Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.175
      1 /*	$NetBSD: if_bge.c,v 1.175 2010/01/24 23:27:39 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.175 2010/01/24 23:27:39 martin Exp $");
     83 
     84 #include "vlan.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/in_systm.h>
    110 #include <netinet/in_var.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 /* Headers for TCP  Segmentation Offload (TSO) */
    115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117 #include <netinet/ip.h>			/* for struct ip */
    118 #include <netinet/tcp.h>		/* for struct tcphdr */
    119 
    120 
    121 #include <net/bpf.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/mii/mii.h>
    128 #include <dev/mii/miivar.h>
    129 #include <dev/mii/miidevs.h>
    130 #include <dev/mii/brgphyreg.h>
    131 
    132 #include <dev/pci/if_bgereg.h>
    133 #include <dev/pci/if_bgevar.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 #include <prop/proplib.h>
    137 
    138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    139 
    140 
    141 /*
    142  * Tunable thresholds for rx-side bge interrupt mitigation.
    143  */
    144 
    145 /*
    146  * The pairs of values below were obtained from empirical measurement
    147  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    148  * interrupt for every N packets received, where N is, approximately,
    149  * the second value (rx_max_bds) in each pair.  The values are chosen
    150  * such that moving from one pair to the succeeding pair was observed
    151  * to roughly halve interrupt rate under sustained input packet load.
    152  * The values were empirically chosen to avoid overflowing internal
    153  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    154  * results in internal wrapping and higher interrupt rates.
    155  * The limit of 46 frames was chosen to match NFS workloads.
    156  *
    157  * These values also work well on bcm5701, bcm5704C, and (less
    158  * tested) bcm5703.  On other chipsets, (including the Altima chip
    159  * family), the larger values may overflow internal chip limits,
    160  * leading to increasing interrupt rates rather than lower interrupt
    161  * rates.
    162  *
    163  * Applications using heavy interrupt mitigation (interrupting every
    164  * 32 or 46 frames) in both directions may need to increase the TCP
    165  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    166  * full link bandwidth, due to ACKs and window updates lingering
    167  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    168  */
    169 static const struct bge_load_rx_thresh {
    170 	int rx_ticks;
    171 	int rx_max_bds; }
    172 bge_rx_threshes[] = {
    173 	{ 32,   2 },
    174 	{ 50,   4 },
    175 	{ 100,  8 },
    176 	{ 192, 16 },
    177 	{ 416, 32 },
    178 	{ 598, 46 }
    179 };
    180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    181 
    182 /* XXX patchable; should be sysctl'able */
    183 static int	bge_auto_thresh = 1;
    184 static int	bge_rx_thresh_lvl;
    185 
    186 static int	bge_rxthresh_nodenum;
    187 
    188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    189 
    190 static int	bge_probe(device_t, cfdata_t, void *);
    191 static void	bge_attach(device_t, device_t, void *);
    192 static void	bge_release_resources(struct bge_softc *);
    193 static void	bge_txeof(struct bge_softc *);
    194 static void	bge_rxeof(struct bge_softc *);
    195 
    196 static int	bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    197 static int 	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    198 static int 	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    199 static int 	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    200 static int 	bge_get_eaddr(struct bge_softc *, uint8_t[]);
    201 
    202 static void	bge_tick(void *);
    203 static void	bge_stats_update(struct bge_softc *);
    204 static void	bge_stats_update_regs(struct bge_softc *);
    205 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int	bge_intr(void *);
    208 static void	bge_start(struct ifnet *);
    209 static int	bge_ioctl(struct ifnet *, u_long, void *);
    210 static int	bge_init(struct ifnet *);
    211 static void	bge_stop(struct ifnet *, int);
    212 static void	bge_watchdog(struct ifnet *);
    213 static int	bge_ifmedia_upd(struct ifnet *);
    214 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static void	bge_setmulti(struct bge_softc *);
    217 
    218 static void	bge_handle_events(struct bge_softc *);
    219 static int	bge_alloc_jumbo_mem(struct bge_softc *);
    220 #if 0 /* XXX */
    221 static void	bge_free_jumbo_mem(struct bge_softc *);
    222 #endif
    223 static void	*bge_jalloc(struct bge_softc *);
    224 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
    225 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    226 			       bus_dmamap_t);
    227 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    228 static int	bge_init_rx_ring_std(struct bge_softc *);
    229 static void	bge_free_rx_ring_std(struct bge_softc *);
    230 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
    231 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
    232 static void	bge_free_tx_ring(struct bge_softc *);
    233 static int	bge_init_tx_ring(struct bge_softc *);
    234 
    235 static int	bge_chipinit(struct bge_softc *);
    236 static int	bge_blockinit(struct bge_softc *);
    237 static int	bge_setpowerstate(struct bge_softc *, int);
    238 
    239 static void	bge_reset(struct bge_softc *);
    240 static void	bge_link_upd(struct bge_softc *);
    241 
    242 #ifdef BGE_DEBUG
    243 #define DPRINTF(x)	if (bgedebug) printf x
    244 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    245 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    246 int	bgedebug = 0;
    247 int	bge_tso_debug = 0;
    248 void		bge_debug_info(struct bge_softc *);
    249 #else
    250 #define DPRINTF(x)
    251 #define DPRINTFN(n,x)
    252 #define BGE_TSO_PRINTF(x)
    253 #endif
    254 
    255 #ifdef BGE_EVENT_COUNTERS
    256 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    257 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    258 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    259 #else
    260 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    261 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    262 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    263 #endif
    264 
    265 static const struct bge_product {
    266 	pci_vendor_id_t		bp_vendor;
    267 	pci_product_id_t	bp_product;
    268 	const char		*bp_name;
    269 } bge_products[] = {
    270 	/*
    271 	 * The BCM5700 documentation seems to indicate that the hardware
    272 	 * still has the Alteon vendor ID burned into it, though it
    273 	 * should always be overridden by the value in the EEPROM.  We'll
    274 	 * check for it anyway.
    275 	 */
    276 	{ PCI_VENDOR_ALTEON,
    277 	  PCI_PRODUCT_ALTEON_BCM5700,
    278 	  "Broadcom BCM5700 Gigabit Ethernet",
    279 	  },
    280 	{ PCI_VENDOR_ALTEON,
    281 	  PCI_PRODUCT_ALTEON_BCM5701,
    282 	  "Broadcom BCM5701 Gigabit Ethernet",
    283 	  },
    284 	{ PCI_VENDOR_ALTIMA,
    285 	  PCI_PRODUCT_ALTIMA_AC1000,
    286 	  "Altima AC1000 Gigabit Ethernet",
    287 	  },
    288 	{ PCI_VENDOR_ALTIMA,
    289 	  PCI_PRODUCT_ALTIMA_AC1001,
    290 	  "Altima AC1001 Gigabit Ethernet",
    291 	   },
    292 	{ PCI_VENDOR_ALTIMA,
    293 	  PCI_PRODUCT_ALTIMA_AC9100,
    294 	  "Altima AC9100 Gigabit Ethernet",
    295 	  },
    296 	{ PCI_VENDOR_BROADCOM,
    297 	  PCI_PRODUCT_BROADCOM_BCM5700,
    298 	  "Broadcom BCM5700 Gigabit Ethernet",
    299 	  },
    300 	{ PCI_VENDOR_BROADCOM,
    301 	  PCI_PRODUCT_BROADCOM_BCM5701,
    302 	  "Broadcom BCM5701 Gigabit Ethernet",
    303 	  },
    304 	{ PCI_VENDOR_BROADCOM,
    305 	  PCI_PRODUCT_BROADCOM_BCM5702,
    306 	  "Broadcom BCM5702 Gigabit Ethernet",
    307 	  },
    308 	{ PCI_VENDOR_BROADCOM,
    309 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    310 	  "Broadcom BCM5702X Gigabit Ethernet" },
    311 	{ PCI_VENDOR_BROADCOM,
    312 	  PCI_PRODUCT_BROADCOM_BCM5703,
    313 	  "Broadcom BCM5703 Gigabit Ethernet",
    314 	  },
    315 	{ PCI_VENDOR_BROADCOM,
    316 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    317 	  "Broadcom BCM5703X Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    321 	  "Broadcom BCM5703 Gigabit Ethernet",
    322 	  },
    323    	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    325 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    326 	  },
    327    	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    329 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    330 	  },
    331    	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5705,
    333 	  "Broadcom BCM5705 Gigabit Ethernet",
    334 	  },
    335    	{ PCI_VENDOR_BROADCOM,
    336 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    337 	  "Broadcom BCM5705F Gigabit Ethernet",
    338 	  },
    339    	{ PCI_VENDOR_BROADCOM,
    340 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    341 	  "Broadcom BCM5705K Gigabit Ethernet",
    342 	  },
    343    	{ PCI_VENDOR_BROADCOM,
    344 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    345 	  "Broadcom BCM5705M Gigabit Ethernet",
    346 	  },
    347    	{ PCI_VENDOR_BROADCOM,
    348 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    349 	  "Broadcom BCM5705M Gigabit Ethernet",
    350 	  },
    351 	{ PCI_VENDOR_BROADCOM,
    352 	  PCI_PRODUCT_BROADCOM_BCM5714,
    353 	  "Broadcom BCM5714 Gigabit Ethernet",
    354 	  },
    355 	{ PCI_VENDOR_BROADCOM,
    356 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    357 	  "Broadcom BCM5714S Gigabit Ethernet",
    358 	  },
    359 	{ PCI_VENDOR_BROADCOM,
    360 	  PCI_PRODUCT_BROADCOM_BCM5715,
    361 	  "Broadcom BCM5715 Gigabit Ethernet",
    362 	  },
    363 	{ PCI_VENDOR_BROADCOM,
    364 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    365 	  "Broadcom BCM5715S Gigabit Ethernet",
    366 	  },
    367 	{ PCI_VENDOR_BROADCOM,
    368 	  PCI_PRODUCT_BROADCOM_BCM5717,
    369 	  "Broadcom BCM5717 Gigabit Ethernet",
    370 	  },
    371 	{ PCI_VENDOR_BROADCOM,
    372 	  PCI_PRODUCT_BROADCOM_BCM5718,
    373 	  "Broadcom BCM5718 Gigabit Ethernet",
    374 	  },
    375 	{ PCI_VENDOR_BROADCOM,
    376 	  PCI_PRODUCT_BROADCOM_BCM5720,
    377 	  "Broadcom BCM5720 Gigabit Ethernet",
    378 	  },
    379 	{ PCI_VENDOR_BROADCOM,
    380 	  PCI_PRODUCT_BROADCOM_BCM5721,
    381 	  "Broadcom BCM5721 Gigabit Ethernet",
    382 	  },
    383 	{ PCI_VENDOR_BROADCOM,
    384 	  PCI_PRODUCT_BROADCOM_BCM5722,
    385 	  "Broadcom BCM5722 Gigabit Ethernet",
    386 	  },
    387 	{ PCI_VENDOR_BROADCOM,
    388 	  PCI_PRODUCT_BROADCOM_BCM5723,
    389 	  "Broadcom BCM5723 Gigabit Ethernet",
    390 	  },
    391 	{ PCI_VENDOR_BROADCOM,
    392 	  PCI_PRODUCT_BROADCOM_BCM5724,
    393 	  "Broadcom BCM5724 Gigabit Ethernet",
    394 	  },
    395 	{ PCI_VENDOR_BROADCOM,
    396 	  PCI_PRODUCT_BROADCOM_BCM5750,
    397 	  "Broadcom BCM5750 Gigabit Ethernet",
    398 	  },
    399 	{ PCI_VENDOR_BROADCOM,
    400 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    401 	  "Broadcom BCM5750M Gigabit Ethernet",
    402 	  },
    403 	{ PCI_VENDOR_BROADCOM,
    404 	  PCI_PRODUCT_BROADCOM_BCM5751,
    405 	  "Broadcom BCM5751 Gigabit Ethernet",
    406 	  },
    407 	{ PCI_VENDOR_BROADCOM,
    408 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    409 	  "Broadcom BCM5751F Gigabit Ethernet",
    410 	  },
    411 	{ PCI_VENDOR_BROADCOM,
    412 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    413 	  "Broadcom BCM5751M Gigabit Ethernet",
    414 	  },
    415 	{ PCI_VENDOR_BROADCOM,
    416 	  PCI_PRODUCT_BROADCOM_BCM5752,
    417 	  "Broadcom BCM5752 Gigabit Ethernet",
    418 	  },
    419 	{ PCI_VENDOR_BROADCOM,
    420 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    421 	  "Broadcom BCM5752M Gigabit Ethernet",
    422 	  },
    423 	{ PCI_VENDOR_BROADCOM,
    424 	  PCI_PRODUCT_BROADCOM_BCM5753,
    425 	  "Broadcom BCM5753 Gigabit Ethernet",
    426 	  },
    427 	{ PCI_VENDOR_BROADCOM,
    428 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    429 	  "Broadcom BCM5753F Gigabit Ethernet",
    430 	  },
    431 	{ PCI_VENDOR_BROADCOM,
    432 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    433 	  "Broadcom BCM5753M Gigabit Ethernet",
    434 	  },
    435 	{ PCI_VENDOR_BROADCOM,
    436 	  PCI_PRODUCT_BROADCOM_BCM5754,
    437 	  "Broadcom BCM5754 Gigabit Ethernet",
    438 	},
    439 	{ PCI_VENDOR_BROADCOM,
    440 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    441 	  "Broadcom BCM5754M Gigabit Ethernet",
    442 	},
    443 	{ PCI_VENDOR_BROADCOM,
    444 	  PCI_PRODUCT_BROADCOM_BCM5755,
    445 	  "Broadcom BCM5755 Gigabit Ethernet",
    446 	},
    447 	{ PCI_VENDOR_BROADCOM,
    448 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    449 	  "Broadcom BCM5755M Gigabit Ethernet",
    450 	},
    451 	{ PCI_VENDOR_BROADCOM,
    452 	  PCI_PRODUCT_BROADCOM_BCM5756,
    453 	  "Broadcom BCM5756 Gigabit Ethernet",
    454 	},
    455 	{ PCI_VENDOR_BROADCOM,
    456 	  PCI_PRODUCT_BROADCOM_BCM5761,
    457 	  "Broadcom BCM5761 Gigabit Ethernet",
    458 	},
    459 	{ PCI_VENDOR_BROADCOM,
    460 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    461 	  "Broadcom BCM5761E Gigabit Ethernet",
    462 	},
    463 	{ PCI_VENDOR_BROADCOM,
    464 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    465 	  "Broadcom BCM5761S Gigabit Ethernet",
    466 	},
    467 	{ PCI_VENDOR_BROADCOM,
    468 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    469 	  "Broadcom BCM5761SE Gigabit Ethernet",
    470 	},
    471    	{ PCI_VENDOR_BROADCOM,
    472 	  PCI_PRODUCT_BROADCOM_BCM5764,
    473 	  "Broadcom BCM5764 Gigabit Ethernet",
    474 	  },
    475    	{ PCI_VENDOR_BROADCOM,
    476 	  PCI_PRODUCT_BROADCOM_BCM5780,
    477 	  "Broadcom BCM5780 Gigabit Ethernet",
    478 	  },
    479    	{ PCI_VENDOR_BROADCOM,
    480 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    481 	  "Broadcom BCM5780S Gigabit Ethernet",
    482 	  },
    483    	{ PCI_VENDOR_BROADCOM,
    484 	  PCI_PRODUCT_BROADCOM_BCM5781,
    485 	  "Broadcom BCM5781 Gigabit Ethernet",
    486 	  },
    487    	{ PCI_VENDOR_BROADCOM,
    488 	  PCI_PRODUCT_BROADCOM_BCM5782,
    489 	  "Broadcom BCM5782 Gigabit Ethernet",
    490 	},
    491 	{ PCI_VENDOR_BROADCOM,
    492 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    493 	  "BCM5784M NetLink 1000baseT Ethernet",
    494 	},
    495 	{ PCI_VENDOR_BROADCOM,
    496 	  PCI_PRODUCT_BROADCOM_BCM5786,
    497 	  "Broadcom BCM5786 Gigabit Ethernet",
    498 	},
    499 	{ PCI_VENDOR_BROADCOM,
    500 	  PCI_PRODUCT_BROADCOM_BCM5787,
    501 	  "Broadcom BCM5787 Gigabit Ethernet",
    502 	},
    503 	{ PCI_VENDOR_BROADCOM,
    504 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    505 	  "Broadcom BCM5787M Gigabit Ethernet",
    506 	},
    507    	{ PCI_VENDOR_BROADCOM,
    508 	  PCI_PRODUCT_BROADCOM_BCM5788,
    509 	  "Broadcom BCM5788 Gigabit Ethernet",
    510 	  },
    511    	{ PCI_VENDOR_BROADCOM,
    512 	  PCI_PRODUCT_BROADCOM_BCM5789,
    513 	  "Broadcom BCM5789 Gigabit Ethernet",
    514 	  },
    515    	{ PCI_VENDOR_BROADCOM,
    516 	  PCI_PRODUCT_BROADCOM_BCM5901,
    517 	  "Broadcom BCM5901 Fast Ethernet",
    518 	  },
    519    	{ PCI_VENDOR_BROADCOM,
    520 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    521 	  "Broadcom BCM5901A2 Fast Ethernet",
    522 	  },
    523    	{ PCI_VENDOR_BROADCOM,
    524 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    525 	  "Broadcom BCM5903M Fast Ethernet",
    526 	  },
    527 	{ PCI_VENDOR_BROADCOM,
    528 	  PCI_PRODUCT_BROADCOM_BCM5906,
    529 	  "Broadcom BCM5906 Fast Ethernet",
    530 	  },
    531 	{ PCI_VENDOR_BROADCOM,
    532 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    533 	  "Broadcom BCM5906M Fast Ethernet",
    534 	  },
    535 	{ PCI_VENDOR_BROADCOM,
    536 	  PCI_PRODUCT_BROADCOM_BCM57760,
    537 	  "Broadcom BCM57760 Fast Ethernet",
    538 	  },
    539 	{ PCI_VENDOR_BROADCOM,
    540 	  PCI_PRODUCT_BROADCOM_BCM57761,
    541 	  "Broadcom BCM57761 Fast Ethernet",
    542 	  },
    543 	{ PCI_VENDOR_BROADCOM,
    544 	  PCI_PRODUCT_BROADCOM_BCM57765,
    545 	  "Broadcom BCM57765 Fast Ethernet",
    546 	  },
    547 	{ PCI_VENDOR_BROADCOM,
    548 	  PCI_PRODUCT_BROADCOM_BCM57780,
    549 	  "Broadcom BCM57780 Fast Ethernet",
    550 	  },
    551 	{ PCI_VENDOR_BROADCOM,
    552 	  PCI_PRODUCT_BROADCOM_BCM57781,
    553 	  "Broadcom BCM57781 Fast Ethernet",
    554 	  },
    555 	{ PCI_VENDOR_BROADCOM,
    556 	  PCI_PRODUCT_BROADCOM_BCM57785,
    557 	  "Broadcom BCM57785 Fast Ethernet",
    558 	  },
    559 	{ PCI_VENDOR_BROADCOM,
    560 	  PCI_PRODUCT_BROADCOM_BCM57788,
    561 	  "Broadcom BCM57788 Fast Ethernet",
    562 	  },
    563 	{ PCI_VENDOR_BROADCOM,
    564 	  PCI_PRODUCT_BROADCOM_BCM57790,
    565 	  "Broadcom BCM57790 Fast Ethernet",
    566 	  },
    567 	{ PCI_VENDOR_BROADCOM,
    568 	  PCI_PRODUCT_BROADCOM_BCM57791,
    569 	  "Broadcom BCM57791 Fast Ethernet",
    570 	  },
    571 	{ PCI_VENDOR_BROADCOM,
    572 	  PCI_PRODUCT_BROADCOM_BCM57795,
    573 	  "Broadcom BCM57795 Fast Ethernet",
    574 	  },
    575 	{ PCI_VENDOR_SCHNEIDERKOCH,
    576 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    577 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    578 	  },
    579 	{ PCI_VENDOR_3COM,
    580 	  PCI_PRODUCT_3COM_3C996,
    581 	  "3Com 3c996 Gigabit Ethernet",
    582 	  },
    583 	{ 0,
    584 	  0,
    585 	  NULL },
    586 };
    587 
    588 /*
    589  * XXX: how to handle variants based on 5750 and derivatives:
    590  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    591  * in general behave like a 5705, except with additional quirks.
    592  * This driver's current handling of the 5721 is wrong;
    593  * how we map ASIC revision to "quirks" needs more thought.
    594  * (defined here until the thought is done).
    595  */
    596 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    597 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    598 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    599 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    600 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    601 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    602 
    603 static const struct bge_revision {
    604 	uint32_t		br_chipid;
    605 	const char		*br_name;
    606 } bge_revisions[] = {
    607 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    608 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    609 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    610 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    611 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    612 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    613 	/* This is treated like a BCM5700 Bx */
    614 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    615 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    616 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    617 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    618 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    619 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    620 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    621 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    622 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    623 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    624 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    625 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    626 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    627 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    628 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    629 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    630 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    631 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    632 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    633 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    634 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    635 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    636 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    637 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    638 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    639 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    640 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    641 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    642 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    643 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    644 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    645 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    646 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    647 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    648 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    649 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    650 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    651 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    652 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    653 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    654 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    655 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    656 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    657 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    658 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    659 	/* 5754 and 5787 share the same ASIC ID */
    660 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    661 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    662 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    663 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    664 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    665 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    666 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    667 
    668 	{ 0, NULL }
    669 };
    670 
    671 /*
    672  * Some defaults for major revisions, so that newer steppings
    673  * that we don't know about have a shot at working.
    674  */
    675 static const struct bge_revision bge_majorrevs[] = {
    676 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    677 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    678 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    679 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    680 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    681 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    682 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    683 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    684 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    685 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    686 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    687 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    688 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    689 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    690 	/* 5754 and 5787 share the same ASIC ID */
    691 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    692 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    693 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    694 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    695 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    696 
    697 	{ 0, NULL }
    698 };
    699 
    700 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    701     bge_probe, bge_attach, NULL, NULL);
    702 
    703 static uint32_t
    704 bge_readmem_ind(struct bge_softc *sc, int off)
    705 {
    706 	pcireg_t val;
    707 
    708 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    709 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    710 	return val;
    711 }
    712 
    713 static void
    714 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    715 {
    716 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    717 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    718 }
    719 
    720 #ifdef notdef
    721 static uint32_t
    722 bge_readreg_ind(struct bge_softc *sc, int off)
    723 {
    724 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    725 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    726 }
    727 #endif
    728 
    729 static void
    730 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    731 {
    732 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    733 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    734 }
    735 
    736 static void
    737 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    738 {
    739 	CSR_WRITE_4(sc, off, val);
    740 }
    741 
    742 static void
    743 bge_writembx(struct bge_softc *sc, int off, int val)
    744 {
    745 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    746 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    747 
    748 	CSR_WRITE_4(sc, off, val);
    749 }
    750 
    751 static uint8_t
    752 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    753 {
    754 	uint32_t access, byte = 0;
    755 	int i;
    756 
    757 	/* Lock. */
    758 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    759 	for (i = 0; i < 8000; i++) {
    760 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    761 			break;
    762 		DELAY(20);
    763 	}
    764 	if (i == 8000)
    765 		return 1;
    766 
    767 	/* Enable access. */
    768 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    769 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    770 
    771 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    772 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    773 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    774 		DELAY(10);
    775 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    776 			DELAY(10);
    777 			break;
    778 		}
    779 	}
    780 
    781 	if (i == BGE_TIMEOUT * 10) {
    782 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    783 		return 1;
    784 	}
    785 
    786 	/* Get result. */
    787 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    788 
    789 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    790 
    791 	/* Disable access. */
    792 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    793 
    794 	/* Unlock. */
    795 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    796 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    797 
    798 	return 0;
    799 }
    800 
    801 /*
    802  * Read a sequence of bytes from NVRAM.
    803  */
    804 static int
    805 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    806 {
    807 	int err = 0, i;
    808 	uint8_t byte = 0;
    809 
    810 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    811 		return 1;
    812 
    813 	for (i = 0; i < cnt; i++) {
    814 		err = bge_nvram_getbyte(sc, off + i, &byte);
    815 		if (err)
    816 			break;
    817 		*(dest + i) = byte;
    818 	}
    819 
    820 	return (err ? 1 : 0);
    821 }
    822 
    823 /*
    824  * Read a byte of data stored in the EEPROM at address 'addr.' The
    825  * BCM570x supports both the traditional bitbang interface and an
    826  * auto access interface for reading the EEPROM. We use the auto
    827  * access method.
    828  */
    829 static uint8_t
    830 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    831 {
    832 	int i;
    833 	uint32_t byte = 0;
    834 
    835 	/*
    836 	 * Enable use of auto EEPROM access so we can avoid
    837 	 * having to use the bitbang method.
    838 	 */
    839 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    840 
    841 	/* Reset the EEPROM, load the clock period. */
    842 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    843 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    844 	DELAY(20);
    845 
    846 	/* Issue the read EEPROM command. */
    847 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    848 
    849 	/* Wait for completion */
    850 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    851 		DELAY(10);
    852 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    853 			break;
    854 	}
    855 
    856 	if (i == BGE_TIMEOUT * 10) {
    857 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    858 		return 0;
    859 	}
    860 
    861 	/* Get result. */
    862 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    863 
    864 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    865 
    866 	return 0;
    867 }
    868 
    869 /*
    870  * Read a sequence of bytes from the EEPROM.
    871  */
    872 static int
    873 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    874 {
    875 	int err = 0, i;
    876 	uint8_t byte = 0;
    877 	char *dest = destv;
    878 
    879 	for (i = 0; i < cnt; i++) {
    880 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    881 		if (err)
    882 			break;
    883 		*(dest + i) = byte;
    884 	}
    885 
    886 	return (err ? 1 : 0);
    887 }
    888 
    889 static int
    890 bge_miibus_readreg(device_t dev, int phy, int reg)
    891 {
    892 	struct bge_softc *sc = device_private(dev);
    893 	uint32_t val;
    894 	uint32_t autopoll;
    895 	int i;
    896 
    897 	/*
    898 	 * Broadcom's own driver always assumes the internal
    899 	 * PHY is at GMII address 1. On some chips, the PHY responds
    900 	 * to accesses at all addresses, which could cause us to
    901 	 * bogusly attach the PHY 32 times at probe type. Always
    902 	 * restricting the lookup to address 1 is simpler than
    903 	 * trying to figure out which chips revisions should be
    904 	 * special-cased.
    905 	 */
    906 	if (phy != 1)
    907 		return 0;
    908 
    909 	/* Reading with autopolling on may trigger PCI errors */
    910 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    911 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    912 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    913 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    914 		DELAY(40);
    915 	}
    916 
    917 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    918 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    919 
    920 	for (i = 0; i < BGE_TIMEOUT; i++) {
    921 		val = CSR_READ_4(sc, BGE_MI_COMM);
    922 		if (!(val & BGE_MICOMM_BUSY))
    923 			break;
    924 		delay(10);
    925 	}
    926 
    927 	if (i == BGE_TIMEOUT) {
    928 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    929 		val = 0;
    930 		goto done;
    931 	}
    932 
    933 	val = CSR_READ_4(sc, BGE_MI_COMM);
    934 
    935 done:
    936 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    937 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    938 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    939 		DELAY(40);
    940 	}
    941 
    942 	if (val & BGE_MICOMM_READFAIL)
    943 		return 0;
    944 
    945 	return (val & 0xFFFF);
    946 }
    947 
    948 static void
    949 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
    950 {
    951 	struct bge_softc *sc = device_private(dev);
    952 	uint32_t autopoll;
    953 	int i;
    954 
    955 	if (phy!=1) {
    956 		return;
    957 	}
    958 
    959 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    960 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
    961 		return;
    962 	}
    963 
    964 	/* Reading with autopolling on may trigger PCI errors */
    965 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    966 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    967 		delay(40);
    968 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    969 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    970 		delay(10); /* 40 usec is supposed to be adequate */
    971 	}
    972 
    973 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
    974 	    BGE_MIPHY(phy) | BGE_MIREG(reg)|val);
    975 
    976 	for (i = 0; i < BGE_TIMEOUT; i++) {
    977 		delay(10);
    978 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
    979 			delay(5);
    980 			CSR_READ_4(sc, BGE_MI_COMM);
    981 			break;
    982 		}
    983 	}
    984 
    985 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    986 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    987 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    988 		delay(40);
    989 	}
    990 
    991 	if (i == BGE_TIMEOUT)
    992 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    993 }
    994 
    995 static void
    996 bge_miibus_statchg(device_t dev)
    997 {
    998 	struct bge_softc *sc = device_private(dev);
    999 	struct mii_data *mii = &sc->bge_mii;
   1000 
   1001 	/*
   1002 	 * Get flow control negotiation result.
   1003 	 */
   1004 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1005 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1006 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1007 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1008 	}
   1009 
   1010 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1011 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1012 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1013 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1014 	else
   1015 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1016 
   1017 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1018 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1019 	else
   1020 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1021 
   1022 	/*
   1023 	 * 802.3x flow control
   1024 	 */
   1025 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1026 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1027 	else
   1028 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1029 
   1030 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1031 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1032 	else
   1033 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1034 }
   1035 
   1036 /*
   1037  * Update rx threshold levels to values in a particular slot
   1038  * of the interrupt-mitigation table bge_rx_threshes.
   1039  */
   1040 static void
   1041 bge_set_thresh(struct ifnet *ifp, int lvl)
   1042 {
   1043 	struct bge_softc *sc = ifp->if_softc;
   1044 	int s;
   1045 
   1046 	/* For now, just save the new Rx-intr thresholds and record
   1047 	 * that a threshold update is pending.  Updating the hardware
   1048 	 * registers here (even at splhigh()) is observed to
   1049 	 * occasionaly cause glitches where Rx-interrupts are not
   1050 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1051 	 */
   1052 	s = splnet();
   1053 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1054 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1055 	sc->bge_pending_rxintr_change = 1;
   1056 	splx(s);
   1057 
   1058 	 return;
   1059 }
   1060 
   1061 
   1062 /*
   1063  * Update Rx thresholds of all bge devices
   1064  */
   1065 static void
   1066 bge_update_all_threshes(int lvl)
   1067 {
   1068 	struct ifnet *ifp;
   1069 	const char * const namebuf = "bge";
   1070 	int namelen;
   1071 
   1072 	if (lvl < 0)
   1073 		lvl = 0;
   1074 	else if (lvl >= NBGE_RX_THRESH)
   1075 		lvl = NBGE_RX_THRESH - 1;
   1076 
   1077 	namelen = strlen(namebuf);
   1078 	/*
   1079 	 * Now search all the interfaces for this name/number
   1080 	 */
   1081 	IFNET_FOREACH(ifp) {
   1082 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1083 		      continue;
   1084 		/* We got a match: update if doing auto-threshold-tuning */
   1085 		if (bge_auto_thresh)
   1086 			bge_set_thresh(ifp, lvl);
   1087 	}
   1088 }
   1089 
   1090 /*
   1091  * Handle events that have triggered interrupts.
   1092  */
   1093 static void
   1094 bge_handle_events(struct bge_softc *sc)
   1095 {
   1096 
   1097 	return;
   1098 }
   1099 
   1100 /*
   1101  * Memory management for jumbo frames.
   1102  */
   1103 
   1104 static int
   1105 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1106 {
   1107 	char *ptr, *kva;
   1108 	bus_dma_segment_t	seg;
   1109 	int		i, rseg, state, error;
   1110 	struct bge_jpool_entry   *entry;
   1111 
   1112 	state = error = 0;
   1113 
   1114 	/* Grab a big chunk o' storage. */
   1115 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1116 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1117 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1118 		return ENOBUFS;
   1119 	}
   1120 
   1121 	state = 1;
   1122 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1123 	    BUS_DMA_NOWAIT)) {
   1124 		aprint_error_dev(sc->bge_dev,
   1125 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1126 		error = ENOBUFS;
   1127 		goto out;
   1128 	}
   1129 
   1130 	state = 2;
   1131 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1132 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1133 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1134 		error = ENOBUFS;
   1135 		goto out;
   1136 	}
   1137 
   1138 	state = 3;
   1139 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1140 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1141 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1142 		error = ENOBUFS;
   1143 		goto out;
   1144 	}
   1145 
   1146 	state = 4;
   1147 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1148 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1149 
   1150 	SLIST_INIT(&sc->bge_jfree_listhead);
   1151 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1152 
   1153 	/*
   1154 	 * Now divide it up into 9K pieces and save the addresses
   1155 	 * in an array.
   1156 	 */
   1157 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1158 	for (i = 0; i < BGE_JSLOTS; i++) {
   1159 		sc->bge_cdata.bge_jslots[i] = ptr;
   1160 		ptr += BGE_JLEN;
   1161 		entry = malloc(sizeof(struct bge_jpool_entry),
   1162 		    M_DEVBUF, M_NOWAIT);
   1163 		if (entry == NULL) {
   1164 			aprint_error_dev(sc->bge_dev,
   1165 			    "no memory for jumbo buffer queue!\n");
   1166 			error = ENOBUFS;
   1167 			goto out;
   1168 		}
   1169 		entry->slot = i;
   1170 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1171 				 entry, jpool_entries);
   1172 	}
   1173 out:
   1174 	if (error != 0) {
   1175 		switch (state) {
   1176 		case 4:
   1177 			bus_dmamap_unload(sc->bge_dmatag,
   1178 			    sc->bge_cdata.bge_rx_jumbo_map);
   1179 		case 3:
   1180 			bus_dmamap_destroy(sc->bge_dmatag,
   1181 			    sc->bge_cdata.bge_rx_jumbo_map);
   1182 		case 2:
   1183 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1184 		case 1:
   1185 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1186 			break;
   1187 		default:
   1188 			break;
   1189 		}
   1190 	}
   1191 
   1192 	return error;
   1193 }
   1194 
   1195 /*
   1196  * Allocate a jumbo buffer.
   1197  */
   1198 static void *
   1199 bge_jalloc(struct bge_softc *sc)
   1200 {
   1201 	struct bge_jpool_entry   *entry;
   1202 
   1203 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1204 
   1205 	if (entry == NULL) {
   1206 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1207 		return NULL;
   1208 	}
   1209 
   1210 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1211 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1212 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1213 }
   1214 
   1215 /*
   1216  * Release a jumbo buffer.
   1217  */
   1218 static void
   1219 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1220 {
   1221 	struct bge_jpool_entry *entry;
   1222 	struct bge_softc *sc;
   1223 	int i, s;
   1224 
   1225 	/* Extract the softc struct pointer. */
   1226 	sc = (struct bge_softc *)arg;
   1227 
   1228 	if (sc == NULL)
   1229 		panic("bge_jfree: can't find softc pointer!");
   1230 
   1231 	/* calculate the slot this buffer belongs to */
   1232 
   1233 	i = ((char *)buf
   1234 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1235 
   1236 	if ((i < 0) || (i >= BGE_JSLOTS))
   1237 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1238 
   1239 	s = splvm();
   1240 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1241 	if (entry == NULL)
   1242 		panic("bge_jfree: buffer not in use!");
   1243 	entry->slot = i;
   1244 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1245 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1246 
   1247 	if (__predict_true(m != NULL))
   1248   		pool_cache_put(mb_cache, m);
   1249 	splx(s);
   1250 }
   1251 
   1252 
   1253 /*
   1254  * Intialize a standard receive ring descriptor.
   1255  */
   1256 static int
   1257 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1258 {
   1259 	struct mbuf		*m_new = NULL;
   1260 	struct bge_rx_bd	*r;
   1261 	int			error;
   1262 
   1263 	if (dmamap == NULL) {
   1264 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1265 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1266 		if (error != 0)
   1267 			return error;
   1268 	}
   1269 
   1270 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1271 
   1272 	if (m == NULL) {
   1273 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1274 		if (m_new == NULL)
   1275 			return ENOBUFS;
   1276 
   1277 		MCLGET(m_new, M_DONTWAIT);
   1278 		if (!(m_new->m_flags & M_EXT)) {
   1279 			m_freem(m_new);
   1280 			return ENOBUFS;
   1281 		}
   1282 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1283 
   1284 	} else {
   1285 		m_new = m;
   1286 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1287 		m_new->m_data = m_new->m_ext.ext_buf;
   1288 	}
   1289 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1290 	    m_adj(m_new, ETHER_ALIGN);
   1291 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1292 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1293 		return ENOBUFS;
   1294 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1295 	    BUS_DMASYNC_PREREAD);
   1296 
   1297 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1298 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1299 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1300 	r->bge_flags = BGE_RXBDFLAG_END;
   1301 	r->bge_len = m_new->m_len;
   1302 	r->bge_idx = i;
   1303 
   1304 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1305 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1306 		i * sizeof (struct bge_rx_bd),
   1307 	    sizeof (struct bge_rx_bd),
   1308 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1309 
   1310 	return 0;
   1311 }
   1312 
   1313 /*
   1314  * Initialize a jumbo receive ring descriptor. This allocates
   1315  * a jumbo buffer from the pool managed internally by the driver.
   1316  */
   1317 static int
   1318 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1319 {
   1320 	struct mbuf *m_new = NULL;
   1321 	struct bge_rx_bd *r;
   1322 	void *buf = NULL;
   1323 
   1324 	if (m == NULL) {
   1325 
   1326 		/* Allocate the mbuf. */
   1327 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1328 		if (m_new == NULL)
   1329 			return ENOBUFS;
   1330 
   1331 		/* Allocate the jumbo buffer */
   1332 		buf = bge_jalloc(sc);
   1333 		if (buf == NULL) {
   1334 			m_freem(m_new);
   1335 			aprint_error_dev(sc->bge_dev,
   1336 			    "jumbo allocation failed -- packet dropped!\n");
   1337 			return ENOBUFS;
   1338 		}
   1339 
   1340 		/* Attach the buffer to the mbuf. */
   1341 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1342 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1343 		    bge_jfree, sc);
   1344 		m_new->m_flags |= M_EXT_RW;
   1345 	} else {
   1346 		m_new = m;
   1347 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1348 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1349 	}
   1350 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1351 	    m_adj(m_new, ETHER_ALIGN);
   1352 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1353 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1354 	    BUS_DMASYNC_PREREAD);
   1355 	/* Set up the descriptor. */
   1356 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1357 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1358 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1359 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1360 	r->bge_len = m_new->m_len;
   1361 	r->bge_idx = i;
   1362 
   1363 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1364 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1365 		i * sizeof (struct bge_rx_bd),
   1366 	    sizeof (struct bge_rx_bd),
   1367 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1368 
   1369 	return 0;
   1370 }
   1371 
   1372 /*
   1373  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1374  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1375  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1376  * the NIC.
   1377  */
   1378 static int
   1379 bge_init_rx_ring_std(struct bge_softc *sc)
   1380 {
   1381 	int i;
   1382 
   1383 	if (sc->bge_flags & BGE_RXRING_VALID)
   1384 		return 0;
   1385 
   1386 	for (i = 0; i < BGE_SSLOTS; i++) {
   1387 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1388 			return ENOBUFS;
   1389 	}
   1390 
   1391 	sc->bge_std = i - 1;
   1392 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1393 
   1394 	sc->bge_flags |= BGE_RXRING_VALID;
   1395 
   1396 	return 0;
   1397 }
   1398 
   1399 static void
   1400 bge_free_rx_ring_std(struct bge_softc *sc)
   1401 {
   1402 	int i;
   1403 
   1404 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1405 		return;
   1406 
   1407 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1408 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1409 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1410 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1411 			bus_dmamap_destroy(sc->bge_dmatag,
   1412 			    sc->bge_cdata.bge_rx_std_map[i]);
   1413 		}
   1414 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1415 		    sizeof(struct bge_rx_bd));
   1416 	}
   1417 
   1418 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1419 }
   1420 
   1421 static int
   1422 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1423 {
   1424 	int i;
   1425 	volatile struct bge_rcb *rcb;
   1426 
   1427 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1428 		return 0;
   1429 
   1430 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1431 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1432 			return ENOBUFS;
   1433 	};
   1434 
   1435 	sc->bge_jumbo = i - 1;
   1436 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1437 
   1438 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1439 	rcb->bge_maxlen_flags = 0;
   1440 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1441 
   1442 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1443 
   1444 	return 0;
   1445 }
   1446 
   1447 static void
   1448 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1449 {
   1450 	int i;
   1451 
   1452 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1453 		return;
   1454 
   1455 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1456 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1457 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1458 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1459 		}
   1460 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1461 		    sizeof(struct bge_rx_bd));
   1462 	}
   1463 
   1464 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1465 }
   1466 
   1467 static void
   1468 bge_free_tx_ring(struct bge_softc *sc)
   1469 {
   1470 	int i, freed;
   1471 	struct txdmamap_pool_entry *dma;
   1472 
   1473 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1474 		return;
   1475 
   1476 	freed = 0;
   1477 
   1478 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1479 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1480 			freed++;
   1481 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1482 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1483 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1484 					    link);
   1485 			sc->txdma[i] = 0;
   1486 		}
   1487 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1488 		    sizeof(struct bge_tx_bd));
   1489 	}
   1490 
   1491 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1492 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1493 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1494 		free(dma, M_DEVBUF);
   1495 	}
   1496 
   1497 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1498 }
   1499 
   1500 static int
   1501 bge_init_tx_ring(struct bge_softc *sc)
   1502 {
   1503 	int i;
   1504 	bus_dmamap_t dmamap;
   1505 	struct txdmamap_pool_entry *dma;
   1506 
   1507 	if (sc->bge_flags & BGE_TXRING_VALID)
   1508 		return 0;
   1509 
   1510 	sc->bge_txcnt = 0;
   1511 	sc->bge_tx_saved_considx = 0;
   1512 
   1513 	/* Initialize transmit producer index for host-memory send ring. */
   1514 	sc->bge_tx_prodidx = 0;
   1515 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1516 	/* 5700 b2 errata */
   1517 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1518 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1519 
   1520 	/* NIC-memory send ring not used; initialize to zero. */
   1521 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1522 	/* 5700 b2 errata */
   1523 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1524 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1525 
   1526 	SLIST_INIT(&sc->txdma_list);
   1527 	for (i = 0; i < BGE_RSLOTS; i++) {
   1528 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1529 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1530 		    &dmamap))
   1531 			return ENOBUFS;
   1532 		if (dmamap == NULL)
   1533 			panic("dmamap NULL in bge_init_tx_ring");
   1534 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1535 		if (dma == NULL) {
   1536 			aprint_error_dev(sc->bge_dev,
   1537 			    "can't alloc txdmamap_pool_entry\n");
   1538 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1539 			return ENOMEM;
   1540 		}
   1541 		dma->dmamap = dmamap;
   1542 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1543 	}
   1544 
   1545 	sc->bge_flags |= BGE_TXRING_VALID;
   1546 
   1547 	return 0;
   1548 }
   1549 
   1550 static void
   1551 bge_setmulti(struct bge_softc *sc)
   1552 {
   1553 	struct ethercom		*ac = &sc->ethercom;
   1554 	struct ifnet		*ifp = &ac->ec_if;
   1555 	struct ether_multi	*enm;
   1556 	struct ether_multistep  step;
   1557 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1558 	uint32_t		h;
   1559 	int			i;
   1560 
   1561 	if (ifp->if_flags & IFF_PROMISC)
   1562 		goto allmulti;
   1563 
   1564 	/* Now program new ones. */
   1565 	ETHER_FIRST_MULTI(step, ac, enm);
   1566 	while (enm != NULL) {
   1567 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1568 			/*
   1569 			 * We must listen to a range of multicast addresses.
   1570 			 * For now, just accept all multicasts, rather than
   1571 			 * trying to set only those filter bits needed to match
   1572 			 * the range.  (At this time, the only use of address
   1573 			 * ranges is for IP multicast routing, for which the
   1574 			 * range is big enough to require all bits set.)
   1575 			 */
   1576 			goto allmulti;
   1577 		}
   1578 
   1579 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1580 
   1581 		/* Just want the 7 least-significant bits. */
   1582 		h &= 0x7f;
   1583 
   1584 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1585 		ETHER_NEXT_MULTI(step, enm);
   1586 	}
   1587 
   1588 	ifp->if_flags &= ~IFF_ALLMULTI;
   1589 	goto setit;
   1590 
   1591  allmulti:
   1592 	ifp->if_flags |= IFF_ALLMULTI;
   1593 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1594 
   1595  setit:
   1596 	for (i = 0; i < 4; i++)
   1597 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1598 }
   1599 
   1600 const int bge_swapbits[] = {
   1601 	0,
   1602 	BGE_MODECTL_BYTESWAP_DATA,
   1603 	BGE_MODECTL_WORDSWAP_DATA,
   1604 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1605 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1606 
   1607 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1608 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1609 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1610 
   1611 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1612 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1613 
   1614 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1615 
   1616 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1617 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1618 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1619 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1620 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1621 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1622 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1623 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1624 
   1625 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1626 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1627 };
   1628 
   1629 int bge_swapindex = 0;
   1630 
   1631 /*
   1632  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1633  * self-test results.
   1634  */
   1635 static int
   1636 bge_chipinit(struct bge_softc *sc)
   1637 {
   1638 	int			i;
   1639 	uint32_t		dma_rw_ctl;
   1640 
   1641 
   1642 	/* Set endianness before we access any non-PCI registers. */
   1643 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1644 	    BGE_INIT);
   1645 
   1646 	/* Set power state to D0. */
   1647 	bge_setpowerstate(sc, 0);
   1648 
   1649 	/* Clear the MAC control register */
   1650 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1651 
   1652 	/*
   1653 	 * Clear the MAC statistics block in the NIC's
   1654 	 * internal memory.
   1655 	 */
   1656 	for (i = BGE_STATS_BLOCK;
   1657 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1658 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1659 
   1660 	for (i = BGE_STATUS_BLOCK;
   1661 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1662 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1663 
   1664 	/* Set up the PCI DMA control register. */
   1665 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1666 	if (sc->bge_flags & BGE_PCIE) {
   1667 		/* Read watermark not used, 128 bytes for write. */
   1668 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1669 		    device_xname(sc->bge_dev)));
   1670 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1671 	} else if (sc->bge_flags & BGE_PCIX) {
   1672 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1673 		    device_xname(sc->bge_dev)));
   1674 		/* PCI-X bus */
   1675 		if (BGE_IS_5714_FAMILY(sc)) {
   1676 			/* 256 bytes for read and write. */
   1677 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1678 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1679 
   1680 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1681 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1682 			else
   1683 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1684 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1685 			/* 1536 bytes for read, 384 bytes for write. */
   1686 			dma_rw_ctl |=
   1687 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1688 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1689 		} else {
   1690 			/* 384 bytes for read and write. */
   1691 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1692 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1693 			    (0x0F);
   1694 		}
   1695 
   1696 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1697 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1698 			uint32_t tmp;
   1699 
   1700 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1701 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1702 			if (tmp == 6 || tmp == 7)
   1703 				dma_rw_ctl |=
   1704 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1705 
   1706 			/* Set PCI-X DMA write workaround. */
   1707 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1708 		}
   1709 	} else {
   1710 		/* Conventional PCI bus: 256 bytes for read and write. */
   1711 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1712 		    device_xname(sc->bge_dev)));
   1713 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1714 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1715 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1716 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1717 			dma_rw_ctl |= 0x0F;
   1718 	}
   1719 
   1720 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1721 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1722 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1723 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1724 
   1725 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1726 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1727 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1728 
   1729 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1730 
   1731 	/*
   1732 	 * Set up general mode register.
   1733 	 */
   1734 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1735 		    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1736 		    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1737 
   1738 	/*
   1739 	 * BCM5701 B5 have a bug causing data corruption when using
   1740 	 * 64-bit DMA reads, which can be terminated early and then
   1741 	 * completed later as 32-bit accesses, in combination with
   1742 	 * certain bridges.
   1743 	 */
   1744 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1745 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1746 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1747 
   1748 	/*
   1749 	 * Disable memory write invalidate.  Apparently it is not supported
   1750 	 * properly by these devices.
   1751 	 */
   1752 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1753 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1754 
   1755 #ifdef __brokenalpha__
   1756 	/*
   1757 	 * Must insure that we do not cross an 8K (bytes) boundary
   1758 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1759 	 * restriction on some ALPHA platforms with early revision
   1760 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1761 	 */
   1762 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1763 #endif
   1764 
   1765 	/* Set the timer prescaler (always 66MHz) */
   1766 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1767 
   1768 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1769 		DELAY(40);	/* XXX */
   1770 
   1771 		/* Put PHY into ready state */
   1772 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1773 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1774 		DELAY(40);
   1775 	}
   1776 
   1777 	return 0;
   1778 }
   1779 
   1780 static int
   1781 bge_blockinit(struct bge_softc *sc)
   1782 {
   1783 	volatile struct bge_rcb		*rcb;
   1784 	bus_size_t		rcb_addr;
   1785 	int			i;
   1786 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1787 	bge_hostaddr		taddr;
   1788 	uint32_t		val;
   1789 
   1790 	/*
   1791 	 * Initialize the memory window pointer register so that
   1792 	 * we can access the first 32K of internal NIC RAM. This will
   1793 	 * allow us to set up the TX send ring RCBs and the RX return
   1794 	 * ring RCBs, plus other things which live in NIC memory.
   1795 	 */
   1796 
   1797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1798 
   1799 	/* Configure mbuf memory pool */
   1800 	if (BGE_IS_5700_FAMILY(sc)) {
   1801 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1802 		    BGE_BUFFPOOL_1);
   1803 
   1804 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1805 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1806 		else
   1807 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1808 
   1809 		/* Configure DMA resource pool */
   1810 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1811 		    BGE_DMA_DESCRIPTORS);
   1812 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1813 	}
   1814 
   1815 	/* Configure mbuf pool watermarks */
   1816 #ifdef ORIG_WPAUL_VALUES
   1817 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1818 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1819 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1820 #else
   1821 
   1822 	/* new broadcom docs strongly recommend these: */
   1823 	if (!BGE_IS_5705_PLUS(sc)) {
   1824 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1825 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1826 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1827 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1828 		} else {
   1829 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1830 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1831 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1832 		}
   1833 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1834 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1835 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1836 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1837 	} else {
   1838 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1839 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1840 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1841 	}
   1842 #endif
   1843 
   1844 	/* Configure DMA resource watermarks */
   1845 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1846 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1847 
   1848 	/* Enable buffer manager */
   1849 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1850 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1851 
   1852 	/* Poll for buffer manager start indication */
   1853 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1854 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1855 			break;
   1856 		DELAY(10);
   1857 	}
   1858 
   1859 	if (i == BGE_TIMEOUT * 2) {
   1860 		aprint_error_dev(sc->bge_dev,
   1861 		    "buffer manager failed to start\n");
   1862 		return ENXIO;
   1863 	}
   1864 
   1865 	/* Enable flow-through queues */
   1866 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1867 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1868 
   1869 	/* Wait until queue initialization is complete */
   1870 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1871 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1872 			break;
   1873 		DELAY(10);
   1874 	}
   1875 
   1876 	if (i == BGE_TIMEOUT * 2) {
   1877 		aprint_error_dev(sc->bge_dev,
   1878 		    "flow-through queue init failed\n");
   1879 		return ENXIO;
   1880 	}
   1881 
   1882 	/* Initialize the standard RX ring control block */
   1883 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1884 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1885 	if (BGE_IS_5705_PLUS(sc))
   1886 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1887 	else
   1888 		rcb->bge_maxlen_flags =
   1889 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1890 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1891 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1892 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1893 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1894 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1895 
   1896 	/*
   1897 	 * Initialize the jumbo RX ring control block
   1898 	 * We set the 'ring disabled' bit in the flags
   1899 	 * field until we're actually ready to start
   1900 	 * using this ring (i.e. once we set the MTU
   1901 	 * high enough to require it).
   1902 	 */
   1903 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   1904 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1905 		BGE_HOSTADDR(rcb->bge_hostaddr,
   1906 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1907 		rcb->bge_maxlen_flags =
   1908 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1909 			BGE_RCB_FLAG_RING_DISABLED);
   1910 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1911 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1912 		    rcb->bge_hostaddr.bge_addr_hi);
   1913 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1914 		    rcb->bge_hostaddr.bge_addr_lo);
   1915 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1916 		    rcb->bge_maxlen_flags);
   1917 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1918 
   1919 		/* Set up dummy disabled mini ring RCB */
   1920 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1921 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1922 		    BGE_RCB_FLAG_RING_DISABLED);
   1923 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1924 		    rcb->bge_maxlen_flags);
   1925 
   1926 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1927 		    offsetof(struct bge_ring_data, bge_info),
   1928 		    sizeof (struct bge_gib),
   1929 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1930 	}
   1931 
   1932 	/*
   1933 	 * Set the BD ring replenish thresholds. The recommended
   1934 	 * values are 1/8th the number of descriptors allocated to
   1935 	 * each ring.
   1936 	 */
   1937 	i = BGE_STD_RX_RING_CNT / 8;
   1938 
   1939 	/*
   1940 	 * Use a value of 8 for the following chips to workaround HW errata.
   1941 	 * Some of these chips have been added based on empirical
   1942 	 * evidence (they don't work unless this is done).
   1943 	 */
   1944 	if (BGE_IS_5705_PLUS(sc))
   1945 		i = 8;
   1946 
   1947 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   1948 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   1949 
   1950 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1951 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   1952 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   1953 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   1954 	}
   1955 
   1956 	/*
   1957 	 * Disable all unused send rings by setting the 'ring disabled'
   1958 	 * bit in the flags field of all the TX send ring control blocks.
   1959 	 * These are located in NIC memory.
   1960 	 */
   1961 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1962 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1963 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1964 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   1965 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1966 		rcb_addr += sizeof(struct bge_rcb);
   1967 	}
   1968 
   1969 	/* Configure TX RCB 0 (we use only the first ring) */
   1970 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1971 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1972 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1973 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1974 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1975 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1976 	if (BGE_IS_5700_FAMILY(sc))
   1977 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1978 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1979 
   1980 	/* Disable all unused RX return rings */
   1981 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1982 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1983 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1984 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1985 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1986 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1987 			BGE_RCB_FLAG_RING_DISABLED));
   1988 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1989 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   1990 		    (i * (sizeof(uint64_t))), 0);
   1991 		rcb_addr += sizeof(struct bge_rcb);
   1992 	}
   1993 
   1994 	/* Initialize RX ring indexes */
   1995 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1996 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1997 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1998 
   1999 	/*
   2000 	 * Set up RX return ring 0
   2001 	 * Note that the NIC address for RX return rings is 0x00000000.
   2002 	 * The return rings live entirely within the host, so the
   2003 	 * nicaddr field in the RCB isn't used.
   2004 	 */
   2005 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2006 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2007 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2008 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2009 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2010 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2011 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2012 
   2013 	/* Set random backoff seed for TX */
   2014 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2015 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2016 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2017 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2018 	    BGE_TX_BACKOFF_SEED_MASK);
   2019 
   2020 	/* Set inter-packet gap */
   2021 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2022 
   2023 	/*
   2024 	 * Specify which ring to use for packets that don't match
   2025 	 * any RX rules.
   2026 	 */
   2027 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2028 
   2029 	/*
   2030 	 * Configure number of RX lists. One interrupt distribution
   2031 	 * list, sixteen active lists, one bad frames class.
   2032 	 */
   2033 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2034 
   2035 	/* Inialize RX list placement stats mask. */
   2036 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2037 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2038 
   2039 	/* Disable host coalescing until we get it set up */
   2040 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2041 
   2042 	/* Poll to make sure it's shut down. */
   2043 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2044 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2045 			break;
   2046 		DELAY(10);
   2047 	}
   2048 
   2049 	if (i == BGE_TIMEOUT * 2) {
   2050 		aprint_error_dev(sc->bge_dev,
   2051 		    "host coalescing engine failed to idle\n");
   2052 		return ENXIO;
   2053 	}
   2054 
   2055 	/* Set up host coalescing defaults */
   2056 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2057 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2058 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2059 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2060 	if (BGE_IS_5700_FAMILY(sc)) {
   2061 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2062 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2063 	}
   2064 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2065 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2066 
   2067 	/* Set up address of statistics block */
   2068 	if (BGE_IS_5700_FAMILY(sc)) {
   2069 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2070 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2071 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2072 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2073 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2074 	}
   2075 
   2076 	/* Set up address of status block */
   2077 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2078 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2079 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2080 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2081 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2082 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2083 
   2084 	/* Turn on host coalescing state machine */
   2085 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2086 
   2087 	/* Turn on RX BD completion state machine and enable attentions */
   2088 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2089 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2090 
   2091 	/* Turn on RX list placement state machine */
   2092 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2093 
   2094 	/* Turn on RX list selector state machine. */
   2095 	if (BGE_IS_5700_FAMILY(sc))
   2096 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2097 
   2098 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2099 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2100 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2101 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2102 
   2103 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2104 	    val |= BGE_PORTMODE_TBI;
   2105 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2106 	    val |= BGE_PORTMODE_GMII;
   2107 	else
   2108 	    val |= BGE_PORTMODE_MII;
   2109 
   2110 	/* Turn on DMA, clear stats */
   2111 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2112 
   2113 
   2114 	/* Set misc. local control, enable interrupts on attentions */
   2115 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2116 
   2117 #ifdef notdef
   2118 	/* Assert GPIO pins for PHY reset */
   2119 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2120 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2121 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2122 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2123 #endif
   2124 
   2125 #if defined(not_quite_yet)
   2126 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2127 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2128 		sc->bge_local_ctrl_reg |=
   2129 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2130 	}
   2131 #endif
   2132 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2133 
   2134 	/* Turn on DMA completion state machine */
   2135 	if (BGE_IS_5700_FAMILY(sc))
   2136 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2137 
   2138 	/* Turn on write DMA state machine */
   2139 	{
   2140 		uint32_t bge_wdma_mode =
   2141 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2142 
   2143 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2144 		if (BGE_IS_5755_PLUS(sc))
   2145 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2146 
   2147 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2148         }
   2149 
   2150 	/* Turn on read DMA state machine */
   2151 	{
   2152 		uint32_t dma_read_modebits;
   2153 
   2154 		dma_read_modebits =
   2155 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2156 
   2157 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2158 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2159 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2160 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2161 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2162 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2163 
   2164 		if (sc->bge_flags & BGE_PCIE)
   2165 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2166 		if (sc->bge_flags & BGE_TSO)
   2167 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2168 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2169 		delay(40);
   2170 	}
   2171 
   2172 	/* Turn on RX data completion state machine */
   2173 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2174 
   2175 	/* Turn on RX BD initiator state machine */
   2176 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2177 
   2178 	/* Turn on RX data and RX BD initiator state machine */
   2179 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2180 
   2181 	/* Turn on Mbuf cluster free state machine */
   2182 	if (BGE_IS_5700_FAMILY(sc))
   2183 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2184 
   2185 	/* Turn on send BD completion state machine */
   2186 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2187 
   2188 	/* Turn on send data completion state machine */
   2189 	val = BGE_SDCMODE_ENABLE;
   2190 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2191 		val |= BGE_SDCMODE_CDELAY;
   2192 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2193 
   2194 	/* Turn on send data initiator state machine */
   2195 	if (sc->bge_flags & BGE_TSO) {
   2196 		/* XXX: magic value from Linux driver */
   2197 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2198 	} else {
   2199 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2200 	}
   2201 
   2202 	/* Turn on send BD initiator state machine */
   2203 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2204 
   2205 	/* Turn on send BD selector state machine */
   2206 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2207 
   2208 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2209 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2210 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2211 
   2212 	/* ack/clear link change events */
   2213 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2214 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2215 	    BGE_MACSTAT_LINK_CHANGED);
   2216 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2217 
   2218 	/* Enable PHY auto polling (for MII/GMII only) */
   2219 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2220 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2221  	} else {
   2222 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2223 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2224 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2225 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2226 			    BGE_EVTENB_MI_INTERRUPT);
   2227 	}
   2228 
   2229 	/*
   2230 	 * Clear any pending link state attention.
   2231 	 * Otherwise some link state change events may be lost until attention
   2232 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2233 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2234 	 * state change attentions implies clearing pending attention.
   2235 	 */
   2236 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2237 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2238 	    BGE_MACSTAT_LINK_CHANGED);
   2239 
   2240 	/* Enable link state change attentions. */
   2241 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2242 
   2243 	return 0;
   2244 }
   2245 
   2246 static const struct bge_revision *
   2247 bge_lookup_rev(uint32_t chipid)
   2248 {
   2249 	const struct bge_revision *br;
   2250 
   2251 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2252 		if (br->br_chipid == chipid)
   2253 			return br;
   2254 	}
   2255 
   2256 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2257 		if (br->br_chipid == BGE_ASICREV(chipid))
   2258 			return br;
   2259 	}
   2260 
   2261 	return NULL;
   2262 }
   2263 
   2264 static const struct bge_product *
   2265 bge_lookup(const struct pci_attach_args *pa)
   2266 {
   2267 	const struct bge_product *bp;
   2268 
   2269 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2270 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2271 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2272 			return bp;
   2273 	}
   2274 
   2275 	return NULL;
   2276 }
   2277 
   2278 static int
   2279 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2280 {
   2281 #ifdef NOTYET
   2282 	uint32_t pm_ctl = 0;
   2283 
   2284 	/* XXX FIXME: make sure indirect accesses enabled? */
   2285 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2286 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2287 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2288 
   2289 	/* clear the PME_assert bit and power state bits, enable PME */
   2290 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2291 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2292 	pm_ctl |= (1 << 8);
   2293 
   2294 	if (powerlevel == 0) {
   2295 		pm_ctl |= PCIM_PSTAT_D0;
   2296 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2297 		    pm_ctl, 2);
   2298 		DELAY(10000);
   2299 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2300 		DELAY(10000);
   2301 
   2302 #ifdef NOTYET
   2303 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2304 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2305 #endif
   2306 		DELAY(40); DELAY(40); DELAY(40);
   2307 		DELAY(10000);	/* above not quite adequate on 5700 */
   2308 		return 0;
   2309 	}
   2310 
   2311 
   2312 	/*
   2313 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2314 	 * GMII gpio pins. Example code assumes all hardware vendors
   2315 	 * followed Broadom's sample pcb layout. Until we verify that
   2316 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2317 	 */
   2318 	aprint_error_dev(sc->bge_dev,
   2319 	    "power state %d unimplemented; check GPIO pins\n",
   2320 	    powerlevel);
   2321 #endif
   2322 	return EOPNOTSUPP;
   2323 }
   2324 
   2325 
   2326 /*
   2327  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2328  * against our list and return its name if we find a match. Note
   2329  * that since the Broadcom controller contains VPD support, we
   2330  * can get the device name string from the controller itself instead
   2331  * of the compiled-in string. This is a little slow, but it guarantees
   2332  * we'll always announce the right product name.
   2333  */
   2334 static int
   2335 bge_probe(device_t parent, cfdata_t match, void *aux)
   2336 {
   2337 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2338 
   2339 	if (bge_lookup(pa) != NULL)
   2340 		return 1;
   2341 
   2342 	return 0;
   2343 }
   2344 
   2345 static void
   2346 bge_attach(device_t parent, device_t self, void *aux)
   2347 {
   2348 	struct bge_softc	*sc = device_private(self);
   2349 	struct pci_attach_args	*pa = aux;
   2350 	prop_dictionary_t dict;
   2351 	const struct bge_product *bp;
   2352 	const struct bge_revision *br;
   2353 	pci_chipset_tag_t	pc;
   2354 	pci_intr_handle_t	ih;
   2355 	const char		*intrstr = NULL;
   2356 	bus_dma_segment_t	seg;
   2357 	int			rseg;
   2358 	uint32_t		hwcfg = 0;
   2359 	uint32_t		command;
   2360 	struct ifnet		*ifp;
   2361 	uint32_t		misccfg;
   2362 	void *			kva;
   2363 	u_char			eaddr[ETHER_ADDR_LEN];
   2364 	pcireg_t		memtype, subid;
   2365 	bus_addr_t		memaddr;
   2366 	bus_size_t		memsize;
   2367 	uint32_t		pm_ctl;
   2368 	prop_data_t		eaddrprop;
   2369 	bool			no_seeprom;
   2370 
   2371 	bp = bge_lookup(pa);
   2372 	KASSERT(bp != NULL);
   2373 
   2374 	sc->sc_pc = pa->pa_pc;
   2375 	sc->sc_pcitag = pa->pa_tag;
   2376 	sc->bge_dev = self;
   2377 
   2378 	pc = sc->sc_pc;
   2379 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2380 
   2381 	aprint_naive(": Ethernet controller\n");
   2382 	aprint_normal(": %s\n", bp->bp_name);
   2383 
   2384 	/*
   2385 	 * Map control/status registers.
   2386 	 */
   2387 	DPRINTFN(5, ("Map control/status regs\n"));
   2388 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2389 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2390 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2391 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2392 
   2393 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2394 		aprint_error_dev(sc->bge_dev,
   2395 		    "failed to enable memory mapping!\n");
   2396 		return;
   2397 	}
   2398 
   2399 	DPRINTFN(5, ("pci_mem_find\n"));
   2400 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2401  	switch (memtype) {
   2402 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2403 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2404 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2405 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2406 		    &memaddr, &memsize) == 0)
   2407 			break;
   2408 	default:
   2409 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2410 		return;
   2411 	}
   2412 
   2413 	DPRINTFN(5, ("pci_intr_map\n"));
   2414 	if (pci_intr_map(pa, &ih)) {
   2415 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2416 		return;
   2417 	}
   2418 
   2419 	DPRINTFN(5, ("pci_intr_string\n"));
   2420 	intrstr = pci_intr_string(pc, ih);
   2421 
   2422 	DPRINTFN(5, ("pci_intr_establish\n"));
   2423 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2424 
   2425 	if (sc->bge_intrhand == NULL) {
   2426 		aprint_error_dev(sc->bge_dev,
   2427 		    "couldn't establish interrupt%s%s\n",
   2428 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2429 		return;
   2430 	}
   2431 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2432 
   2433 	/*
   2434 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2435 	 * can clobber the chip's PCI config-space power control registers,
   2436 	 * leaving the card in D3 powersave state.
   2437 	 * We do not have memory-mapped registers in this state,
   2438 	 * so force device into D0 state before starting initialization.
   2439 	 */
   2440 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2441 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2442 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2443 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2444 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2445 
   2446 	/*
   2447 	 * Save ASIC rev.
   2448 	 */
   2449 	sc->bge_chipid =
   2450 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2451 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2452 
   2453 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2454 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2455 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2456 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2457 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2458 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2459 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2460 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2461 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2462 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2463 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2464 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2465 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2466 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2467 		else
   2468 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2469 			    BGE_PCI_PRODID_ASICREV);
   2470 	}
   2471 
   2472 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2473 	        NULL, NULL) != 0) {
   2474 		/* PCIe */
   2475 		sc->bge_flags |= BGE_PCIE;
   2476 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2477 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2478 		/* PCI-X */
   2479 		sc->bge_flags |= BGE_PCIX;
   2480 	}
   2481 
   2482 	/* chipid */
   2483 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2484 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2485 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2486 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2487 		sc->bge_flags |= BGE_5700_FAMILY;
   2488 
   2489 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2490 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2491 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2492 		sc->bge_flags |= BGE_5714_FAMILY;
   2493 
   2494 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2495 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2496 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2497 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2498 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2499 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2500 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2501 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2502 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2503 		sc->bge_flags |= BGE_5755_PLUS;
   2504 
   2505 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2506 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2507 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2508 	    BGE_IS_5755_PLUS(sc) ||
   2509 	    BGE_IS_5714_FAMILY(sc))
   2510 		sc->bge_flags |= BGE_5750_PLUS;
   2511 
   2512 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2513 	    BGE_IS_5750_OR_BEYOND(sc))
   2514 		sc->bge_flags |= BGE_5705_PLUS;
   2515 
   2516 	/*
   2517 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2518 	 * been observed in the first few bytes of some received packets.
   2519 	 * Aligning the packet buffer in memory eliminates the corruption.
   2520 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2521 	 * which do not support unaligned accesses, we will realign the
   2522 	 * payloads by copying the received packets.
   2523 	 */
   2524 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2525 	    sc->bge_flags & BGE_PCIX)
   2526 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2527 
   2528 	if (BGE_IS_5700_FAMILY(sc))
   2529 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2530 
   2531 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2532 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2533 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2534 		sc->bge_flags |= BGE_NO_3LED;
   2535 
   2536 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2537 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2538 
   2539 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2540 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2541 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2542 		sc->bge_flags |= BGE_IS_5788;
   2543 
   2544 	/*
   2545 	 * Some controllers seem to require a special firmware to use
   2546 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2547 	 * claims that the TSO performed by the firmware is slower than
   2548 	 * hardware based TSO. Moreover the firmware based TSO has one
   2549 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2550 	 * header is greater than 80 bytes. The workaround for the TSO
   2551 	 * bug exist but it seems it's too expensive than not using
   2552 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2553 	 * the TSO to the controllers that are not affected TSO issues
   2554 	 * (e.g. 5755 or higher).
   2555 	 */
   2556 	if (BGE_IS_5755_PLUS(sc)) {
   2557 		/*
   2558 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2559 		 * explicit device id check is required.
   2560 		 */
   2561 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2562 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2563 			sc->bge_flags |= BGE_TSO;
   2564 	}
   2565 
   2566 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2567 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2568 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2569 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2570 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2571 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2572 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2573 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2574 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2575 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2576 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2577 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2578 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2579 		sc->bge_flags |= BGE_10_100_ONLY;
   2580 
   2581 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2582 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2583 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2584 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2585 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2586 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2587 
   2588 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2589 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2590 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2591 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2592 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2593 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2594 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2595 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2596 
   2597 	if (BGE_IS_5705_PLUS(sc) &&
   2598 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2599 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2600 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2601 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2602 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2603 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2604 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2605 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2606 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2607 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2608 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2609 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2610 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2611 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2612 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2613 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2614 	}
   2615 
   2616 	/*
   2617 	 * SEEPROM check.
   2618 	 * First check if firmware knows we do not have SEEPROM.
   2619 	 */
   2620 	 if (prop_dictionary_get_bool(device_properties(self),
   2621 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2622 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2623 
   2624 	/* Now check the 'ROM failed' bit on the RX CPU */
   2625 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2626 		sc->bge_flags |= BGE_NO_EEPROM;
   2627 
   2628 	/* Try to reset the chip. */
   2629 	DPRINTFN(5, ("bge_reset\n"));
   2630 	bge_reset(sc);
   2631 
   2632 	if (bge_chipinit(sc)) {
   2633 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2634 		bge_release_resources(sc);
   2635 		return;
   2636 	}
   2637 
   2638 	/*
   2639 	 * Get station address from the EEPROM (or use firmware values
   2640 	 * if provided via device properties)
   2641 	 */
   2642 	eaddrprop = prop_dictionary_get(device_properties(self), "mac-address");
   2643 
   2644 	if (eaddrprop != NULL && prop_data_size(eaddrprop) == ETHER_ADDR_LEN) {
   2645 		memcpy(eaddr, prop_data_data_nocopy(eaddrprop),
   2646 			    ETHER_ADDR_LEN);
   2647 		goto got_eaddr;
   2648 	}
   2649 
   2650 	if (bge_get_eaddr(sc, eaddr)) {
   2651 		aprint_error_dev(sc->bge_dev,
   2652 		"failed to read station address\n");
   2653 		bge_release_resources(sc);
   2654 		return;
   2655 	}
   2656 
   2657 got_eaddr:
   2658 	br = bge_lookup_rev(sc->bge_chipid);
   2659 
   2660 	if (br == NULL) {
   2661 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2662 		    sc->bge_chipid);
   2663 	} else {
   2664 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2665 		    br->br_name, sc->bge_chipid);
   2666 	}
   2667 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2668 
   2669 	/* Allocate the general information block and ring buffers. */
   2670 	if (pci_dma64_available(pa))
   2671 		sc->bge_dmatag = pa->pa_dmat64;
   2672 	else
   2673 		sc->bge_dmatag = pa->pa_dmat;
   2674 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2675 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2676 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2677 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2678 		return;
   2679 	}
   2680 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2681 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2682 			   sizeof(struct bge_ring_data), &kva,
   2683 			   BUS_DMA_NOWAIT)) {
   2684 		aprint_error_dev(sc->bge_dev,
   2685 		    "can't map DMA buffers (%zu bytes)\n",
   2686 		    sizeof(struct bge_ring_data));
   2687 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2688 		return;
   2689 	}
   2690 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2691 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2692 	    sizeof(struct bge_ring_data), 0,
   2693 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2694 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2695 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2696 				 sizeof(struct bge_ring_data));
   2697 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2698 		return;
   2699 	}
   2700 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2701 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2702 			    sizeof(struct bge_ring_data), NULL,
   2703 			    BUS_DMA_NOWAIT)) {
   2704 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2705 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2706 				 sizeof(struct bge_ring_data));
   2707 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2708 		return;
   2709 	}
   2710 
   2711 	DPRINTFN(5, ("bzero\n"));
   2712 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2713 
   2714 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2715 
   2716 	/* Try to allocate memory for jumbo buffers. */
   2717 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2718 		if (bge_alloc_jumbo_mem(sc)) {
   2719 			aprint_error_dev(sc->bge_dev,
   2720 			    "jumbo buffer allocation failed\n");
   2721 		} else
   2722 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2723 	}
   2724 
   2725 	/* Set default tuneable values. */
   2726 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2727 	sc->bge_rx_coal_ticks = 150;
   2728 	sc->bge_rx_max_coal_bds = 64;
   2729 #ifdef ORIG_WPAUL_VALUES
   2730 	sc->bge_tx_coal_ticks = 150;
   2731 	sc->bge_tx_max_coal_bds = 128;
   2732 #else
   2733 	sc->bge_tx_coal_ticks = 300;
   2734 	sc->bge_tx_max_coal_bds = 400;
   2735 #endif
   2736 	if (BGE_IS_5705_PLUS(sc)) {
   2737 		sc->bge_tx_coal_ticks = (12 * 5);
   2738 		sc->bge_tx_max_coal_bds = (12 * 5);
   2739 			aprint_verbose_dev(sc->bge_dev,
   2740 			    "setting short Tx thresholds\n");
   2741 	}
   2742 
   2743 	if (BGE_IS_5705_PLUS(sc))
   2744 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2745 	else
   2746 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2747 
   2748 	/* Set up ifnet structure */
   2749 	ifp = &sc->ethercom.ec_if;
   2750 	ifp->if_softc = sc;
   2751 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2752 	ifp->if_ioctl = bge_ioctl;
   2753 	ifp->if_stop = bge_stop;
   2754 	ifp->if_start = bge_start;
   2755 	ifp->if_init = bge_init;
   2756 	ifp->if_watchdog = bge_watchdog;
   2757 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2758 	IFQ_SET_READY(&ifp->if_snd);
   2759 	DPRINTFN(5, ("strcpy if_xname\n"));
   2760 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2761 
   2762 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2763 		sc->ethercom.ec_if.if_capabilities |=
   2764 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2765 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2766 		sc->ethercom.ec_if.if_capabilities |=
   2767 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2768 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2769 #endif
   2770 	sc->ethercom.ec_capabilities |=
   2771 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2772 
   2773 	if (sc->bge_flags & BGE_TSO)
   2774 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2775 
   2776 	/*
   2777 	 * Do MII setup.
   2778 	 */
   2779 	DPRINTFN(5, ("mii setup\n"));
   2780 	sc->bge_mii.mii_ifp = ifp;
   2781 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2782 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2783 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2784 
   2785 	/*
   2786 	 * Figure out what sort of media we have by checking the
   2787 	 * hardware config word in the first 32k of NIC internal memory,
   2788 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2789 	 * cards, this value appears to be unset. If that's the
   2790 	 * case, we have to rely on identifying the NIC by its PCI
   2791 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2792 	 */
   2793 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2794 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2795 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2796 		bge_read_eeprom(sc, (void *)&hwcfg,
   2797 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2798 		hwcfg = be32toh(hwcfg);
   2799 	}
   2800 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2801 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2802 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2803 		if (BGE_IS_5714_FAMILY(sc))
   2804 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2805 		else
   2806 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2807 	}
   2808 
   2809 	/* set phyflags before mii_attach() */
   2810 	dict = device_properties(self);
   2811 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2812 
   2813 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2814 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2815 		    bge_ifmedia_sts);
   2816 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2817 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2818 			    0, NULL);
   2819 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2820 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2821 		/* Pretend the user requested this setting */
   2822 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2823 	} else {
   2824 		/*
   2825 		 * Do transceiver setup.
   2826 		 */
   2827 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2828 			     bge_ifmedia_sts);
   2829 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2830 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2831 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2832 
   2833 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2834 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2835 			ifmedia_add(&sc->bge_mii.mii_media,
   2836 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2837 			ifmedia_set(&sc->bge_mii.mii_media,
   2838 				    IFM_ETHER|IFM_MANUAL);
   2839 		} else
   2840 			ifmedia_set(&sc->bge_mii.mii_media,
   2841 				    IFM_ETHER|IFM_AUTO);
   2842 	}
   2843 
   2844 	/*
   2845 	 * Call MI attach routine.
   2846 	 */
   2847 	DPRINTFN(5, ("if_attach\n"));
   2848 	if_attach(ifp);
   2849 	DPRINTFN(5, ("ether_ifattach\n"));
   2850 	ether_ifattach(ifp, eaddr);
   2851 #if NRND > 0
   2852 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2853 		RND_TYPE_NET, 0);
   2854 #endif
   2855 #ifdef BGE_EVENT_COUNTERS
   2856 	/*
   2857 	 * Attach event counters.
   2858 	 */
   2859 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2860 	    NULL, device_xname(sc->bge_dev), "intr");
   2861 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2862 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2863 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2864 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2865 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2866 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2867 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2868 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2869 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2870 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2871 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2872 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   2873 #endif /* BGE_EVENT_COUNTERS */
   2874 	DPRINTFN(5, ("callout_init\n"));
   2875 	callout_init(&sc->bge_timeout, 0);
   2876 
   2877 	if (pmf_device_register(self, NULL, NULL))
   2878 		pmf_class_network_register(self, ifp);
   2879 	else
   2880 		aprint_error_dev(self, "couldn't establish power handler\n");
   2881 
   2882 #ifdef BGE_DEBUG
   2883 	bge_debug_info(sc);
   2884 #endif
   2885 }
   2886 
   2887 static void
   2888 bge_release_resources(struct bge_softc *sc)
   2889 {
   2890 	if (sc->bge_vpd_prodname != NULL)
   2891 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2892 
   2893 	if (sc->bge_vpd_readonly != NULL)
   2894 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2895 }
   2896 
   2897 static void
   2898 bge_reset(struct bge_softc *sc)
   2899 {
   2900 	uint32_t cachesize, command, pcistate, new_pcistate;
   2901 	int i, val;
   2902 	void (*write_op)(struct bge_softc *, int, int);
   2903 
   2904 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   2905 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   2906 	    	if (sc->bge_flags & BGE_PCIE) {
   2907 			write_op = bge_writemem_direct;
   2908 		} else {
   2909 			write_op = bge_writemem_ind;
   2910 		}
   2911 	} else {
   2912 		write_op = bge_writereg_ind;
   2913 	}
   2914 
   2915 
   2916 	/* Save some important PCI state. */
   2917 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   2918 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   2919 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   2920 
   2921 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2922 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   2923 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   2924 
   2925 	/* Disable fastboot on controllers that support it. */
   2926 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2927 	    BGE_IS_5755_PLUS(sc))
   2928 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   2929 
   2930 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2931 	/*
   2932 	 * XXX: from FreeBSD/Linux; no documentation
   2933 	 */
   2934 	if (sc->bge_flags & BGE_PCIE) {
   2935 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2936 			/* PCI Express 1.0 system */
   2937 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2938 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2939 			/*
   2940 			 * Prevent PCI Express link training
   2941 			 * during global reset.
   2942 			 */
   2943 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2944 			val |= (1<<29);
   2945 		}
   2946 	}
   2947 
   2948 	/*
   2949 	 * Set GPHY Power Down Override to leave GPHY
   2950 	 * powered up in D0 uninitialized.
   2951 	 */
   2952 	if (BGE_IS_5705_PLUS(sc))
   2953 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   2954 
   2955 	/* Issue global reset */
   2956 	write_op(sc, BGE_MISC_CFG, val);
   2957 
   2958 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2959 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2960 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   2961 		    i | BGE_VCPU_STATUS_DRV_RESET);
   2962 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   2963 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   2964 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   2965 	}
   2966 
   2967 	DELAY(1000);
   2968 
   2969 	/*
   2970 	 * XXX: from FreeBSD/Linux; no documentation
   2971 	 */
   2972 	if (sc->bge_flags & BGE_PCIE) {
   2973 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2974 			pcireg_t reg;
   2975 
   2976 			DELAY(500000);
   2977 			/* XXX: Magic Numbers */
   2978 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   2979 			    BGE_PCI_UNKNOWN0);
   2980 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2981 			    BGE_PCI_UNKNOWN0,
   2982 			    reg | (1 << 15));
   2983 		}
   2984 		/*
   2985 		 * XXX: Magic Numbers.
   2986 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
   2987 		 * Should be replaced with references to PCI config-space
   2988 		 * capability block for PCI-Express.
   2989 		 */
   2990 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   2991 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
   2992 
   2993 	}
   2994 
   2995 	/* Reset some of the PCI state that got zapped by reset */
   2996 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2997 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   2998 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   2999 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3000 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3001 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3002 
   3003 	/* Enable memory arbiter. */
   3004 	{
   3005 		uint32_t marbmode = 0;
   3006 		if (BGE_IS_5714_FAMILY(sc)) {
   3007 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3008 		}
   3009  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3010 	}
   3011 
   3012  	/*
   3013 	 * Prevent PXE restart: write a magic number to the
   3014 	 * general communications memory at 0xB50.
   3015 	 */
   3016 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3017 
   3018 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3019 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3020 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3021 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3022 				break;
   3023 			DELAY(100);
   3024 		}
   3025 		if (i == BGE_TIMEOUT) {
   3026 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3027 			return;
   3028 		}
   3029 	} else {
   3030 		/*
   3031 		 * Poll the value location we just wrote until
   3032 		 * we see the 1's complement of the magic number.
   3033 		 * This indicates that the firmware initialization
   3034 		 * is complete.
   3035 		 */
   3036 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3037 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3038 			if (val == ~BGE_MAGIC_NUMBER)
   3039 				break;
   3040 			DELAY(10);
   3041 		}
   3042 
   3043 		if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM))) {
   3044 			aprint_error_dev(sc->bge_dev,
   3045 			    "firmware handshake timed out, val = %x\n", val);
   3046 			/*
   3047 			 * XXX: occasionally fired on bcm5721, but without
   3048 			 * apparent harm.  For now, keep going if we timeout
   3049 			 * against PCI-E devices.
   3050 			 */
   3051 			if ((sc->bge_flags & BGE_PCIE) == 0)
   3052 				  return;
   3053 		}
   3054 	}
   3055 
   3056 	/*
   3057 	 * XXX Wait for the value of the PCISTATE register to
   3058 	 * return to its original pre-reset state. This is a
   3059 	 * fairly good indicator of reset completion. If we don't
   3060 	 * wait for the reset to fully complete, trying to read
   3061 	 * from the device's non-PCI registers may yield garbage
   3062 	 * results.
   3063 	 */
   3064 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3065 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3066 		    BGE_PCI_PCISTATE);
   3067 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3068 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3069 			break;
   3070 		DELAY(10);
   3071 	}
   3072 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3073 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3074 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3075 	}
   3076 
   3077 #if 0
   3078 	/* Enable memory arbiter. */
   3079 	/* XXX why do this twice? */
   3080 	{
   3081 		uint32_t marbmode = 0;
   3082 		if (BGE_IS_5714_FAMILY(sc)) {
   3083 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3084 		}
   3085  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3086 	}
   3087 #endif
   3088 
   3089 	/* Fix up byte swapping */
   3090 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3091 
   3092 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3093 
   3094 	/*
   3095 	 * The 5704 in TBI mode apparently needs some special
   3096 	 * adjustment to insure the SERDES drive level is set
   3097 	 * to 1.2V.
   3098 	 */
   3099 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3100 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3101 		uint32_t serdescfg;
   3102 
   3103 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3104 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3105 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3106 	}
   3107 
   3108 	if (sc->bge_flags & BGE_PCIE &&
   3109 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3110 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3111 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3112 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3113 		uint32_t v;
   3114 
   3115 		/* Enable PCI Express bug fix */
   3116 		v = CSR_READ_4(sc, 0x7c00);
   3117 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3118 	}
   3119 	DELAY(10000);
   3120 }
   3121 
   3122 /*
   3123  * Frame reception handling. This is called if there's a frame
   3124  * on the receive return list.
   3125  *
   3126  * Note: we have to be able to handle two possibilities here:
   3127  * 1) the frame is from the jumbo recieve ring
   3128  * 2) the frame is from the standard receive ring
   3129  */
   3130 
   3131 static void
   3132 bge_rxeof(struct bge_softc *sc)
   3133 {
   3134 	struct ifnet *ifp;
   3135 	uint16_t rx_prod, rx_cons;
   3136 	int stdcnt = 0, jumbocnt = 0;
   3137 	bus_dmamap_t dmamap;
   3138 	bus_addr_t offset, toff;
   3139 	bus_size_t tlen;
   3140 	int tosync;
   3141 
   3142 	rx_cons = sc->bge_rx_saved_considx;
   3143 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3144 
   3145 	/* Nothing to do */
   3146 	if (rx_cons == rx_prod)
   3147 		return;
   3148 
   3149 	ifp = &sc->ethercom.ec_if;
   3150 
   3151 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3152 	    offsetof(struct bge_ring_data, bge_status_block),
   3153 	    sizeof (struct bge_status_block),
   3154 	    BUS_DMASYNC_POSTREAD);
   3155 
   3156 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3157 	tosync = rx_prod - rx_cons;
   3158 
   3159 #if NRND > 0
   3160 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3161 		rnd_add_uint32(&sc->rnd_source, tosync);
   3162 #endif
   3163 
   3164 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3165 
   3166 	if (tosync < 0) {
   3167 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3168 		    sizeof (struct bge_rx_bd);
   3169 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3170 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3171 		tosync = -tosync;
   3172 	}
   3173 
   3174 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3175 	    offset, tosync * sizeof (struct bge_rx_bd),
   3176 	    BUS_DMASYNC_POSTREAD);
   3177 
   3178 	while (rx_cons != rx_prod) {
   3179 		struct bge_rx_bd	*cur_rx;
   3180 		uint32_t		rxidx;
   3181 		struct mbuf		*m = NULL;
   3182 
   3183 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3184 
   3185 		rxidx = cur_rx->bge_idx;
   3186 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3187 
   3188 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3189 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3190 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3191 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3192 			jumbocnt++;
   3193 			bus_dmamap_sync(sc->bge_dmatag,
   3194 			    sc->bge_cdata.bge_rx_jumbo_map,
   3195 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3196 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3197 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3198 				ifp->if_ierrors++;
   3199 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3200 				continue;
   3201 			}
   3202 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3203 					     NULL)== ENOBUFS) {
   3204 				ifp->if_ierrors++;
   3205 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3206 				continue;
   3207 			}
   3208 		} else {
   3209 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3210 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3211 
   3212 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3213 			stdcnt++;
   3214 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3215 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3216 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3217 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3218 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3219 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3220 				ifp->if_ierrors++;
   3221 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3222 				continue;
   3223 			}
   3224 			if (bge_newbuf_std(sc, sc->bge_std,
   3225 			    NULL, dmamap) == ENOBUFS) {
   3226 				ifp->if_ierrors++;
   3227 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3228 				continue;
   3229 			}
   3230 		}
   3231 
   3232 		ifp->if_ipackets++;
   3233 #ifndef __NO_STRICT_ALIGNMENT
   3234                 /*
   3235                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3236                  * the Rx buffer has the layer-2 header unaligned.
   3237                  * If our CPU requires alignment, re-align by copying.
   3238                  */
   3239 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3240 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3241                                 cur_rx->bge_len);
   3242 			m->m_data += ETHER_ALIGN;
   3243 		}
   3244 #endif
   3245 
   3246 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3247 		m->m_pkthdr.rcvif = ifp;
   3248 
   3249 		/*
   3250 		 * Handle BPF listeners. Let the BPF user see the packet.
   3251 		 */
   3252 		if (ifp->if_bpf)
   3253 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   3254 
   3255 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3256 
   3257 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3258 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3259 		/*
   3260 		 * Rx transport checksum-offload may also
   3261 		 * have bugs with packets which, when transmitted,
   3262 		 * were `runts' requiring padding.
   3263 		 */
   3264 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3265 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3266 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3267 			m->m_pkthdr.csum_data =
   3268 			    cur_rx->bge_tcp_udp_csum;
   3269 			m->m_pkthdr.csum_flags |=
   3270 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3271 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3272 		}
   3273 
   3274 		/*
   3275 		 * If we received a packet with a vlan tag, pass it
   3276 		 * to vlan_input() instead of ether_input().
   3277 		 */
   3278 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3279 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3280 		}
   3281 
   3282 		(*ifp->if_input)(ifp, m);
   3283 	}
   3284 
   3285 	sc->bge_rx_saved_considx = rx_cons;
   3286 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3287 	if (stdcnt)
   3288 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3289 	if (jumbocnt)
   3290 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3291 }
   3292 
   3293 static void
   3294 bge_txeof(struct bge_softc *sc)
   3295 {
   3296 	struct bge_tx_bd *cur_tx = NULL;
   3297 	struct ifnet *ifp;
   3298 	struct txdmamap_pool_entry *dma;
   3299 	bus_addr_t offset, toff;
   3300 	bus_size_t tlen;
   3301 	int tosync;
   3302 	struct mbuf *m;
   3303 
   3304 	ifp = &sc->ethercom.ec_if;
   3305 
   3306 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3307 	    offsetof(struct bge_ring_data, bge_status_block),
   3308 	    sizeof (struct bge_status_block),
   3309 	    BUS_DMASYNC_POSTREAD);
   3310 
   3311 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3312 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3313 	    sc->bge_tx_saved_considx;
   3314 
   3315 #if NRND > 0
   3316 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3317 		rnd_add_uint32(&sc->rnd_source, tosync);
   3318 #endif
   3319 
   3320 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3321 
   3322 	if (tosync < 0) {
   3323 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3324 		    sizeof (struct bge_tx_bd);
   3325 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3326 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3327 		tosync = -tosync;
   3328 	}
   3329 
   3330 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3331 	    offset, tosync * sizeof (struct bge_tx_bd),
   3332 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3333 
   3334 	/*
   3335 	 * Go through our tx ring and free mbufs for those
   3336 	 * frames that have been sent.
   3337 	 */
   3338 	while (sc->bge_tx_saved_considx !=
   3339 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3340 		uint32_t		idx = 0;
   3341 
   3342 		idx = sc->bge_tx_saved_considx;
   3343 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3344 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3345 			ifp->if_opackets++;
   3346 		m = sc->bge_cdata.bge_tx_chain[idx];
   3347 		if (m != NULL) {
   3348 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3349 			dma = sc->txdma[idx];
   3350 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3351 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3352 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3353 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3354 			sc->txdma[idx] = NULL;
   3355 
   3356 			m_freem(m);
   3357 		}
   3358 		sc->bge_txcnt--;
   3359 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3360 		ifp->if_timer = 0;
   3361 	}
   3362 
   3363 	if (cur_tx != NULL)
   3364 		ifp->if_flags &= ~IFF_OACTIVE;
   3365 }
   3366 
   3367 static int
   3368 bge_intr(void *xsc)
   3369 {
   3370 	struct bge_softc *sc;
   3371 	struct ifnet *ifp;
   3372 	uint32_t statusword;
   3373 
   3374 	sc = xsc;
   3375 	ifp = &sc->ethercom.ec_if;
   3376 
   3377 	/* It is possible for the interrupt to arrive before
   3378 	 * the status block is updated prior to the interrupt.
   3379 	 * Reading the PCI State register will confirm whether the
   3380 	 * interrupt is ours and will flush the status block.
   3381 	 */
   3382 
   3383 	/* read status word from status block */
   3384 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3385 
   3386 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3387 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3388 		/* Ack interrupt and stop others from occuring. */
   3389 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3390 
   3391 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3392 
   3393 		/* clear status word */
   3394 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3395 
   3396 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3397 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3398 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3399 			bge_link_upd(sc);
   3400 
   3401 		if (ifp->if_flags & IFF_RUNNING) {
   3402 			/* Check RX return ring producer/consumer */
   3403 			bge_rxeof(sc);
   3404 
   3405 			/* Check TX ring producer/consumer */
   3406 			bge_txeof(sc);
   3407 		}
   3408 
   3409 		if (sc->bge_pending_rxintr_change) {
   3410 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3411 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3412 			uint32_t junk;
   3413 
   3414 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3415 			DELAY(10);
   3416 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3417 
   3418 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3419 			DELAY(10);
   3420 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3421 
   3422 			sc->bge_pending_rxintr_change = 0;
   3423 		}
   3424 		bge_handle_events(sc);
   3425 
   3426 		/* Re-enable interrupts. */
   3427 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3428 
   3429 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3430 			bge_start(ifp);
   3431 
   3432 		return 1;
   3433 	} else
   3434 		return 0;
   3435 }
   3436 
   3437 static void
   3438 bge_tick(void *xsc)
   3439 {
   3440 	struct bge_softc *sc = xsc;
   3441 	struct mii_data *mii = &sc->bge_mii;
   3442 	int s;
   3443 
   3444 	s = splnet();
   3445 
   3446 	if (BGE_IS_5705_PLUS(sc))
   3447 		bge_stats_update_regs(sc);
   3448 	else
   3449 		bge_stats_update(sc);
   3450 
   3451 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3452 		/*
   3453 		 * Since in TBI mode auto-polling can't be used we should poll
   3454 		 * link status manually. Here we register pending link event
   3455 		 * and trigger interrupt.
   3456 		 */
   3457 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3458 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3459 	} else {
   3460 		/*
   3461 		 * Do not touch PHY if we have link up. This could break
   3462 		 * IPMI/ASF mode or produce extra input errors.
   3463 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3464 		 */
   3465 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3466 			mii_tick(mii);
   3467 	}
   3468 
   3469 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3470 
   3471 	splx(s);
   3472 }
   3473 
   3474 static void
   3475 bge_stats_update_regs(struct bge_softc *sc)
   3476 {
   3477 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3478 
   3479 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3480 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3481 
   3482 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3483 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3484 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3485 }
   3486 
   3487 static void
   3488 bge_stats_update(struct bge_softc *sc)
   3489 {
   3490 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3491 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3492 
   3493 #define READ_STAT(sc, stats, stat) \
   3494 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3495 
   3496 	ifp->if_collisions +=
   3497 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3498 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3499 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3500 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3501 	  ifp->if_collisions;
   3502 
   3503 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3504 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3505 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3506 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3507 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3508 		      READ_STAT(sc, stats,
   3509 		      		xoffPauseFramesReceived.bge_addr_lo));
   3510 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3511 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3512 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3513 		      READ_STAT(sc, stats,
   3514 		      		macControlFramesReceived.bge_addr_lo));
   3515 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3516 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3517 
   3518 #undef READ_STAT
   3519 
   3520 #ifdef notdef
   3521 	ifp->if_collisions +=
   3522 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3523 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3524 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3525 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3526 	   ifp->if_collisions;
   3527 #endif
   3528 }
   3529 
   3530 /*
   3531  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3532  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3533  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3534  * the hardware checksum assist gives incorrect results (possibly
   3535  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3536  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3537  */
   3538 static inline int
   3539 bge_cksum_pad(struct mbuf *pkt)
   3540 {
   3541 	struct mbuf *last = NULL;
   3542 	int padlen;
   3543 
   3544 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3545 
   3546 	/* if there's only the packet-header and we can pad there, use it. */
   3547 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3548 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3549 		last = pkt;
   3550 	} else {
   3551 		/*
   3552 		 * Walk packet chain to find last mbuf. We will either
   3553 		 * pad there, or append a new mbuf and pad it
   3554 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3555 		 */
   3556 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3557 	      	       continue; /* do nothing */
   3558 		}
   3559 
   3560 		/* `last' now points to last in chain. */
   3561 		if (M_TRAILINGSPACE(last) < padlen) {
   3562 			/* Allocate new empty mbuf, pad it. Compact later. */
   3563 			struct mbuf *n;
   3564 			MGET(n, M_DONTWAIT, MT_DATA);
   3565 			if (n == NULL)
   3566 				return ENOBUFS;
   3567 			n->m_len = 0;
   3568 			last->m_next = n;
   3569 			last = n;
   3570 		}
   3571 	}
   3572 
   3573 	KDASSERT(!M_READONLY(last));
   3574 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3575 
   3576 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3577 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3578 	last->m_len += padlen;
   3579 	pkt->m_pkthdr.len += padlen;
   3580 	return 0;
   3581 }
   3582 
   3583 /*
   3584  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3585  */
   3586 static inline int
   3587 bge_compact_dma_runt(struct mbuf *pkt)
   3588 {
   3589 	struct mbuf	*m, *prev;
   3590 	int 		totlen, prevlen;
   3591 
   3592 	prev = NULL;
   3593 	totlen = 0;
   3594 	prevlen = -1;
   3595 
   3596 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3597 		int mlen = m->m_len;
   3598 		int shortfall = 8 - mlen ;
   3599 
   3600 		totlen += mlen;
   3601 		if (mlen == 0) {
   3602 			continue;
   3603 		}
   3604 		if (mlen >= 8)
   3605 			continue;
   3606 
   3607 		/* If we get here, mbuf data is too small for DMA engine.
   3608 		 * Try to fix by shuffling data to prev or next in chain.
   3609 		 * If that fails, do a compacting deep-copy of the whole chain.
   3610 		 */
   3611 
   3612 		/* Internal frag. If fits in prev, copy it there. */
   3613 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3614 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3615 			prev->m_len += mlen;
   3616 			m->m_len = 0;
   3617 			/* XXX stitch chain */
   3618 			prev->m_next = m_free(m);
   3619 			m = prev;
   3620 			continue;
   3621 		}
   3622 		else if (m->m_next != NULL &&
   3623 			     M_TRAILINGSPACE(m) >= shortfall &&
   3624 			     m->m_next->m_len >= (8 + shortfall)) {
   3625 		    /* m is writable and have enough data in next, pull up. */
   3626 
   3627 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3628 			    shortfall);
   3629 			m->m_len += shortfall;
   3630 			m->m_next->m_len -= shortfall;
   3631 			m->m_next->m_data += shortfall;
   3632 		}
   3633 		else if (m->m_next == NULL || 1) {
   3634 		  	/* Got a runt at the very end of the packet.
   3635 			 * borrow data from the tail of the preceding mbuf and
   3636 			 * update its length in-place. (The original data is still
   3637 			 * valid, so we can do this even if prev is not writable.)
   3638 			 */
   3639 
   3640 			/* if we'd make prev a runt, just move all of its data. */
   3641 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3642 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3643 
   3644 			if ((prev->m_len - shortfall) < 8)
   3645 				shortfall = prev->m_len;
   3646 
   3647 #ifdef notyet	/* just do the safe slow thing for now */
   3648 			if (!M_READONLY(m)) {
   3649 				if (M_LEADINGSPACE(m) < shorfall) {
   3650 					void *m_dat;
   3651 					m_dat = (m->m_flags & M_PKTHDR) ?
   3652 					  m->m_pktdat : m->dat;
   3653 					memmove(m_dat, mtod(m, void*), m->m_len);
   3654 					m->m_data = m_dat;
   3655 				    }
   3656 			} else
   3657 #endif	/* just do the safe slow thing */
   3658 			{
   3659 				struct mbuf * n = NULL;
   3660 				int newprevlen = prev->m_len - shortfall;
   3661 
   3662 				MGET(n, M_NOWAIT, MT_DATA);
   3663 				if (n == NULL)
   3664 				   return ENOBUFS;
   3665 				KASSERT(m->m_len + shortfall < MLEN
   3666 					/*,
   3667 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3668 
   3669 				/* first copy the data we're stealing from prev */
   3670 				memcpy(n->m_data, prev->m_data + newprevlen,
   3671 				    shortfall);
   3672 
   3673 				/* update prev->m_len accordingly */
   3674 				prev->m_len -= shortfall;
   3675 
   3676 				/* copy data from runt m */
   3677 				memcpy(n->m_data + shortfall, m->m_data,
   3678 				    m->m_len);
   3679 
   3680 				/* n holds what we stole from prev, plus m */
   3681 				n->m_len = shortfall + m->m_len;
   3682 
   3683 				/* stitch n into chain and free m */
   3684 				n->m_next = m->m_next;
   3685 				prev->m_next = n;
   3686 				/* KASSERT(m->m_next == NULL); */
   3687 				m->m_next = NULL;
   3688 				m_free(m);
   3689 				m = n;	/* for continuing loop */
   3690 			}
   3691 		}
   3692 		prevlen = m->m_len;
   3693 	}
   3694 	return 0;
   3695 }
   3696 
   3697 /*
   3698  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3699  * pointers to descriptors.
   3700  */
   3701 static int
   3702 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3703 {
   3704 	struct bge_tx_bd	*f = NULL;
   3705 	uint32_t		frag, cur;
   3706 	uint16_t		csum_flags = 0;
   3707 	uint16_t		txbd_tso_flags = 0;
   3708 	struct txdmamap_pool_entry *dma;
   3709 	bus_dmamap_t dmamap;
   3710 	int			i = 0;
   3711 	struct m_tag		*mtag;
   3712 	int			use_tso, maxsegsize, error;
   3713 
   3714 	cur = frag = *txidx;
   3715 
   3716 	if (m_head->m_pkthdr.csum_flags) {
   3717 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3718 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3719 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3720 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3721 	}
   3722 
   3723 	/*
   3724 	 * If we were asked to do an outboard checksum, and the NIC
   3725 	 * has the bug where it sometimes adds in the Ethernet padding,
   3726 	 * explicitly pad with zeros so the cksum will be correct either way.
   3727 	 * (For now, do this for all chip versions, until newer
   3728 	 * are confirmed to not require the workaround.)
   3729 	 */
   3730 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3731 #ifdef notyet
   3732 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3733 #endif
   3734 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3735 		goto check_dma_bug;
   3736 
   3737 	if (bge_cksum_pad(m_head) != 0)
   3738 	    return ENOBUFS;
   3739 
   3740 check_dma_bug:
   3741 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3742 		goto doit;
   3743 
   3744 	/*
   3745 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3746 	 * less than eight bytes.  If we encounter a teeny mbuf
   3747 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3748 	 */
   3749 	if (bge_compact_dma_runt(m_head) != 0)
   3750 		return ENOBUFS;
   3751 
   3752 doit:
   3753 	dma = SLIST_FIRST(&sc->txdma_list);
   3754 	if (dma == NULL)
   3755 		return ENOBUFS;
   3756 	dmamap = dma->dmamap;
   3757 
   3758 	/*
   3759 	 * Set up any necessary TSO state before we start packing...
   3760 	 */
   3761 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3762 	if (!use_tso) {
   3763 		maxsegsize = 0;
   3764 	} else {	/* TSO setup */
   3765 		unsigned  mss;
   3766 		struct ether_header *eh;
   3767 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3768 		struct mbuf * m0 = m_head;
   3769 		struct ip *ip;
   3770 		struct tcphdr *th;
   3771 		int iphl, hlen;
   3772 
   3773 		/*
   3774 		 * XXX It would be nice if the mbuf pkthdr had offset
   3775 		 * fields for the protocol headers.
   3776 		 */
   3777 
   3778 		eh = mtod(m0, struct ether_header *);
   3779 		switch (htons(eh->ether_type)) {
   3780 		case ETHERTYPE_IP:
   3781 			offset = ETHER_HDR_LEN;
   3782 			break;
   3783 
   3784 		case ETHERTYPE_VLAN:
   3785 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3786 			break;
   3787 
   3788 		default:
   3789 			/*
   3790 			 * Don't support this protocol or encapsulation.
   3791 			 */
   3792 			return ENOBUFS;
   3793 		}
   3794 
   3795 		/*
   3796 		 * TCP/IP headers are in the first mbuf; we can do
   3797 		 * this the easy way.
   3798 		 */
   3799 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3800 		hlen = iphl + offset;
   3801 		if (__predict_false(m0->m_len <
   3802 				    (hlen + sizeof(struct tcphdr)))) {
   3803 
   3804 			aprint_debug_dev(sc->bge_dev,
   3805 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3806 			    "not handled yet\n",
   3807 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3808 #ifdef NOTYET
   3809 			/*
   3810 			 * XXX jonathan (at) NetBSD.org: untested.
   3811 			 * how to force  this branch to be taken?
   3812 			 */
   3813 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3814 
   3815 			m_copydata(m0, offset, sizeof(ip), &ip);
   3816 			m_copydata(m0, hlen, sizeof(th), &th);
   3817 
   3818 			ip.ip_len = 0;
   3819 
   3820 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3821 			    sizeof(ip.ip_len), &ip.ip_len);
   3822 
   3823 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3824 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3825 
   3826 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3827 			    sizeof(th.th_sum), &th.th_sum);
   3828 
   3829 			hlen += th.th_off << 2;
   3830 			iptcp_opt_words	= hlen;
   3831 #else
   3832 			/*
   3833 			 * if_wm "hard" case not yet supported, can we not
   3834 			 * mandate it out of existence?
   3835 			 */
   3836 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3837 
   3838 			return ENOBUFS;
   3839 #endif
   3840 		} else {
   3841 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3842 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3843 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3844 
   3845 			/* Total IP/TCP options, in 32-bit words */
   3846 			iptcp_opt_words = (ip_tcp_hlen
   3847 					   - sizeof(struct tcphdr)
   3848 					   - sizeof(struct ip)) >> 2;
   3849 		}
   3850 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3851 			th->th_sum = 0;
   3852 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   3853 		} else {
   3854 			/*
   3855 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   3856 			 * Requires TSO firmware patch for 5701/5703/5704.
   3857 			 */
   3858 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   3859 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   3860 		}
   3861 
   3862 		mss = m_head->m_pkthdr.segsz;
   3863 		txbd_tso_flags |=
   3864 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   3865 		    BGE_TXBDFLAG_CPU_POST_DMA;
   3866 
   3867 		/*
   3868 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   3869 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   3870 		 * the NIC copies 40 bytes of IP/TCP header from the
   3871 		 * supplied header into the IP/TCP header portion of
   3872 		 * each post-TSO-segment. If the supplied packet has IP or
   3873 		 * TCP options, we need to tell the NIC to copy those extra
   3874 		 * bytes into each  post-TSO header, in addition to the normal
   3875 		 * 40-byte IP/TCP header (and to leave space accordingly).
   3876 		 * Unfortunately, the driver encoding of option length
   3877 		 * varies across different ASIC families.
   3878 		 */
   3879 		tcp_seg_flags = 0;
   3880 		if (iptcp_opt_words) {
   3881 			if (BGE_IS_5705_PLUS(sc)) {
   3882 				tcp_seg_flags =
   3883 					iptcp_opt_words << 11;
   3884 			} else {
   3885 				txbd_tso_flags |=
   3886 					iptcp_opt_words << 12;
   3887 			}
   3888 		}
   3889 		maxsegsize = mss | tcp_seg_flags;
   3890 		ip->ip_len = htons(mss + ip_tcp_hlen);
   3891 
   3892 	}	/* TSO setup */
   3893 
   3894 	/*
   3895 	 * Start packing the mbufs in this chain into
   3896 	 * the fragment pointers. Stop when we run out
   3897 	 * of fragments or hit the end of the mbuf chain.
   3898 	 */
   3899 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3900 	    BUS_DMA_NOWAIT);
   3901 	if (error)
   3902 		return ENOBUFS;
   3903 	/*
   3904 	 * Sanity check: avoid coming within 16 descriptors
   3905 	 * of the end of the ring.
   3906 	 */
   3907 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   3908 		BGE_TSO_PRINTF(("%s: "
   3909 		    " dmamap_load_mbuf too close to ring wrap\n",
   3910 		    device_xname(sc->bge_dev)));
   3911 		goto fail_unload;
   3912 	}
   3913 
   3914 	mtag = sc->ethercom.ec_nvlans ?
   3915 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3916 
   3917 
   3918 	/* Iterate over dmap-map fragments. */
   3919 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3920 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3921 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3922 			break;
   3923 
   3924 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3925 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3926 
   3927 		/*
   3928 		 * For 5751 and follow-ons, for TSO we must turn
   3929 		 * off checksum-assist flag in the tx-descr, and
   3930 		 * supply the ASIC-revision-specific encoding
   3931 		 * of TSO flags and segsize.
   3932 		 */
   3933 		if (use_tso) {
   3934 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   3935 				f->bge_rsvd = maxsegsize;
   3936 				f->bge_flags = csum_flags | txbd_tso_flags;
   3937 			} else {
   3938 				f->bge_rsvd = 0;
   3939 				f->bge_flags =
   3940 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   3941 			}
   3942 		} else {
   3943 			f->bge_rsvd = 0;
   3944 			f->bge_flags = csum_flags;
   3945 		}
   3946 
   3947 		if (mtag != NULL) {
   3948 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3949 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3950 		} else {
   3951 			f->bge_vlan_tag = 0;
   3952 		}
   3953 		cur = frag;
   3954 		BGE_INC(frag, BGE_TX_RING_CNT);
   3955 	}
   3956 
   3957 	if (i < dmamap->dm_nsegs) {
   3958 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   3959 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   3960 		goto fail_unload;
   3961 	}
   3962 
   3963 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3964 	    BUS_DMASYNC_PREWRITE);
   3965 
   3966 	if (frag == sc->bge_tx_saved_considx) {
   3967 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   3968 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   3969 
   3970 		goto fail_unload;
   3971 	}
   3972 
   3973 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3974 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3975 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3976 	sc->txdma[cur] = dma;
   3977 	sc->bge_txcnt += dmamap->dm_nsegs;
   3978 
   3979 	*txidx = frag;
   3980 
   3981 	return 0;
   3982 
   3983 fail_unload:
   3984 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3985 
   3986 	return ENOBUFS;
   3987 }
   3988 
   3989 /*
   3990  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3991  * to the mbuf data regions directly in the transmit descriptors.
   3992  */
   3993 static void
   3994 bge_start(struct ifnet *ifp)
   3995 {
   3996 	struct bge_softc *sc;
   3997 	struct mbuf *m_head = NULL;
   3998 	uint32_t prodidx;
   3999 	int pkts = 0;
   4000 
   4001 	sc = ifp->if_softc;
   4002 
   4003 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4004 		return;
   4005 
   4006 	prodidx = sc->bge_tx_prodidx;
   4007 
   4008 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4009 		IFQ_POLL(&ifp->if_snd, m_head);
   4010 		if (m_head == NULL)
   4011 			break;
   4012 
   4013 #if 0
   4014 		/*
   4015 		 * XXX
   4016 		 * safety overkill.  If this is a fragmented packet chain
   4017 		 * with delayed TCP/UDP checksums, then only encapsulate
   4018 		 * it if we have enough descriptors to handle the entire
   4019 		 * chain at once.
   4020 		 * (paranoia -- may not actually be needed)
   4021 		 */
   4022 		if (m_head->m_flags & M_FIRSTFRAG &&
   4023 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4024 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4025 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4026 				ifp->if_flags |= IFF_OACTIVE;
   4027 				break;
   4028 			}
   4029 		}
   4030 #endif
   4031 
   4032 		/*
   4033 		 * Pack the data into the transmit ring. If we
   4034 		 * don't have room, set the OACTIVE flag and wait
   4035 		 * for the NIC to drain the ring.
   4036 		 */
   4037 		if (bge_encap(sc, m_head, &prodidx)) {
   4038 			ifp->if_flags |= IFF_OACTIVE;
   4039 			break;
   4040 		}
   4041 
   4042 		/* now we are committed to transmit the packet */
   4043 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4044 		pkts++;
   4045 
   4046 		/*
   4047 		 * If there's a BPF listener, bounce a copy of this frame
   4048 		 * to him.
   4049 		 */
   4050 		if (ifp->if_bpf)
   4051 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
   4052 	}
   4053 	if (pkts == 0)
   4054 		return;
   4055 
   4056 	/* Transmit */
   4057 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4058 	/* 5700 b2 errata */
   4059 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4060 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4061 
   4062 	sc->bge_tx_prodidx = prodidx;
   4063 
   4064 	/*
   4065 	 * Set a timeout in case the chip goes out to lunch.
   4066 	 */
   4067 	ifp->if_timer = 5;
   4068 }
   4069 
   4070 static int
   4071 bge_init(struct ifnet *ifp)
   4072 {
   4073 	struct bge_softc *sc = ifp->if_softc;
   4074 	const uint16_t *m;
   4075 	int s, error = 0;
   4076 
   4077 	s = splnet();
   4078 
   4079 	ifp = &sc->ethercom.ec_if;
   4080 
   4081 	/* Cancel pending I/O and flush buffers. */
   4082 	bge_stop(ifp, 0);
   4083 	bge_reset(sc);
   4084 	bge_chipinit(sc);
   4085 
   4086 	/*
   4087 	 * Init the various state machines, ring
   4088 	 * control blocks and firmware.
   4089 	 */
   4090 	error = bge_blockinit(sc);
   4091 	if (error != 0) {
   4092 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4093 		    error);
   4094 		splx(s);
   4095 		return error;
   4096 	}
   4097 
   4098 	ifp = &sc->ethercom.ec_if;
   4099 
   4100 	/* Specify MTU. */
   4101 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4102 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4103 
   4104 	/* Load our MAC address. */
   4105 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4106 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4107 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4108 
   4109 	/* Enable or disable promiscuous mode as needed. */
   4110 	if (ifp->if_flags & IFF_PROMISC) {
   4111 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4112 	} else {
   4113 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4114 	}
   4115 
   4116 	/* Program multicast filter. */
   4117 	bge_setmulti(sc);
   4118 
   4119 	/* Init RX ring. */
   4120 	bge_init_rx_ring_std(sc);
   4121 
   4122 	/*
   4123 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4124 	 * memory to insure that the chip has in fact read the first
   4125 	 * entry of the ring.
   4126 	 */
   4127 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4128 		uint32_t		v, i;
   4129 		for (i = 0; i < 10; i++) {
   4130 			DELAY(20);
   4131 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4132 			if (v == (MCLBYTES - ETHER_ALIGN))
   4133 				break;
   4134 		}
   4135 		if (i == 10)
   4136 			aprint_error_dev(sc->bge_dev,
   4137 			    "5705 A0 chip failed to load RX ring\n");
   4138 	}
   4139 
   4140 	/* Init jumbo RX ring. */
   4141 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4142 		bge_init_rx_ring_jumbo(sc);
   4143 
   4144 	/* Init our RX return ring index */
   4145 	sc->bge_rx_saved_considx = 0;
   4146 
   4147 	/* Init TX ring. */
   4148 	bge_init_tx_ring(sc);
   4149 
   4150 	/* Turn on transmitter */
   4151 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4152 
   4153 	/* Turn on receiver */
   4154 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4155 
   4156 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4157 
   4158 	/* Tell firmware we're alive. */
   4159 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4160 
   4161 	/* Enable host interrupts. */
   4162 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4163 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4164 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4165 
   4166 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4167 		goto out;
   4168 
   4169 	ifp->if_flags |= IFF_RUNNING;
   4170 	ifp->if_flags &= ~IFF_OACTIVE;
   4171 
   4172 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4173 
   4174 out:
   4175 	splx(s);
   4176 
   4177 	return error;
   4178 }
   4179 
   4180 /*
   4181  * Set media options.
   4182  */
   4183 static int
   4184 bge_ifmedia_upd(struct ifnet *ifp)
   4185 {
   4186 	struct bge_softc *sc = ifp->if_softc;
   4187 	struct mii_data *mii = &sc->bge_mii;
   4188 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4189 	int rc;
   4190 
   4191 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4192 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4193 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4194 			return EINVAL;
   4195 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4196 		case IFM_AUTO:
   4197 			/*
   4198 			 * The BCM5704 ASIC appears to have a special
   4199 			 * mechanism for programming the autoneg
   4200 			 * advertisement registers in TBI mode.
   4201 			 */
   4202 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4203 				uint32_t sgdig;
   4204 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4205 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4206 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4207 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4208 					sgdig |= BGE_SGDIGCFG_AUTO |
   4209 					    BGE_SGDIGCFG_PAUSE_CAP |
   4210 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4211 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4212 					    sgdig | BGE_SGDIGCFG_SEND);
   4213 					DELAY(5);
   4214 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4215 				}
   4216 			}
   4217 			break;
   4218 		case IFM_1000_SX:
   4219 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4220 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4221 				    BGE_MACMODE_HALF_DUPLEX);
   4222 			} else {
   4223 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4224 				    BGE_MACMODE_HALF_DUPLEX);
   4225 			}
   4226 			break;
   4227 		default:
   4228 			return EINVAL;
   4229 		}
   4230 		/* XXX 802.3x flow control for 1000BASE-SX */
   4231 		return 0;
   4232 	}
   4233 
   4234 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4235 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4236 		return 0;
   4237 
   4238 	/*
   4239 	 * Force an interrupt so that we will call bge_link_upd
   4240 	 * if needed and clear any pending link state attention.
   4241 	 * Without this we are not getting any further interrupts
   4242 	 * for link state changes and thus will not UP the link and
   4243 	 * not be able to send in bge_start. The only way to get
   4244 	 * things working was to receive a packet and get a RX intr.
   4245 	 */
   4246 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4247 	    sc->bge_flags & BGE_IS_5788)
   4248 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4249 	else
   4250 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4251 
   4252 	return rc;
   4253 }
   4254 
   4255 /*
   4256  * Report current media status.
   4257  */
   4258 static void
   4259 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4260 {
   4261 	struct bge_softc *sc = ifp->if_softc;
   4262 	struct mii_data *mii = &sc->bge_mii;
   4263 
   4264 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4265 		ifmr->ifm_status = IFM_AVALID;
   4266 		ifmr->ifm_active = IFM_ETHER;
   4267 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4268 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4269 			ifmr->ifm_status |= IFM_ACTIVE;
   4270 		ifmr->ifm_active |= IFM_1000_SX;
   4271 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4272 			ifmr->ifm_active |= IFM_HDX;
   4273 		else
   4274 			ifmr->ifm_active |= IFM_FDX;
   4275 		return;
   4276 	}
   4277 
   4278 	mii_pollstat(mii);
   4279 	ifmr->ifm_status = mii->mii_media_status;
   4280 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4281 	    sc->bge_flowflags;
   4282 }
   4283 
   4284 static int
   4285 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4286 {
   4287 	struct bge_softc *sc = ifp->if_softc;
   4288 	struct ifreq *ifr = (struct ifreq *) data;
   4289 	int s, error = 0;
   4290 	struct mii_data *mii;
   4291 
   4292 	s = splnet();
   4293 
   4294 	switch (command) {
   4295 	case SIOCSIFFLAGS:
   4296 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4297 			break;
   4298 		if (ifp->if_flags & IFF_UP) {
   4299 			/*
   4300 			 * If only the state of the PROMISC flag changed,
   4301 			 * then just use the 'set promisc mode' command
   4302 			 * instead of reinitializing the entire NIC. Doing
   4303 			 * a full re-init means reloading the firmware and
   4304 			 * waiting for it to start up, which may take a
   4305 			 * second or two.
   4306 			 */
   4307 			if (ifp->if_flags & IFF_RUNNING &&
   4308 			    ifp->if_flags & IFF_PROMISC &&
   4309 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4310 				BGE_SETBIT(sc, BGE_RX_MODE,
   4311 				    BGE_RXMODE_RX_PROMISC);
   4312 			} else if (ifp->if_flags & IFF_RUNNING &&
   4313 			    !(ifp->if_flags & IFF_PROMISC) &&
   4314 			    sc->bge_if_flags & IFF_PROMISC) {
   4315 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4316 				    BGE_RXMODE_RX_PROMISC);
   4317 			} else if (!(sc->bge_if_flags & IFF_UP))
   4318 				bge_init(ifp);
   4319 		} else {
   4320 			if (ifp->if_flags & IFF_RUNNING)
   4321 				bge_stop(ifp, 1);
   4322 		}
   4323 		sc->bge_if_flags = ifp->if_flags;
   4324 		error = 0;
   4325 		break;
   4326 	case SIOCSIFMEDIA:
   4327 		/* XXX Flow control is not supported for 1000BASE-SX */
   4328 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4329 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4330 			sc->bge_flowflags = 0;
   4331 		}
   4332 
   4333 		/* Flow control requires full-duplex mode. */
   4334 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4335 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4336 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4337 		}
   4338 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4339 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4340 				/* We can do both TXPAUSE and RXPAUSE. */
   4341 				ifr->ifr_media |=
   4342 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4343 			}
   4344 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4345 		}
   4346 		/* FALLTHROUGH */
   4347 	case SIOCGIFMEDIA:
   4348 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4349 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4350 			    command);
   4351 		} else {
   4352 			mii = &sc->bge_mii;
   4353 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4354 			    command);
   4355 		}
   4356 		break;
   4357 	default:
   4358 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4359 			break;
   4360 
   4361 		error = 0;
   4362 
   4363 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4364 			;
   4365 		else if (ifp->if_flags & IFF_RUNNING)
   4366 			bge_setmulti(sc);
   4367 		break;
   4368 	}
   4369 
   4370 	splx(s);
   4371 
   4372 	return error;
   4373 }
   4374 
   4375 static void
   4376 bge_watchdog(struct ifnet *ifp)
   4377 {
   4378 	struct bge_softc *sc;
   4379 
   4380 	sc = ifp->if_softc;
   4381 
   4382 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4383 
   4384 	ifp->if_flags &= ~IFF_RUNNING;
   4385 	bge_init(ifp);
   4386 
   4387 	ifp->if_oerrors++;
   4388 }
   4389 
   4390 static void
   4391 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4392 {
   4393 	int i;
   4394 
   4395 	BGE_CLRBIT(sc, reg, bit);
   4396 
   4397 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4398 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4399 			return;
   4400 		delay(100);
   4401 		if (sc->bge_flags & BGE_PCIE)
   4402 		  DELAY(1000);
   4403 	}
   4404 
   4405 	/*
   4406 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4407 	 * on some environment (and once after boot?)
   4408 	 */
   4409 	if (reg != BGE_SRS_MODE)
   4410 		aprint_error_dev(sc->bge_dev,
   4411 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4412 		    (u_long)reg, bit);
   4413 }
   4414 
   4415 /*
   4416  * Stop the adapter and free any mbufs allocated to the
   4417  * RX and TX lists.
   4418  */
   4419 static void
   4420 bge_stop(struct ifnet *ifp, int disable)
   4421 {
   4422 	struct bge_softc *sc = ifp->if_softc;
   4423 
   4424 	callout_stop(&sc->bge_timeout);
   4425 
   4426 	/*
   4427 	 * Disable all of the receiver blocks
   4428 	 */
   4429 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4430 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4431 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4432 	if (BGE_IS_5700_FAMILY(sc))
   4433 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4434 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4435 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4436 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4437 
   4438 	/*
   4439 	 * Disable all of the transmit blocks
   4440 	 */
   4441 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4442 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4443 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4444 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4445 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4446 	if (BGE_IS_5700_FAMILY(sc))
   4447 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4448 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4449 
   4450 	/*
   4451 	 * Shut down all of the memory managers and related
   4452 	 * state machines.
   4453 	 */
   4454 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4455 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4456 	if (BGE_IS_5700_FAMILY(sc))
   4457 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4458 
   4459 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4460 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4461 
   4462 	if (BGE_IS_5700_FAMILY(sc)) {
   4463 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4464 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4465 	}
   4466 
   4467 	/* Disable host interrupts. */
   4468 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4469 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4470 
   4471 	/*
   4472 	 * Tell firmware we're shutting down.
   4473 	 */
   4474 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4475 
   4476 	/* Free the RX lists. */
   4477 	bge_free_rx_ring_std(sc);
   4478 
   4479 	/* Free jumbo RX list. */
   4480 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4481 		bge_free_rx_ring_jumbo(sc);
   4482 
   4483 	/* Free TX buffers. */
   4484 	bge_free_tx_ring(sc);
   4485 
   4486 	/*
   4487 	 * Isolate/power down the PHY.
   4488 	 */
   4489 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4490 		mii_down(&sc->bge_mii);
   4491 
   4492 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4493 
   4494 	/* Clear MAC's link state (PHY may still have link UP). */
   4495 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4496 
   4497 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4498 }
   4499 
   4500 static void
   4501 bge_link_upd(struct bge_softc *sc)
   4502 {
   4503 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4504 	struct mii_data *mii = &sc->bge_mii;
   4505 	uint32_t status;
   4506 	int link;
   4507 
   4508 	/* Clear 'pending link event' flag */
   4509 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4510 
   4511 	/*
   4512 	 * Process link state changes.
   4513 	 * Grrr. The link status word in the status block does
   4514 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4515 	 * according to all available information. Hence, we have
   4516 	 * to enable MII interrupts in order to properly obtain
   4517 	 * async link changes. Unfortunately, this also means that
   4518 	 * we have to read the MAC status register to detect link
   4519 	 * changes, thereby adding an additional register access to
   4520 	 * the interrupt handler.
   4521 	 */
   4522 
   4523 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4524 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4525 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4526 			mii_pollstat(mii);
   4527 
   4528 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4529 			    mii->mii_media_status & IFM_ACTIVE &&
   4530 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4531 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4532 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4533 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4534 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4535 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4536 
   4537 			/* Clear the interrupt */
   4538 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4539 			    BGE_EVTENB_MI_INTERRUPT);
   4540 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4541 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4542 			    BRGPHY_INTRS);
   4543 		}
   4544 		return;
   4545 	}
   4546 
   4547 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4548 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4549 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4550 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4551 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4552 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4553 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4554 					    BGE_MACMODE_TBI_SEND_CFGS);
   4555 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4556 				if_link_state_change(ifp, LINK_STATE_UP);
   4557 			}
   4558 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4559 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4560 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4561 		}
   4562         /*
   4563 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4564 	 * This should not happen since mii callouts are locked now, but
   4565 	 * we keep this check for debug.
   4566 	 */
   4567 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4568 		/*
   4569 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4570 		 * bit in status word always set. Workaround this bug by
   4571 		 * reading PHY link status directly.
   4572 		 */
   4573 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4574 		    BGE_STS_LINK : 0;
   4575 
   4576 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4577 			mii_pollstat(mii);
   4578 
   4579 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4580 			    mii->mii_media_status & IFM_ACTIVE &&
   4581 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4582 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4583 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4584 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4585 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4586 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4587 		}
   4588 	}
   4589 
   4590 	/* Clear the attention */
   4591 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4592 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4593 	    BGE_MACSTAT_LINK_CHANGED);
   4594 }
   4595 
   4596 static int
   4597 sysctl_bge_verify(SYSCTLFN_ARGS)
   4598 {
   4599 	int error, t;
   4600 	struct sysctlnode node;
   4601 
   4602 	node = *rnode;
   4603 	t = *(int*)rnode->sysctl_data;
   4604 	node.sysctl_data = &t;
   4605 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4606 	if (error || newp == NULL)
   4607 		return error;
   4608 
   4609 #if 0
   4610 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4611 	    node.sysctl_num, rnode->sysctl_num));
   4612 #endif
   4613 
   4614 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4615 		if (t < 0 || t >= NBGE_RX_THRESH)
   4616 			return EINVAL;
   4617 		bge_update_all_threshes(t);
   4618 	} else
   4619 		return EINVAL;
   4620 
   4621 	*(int*)rnode->sysctl_data = t;
   4622 
   4623 	return 0;
   4624 }
   4625 
   4626 /*
   4627  * Set up sysctl(3) MIB, hw.bge.*.
   4628  *
   4629  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4630  */
   4631 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4632 {
   4633 	int rc, bge_root_num;
   4634 	const struct sysctlnode *node;
   4635 
   4636 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4637 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4638 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4639 		goto err;
   4640 	}
   4641 
   4642 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4643 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4644 	    SYSCTL_DESCR("BGE interface controls"),
   4645 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4646 		goto err;
   4647 	}
   4648 
   4649 	bge_root_num = node->sysctl_num;
   4650 
   4651 	/* BGE Rx interrupt mitigation level */
   4652 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4653 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4654 	    CTLTYPE_INT, "rx_lvl",
   4655 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4656 	    sysctl_bge_verify, 0,
   4657 	    &bge_rx_thresh_lvl,
   4658 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4659 	    CTL_EOL)) != 0) {
   4660 		goto err;
   4661 	}
   4662 
   4663 	bge_rxthresh_nodenum = node->sysctl_num;
   4664 
   4665 	return;
   4666 
   4667 err:
   4668 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4669 }
   4670 
   4671 #ifdef BGE_DEBUG
   4672 void
   4673 bge_debug_info(struct bge_softc *sc)
   4674 {
   4675 
   4676 	printf("Hardware Flags:\n");
   4677 	if (BGE_IS_5755_PLUS(sc))
   4678 		printf(" - 5755 Plus\n");
   4679 	if (BGE_IS_5750_OR_BEYOND(sc))
   4680 		printf(" - 5750 Plus\n");
   4681 	if (BGE_IS_5705_PLUS(sc))
   4682 		printf(" - 5705 Plus\n");
   4683 	if (BGE_IS_5714_FAMILY(sc))
   4684 		printf(" - 5714 Family\n");
   4685 	if (BGE_IS_5700_FAMILY(sc))
   4686 		printf(" - 5700 Family\n");
   4687 	if (sc->bge_flags & BGE_IS_5788)
   4688 		printf(" - 5788\n");
   4689 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4690 		printf(" - Supports Jumbo Frames\n");
   4691 	if (sc->bge_flags & BGE_NO_EEPROM)
   4692 		printf(" - No EEPROM\n");
   4693 	if (sc->bge_flags & BGE_PCIX)
   4694 		printf(" - PCI-X Bus\n");
   4695 	if (sc->bge_flags & BGE_PCIE)
   4696 		printf(" - PCI Express Bus\n");
   4697 	if (sc->bge_flags & BGE_NO_3LED)
   4698 		printf(" - No 3 LEDs\n");
   4699 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4700 		printf(" - RX Alignment Bug\n");
   4701 	if (sc->bge_flags & BGE_TSO)
   4702 		printf(" - TSO\n");
   4703 }
   4704 #endif /* BGE_DEBUG */
   4705 
   4706 static int
   4707 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4708 {
   4709 	prop_dictionary_t dict;
   4710 	prop_data_t ea;
   4711 
   4712 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4713 		return 1;
   4714 
   4715 	dict = device_properties(sc->bge_dev);
   4716 	ea = prop_dictionary_get(dict, "mac-address");
   4717 	if (ea != NULL) {
   4718 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4719 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4720 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4721 		return 0;
   4722 	}
   4723 
   4724 	return 1;
   4725 }
   4726 
   4727 static int
   4728 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4729 {
   4730 	uint32_t mac_addr;
   4731 
   4732 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4733 	if ((mac_addr >> 16) == 0x484b) {
   4734 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4735 		ether_addr[1] = (uint8_t)mac_addr;
   4736 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4737 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4738 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4739 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4740 		ether_addr[5] = (uint8_t)mac_addr;
   4741 		return 0;
   4742 	}
   4743 	return 1;
   4744 }
   4745 
   4746 static int
   4747 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4748 {
   4749 	int mac_offset = BGE_EE_MAC_OFFSET;
   4750 
   4751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4752 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4753 	}
   4754 
   4755 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4756 	    ETHER_ADDR_LEN));
   4757 }
   4758 
   4759 static int
   4760 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4761 {
   4762 
   4763 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4764 		return 1;
   4765 
   4766 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4767 	   ETHER_ADDR_LEN));
   4768 }
   4769 
   4770 static int
   4771 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4772 {
   4773 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4774 		/* NOTE: Order is critical */
   4775 		bge_get_eaddr_fw,
   4776 		bge_get_eaddr_mem,
   4777 		bge_get_eaddr_nvram,
   4778 		bge_get_eaddr_eeprom,
   4779 		NULL
   4780 	};
   4781 	const bge_eaddr_fcn_t *func;
   4782 
   4783 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4784 		if ((*func)(sc, eaddr) == 0)
   4785 			break;
   4786 	}
   4787 	return (*func == NULL ? ENXIO : 0);
   4788 }
   4789