ifp->if_flags & IFF_RUNNING)
   4080 				bge_stop(ifp, 1);
   4081 		}
   4082 		sc->bge_if_flags = ifp->if_flags;
   4083 		error = 0;
   4084 		break;
   4085 	case SIOCSIFMEDIA:
   4086 		/* XXX Flow control is not supported for 1000BASE-SX */
   4087 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4088 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4089 			sc->bge_flowflags = 0;
   4090 		}
   4091 
   4092 		/* Flow control requires full-duplex mode. */
   4093 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4094 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4095 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4096 		}
   4097 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4098 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4099 				/* We can do both TXPAUSE and RXPAUSE. */
   4100 				ifr->ifr_media |=
   4101 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4102 			}
   4103 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4104 		}
   4105 		/* FALLTHROUGH */
   4106 	case SIOCGIFMEDIA:
   4107 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4108 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4109 			    command);
   4110 		} else {
   4111 			mii = &sc->bge_mii;
   4112 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4113 			    command);
   4114 		}
   4115 		break;
   4116 	default:
   4117 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4118 			break;
   4119 
   4120 		error = 0;
   4121 
   4122 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4123 			;
   4124 		else if (ifp->if_flags & IFF_RUNNING)
   4125 			bge_setmulti(sc);
   4126 		break;
   4127 	}
   4128 
   4129 	splx(s);
   4130 
   4131 	return error;
   4132 }
   4133 
   4134 static void
   4135 bge_watchdog(struct ifnet *ifp)
   4136 {
   4137 	struct bge_softc *sc;
   4138 
   4139 	sc = ifp->if_softc;
   4140 
   4141 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4142 
   4143 	ifp->if_flags &= ~IFF_RUNNING;
   4144 	bge_init(ifp);
   4145 
   4146 	ifp->if_oerrors++;
   4147 }
   4148 
   4149 static void
   4150 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4151 {
   4152 	int i;
   4153 
   4154 	BGE_CLRBIT(sc, reg, bit);
   4155 
   4156 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4157 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4158 			return;
   4159 		delay(100);
   4160 		if (sc->bge_flags & BGE_PCIE)
   4161 		  DELAY(1000);
   4162 	}
   4163 
   4164 	/*
   4165 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4166 	 * on some environment (and once after boot?)
   4167 	 */
   4168 	if (reg != BGE_SRS_MODE)
   4169 		aprint_error_dev(sc->bge_dev,
   4170 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4171 		    (u_long)reg, bit);
   4172 }
   4173 
   4174 /*
   4175  * Stop the adapter and free any mbufs allocated to the
   4176  * RX and TX lists.
   4177  */
   4178 static void
   4179 bge_stop(struct ifnet *ifp, int disable)
   4180 {
   4181 	struct bge_softc *sc = ifp->if_softc;
   4182 
   4183 	callout_stop(&sc->bge_timeout);
   4184 
   4185 	/*
   4186 	 * Disable all of the receiver blocks
   4187 	 */
   4188 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4189 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4190 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4191 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4192 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4193 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4194 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4195 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4196 
   4197 	/*
   4198 	 * Disable all of the transmit blocks
   4199 	 */
   4200 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4201 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4202 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4203 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4204 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4205 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4206 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4207 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4208 
   4209 	/*
   4210 	 * Shut down all of the memory managers and related
   4211 	 * state machines.
   4212 	 */
   4213 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4214 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4215 	if (!(BGE_IS_5705_OR_BEYOND(sc)))
   4216 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4217 
   4218 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4219 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4220 
   4221 	if (!(BGE_IS_5705_OR_BEYOND(sc))) {
   4222 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4223 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4224 	}
   4225 
   4226 	/* Disable host interrupts. */
   4227 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4228 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4229 
   4230 	/*
   4231 	 * Tell firmware we're shutting down.
   4232 	 */
   4233 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4234 
   4235 	/* Free the RX lists. */
   4236 	bge_free_rx_ring_std(sc);
   4237 
   4238 	/* Free jumbo RX list. */
   4239 	bge_free_rx_ring_jumbo(sc);
   4240 
   4241 	/* Free TX buffers. */
   4242 	bge_free_tx_ring(sc);
   4243 
   4244 	/*
   4245 	 * Isolate/power down the PHY.
   4246 	 */
   4247 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4248 		mii_down(&sc->bge_mii);
   4249 
   4250 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4251 
   4252 	/* Clear MAC's link state (PHY may still have link UP). */
   4253 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4254 
   4255 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4256 }
   4257 
   4258 static void
   4259 bge_link_upd(struct bge_softc *sc)
   4260 {
   4261 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4262 	struct mii_data *mii = &sc->bge_mii;
   4263 	uint32_t status;
   4264 	int link;
   4265 
   4266 	/* Clear 'pending link event' flag */
   4267 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4268 
   4269 	/*
   4270 	 * Process link state changes.
   4271 	 * Grrr. The link status word in the status block does
   4272 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4273 	 * according to all available information. Hence, we have
   4274 	 * to enable MII interrupts in order to properly obtain
   4275 	 * async link changes. Unfortunately, this also means that
   4276 	 * we have to read the MAC status register to detect link
   4277 	 * changes, thereby adding an additional register access to
   4278 	 * the interrupt handler.
   4279 	 */
   4280 
   4281 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4282 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4283 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4284 			mii_pollstat(mii);
   4285 
   4286 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4287 			    mii->mii_media_status & IFM_ACTIVE &&
   4288 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4289 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4290 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4291 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4292 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4293 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4294 
   4295 			/* Clear the interrupt */
   4296 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4297 			    BGE_EVTENB_MI_INTERRUPT);
   4298 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4299 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4300 			    BRGPHY_INTRS);
   4301 		}
   4302 		return;
   4303 	}
   4304 
   4305 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4306 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4307 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4308 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4309 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4310 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4311 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4312 					    BGE_MACMODE_TBI_SEND_CFGS);
   4313 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4314 				if_link_state_change(ifp, LINK_STATE_UP);
   4315 			}
   4316 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4317 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4318 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4319 		}
   4320         /*
   4321 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4322 	 * This should not happen since mii callouts are locked now, but
   4323 	 * we keep this check for debug.
   4324 	 */
   4325 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4326 		/*
   4327 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4328 		 * bit in status word always set. Workaround this bug by
   4329 		 * reading PHY link status directly.
   4330 		 */
   4331 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4332 		    BGE_STS_LINK : 0;
   4333 
   4334 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4335 			mii_pollstat(mii);
   4336 
   4337 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4338 			    mii->mii_media_status & IFM_ACTIVE &&
   4339 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4340 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4341 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4342 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4343 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4344 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4345 		}
   4346 	}
   4347 
   4348 	/* Clear the attention */
   4349 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4350 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4351 	    BGE_MACSTAT_LINK_CHANGED);
   4352 }
   4353 
   4354 static int
   4355 sysctl_bge_verify(SYSCTLFN_ARGS)
   4356 {
   4357 	int error, t;
   4358 	struct sysctlnode node;
   4359 
   4360 	node = *rnode;
   4361 	t = *(int*)rnode->sysctl_data;
   4362 	node.sysctl_data = &t;
   4363 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4364 	if (error || newp == NULL)
   4365 		return error;
   4366 
   4367 #if 0
   4368 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4369 	    node.sysctl_num, rnode->sysctl_num));
   4370 #endif
   4371 
   4372 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4373 		if (t < 0 || t >= NBGE_RX_THRESH)
   4374 			return EINVAL;
   4375 		bge_update_all_threshes(t);
   4376 	} else
   4377 		return EINVAL;
   4378 
   4379 	*(int*)rnode->sysctl_data = t;
   4380 
   4381 	return 0;
   4382 }
   4383 
   4384 /*
   4385  * Set up sysctl(3) MIB, hw.bge.*.
   4386  *
   4387  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4388  */
   4389 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4390 {
   4391 	int rc, bge_root_num;
   4392 	const struct sysctlnode *node;
   4393 
   4394 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4395 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4396 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4397 		goto err;
   4398 	}
   4399 
   4400 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4401 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4402 	    SYSCTL_DESCR("BGE interface controls"),
   4403 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4404 		goto err;
   4405 	}
   4406 
   4407 	bge_root_num = node->sysctl_num;
   4408 
   4409 	/* BGE Rx interrupt mitigation level */
   4410 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4411 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4412 	    CTLTYPE_INT, "rx_lvl",
   4413 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4414 	    sysctl_bge_verify, 0,
   4415 	    &bge_rx_thresh_lvl,
   4416 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4417 	    CTL_EOL)) != 0) {
   4418 		goto err;
   4419 	}
   4420 
   4421 	bge_rxthresh_nodenum = node->sysctl_num;
   4422 
   4423 	return;
   4424 
   4425 err:
   4426 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4427 }
   4428 
   4429 static int
   4430 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4431 {
   4432 	uint32_t mac_addr;
   4433 
   4434 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4435 	if ((mac_addr >> 16) == 0x484b) {
   4436 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4437 		ether_addr[1] = (uint8_t)mac_addr;
   4438 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4439 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4440 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4441 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4442 		ether_addr[5] = (uint8_t)mac_addr;
   4443 		return 0;
   4444 	}
   4445 	return 1;
   4446 }
   4447 
   4448 static int
   4449 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4450 {
   4451 	int mac_offset = BGE_EE_MAC_OFFSET;
   4452 
   4453 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4454 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4455 	}
   4456 
   4457 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4458 	    ETHER_ADDR_LEN));
   4459 }
   4460 
   4461 static int
   4462 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4463 {
   4464 
   4465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4466 		return 1;
   4467 
   4468 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4469 	   ETHER_ADDR_LEN));
   4470 }
   4471 
   4472 static int
   4473 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4474 {
   4475 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4476 		/* NOTE: Order is critical */
   4477 		bge_get_eaddr_mem,
   4478 		bge_get_eaddr_nvram,
   4479 		bge_get_eaddr_eeprom,
   4480 		NULL
   4481 	};
   4482 	const bge_eaddr_fcn_t *func;
   4483 
   4484 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4485 		if ((*func)(sc, eaddr) == 0)
   4486 			break;
   4487 	}
   4488 	return (*func == NULL ? ENXIO : 0);
   4489 }
   4490