if_bge.c revision 1.177 1 /* $NetBSD: if_bge.c,v 1.177 2010/01/28 03:09:13 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.177 2010/01/28 03:09:13 msaitoh Exp $");
83
84 #include "vlan.h"
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NRND > 0
104 #include <sys/rnd.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #endif
113
114 /* Headers for TCP Segmentation Offload (TSO) */
115 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
116 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
117 #include <netinet/ip.h> /* for struct ip */
118 #include <netinet/tcp.h> /* for struct tcphdr */
119
120
121 #include <net/bpf.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/miidevs.h>
130 #include <dev/mii/brgphyreg.h>
131
132 #include <dev/pci/if_bgereg.h>
133 #include <dev/pci/if_bgevar.h>
134
135 #include <uvm/uvm_extern.h>
136 #include <prop/proplib.h>
137
138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
139
140
141 /*
142 * Tunable thresholds for rx-side bge interrupt mitigation.
143 */
144
145 /*
146 * The pairs of values below were obtained from empirical measurement
147 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
148 * interrupt for every N packets received, where N is, approximately,
149 * the second value (rx_max_bds) in each pair. The values are chosen
150 * such that moving from one pair to the succeeding pair was observed
151 * to roughly halve interrupt rate under sustained input packet load.
152 * The values were empirically chosen to avoid overflowing internal
153 * limits on the bcm5700: inreasing rx_ticks much beyond 600
154 * results in internal wrapping and higher interrupt rates.
155 * The limit of 46 frames was chosen to match NFS workloads.
156 *
157 * These values also work well on bcm5701, bcm5704C, and (less
158 * tested) bcm5703. On other chipsets, (including the Altima chip
159 * family), the larger values may overflow internal chip limits,
160 * leading to increasing interrupt rates rather than lower interrupt
161 * rates.
162 *
163 * Applications using heavy interrupt mitigation (interrupting every
164 * 32 or 46 frames) in both directions may need to increase the TCP
165 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
166 * full link bandwidth, due to ACKs and window updates lingering
167 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
168 */
169 static const struct bge_load_rx_thresh {
170 int rx_ticks;
171 int rx_max_bds; }
172 bge_rx_threshes[] = {
173 { 32, 2 },
174 { 50, 4 },
175 { 100, 8 },
176 { 192, 16 },
177 { 416, 32 },
178 { 598, 46 }
179 };
180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
181
182 /* XXX patchable; should be sysctl'able */
183 static int bge_auto_thresh = 1;
184 static int bge_rx_thresh_lvl;
185
186 static int bge_rxthresh_nodenum;
187
188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
189
190 static int bge_probe(device_t, cfdata_t, void *);
191 static void bge_attach(device_t, device_t, void *);
192 static void bge_release_resources(struct bge_softc *);
193
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxeof(struct bge_softc *);
202
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_setpowerstate(struct bge_softc *, int);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(device_t);
255
256 #define BGE_RESET_START 1
257 #define BGE_RESET_STOP 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC9100,
317 "Altima AC9100 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_BROADCOM,
320 PCI_PRODUCT_BROADCOM_BCM5700,
321 "Broadcom BCM5700 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_BROADCOM,
324 PCI_PRODUCT_BROADCOM_BCM5701,
325 "Broadcom BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5702,
329 "Broadcom BCM5702 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5702X,
333 "Broadcom BCM5702X Gigabit Ethernet" },
334 { PCI_VENDOR_BROADCOM,
335 PCI_PRODUCT_BROADCOM_BCM5703,
336 "Broadcom BCM5703 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5703X,
340 "Broadcom BCM5703X Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5704C,
348 "Broadcom BCM5704C Dual Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5704S,
352 "Broadcom BCM5704S Dual Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5705,
356 "Broadcom BCM5705 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5705F,
360 "Broadcom BCM5705F Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705K,
364 "Broadcom BCM5705K Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705M,
368 "Broadcom BCM5705M Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 "Broadcom BCM5705M Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5714,
376 "Broadcom BCM5714 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5714S,
380 "Broadcom BCM5714S Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5715,
384 "Broadcom BCM5715 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5715S,
388 "Broadcom BCM5715S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5717,
392 "Broadcom BCM5717 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5718,
396 "Broadcom BCM5718 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5720,
400 "Broadcom BCM5720 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5721,
404 "Broadcom BCM5721 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5722,
408 "Broadcom BCM5722 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5723,
412 "Broadcom BCM5723 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5724,
416 "Broadcom BCM5724 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5750,
420 "Broadcom BCM5750 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5750M,
424 "Broadcom BCM5750M Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5751,
428 "Broadcom BCM5751 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5751F,
432 "Broadcom BCM5751F Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751M,
436 "Broadcom BCM5751M Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5752,
440 "Broadcom BCM5752 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5752M,
444 "Broadcom BCM5752M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5753,
448 "Broadcom BCM5753 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5753F,
452 "Broadcom BCM5753F Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753M,
456 "Broadcom BCM5753M Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5754,
460 "Broadcom BCM5754 Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5754M,
464 "Broadcom BCM5754M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5755,
468 "Broadcom BCM5755 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5755M,
472 "Broadcom BCM5755M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5756,
476 "Broadcom BCM5756 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5761,
480 "Broadcom BCM5761 Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5761E,
484 "Broadcom BCM5761E Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761S,
488 "Broadcom BCM5761S Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761SE,
492 "Broadcom BCM5761SE Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5764,
496 "Broadcom BCM5764 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5780,
500 "Broadcom BCM5780 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5780S,
504 "Broadcom BCM5780S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5781,
508 "Broadcom BCM5781 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5782,
512 "Broadcom BCM5782 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5784M,
516 "BCM5784M NetLink 1000baseT Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5786,
520 "Broadcom BCM5786 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5787,
524 "Broadcom BCM5787 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5787M,
528 "Broadcom BCM5787M Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5788,
532 "Broadcom BCM5788 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5789,
536 "Broadcom BCM5789 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5901,
540 "Broadcom BCM5901 Fast Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5901A2,
544 "Broadcom BCM5901A2 Fast Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5903M,
548 "Broadcom BCM5903M Fast Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5906,
552 "Broadcom BCM5906 Fast Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5906M,
556 "Broadcom BCM5906M Fast Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM57760,
560 "Broadcom BCM57760 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM57761,
564 "Broadcom BCM57761 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM57765,
568 "Broadcom BCM57765 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM57780,
572 "Broadcom BCM57780 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM57781,
576 "Broadcom BCM57781 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57785,
580 "Broadcom BCM57785 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57788,
584 "Broadcom BCM57788 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57790,
588 "Broadcom BCM57790 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57791,
592 "Broadcom BCM57791 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57795,
596 "Broadcom BCM57795 Fast Ethernet",
597 },
598 { PCI_VENDOR_SCHNEIDERKOCH,
599 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
600 "SysKonnect SK-9Dx1 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_3COM,
603 PCI_PRODUCT_3COM_3C996,
604 "3Com 3c996 Gigabit Ethernet",
605 },
606 { 0,
607 0,
608 NULL },
609 };
610
611 /*
612 * XXX: how to handle variants based on 5750 and derivatives:
613 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
614 * in general behave like a 5705, except with additional quirks.
615 * This driver's current handling of the 5721 is wrong;
616 * how we map ASIC revision to "quirks" needs more thought.
617 * (defined here until the thought is done).
618 */
619 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
620 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
621 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
622 #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
623 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
624 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
625
626 static const struct bge_revision {
627 uint32_t br_chipid;
628 const char *br_name;
629 } bge_revisions[] = {
630 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
631 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
632 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
633 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
634 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
635 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
636 /* This is treated like a BCM5700 Bx */
637 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
638 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
639 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
640 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
641 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
642 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
643 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
644 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
645 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
646 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
647 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
648 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
649 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
650 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
651 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
652 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
653 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
654 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
655 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
656 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
657 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
658 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
659 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
660 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
661 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
662 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
663 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
664 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
665 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
666 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
667 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
668 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
669 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
670 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
671 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
672 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
673 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
674 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
675 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
676 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
677 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
678 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
679 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
680 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
681 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
682 /* 5754 and 5787 share the same ASIC ID */
683 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
684 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
685 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
686 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
687 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
688 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
689 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
690
691 { 0, NULL }
692 };
693
694 /*
695 * Some defaults for major revisions, so that newer steppings
696 * that we don't know about have a shot at working.
697 */
698 static const struct bge_revision bge_majorrevs[] = {
699 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
700 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
701 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
702 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
703 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
704 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
705 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
706 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
707 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
708 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
709 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
710 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
711 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
712 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
713 /* 5754 and 5787 share the same ASIC ID */
714 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
715 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
716 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
717 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
718 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
719
720 { 0, NULL }
721 };
722
723 static int bge_allow_asf = 1;
724
725 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
726 bge_probe, bge_attach, NULL, NULL);
727
728 static uint32_t
729 bge_readmem_ind(struct bge_softc *sc, int off)
730 {
731 pcireg_t val;
732
733 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
734 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
735 return val;
736 }
737
738 static void
739 bge_writemem_ind(struct bge_softc *sc, int off, int val)
740 {
741 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
742 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
743 }
744
745 /*
746 * PCI Express only
747 */
748 static void
749 bge_set_max_readrq(struct bge_softc *sc)
750 {
751 device_t dev;
752 pcireg_t val;
753
754 dev = sc->bge_dev;
755
756 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_expcap
757 + PCI_PCIE_DCSR);
758 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
759 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
760 printf("adjust device control 0x%04x ",
761 val);
762 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
763 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
764 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_expcap
765 + PCI_PCIE_DCSR, val);
766 printf("-> 0x%04x\n", val);
767 }
768 }
769
770 #ifdef notdef
771 static uint32_t
772 bge_readreg_ind(struct bge_softc *sc, int off)
773 {
774 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
775 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
776 }
777 #endif
778
779 static void
780 bge_writereg_ind(struct bge_softc *sc, int off, int val)
781 {
782 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
783 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
784 }
785
786 static void
787 bge_writemem_direct(struct bge_softc *sc, int off, int val)
788 {
789 CSR_WRITE_4(sc, off, val);
790 }
791
792 static void
793 bge_writembx(struct bge_softc *sc, int off, int val)
794 {
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
796 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
797
798 CSR_WRITE_4(sc, off, val);
799 }
800
801 static uint8_t
802 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
803 {
804 uint32_t access, byte = 0;
805 int i;
806
807 /* Lock. */
808 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
809 for (i = 0; i < 8000; i++) {
810 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
811 break;
812 DELAY(20);
813 }
814 if (i == 8000)
815 return 1;
816
817 /* Enable access. */
818 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
819 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
820
821 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
822 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
823 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
824 DELAY(10);
825 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
826 DELAY(10);
827 break;
828 }
829 }
830
831 if (i == BGE_TIMEOUT * 10) {
832 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
833 return 1;
834 }
835
836 /* Get result. */
837 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
838
839 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
840
841 /* Disable access. */
842 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
843
844 /* Unlock. */
845 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
846 CSR_READ_4(sc, BGE_NVRAM_SWARB);
847
848 return 0;
849 }
850
851 /*
852 * Read a sequence of bytes from NVRAM.
853 */
854 static int
855 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
856 {
857 int err = 0, i;
858 uint8_t byte = 0;
859
860 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
861 return 1;
862
863 for (i = 0; i < cnt; i++) {
864 err = bge_nvram_getbyte(sc, off + i, &byte);
865 if (err)
866 break;
867 *(dest + i) = byte;
868 }
869
870 return (err ? 1 : 0);
871 }
872
873 /*
874 * Read a byte of data stored in the EEPROM at address 'addr.' The
875 * BCM570x supports both the traditional bitbang interface and an
876 * auto access interface for reading the EEPROM. We use the auto
877 * access method.
878 */
879 static uint8_t
880 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
881 {
882 int i;
883 uint32_t byte = 0;
884
885 /*
886 * Enable use of auto EEPROM access so we can avoid
887 * having to use the bitbang method.
888 */
889 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
890
891 /* Reset the EEPROM, load the clock period. */
892 CSR_WRITE_4(sc, BGE_EE_ADDR,
893 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
894 DELAY(20);
895
896 /* Issue the read EEPROM command. */
897 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
898
899 /* Wait for completion */
900 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
901 DELAY(10);
902 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
903 break;
904 }
905
906 if (i == BGE_TIMEOUT * 10) {
907 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
908 return 1;
909 }
910
911 /* Get result. */
912 byte = CSR_READ_4(sc, BGE_EE_DATA);
913
914 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
915
916 return 0;
917 }
918
919 /*
920 * Read a sequence of bytes from the EEPROM.
921 */
922 static int
923 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
924 {
925 int err = 0, i;
926 uint8_t byte = 0;
927 char *dest = destv;
928
929 for (i = 0; i < cnt; i++) {
930 err = bge_eeprom_getbyte(sc, off + i, &byte);
931 if (err)
932 break;
933 *(dest + i) = byte;
934 }
935
936 return (err ? 1 : 0);
937 }
938
939 static int
940 bge_miibus_readreg(device_t dev, int phy, int reg)
941 {
942 struct bge_softc *sc = device_private(dev);
943 uint32_t val;
944 uint32_t autopoll;
945 int i;
946
947 /*
948 * Broadcom's own driver always assumes the internal
949 * PHY is at GMII address 1. On some chips, the PHY responds
950 * to accesses at all addresses, which could cause us to
951 * bogusly attach the PHY 32 times at probe type. Always
952 * restricting the lookup to address 1 is simpler than
953 * trying to figure out which chips revisions should be
954 * special-cased.
955 */
956 if (phy != 1)
957 return 0;
958
959 /* Reading with autopolling on may trigger PCI errors */
960 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
961 if (autopoll & BGE_MIMODE_AUTOPOLL) {
962 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
963 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
964 DELAY(40);
965 }
966
967 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
968 BGE_MIPHY(phy) | BGE_MIREG(reg));
969
970 for (i = 0; i < BGE_TIMEOUT; i++) {
971 val = CSR_READ_4(sc, BGE_MI_COMM);
972 if (!(val & BGE_MICOMM_BUSY))
973 break;
974 delay(10);
975 }
976
977 if (i == BGE_TIMEOUT) {
978 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
979 val = 0;
980 goto done;
981 }
982
983 val = CSR_READ_4(sc, BGE_MI_COMM);
984
985 done:
986 if (autopoll & BGE_MIMODE_AUTOPOLL) {
987 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
988 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
989 DELAY(40);
990 }
991
992 if (val & BGE_MICOMM_READFAIL)
993 return 0;
994
995 return (val & 0xFFFF);
996 }
997
998 static void
999 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1000 {
1001 struct bge_softc *sc = device_private(dev);
1002 uint32_t autopoll;
1003 int i;
1004
1005 if (phy!=1) {
1006 return;
1007 }
1008
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1010 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1011 return;
1012 }
1013
1014 /* Reading with autopolling on may trigger PCI errors */
1015 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1016 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1017 delay(40);
1018 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1019 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1020 delay(10); /* 40 usec is supposed to be adequate */
1021 }
1022
1023 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1024 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1025
1026 for (i = 0; i < BGE_TIMEOUT; i++) {
1027 delay(10);
1028 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1029 delay(5);
1030 CSR_READ_4(sc, BGE_MI_COMM);
1031 break;
1032 }
1033 }
1034
1035 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1036 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1037 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1038 delay(40);
1039 }
1040
1041 if (i == BGE_TIMEOUT)
1042 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1043 }
1044
1045 static void
1046 bge_miibus_statchg(device_t dev)
1047 {
1048 struct bge_softc *sc = device_private(dev);
1049 struct mii_data *mii = &sc->bge_mii;
1050
1051 /*
1052 * Get flow control negotiation result.
1053 */
1054 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1055 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1056 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1057 mii->mii_media_active &= ~IFM_ETH_FMASK;
1058 }
1059
1060 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1061 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1062 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1063 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1064 else
1065 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1066
1067 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1068 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1069 else
1070 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1071
1072 /*
1073 * 802.3x flow control
1074 */
1075 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1076 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1077 else
1078 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1079
1080 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1081 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1082 else
1083 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1084 }
1085
1086 /*
1087 * Update rx threshold levels to values in a particular slot
1088 * of the interrupt-mitigation table bge_rx_threshes.
1089 */
1090 static void
1091 bge_set_thresh(struct ifnet *ifp, int lvl)
1092 {
1093 struct bge_softc *sc = ifp->if_softc;
1094 int s;
1095
1096 /* For now, just save the new Rx-intr thresholds and record
1097 * that a threshold update is pending. Updating the hardware
1098 * registers here (even at splhigh()) is observed to
1099 * occasionaly cause glitches where Rx-interrupts are not
1100 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1101 */
1102 s = splnet();
1103 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1104 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1105 sc->bge_pending_rxintr_change = 1;
1106 splx(s);
1107
1108 return;
1109 }
1110
1111
1112 /*
1113 * Update Rx thresholds of all bge devices
1114 */
1115 static void
1116 bge_update_all_threshes(int lvl)
1117 {
1118 struct ifnet *ifp;
1119 const char * const namebuf = "bge";
1120 int namelen;
1121
1122 if (lvl < 0)
1123 lvl = 0;
1124 else if (lvl >= NBGE_RX_THRESH)
1125 lvl = NBGE_RX_THRESH - 1;
1126
1127 namelen = strlen(namebuf);
1128 /*
1129 * Now search all the interfaces for this name/number
1130 */
1131 IFNET_FOREACH(ifp) {
1132 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1133 continue;
1134 /* We got a match: update if doing auto-threshold-tuning */
1135 if (bge_auto_thresh)
1136 bge_set_thresh(ifp, lvl);
1137 }
1138 }
1139
1140 /*
1141 * Handle events that have triggered interrupts.
1142 */
1143 static void
1144 bge_handle_events(struct bge_softc *sc)
1145 {
1146
1147 return;
1148 }
1149
1150 /*
1151 * Memory management for jumbo frames.
1152 */
1153
1154 static int
1155 bge_alloc_jumbo_mem(struct bge_softc *sc)
1156 {
1157 char *ptr, *kva;
1158 bus_dma_segment_t seg;
1159 int i, rseg, state, error;
1160 struct bge_jpool_entry *entry;
1161
1162 state = error = 0;
1163
1164 /* Grab a big chunk o' storage. */
1165 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1166 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1167 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1168 return ENOBUFS;
1169 }
1170
1171 state = 1;
1172 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1173 BUS_DMA_NOWAIT)) {
1174 aprint_error_dev(sc->bge_dev,
1175 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1176 error = ENOBUFS;
1177 goto out;
1178 }
1179
1180 state = 2;
1181 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1182 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1183 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1184 error = ENOBUFS;
1185 goto out;
1186 }
1187
1188 state = 3;
1189 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1190 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1191 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1192 error = ENOBUFS;
1193 goto out;
1194 }
1195
1196 state = 4;
1197 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1198 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1199
1200 SLIST_INIT(&sc->bge_jfree_listhead);
1201 SLIST_INIT(&sc->bge_jinuse_listhead);
1202
1203 /*
1204 * Now divide it up into 9K pieces and save the addresses
1205 * in an array.
1206 */
1207 ptr = sc->bge_cdata.bge_jumbo_buf;
1208 for (i = 0; i < BGE_JSLOTS; i++) {
1209 sc->bge_cdata.bge_jslots[i] = ptr;
1210 ptr += BGE_JLEN;
1211 entry = malloc(sizeof(struct bge_jpool_entry),
1212 M_DEVBUF, M_NOWAIT);
1213 if (entry == NULL) {
1214 aprint_error_dev(sc->bge_dev,
1215 "no memory for jumbo buffer queue!\n");
1216 error = ENOBUFS;
1217 goto out;
1218 }
1219 entry->slot = i;
1220 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1221 entry, jpool_entries);
1222 }
1223 out:
1224 if (error != 0) {
1225 switch (state) {
1226 case 4:
1227 bus_dmamap_unload(sc->bge_dmatag,
1228 sc->bge_cdata.bge_rx_jumbo_map);
1229 case 3:
1230 bus_dmamap_destroy(sc->bge_dmatag,
1231 sc->bge_cdata.bge_rx_jumbo_map);
1232 case 2:
1233 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1234 case 1:
1235 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1236 break;
1237 default:
1238 break;
1239 }
1240 }
1241
1242 return error;
1243 }
1244
1245 /*
1246 * Allocate a jumbo buffer.
1247 */
1248 static void *
1249 bge_jalloc(struct bge_softc *sc)
1250 {
1251 struct bge_jpool_entry *entry;
1252
1253 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1254
1255 if (entry == NULL) {
1256 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1257 return NULL;
1258 }
1259
1260 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1261 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1262 return (sc->bge_cdata.bge_jslots[entry->slot]);
1263 }
1264
1265 /*
1266 * Release a jumbo buffer.
1267 */
1268 static void
1269 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1270 {
1271 struct bge_jpool_entry *entry;
1272 struct bge_softc *sc;
1273 int i, s;
1274
1275 /* Extract the softc struct pointer. */
1276 sc = (struct bge_softc *)arg;
1277
1278 if (sc == NULL)
1279 panic("bge_jfree: can't find softc pointer!");
1280
1281 /* calculate the slot this buffer belongs to */
1282
1283 i = ((char *)buf
1284 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1285
1286 if ((i < 0) || (i >= BGE_JSLOTS))
1287 panic("bge_jfree: asked to free buffer that we don't manage!");
1288
1289 s = splvm();
1290 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1291 if (entry == NULL)
1292 panic("bge_jfree: buffer not in use!");
1293 entry->slot = i;
1294 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1295 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1296
1297 if (__predict_true(m != NULL))
1298 pool_cache_put(mb_cache, m);
1299 splx(s);
1300 }
1301
1302
1303 /*
1304 * Intialize a standard receive ring descriptor.
1305 */
1306 static int
1307 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
1308 {
1309 struct mbuf *m_new = NULL;
1310 struct bge_rx_bd *r;
1311 int error;
1312
1313 if (dmamap == NULL) {
1314 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1315 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1316 if (error != 0)
1317 return error;
1318 }
1319
1320 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1321
1322 if (m == NULL) {
1323 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1324 if (m_new == NULL)
1325 return ENOBUFS;
1326
1327 MCLGET(m_new, M_DONTWAIT);
1328 if (!(m_new->m_flags & M_EXT)) {
1329 m_freem(m_new);
1330 return ENOBUFS;
1331 }
1332 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1333
1334 } else {
1335 m_new = m;
1336 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1337 m_new->m_data = m_new->m_ext.ext_buf;
1338 }
1339 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1340 m_adj(m_new, ETHER_ALIGN);
1341 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1342 BUS_DMA_READ|BUS_DMA_NOWAIT))
1343 return ENOBUFS;
1344 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1345 BUS_DMASYNC_PREREAD);
1346
1347 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1348 r = &sc->bge_rdata->bge_rx_std_ring[i];
1349 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1350 r->bge_flags = BGE_RXBDFLAG_END;
1351 r->bge_len = m_new->m_len;
1352 r->bge_idx = i;
1353
1354 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1355 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1356 i * sizeof (struct bge_rx_bd),
1357 sizeof (struct bge_rx_bd),
1358 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Initialize a jumbo receive ring descriptor. This allocates
1365 * a jumbo buffer from the pool managed internally by the driver.
1366 */
1367 static int
1368 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1369 {
1370 struct mbuf *m_new = NULL;
1371 struct bge_rx_bd *r;
1372 void *buf = NULL;
1373
1374 if (m == NULL) {
1375
1376 /* Allocate the mbuf. */
1377 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1378 if (m_new == NULL)
1379 return ENOBUFS;
1380
1381 /* Allocate the jumbo buffer */
1382 buf = bge_jalloc(sc);
1383 if (buf == NULL) {
1384 m_freem(m_new);
1385 aprint_error_dev(sc->bge_dev,
1386 "jumbo allocation failed -- packet dropped!\n");
1387 return ENOBUFS;
1388 }
1389
1390 /* Attach the buffer to the mbuf. */
1391 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1392 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1393 bge_jfree, sc);
1394 m_new->m_flags |= M_EXT_RW;
1395 } else {
1396 m_new = m;
1397 buf = m_new->m_data = m_new->m_ext.ext_buf;
1398 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1399 }
1400 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1401 m_adj(m_new, ETHER_ALIGN);
1402 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1403 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1404 BUS_DMASYNC_PREREAD);
1405 /* Set up the descriptor. */
1406 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1407 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1408 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1409 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1410 r->bge_len = m_new->m_len;
1411 r->bge_idx = i;
1412
1413 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1414 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1415 i * sizeof (struct bge_rx_bd),
1416 sizeof (struct bge_rx_bd),
1417 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1418
1419 return 0;
1420 }
1421
1422 /*
1423 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1424 * that's 1MB or memory, which is a lot. For now, we fill only the first
1425 * 256 ring entries and hope that our CPU is fast enough to keep up with
1426 * the NIC.
1427 */
1428 static int
1429 bge_init_rx_ring_std(struct bge_softc *sc)
1430 {
1431 int i;
1432
1433 if (sc->bge_flags & BGE_RXRING_VALID)
1434 return 0;
1435
1436 for (i = 0; i < BGE_SSLOTS; i++) {
1437 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1438 return ENOBUFS;
1439 }
1440
1441 sc->bge_std = i - 1;
1442 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1443
1444 sc->bge_flags |= BGE_RXRING_VALID;
1445
1446 return 0;
1447 }
1448
1449 static void
1450 bge_free_rx_ring_std(struct bge_softc *sc)
1451 {
1452 int i;
1453
1454 if (!(sc->bge_flags & BGE_RXRING_VALID))
1455 return;
1456
1457 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1458 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1459 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1460 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1461 bus_dmamap_destroy(sc->bge_dmatag,
1462 sc->bge_cdata.bge_rx_std_map[i]);
1463 }
1464 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1465 sizeof(struct bge_rx_bd));
1466 }
1467
1468 sc->bge_flags &= ~BGE_RXRING_VALID;
1469 }
1470
1471 static int
1472 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1473 {
1474 int i;
1475 volatile struct bge_rcb *rcb;
1476
1477 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1478 return 0;
1479
1480 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1481 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1482 return ENOBUFS;
1483 };
1484
1485 sc->bge_jumbo = i - 1;
1486 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1487
1488 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1489 rcb->bge_maxlen_flags = 0;
1490 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1491
1492 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1493
1494 return 0;
1495 }
1496
1497 static void
1498 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1499 {
1500 int i;
1501
1502 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1503 return;
1504
1505 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1506 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1507 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1508 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1509 }
1510 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1511 sizeof(struct bge_rx_bd));
1512 }
1513
1514 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1515 }
1516
1517 static void
1518 bge_free_tx_ring(struct bge_softc *sc)
1519 {
1520 int i, freed;
1521 struct txdmamap_pool_entry *dma;
1522
1523 if (!(sc->bge_flags & BGE_TXRING_VALID))
1524 return;
1525
1526 freed = 0;
1527
1528 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1529 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1530 freed++;
1531 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1532 sc->bge_cdata.bge_tx_chain[i] = NULL;
1533 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1534 link);
1535 sc->txdma[i] = 0;
1536 }
1537 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1538 sizeof(struct bge_tx_bd));
1539 }
1540
1541 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1542 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1543 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1544 free(dma, M_DEVBUF);
1545 }
1546
1547 sc->bge_flags &= ~BGE_TXRING_VALID;
1548 }
1549
1550 static int
1551 bge_init_tx_ring(struct bge_softc *sc)
1552 {
1553 int i;
1554 bus_dmamap_t dmamap;
1555 struct txdmamap_pool_entry *dma;
1556
1557 if (sc->bge_flags & BGE_TXRING_VALID)
1558 return 0;
1559
1560 sc->bge_txcnt = 0;
1561 sc->bge_tx_saved_considx = 0;
1562
1563 /* Initialize transmit producer index for host-memory send ring. */
1564 sc->bge_tx_prodidx = 0;
1565 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1566 /* 5700 b2 errata */
1567 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1568 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1569
1570 /* NIC-memory send ring not used; initialize to zero. */
1571 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1572 /* 5700 b2 errata */
1573 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1574 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1575
1576 SLIST_INIT(&sc->txdma_list);
1577 for (i = 0; i < BGE_RSLOTS; i++) {
1578 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1579 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1580 &dmamap))
1581 return ENOBUFS;
1582 if (dmamap == NULL)
1583 panic("dmamap NULL in bge_init_tx_ring");
1584 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1585 if (dma == NULL) {
1586 aprint_error_dev(sc->bge_dev,
1587 "can't alloc txdmamap_pool_entry\n");
1588 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1589 return ENOMEM;
1590 }
1591 dma->dmamap = dmamap;
1592 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1593 }
1594
1595 sc->bge_flags |= BGE_TXRING_VALID;
1596
1597 return 0;
1598 }
1599
1600 static void
1601 bge_setmulti(struct bge_softc *sc)
1602 {
1603 struct ethercom *ac = &sc->ethercom;
1604 struct ifnet *ifp = &ac->ec_if;
1605 struct ether_multi *enm;
1606 struct ether_multistep step;
1607 uint32_t hashes[4] = { 0, 0, 0, 0 };
1608 uint32_t h;
1609 int i;
1610
1611 if (ifp->if_flags & IFF_PROMISC)
1612 goto allmulti;
1613
1614 /* Now program new ones. */
1615 ETHER_FIRST_MULTI(step, ac, enm);
1616 while (enm != NULL) {
1617 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1618 /*
1619 * We must listen to a range of multicast addresses.
1620 * For now, just accept all multicasts, rather than
1621 * trying to set only those filter bits needed to match
1622 * the range. (At this time, the only use of address
1623 * ranges is for IP multicast routing, for which the
1624 * range is big enough to require all bits set.)
1625 */
1626 goto allmulti;
1627 }
1628
1629 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1630
1631 /* Just want the 7 least-significant bits. */
1632 h &= 0x7f;
1633
1634 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1635 ETHER_NEXT_MULTI(step, enm);
1636 }
1637
1638 ifp->if_flags &= ~IFF_ALLMULTI;
1639 goto setit;
1640
1641 allmulti:
1642 ifp->if_flags |= IFF_ALLMULTI;
1643 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1644
1645 setit:
1646 for (i = 0; i < 4; i++)
1647 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1648 }
1649
1650 static void
1651 bge_sig_pre_reset(sc, type)
1652 struct bge_softc *sc;
1653 int type;
1654 {
1655 /*
1656 * Some chips don't like this so only do this if ASF is enabled
1657 */
1658 if (sc->bge_asf_mode)
1659 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1660
1661 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1662 switch (type) {
1663 case BGE_RESET_START:
1664 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1665 break;
1666 case BGE_RESET_STOP:
1667 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1668 break;
1669 }
1670 }
1671 }
1672
1673 static void
1674 bge_sig_post_reset(sc, type)
1675 struct bge_softc *sc;
1676 int type;
1677 {
1678 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1679 switch (type) {
1680 case BGE_RESET_START:
1681 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1682 /* START DONE */
1683 break;
1684 case BGE_RESET_STOP:
1685 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1686 break;
1687 }
1688 }
1689 }
1690
1691 static void
1692 bge_sig_legacy(sc, type)
1693 struct bge_softc *sc;
1694 int type;
1695 {
1696 if (sc->bge_asf_mode) {
1697 switch (type) {
1698 case BGE_RESET_START:
1699 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1700 break;
1701 case BGE_RESET_STOP:
1702 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1703 break;
1704 }
1705 }
1706 }
1707
1708 static void
1709 bge_stop_fw(sc)
1710 struct bge_softc *sc;
1711 {
1712 int i;
1713
1714 if (sc->bge_asf_mode) {
1715 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1716 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1717 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1718
1719 for (i = 0; i < 100; i++ ) {
1720 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1721 break;
1722 DELAY(10);
1723 }
1724 }
1725 }
1726
1727 /*
1728 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1729 * self-test results.
1730 */
1731 static int
1732 bge_chipinit(struct bge_softc *sc)
1733 {
1734 int i;
1735 uint32_t dma_rw_ctl;
1736
1737
1738 /* Set endianness before we access any non-PCI registers. */
1739 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1740 BGE_INIT);
1741
1742 /* Set power state to D0. */
1743 bge_setpowerstate(sc, 0);
1744
1745 /* Clear the MAC control register */
1746 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1747
1748 /*
1749 * Clear the MAC statistics block in the NIC's
1750 * internal memory.
1751 */
1752 for (i = BGE_STATS_BLOCK;
1753 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1754 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1755
1756 for (i = BGE_STATUS_BLOCK;
1757 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1758 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1759
1760 /* Set up the PCI DMA control register. */
1761 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1762 if (sc->bge_flags & BGE_PCIE) {
1763 /* Read watermark not used, 128 bytes for write. */
1764 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1765 device_xname(sc->bge_dev)));
1766 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1767 } else if (sc->bge_flags & BGE_PCIX) {
1768 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1769 device_xname(sc->bge_dev)));
1770 /* PCI-X bus */
1771 if (BGE_IS_5714_FAMILY(sc)) {
1772 /* 256 bytes for read and write. */
1773 dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1774 (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1775
1776 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1777 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1778 else
1779 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1780 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1781 /* 1536 bytes for read, 384 bytes for write. */
1782 dma_rw_ctl |=
1783 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1784 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1785 } else {
1786 /* 384 bytes for read and write. */
1787 dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1788 (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1789 (0x0F);
1790 }
1791
1792 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1793 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1794 uint32_t tmp;
1795
1796 /* Set ONEDMA_ATONCE for hardware workaround. */
1797 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1798 if (tmp == 6 || tmp == 7)
1799 dma_rw_ctl |=
1800 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1801
1802 /* Set PCI-X DMA write workaround. */
1803 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1804 }
1805 } else {
1806 /* Conventional PCI bus: 256 bytes for read and write. */
1807 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1808 device_xname(sc->bge_dev)));
1809 dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1810 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1811 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1812 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1813 dma_rw_ctl |= 0x0F;
1814 }
1815
1816 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1817 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1818 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1819 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1820
1821 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1822 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1823 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1824
1825 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1826 dma_rw_ctl);
1827
1828 /*
1829 * Set up general mode register.
1830 */
1831 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1832 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1833 BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1834
1835 /*
1836 * BCM5701 B5 have a bug causing data corruption when using
1837 * 64-bit DMA reads, which can be terminated early and then
1838 * completed later as 32-bit accesses, in combination with
1839 * certain bridges.
1840 */
1841 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1842 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1843 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1844
1845 /*
1846 * Tell the firmware the driver is running
1847 */
1848 if (sc->bge_asf_mode & ASF_STACKUP)
1849 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1850
1851 /*
1852 * Disable memory write invalidate. Apparently it is not supported
1853 * properly by these devices.
1854 */
1855 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1856 PCI_COMMAND_INVALIDATE_ENABLE);
1857
1858 #ifdef __brokenalpha__
1859 /*
1860 * Must insure that we do not cross an 8K (bytes) boundary
1861 * for DMA reads. Our highest limit is 1K bytes. This is a
1862 * restriction on some ALPHA platforms with early revision
1863 * 21174 PCI chipsets, such as the AlphaPC 164lx
1864 */
1865 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1866 #endif
1867
1868 /* Set the timer prescaler (always 66MHz) */
1869 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1870
1871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1872 DELAY(40); /* XXX */
1873
1874 /* Put PHY into ready state */
1875 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1876 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1877 DELAY(40);
1878 }
1879
1880 return 0;
1881 }
1882
1883 static int
1884 bge_blockinit(struct bge_softc *sc)
1885 {
1886 volatile struct bge_rcb *rcb;
1887 bus_size_t rcb_addr;
1888 int i;
1889 struct ifnet *ifp = &sc->ethercom.ec_if;
1890 bge_hostaddr taddr;
1891 uint32_t val;
1892
1893 /*
1894 * Initialize the memory window pointer register so that
1895 * we can access the first 32K of internal NIC RAM. This will
1896 * allow us to set up the TX send ring RCBs and the RX return
1897 * ring RCBs, plus other things which live in NIC memory.
1898 */
1899
1900 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1901
1902 /* Configure mbuf memory pool */
1903 if (BGE_IS_5700_FAMILY(sc)) {
1904 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1905 BGE_BUFFPOOL_1);
1906
1907 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1908 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1909 else
1910 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1911
1912 /* Configure DMA resource pool */
1913 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1914 BGE_DMA_DESCRIPTORS);
1915 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1916 }
1917
1918 /* Configure mbuf pool watermarks */
1919 #ifdef ORIG_WPAUL_VALUES
1920 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1921 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1922 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1923 #else
1924
1925 /* new broadcom docs strongly recommend these: */
1926 if (!BGE_IS_5705_PLUS(sc)) {
1927 if (ifp->if_mtu > ETHER_MAX_LEN) {
1928 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1929 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1930 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1931 } else {
1932 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1933 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1934 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1935 }
1936 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1937 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1938 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1939 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1940 } else {
1941 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1942 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1943 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1944 }
1945 #endif
1946
1947 /* Configure DMA resource watermarks */
1948 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1949 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1950
1951 /* Enable buffer manager */
1952 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1953 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1954
1955 /* Poll for buffer manager start indication */
1956 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1957 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1958 break;
1959 DELAY(10);
1960 }
1961
1962 if (i == BGE_TIMEOUT * 2) {
1963 aprint_error_dev(sc->bge_dev,
1964 "buffer manager failed to start\n");
1965 return ENXIO;
1966 }
1967
1968 /* Enable flow-through queues */
1969 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1970 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1971
1972 /* Wait until queue initialization is complete */
1973 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1974 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1975 break;
1976 DELAY(10);
1977 }
1978
1979 if (i == BGE_TIMEOUT * 2) {
1980 aprint_error_dev(sc->bge_dev,
1981 "flow-through queue init failed\n");
1982 return ENXIO;
1983 }
1984
1985 /* Initialize the standard RX ring control block */
1986 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1987 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1988 if (BGE_IS_5705_PLUS(sc))
1989 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1990 else
1991 rcb->bge_maxlen_flags =
1992 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1993 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1994 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1995 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1996 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1997 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1998
1999 /*
2000 * Initialize the jumbo RX ring control block
2001 * We set the 'ring disabled' bit in the flags
2002 * field until we're actually ready to start
2003 * using this ring (i.e. once we set the MTU
2004 * high enough to require it).
2005 */
2006 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2007 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2008 BGE_HOSTADDR(rcb->bge_hostaddr,
2009 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2010 rcb->bge_maxlen_flags =
2011 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2012 BGE_RCB_FLAG_RING_DISABLED);
2013 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2014 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2015 rcb->bge_hostaddr.bge_addr_hi);
2016 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2017 rcb->bge_hostaddr.bge_addr_lo);
2018 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2019 rcb->bge_maxlen_flags);
2020 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2021
2022 /* Set up dummy disabled mini ring RCB */
2023 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2024 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2025 BGE_RCB_FLAG_RING_DISABLED);
2026 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2027 rcb->bge_maxlen_flags);
2028
2029 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2030 offsetof(struct bge_ring_data, bge_info),
2031 sizeof (struct bge_gib),
2032 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2033 }
2034
2035 /*
2036 * Set the BD ring replenish thresholds. The recommended
2037 * values are 1/8th the number of descriptors allocated to
2038 * each ring.
2039 */
2040 i = BGE_STD_RX_RING_CNT / 8;
2041
2042 /*
2043 * Use a value of 8 for the following chips to workaround HW errata.
2044 * Some of these chips have been added based on empirical
2045 * evidence (they don't work unless this is done).
2046 */
2047 if (BGE_IS_5705_PLUS(sc))
2048 i = 8;
2049
2050 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2051 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2052
2053 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2054 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2055 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2056 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2057 }
2058
2059 /*
2060 * Disable all unused send rings by setting the 'ring disabled'
2061 * bit in the flags field of all the TX send ring control blocks.
2062 * These are located in NIC memory.
2063 */
2064 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2065 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2066 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2067 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2068 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2069 rcb_addr += sizeof(struct bge_rcb);
2070 }
2071
2072 /* Configure TX RCB 0 (we use only the first ring) */
2073 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2074 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2075 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2076 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2077 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2078 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2079 if (BGE_IS_5700_FAMILY(sc))
2080 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2081 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2082
2083 /* Disable all unused RX return rings */
2084 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2085 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2086 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2087 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2088 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2089 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2090 BGE_RCB_FLAG_RING_DISABLED));
2091 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2092 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2093 (i * (sizeof(uint64_t))), 0);
2094 rcb_addr += sizeof(struct bge_rcb);
2095 }
2096
2097 /* Initialize RX ring indexes */
2098 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2099 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2100 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2101
2102 /*
2103 * Set up RX return ring 0
2104 * Note that the NIC address for RX return rings is 0x00000000.
2105 * The return rings live entirely within the host, so the
2106 * nicaddr field in the RCB isn't used.
2107 */
2108 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2109 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2110 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2111 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2112 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2113 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2114 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2115
2116 /* Set random backoff seed for TX */
2117 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2118 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2119 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2120 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2121 BGE_TX_BACKOFF_SEED_MASK);
2122
2123 /* Set inter-packet gap */
2124 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2125
2126 /*
2127 * Specify which ring to use for packets that don't match
2128 * any RX rules.
2129 */
2130 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2131
2132 /*
2133 * Configure number of RX lists. One interrupt distribution
2134 * list, sixteen active lists, one bad frames class.
2135 */
2136 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2137
2138 /* Inialize RX list placement stats mask. */
2139 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2140 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2141
2142 /* Disable host coalescing until we get it set up */
2143 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2144
2145 /* Poll to make sure it's shut down. */
2146 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2147 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2148 break;
2149 DELAY(10);
2150 }
2151
2152 if (i == BGE_TIMEOUT * 2) {
2153 aprint_error_dev(sc->bge_dev,
2154 "host coalescing engine failed to idle\n");
2155 return ENXIO;
2156 }
2157
2158 /* Set up host coalescing defaults */
2159 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2160 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2161 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2162 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2163 if (BGE_IS_5700_FAMILY(sc)) {
2164 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2165 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2166 }
2167 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2168 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2169
2170 /* Set up address of statistics block */
2171 if (BGE_IS_5700_FAMILY(sc)) {
2172 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2173 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2174 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2175 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2176 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2177 }
2178
2179 /* Set up address of status block */
2180 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2181 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2182 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2183 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2184 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2185 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2186
2187 /* Turn on host coalescing state machine */
2188 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2189
2190 /* Turn on RX BD completion state machine and enable attentions */
2191 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2192 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2193
2194 /* Turn on RX list placement state machine */
2195 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2196
2197 /* Turn on RX list selector state machine. */
2198 if (BGE_IS_5700_FAMILY(sc))
2199 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2200
2201 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2202 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2203 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2204 BGE_MACMODE_FRMHDR_DMA_ENB;
2205
2206 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2207 val |= BGE_PORTMODE_TBI;
2208 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2209 val |= BGE_PORTMODE_GMII;
2210 else
2211 val |= BGE_PORTMODE_MII;
2212
2213 /* Turn on DMA, clear stats */
2214 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2215
2216 /* Set misc. local control, enable interrupts on attentions */
2217 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2218
2219 #ifdef notdef
2220 /* Assert GPIO pins for PHY reset */
2221 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2222 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2223 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2224 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2225 #endif
2226
2227 #if defined(not_quite_yet)
2228 /* Linux driver enables enable gpio pin #1 on 5700s */
2229 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2230 sc->bge_local_ctrl_reg |=
2231 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2232 }
2233 #endif
2234 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2235
2236 /* Turn on DMA completion state machine */
2237 if (BGE_IS_5700_FAMILY(sc))
2238 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2239
2240 /* Turn on write DMA state machine */
2241 {
2242 uint32_t bge_wdma_mode =
2243 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2244
2245 /* Enable host coalescing bug fix; see Linux tg3.c */
2246 if (BGE_IS_5755_PLUS(sc))
2247 bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2248
2249 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2250 }
2251
2252 /* Turn on read DMA state machine */
2253 {
2254 uint32_t dma_read_modebits;
2255
2256 dma_read_modebits =
2257 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2258
2259 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2260 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2261 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2262 dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2263 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2264 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2265
2266 if (sc->bge_flags & BGE_PCIE)
2267 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2268 if (sc->bge_flags & BGE_TSO)
2269 dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2270 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2271 delay(40);
2272 }
2273
2274 /* Turn on RX data completion state machine */
2275 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2276
2277 /* Turn on RX BD initiator state machine */
2278 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2279
2280 /* Turn on RX data and RX BD initiator state machine */
2281 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2282
2283 /* Turn on Mbuf cluster free state machine */
2284 if (BGE_IS_5700_FAMILY(sc))
2285 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2286
2287 /* Turn on send BD completion state machine */
2288 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2289
2290 /* Turn on send data completion state machine */
2291 val = BGE_SDCMODE_ENABLE;
2292 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2293 val |= BGE_SDCMODE_CDELAY;
2294 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2295
2296 /* Turn on send data initiator state machine */
2297 if (sc->bge_flags & BGE_TSO) {
2298 /* XXX: magic value from Linux driver */
2299 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2300 } else
2301 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2302
2303 /* Turn on send BD initiator state machine */
2304 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2305
2306 /* Turn on send BD selector state machine */
2307 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2308
2309 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2310 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2311 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2312
2313 /* ack/clear link change events */
2314 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2315 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2316 BGE_MACSTAT_LINK_CHANGED);
2317 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2318
2319 /* Enable PHY auto polling (for MII/GMII only) */
2320 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2321 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2322 } else {
2323 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2324 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2325 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2326 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2327 BGE_EVTENB_MI_INTERRUPT);
2328 }
2329
2330 /*
2331 * Clear any pending link state attention.
2332 * Otherwise some link state change events may be lost until attention
2333 * is cleared by bge_intr() -> bge_link_upd() sequence.
2334 * It's not necessary on newer BCM chips - perhaps enabling link
2335 * state change attentions implies clearing pending attention.
2336 */
2337 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2338 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2339 BGE_MACSTAT_LINK_CHANGED);
2340
2341 /* Enable link state change attentions. */
2342 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2343
2344 return 0;
2345 }
2346
2347 static const struct bge_revision *
2348 bge_lookup_rev(uint32_t chipid)
2349 {
2350 const struct bge_revision *br;
2351
2352 for (br = bge_revisions; br->br_name != NULL; br++) {
2353 if (br->br_chipid == chipid)
2354 return br;
2355 }
2356
2357 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2358 if (br->br_chipid == BGE_ASICREV(chipid))
2359 return br;
2360 }
2361
2362 return NULL;
2363 }
2364
2365 static const struct bge_product *
2366 bge_lookup(const struct pci_attach_args *pa)
2367 {
2368 const struct bge_product *bp;
2369
2370 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2371 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2372 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2373 return bp;
2374 }
2375
2376 return NULL;
2377 }
2378
2379 static int
2380 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2381 {
2382 #ifdef NOTYET
2383 uint32_t pm_ctl = 0;
2384
2385 /* XXX FIXME: make sure indirect accesses enabled? */
2386 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2387 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2388 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2389
2390 /* clear the PME_assert bit and power state bits, enable PME */
2391 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2392 pm_ctl &= ~PCIM_PSTAT_DMASK;
2393 pm_ctl |= (1 << 8);
2394
2395 if (powerlevel == 0) {
2396 pm_ctl |= PCIM_PSTAT_D0;
2397 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2398 pm_ctl, 2);
2399 DELAY(10000);
2400 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2401 DELAY(10000);
2402
2403 #ifdef NOTYET
2404 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2405 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2406 #endif
2407 DELAY(40); DELAY(40); DELAY(40);
2408 DELAY(10000); /* above not quite adequate on 5700 */
2409 return 0;
2410 }
2411
2412
2413 /*
2414 * Entering ACPI power states D1-D3 is achieved by wiggling
2415 * GMII gpio pins. Example code assumes all hardware vendors
2416 * followed Broadom's sample pcb layout. Until we verify that
2417 * for all supported OEM cards, states D1-D3 are unsupported.
2418 */
2419 aprint_error_dev(sc->bge_dev,
2420 "power state %d unimplemented; check GPIO pins\n",
2421 powerlevel);
2422 #endif
2423 return EOPNOTSUPP;
2424 }
2425
2426
2427 /*
2428 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2429 * against our list and return its name if we find a match. Note
2430 * that since the Broadcom controller contains VPD support, we
2431 * can get the device name string from the controller itself instead
2432 * of the compiled-in string. This is a little slow, but it guarantees
2433 * we'll always announce the right product name.
2434 */
2435 static int
2436 bge_probe(device_t parent, cfdata_t match, void *aux)
2437 {
2438 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2439
2440 if (bge_lookup(pa) != NULL)
2441 return 1;
2442
2443 return 0;
2444 }
2445
2446 static void
2447 bge_attach(device_t parent, device_t self, void *aux)
2448 {
2449 struct bge_softc *sc = device_private(self);
2450 struct pci_attach_args *pa = aux;
2451 prop_dictionary_t dict;
2452 const struct bge_product *bp;
2453 const struct bge_revision *br;
2454 pci_chipset_tag_t pc;
2455 pci_intr_handle_t ih;
2456 const char *intrstr = NULL;
2457 bus_dma_segment_t seg;
2458 int rseg;
2459 uint32_t hwcfg = 0;
2460 uint32_t command;
2461 struct ifnet *ifp;
2462 uint32_t misccfg;
2463 void * kva;
2464 u_char eaddr[ETHER_ADDR_LEN];
2465 pcireg_t memtype, subid;
2466 bus_addr_t memaddr;
2467 bus_size_t memsize;
2468 uint32_t pm_ctl;
2469 bool no_seeprom;
2470
2471 bp = bge_lookup(pa);
2472 KASSERT(bp != NULL);
2473
2474 sc->sc_pc = pa->pa_pc;
2475 sc->sc_pcitag = pa->pa_tag;
2476 sc->bge_dev = self;
2477
2478 pc = sc->sc_pc;
2479 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2480
2481 aprint_naive(": Ethernet controller\n");
2482 aprint_normal(": %s\n", bp->bp_name);
2483
2484 /*
2485 * Map control/status registers.
2486 */
2487 DPRINTFN(5, ("Map control/status regs\n"));
2488 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2489 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2490 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2491 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2492
2493 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2494 aprint_error_dev(sc->bge_dev,
2495 "failed to enable memory mapping!\n");
2496 return;
2497 }
2498
2499 DPRINTFN(5, ("pci_mem_find\n"));
2500 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2501 switch (memtype) {
2502 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2503 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2504 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2505 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2506 &memaddr, &memsize) == 0)
2507 break;
2508 default:
2509 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2510 return;
2511 }
2512
2513 DPRINTFN(5, ("pci_intr_map\n"));
2514 if (pci_intr_map(pa, &ih)) {
2515 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2516 return;
2517 }
2518
2519 DPRINTFN(5, ("pci_intr_string\n"));
2520 intrstr = pci_intr_string(pc, ih);
2521
2522 DPRINTFN(5, ("pci_intr_establish\n"));
2523 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2524
2525 if (sc->bge_intrhand == NULL) {
2526 aprint_error_dev(sc->bge_dev,
2527 "couldn't establish interrupt%s%s\n",
2528 intrstr ? " at " : "", intrstr ? intrstr : "");
2529 return;
2530 }
2531 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2532
2533 /*
2534 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2535 * can clobber the chip's PCI config-space power control registers,
2536 * leaving the card in D3 powersave state.
2537 * We do not have memory-mapped registers in this state,
2538 * so force device into D0 state before starting initialization.
2539 */
2540 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2541 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2542 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2543 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2544 DELAY(1000); /* 27 usec is allegedly sufficent */
2545
2546 /*
2547 * Save ASIC rev.
2548 */
2549 sc->bge_chipid =
2550 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2551 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2552
2553 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2554 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2555 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2556 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2557 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2558 BGE_PCI_GEN2_PRODID_ASICREV);
2559 else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2560 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2561 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2562 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2563 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2564 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2565 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2566 BGE_PCI_GEN15_PRODID_ASICREV);
2567 else
2568 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2569 BGE_PCI_PRODID_ASICREV);
2570 }
2571
2572 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2573 &sc->bge_expcap, NULL) != 0) {
2574 /* PCIe */
2575 sc->bge_flags |= BGE_PCIE;
2576 bge_set_max_readrq(sc);
2577 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2578 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2579 /* PCI-X */
2580 sc->bge_flags |= BGE_PCIX;
2581 }
2582
2583 /* chipid */
2584 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2585 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2586 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2587 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2588 sc->bge_flags |= BGE_5700_FAMILY;
2589
2590 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2591 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2592 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2593 sc->bge_flags |= BGE_5714_FAMILY;
2594
2595 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2596 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2597 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2598 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2601 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2602 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2603 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2604 sc->bge_flags |= BGE_5755_PLUS;
2605
2606 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2607 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2608 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2609 BGE_IS_5755_PLUS(sc) ||
2610 BGE_IS_5714_FAMILY(sc))
2611 sc->bge_flags |= BGE_5750_PLUS;
2612
2613 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2614 BGE_IS_5750_OR_BEYOND(sc))
2615 sc->bge_flags |= BGE_5705_PLUS;
2616
2617 /*
2618 * When using the BCM5701 in PCI-X mode, data corruption has
2619 * been observed in the first few bytes of some received packets.
2620 * Aligning the packet buffer in memory eliminates the corruption.
2621 * Unfortunately, this misaligns the packet payloads. On platforms
2622 * which do not support unaligned accesses, we will realign the
2623 * payloads by copying the received packets.
2624 */
2625 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2626 sc->bge_flags & BGE_PCIX)
2627 sc->bge_flags |= BGE_RX_ALIGNBUG;
2628
2629 if (BGE_IS_5700_FAMILY(sc))
2630 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2631
2632 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2633 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2634 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2635 sc->bge_flags |= BGE_NO_3LED;
2636
2637 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2638 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2639
2640 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2641 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2642 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2643 sc->bge_flags |= BGE_IS_5788;
2644
2645 /*
2646 * Some controllers seem to require a special firmware to use
2647 * TSO. But the firmware is not available to FreeBSD and Linux
2648 * claims that the TSO performed by the firmware is slower than
2649 * hardware based TSO. Moreover the firmware based TSO has one
2650 * known bug which can't handle TSO if ethernet header + IP/TCP
2651 * header is greater than 80 bytes. The workaround for the TSO
2652 * bug exist but it seems it's too expensive than not using
2653 * TSO at all. Some hardwares also have the TSO bug so limit
2654 * the TSO to the controllers that are not affected TSO issues
2655 * (e.g. 5755 or higher).
2656 */
2657 if (BGE_IS_5755_PLUS(sc)) {
2658 /*
2659 * BCM5754 and BCM5787 shares the same ASIC id so
2660 * explicit device id check is required.
2661 */
2662 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2663 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2664 sc->bge_flags |= BGE_TSO;
2665 }
2666
2667 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2668 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2669 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2670 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2671 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2672 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2673 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2674 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2675 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2676 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2677 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2678 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2680 sc->bge_flags |= BGE_10_100_ONLY;
2681
2682 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2683 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2684 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2685 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2686 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2687 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2688
2689 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2690 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2691 sc->bge_flags |= BGE_PHY_CRC_BUG;
2692 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2693 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2694 sc->bge_flags |= BGE_PHY_ADC_BUG;
2695 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2696 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2697
2698 if (BGE_IS_5705_PLUS(sc) &&
2699 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2700 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2701 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2702 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2703 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2704 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2705 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2706 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2707 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2708 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2709 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2710 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2711 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2712 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2713 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2714 sc->bge_flags |= BGE_PHY_BER_BUG;
2715 }
2716
2717 /*
2718 * SEEPROM check.
2719 * First check if firmware knows we do not have SEEPROM.
2720 */
2721 if (prop_dictionary_get_bool(device_properties(self),
2722 "without-seeprom", &no_seeprom) && no_seeprom)
2723 sc->bge_flags |= BGE_NO_EEPROM;
2724
2725 /* Now check the 'ROM failed' bit on the RX CPU */
2726 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2727 sc->bge_flags |= BGE_NO_EEPROM;
2728
2729 /* Try to reset the chip. */
2730 DPRINTFN(5, ("bge_reset\n"));
2731 bge_reset(sc);
2732
2733 sc->bge_asf_mode = 0;
2734 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2735 == BGE_MAGIC_NUMBER)) {
2736 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2737 & BGE_HWCFG_ASF) {
2738 sc->bge_asf_mode |= ASF_ENABLE;
2739 sc->bge_asf_mode |= ASF_STACKUP;
2740 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
2741 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2742 }
2743 }
2744 }
2745
2746 /* Try to reset the chip again the nice way. */
2747 bge_stop_fw(sc);
2748 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2749 if (bge_reset(sc)) {
2750 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2751 }
2752
2753 bge_sig_legacy(sc, BGE_RESET_STOP);
2754 bge_sig_post_reset(sc, BGE_RESET_STOP);
2755
2756 if (bge_chipinit(sc)) {
2757 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2758 bge_release_resources(sc);
2759 return;
2760 }
2761
2762 /*
2763 * Get station address from the EEPROM
2764 */
2765 if (bge_get_eaddr(sc, eaddr)) {
2766 aprint_error_dev(sc->bge_dev,
2767 "failed to read station address\n");
2768 bge_release_resources(sc);
2769 return;
2770 }
2771
2772 br = bge_lookup_rev(sc->bge_chipid);
2773
2774 if (br == NULL) {
2775 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2776 sc->bge_chipid);
2777 } else {
2778 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2779 br->br_name, sc->bge_chipid);
2780 }
2781 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2782
2783 /* Allocate the general information block and ring buffers. */
2784 if (pci_dma64_available(pa))
2785 sc->bge_dmatag = pa->pa_dmat64;
2786 else
2787 sc->bge_dmatag = pa->pa_dmat;
2788 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2789 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2790 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2791 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2792 return;
2793 }
2794 DPRINTFN(5, ("bus_dmamem_map\n"));
2795 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2796 sizeof(struct bge_ring_data), &kva,
2797 BUS_DMA_NOWAIT)) {
2798 aprint_error_dev(sc->bge_dev,
2799 "can't map DMA buffers (%zu bytes)\n",
2800 sizeof(struct bge_ring_data));
2801 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2802 return;
2803 }
2804 DPRINTFN(5, ("bus_dmamem_create\n"));
2805 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2806 sizeof(struct bge_ring_data), 0,
2807 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2808 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2809 bus_dmamem_unmap(sc->bge_dmatag, kva,
2810 sizeof(struct bge_ring_data));
2811 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2812 return;
2813 }
2814 DPRINTFN(5, ("bus_dmamem_load\n"));
2815 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2816 sizeof(struct bge_ring_data), NULL,
2817 BUS_DMA_NOWAIT)) {
2818 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2819 bus_dmamem_unmap(sc->bge_dmatag, kva,
2820 sizeof(struct bge_ring_data));
2821 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2822 return;
2823 }
2824
2825 DPRINTFN(5, ("bzero\n"));
2826 sc->bge_rdata = (struct bge_ring_data *)kva;
2827
2828 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2829
2830 /* Try to allocate memory for jumbo buffers. */
2831 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2832 if (bge_alloc_jumbo_mem(sc)) {
2833 aprint_error_dev(sc->bge_dev,
2834 "jumbo buffer allocation failed\n");
2835 } else
2836 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2837 }
2838
2839 /* Set default tuneable values. */
2840 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2841 sc->bge_rx_coal_ticks = 150;
2842 sc->bge_rx_max_coal_bds = 64;
2843 #ifdef ORIG_WPAUL_VALUES
2844 sc->bge_tx_coal_ticks = 150;
2845 sc->bge_tx_max_coal_bds = 128;
2846 #else
2847 sc->bge_tx_coal_ticks = 300;
2848 sc->bge_tx_max_coal_bds = 400;
2849 #endif
2850 if (BGE_IS_5705_PLUS(sc)) {
2851 sc->bge_tx_coal_ticks = (12 * 5);
2852 sc->bge_tx_max_coal_bds = (12 * 5);
2853 aprint_verbose_dev(sc->bge_dev,
2854 "setting short Tx thresholds\n");
2855 }
2856
2857 if (BGE_IS_5705_PLUS(sc))
2858 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2859 else
2860 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2861
2862 /* Set up ifnet structure */
2863 ifp = &sc->ethercom.ec_if;
2864 ifp->if_softc = sc;
2865 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2866 ifp->if_ioctl = bge_ioctl;
2867 ifp->if_stop = bge_stop;
2868 ifp->if_start = bge_start;
2869 ifp->if_init = bge_init;
2870 ifp->if_watchdog = bge_watchdog;
2871 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2872 IFQ_SET_READY(&ifp->if_snd);
2873 DPRINTFN(5, ("strcpy if_xname\n"));
2874 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2875
2876 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2877 sc->ethercom.ec_if.if_capabilities |=
2878 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2879 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2880 sc->ethercom.ec_if.if_capabilities |=
2881 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2882 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2883 #endif
2884 sc->ethercom.ec_capabilities |=
2885 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2886
2887 if (sc->bge_flags & BGE_TSO)
2888 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2889
2890 /*
2891 * Do MII setup.
2892 */
2893 DPRINTFN(5, ("mii setup\n"));
2894 sc->bge_mii.mii_ifp = ifp;
2895 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2896 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2897 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2898
2899 /*
2900 * Figure out what sort of media we have by checking the
2901 * hardware config word in the first 32k of NIC internal memory,
2902 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2903 * cards, this value appears to be unset. If that's the
2904 * case, we have to rely on identifying the NIC by its PCI
2905 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2906 */
2907 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2908 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2909 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2910 bge_read_eeprom(sc, (void *)&hwcfg,
2911 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2912 hwcfg = be32toh(hwcfg);
2913 }
2914 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2915 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2916 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2917 if (BGE_IS_5714_FAMILY(sc))
2918 sc->bge_flags |= BGE_PHY_FIBER_MII;
2919 else
2920 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2921 }
2922
2923 /* set phyflags before mii_attach() */
2924 dict = device_properties(self);
2925 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2926
2927 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2928 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2929 bge_ifmedia_sts);
2930 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2931 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2932 0, NULL);
2933 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2934 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2935 /* Pretend the user requested this setting */
2936 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2937 } else {
2938 /*
2939 * Do transceiver setup and tell the firmware the
2940 * driver is down so we can try to get access the
2941 * probe if ASF is running. Retry a couple of times
2942 * if we get a conflict with the ASF firmware accessing
2943 * the PHY.
2944 */
2945 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2946 bge_asf_driver_up(sc);
2947
2948 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2949 bge_ifmedia_sts);
2950 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2951 MII_PHY_ANY, MII_OFFSET_ANY,
2952 MIIF_FORCEANEG|MIIF_DOPAUSE);
2953
2954 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2955 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2956 ifmedia_add(&sc->bge_mii.mii_media,
2957 IFM_ETHER|IFM_MANUAL, 0, NULL);
2958 ifmedia_set(&sc->bge_mii.mii_media,
2959 IFM_ETHER|IFM_MANUAL);
2960 } else
2961 ifmedia_set(&sc->bge_mii.mii_media,
2962 IFM_ETHER|IFM_AUTO);
2963
2964 /*
2965 * Now tell the firmware we are going up after probing the PHY
2966 */
2967 if (sc->bge_asf_mode & ASF_STACKUP)
2968 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2969 }
2970
2971 /*
2972 * Call MI attach routine.
2973 */
2974 DPRINTFN(5, ("if_attach\n"));
2975 if_attach(ifp);
2976 DPRINTFN(5, ("ether_ifattach\n"));
2977 ether_ifattach(ifp, eaddr);
2978 #if NRND > 0
2979 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2980 RND_TYPE_NET, 0);
2981 #endif
2982 #ifdef BGE_EVENT_COUNTERS
2983 /*
2984 * Attach event counters.
2985 */
2986 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2987 NULL, device_xname(sc->bge_dev), "intr");
2988 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2989 NULL, device_xname(sc->bge_dev), "tx_xoff");
2990 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2991 NULL, device_xname(sc->bge_dev), "tx_xon");
2992 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2993 NULL, device_xname(sc->bge_dev), "rx_xoff");
2994 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2995 NULL, device_xname(sc->bge_dev), "rx_xon");
2996 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2997 NULL, device_xname(sc->bge_dev), "rx_macctl");
2998 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2999 NULL, device_xname(sc->bge_dev), "xoffentered");
3000 #endif /* BGE_EVENT_COUNTERS */
3001 DPRINTFN(5, ("callout_init\n"));
3002 callout_init(&sc->bge_timeout, 0);
3003
3004 if (pmf_device_register(self, NULL, NULL))
3005 pmf_class_network_register(self, ifp);
3006 else
3007 aprint_error_dev(self, "couldn't establish power handler\n");
3008
3009 #ifdef BGE_DEBUG
3010 bge_debug_info(sc);
3011 #endif
3012 }
3013
3014 static void
3015 bge_release_resources(struct bge_softc *sc)
3016 {
3017 if (sc->bge_vpd_prodname != NULL)
3018 free(sc->bge_vpd_prodname, M_DEVBUF);
3019
3020 if (sc->bge_vpd_readonly != NULL)
3021 free(sc->bge_vpd_readonly, M_DEVBUF);
3022 }
3023
3024 static int
3025 bge_reset(struct bge_softc *sc)
3026 {
3027 uint32_t cachesize, command, pcistate, new_pcistate;
3028 pcireg_t devctl;
3029 int i, val;
3030 void (*write_op)(struct bge_softc *, int, int);
3031
3032 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
3033 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3034 if (sc->bge_flags & BGE_PCIE) {
3035 write_op = bge_writemem_direct;
3036 } else {
3037 write_op = bge_writemem_ind;
3038 }
3039 } else {
3040 write_op = bge_writereg_ind;
3041 }
3042
3043
3044 /* Save some important PCI state. */
3045 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3046 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3047 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3048
3049 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3050 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3051 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3052
3053 /* Disable fastboot on controllers that support it. */
3054 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3055 BGE_IS_5755_PLUS(sc))
3056 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3057
3058 /*
3059 * Write the magic number to SRAM at offset 0xB50.
3060 * When firmware finishes its initialization it will
3061 * write ~BGE_MAGIC_NUMBER to the same location.
3062 */
3063 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3064
3065 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3066 /*
3067 * XXX: from FreeBSD/Linux; no documentation
3068 */
3069 if (sc->bge_flags & BGE_PCIE) {
3070 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3071 /* PCI Express 1.0 system */
3072 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3073 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3074 /*
3075 * Prevent PCI Express link training
3076 * during global reset.
3077 */
3078 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3079 val |= (1<<29);
3080 }
3081 }
3082
3083 /*
3084 * Set GPHY Power Down Override to leave GPHY
3085 * powered up in D0 uninitialized.
3086 */
3087 if (BGE_IS_5705_PLUS(sc))
3088 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3089
3090 /* Issue global reset */
3091 write_op(sc, BGE_MISC_CFG, val);
3092
3093 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3094 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3095 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3096 i | BGE_VCPU_STATUS_DRV_RESET);
3097 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3098 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3099 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3100 }
3101
3102 DELAY(1000);
3103
3104 /*
3105 * XXX: from FreeBSD/Linux; no documentation
3106 */
3107 if (sc->bge_flags & BGE_PCIE) {
3108 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3109 pcireg_t reg;
3110
3111 DELAY(500000);
3112 /* XXX: Magic Numbers */
3113 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3114 BGE_PCI_UNKNOWN0);
3115 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3116 BGE_PCI_UNKNOWN0,
3117 reg | (1 << 15));
3118 }
3119 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3120 sc->bge_expcap + PCI_PCIE_DCSR);
3121 /* Clear enable no snoop and disable relaxed ordering. */
3122 devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3123 /* Set PCIE max payload size to 128. */
3124 devctl &= ~(0x00e0);
3125 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3126 sc->bge_expcap + PCI_PCIE_DCSR, devctl);
3127 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3128 sc->bge_expcap + PCI_PCIE_DSR, 0);
3129 }
3130
3131 /* Reset some of the PCI state that got zapped by reset */
3132 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3133 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3134 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3135 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3136 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3137 write_op(sc, BGE_MISC_CFG, (65 << 1));
3138
3139 /* Enable memory arbiter. */
3140 {
3141 uint32_t marbmode = 0;
3142 if (BGE_IS_5714_FAMILY(sc)) {
3143 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3144 }
3145 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3146 }
3147
3148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3149 for (i = 0; i < BGE_TIMEOUT; i++) {
3150 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3151 if (val & BGE_VCPU_STATUS_INIT_DONE)
3152 break;
3153 DELAY(100);
3154 }
3155 if (i == BGE_TIMEOUT) {
3156 aprint_error_dev(sc->bge_dev, "reset timed out\n");
3157 return 1;
3158 }
3159 } else {
3160 /*
3161 * Poll the value location we just wrote until
3162 * we see the 1's complement of the magic number.
3163 * This indicates that the firmware initialization
3164 * is complete.
3165 */
3166 for (i = 0; i < BGE_TIMEOUT; i++) {
3167 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3168 if (val == ~BGE_MAGIC_NUMBER)
3169 break;
3170 DELAY(10);
3171 }
3172
3173 if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM)))
3174 aprint_error_dev(sc->bge_dev,
3175 "firmware handshake timed out, val = %x\n", val);
3176 }
3177
3178 /*
3179 * XXX Wait for the value of the PCISTATE register to
3180 * return to its original pre-reset state. This is a
3181 * fairly good indicator of reset completion. If we don't
3182 * wait for the reset to fully complete, trying to read
3183 * from the device's non-PCI registers may yield garbage
3184 * results.
3185 */
3186 for (i = 0; i < BGE_TIMEOUT; i++) {
3187 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3188 BGE_PCI_PCISTATE);
3189 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3190 (pcistate & ~BGE_PCISTATE_RESERVED))
3191 break;
3192 DELAY(10);
3193 }
3194 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3195 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3196 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3197 }
3198
3199 #if 0
3200 /* Enable memory arbiter. */
3201 /* XXX why do this twice? */
3202 {
3203 uint32_t marbmode = 0;
3204 if (BGE_IS_5714_FAMILY(sc)) {
3205 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3206 }
3207 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3208 }
3209 #endif
3210
3211 /* Fix up byte swapping */
3212 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3213
3214 /* Tell the ASF firmware we are up */
3215 if (sc->bge_asf_mode & ASF_STACKUP)
3216 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3217
3218 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3219
3220 /*
3221 * The 5704 in TBI mode apparently needs some special
3222 * adjustment to insure the SERDES drive level is set
3223 * to 1.2V.
3224 */
3225 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3226 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3227 uint32_t serdescfg;
3228
3229 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3230 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3231 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3232 }
3233
3234 if (sc->bge_flags & BGE_PCIE &&
3235 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3236 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3237 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3238 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3239 uint32_t v;
3240
3241 /* Enable PCI Express bug fix */
3242 v = CSR_READ_4(sc, 0x7c00);
3243 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3244 }
3245 DELAY(10000);
3246
3247 return 0;
3248 }
3249
3250 /*
3251 * Frame reception handling. This is called if there's a frame
3252 * on the receive return list.
3253 *
3254 * Note: we have to be able to handle two possibilities here:
3255 * 1) the frame is from the jumbo recieve ring
3256 * 2) the frame is from the standard receive ring
3257 */
3258
3259 static void
3260 bge_rxeof(struct bge_softc *sc)
3261 {
3262 struct ifnet *ifp;
3263 uint16_t rx_prod, rx_cons;
3264 int stdcnt = 0, jumbocnt = 0;
3265 bus_dmamap_t dmamap;
3266 bus_addr_t offset, toff;
3267 bus_size_t tlen;
3268 int tosync;
3269
3270 rx_cons = sc->bge_rx_saved_considx;
3271 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3272
3273 /* Nothing to do */
3274 if (rx_cons == rx_prod)
3275 return;
3276
3277 ifp = &sc->ethercom.ec_if;
3278
3279 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3280 offsetof(struct bge_ring_data, bge_status_block),
3281 sizeof (struct bge_status_block),
3282 BUS_DMASYNC_POSTREAD);
3283
3284 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3285 tosync = rx_prod - rx_cons;
3286
3287 #if NRND > 0
3288 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3289 rnd_add_uint32(&sc->rnd_source, tosync);
3290 #endif
3291
3292 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3293
3294 if (tosync < 0) {
3295 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3296 sizeof (struct bge_rx_bd);
3297 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3298 toff, tlen, BUS_DMASYNC_POSTREAD);
3299 tosync = -tosync;
3300 }
3301
3302 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3303 offset, tosync * sizeof (struct bge_rx_bd),
3304 BUS_DMASYNC_POSTREAD);
3305
3306 while (rx_cons != rx_prod) {
3307 struct bge_rx_bd *cur_rx;
3308 uint32_t rxidx;
3309 struct mbuf *m = NULL;
3310
3311 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3312
3313 rxidx = cur_rx->bge_idx;
3314 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3315
3316 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3317 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3318 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3319 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3320 jumbocnt++;
3321 bus_dmamap_sync(sc->bge_dmatag,
3322 sc->bge_cdata.bge_rx_jumbo_map,
3323 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3324 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3325 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3326 ifp->if_ierrors++;
3327 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3328 continue;
3329 }
3330 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3331 NULL)== ENOBUFS) {
3332 ifp->if_ierrors++;
3333 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3334 continue;
3335 }
3336 } else {
3337 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3338 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3339
3340 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3341 stdcnt++;
3342 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3343 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3344 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3345 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3346 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3347 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3348 ifp->if_ierrors++;
3349 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3350 continue;
3351 }
3352 if (bge_newbuf_std(sc, sc->bge_std,
3353 NULL, dmamap) == ENOBUFS) {
3354 ifp->if_ierrors++;
3355 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3356 continue;
3357 }
3358 }
3359
3360 ifp->if_ipackets++;
3361 #ifndef __NO_STRICT_ALIGNMENT
3362 /*
3363 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3364 * the Rx buffer has the layer-2 header unaligned.
3365 * If our CPU requires alignment, re-align by copying.
3366 */
3367 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3368 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3369 cur_rx->bge_len);
3370 m->m_data += ETHER_ALIGN;
3371 }
3372 #endif
3373
3374 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3375 m->m_pkthdr.rcvif = ifp;
3376
3377 /*
3378 * Handle BPF listeners. Let the BPF user see the packet.
3379 */
3380 if (ifp->if_bpf)
3381 bpf_ops->bpf_mtap(ifp->if_bpf, m);
3382
3383 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3384
3385 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3386 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3387 /*
3388 * Rx transport checksum-offload may also
3389 * have bugs with packets which, when transmitted,
3390 * were `runts' requiring padding.
3391 */
3392 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3393 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3394 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3395 m->m_pkthdr.csum_data =
3396 cur_rx->bge_tcp_udp_csum;
3397 m->m_pkthdr.csum_flags |=
3398 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3399 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3400 }
3401
3402 /*
3403 * If we received a packet with a vlan tag, pass it
3404 * to vlan_input() instead of ether_input().
3405 */
3406 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3407 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3408 }
3409
3410 (*ifp->if_input)(ifp, m);
3411 }
3412
3413 sc->bge_rx_saved_considx = rx_cons;
3414 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3415 if (stdcnt)
3416 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3417 if (jumbocnt)
3418 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3419 }
3420
3421 static void
3422 bge_txeof(struct bge_softc *sc)
3423 {
3424 struct bge_tx_bd *cur_tx = NULL;
3425 struct ifnet *ifp;
3426 struct txdmamap_pool_entry *dma;
3427 bus_addr_t offset, toff;
3428 bus_size_t tlen;
3429 int tosync;
3430 struct mbuf *m;
3431
3432 ifp = &sc->ethercom.ec_if;
3433
3434 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3435 offsetof(struct bge_ring_data, bge_status_block),
3436 sizeof (struct bge_status_block),
3437 BUS_DMASYNC_POSTREAD);
3438
3439 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3440 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3441 sc->bge_tx_saved_considx;
3442
3443 #if NRND > 0
3444 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3445 rnd_add_uint32(&sc->rnd_source, tosync);
3446 #endif
3447
3448 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3449
3450 if (tosync < 0) {
3451 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3452 sizeof (struct bge_tx_bd);
3453 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3454 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3455 tosync = -tosync;
3456 }
3457
3458 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3459 offset, tosync * sizeof (struct bge_tx_bd),
3460 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3461
3462 /*
3463 * Go through our tx ring and free mbufs for those
3464 * frames that have been sent.
3465 */
3466 while (sc->bge_tx_saved_considx !=
3467 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3468 uint32_t idx = 0;
3469
3470 idx = sc->bge_tx_saved_considx;
3471 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3472 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3473 ifp->if_opackets++;
3474 m = sc->bge_cdata.bge_tx_chain[idx];
3475 if (m != NULL) {
3476 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3477 dma = sc->txdma[idx];
3478 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3479 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3480 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3481 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3482 sc->txdma[idx] = NULL;
3483
3484 m_freem(m);
3485 }
3486 sc->bge_txcnt--;
3487 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3488 ifp->if_timer = 0;
3489 }
3490
3491 if (cur_tx != NULL)
3492 ifp->if_flags &= ~IFF_OACTIVE;
3493 }
3494
3495 static int
3496 bge_intr(void *xsc)
3497 {
3498 struct bge_softc *sc;
3499 struct ifnet *ifp;
3500 uint32_t statusword;
3501
3502 sc = xsc;
3503 ifp = &sc->ethercom.ec_if;
3504
3505 /* It is possible for the interrupt to arrive before
3506 * the status block is updated prior to the interrupt.
3507 * Reading the PCI State register will confirm whether the
3508 * interrupt is ours and will flush the status block.
3509 */
3510
3511 /* read status word from status block */
3512 statusword = sc->bge_rdata->bge_status_block.bge_status;
3513
3514 if ((statusword & BGE_STATFLAG_UPDATED) ||
3515 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3516 /* Ack interrupt and stop others from occuring. */
3517 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3518
3519 BGE_EVCNT_INCR(sc->bge_ev_intr);
3520
3521 /* clear status word */
3522 sc->bge_rdata->bge_status_block.bge_status = 0;
3523
3524 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3525 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3526 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3527 bge_link_upd(sc);
3528
3529 if (ifp->if_flags & IFF_RUNNING) {
3530 /* Check RX return ring producer/consumer */
3531 bge_rxeof(sc);
3532
3533 /* Check TX ring producer/consumer */
3534 bge_txeof(sc);
3535 }
3536
3537 if (sc->bge_pending_rxintr_change) {
3538 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3539 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3540 uint32_t junk;
3541
3542 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3543 DELAY(10);
3544 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3545
3546 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3547 DELAY(10);
3548 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3549
3550 sc->bge_pending_rxintr_change = 0;
3551 }
3552 bge_handle_events(sc);
3553
3554 /* Re-enable interrupts. */
3555 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3556
3557 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3558 bge_start(ifp);
3559
3560 return 1;
3561 } else
3562 return 0;
3563 }
3564
3565 static void
3566 bge_asf_driver_up(struct bge_softc *sc)
3567 {
3568 if (sc->bge_asf_mode & ASF_STACKUP) {
3569 /* Send ASF heartbeat aprox. every 2s */
3570 if (sc->bge_asf_count)
3571 sc->bge_asf_count --;
3572 else {
3573 sc->bge_asf_count = 5;
3574 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3575 BGE_FW_DRV_ALIVE);
3576 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3577 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3578 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3579 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3580 }
3581 }
3582 }
3583
3584 static void
3585 bge_tick(void *xsc)
3586 {
3587 struct bge_softc *sc = xsc;
3588 struct mii_data *mii = &sc->bge_mii;
3589 int s;
3590
3591 s = splnet();
3592
3593 if (BGE_IS_5705_PLUS(sc))
3594 bge_stats_update_regs(sc);
3595 else
3596 bge_stats_update(sc);
3597
3598 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3599 /*
3600 * Since in TBI mode auto-polling can't be used we should poll
3601 * link status manually. Here we register pending link event
3602 * and trigger interrupt.
3603 */
3604 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3605 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3606 } else {
3607 /*
3608 * Do not touch PHY if we have link up. This could break
3609 * IPMI/ASF mode or produce extra input errors.
3610 * (extra input errors was reported for bcm5701 & bcm5704).
3611 */
3612 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3613 mii_tick(mii);
3614 }
3615
3616 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3617
3618 splx(s);
3619 }
3620
3621 static void
3622 bge_stats_update_regs(struct bge_softc *sc)
3623 {
3624 struct ifnet *ifp = &sc->ethercom.ec_if;
3625
3626 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3627 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3628
3629 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3630 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3631 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3632 }
3633
3634 static void
3635 bge_stats_update(struct bge_softc *sc)
3636 {
3637 struct ifnet *ifp = &sc->ethercom.ec_if;
3638 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3639
3640 #define READ_STAT(sc, stats, stat) \
3641 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3642
3643 ifp->if_collisions +=
3644 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3645 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3646 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3647 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3648 ifp->if_collisions;
3649
3650 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3651 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3652 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3653 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3654 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3655 READ_STAT(sc, stats,
3656 xoffPauseFramesReceived.bge_addr_lo));
3657 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3658 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3659 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3660 READ_STAT(sc, stats,
3661 macControlFramesReceived.bge_addr_lo));
3662 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3663 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3664
3665 #undef READ_STAT
3666
3667 #ifdef notdef
3668 ifp->if_collisions +=
3669 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3670 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3671 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3672 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3673 ifp->if_collisions;
3674 #endif
3675 }
3676
3677 /*
3678 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3679 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3680 * but when such padded frames employ the bge IP/TCP checksum offload,
3681 * the hardware checksum assist gives incorrect results (possibly
3682 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3683 * If we pad such runts with zeros, the onboard checksum comes out correct.
3684 */
3685 static inline int
3686 bge_cksum_pad(struct mbuf *pkt)
3687 {
3688 struct mbuf *last = NULL;
3689 int padlen;
3690
3691 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3692
3693 /* if there's only the packet-header and we can pad there, use it. */
3694 if (pkt->m_pkthdr.len == pkt->m_len &&
3695 M_TRAILINGSPACE(pkt) >= padlen) {
3696 last = pkt;
3697 } else {
3698 /*
3699 * Walk packet chain to find last mbuf. We will either
3700 * pad there, or append a new mbuf and pad it
3701 * (thus perhaps avoiding the bcm5700 dma-min bug).
3702 */
3703 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3704 continue; /* do nothing */
3705 }
3706
3707 /* `last' now points to last in chain. */
3708 if (M_TRAILINGSPACE(last) < padlen) {
3709 /* Allocate new empty mbuf, pad it. Compact later. */
3710 struct mbuf *n;
3711 MGET(n, M_DONTWAIT, MT_DATA);
3712 if (n == NULL)
3713 return ENOBUFS;
3714 n->m_len = 0;
3715 last->m_next = n;
3716 last = n;
3717 }
3718 }
3719
3720 KDASSERT(!M_READONLY(last));
3721 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3722
3723 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3724 memset(mtod(last, char *) + last->m_len, 0, padlen);
3725 last->m_len += padlen;
3726 pkt->m_pkthdr.len += padlen;
3727 return 0;
3728 }
3729
3730 /*
3731 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3732 */
3733 static inline int
3734 bge_compact_dma_runt(struct mbuf *pkt)
3735 {
3736 struct mbuf *m, *prev;
3737 int totlen, prevlen;
3738
3739 prev = NULL;
3740 totlen = 0;
3741 prevlen = -1;
3742
3743 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3744 int mlen = m->m_len;
3745 int shortfall = 8 - mlen ;
3746
3747 totlen += mlen;
3748 if (mlen == 0) {
3749 continue;
3750 }
3751 if (mlen >= 8)
3752 continue;
3753
3754 /* If we get here, mbuf data is too small for DMA engine.
3755 * Try to fix by shuffling data to prev or next in chain.
3756 * If that fails, do a compacting deep-copy of the whole chain.
3757 */
3758
3759 /* Internal frag. If fits in prev, copy it there. */
3760 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3761 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3762 prev->m_len += mlen;
3763 m->m_len = 0;
3764 /* XXX stitch chain */
3765 prev->m_next = m_free(m);
3766 m = prev;
3767 continue;
3768 }
3769 else if (m->m_next != NULL &&
3770 M_TRAILINGSPACE(m) >= shortfall &&
3771 m->m_next->m_len >= (8 + shortfall)) {
3772 /* m is writable and have enough data in next, pull up. */
3773
3774 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3775 shortfall);
3776 m->m_len += shortfall;
3777 m->m_next->m_len -= shortfall;
3778 m->m_next->m_data += shortfall;
3779 }
3780 else if (m->m_next == NULL || 1) {
3781 /* Got a runt at the very end of the packet.
3782 * borrow data from the tail of the preceding mbuf and
3783 * update its length in-place. (The original data is still
3784 * valid, so we can do this even if prev is not writable.)
3785 */
3786
3787 /* if we'd make prev a runt, just move all of its data. */
3788 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3789 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3790
3791 if ((prev->m_len - shortfall) < 8)
3792 shortfall = prev->m_len;
3793
3794 #ifdef notyet /* just do the safe slow thing for now */
3795 if (!M_READONLY(m)) {
3796 if (M_LEADINGSPACE(m) < shorfall) {
3797 void *m_dat;
3798 m_dat = (m->m_flags & M_PKTHDR) ?
3799 m->m_pktdat : m->dat;
3800 memmove(m_dat, mtod(m, void*), m->m_len);
3801 m->m_data = m_dat;
3802 }
3803 } else
3804 #endif /* just do the safe slow thing */
3805 {
3806 struct mbuf * n = NULL;
3807 int newprevlen = prev->m_len - shortfall;
3808
3809 MGET(n, M_NOWAIT, MT_DATA);
3810 if (n == NULL)
3811 return ENOBUFS;
3812 KASSERT(m->m_len + shortfall < MLEN
3813 /*,
3814 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3815
3816 /* first copy the data we're stealing from prev */
3817 memcpy(n->m_data, prev->m_data + newprevlen,
3818 shortfall);
3819
3820 /* update prev->m_len accordingly */
3821 prev->m_len -= shortfall;
3822
3823 /* copy data from runt m */
3824 memcpy(n->m_data + shortfall, m->m_data,
3825 m->m_len);
3826
3827 /* n holds what we stole from prev, plus m */
3828 n->m_len = shortfall + m->m_len;
3829
3830 /* stitch n into chain and free m */
3831 n->m_next = m->m_next;
3832 prev->m_next = n;
3833 /* KASSERT(m->m_next == NULL); */
3834 m->m_next = NULL;
3835 m_free(m);
3836 m = n; /* for continuing loop */
3837 }
3838 }
3839 prevlen = m->m_len;
3840 }
3841 return 0;
3842 }
3843
3844 /*
3845 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3846 * pointers to descriptors.
3847 */
3848 static int
3849 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3850 {
3851 struct bge_tx_bd *f = NULL;
3852 uint32_t frag, cur;
3853 uint16_t csum_flags = 0;
3854 uint16_t txbd_tso_flags = 0;
3855 struct txdmamap_pool_entry *dma;
3856 bus_dmamap_t dmamap;
3857 int i = 0;
3858 struct m_tag *mtag;
3859 int use_tso, maxsegsize, error;
3860
3861 cur = frag = *txidx;
3862
3863 if (m_head->m_pkthdr.csum_flags) {
3864 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3865 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3866 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3867 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3868 }
3869
3870 /*
3871 * If we were asked to do an outboard checksum, and the NIC
3872 * has the bug where it sometimes adds in the Ethernet padding,
3873 * explicitly pad with zeros so the cksum will be correct either way.
3874 * (For now, do this for all chip versions, until newer
3875 * are confirmed to not require the workaround.)
3876 */
3877 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3878 #ifdef notyet
3879 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3880 #endif
3881 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3882 goto check_dma_bug;
3883
3884 if (bge_cksum_pad(m_head) != 0)
3885 return ENOBUFS;
3886
3887 check_dma_bug:
3888 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3889 goto doit;
3890
3891 /*
3892 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3893 * less than eight bytes. If we encounter a teeny mbuf
3894 * at the end of a chain, we can pad. Otherwise, copy.
3895 */
3896 if (bge_compact_dma_runt(m_head) != 0)
3897 return ENOBUFS;
3898
3899 doit:
3900 dma = SLIST_FIRST(&sc->txdma_list);
3901 if (dma == NULL)
3902 return ENOBUFS;
3903 dmamap = dma->dmamap;
3904
3905 /*
3906 * Set up any necessary TSO state before we start packing...
3907 */
3908 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3909 if (!use_tso) {
3910 maxsegsize = 0;
3911 } else { /* TSO setup */
3912 unsigned mss;
3913 struct ether_header *eh;
3914 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3915 struct mbuf * m0 = m_head;
3916 struct ip *ip;
3917 struct tcphdr *th;
3918 int iphl, hlen;
3919
3920 /*
3921 * XXX It would be nice if the mbuf pkthdr had offset
3922 * fields for the protocol headers.
3923 */
3924
3925 eh = mtod(m0, struct ether_header *);
3926 switch (htons(eh->ether_type)) {
3927 case ETHERTYPE_IP:
3928 offset = ETHER_HDR_LEN;
3929 break;
3930
3931 case ETHERTYPE_VLAN:
3932 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3933 break;
3934
3935 default:
3936 /*
3937 * Don't support this protocol or encapsulation.
3938 */
3939 return ENOBUFS;
3940 }
3941
3942 /*
3943 * TCP/IP headers are in the first mbuf; we can do
3944 * this the easy way.
3945 */
3946 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3947 hlen = iphl + offset;
3948 if (__predict_false(m0->m_len <
3949 (hlen + sizeof(struct tcphdr)))) {
3950
3951 aprint_debug_dev(sc->bge_dev,
3952 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3953 "not handled yet\n",
3954 m0->m_len, hlen+ sizeof(struct tcphdr));
3955 #ifdef NOTYET
3956 /*
3957 * XXX jonathan (at) NetBSD.org: untested.
3958 * how to force this branch to be taken?
3959 */
3960 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3961
3962 m_copydata(m0, offset, sizeof(ip), &ip);
3963 m_copydata(m0, hlen, sizeof(th), &th);
3964
3965 ip.ip_len = 0;
3966
3967 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3968 sizeof(ip.ip_len), &ip.ip_len);
3969
3970 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3971 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3972
3973 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3974 sizeof(th.th_sum), &th.th_sum);
3975
3976 hlen += th.th_off << 2;
3977 iptcp_opt_words = hlen;
3978 #else
3979 /*
3980 * if_wm "hard" case not yet supported, can we not
3981 * mandate it out of existence?
3982 */
3983 (void) ip; (void)th; (void) ip_tcp_hlen;
3984
3985 return ENOBUFS;
3986 #endif
3987 } else {
3988 ip = (struct ip *) (mtod(m0, char *) + offset);
3989 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3990 ip_tcp_hlen = iphl + (th->th_off << 2);
3991
3992 /* Total IP/TCP options, in 32-bit words */
3993 iptcp_opt_words = (ip_tcp_hlen
3994 - sizeof(struct tcphdr)
3995 - sizeof(struct ip)) >> 2;
3996 }
3997 if (BGE_IS_5750_OR_BEYOND(sc)) {
3998 th->th_sum = 0;
3999 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4000 } else {
4001 /*
4002 * XXX jonathan (at) NetBSD.org: 5705 untested.
4003 * Requires TSO firmware patch for 5701/5703/5704.
4004 */
4005 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4006 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4007 }
4008
4009 mss = m_head->m_pkthdr.segsz;
4010 txbd_tso_flags |=
4011 BGE_TXBDFLAG_CPU_PRE_DMA |
4012 BGE_TXBDFLAG_CPU_POST_DMA;
4013
4014 /*
4015 * Our NIC TSO-assist assumes TSO has standard, optionless
4016 * IPv4 and TCP headers, which total 40 bytes. By default,
4017 * the NIC copies 40 bytes of IP/TCP header from the
4018 * supplied header into the IP/TCP header portion of
4019 * each post-TSO-segment. If the supplied packet has IP or
4020 * TCP options, we need to tell the NIC to copy those extra
4021 * bytes into each post-TSO header, in addition to the normal
4022 * 40-byte IP/TCP header (and to leave space accordingly).
4023 * Unfortunately, the driver encoding of option length
4024 * varies across different ASIC families.
4025 */
4026 tcp_seg_flags = 0;
4027 if (iptcp_opt_words) {
4028 if (BGE_IS_5705_PLUS(sc)) {
4029 tcp_seg_flags =
4030 iptcp_opt_words << 11;
4031 } else {
4032 txbd_tso_flags |=
4033 iptcp_opt_words << 12;
4034 }
4035 }
4036 maxsegsize = mss | tcp_seg_flags;
4037 ip->ip_len = htons(mss + ip_tcp_hlen);
4038
4039 } /* TSO setup */
4040
4041 /*
4042 * Start packing the mbufs in this chain into
4043 * the fragment pointers. Stop when we run out
4044 * of fragments or hit the end of the mbuf chain.
4045 */
4046 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4047 BUS_DMA_NOWAIT);
4048 if (error)
4049 return ENOBUFS;
4050 /*
4051 * Sanity check: avoid coming within 16 descriptors
4052 * of the end of the ring.
4053 */
4054 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4055 BGE_TSO_PRINTF(("%s: "
4056 " dmamap_load_mbuf too close to ring wrap\n",
4057 device_xname(sc->bge_dev)));
4058 goto fail_unload;
4059 }
4060
4061 mtag = sc->ethercom.ec_nvlans ?
4062 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4063
4064
4065 /* Iterate over dmap-map fragments. */
4066 for (i = 0; i < dmamap->dm_nsegs; i++) {
4067 f = &sc->bge_rdata->bge_tx_ring[frag];
4068 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4069 break;
4070
4071 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4072 f->bge_len = dmamap->dm_segs[i].ds_len;
4073
4074 /*
4075 * For 5751 and follow-ons, for TSO we must turn
4076 * off checksum-assist flag in the tx-descr, and
4077 * supply the ASIC-revision-specific encoding
4078 * of TSO flags and segsize.
4079 */
4080 if (use_tso) {
4081 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4082 f->bge_rsvd = maxsegsize;
4083 f->bge_flags = csum_flags | txbd_tso_flags;
4084 } else {
4085 f->bge_rsvd = 0;
4086 f->bge_flags =
4087 (csum_flags | txbd_tso_flags) & 0x0fff;
4088 }
4089 } else {
4090 f->bge_rsvd = 0;
4091 f->bge_flags = csum_flags;
4092 }
4093
4094 if (mtag != NULL) {
4095 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4096 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4097 } else {
4098 f->bge_vlan_tag = 0;
4099 }
4100 cur = frag;
4101 BGE_INC(frag, BGE_TX_RING_CNT);
4102 }
4103
4104 if (i < dmamap->dm_nsegs) {
4105 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4106 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4107 goto fail_unload;
4108 }
4109
4110 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4111 BUS_DMASYNC_PREWRITE);
4112
4113 if (frag == sc->bge_tx_saved_considx) {
4114 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4115 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4116
4117 goto fail_unload;
4118 }
4119
4120 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4121 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4122 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4123 sc->txdma[cur] = dma;
4124 sc->bge_txcnt += dmamap->dm_nsegs;
4125
4126 *txidx = frag;
4127
4128 return 0;
4129
4130 fail_unload:
4131 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4132
4133 return ENOBUFS;
4134 }
4135
4136 /*
4137 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4138 * to the mbuf data regions directly in the transmit descriptors.
4139 */
4140 static void
4141 bge_start(struct ifnet *ifp)
4142 {
4143 struct bge_softc *sc;
4144 struct mbuf *m_head = NULL;
4145 uint32_t prodidx;
4146 int pkts = 0;
4147
4148 sc = ifp->if_softc;
4149
4150 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4151 return;
4152
4153 prodidx = sc->bge_tx_prodidx;
4154
4155 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4156 IFQ_POLL(&ifp->if_snd, m_head);
4157 if (m_head == NULL)
4158 break;
4159
4160 #if 0
4161 /*
4162 * XXX
4163 * safety overkill. If this is a fragmented packet chain
4164 * with delayed TCP/UDP checksums, then only encapsulate
4165 * it if we have enough descriptors to handle the entire
4166 * chain at once.
4167 * (paranoia -- may not actually be needed)
4168 */
4169 if (m_head->m_flags & M_FIRSTFRAG &&
4170 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4171 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4172 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4173 ifp->if_flags |= IFF_OACTIVE;
4174 break;
4175 }
4176 }
4177 #endif
4178
4179 /*
4180 * Pack the data into the transmit ring. If we
4181 * don't have room, set the OACTIVE flag and wait
4182 * for the NIC to drain the ring.
4183 */
4184 if (bge_encap(sc, m_head, &prodidx)) {
4185 ifp->if_flags |= IFF_OACTIVE;
4186 break;
4187 }
4188
4189 /* now we are committed to transmit the packet */
4190 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4191 pkts++;
4192
4193 /*
4194 * If there's a BPF listener, bounce a copy of this frame
4195 * to him.
4196 */
4197 if (ifp->if_bpf)
4198 bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
4199 }
4200 if (pkts == 0)
4201 return;
4202
4203 /* Transmit */
4204 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4205 /* 5700 b2 errata */
4206 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4207 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4208
4209 sc->bge_tx_prodidx = prodidx;
4210
4211 /*
4212 * Set a timeout in case the chip goes out to lunch.
4213 */
4214 ifp->if_timer = 5;
4215 }
4216
4217 static int
4218 bge_init(struct ifnet *ifp)
4219 {
4220 struct bge_softc *sc = ifp->if_softc;
4221 const uint16_t *m;
4222 int s, error = 0;
4223
4224 s = splnet();
4225
4226 ifp = &sc->ethercom.ec_if;
4227
4228 /* Cancel pending I/O and flush buffers. */
4229 bge_stop(ifp, 0);
4230
4231 bge_stop_fw(sc);
4232 bge_sig_pre_reset(sc, BGE_RESET_START);
4233 bge_reset(sc);
4234 bge_sig_legacy(sc, BGE_RESET_START);
4235 bge_sig_post_reset(sc, BGE_RESET_START);
4236
4237 bge_chipinit(sc);
4238
4239 /*
4240 * Init the various state machines, ring
4241 * control blocks and firmware.
4242 */
4243 error = bge_blockinit(sc);
4244 if (error != 0) {
4245 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4246 error);
4247 splx(s);
4248 return error;
4249 }
4250
4251 ifp = &sc->ethercom.ec_if;
4252
4253 /* Specify MTU. */
4254 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4255 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4256
4257 /* Load our MAC address. */
4258 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4259 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4260 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4261
4262 /* Enable or disable promiscuous mode as needed. */
4263 if (ifp->if_flags & IFF_PROMISC) {
4264 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4265 } else {
4266 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4267 }
4268
4269 /* Program multicast filter. */
4270 bge_setmulti(sc);
4271
4272 /* Init RX ring. */
4273 bge_init_rx_ring_std(sc);
4274
4275 /*
4276 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4277 * memory to insure that the chip has in fact read the first
4278 * entry of the ring.
4279 */
4280 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4281 uint32_t v, i;
4282 for (i = 0; i < 10; i++) {
4283 DELAY(20);
4284 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4285 if (v == (MCLBYTES - ETHER_ALIGN))
4286 break;
4287 }
4288 if (i == 10)
4289 aprint_error_dev(sc->bge_dev,
4290 "5705 A0 chip failed to load RX ring\n");
4291 }
4292
4293 /* Init jumbo RX ring. */
4294 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4295 bge_init_rx_ring_jumbo(sc);
4296
4297 /* Init our RX return ring index */
4298 sc->bge_rx_saved_considx = 0;
4299
4300 /* Init TX ring. */
4301 bge_init_tx_ring(sc);
4302
4303 /* Turn on transmitter */
4304 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4305
4306 /* Turn on receiver */
4307 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4308
4309 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4310
4311 /* Tell firmware we're alive. */
4312 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4313
4314 /* Enable host interrupts. */
4315 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4316 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4317 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4318
4319 if ((error = bge_ifmedia_upd(ifp)) != 0)
4320 goto out;
4321
4322 ifp->if_flags |= IFF_RUNNING;
4323 ifp->if_flags &= ~IFF_OACTIVE;
4324
4325 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4326
4327 out:
4328 splx(s);
4329
4330 return error;
4331 }
4332
4333 /*
4334 * Set media options.
4335 */
4336 static int
4337 bge_ifmedia_upd(struct ifnet *ifp)
4338 {
4339 struct bge_softc *sc = ifp->if_softc;
4340 struct mii_data *mii = &sc->bge_mii;
4341 struct ifmedia *ifm = &sc->bge_ifmedia;
4342 int rc;
4343
4344 /* If this is a 1000baseX NIC, enable the TBI port. */
4345 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4346 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4347 return EINVAL;
4348 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4349 case IFM_AUTO:
4350 /*
4351 * The BCM5704 ASIC appears to have a special
4352 * mechanism for programming the autoneg
4353 * advertisement registers in TBI mode.
4354 */
4355 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4356 uint32_t sgdig;
4357 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4358 if (sgdig & BGE_SGDIGSTS_DONE) {
4359 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4360 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4361 sgdig |= BGE_SGDIGCFG_AUTO |
4362 BGE_SGDIGCFG_PAUSE_CAP |
4363 BGE_SGDIGCFG_ASYM_PAUSE;
4364 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4365 sgdig | BGE_SGDIGCFG_SEND);
4366 DELAY(5);
4367 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4368 }
4369 }
4370 break;
4371 case IFM_1000_SX:
4372 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4373 BGE_CLRBIT(sc, BGE_MAC_MODE,
4374 BGE_MACMODE_HALF_DUPLEX);
4375 } else {
4376 BGE_SETBIT(sc, BGE_MAC_MODE,
4377 BGE_MACMODE_HALF_DUPLEX);
4378 }
4379 break;
4380 default:
4381 return EINVAL;
4382 }
4383 /* XXX 802.3x flow control for 1000BASE-SX */
4384 return 0;
4385 }
4386
4387 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4388 if ((rc = mii_mediachg(mii)) == ENXIO)
4389 return 0;
4390
4391 /*
4392 * Force an interrupt so that we will call bge_link_upd
4393 * if needed and clear any pending link state attention.
4394 * Without this we are not getting any further interrupts
4395 * for link state changes and thus will not UP the link and
4396 * not be able to send in bge_start. The only way to get
4397 * things working was to receive a packet and get a RX intr.
4398 */
4399 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4400 sc->bge_flags & BGE_IS_5788)
4401 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4402 else
4403 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4404
4405 return rc;
4406 }
4407
4408 /*
4409 * Report current media status.
4410 */
4411 static void
4412 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4413 {
4414 struct bge_softc *sc = ifp->if_softc;
4415 struct mii_data *mii = &sc->bge_mii;
4416
4417 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4418 ifmr->ifm_status = IFM_AVALID;
4419 ifmr->ifm_active = IFM_ETHER;
4420 if (CSR_READ_4(sc, BGE_MAC_STS) &
4421 BGE_MACSTAT_TBI_PCS_SYNCHED)
4422 ifmr->ifm_status |= IFM_ACTIVE;
4423 ifmr->ifm_active |= IFM_1000_SX;
4424 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4425 ifmr->ifm_active |= IFM_HDX;
4426 else
4427 ifmr->ifm_active |= IFM_FDX;
4428 return;
4429 }
4430
4431 mii_pollstat(mii);
4432 ifmr->ifm_status = mii->mii_media_status;
4433 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4434 sc->bge_flowflags;
4435 }
4436
4437 static int
4438 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4439 {
4440 struct bge_softc *sc = ifp->if_softc;
4441 struct ifreq *ifr = (struct ifreq *) data;
4442 int s, error = 0;
4443 struct mii_data *mii;
4444
4445 s = splnet();
4446
4447 switch (command) {
4448 case SIOCSIFFLAGS:
4449 if ((error = ifioctl_common(ifp, command, data)) != 0)
4450 break;
4451 if (ifp->if_flags & IFF_UP) {
4452 /*
4453 * If only the state of the PROMISC flag changed,
4454 * then just use the 'set promisc mode' command
4455 * instead of reinitializing the entire NIC. Doing
4456 * a full re-init means reloading the firmware and
4457 * waiting for it to start up, which may take a
4458 * second or two.
4459 */
4460 if (ifp->if_flags & IFF_RUNNING &&
4461 ifp->if_flags & IFF_PROMISC &&
4462 !(sc->bge_if_flags & IFF_PROMISC)) {
4463 BGE_SETBIT(sc, BGE_RX_MODE,
4464 BGE_RXMODE_RX_PROMISC);
4465 } else if (ifp->if_flags & IFF_RUNNING &&
4466 !(ifp->if_flags & IFF_PROMISC) &&
4467 sc->bge_if_flags & IFF_PROMISC) {
4468 BGE_CLRBIT(sc, BGE_RX_MODE,
4469 BGE_RXMODE_RX_PROMISC);
4470 } else if (!(sc->bge_if_flags & IFF_UP))
4471 bge_init(ifp);
4472 } else {
4473 if (ifp->if_flags & IFF_RUNNING)
4474 bge_stop(ifp, 1);
4475 }
4476 sc->bge_if_flags = ifp->if_flags;
4477 error = 0;
4478 break;
4479 case SIOCSIFMEDIA:
4480 /* XXX Flow control is not supported for 1000BASE-SX */
4481 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4482 ifr->ifr_media &= ~IFM_ETH_FMASK;
4483 sc->bge_flowflags = 0;
4484 }
4485
4486 /* Flow control requires full-duplex mode. */
4487 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4488 (ifr->ifr_media & IFM_FDX) == 0) {
4489 ifr->ifr_media &= ~IFM_ETH_FMASK;
4490 }
4491 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4492 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4493 /* We can do both TXPAUSE and RXPAUSE. */
4494 ifr->ifr_media |=
4495 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4496 }
4497 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4498 }
4499 /* FALLTHROUGH */
4500 case SIOCGIFMEDIA:
4501 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4502 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4503 command);
4504 } else {
4505 mii = &sc->bge_mii;
4506 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4507 command);
4508 }
4509 break;
4510 default:
4511 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4512 break;
4513
4514 error = 0;
4515
4516 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4517 ;
4518 else if (ifp->if_flags & IFF_RUNNING)
4519 bge_setmulti(sc);
4520 break;
4521 }
4522
4523 splx(s);
4524
4525 return error;
4526 }
4527
4528 static void
4529 bge_watchdog(struct ifnet *ifp)
4530 {
4531 struct bge_softc *sc;
4532
4533 sc = ifp->if_softc;
4534
4535 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4536
4537 ifp->if_flags &= ~IFF_RUNNING;
4538 bge_init(ifp);
4539
4540 ifp->if_oerrors++;
4541 }
4542
4543 static void
4544 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4545 {
4546 int i;
4547
4548 BGE_CLRBIT(sc, reg, bit);
4549
4550 for (i = 0; i < BGE_TIMEOUT; i++) {
4551 if ((CSR_READ_4(sc, reg) & bit) == 0)
4552 return;
4553 delay(100);
4554 if (sc->bge_flags & BGE_PCIE)
4555 DELAY(1000);
4556 }
4557
4558 /*
4559 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4560 * on some environment (and once after boot?)
4561 */
4562 if (reg != BGE_SRS_MODE)
4563 aprint_error_dev(sc->bge_dev,
4564 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4565 (u_long)reg, bit);
4566 }
4567
4568 /*
4569 * Stop the adapter and free any mbufs allocated to the
4570 * RX and TX lists.
4571 */
4572 static void
4573 bge_stop(struct ifnet *ifp, int disable)
4574 {
4575 struct bge_softc *sc = ifp->if_softc;
4576
4577 callout_stop(&sc->bge_timeout);
4578
4579 /*
4580 * Tell firmware we're shutting down.
4581 */
4582 bge_stop_fw(sc);
4583 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4584
4585 /* Disable host interrupts. */
4586 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4587 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4588
4589 /*
4590 * Disable all of the receiver blocks
4591 */
4592 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4593 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4594 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4595 if (BGE_IS_5700_FAMILY(sc))
4596 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4597 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4598 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4599 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4600
4601 /*
4602 * Disable all of the transmit blocks
4603 */
4604 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4605 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4606 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4607 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4608 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4609 if (BGE_IS_5700_FAMILY(sc))
4610 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4611 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4612
4613 /*
4614 * Shut down all of the memory managers and related
4615 * state machines.
4616 */
4617 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4618 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4619 if (BGE_IS_5700_FAMILY(sc))
4620 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4621
4622 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4623 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4624
4625 if (BGE_IS_5700_FAMILY(sc)) {
4626 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4627 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4628 }
4629
4630 bge_reset(sc);
4631 bge_sig_legacy(sc, BGE_RESET_STOP);
4632 bge_sig_post_reset(sc, BGE_RESET_STOP);
4633
4634 /*
4635 * Keep the ASF firmware running if up.
4636 */
4637 if (sc->bge_asf_mode & ASF_STACKUP)
4638 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4639 else
4640 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4641
4642 /* Free the RX lists. */
4643 bge_free_rx_ring_std(sc);
4644
4645 /* Free jumbo RX list. */
4646 if (BGE_IS_JUMBO_CAPABLE(sc))
4647 bge_free_rx_ring_jumbo(sc);
4648
4649 /* Free TX buffers. */
4650 bge_free_tx_ring(sc);
4651
4652 /*
4653 * Isolate/power down the PHY.
4654 */
4655 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4656 mii_down(&sc->bge_mii);
4657
4658 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4659
4660 /* Clear MAC's link state (PHY may still have link UP). */
4661 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4662
4663 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4664 }
4665
4666 static void
4667 bge_link_upd(struct bge_softc *sc)
4668 {
4669 struct ifnet *ifp = &sc->ethercom.ec_if;
4670 struct mii_data *mii = &sc->bge_mii;
4671 uint32_t status;
4672 int link;
4673
4674 /* Clear 'pending link event' flag */
4675 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4676
4677 /*
4678 * Process link state changes.
4679 * Grrr. The link status word in the status block does
4680 * not work correctly on the BCM5700 rev AX and BX chips,
4681 * according to all available information. Hence, we have
4682 * to enable MII interrupts in order to properly obtain
4683 * async link changes. Unfortunately, this also means that
4684 * we have to read the MAC status register to detect link
4685 * changes, thereby adding an additional register access to
4686 * the interrupt handler.
4687 */
4688
4689 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4690 status = CSR_READ_4(sc, BGE_MAC_STS);
4691 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4692 mii_pollstat(mii);
4693
4694 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4695 mii->mii_media_status & IFM_ACTIVE &&
4696 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4697 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4698 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4699 (!(mii->mii_media_status & IFM_ACTIVE) ||
4700 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4701 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4702
4703 /* Clear the interrupt */
4704 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4705 BGE_EVTENB_MI_INTERRUPT);
4706 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4707 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4708 BRGPHY_INTRS);
4709 }
4710 return;
4711 }
4712
4713 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4714 status = CSR_READ_4(sc, BGE_MAC_STS);
4715 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4716 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4717 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4718 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4719 BGE_CLRBIT(sc, BGE_MAC_MODE,
4720 BGE_MACMODE_TBI_SEND_CFGS);
4721 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4722 if_link_state_change(ifp, LINK_STATE_UP);
4723 }
4724 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4725 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4726 if_link_state_change(ifp, LINK_STATE_DOWN);
4727 }
4728 /*
4729 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4730 * This should not happen since mii callouts are locked now, but
4731 * we keep this check for debug.
4732 */
4733 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4734 /*
4735 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4736 * bit in status word always set. Workaround this bug by
4737 * reading PHY link status directly.
4738 */
4739 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4740 BGE_STS_LINK : 0;
4741
4742 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4743 mii_pollstat(mii);
4744
4745 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4746 mii->mii_media_status & IFM_ACTIVE &&
4747 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4748 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4749 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4750 (!(mii->mii_media_status & IFM_ACTIVE) ||
4751 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4752 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4753 }
4754 }
4755
4756 /* Clear the attention */
4757 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4758 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4759 BGE_MACSTAT_LINK_CHANGED);
4760 }
4761
4762 static int
4763 sysctl_bge_verify(SYSCTLFN_ARGS)
4764 {
4765 int error, t;
4766 struct sysctlnode node;
4767
4768 node = *rnode;
4769 t = *(int*)rnode->sysctl_data;
4770 node.sysctl_data = &t;
4771 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4772 if (error || newp == NULL)
4773 return error;
4774
4775 #if 0
4776 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4777 node.sysctl_num, rnode->sysctl_num));
4778 #endif
4779
4780 if (node.sysctl_num == bge_rxthresh_nodenum) {
4781 if (t < 0 || t >= NBGE_RX_THRESH)
4782 return EINVAL;
4783 bge_update_all_threshes(t);
4784 } else
4785 return EINVAL;
4786
4787 *(int*)rnode->sysctl_data = t;
4788
4789 return 0;
4790 }
4791
4792 /*
4793 * Set up sysctl(3) MIB, hw.bge.*.
4794 *
4795 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4796 */
4797 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4798 {
4799 int rc, bge_root_num;
4800 const struct sysctlnode *node;
4801
4802 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4803 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4804 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4805 goto err;
4806 }
4807
4808 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4809 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4810 SYSCTL_DESCR("BGE interface controls"),
4811 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4812 goto err;
4813 }
4814
4815 bge_root_num = node->sysctl_num;
4816
4817 /* BGE Rx interrupt mitigation level */
4818 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4819 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4820 CTLTYPE_INT, "rx_lvl",
4821 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4822 sysctl_bge_verify, 0,
4823 &bge_rx_thresh_lvl,
4824 0, CTL_HW, bge_root_num, CTL_CREATE,
4825 CTL_EOL)) != 0) {
4826 goto err;
4827 }
4828
4829 bge_rxthresh_nodenum = node->sysctl_num;
4830
4831 return;
4832
4833 err:
4834 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4835 }
4836
4837 #ifdef BGE_DEBUG
4838 void
4839 bge_debug_info(struct bge_softc *sc)
4840 {
4841
4842 printf("Hardware Flags:\n");
4843 if (BGE_IS_5755_PLUS(sc))
4844 printf(" - 5755 Plus\n");
4845 if (BGE_IS_5750_OR_BEYOND(sc))
4846 printf(" - 5750 Plus\n");
4847 if (BGE_IS_5705_PLUS(sc))
4848 printf(" - 5705 Plus\n");
4849 if (BGE_IS_5714_FAMILY(sc))
4850 printf(" - 5714 Family\n");
4851 if (BGE_IS_5700_FAMILY(sc))
4852 printf(" - 5700 Family\n");
4853 if (sc->bge_flags & BGE_IS_5788)
4854 printf(" - 5788\n");
4855 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4856 printf(" - Supports Jumbo Frames\n");
4857 if (sc->bge_flags & BGE_NO_EEPROM)
4858 printf(" - No EEPROM\n");
4859 if (sc->bge_flags & BGE_PCIX)
4860 printf(" - PCI-X Bus\n");
4861 if (sc->bge_flags & BGE_PCIE)
4862 printf(" - PCI Express Bus\n");
4863 if (sc->bge_flags & BGE_NO_3LED)
4864 printf(" - No 3 LEDs\n");
4865 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4866 printf(" - RX Alignment Bug\n");
4867 if (sc->bge_flags & BGE_TSO)
4868 printf(" - TSO\n");
4869 }
4870 #endif /* BGE_DEBUG */
4871
4872 static int
4873 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4874 {
4875 prop_dictionary_t dict;
4876 prop_data_t ea;
4877
4878 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4879 return 1;
4880
4881 dict = device_properties(sc->bge_dev);
4882 ea = prop_dictionary_get(dict, "mac-address");
4883 if (ea != NULL) {
4884 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4885 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4886 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4887 return 0;
4888 }
4889
4890 return 1;
4891 }
4892
4893 static int
4894 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4895 {
4896 uint32_t mac_addr;
4897
4898 mac_addr = bge_readmem_ind(sc, 0x0c14);
4899 if ((mac_addr >> 16) == 0x484b) {
4900 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4901 ether_addr[1] = (uint8_t)mac_addr;
4902 mac_addr = bge_readmem_ind(sc, 0x0c18);
4903 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4904 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4905 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4906 ether_addr[5] = (uint8_t)mac_addr;
4907 return 0;
4908 }
4909 return 1;
4910 }
4911
4912 static int
4913 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4914 {
4915 int mac_offset = BGE_EE_MAC_OFFSET;
4916
4917 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4918 mac_offset = BGE_EE_MAC_OFFSET_5906;
4919
4920 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4921 ETHER_ADDR_LEN));
4922 }
4923
4924 static int
4925 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4926 {
4927
4928 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4929 return 1;
4930
4931 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4932 ETHER_ADDR_LEN));
4933 }
4934
4935 static int
4936 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4937 {
4938 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4939 /* NOTE: Order is critical */
4940 bge_get_eaddr_fw,
4941 bge_get_eaddr_mem,
4942 bge_get_eaddr_nvram,
4943 bge_get_eaddr_eeprom,
4944 NULL
4945 };
4946 const bge_eaddr_fcn_t *func;
4947
4948 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4949 if ((*func)(sc, eaddr) == 0)
4950 break;
4951 }
4952 return (*func == NULL ? ENXIO : 0);
4953 }
4954