Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.177
      1 /*	$NetBSD: if_bge.c,v 1.177 2010/01/28 03:09:13 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.177 2010/01/28 03:09:13 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/in_systm.h>
    110 #include <netinet/in_var.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 /* Headers for TCP  Segmentation Offload (TSO) */
    115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117 #include <netinet/ip.h>			/* for struct ip */
    118 #include <netinet/tcp.h>		/* for struct tcphdr */
    119 
    120 
    121 #include <net/bpf.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/mii/mii.h>
    128 #include <dev/mii/miivar.h>
    129 #include <dev/mii/miidevs.h>
    130 #include <dev/mii/brgphyreg.h>
    131 
    132 #include <dev/pci/if_bgereg.h>
    133 #include <dev/pci/if_bgevar.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 #include <prop/proplib.h>
    137 
    138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    139 
    140 
    141 /*
    142  * Tunable thresholds for rx-side bge interrupt mitigation.
    143  */
    144 
    145 /*
    146  * The pairs of values below were obtained from empirical measurement
    147  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    148  * interrupt for every N packets received, where N is, approximately,
    149  * the second value (rx_max_bds) in each pair.  The values are chosen
    150  * such that moving from one pair to the succeeding pair was observed
    151  * to roughly halve interrupt rate under sustained input packet load.
    152  * The values were empirically chosen to avoid overflowing internal
    153  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    154  * results in internal wrapping and higher interrupt rates.
    155  * The limit of 46 frames was chosen to match NFS workloads.
    156  *
    157  * These values also work well on bcm5701, bcm5704C, and (less
    158  * tested) bcm5703.  On other chipsets, (including the Altima chip
    159  * family), the larger values may overflow internal chip limits,
    160  * leading to increasing interrupt rates rather than lower interrupt
    161  * rates.
    162  *
    163  * Applications using heavy interrupt mitigation (interrupting every
    164  * 32 or 46 frames) in both directions may need to increase the TCP
    165  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    166  * full link bandwidth, due to ACKs and window updates lingering
    167  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    168  */
    169 static const struct bge_load_rx_thresh {
    170 	int rx_ticks;
    171 	int rx_max_bds; }
    172 bge_rx_threshes[] = {
    173 	{ 32,   2 },
    174 	{ 50,   4 },
    175 	{ 100,  8 },
    176 	{ 192, 16 },
    177 	{ 416, 32 },
    178 	{ 598, 46 }
    179 };
    180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    181 
    182 /* XXX patchable; should be sysctl'able */
    183 static int bge_auto_thresh = 1;
    184 static int bge_rx_thresh_lvl;
    185 
    186 static int bge_rxthresh_nodenum;
    187 
    188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    189 
    190 static int bge_probe(device_t, cfdata_t, void *);
    191 static void bge_attach(device_t, device_t, void *);
    192 static void bge_release_resources(struct bge_softc *);
    193 
    194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    199 
    200 static void bge_txeof(struct bge_softc *);
    201 static void bge_rxeof(struct bge_softc *);
    202 
    203 static void bge_asf_driver_up (struct bge_softc *);
    204 static void bge_tick(void *);
    205 static void bge_stats_update(struct bge_softc *);
    206 static void bge_stats_update_regs(struct bge_softc *);
    207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    208 
    209 static int bge_intr(void *);
    210 static void bge_start(struct ifnet *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_setpowerstate(struct bge_softc *, int);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(device_t);
    255 
    256 #define	BGE_RESET_START 1
    257 #define	BGE_RESET_STOP  2
    258 static void bge_sig_post_reset(struct bge_softc *, int);
    259 static void bge_sig_legacy(struct bge_softc *, int);
    260 static void bge_sig_pre_reset(struct bge_softc *, int);
    261 static void bge_stop_fw(struct bge_softc *);
    262 static int bge_reset(struct bge_softc *);
    263 static void bge_link_upd(struct bge_softc *);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC9100,
    317 	  "Altima AC9100 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5700,
    321 	  "Broadcom BCM5700 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5701,
    325 	  "Broadcom BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5702,
    329 	  "Broadcom BCM5702 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    333 	  "Broadcom BCM5702X Gigabit Ethernet" },
    334 	{ PCI_VENDOR_BROADCOM,
    335 	  PCI_PRODUCT_BROADCOM_BCM5703,
    336 	  "Broadcom BCM5703 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    340 	  "Broadcom BCM5703X Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346    	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    349 	  },
    350    	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    353 	  },
    354    	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5705,
    356 	  "Broadcom BCM5705 Gigabit Ethernet",
    357 	  },
    358    	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    360 	  "Broadcom BCM5705F Gigabit Ethernet",
    361 	  },
    362    	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    364 	  "Broadcom BCM5705K Gigabit Ethernet",
    365 	  },
    366    	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    368 	  "Broadcom BCM5705M Gigabit Ethernet",
    369 	  },
    370    	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    372 	  "Broadcom BCM5705M Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5714,
    376 	  "Broadcom BCM5714 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    380 	  "Broadcom BCM5714S Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5715,
    384 	  "Broadcom BCM5715 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    388 	  "Broadcom BCM5715S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5717,
    392 	  "Broadcom BCM5717 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5718,
    396 	  "Broadcom BCM5718 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5720,
    400 	  "Broadcom BCM5720 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5721,
    404 	  "Broadcom BCM5721 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5722,
    408 	  "Broadcom BCM5722 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5723,
    412 	  "Broadcom BCM5723 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5724,
    416 	  "Broadcom BCM5724 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5750,
    420 	  "Broadcom BCM5750 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    424 	  "Broadcom BCM5750M Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5751,
    428 	  "Broadcom BCM5751 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    432 	  "Broadcom BCM5751F Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    436 	  "Broadcom BCM5751M Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5752,
    440 	  "Broadcom BCM5752 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    444 	  "Broadcom BCM5752M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5753,
    448 	  "Broadcom BCM5753 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    452 	  "Broadcom BCM5753F Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    456 	  "Broadcom BCM5753M Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5754,
    460 	  "Broadcom BCM5754 Gigabit Ethernet",
    461 	},
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    464 	  "Broadcom BCM5754M Gigabit Ethernet",
    465 	},
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5755,
    468 	  "Broadcom BCM5755 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    472 	  "Broadcom BCM5755M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5756,
    476 	  "Broadcom BCM5756 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5761,
    480 	  "Broadcom BCM5761 Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    484 	  "Broadcom BCM5761E Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    488 	  "Broadcom BCM5761S Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    492 	  "Broadcom BCM5761SE Gigabit Ethernet",
    493 	},
    494    	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5764,
    496 	  "Broadcom BCM5764 Gigabit Ethernet",
    497 	  },
    498    	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5780,
    500 	  "Broadcom BCM5780 Gigabit Ethernet",
    501 	  },
    502    	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    504 	  "Broadcom BCM5780S Gigabit Ethernet",
    505 	  },
    506    	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5781,
    508 	  "Broadcom BCM5781 Gigabit Ethernet",
    509 	  },
    510    	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5782,
    512 	  "Broadcom BCM5782 Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    516 	  "BCM5784M NetLink 1000baseT Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5786,
    520 	  "Broadcom BCM5786 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5787,
    524 	  "Broadcom BCM5787 Gigabit Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    528 	  "Broadcom BCM5787M Gigabit Ethernet",
    529 	},
    530    	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5788,
    532 	  "Broadcom BCM5788 Gigabit Ethernet",
    533 	  },
    534    	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5789,
    536 	  "Broadcom BCM5789 Gigabit Ethernet",
    537 	  },
    538    	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5901,
    540 	  "Broadcom BCM5901 Fast Ethernet",
    541 	  },
    542    	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    544 	  "Broadcom BCM5901A2 Fast Ethernet",
    545 	  },
    546    	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    548 	  "Broadcom BCM5903M Fast Ethernet",
    549 	  },
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5906,
    552 	  "Broadcom BCM5906 Fast Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    556 	  "Broadcom BCM5906M Fast Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM57760,
    560 	  "Broadcom BCM57760 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM57761,
    564 	  "Broadcom BCM57761 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM57765,
    568 	  "Broadcom BCM57765 Fast Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM57780,
    572 	  "Broadcom BCM57780 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM57781,
    576 	  "Broadcom BCM57781 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57785,
    580 	  "Broadcom BCM57785 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57788,
    584 	  "Broadcom BCM57788 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57790,
    588 	  "Broadcom BCM57790 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57791,
    592 	  "Broadcom BCM57791 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57795,
    596 	  "Broadcom BCM57795 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_SCHNEIDERKOCH,
    599 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    600 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_3COM,
    603 	  PCI_PRODUCT_3COM_3C996,
    604 	  "3Com 3c996 Gigabit Ethernet",
    605 	  },
    606 	{ 0,
    607 	  0,
    608 	  NULL },
    609 };
    610 
    611 /*
    612  * XXX: how to handle variants based on 5750 and derivatives:
    613  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    614  * in general behave like a 5705, except with additional quirks.
    615  * This driver's current handling of the 5721 is wrong;
    616  * how we map ASIC revision to "quirks" needs more thought.
    617  * (defined here until the thought is done).
    618  */
    619 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    620 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    621 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    622 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    623 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    624 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    625 
    626 static const struct bge_revision {
    627 	uint32_t		br_chipid;
    628 	const char		*br_name;
    629 } bge_revisions[] = {
    630 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    631 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    632 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    633 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    634 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    635 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    636 	/* This is treated like a BCM5700 Bx */
    637 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    638 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    639 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    640 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    641 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    642 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    643 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    644 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    645 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    646 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    647 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    648 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    649 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    650 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    651 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    652 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    653 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    654 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    655 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    656 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    657 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    658 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    659 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    660 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    661 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    662 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    663 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    664 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    665 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    666 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    667 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    668 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    669 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    670 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    671 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    672 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    673 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    674 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    675 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    676 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    677 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    678 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    679 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    680 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    681 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    682 	/* 5754 and 5787 share the same ASIC ID */
    683 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    684 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    685 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    686 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    687 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    688 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    689 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    690 
    691 	{ 0, NULL }
    692 };
    693 
    694 /*
    695  * Some defaults for major revisions, so that newer steppings
    696  * that we don't know about have a shot at working.
    697  */
    698 static const struct bge_revision bge_majorrevs[] = {
    699 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    700 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    701 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    702 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    703 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    704 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    705 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    706 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    707 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    708 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    709 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    710 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    711 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    712 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    713 	/* 5754 and 5787 share the same ASIC ID */
    714 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    715 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    716 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    717 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    718 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    719 
    720 	{ 0, NULL }
    721 };
    722 
    723 static int bge_allow_asf = 1;
    724 
    725 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    726     bge_probe, bge_attach, NULL, NULL);
    727 
    728 static uint32_t
    729 bge_readmem_ind(struct bge_softc *sc, int off)
    730 {
    731 	pcireg_t val;
    732 
    733 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    734 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    735 	return val;
    736 }
    737 
    738 static void
    739 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    740 {
    741 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    742 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    743 }
    744 
    745 /*
    746  * PCI Express only
    747  */
    748 static void
    749 bge_set_max_readrq(struct bge_softc *sc)
    750 {
    751 	device_t dev;
    752 	pcireg_t val;
    753 
    754 	dev = sc->bge_dev;
    755 
    756 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_expcap
    757 	    + PCI_PCIE_DCSR);
    758 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    759 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    760 			printf("adjust device control 0x%04x ",
    761 			    val);
    762 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    763 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    764 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_expcap
    765 		    + PCI_PCIE_DCSR, val);
    766 			printf("-> 0x%04x\n", val);
    767 	}
    768 }
    769 
    770 #ifdef notdef
    771 static uint32_t
    772 bge_readreg_ind(struct bge_softc *sc, int off)
    773 {
    774 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    775 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    776 }
    777 #endif
    778 
    779 static void
    780 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    781 {
    782 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    783 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    784 }
    785 
    786 static void
    787 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    788 {
    789 	CSR_WRITE_4(sc, off, val);
    790 }
    791 
    792 static void
    793 bge_writembx(struct bge_softc *sc, int off, int val)
    794 {
    795 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    796 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    797 
    798 	CSR_WRITE_4(sc, off, val);
    799 }
    800 
    801 static uint8_t
    802 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    803 {
    804 	uint32_t access, byte = 0;
    805 	int i;
    806 
    807 	/* Lock. */
    808 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    809 	for (i = 0; i < 8000; i++) {
    810 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    811 			break;
    812 		DELAY(20);
    813 	}
    814 	if (i == 8000)
    815 		return 1;
    816 
    817 	/* Enable access. */
    818 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    819 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    820 
    821 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    822 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    823 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    824 		DELAY(10);
    825 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    826 			DELAY(10);
    827 			break;
    828 		}
    829 	}
    830 
    831 	if (i == BGE_TIMEOUT * 10) {
    832 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    833 		return 1;
    834 	}
    835 
    836 	/* Get result. */
    837 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    838 
    839 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    840 
    841 	/* Disable access. */
    842 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    843 
    844 	/* Unlock. */
    845 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    846 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    847 
    848 	return 0;
    849 }
    850 
    851 /*
    852  * Read a sequence of bytes from NVRAM.
    853  */
    854 static int
    855 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    856 {
    857 	int err = 0, i;
    858 	uint8_t byte = 0;
    859 
    860 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    861 		return 1;
    862 
    863 	for (i = 0; i < cnt; i++) {
    864 		err = bge_nvram_getbyte(sc, off + i, &byte);
    865 		if (err)
    866 			break;
    867 		*(dest + i) = byte;
    868 	}
    869 
    870 	return (err ? 1 : 0);
    871 }
    872 
    873 /*
    874  * Read a byte of data stored in the EEPROM at address 'addr.' The
    875  * BCM570x supports both the traditional bitbang interface and an
    876  * auto access interface for reading the EEPROM. We use the auto
    877  * access method.
    878  */
    879 static uint8_t
    880 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    881 {
    882 	int i;
    883 	uint32_t byte = 0;
    884 
    885 	/*
    886 	 * Enable use of auto EEPROM access so we can avoid
    887 	 * having to use the bitbang method.
    888 	 */
    889 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    890 
    891 	/* Reset the EEPROM, load the clock period. */
    892 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    893 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    894 	DELAY(20);
    895 
    896 	/* Issue the read EEPROM command. */
    897 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    898 
    899 	/* Wait for completion */
    900 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    901 		DELAY(10);
    902 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    903 			break;
    904 	}
    905 
    906 	if (i == BGE_TIMEOUT * 10) {
    907 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    908 		return 1;
    909 	}
    910 
    911 	/* Get result. */
    912 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    913 
    914 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    915 
    916 	return 0;
    917 }
    918 
    919 /*
    920  * Read a sequence of bytes from the EEPROM.
    921  */
    922 static int
    923 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    924 {
    925 	int err = 0, i;
    926 	uint8_t byte = 0;
    927 	char *dest = destv;
    928 
    929 	for (i = 0; i < cnt; i++) {
    930 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    931 		if (err)
    932 			break;
    933 		*(dest + i) = byte;
    934 	}
    935 
    936 	return (err ? 1 : 0);
    937 }
    938 
    939 static int
    940 bge_miibus_readreg(device_t dev, int phy, int reg)
    941 {
    942 	struct bge_softc *sc = device_private(dev);
    943 	uint32_t val;
    944 	uint32_t autopoll;
    945 	int i;
    946 
    947 	/*
    948 	 * Broadcom's own driver always assumes the internal
    949 	 * PHY is at GMII address 1. On some chips, the PHY responds
    950 	 * to accesses at all addresses, which could cause us to
    951 	 * bogusly attach the PHY 32 times at probe type. Always
    952 	 * restricting the lookup to address 1 is simpler than
    953 	 * trying to figure out which chips revisions should be
    954 	 * special-cased.
    955 	 */
    956 	if (phy != 1)
    957 		return 0;
    958 
    959 	/* Reading with autopolling on may trigger PCI errors */
    960 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    961 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    962 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    963 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    964 		DELAY(40);
    965 	}
    966 
    967 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    968 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    969 
    970 	for (i = 0; i < BGE_TIMEOUT; i++) {
    971 		val = CSR_READ_4(sc, BGE_MI_COMM);
    972 		if (!(val & BGE_MICOMM_BUSY))
    973 			break;
    974 		delay(10);
    975 	}
    976 
    977 	if (i == BGE_TIMEOUT) {
    978 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    979 		val = 0;
    980 		goto done;
    981 	}
    982 
    983 	val = CSR_READ_4(sc, BGE_MI_COMM);
    984 
    985 done:
    986 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    987 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    988 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    989 		DELAY(40);
    990 	}
    991 
    992 	if (val & BGE_MICOMM_READFAIL)
    993 		return 0;
    994 
    995 	return (val & 0xFFFF);
    996 }
    997 
    998 static void
    999 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1000 {
   1001 	struct bge_softc *sc = device_private(dev);
   1002 	uint32_t autopoll;
   1003 	int i;
   1004 
   1005 	if (phy!=1) {
   1006 		return;
   1007 	}
   1008 
   1009 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1010 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1011 		return;
   1012 	}
   1013 
   1014 	/* Reading with autopolling on may trigger PCI errors */
   1015 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1016 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1017 		delay(40);
   1018 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1019 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1020 		delay(10); /* 40 usec is supposed to be adequate */
   1021 	}
   1022 
   1023 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1024 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1025 
   1026 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1027 		delay(10);
   1028 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1029 			delay(5);
   1030 			CSR_READ_4(sc, BGE_MI_COMM);
   1031 			break;
   1032 		}
   1033 	}
   1034 
   1035 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1036 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1037 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1038 		delay(40);
   1039 	}
   1040 
   1041 	if (i == BGE_TIMEOUT)
   1042 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1043 }
   1044 
   1045 static void
   1046 bge_miibus_statchg(device_t dev)
   1047 {
   1048 	struct bge_softc *sc = device_private(dev);
   1049 	struct mii_data *mii = &sc->bge_mii;
   1050 
   1051 	/*
   1052 	 * Get flow control negotiation result.
   1053 	 */
   1054 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1055 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1056 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1057 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1058 	}
   1059 
   1060 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1061 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1062 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1063 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1064 	else
   1065 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1066 
   1067 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1068 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1069 	else
   1070 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1071 
   1072 	/*
   1073 	 * 802.3x flow control
   1074 	 */
   1075 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1076 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1077 	else
   1078 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1079 
   1080 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1081 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1082 	else
   1083 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1084 }
   1085 
   1086 /*
   1087  * Update rx threshold levels to values in a particular slot
   1088  * of the interrupt-mitigation table bge_rx_threshes.
   1089  */
   1090 static void
   1091 bge_set_thresh(struct ifnet *ifp, int lvl)
   1092 {
   1093 	struct bge_softc *sc = ifp->if_softc;
   1094 	int s;
   1095 
   1096 	/* For now, just save the new Rx-intr thresholds and record
   1097 	 * that a threshold update is pending.  Updating the hardware
   1098 	 * registers here (even at splhigh()) is observed to
   1099 	 * occasionaly cause glitches where Rx-interrupts are not
   1100 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1101 	 */
   1102 	s = splnet();
   1103 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1104 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1105 	sc->bge_pending_rxintr_change = 1;
   1106 	splx(s);
   1107 
   1108 	 return;
   1109 }
   1110 
   1111 
   1112 /*
   1113  * Update Rx thresholds of all bge devices
   1114  */
   1115 static void
   1116 bge_update_all_threshes(int lvl)
   1117 {
   1118 	struct ifnet *ifp;
   1119 	const char * const namebuf = "bge";
   1120 	int namelen;
   1121 
   1122 	if (lvl < 0)
   1123 		lvl = 0;
   1124 	else if (lvl >= NBGE_RX_THRESH)
   1125 		lvl = NBGE_RX_THRESH - 1;
   1126 
   1127 	namelen = strlen(namebuf);
   1128 	/*
   1129 	 * Now search all the interfaces for this name/number
   1130 	 */
   1131 	IFNET_FOREACH(ifp) {
   1132 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1133 		      continue;
   1134 		/* We got a match: update if doing auto-threshold-tuning */
   1135 		if (bge_auto_thresh)
   1136 			bge_set_thresh(ifp, lvl);
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * Handle events that have triggered interrupts.
   1142  */
   1143 static void
   1144 bge_handle_events(struct bge_softc *sc)
   1145 {
   1146 
   1147 	return;
   1148 }
   1149 
   1150 /*
   1151  * Memory management for jumbo frames.
   1152  */
   1153 
   1154 static int
   1155 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1156 {
   1157 	char *ptr, *kva;
   1158 	bus_dma_segment_t	seg;
   1159 	int		i, rseg, state, error;
   1160 	struct bge_jpool_entry   *entry;
   1161 
   1162 	state = error = 0;
   1163 
   1164 	/* Grab a big chunk o' storage. */
   1165 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1166 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1167 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1168 		return ENOBUFS;
   1169 	}
   1170 
   1171 	state = 1;
   1172 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1173 	    BUS_DMA_NOWAIT)) {
   1174 		aprint_error_dev(sc->bge_dev,
   1175 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1176 		error = ENOBUFS;
   1177 		goto out;
   1178 	}
   1179 
   1180 	state = 2;
   1181 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1182 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1183 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1184 		error = ENOBUFS;
   1185 		goto out;
   1186 	}
   1187 
   1188 	state = 3;
   1189 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1190 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1191 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1192 		error = ENOBUFS;
   1193 		goto out;
   1194 	}
   1195 
   1196 	state = 4;
   1197 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1198 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1199 
   1200 	SLIST_INIT(&sc->bge_jfree_listhead);
   1201 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1202 
   1203 	/*
   1204 	 * Now divide it up into 9K pieces and save the addresses
   1205 	 * in an array.
   1206 	 */
   1207 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1208 	for (i = 0; i < BGE_JSLOTS; i++) {
   1209 		sc->bge_cdata.bge_jslots[i] = ptr;
   1210 		ptr += BGE_JLEN;
   1211 		entry = malloc(sizeof(struct bge_jpool_entry),
   1212 		    M_DEVBUF, M_NOWAIT);
   1213 		if (entry == NULL) {
   1214 			aprint_error_dev(sc->bge_dev,
   1215 			    "no memory for jumbo buffer queue!\n");
   1216 			error = ENOBUFS;
   1217 			goto out;
   1218 		}
   1219 		entry->slot = i;
   1220 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1221 				 entry, jpool_entries);
   1222 	}
   1223 out:
   1224 	if (error != 0) {
   1225 		switch (state) {
   1226 		case 4:
   1227 			bus_dmamap_unload(sc->bge_dmatag,
   1228 			    sc->bge_cdata.bge_rx_jumbo_map);
   1229 		case 3:
   1230 			bus_dmamap_destroy(sc->bge_dmatag,
   1231 			    sc->bge_cdata.bge_rx_jumbo_map);
   1232 		case 2:
   1233 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1234 		case 1:
   1235 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1236 			break;
   1237 		default:
   1238 			break;
   1239 		}
   1240 	}
   1241 
   1242 	return error;
   1243 }
   1244 
   1245 /*
   1246  * Allocate a jumbo buffer.
   1247  */
   1248 static void *
   1249 bge_jalloc(struct bge_softc *sc)
   1250 {
   1251 	struct bge_jpool_entry   *entry;
   1252 
   1253 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1254 
   1255 	if (entry == NULL) {
   1256 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1257 		return NULL;
   1258 	}
   1259 
   1260 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1261 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1262 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1263 }
   1264 
   1265 /*
   1266  * Release a jumbo buffer.
   1267  */
   1268 static void
   1269 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1270 {
   1271 	struct bge_jpool_entry *entry;
   1272 	struct bge_softc *sc;
   1273 	int i, s;
   1274 
   1275 	/* Extract the softc struct pointer. */
   1276 	sc = (struct bge_softc *)arg;
   1277 
   1278 	if (sc == NULL)
   1279 		panic("bge_jfree: can't find softc pointer!");
   1280 
   1281 	/* calculate the slot this buffer belongs to */
   1282 
   1283 	i = ((char *)buf
   1284 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1285 
   1286 	if ((i < 0) || (i >= BGE_JSLOTS))
   1287 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1288 
   1289 	s = splvm();
   1290 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1291 	if (entry == NULL)
   1292 		panic("bge_jfree: buffer not in use!");
   1293 	entry->slot = i;
   1294 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1295 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1296 
   1297 	if (__predict_true(m != NULL))
   1298   		pool_cache_put(mb_cache, m);
   1299 	splx(s);
   1300 }
   1301 
   1302 
   1303 /*
   1304  * Intialize a standard receive ring descriptor.
   1305  */
   1306 static int
   1307 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
   1308 {
   1309 	struct mbuf		*m_new = NULL;
   1310 	struct bge_rx_bd	*r;
   1311 	int			error;
   1312 
   1313 	if (dmamap == NULL) {
   1314 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1315 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1316 		if (error != 0)
   1317 			return error;
   1318 	}
   1319 
   1320 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1321 
   1322 	if (m == NULL) {
   1323 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1324 		if (m_new == NULL)
   1325 			return ENOBUFS;
   1326 
   1327 		MCLGET(m_new, M_DONTWAIT);
   1328 		if (!(m_new->m_flags & M_EXT)) {
   1329 			m_freem(m_new);
   1330 			return ENOBUFS;
   1331 		}
   1332 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1333 
   1334 	} else {
   1335 		m_new = m;
   1336 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1337 		m_new->m_data = m_new->m_ext.ext_buf;
   1338 	}
   1339 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1340 	    m_adj(m_new, ETHER_ALIGN);
   1341 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1342 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1343 		return ENOBUFS;
   1344 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1345 	    BUS_DMASYNC_PREREAD);
   1346 
   1347 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1348 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1349 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1350 	r->bge_flags = BGE_RXBDFLAG_END;
   1351 	r->bge_len = m_new->m_len;
   1352 	r->bge_idx = i;
   1353 
   1354 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1355 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1356 		i * sizeof (struct bge_rx_bd),
   1357 	    sizeof (struct bge_rx_bd),
   1358 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1359 
   1360 	return 0;
   1361 }
   1362 
   1363 /*
   1364  * Initialize a jumbo receive ring descriptor. This allocates
   1365  * a jumbo buffer from the pool managed internally by the driver.
   1366  */
   1367 static int
   1368 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1369 {
   1370 	struct mbuf *m_new = NULL;
   1371 	struct bge_rx_bd *r;
   1372 	void *buf = NULL;
   1373 
   1374 	if (m == NULL) {
   1375 
   1376 		/* Allocate the mbuf. */
   1377 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1378 		if (m_new == NULL)
   1379 			return ENOBUFS;
   1380 
   1381 		/* Allocate the jumbo buffer */
   1382 		buf = bge_jalloc(sc);
   1383 		if (buf == NULL) {
   1384 			m_freem(m_new);
   1385 			aprint_error_dev(sc->bge_dev,
   1386 			    "jumbo allocation failed -- packet dropped!\n");
   1387 			return ENOBUFS;
   1388 		}
   1389 
   1390 		/* Attach the buffer to the mbuf. */
   1391 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1392 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1393 		    bge_jfree, sc);
   1394 		m_new->m_flags |= M_EXT_RW;
   1395 	} else {
   1396 		m_new = m;
   1397 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1398 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1399 	}
   1400 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1401 	    m_adj(m_new, ETHER_ALIGN);
   1402 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1403 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1404 	    BUS_DMASYNC_PREREAD);
   1405 	/* Set up the descriptor. */
   1406 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1407 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1408 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1409 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1410 	r->bge_len = m_new->m_len;
   1411 	r->bge_idx = i;
   1412 
   1413 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1414 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1415 		i * sizeof (struct bge_rx_bd),
   1416 	    sizeof (struct bge_rx_bd),
   1417 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1418 
   1419 	return 0;
   1420 }
   1421 
   1422 /*
   1423  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1424  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1425  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1426  * the NIC.
   1427  */
   1428 static int
   1429 bge_init_rx_ring_std(struct bge_softc *sc)
   1430 {
   1431 	int i;
   1432 
   1433 	if (sc->bge_flags & BGE_RXRING_VALID)
   1434 		return 0;
   1435 
   1436 	for (i = 0; i < BGE_SSLOTS; i++) {
   1437 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1438 			return ENOBUFS;
   1439 	}
   1440 
   1441 	sc->bge_std = i - 1;
   1442 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1443 
   1444 	sc->bge_flags |= BGE_RXRING_VALID;
   1445 
   1446 	return 0;
   1447 }
   1448 
   1449 static void
   1450 bge_free_rx_ring_std(struct bge_softc *sc)
   1451 {
   1452 	int i;
   1453 
   1454 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1455 		return;
   1456 
   1457 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1458 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1459 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1460 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1461 			bus_dmamap_destroy(sc->bge_dmatag,
   1462 			    sc->bge_cdata.bge_rx_std_map[i]);
   1463 		}
   1464 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1465 		    sizeof(struct bge_rx_bd));
   1466 	}
   1467 
   1468 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1469 }
   1470 
   1471 static int
   1472 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1473 {
   1474 	int i;
   1475 	volatile struct bge_rcb *rcb;
   1476 
   1477 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1478 		return 0;
   1479 
   1480 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1481 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1482 			return ENOBUFS;
   1483 	};
   1484 
   1485 	sc->bge_jumbo = i - 1;
   1486 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1487 
   1488 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1489 	rcb->bge_maxlen_flags = 0;
   1490 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1491 
   1492 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1493 
   1494 	return 0;
   1495 }
   1496 
   1497 static void
   1498 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1499 {
   1500 	int i;
   1501 
   1502 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1503 		return;
   1504 
   1505 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1506 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1507 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1508 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1509 		}
   1510 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1511 		    sizeof(struct bge_rx_bd));
   1512 	}
   1513 
   1514 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1515 }
   1516 
   1517 static void
   1518 bge_free_tx_ring(struct bge_softc *sc)
   1519 {
   1520 	int i, freed;
   1521 	struct txdmamap_pool_entry *dma;
   1522 
   1523 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1524 		return;
   1525 
   1526 	freed = 0;
   1527 
   1528 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1529 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1530 			freed++;
   1531 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1532 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1533 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1534 					    link);
   1535 			sc->txdma[i] = 0;
   1536 		}
   1537 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1538 		    sizeof(struct bge_tx_bd));
   1539 	}
   1540 
   1541 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1542 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1543 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1544 		free(dma, M_DEVBUF);
   1545 	}
   1546 
   1547 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1548 }
   1549 
   1550 static int
   1551 bge_init_tx_ring(struct bge_softc *sc)
   1552 {
   1553 	int i;
   1554 	bus_dmamap_t dmamap;
   1555 	struct txdmamap_pool_entry *dma;
   1556 
   1557 	if (sc->bge_flags & BGE_TXRING_VALID)
   1558 		return 0;
   1559 
   1560 	sc->bge_txcnt = 0;
   1561 	sc->bge_tx_saved_considx = 0;
   1562 
   1563 	/* Initialize transmit producer index for host-memory send ring. */
   1564 	sc->bge_tx_prodidx = 0;
   1565 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1566 	/* 5700 b2 errata */
   1567 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1568 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1569 
   1570 	/* NIC-memory send ring not used; initialize to zero. */
   1571 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1572 	/* 5700 b2 errata */
   1573 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1574 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1575 
   1576 	SLIST_INIT(&sc->txdma_list);
   1577 	for (i = 0; i < BGE_RSLOTS; i++) {
   1578 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1579 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1580 		    &dmamap))
   1581 			return ENOBUFS;
   1582 		if (dmamap == NULL)
   1583 			panic("dmamap NULL in bge_init_tx_ring");
   1584 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1585 		if (dma == NULL) {
   1586 			aprint_error_dev(sc->bge_dev,
   1587 			    "can't alloc txdmamap_pool_entry\n");
   1588 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1589 			return ENOMEM;
   1590 		}
   1591 		dma->dmamap = dmamap;
   1592 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1593 	}
   1594 
   1595 	sc->bge_flags |= BGE_TXRING_VALID;
   1596 
   1597 	return 0;
   1598 }
   1599 
   1600 static void
   1601 bge_setmulti(struct bge_softc *sc)
   1602 {
   1603 	struct ethercom		*ac = &sc->ethercom;
   1604 	struct ifnet		*ifp = &ac->ec_if;
   1605 	struct ether_multi	*enm;
   1606 	struct ether_multistep  step;
   1607 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1608 	uint32_t		h;
   1609 	int			i;
   1610 
   1611 	if (ifp->if_flags & IFF_PROMISC)
   1612 		goto allmulti;
   1613 
   1614 	/* Now program new ones. */
   1615 	ETHER_FIRST_MULTI(step, ac, enm);
   1616 	while (enm != NULL) {
   1617 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1618 			/*
   1619 			 * We must listen to a range of multicast addresses.
   1620 			 * For now, just accept all multicasts, rather than
   1621 			 * trying to set only those filter bits needed to match
   1622 			 * the range.  (At this time, the only use of address
   1623 			 * ranges is for IP multicast routing, for which the
   1624 			 * range is big enough to require all bits set.)
   1625 			 */
   1626 			goto allmulti;
   1627 		}
   1628 
   1629 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1630 
   1631 		/* Just want the 7 least-significant bits. */
   1632 		h &= 0x7f;
   1633 
   1634 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1635 		ETHER_NEXT_MULTI(step, enm);
   1636 	}
   1637 
   1638 	ifp->if_flags &= ~IFF_ALLMULTI;
   1639 	goto setit;
   1640 
   1641  allmulti:
   1642 	ifp->if_flags |= IFF_ALLMULTI;
   1643 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1644 
   1645  setit:
   1646 	for (i = 0; i < 4; i++)
   1647 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1648 }
   1649 
   1650 static void
   1651 bge_sig_pre_reset(sc, type)
   1652 	struct bge_softc *sc;
   1653 	int type;
   1654 {
   1655 	/*
   1656 	 * Some chips don't like this so only do this if ASF is enabled
   1657 	 */
   1658 	if (sc->bge_asf_mode)
   1659 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1660 
   1661 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1662 		switch (type) {
   1663 		case BGE_RESET_START:
   1664 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1665 			break;
   1666 		case BGE_RESET_STOP:
   1667 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1668 			break;
   1669 		}
   1670 	}
   1671 }
   1672 
   1673 static void
   1674 bge_sig_post_reset(sc, type)
   1675 	struct bge_softc *sc;
   1676 	int type;
   1677 {
   1678 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1679 		switch (type) {
   1680 		case BGE_RESET_START:
   1681 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1682 			/* START DONE */
   1683 			break;
   1684 		case BGE_RESET_STOP:
   1685 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1686 			break;
   1687 		}
   1688 	}
   1689 }
   1690 
   1691 static void
   1692 bge_sig_legacy(sc, type)
   1693 	struct bge_softc *sc;
   1694 	int type;
   1695 {
   1696 	if (sc->bge_asf_mode) {
   1697 		switch (type) {
   1698 		case BGE_RESET_START:
   1699 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1700 			break;
   1701 		case BGE_RESET_STOP:
   1702 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1703 			break;
   1704 		}
   1705 	}
   1706 }
   1707 
   1708 static void
   1709 bge_stop_fw(sc)
   1710 	struct bge_softc *sc;
   1711 {
   1712 	int i;
   1713 
   1714 	if (sc->bge_asf_mode) {
   1715 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1716 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1717 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1718 
   1719 		for (i = 0; i < 100; i++ ) {
   1720 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1721 				break;
   1722 			DELAY(10);
   1723 		}
   1724 	}
   1725 }
   1726 
   1727 /*
   1728  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1729  * self-test results.
   1730  */
   1731 static int
   1732 bge_chipinit(struct bge_softc *sc)
   1733 {
   1734 	int			i;
   1735 	uint32_t		dma_rw_ctl;
   1736 
   1737 
   1738 	/* Set endianness before we access any non-PCI registers. */
   1739 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1740 	    BGE_INIT);
   1741 
   1742 	/* Set power state to D0. */
   1743 	bge_setpowerstate(sc, 0);
   1744 
   1745 	/* Clear the MAC control register */
   1746 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1747 
   1748 	/*
   1749 	 * Clear the MAC statistics block in the NIC's
   1750 	 * internal memory.
   1751 	 */
   1752 	for (i = BGE_STATS_BLOCK;
   1753 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1754 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1755 
   1756 	for (i = BGE_STATUS_BLOCK;
   1757 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1758 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1759 
   1760 	/* Set up the PCI DMA control register. */
   1761 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1762 	if (sc->bge_flags & BGE_PCIE) {
   1763 		/* Read watermark not used, 128 bytes for write. */
   1764 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1765 		    device_xname(sc->bge_dev)));
   1766 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1767 	} else if (sc->bge_flags & BGE_PCIX) {
   1768 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1769 		    device_xname(sc->bge_dev)));
   1770 		/* PCI-X bus */
   1771 		if (BGE_IS_5714_FAMILY(sc)) {
   1772 			/* 256 bytes for read and write. */
   1773 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1774 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1775 
   1776 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1777 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1778 			else
   1779 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1780 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1781 			/* 1536 bytes for read, 384 bytes for write. */
   1782 			dma_rw_ctl |=
   1783 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1784 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1785 		} else {
   1786 			/* 384 bytes for read and write. */
   1787 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1788 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1789 			    (0x0F);
   1790 		}
   1791 
   1792 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1793 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1794 			uint32_t tmp;
   1795 
   1796 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1797 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1798 			if (tmp == 6 || tmp == 7)
   1799 				dma_rw_ctl |=
   1800 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1801 
   1802 			/* Set PCI-X DMA write workaround. */
   1803 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1804 		}
   1805 	} else {
   1806 		/* Conventional PCI bus: 256 bytes for read and write. */
   1807 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1808 		    device_xname(sc->bge_dev)));
   1809 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1810 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1811 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1812 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1813 			dma_rw_ctl |= 0x0F;
   1814 	}
   1815 
   1816 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1817 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1818 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1819 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1820 
   1821 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1822 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1823 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1824 
   1825 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1826 	    dma_rw_ctl);
   1827 
   1828 	/*
   1829 	 * Set up general mode register.
   1830 	 */
   1831 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1832 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1833 	    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1834 
   1835 	/*
   1836 	 * BCM5701 B5 have a bug causing data corruption when using
   1837 	 * 64-bit DMA reads, which can be terminated early and then
   1838 	 * completed later as 32-bit accesses, in combination with
   1839 	 * certain bridges.
   1840 	 */
   1841 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1842 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1843 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1844 
   1845 	/*
   1846 	 * Tell the firmware the driver is running
   1847 	 */
   1848 	if (sc->bge_asf_mode & ASF_STACKUP)
   1849 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1850 
   1851 	/*
   1852 	 * Disable memory write invalidate.  Apparently it is not supported
   1853 	 * properly by these devices.
   1854 	 */
   1855 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1856 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1857 
   1858 #ifdef __brokenalpha__
   1859 	/*
   1860 	 * Must insure that we do not cross an 8K (bytes) boundary
   1861 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1862 	 * restriction on some ALPHA platforms with early revision
   1863 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1864 	 */
   1865 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1866 #endif
   1867 
   1868 	/* Set the timer prescaler (always 66MHz) */
   1869 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1870 
   1871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1872 		DELAY(40);	/* XXX */
   1873 
   1874 		/* Put PHY into ready state */
   1875 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1876 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1877 		DELAY(40);
   1878 	}
   1879 
   1880 	return 0;
   1881 }
   1882 
   1883 static int
   1884 bge_blockinit(struct bge_softc *sc)
   1885 {
   1886 	volatile struct bge_rcb	 *rcb;
   1887 	bus_size_t rcb_addr;
   1888 	int i;
   1889 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1890 	bge_hostaddr taddr;
   1891 	uint32_t val;
   1892 
   1893 	/*
   1894 	 * Initialize the memory window pointer register so that
   1895 	 * we can access the first 32K of internal NIC RAM. This will
   1896 	 * allow us to set up the TX send ring RCBs and the RX return
   1897 	 * ring RCBs, plus other things which live in NIC memory.
   1898 	 */
   1899 
   1900 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1901 
   1902 	/* Configure mbuf memory pool */
   1903 	if (BGE_IS_5700_FAMILY(sc)) {
   1904 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1905 		    BGE_BUFFPOOL_1);
   1906 
   1907 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1908 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1909 		else
   1910 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1911 
   1912 		/* Configure DMA resource pool */
   1913 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1914 		    BGE_DMA_DESCRIPTORS);
   1915 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1916 	}
   1917 
   1918 	/* Configure mbuf pool watermarks */
   1919 #ifdef ORIG_WPAUL_VALUES
   1920 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1921 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1922 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1923 #else
   1924 
   1925 	/* new broadcom docs strongly recommend these: */
   1926 	if (!BGE_IS_5705_PLUS(sc)) {
   1927 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1928 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1929 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1930 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1931 		} else {
   1932 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1933 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1934 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1935 		}
   1936 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1937 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1938 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1939 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1940 	} else {
   1941 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1942 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1943 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1944 	}
   1945 #endif
   1946 
   1947 	/* Configure DMA resource watermarks */
   1948 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1949 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1950 
   1951 	/* Enable buffer manager */
   1952 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1953 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1954 
   1955 	/* Poll for buffer manager start indication */
   1956 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1957 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1958 			break;
   1959 		DELAY(10);
   1960 	}
   1961 
   1962 	if (i == BGE_TIMEOUT * 2) {
   1963 		aprint_error_dev(sc->bge_dev,
   1964 		    "buffer manager failed to start\n");
   1965 		return ENXIO;
   1966 	}
   1967 
   1968 	/* Enable flow-through queues */
   1969 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1970 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1971 
   1972 	/* Wait until queue initialization is complete */
   1973 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1974 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1975 			break;
   1976 		DELAY(10);
   1977 	}
   1978 
   1979 	if (i == BGE_TIMEOUT * 2) {
   1980 		aprint_error_dev(sc->bge_dev,
   1981 		    "flow-through queue init failed\n");
   1982 		return ENXIO;
   1983 	}
   1984 
   1985 	/* Initialize the standard RX ring control block */
   1986 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1987 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1988 	if (BGE_IS_5705_PLUS(sc))
   1989 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1990 	else
   1991 		rcb->bge_maxlen_flags =
   1992 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1993 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1994 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1995 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1996 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1997 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1998 
   1999 	/*
   2000 	 * Initialize the jumbo RX ring control block
   2001 	 * We set the 'ring disabled' bit in the flags
   2002 	 * field until we're actually ready to start
   2003 	 * using this ring (i.e. once we set the MTU
   2004 	 * high enough to require it).
   2005 	 */
   2006 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2007 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2008 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2009 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2010 		rcb->bge_maxlen_flags =
   2011 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2012 			BGE_RCB_FLAG_RING_DISABLED);
   2013 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2014 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2015 		    rcb->bge_hostaddr.bge_addr_hi);
   2016 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2017 		    rcb->bge_hostaddr.bge_addr_lo);
   2018 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2019 		    rcb->bge_maxlen_flags);
   2020 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2021 
   2022 		/* Set up dummy disabled mini ring RCB */
   2023 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2024 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2025 		    BGE_RCB_FLAG_RING_DISABLED);
   2026 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2027 		    rcb->bge_maxlen_flags);
   2028 
   2029 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2030 		    offsetof(struct bge_ring_data, bge_info),
   2031 		    sizeof (struct bge_gib),
   2032 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2033 	}
   2034 
   2035 	/*
   2036 	 * Set the BD ring replenish thresholds. The recommended
   2037 	 * values are 1/8th the number of descriptors allocated to
   2038 	 * each ring.
   2039 	 */
   2040 	i = BGE_STD_RX_RING_CNT / 8;
   2041 
   2042 	/*
   2043 	 * Use a value of 8 for the following chips to workaround HW errata.
   2044 	 * Some of these chips have been added based on empirical
   2045 	 * evidence (they don't work unless this is done).
   2046 	 */
   2047 	if (BGE_IS_5705_PLUS(sc))
   2048 		i = 8;
   2049 
   2050 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2051 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2052 
   2053 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2054 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   2055 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2056 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2057 	}
   2058 
   2059 	/*
   2060 	 * Disable all unused send rings by setting the 'ring disabled'
   2061 	 * bit in the flags field of all the TX send ring control blocks.
   2062 	 * These are located in NIC memory.
   2063 	 */
   2064 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2065 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2066 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2067 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2068 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2069 		rcb_addr += sizeof(struct bge_rcb);
   2070 	}
   2071 
   2072 	/* Configure TX RCB 0 (we use only the first ring) */
   2073 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2074 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2075 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2076 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2077 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2078 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2079 	if (BGE_IS_5700_FAMILY(sc))
   2080 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2081 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2082 
   2083 	/* Disable all unused RX return rings */
   2084 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2085 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2086 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2087 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2088 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2089 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2090 			BGE_RCB_FLAG_RING_DISABLED));
   2091 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2092 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2093 		    (i * (sizeof(uint64_t))), 0);
   2094 		rcb_addr += sizeof(struct bge_rcb);
   2095 	}
   2096 
   2097 	/* Initialize RX ring indexes */
   2098 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2099 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2100 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2101 
   2102 	/*
   2103 	 * Set up RX return ring 0
   2104 	 * Note that the NIC address for RX return rings is 0x00000000.
   2105 	 * The return rings live entirely within the host, so the
   2106 	 * nicaddr field in the RCB isn't used.
   2107 	 */
   2108 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2109 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2110 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2111 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2112 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2113 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2114 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2115 
   2116 	/* Set random backoff seed for TX */
   2117 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2118 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2119 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2120 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2121 	    BGE_TX_BACKOFF_SEED_MASK);
   2122 
   2123 	/* Set inter-packet gap */
   2124 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2125 
   2126 	/*
   2127 	 * Specify which ring to use for packets that don't match
   2128 	 * any RX rules.
   2129 	 */
   2130 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2131 
   2132 	/*
   2133 	 * Configure number of RX lists. One interrupt distribution
   2134 	 * list, sixteen active lists, one bad frames class.
   2135 	 */
   2136 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2137 
   2138 	/* Inialize RX list placement stats mask. */
   2139 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2140 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2141 
   2142 	/* Disable host coalescing until we get it set up */
   2143 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2144 
   2145 	/* Poll to make sure it's shut down. */
   2146 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2147 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2148 			break;
   2149 		DELAY(10);
   2150 	}
   2151 
   2152 	if (i == BGE_TIMEOUT * 2) {
   2153 		aprint_error_dev(sc->bge_dev,
   2154 		    "host coalescing engine failed to idle\n");
   2155 		return ENXIO;
   2156 	}
   2157 
   2158 	/* Set up host coalescing defaults */
   2159 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2160 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2161 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2162 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2163 	if (BGE_IS_5700_FAMILY(sc)) {
   2164 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2165 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2166 	}
   2167 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2168 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2169 
   2170 	/* Set up address of statistics block */
   2171 	if (BGE_IS_5700_FAMILY(sc)) {
   2172 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2173 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2174 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2175 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2176 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2177 	}
   2178 
   2179 	/* Set up address of status block */
   2180 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2181 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2182 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2183 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2184 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2185 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2186 
   2187 	/* Turn on host coalescing state machine */
   2188 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2189 
   2190 	/* Turn on RX BD completion state machine and enable attentions */
   2191 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2192 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2193 
   2194 	/* Turn on RX list placement state machine */
   2195 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2196 
   2197 	/* Turn on RX list selector state machine. */
   2198 	if (BGE_IS_5700_FAMILY(sc))
   2199 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2200 
   2201 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2202 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2203 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2204 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2205 
   2206 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2207 		val |= BGE_PORTMODE_TBI;
   2208 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2209 		val |= BGE_PORTMODE_GMII;
   2210 	else
   2211 		val |= BGE_PORTMODE_MII;
   2212 
   2213 	/* Turn on DMA, clear stats */
   2214 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2215 
   2216 	/* Set misc. local control, enable interrupts on attentions */
   2217 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2218 
   2219 #ifdef notdef
   2220 	/* Assert GPIO pins for PHY reset */
   2221 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2222 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2223 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2224 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2225 #endif
   2226 
   2227 #if defined(not_quite_yet)
   2228 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2229 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2230 		sc->bge_local_ctrl_reg |=
   2231 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2232 	}
   2233 #endif
   2234 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2235 
   2236 	/* Turn on DMA completion state machine */
   2237 	if (BGE_IS_5700_FAMILY(sc))
   2238 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2239 
   2240 	/* Turn on write DMA state machine */
   2241 	{
   2242 		uint32_t bge_wdma_mode =
   2243 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2244 
   2245 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2246 		if (BGE_IS_5755_PLUS(sc))
   2247 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2248 
   2249 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2250         }
   2251 
   2252 	/* Turn on read DMA state machine */
   2253 	{
   2254 		uint32_t dma_read_modebits;
   2255 
   2256 		dma_read_modebits =
   2257 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2258 
   2259 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2260 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2261 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2262 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2263 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2264 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2265 
   2266 		if (sc->bge_flags & BGE_PCIE)
   2267 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2268 		if (sc->bge_flags & BGE_TSO)
   2269 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2270 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2271 		delay(40);
   2272 	}
   2273 
   2274 	/* Turn on RX data completion state machine */
   2275 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2276 
   2277 	/* Turn on RX BD initiator state machine */
   2278 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2279 
   2280 	/* Turn on RX data and RX BD initiator state machine */
   2281 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2282 
   2283 	/* Turn on Mbuf cluster free state machine */
   2284 	if (BGE_IS_5700_FAMILY(sc))
   2285 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2286 
   2287 	/* Turn on send BD completion state machine */
   2288 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2289 
   2290 	/* Turn on send data completion state machine */
   2291 	val = BGE_SDCMODE_ENABLE;
   2292 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2293 		val |= BGE_SDCMODE_CDELAY;
   2294 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2295 
   2296 	/* Turn on send data initiator state machine */
   2297 	if (sc->bge_flags & BGE_TSO) {
   2298 		/* XXX: magic value from Linux driver */
   2299 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2300 	} else
   2301 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2302 
   2303 	/* Turn on send BD initiator state machine */
   2304 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2305 
   2306 	/* Turn on send BD selector state machine */
   2307 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2308 
   2309 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2310 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2311 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2312 
   2313 	/* ack/clear link change events */
   2314 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2315 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2316 	    BGE_MACSTAT_LINK_CHANGED);
   2317 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2318 
   2319 	/* Enable PHY auto polling (for MII/GMII only) */
   2320 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2321 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2322  	} else {
   2323 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2324 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2325 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2326 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2327 			    BGE_EVTENB_MI_INTERRUPT);
   2328 	}
   2329 
   2330 	/*
   2331 	 * Clear any pending link state attention.
   2332 	 * Otherwise some link state change events may be lost until attention
   2333 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2334 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2335 	 * state change attentions implies clearing pending attention.
   2336 	 */
   2337 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2338 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2339 	    BGE_MACSTAT_LINK_CHANGED);
   2340 
   2341 	/* Enable link state change attentions. */
   2342 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2343 
   2344 	return 0;
   2345 }
   2346 
   2347 static const struct bge_revision *
   2348 bge_lookup_rev(uint32_t chipid)
   2349 {
   2350 	const struct bge_revision *br;
   2351 
   2352 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2353 		if (br->br_chipid == chipid)
   2354 			return br;
   2355 	}
   2356 
   2357 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2358 		if (br->br_chipid == BGE_ASICREV(chipid))
   2359 			return br;
   2360 	}
   2361 
   2362 	return NULL;
   2363 }
   2364 
   2365 static const struct bge_product *
   2366 bge_lookup(const struct pci_attach_args *pa)
   2367 {
   2368 	const struct bge_product *bp;
   2369 
   2370 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2371 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2372 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2373 			return bp;
   2374 	}
   2375 
   2376 	return NULL;
   2377 }
   2378 
   2379 static int
   2380 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2381 {
   2382 #ifdef NOTYET
   2383 	uint32_t pm_ctl = 0;
   2384 
   2385 	/* XXX FIXME: make sure indirect accesses enabled? */
   2386 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2387 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2388 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2389 
   2390 	/* clear the PME_assert bit and power state bits, enable PME */
   2391 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2392 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2393 	pm_ctl |= (1 << 8);
   2394 
   2395 	if (powerlevel == 0) {
   2396 		pm_ctl |= PCIM_PSTAT_D0;
   2397 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2398 		    pm_ctl, 2);
   2399 		DELAY(10000);
   2400 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2401 		DELAY(10000);
   2402 
   2403 #ifdef NOTYET
   2404 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2405 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2406 #endif
   2407 		DELAY(40); DELAY(40); DELAY(40);
   2408 		DELAY(10000);	/* above not quite adequate on 5700 */
   2409 		return 0;
   2410 	}
   2411 
   2412 
   2413 	/*
   2414 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2415 	 * GMII gpio pins. Example code assumes all hardware vendors
   2416 	 * followed Broadom's sample pcb layout. Until we verify that
   2417 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2418 	 */
   2419 	aprint_error_dev(sc->bge_dev,
   2420 	    "power state %d unimplemented; check GPIO pins\n",
   2421 	    powerlevel);
   2422 #endif
   2423 	return EOPNOTSUPP;
   2424 }
   2425 
   2426 
   2427 /*
   2428  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2429  * against our list and return its name if we find a match. Note
   2430  * that since the Broadcom controller contains VPD support, we
   2431  * can get the device name string from the controller itself instead
   2432  * of the compiled-in string. This is a little slow, but it guarantees
   2433  * we'll always announce the right product name.
   2434  */
   2435 static int
   2436 bge_probe(device_t parent, cfdata_t match, void *aux)
   2437 {
   2438 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2439 
   2440 	if (bge_lookup(pa) != NULL)
   2441 		return 1;
   2442 
   2443 	return 0;
   2444 }
   2445 
   2446 static void
   2447 bge_attach(device_t parent, device_t self, void *aux)
   2448 {
   2449 	struct bge_softc	*sc = device_private(self);
   2450 	struct pci_attach_args	*pa = aux;
   2451 	prop_dictionary_t dict;
   2452 	const struct bge_product *bp;
   2453 	const struct bge_revision *br;
   2454 	pci_chipset_tag_t	pc;
   2455 	pci_intr_handle_t	ih;
   2456 	const char		*intrstr = NULL;
   2457 	bus_dma_segment_t	seg;
   2458 	int			rseg;
   2459 	uint32_t		hwcfg = 0;
   2460 	uint32_t		command;
   2461 	struct ifnet		*ifp;
   2462 	uint32_t		misccfg;
   2463 	void *			kva;
   2464 	u_char			eaddr[ETHER_ADDR_LEN];
   2465 	pcireg_t		memtype, subid;
   2466 	bus_addr_t		memaddr;
   2467 	bus_size_t		memsize;
   2468 	uint32_t		pm_ctl;
   2469 	bool			no_seeprom;
   2470 
   2471 	bp = bge_lookup(pa);
   2472 	KASSERT(bp != NULL);
   2473 
   2474 	sc->sc_pc = pa->pa_pc;
   2475 	sc->sc_pcitag = pa->pa_tag;
   2476 	sc->bge_dev = self;
   2477 
   2478 	pc = sc->sc_pc;
   2479 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2480 
   2481 	aprint_naive(": Ethernet controller\n");
   2482 	aprint_normal(": %s\n", bp->bp_name);
   2483 
   2484 	/*
   2485 	 * Map control/status registers.
   2486 	 */
   2487 	DPRINTFN(5, ("Map control/status regs\n"));
   2488 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2489 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2490 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2491 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2492 
   2493 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2494 		aprint_error_dev(sc->bge_dev,
   2495 		    "failed to enable memory mapping!\n");
   2496 		return;
   2497 	}
   2498 
   2499 	DPRINTFN(5, ("pci_mem_find\n"));
   2500 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2501  	switch (memtype) {
   2502 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2503 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2504 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2505 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2506 		    &memaddr, &memsize) == 0)
   2507 			break;
   2508 	default:
   2509 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2510 		return;
   2511 	}
   2512 
   2513 	DPRINTFN(5, ("pci_intr_map\n"));
   2514 	if (pci_intr_map(pa, &ih)) {
   2515 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2516 		return;
   2517 	}
   2518 
   2519 	DPRINTFN(5, ("pci_intr_string\n"));
   2520 	intrstr = pci_intr_string(pc, ih);
   2521 
   2522 	DPRINTFN(5, ("pci_intr_establish\n"));
   2523 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2524 
   2525 	if (sc->bge_intrhand == NULL) {
   2526 		aprint_error_dev(sc->bge_dev,
   2527 		    "couldn't establish interrupt%s%s\n",
   2528 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2529 		return;
   2530 	}
   2531 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2532 
   2533 	/*
   2534 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2535 	 * can clobber the chip's PCI config-space power control registers,
   2536 	 * leaving the card in D3 powersave state.
   2537 	 * We do not have memory-mapped registers in this state,
   2538 	 * so force device into D0 state before starting initialization.
   2539 	 */
   2540 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2541 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2542 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2543 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2544 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2545 
   2546 	/*
   2547 	 * Save ASIC rev.
   2548 	 */
   2549 	sc->bge_chipid =
   2550 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2551 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2552 
   2553 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2554 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2555 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2556 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2557 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2558 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2559 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2560 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2561 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2562 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2563 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2564 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2565 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2566 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2567 		else
   2568 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2569 			    BGE_PCI_PRODID_ASICREV);
   2570 	}
   2571 
   2572 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2573 	        &sc->bge_expcap, NULL) != 0) {
   2574 		/* PCIe */
   2575 		sc->bge_flags |= BGE_PCIE;
   2576 		bge_set_max_readrq(sc);
   2577 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2578 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2579 		/* PCI-X */
   2580 		sc->bge_flags |= BGE_PCIX;
   2581 	}
   2582 
   2583 	/* chipid */
   2584 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2585 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2586 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2587 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2588 		sc->bge_flags |= BGE_5700_FAMILY;
   2589 
   2590 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2591 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2592 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2593 		sc->bge_flags |= BGE_5714_FAMILY;
   2594 
   2595 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2596 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2597 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2598 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2599 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2600 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2601 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2602 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2603 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2604 		sc->bge_flags |= BGE_5755_PLUS;
   2605 
   2606 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2607 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2608 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2609 	    BGE_IS_5755_PLUS(sc) ||
   2610 	    BGE_IS_5714_FAMILY(sc))
   2611 		sc->bge_flags |= BGE_5750_PLUS;
   2612 
   2613 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2614 	    BGE_IS_5750_OR_BEYOND(sc))
   2615 		sc->bge_flags |= BGE_5705_PLUS;
   2616 
   2617 	/*
   2618 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2619 	 * been observed in the first few bytes of some received packets.
   2620 	 * Aligning the packet buffer in memory eliminates the corruption.
   2621 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2622 	 * which do not support unaligned accesses, we will realign the
   2623 	 * payloads by copying the received packets.
   2624 	 */
   2625 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2626 	    sc->bge_flags & BGE_PCIX)
   2627 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2628 
   2629 	if (BGE_IS_5700_FAMILY(sc))
   2630 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2631 
   2632 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2633 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2634 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2635 		sc->bge_flags |= BGE_NO_3LED;
   2636 
   2637 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2638 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2639 
   2640 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2641 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2642 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2643 		sc->bge_flags |= BGE_IS_5788;
   2644 
   2645 	/*
   2646 	 * Some controllers seem to require a special firmware to use
   2647 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2648 	 * claims that the TSO performed by the firmware is slower than
   2649 	 * hardware based TSO. Moreover the firmware based TSO has one
   2650 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2651 	 * header is greater than 80 bytes. The workaround for the TSO
   2652 	 * bug exist but it seems it's too expensive than not using
   2653 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2654 	 * the TSO to the controllers that are not affected TSO issues
   2655 	 * (e.g. 5755 or higher).
   2656 	 */
   2657 	if (BGE_IS_5755_PLUS(sc)) {
   2658 		/*
   2659 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2660 		 * explicit device id check is required.
   2661 		 */
   2662 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2663 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2664 			sc->bge_flags |= BGE_TSO;
   2665 	}
   2666 
   2667 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2668 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2669 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2670 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2671 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2672 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2673 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2674 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2675 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2676 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2677 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2678 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2679 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2680 		sc->bge_flags |= BGE_10_100_ONLY;
   2681 
   2682 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2683 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2684 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2685 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2686 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2687 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2688 
   2689 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2690 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2691 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2692 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2693 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2694 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2695 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2696 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2697 
   2698 	if (BGE_IS_5705_PLUS(sc) &&
   2699 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2700 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2701 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2702 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2703 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2704 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2705 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2706 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2707 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2708 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2709 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2710 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2711 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2712 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2713 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2714 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2715 	}
   2716 
   2717 	/*
   2718 	 * SEEPROM check.
   2719 	 * First check if firmware knows we do not have SEEPROM.
   2720 	 */
   2721 	 if (prop_dictionary_get_bool(device_properties(self),
   2722 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2723 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2724 
   2725 	/* Now check the 'ROM failed' bit on the RX CPU */
   2726 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2727 		sc->bge_flags |= BGE_NO_EEPROM;
   2728 
   2729 	/* Try to reset the chip. */
   2730 	DPRINTFN(5, ("bge_reset\n"));
   2731 	bge_reset(sc);
   2732 
   2733 	sc->bge_asf_mode = 0;
   2734 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2735 	    == BGE_MAGIC_NUMBER)) {
   2736 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2737 		    & BGE_HWCFG_ASF) {
   2738 			sc->bge_asf_mode |= ASF_ENABLE;
   2739 			sc->bge_asf_mode |= ASF_STACKUP;
   2740 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   2741 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2742 			}
   2743 		}
   2744 	}
   2745 
   2746 	/* Try to reset the chip again the nice way. */
   2747 	bge_stop_fw(sc);
   2748 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2749 	if (bge_reset(sc)) {
   2750 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2751 	}
   2752 
   2753 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2754 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2755 
   2756 	if (bge_chipinit(sc)) {
   2757 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2758 		bge_release_resources(sc);
   2759 		return;
   2760 	}
   2761 
   2762 	/*
   2763 	 * Get station address from the EEPROM
   2764 	 */
   2765 	if (bge_get_eaddr(sc, eaddr)) {
   2766 		aprint_error_dev(sc->bge_dev,
   2767 		"failed to read station address\n");
   2768 		bge_release_resources(sc);
   2769 		return;
   2770 	}
   2771 
   2772 	br = bge_lookup_rev(sc->bge_chipid);
   2773 
   2774 	if (br == NULL) {
   2775 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2776 		    sc->bge_chipid);
   2777 	} else {
   2778 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2779 		    br->br_name, sc->bge_chipid);
   2780 	}
   2781 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2782 
   2783 	/* Allocate the general information block and ring buffers. */
   2784 	if (pci_dma64_available(pa))
   2785 		sc->bge_dmatag = pa->pa_dmat64;
   2786 	else
   2787 		sc->bge_dmatag = pa->pa_dmat;
   2788 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2789 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2790 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2791 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2792 		return;
   2793 	}
   2794 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2795 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2796 			   sizeof(struct bge_ring_data), &kva,
   2797 			   BUS_DMA_NOWAIT)) {
   2798 		aprint_error_dev(sc->bge_dev,
   2799 		    "can't map DMA buffers (%zu bytes)\n",
   2800 		    sizeof(struct bge_ring_data));
   2801 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2802 		return;
   2803 	}
   2804 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2805 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2806 	    sizeof(struct bge_ring_data), 0,
   2807 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2808 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2809 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2810 				 sizeof(struct bge_ring_data));
   2811 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2812 		return;
   2813 	}
   2814 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2815 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2816 			    sizeof(struct bge_ring_data), NULL,
   2817 			    BUS_DMA_NOWAIT)) {
   2818 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2819 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2820 				 sizeof(struct bge_ring_data));
   2821 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2822 		return;
   2823 	}
   2824 
   2825 	DPRINTFN(5, ("bzero\n"));
   2826 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2827 
   2828 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2829 
   2830 	/* Try to allocate memory for jumbo buffers. */
   2831 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2832 		if (bge_alloc_jumbo_mem(sc)) {
   2833 			aprint_error_dev(sc->bge_dev,
   2834 			    "jumbo buffer allocation failed\n");
   2835 		} else
   2836 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2837 	}
   2838 
   2839 	/* Set default tuneable values. */
   2840 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2841 	sc->bge_rx_coal_ticks = 150;
   2842 	sc->bge_rx_max_coal_bds = 64;
   2843 #ifdef ORIG_WPAUL_VALUES
   2844 	sc->bge_tx_coal_ticks = 150;
   2845 	sc->bge_tx_max_coal_bds = 128;
   2846 #else
   2847 	sc->bge_tx_coal_ticks = 300;
   2848 	sc->bge_tx_max_coal_bds = 400;
   2849 #endif
   2850 	if (BGE_IS_5705_PLUS(sc)) {
   2851 		sc->bge_tx_coal_ticks = (12 * 5);
   2852 		sc->bge_tx_max_coal_bds = (12 * 5);
   2853 			aprint_verbose_dev(sc->bge_dev,
   2854 			    "setting short Tx thresholds\n");
   2855 	}
   2856 
   2857 	if (BGE_IS_5705_PLUS(sc))
   2858 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2859 	else
   2860 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2861 
   2862 	/* Set up ifnet structure */
   2863 	ifp = &sc->ethercom.ec_if;
   2864 	ifp->if_softc = sc;
   2865 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2866 	ifp->if_ioctl = bge_ioctl;
   2867 	ifp->if_stop = bge_stop;
   2868 	ifp->if_start = bge_start;
   2869 	ifp->if_init = bge_init;
   2870 	ifp->if_watchdog = bge_watchdog;
   2871 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2872 	IFQ_SET_READY(&ifp->if_snd);
   2873 	DPRINTFN(5, ("strcpy if_xname\n"));
   2874 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2875 
   2876 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2877 		sc->ethercom.ec_if.if_capabilities |=
   2878 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2879 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2880 		sc->ethercom.ec_if.if_capabilities |=
   2881 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2882 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2883 #endif
   2884 	sc->ethercom.ec_capabilities |=
   2885 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2886 
   2887 	if (sc->bge_flags & BGE_TSO)
   2888 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2889 
   2890 	/*
   2891 	 * Do MII setup.
   2892 	 */
   2893 	DPRINTFN(5, ("mii setup\n"));
   2894 	sc->bge_mii.mii_ifp = ifp;
   2895 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2896 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2897 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2898 
   2899 	/*
   2900 	 * Figure out what sort of media we have by checking the
   2901 	 * hardware config word in the first 32k of NIC internal memory,
   2902 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2903 	 * cards, this value appears to be unset. If that's the
   2904 	 * case, we have to rely on identifying the NIC by its PCI
   2905 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2906 	 */
   2907 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2908 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2909 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2910 		bge_read_eeprom(sc, (void *)&hwcfg,
   2911 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2912 		hwcfg = be32toh(hwcfg);
   2913 	}
   2914 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2915 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2916 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2917 		if (BGE_IS_5714_FAMILY(sc))
   2918 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2919 		else
   2920 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2921 	}
   2922 
   2923 	/* set phyflags before mii_attach() */
   2924 	dict = device_properties(self);
   2925 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2926 
   2927 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2928 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2929 		    bge_ifmedia_sts);
   2930 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   2931 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   2932 			    0, NULL);
   2933 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   2934 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   2935 		/* Pretend the user requested this setting */
   2936 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2937 	} else {
   2938 		/*
   2939 		 * Do transceiver setup and tell the firmware the
   2940 		 * driver is down so we can try to get access the
   2941 		 * probe if ASF is running.  Retry a couple of times
   2942 		 * if we get a conflict with the ASF firmware accessing
   2943 		 * the PHY.
   2944 		 */
   2945 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2946 		bge_asf_driver_up(sc);
   2947 
   2948 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2949 			     bge_ifmedia_sts);
   2950 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2951 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2952 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2953 
   2954 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2955 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2956 			ifmedia_add(&sc->bge_mii.mii_media,
   2957 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2958 			ifmedia_set(&sc->bge_mii.mii_media,
   2959 				    IFM_ETHER|IFM_MANUAL);
   2960 		} else
   2961 			ifmedia_set(&sc->bge_mii.mii_media,
   2962 				    IFM_ETHER|IFM_AUTO);
   2963 
   2964 		/*
   2965 		 * Now tell the firmware we are going up after probing the PHY
   2966 		 */
   2967 		if (sc->bge_asf_mode & ASF_STACKUP)
   2968 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2969 	}
   2970 
   2971 	/*
   2972 	 * Call MI attach routine.
   2973 	 */
   2974 	DPRINTFN(5, ("if_attach\n"));
   2975 	if_attach(ifp);
   2976 	DPRINTFN(5, ("ether_ifattach\n"));
   2977 	ether_ifattach(ifp, eaddr);
   2978 #if NRND > 0
   2979 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   2980 		RND_TYPE_NET, 0);
   2981 #endif
   2982 #ifdef BGE_EVENT_COUNTERS
   2983 	/*
   2984 	 * Attach event counters.
   2985 	 */
   2986 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2987 	    NULL, device_xname(sc->bge_dev), "intr");
   2988 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2989 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   2990 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2991 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   2992 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2993 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   2994 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2995 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   2996 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2997 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   2998 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2999 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3000 #endif /* BGE_EVENT_COUNTERS */
   3001 	DPRINTFN(5, ("callout_init\n"));
   3002 	callout_init(&sc->bge_timeout, 0);
   3003 
   3004 	if (pmf_device_register(self, NULL, NULL))
   3005 		pmf_class_network_register(self, ifp);
   3006 	else
   3007 		aprint_error_dev(self, "couldn't establish power handler\n");
   3008 
   3009 #ifdef BGE_DEBUG
   3010 	bge_debug_info(sc);
   3011 #endif
   3012 }
   3013 
   3014 static void
   3015 bge_release_resources(struct bge_softc *sc)
   3016 {
   3017 	if (sc->bge_vpd_prodname != NULL)
   3018 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3019 
   3020 	if (sc->bge_vpd_readonly != NULL)
   3021 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3022 }
   3023 
   3024 static int
   3025 bge_reset(struct bge_softc *sc)
   3026 {
   3027 	uint32_t cachesize, command, pcistate, new_pcistate;
   3028 	pcireg_t devctl;
   3029 	int i, val;
   3030 	void (*write_op)(struct bge_softc *, int, int);
   3031 
   3032 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3033 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3034 	    	if (sc->bge_flags & BGE_PCIE) {
   3035 			write_op = bge_writemem_direct;
   3036 		} else {
   3037 			write_op = bge_writemem_ind;
   3038 		}
   3039 	} else {
   3040 		write_op = bge_writereg_ind;
   3041 	}
   3042 
   3043 
   3044 	/* Save some important PCI state. */
   3045 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3046 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3047 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3048 
   3049 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3050 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3051 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3052 
   3053 	/* Disable fastboot on controllers that support it. */
   3054 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3055 	    BGE_IS_5755_PLUS(sc))
   3056 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3057 
   3058 	/*
   3059 	 * Write the magic number to SRAM at offset 0xB50.
   3060 	 * When firmware finishes its initialization it will
   3061 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3062 	 */
   3063 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3064 
   3065 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3066 	/*
   3067 	 * XXX: from FreeBSD/Linux; no documentation
   3068 	 */
   3069 	if (sc->bge_flags & BGE_PCIE) {
   3070 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3071 			/* PCI Express 1.0 system */
   3072 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3073 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3074 			/*
   3075 			 * Prevent PCI Express link training
   3076 			 * during global reset.
   3077 			 */
   3078 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3079 			val |= (1<<29);
   3080 		}
   3081 	}
   3082 
   3083 	/*
   3084 	 * Set GPHY Power Down Override to leave GPHY
   3085 	 * powered up in D0 uninitialized.
   3086 	 */
   3087 	if (BGE_IS_5705_PLUS(sc))
   3088 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3089 
   3090 	/* Issue global reset */
   3091 	write_op(sc, BGE_MISC_CFG, val);
   3092 
   3093 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3094 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3095 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3096 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3097 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3098 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3099 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3100 	}
   3101 
   3102 	DELAY(1000);
   3103 
   3104 	/*
   3105 	 * XXX: from FreeBSD/Linux; no documentation
   3106 	 */
   3107 	if (sc->bge_flags & BGE_PCIE) {
   3108 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3109 			pcireg_t reg;
   3110 
   3111 			DELAY(500000);
   3112 			/* XXX: Magic Numbers */
   3113 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3114 			    BGE_PCI_UNKNOWN0);
   3115 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3116 			    BGE_PCI_UNKNOWN0,
   3117 			    reg | (1 << 15));
   3118 		}
   3119 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3120 		    sc->bge_expcap + PCI_PCIE_DCSR);
   3121 		/* Clear enable no snoop and disable relaxed ordering. */
   3122 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3123 		/* Set PCIE max payload size to 128. */
   3124 		devctl &= ~(0x00e0);
   3125 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3126 		    sc->bge_expcap + PCI_PCIE_DCSR, devctl);
   3127 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3128 		    sc->bge_expcap + PCI_PCIE_DSR, 0);
   3129 	}
   3130 
   3131 	/* Reset some of the PCI state that got zapped by reset */
   3132 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3133 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3134 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3135 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3136 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3137 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3138 
   3139 	/* Enable memory arbiter. */
   3140 	{
   3141 		uint32_t marbmode = 0;
   3142 		if (BGE_IS_5714_FAMILY(sc)) {
   3143 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3144 		}
   3145  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3146 	}
   3147 
   3148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3149 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3150 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3151 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   3152 				break;
   3153 			DELAY(100);
   3154 		}
   3155 		if (i == BGE_TIMEOUT) {
   3156 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   3157 			return 1;
   3158 		}
   3159 	} else {
   3160 		/*
   3161 		 * Poll the value location we just wrote until
   3162 		 * we see the 1's complement of the magic number.
   3163 		 * This indicates that the firmware initialization
   3164 		 * is complete.
   3165 		 */
   3166 		for (i = 0; i < BGE_TIMEOUT; i++) {
   3167 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   3168 			if (val == ~BGE_MAGIC_NUMBER)
   3169 				break;
   3170 			DELAY(10);
   3171 		}
   3172 
   3173 		if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM)))
   3174 			aprint_error_dev(sc->bge_dev,
   3175 			    "firmware handshake timed out, val = %x\n", val);
   3176 	}
   3177 
   3178 	/*
   3179 	 * XXX Wait for the value of the PCISTATE register to
   3180 	 * return to its original pre-reset state. This is a
   3181 	 * fairly good indicator of reset completion. If we don't
   3182 	 * wait for the reset to fully complete, trying to read
   3183 	 * from the device's non-PCI registers may yield garbage
   3184 	 * results.
   3185 	 */
   3186 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3187 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3188 		    BGE_PCI_PCISTATE);
   3189 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3190 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3191 			break;
   3192 		DELAY(10);
   3193 	}
   3194 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3195 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3196 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3197 	}
   3198 
   3199 #if 0
   3200 	/* Enable memory arbiter. */
   3201 	/* XXX why do this twice? */
   3202 	{
   3203 		uint32_t marbmode = 0;
   3204 		if (BGE_IS_5714_FAMILY(sc)) {
   3205 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3206 		}
   3207  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3208 	}
   3209 #endif
   3210 
   3211 	/* Fix up byte swapping */
   3212 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3213 
   3214 	/* Tell the ASF firmware we are up */
   3215 	if (sc->bge_asf_mode & ASF_STACKUP)
   3216 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3217 
   3218 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3219 
   3220 	/*
   3221 	 * The 5704 in TBI mode apparently needs some special
   3222 	 * adjustment to insure the SERDES drive level is set
   3223 	 * to 1.2V.
   3224 	 */
   3225 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3226 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3227 		uint32_t serdescfg;
   3228 
   3229 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3230 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3231 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3232 	}
   3233 
   3234 	if (sc->bge_flags & BGE_PCIE &&
   3235 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3236 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3237 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3238 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3239 		uint32_t v;
   3240 
   3241 		/* Enable PCI Express bug fix */
   3242 		v = CSR_READ_4(sc, 0x7c00);
   3243 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3244 	}
   3245 	DELAY(10000);
   3246 
   3247 	return 0;
   3248 }
   3249 
   3250 /*
   3251  * Frame reception handling. This is called if there's a frame
   3252  * on the receive return list.
   3253  *
   3254  * Note: we have to be able to handle two possibilities here:
   3255  * 1) the frame is from the jumbo recieve ring
   3256  * 2) the frame is from the standard receive ring
   3257  */
   3258 
   3259 static void
   3260 bge_rxeof(struct bge_softc *sc)
   3261 {
   3262 	struct ifnet *ifp;
   3263 	uint16_t rx_prod, rx_cons;
   3264 	int stdcnt = 0, jumbocnt = 0;
   3265 	bus_dmamap_t dmamap;
   3266 	bus_addr_t offset, toff;
   3267 	bus_size_t tlen;
   3268 	int tosync;
   3269 
   3270 	rx_cons = sc->bge_rx_saved_considx;
   3271 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3272 
   3273 	/* Nothing to do */
   3274 	if (rx_cons == rx_prod)
   3275 		return;
   3276 
   3277 	ifp = &sc->ethercom.ec_if;
   3278 
   3279 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3280 	    offsetof(struct bge_ring_data, bge_status_block),
   3281 	    sizeof (struct bge_status_block),
   3282 	    BUS_DMASYNC_POSTREAD);
   3283 
   3284 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3285 	tosync = rx_prod - rx_cons;
   3286 
   3287 #if NRND > 0
   3288 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3289 		rnd_add_uint32(&sc->rnd_source, tosync);
   3290 #endif
   3291 
   3292 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3293 
   3294 	if (tosync < 0) {
   3295 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3296 		    sizeof (struct bge_rx_bd);
   3297 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3298 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3299 		tosync = -tosync;
   3300 	}
   3301 
   3302 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3303 	    offset, tosync * sizeof (struct bge_rx_bd),
   3304 	    BUS_DMASYNC_POSTREAD);
   3305 
   3306 	while (rx_cons != rx_prod) {
   3307 		struct bge_rx_bd	*cur_rx;
   3308 		uint32_t		rxidx;
   3309 		struct mbuf		*m = NULL;
   3310 
   3311 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3312 
   3313 		rxidx = cur_rx->bge_idx;
   3314 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3315 
   3316 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3317 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3318 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3319 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3320 			jumbocnt++;
   3321 			bus_dmamap_sync(sc->bge_dmatag,
   3322 			    sc->bge_cdata.bge_rx_jumbo_map,
   3323 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3324 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3325 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3326 				ifp->if_ierrors++;
   3327 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3328 				continue;
   3329 			}
   3330 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3331 					     NULL)== ENOBUFS) {
   3332 				ifp->if_ierrors++;
   3333 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3334 				continue;
   3335 			}
   3336 		} else {
   3337 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3338 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3339 
   3340 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3341 			stdcnt++;
   3342 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3343 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3344 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3345 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3346 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3347 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3348 				ifp->if_ierrors++;
   3349 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3350 				continue;
   3351 			}
   3352 			if (bge_newbuf_std(sc, sc->bge_std,
   3353 			    NULL, dmamap) == ENOBUFS) {
   3354 				ifp->if_ierrors++;
   3355 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3356 				continue;
   3357 			}
   3358 		}
   3359 
   3360 		ifp->if_ipackets++;
   3361 #ifndef __NO_STRICT_ALIGNMENT
   3362                 /*
   3363                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3364                  * the Rx buffer has the layer-2 header unaligned.
   3365                  * If our CPU requires alignment, re-align by copying.
   3366                  */
   3367 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3368 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3369                                 cur_rx->bge_len);
   3370 			m->m_data += ETHER_ALIGN;
   3371 		}
   3372 #endif
   3373 
   3374 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3375 		m->m_pkthdr.rcvif = ifp;
   3376 
   3377 		/*
   3378 		 * Handle BPF listeners. Let the BPF user see the packet.
   3379 		 */
   3380 		if (ifp->if_bpf)
   3381 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   3382 
   3383 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3384 
   3385 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3386 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3387 		/*
   3388 		 * Rx transport checksum-offload may also
   3389 		 * have bugs with packets which, when transmitted,
   3390 		 * were `runts' requiring padding.
   3391 		 */
   3392 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3393 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3394 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3395 			m->m_pkthdr.csum_data =
   3396 			    cur_rx->bge_tcp_udp_csum;
   3397 			m->m_pkthdr.csum_flags |=
   3398 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3399 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3400 		}
   3401 
   3402 		/*
   3403 		 * If we received a packet with a vlan tag, pass it
   3404 		 * to vlan_input() instead of ether_input().
   3405 		 */
   3406 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3407 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3408 		}
   3409 
   3410 		(*ifp->if_input)(ifp, m);
   3411 	}
   3412 
   3413 	sc->bge_rx_saved_considx = rx_cons;
   3414 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3415 	if (stdcnt)
   3416 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3417 	if (jumbocnt)
   3418 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3419 }
   3420 
   3421 static void
   3422 bge_txeof(struct bge_softc *sc)
   3423 {
   3424 	struct bge_tx_bd *cur_tx = NULL;
   3425 	struct ifnet *ifp;
   3426 	struct txdmamap_pool_entry *dma;
   3427 	bus_addr_t offset, toff;
   3428 	bus_size_t tlen;
   3429 	int tosync;
   3430 	struct mbuf *m;
   3431 
   3432 	ifp = &sc->ethercom.ec_if;
   3433 
   3434 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3435 	    offsetof(struct bge_ring_data, bge_status_block),
   3436 	    sizeof (struct bge_status_block),
   3437 	    BUS_DMASYNC_POSTREAD);
   3438 
   3439 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3440 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3441 	    sc->bge_tx_saved_considx;
   3442 
   3443 #if NRND > 0
   3444 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3445 		rnd_add_uint32(&sc->rnd_source, tosync);
   3446 #endif
   3447 
   3448 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3449 
   3450 	if (tosync < 0) {
   3451 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3452 		    sizeof (struct bge_tx_bd);
   3453 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3454 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3455 		tosync = -tosync;
   3456 	}
   3457 
   3458 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3459 	    offset, tosync * sizeof (struct bge_tx_bd),
   3460 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3461 
   3462 	/*
   3463 	 * Go through our tx ring and free mbufs for those
   3464 	 * frames that have been sent.
   3465 	 */
   3466 	while (sc->bge_tx_saved_considx !=
   3467 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3468 		uint32_t		idx = 0;
   3469 
   3470 		idx = sc->bge_tx_saved_considx;
   3471 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3472 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3473 			ifp->if_opackets++;
   3474 		m = sc->bge_cdata.bge_tx_chain[idx];
   3475 		if (m != NULL) {
   3476 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3477 			dma = sc->txdma[idx];
   3478 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3479 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3480 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3481 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3482 			sc->txdma[idx] = NULL;
   3483 
   3484 			m_freem(m);
   3485 		}
   3486 		sc->bge_txcnt--;
   3487 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3488 		ifp->if_timer = 0;
   3489 	}
   3490 
   3491 	if (cur_tx != NULL)
   3492 		ifp->if_flags &= ~IFF_OACTIVE;
   3493 }
   3494 
   3495 static int
   3496 bge_intr(void *xsc)
   3497 {
   3498 	struct bge_softc *sc;
   3499 	struct ifnet *ifp;
   3500 	uint32_t statusword;
   3501 
   3502 	sc = xsc;
   3503 	ifp = &sc->ethercom.ec_if;
   3504 
   3505 	/* It is possible for the interrupt to arrive before
   3506 	 * the status block is updated prior to the interrupt.
   3507 	 * Reading the PCI State register will confirm whether the
   3508 	 * interrupt is ours and will flush the status block.
   3509 	 */
   3510 
   3511 	/* read status word from status block */
   3512 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3513 
   3514 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3515 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3516 		/* Ack interrupt and stop others from occuring. */
   3517 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3518 
   3519 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3520 
   3521 		/* clear status word */
   3522 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3523 
   3524 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3525 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3526 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3527 			bge_link_upd(sc);
   3528 
   3529 		if (ifp->if_flags & IFF_RUNNING) {
   3530 			/* Check RX return ring producer/consumer */
   3531 			bge_rxeof(sc);
   3532 
   3533 			/* Check TX ring producer/consumer */
   3534 			bge_txeof(sc);
   3535 		}
   3536 
   3537 		if (sc->bge_pending_rxintr_change) {
   3538 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3539 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3540 			uint32_t junk;
   3541 
   3542 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3543 			DELAY(10);
   3544 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3545 
   3546 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3547 			DELAY(10);
   3548 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3549 
   3550 			sc->bge_pending_rxintr_change = 0;
   3551 		}
   3552 		bge_handle_events(sc);
   3553 
   3554 		/* Re-enable interrupts. */
   3555 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3556 
   3557 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3558 			bge_start(ifp);
   3559 
   3560 		return 1;
   3561 	} else
   3562 		return 0;
   3563 }
   3564 
   3565 static void
   3566 bge_asf_driver_up(struct bge_softc *sc)
   3567 {
   3568 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3569 		/* Send ASF heartbeat aprox. every 2s */
   3570 		if (sc->bge_asf_count)
   3571 			sc->bge_asf_count --;
   3572 		else {
   3573 			sc->bge_asf_count = 5;
   3574 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3575 			    BGE_FW_DRV_ALIVE);
   3576 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3577 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3578 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3579 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3580 		}
   3581 	}
   3582 }
   3583 
   3584 static void
   3585 bge_tick(void *xsc)
   3586 {
   3587 	struct bge_softc *sc = xsc;
   3588 	struct mii_data *mii = &sc->bge_mii;
   3589 	int s;
   3590 
   3591 	s = splnet();
   3592 
   3593 	if (BGE_IS_5705_PLUS(sc))
   3594 		bge_stats_update_regs(sc);
   3595 	else
   3596 		bge_stats_update(sc);
   3597 
   3598 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3599 		/*
   3600 		 * Since in TBI mode auto-polling can't be used we should poll
   3601 		 * link status manually. Here we register pending link event
   3602 		 * and trigger interrupt.
   3603 		 */
   3604 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3605 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3606 	} else {
   3607 		/*
   3608 		 * Do not touch PHY if we have link up. This could break
   3609 		 * IPMI/ASF mode or produce extra input errors.
   3610 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3611 		 */
   3612 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3613 			mii_tick(mii);
   3614 	}
   3615 
   3616 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3617 
   3618 	splx(s);
   3619 }
   3620 
   3621 static void
   3622 bge_stats_update_regs(struct bge_softc *sc)
   3623 {
   3624 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3625 
   3626 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3627 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3628 
   3629 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3630 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3631 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3632 }
   3633 
   3634 static void
   3635 bge_stats_update(struct bge_softc *sc)
   3636 {
   3637 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3638 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3639 
   3640 #define READ_STAT(sc, stats, stat) \
   3641 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3642 
   3643 	ifp->if_collisions +=
   3644 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3645 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3646 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3647 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3648 	  ifp->if_collisions;
   3649 
   3650 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3651 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3652 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3653 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3654 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3655 		      READ_STAT(sc, stats,
   3656 		      		xoffPauseFramesReceived.bge_addr_lo));
   3657 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3658 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3659 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3660 		      READ_STAT(sc, stats,
   3661 		      		macControlFramesReceived.bge_addr_lo));
   3662 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3663 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3664 
   3665 #undef READ_STAT
   3666 
   3667 #ifdef notdef
   3668 	ifp->if_collisions +=
   3669 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3670 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3671 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3672 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3673 	   ifp->if_collisions;
   3674 #endif
   3675 }
   3676 
   3677 /*
   3678  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3679  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3680  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3681  * the hardware checksum assist gives incorrect results (possibly
   3682  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3683  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3684  */
   3685 static inline int
   3686 bge_cksum_pad(struct mbuf *pkt)
   3687 {
   3688 	struct mbuf *last = NULL;
   3689 	int padlen;
   3690 
   3691 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3692 
   3693 	/* if there's only the packet-header and we can pad there, use it. */
   3694 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3695 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3696 		last = pkt;
   3697 	} else {
   3698 		/*
   3699 		 * Walk packet chain to find last mbuf. We will either
   3700 		 * pad there, or append a new mbuf and pad it
   3701 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3702 		 */
   3703 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3704 	      	       continue; /* do nothing */
   3705 		}
   3706 
   3707 		/* `last' now points to last in chain. */
   3708 		if (M_TRAILINGSPACE(last) < padlen) {
   3709 			/* Allocate new empty mbuf, pad it. Compact later. */
   3710 			struct mbuf *n;
   3711 			MGET(n, M_DONTWAIT, MT_DATA);
   3712 			if (n == NULL)
   3713 				return ENOBUFS;
   3714 			n->m_len = 0;
   3715 			last->m_next = n;
   3716 			last = n;
   3717 		}
   3718 	}
   3719 
   3720 	KDASSERT(!M_READONLY(last));
   3721 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3722 
   3723 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3724 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3725 	last->m_len += padlen;
   3726 	pkt->m_pkthdr.len += padlen;
   3727 	return 0;
   3728 }
   3729 
   3730 /*
   3731  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3732  */
   3733 static inline int
   3734 bge_compact_dma_runt(struct mbuf *pkt)
   3735 {
   3736 	struct mbuf	*m, *prev;
   3737 	int 		totlen, prevlen;
   3738 
   3739 	prev = NULL;
   3740 	totlen = 0;
   3741 	prevlen = -1;
   3742 
   3743 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3744 		int mlen = m->m_len;
   3745 		int shortfall = 8 - mlen ;
   3746 
   3747 		totlen += mlen;
   3748 		if (mlen == 0) {
   3749 			continue;
   3750 		}
   3751 		if (mlen >= 8)
   3752 			continue;
   3753 
   3754 		/* If we get here, mbuf data is too small for DMA engine.
   3755 		 * Try to fix by shuffling data to prev or next in chain.
   3756 		 * If that fails, do a compacting deep-copy of the whole chain.
   3757 		 */
   3758 
   3759 		/* Internal frag. If fits in prev, copy it there. */
   3760 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3761 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3762 			prev->m_len += mlen;
   3763 			m->m_len = 0;
   3764 			/* XXX stitch chain */
   3765 			prev->m_next = m_free(m);
   3766 			m = prev;
   3767 			continue;
   3768 		}
   3769 		else if (m->m_next != NULL &&
   3770 			     M_TRAILINGSPACE(m) >= shortfall &&
   3771 			     m->m_next->m_len >= (8 + shortfall)) {
   3772 		    /* m is writable and have enough data in next, pull up. */
   3773 
   3774 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3775 			    shortfall);
   3776 			m->m_len += shortfall;
   3777 			m->m_next->m_len -= shortfall;
   3778 			m->m_next->m_data += shortfall;
   3779 		}
   3780 		else if (m->m_next == NULL || 1) {
   3781 		  	/* Got a runt at the very end of the packet.
   3782 			 * borrow data from the tail of the preceding mbuf and
   3783 			 * update its length in-place. (The original data is still
   3784 			 * valid, so we can do this even if prev is not writable.)
   3785 			 */
   3786 
   3787 			/* if we'd make prev a runt, just move all of its data. */
   3788 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3789 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3790 
   3791 			if ((prev->m_len - shortfall) < 8)
   3792 				shortfall = prev->m_len;
   3793 
   3794 #ifdef notyet	/* just do the safe slow thing for now */
   3795 			if (!M_READONLY(m)) {
   3796 				if (M_LEADINGSPACE(m) < shorfall) {
   3797 					void *m_dat;
   3798 					m_dat = (m->m_flags & M_PKTHDR) ?
   3799 					  m->m_pktdat : m->dat;
   3800 					memmove(m_dat, mtod(m, void*), m->m_len);
   3801 					m->m_data = m_dat;
   3802 				    }
   3803 			} else
   3804 #endif	/* just do the safe slow thing */
   3805 			{
   3806 				struct mbuf * n = NULL;
   3807 				int newprevlen = prev->m_len - shortfall;
   3808 
   3809 				MGET(n, M_NOWAIT, MT_DATA);
   3810 				if (n == NULL)
   3811 				   return ENOBUFS;
   3812 				KASSERT(m->m_len + shortfall < MLEN
   3813 					/*,
   3814 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3815 
   3816 				/* first copy the data we're stealing from prev */
   3817 				memcpy(n->m_data, prev->m_data + newprevlen,
   3818 				    shortfall);
   3819 
   3820 				/* update prev->m_len accordingly */
   3821 				prev->m_len -= shortfall;
   3822 
   3823 				/* copy data from runt m */
   3824 				memcpy(n->m_data + shortfall, m->m_data,
   3825 				    m->m_len);
   3826 
   3827 				/* n holds what we stole from prev, plus m */
   3828 				n->m_len = shortfall + m->m_len;
   3829 
   3830 				/* stitch n into chain and free m */
   3831 				n->m_next = m->m_next;
   3832 				prev->m_next = n;
   3833 				/* KASSERT(m->m_next == NULL); */
   3834 				m->m_next = NULL;
   3835 				m_free(m);
   3836 				m = n;	/* for continuing loop */
   3837 			}
   3838 		}
   3839 		prevlen = m->m_len;
   3840 	}
   3841 	return 0;
   3842 }
   3843 
   3844 /*
   3845  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3846  * pointers to descriptors.
   3847  */
   3848 static int
   3849 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3850 {
   3851 	struct bge_tx_bd	*f = NULL;
   3852 	uint32_t		frag, cur;
   3853 	uint16_t		csum_flags = 0;
   3854 	uint16_t		txbd_tso_flags = 0;
   3855 	struct txdmamap_pool_entry *dma;
   3856 	bus_dmamap_t dmamap;
   3857 	int			i = 0;
   3858 	struct m_tag		*mtag;
   3859 	int			use_tso, maxsegsize, error;
   3860 
   3861 	cur = frag = *txidx;
   3862 
   3863 	if (m_head->m_pkthdr.csum_flags) {
   3864 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3865 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3866 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3867 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3868 	}
   3869 
   3870 	/*
   3871 	 * If we were asked to do an outboard checksum, and the NIC
   3872 	 * has the bug where it sometimes adds in the Ethernet padding,
   3873 	 * explicitly pad with zeros so the cksum will be correct either way.
   3874 	 * (For now, do this for all chip versions, until newer
   3875 	 * are confirmed to not require the workaround.)
   3876 	 */
   3877 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3878 #ifdef notyet
   3879 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3880 #endif
   3881 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3882 		goto check_dma_bug;
   3883 
   3884 	if (bge_cksum_pad(m_head) != 0)
   3885 	    return ENOBUFS;
   3886 
   3887 check_dma_bug:
   3888 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3889 		goto doit;
   3890 
   3891 	/*
   3892 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3893 	 * less than eight bytes.  If we encounter a teeny mbuf
   3894 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3895 	 */
   3896 	if (bge_compact_dma_runt(m_head) != 0)
   3897 		return ENOBUFS;
   3898 
   3899 doit:
   3900 	dma = SLIST_FIRST(&sc->txdma_list);
   3901 	if (dma == NULL)
   3902 		return ENOBUFS;
   3903 	dmamap = dma->dmamap;
   3904 
   3905 	/*
   3906 	 * Set up any necessary TSO state before we start packing...
   3907 	 */
   3908 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3909 	if (!use_tso) {
   3910 		maxsegsize = 0;
   3911 	} else {	/* TSO setup */
   3912 		unsigned  mss;
   3913 		struct ether_header *eh;
   3914 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3915 		struct mbuf * m0 = m_head;
   3916 		struct ip *ip;
   3917 		struct tcphdr *th;
   3918 		int iphl, hlen;
   3919 
   3920 		/*
   3921 		 * XXX It would be nice if the mbuf pkthdr had offset
   3922 		 * fields for the protocol headers.
   3923 		 */
   3924 
   3925 		eh = mtod(m0, struct ether_header *);
   3926 		switch (htons(eh->ether_type)) {
   3927 		case ETHERTYPE_IP:
   3928 			offset = ETHER_HDR_LEN;
   3929 			break;
   3930 
   3931 		case ETHERTYPE_VLAN:
   3932 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3933 			break;
   3934 
   3935 		default:
   3936 			/*
   3937 			 * Don't support this protocol or encapsulation.
   3938 			 */
   3939 			return ENOBUFS;
   3940 		}
   3941 
   3942 		/*
   3943 		 * TCP/IP headers are in the first mbuf; we can do
   3944 		 * this the easy way.
   3945 		 */
   3946 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3947 		hlen = iphl + offset;
   3948 		if (__predict_false(m0->m_len <
   3949 				    (hlen + sizeof(struct tcphdr)))) {
   3950 
   3951 			aprint_debug_dev(sc->bge_dev,
   3952 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   3953 			    "not handled yet\n",
   3954 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   3955 #ifdef NOTYET
   3956 			/*
   3957 			 * XXX jonathan (at) NetBSD.org: untested.
   3958 			 * how to force  this branch to be taken?
   3959 			 */
   3960 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   3961 
   3962 			m_copydata(m0, offset, sizeof(ip), &ip);
   3963 			m_copydata(m0, hlen, sizeof(th), &th);
   3964 
   3965 			ip.ip_len = 0;
   3966 
   3967 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   3968 			    sizeof(ip.ip_len), &ip.ip_len);
   3969 
   3970 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   3971 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   3972 
   3973 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   3974 			    sizeof(th.th_sum), &th.th_sum);
   3975 
   3976 			hlen += th.th_off << 2;
   3977 			iptcp_opt_words	= hlen;
   3978 #else
   3979 			/*
   3980 			 * if_wm "hard" case not yet supported, can we not
   3981 			 * mandate it out of existence?
   3982 			 */
   3983 			(void) ip; (void)th; (void) ip_tcp_hlen;
   3984 
   3985 			return ENOBUFS;
   3986 #endif
   3987 		} else {
   3988 			ip = (struct ip *) (mtod(m0, char *) + offset);
   3989 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   3990 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   3991 
   3992 			/* Total IP/TCP options, in 32-bit words */
   3993 			iptcp_opt_words = (ip_tcp_hlen
   3994 					   - sizeof(struct tcphdr)
   3995 					   - sizeof(struct ip)) >> 2;
   3996 		}
   3997 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   3998 			th->th_sum = 0;
   3999 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4000 		} else {
   4001 			/*
   4002 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4003 			 * Requires TSO firmware patch for 5701/5703/5704.
   4004 			 */
   4005 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4006 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4007 		}
   4008 
   4009 		mss = m_head->m_pkthdr.segsz;
   4010 		txbd_tso_flags |=
   4011 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4012 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4013 
   4014 		/*
   4015 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4016 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4017 		 * the NIC copies 40 bytes of IP/TCP header from the
   4018 		 * supplied header into the IP/TCP header portion of
   4019 		 * each post-TSO-segment. If the supplied packet has IP or
   4020 		 * TCP options, we need to tell the NIC to copy those extra
   4021 		 * bytes into each  post-TSO header, in addition to the normal
   4022 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4023 		 * Unfortunately, the driver encoding of option length
   4024 		 * varies across different ASIC families.
   4025 		 */
   4026 		tcp_seg_flags = 0;
   4027 		if (iptcp_opt_words) {
   4028 			if (BGE_IS_5705_PLUS(sc)) {
   4029 				tcp_seg_flags =
   4030 					iptcp_opt_words << 11;
   4031 			} else {
   4032 				txbd_tso_flags |=
   4033 					iptcp_opt_words << 12;
   4034 			}
   4035 		}
   4036 		maxsegsize = mss | tcp_seg_flags;
   4037 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4038 
   4039 	}	/* TSO setup */
   4040 
   4041 	/*
   4042 	 * Start packing the mbufs in this chain into
   4043 	 * the fragment pointers. Stop when we run out
   4044 	 * of fragments or hit the end of the mbuf chain.
   4045 	 */
   4046 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4047 	    BUS_DMA_NOWAIT);
   4048 	if (error)
   4049 		return ENOBUFS;
   4050 	/*
   4051 	 * Sanity check: avoid coming within 16 descriptors
   4052 	 * of the end of the ring.
   4053 	 */
   4054 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4055 		BGE_TSO_PRINTF(("%s: "
   4056 		    " dmamap_load_mbuf too close to ring wrap\n",
   4057 		    device_xname(sc->bge_dev)));
   4058 		goto fail_unload;
   4059 	}
   4060 
   4061 	mtag = sc->ethercom.ec_nvlans ?
   4062 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4063 
   4064 
   4065 	/* Iterate over dmap-map fragments. */
   4066 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4067 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4068 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4069 			break;
   4070 
   4071 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4072 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4073 
   4074 		/*
   4075 		 * For 5751 and follow-ons, for TSO we must turn
   4076 		 * off checksum-assist flag in the tx-descr, and
   4077 		 * supply the ASIC-revision-specific encoding
   4078 		 * of TSO flags and segsize.
   4079 		 */
   4080 		if (use_tso) {
   4081 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4082 				f->bge_rsvd = maxsegsize;
   4083 				f->bge_flags = csum_flags | txbd_tso_flags;
   4084 			} else {
   4085 				f->bge_rsvd = 0;
   4086 				f->bge_flags =
   4087 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4088 			}
   4089 		} else {
   4090 			f->bge_rsvd = 0;
   4091 			f->bge_flags = csum_flags;
   4092 		}
   4093 
   4094 		if (mtag != NULL) {
   4095 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4096 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4097 		} else {
   4098 			f->bge_vlan_tag = 0;
   4099 		}
   4100 		cur = frag;
   4101 		BGE_INC(frag, BGE_TX_RING_CNT);
   4102 	}
   4103 
   4104 	if (i < dmamap->dm_nsegs) {
   4105 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4106 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4107 		goto fail_unload;
   4108 	}
   4109 
   4110 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4111 	    BUS_DMASYNC_PREWRITE);
   4112 
   4113 	if (frag == sc->bge_tx_saved_considx) {
   4114 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4115 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4116 
   4117 		goto fail_unload;
   4118 	}
   4119 
   4120 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4121 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4122 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4123 	sc->txdma[cur] = dma;
   4124 	sc->bge_txcnt += dmamap->dm_nsegs;
   4125 
   4126 	*txidx = frag;
   4127 
   4128 	return 0;
   4129 
   4130 fail_unload:
   4131 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4132 
   4133 	return ENOBUFS;
   4134 }
   4135 
   4136 /*
   4137  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4138  * to the mbuf data regions directly in the transmit descriptors.
   4139  */
   4140 static void
   4141 bge_start(struct ifnet *ifp)
   4142 {
   4143 	struct bge_softc *sc;
   4144 	struct mbuf *m_head = NULL;
   4145 	uint32_t prodidx;
   4146 	int pkts = 0;
   4147 
   4148 	sc = ifp->if_softc;
   4149 
   4150 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4151 		return;
   4152 
   4153 	prodidx = sc->bge_tx_prodidx;
   4154 
   4155 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4156 		IFQ_POLL(&ifp->if_snd, m_head);
   4157 		if (m_head == NULL)
   4158 			break;
   4159 
   4160 #if 0
   4161 		/*
   4162 		 * XXX
   4163 		 * safety overkill.  If this is a fragmented packet chain
   4164 		 * with delayed TCP/UDP checksums, then only encapsulate
   4165 		 * it if we have enough descriptors to handle the entire
   4166 		 * chain at once.
   4167 		 * (paranoia -- may not actually be needed)
   4168 		 */
   4169 		if (m_head->m_flags & M_FIRSTFRAG &&
   4170 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4171 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4172 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4173 				ifp->if_flags |= IFF_OACTIVE;
   4174 				break;
   4175 			}
   4176 		}
   4177 #endif
   4178 
   4179 		/*
   4180 		 * Pack the data into the transmit ring. If we
   4181 		 * don't have room, set the OACTIVE flag and wait
   4182 		 * for the NIC to drain the ring.
   4183 		 */
   4184 		if (bge_encap(sc, m_head, &prodidx)) {
   4185 			ifp->if_flags |= IFF_OACTIVE;
   4186 			break;
   4187 		}
   4188 
   4189 		/* now we are committed to transmit the packet */
   4190 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4191 		pkts++;
   4192 
   4193 		/*
   4194 		 * If there's a BPF listener, bounce a copy of this frame
   4195 		 * to him.
   4196 		 */
   4197 		if (ifp->if_bpf)
   4198 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
   4199 	}
   4200 	if (pkts == 0)
   4201 		return;
   4202 
   4203 	/* Transmit */
   4204 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4205 	/* 5700 b2 errata */
   4206 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4207 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4208 
   4209 	sc->bge_tx_prodidx = prodidx;
   4210 
   4211 	/*
   4212 	 * Set a timeout in case the chip goes out to lunch.
   4213 	 */
   4214 	ifp->if_timer = 5;
   4215 }
   4216 
   4217 static int
   4218 bge_init(struct ifnet *ifp)
   4219 {
   4220 	struct bge_softc *sc = ifp->if_softc;
   4221 	const uint16_t *m;
   4222 	int s, error = 0;
   4223 
   4224 	s = splnet();
   4225 
   4226 	ifp = &sc->ethercom.ec_if;
   4227 
   4228 	/* Cancel pending I/O and flush buffers. */
   4229 	bge_stop(ifp, 0);
   4230 
   4231 	bge_stop_fw(sc);
   4232 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4233 	bge_reset(sc);
   4234 	bge_sig_legacy(sc, BGE_RESET_START);
   4235 	bge_sig_post_reset(sc, BGE_RESET_START);
   4236 
   4237 	bge_chipinit(sc);
   4238 
   4239 	/*
   4240 	 * Init the various state machines, ring
   4241 	 * control blocks and firmware.
   4242 	 */
   4243 	error = bge_blockinit(sc);
   4244 	if (error != 0) {
   4245 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4246 		    error);
   4247 		splx(s);
   4248 		return error;
   4249 	}
   4250 
   4251 	ifp = &sc->ethercom.ec_if;
   4252 
   4253 	/* Specify MTU. */
   4254 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4255 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4256 
   4257 	/* Load our MAC address. */
   4258 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4259 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4260 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4261 
   4262 	/* Enable or disable promiscuous mode as needed. */
   4263 	if (ifp->if_flags & IFF_PROMISC) {
   4264 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4265 	} else {
   4266 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4267 	}
   4268 
   4269 	/* Program multicast filter. */
   4270 	bge_setmulti(sc);
   4271 
   4272 	/* Init RX ring. */
   4273 	bge_init_rx_ring_std(sc);
   4274 
   4275 	/*
   4276 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4277 	 * memory to insure that the chip has in fact read the first
   4278 	 * entry of the ring.
   4279 	 */
   4280 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4281 		uint32_t		v, i;
   4282 		for (i = 0; i < 10; i++) {
   4283 			DELAY(20);
   4284 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4285 			if (v == (MCLBYTES - ETHER_ALIGN))
   4286 				break;
   4287 		}
   4288 		if (i == 10)
   4289 			aprint_error_dev(sc->bge_dev,
   4290 			    "5705 A0 chip failed to load RX ring\n");
   4291 	}
   4292 
   4293 	/* Init jumbo RX ring. */
   4294 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4295 		bge_init_rx_ring_jumbo(sc);
   4296 
   4297 	/* Init our RX return ring index */
   4298 	sc->bge_rx_saved_considx = 0;
   4299 
   4300 	/* Init TX ring. */
   4301 	bge_init_tx_ring(sc);
   4302 
   4303 	/* Turn on transmitter */
   4304 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4305 
   4306 	/* Turn on receiver */
   4307 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4308 
   4309 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4310 
   4311 	/* Tell firmware we're alive. */
   4312 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4313 
   4314 	/* Enable host interrupts. */
   4315 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4316 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4317 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4318 
   4319 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4320 		goto out;
   4321 
   4322 	ifp->if_flags |= IFF_RUNNING;
   4323 	ifp->if_flags &= ~IFF_OACTIVE;
   4324 
   4325 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4326 
   4327 out:
   4328 	splx(s);
   4329 
   4330 	return error;
   4331 }
   4332 
   4333 /*
   4334  * Set media options.
   4335  */
   4336 static int
   4337 bge_ifmedia_upd(struct ifnet *ifp)
   4338 {
   4339 	struct bge_softc *sc = ifp->if_softc;
   4340 	struct mii_data *mii = &sc->bge_mii;
   4341 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4342 	int rc;
   4343 
   4344 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4345 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4346 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4347 			return EINVAL;
   4348 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4349 		case IFM_AUTO:
   4350 			/*
   4351 			 * The BCM5704 ASIC appears to have a special
   4352 			 * mechanism for programming the autoneg
   4353 			 * advertisement registers in TBI mode.
   4354 			 */
   4355 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4356 				uint32_t sgdig;
   4357 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4358 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4359 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4360 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4361 					sgdig |= BGE_SGDIGCFG_AUTO |
   4362 					    BGE_SGDIGCFG_PAUSE_CAP |
   4363 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4364 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4365 					    sgdig | BGE_SGDIGCFG_SEND);
   4366 					DELAY(5);
   4367 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4368 				}
   4369 			}
   4370 			break;
   4371 		case IFM_1000_SX:
   4372 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4373 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4374 				    BGE_MACMODE_HALF_DUPLEX);
   4375 			} else {
   4376 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4377 				    BGE_MACMODE_HALF_DUPLEX);
   4378 			}
   4379 			break;
   4380 		default:
   4381 			return EINVAL;
   4382 		}
   4383 		/* XXX 802.3x flow control for 1000BASE-SX */
   4384 		return 0;
   4385 	}
   4386 
   4387 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4388 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4389 		return 0;
   4390 
   4391 	/*
   4392 	 * Force an interrupt so that we will call bge_link_upd
   4393 	 * if needed and clear any pending link state attention.
   4394 	 * Without this we are not getting any further interrupts
   4395 	 * for link state changes and thus will not UP the link and
   4396 	 * not be able to send in bge_start. The only way to get
   4397 	 * things working was to receive a packet and get a RX intr.
   4398 	 */
   4399 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4400 	    sc->bge_flags & BGE_IS_5788)
   4401 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4402 	else
   4403 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4404 
   4405 	return rc;
   4406 }
   4407 
   4408 /*
   4409  * Report current media status.
   4410  */
   4411 static void
   4412 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4413 {
   4414 	struct bge_softc *sc = ifp->if_softc;
   4415 	struct mii_data *mii = &sc->bge_mii;
   4416 
   4417 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4418 		ifmr->ifm_status = IFM_AVALID;
   4419 		ifmr->ifm_active = IFM_ETHER;
   4420 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4421 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4422 			ifmr->ifm_status |= IFM_ACTIVE;
   4423 		ifmr->ifm_active |= IFM_1000_SX;
   4424 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4425 			ifmr->ifm_active |= IFM_HDX;
   4426 		else
   4427 			ifmr->ifm_active |= IFM_FDX;
   4428 		return;
   4429 	}
   4430 
   4431 	mii_pollstat(mii);
   4432 	ifmr->ifm_status = mii->mii_media_status;
   4433 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4434 	    sc->bge_flowflags;
   4435 }
   4436 
   4437 static int
   4438 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4439 {
   4440 	struct bge_softc *sc = ifp->if_softc;
   4441 	struct ifreq *ifr = (struct ifreq *) data;
   4442 	int s, error = 0;
   4443 	struct mii_data *mii;
   4444 
   4445 	s = splnet();
   4446 
   4447 	switch (command) {
   4448 	case SIOCSIFFLAGS:
   4449 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4450 			break;
   4451 		if (ifp->if_flags & IFF_UP) {
   4452 			/*
   4453 			 * If only the state of the PROMISC flag changed,
   4454 			 * then just use the 'set promisc mode' command
   4455 			 * instead of reinitializing the entire NIC. Doing
   4456 			 * a full re-init means reloading the firmware and
   4457 			 * waiting for it to start up, which may take a
   4458 			 * second or two.
   4459 			 */
   4460 			if (ifp->if_flags & IFF_RUNNING &&
   4461 			    ifp->if_flags & IFF_PROMISC &&
   4462 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4463 				BGE_SETBIT(sc, BGE_RX_MODE,
   4464 				    BGE_RXMODE_RX_PROMISC);
   4465 			} else if (ifp->if_flags & IFF_RUNNING &&
   4466 			    !(ifp->if_flags & IFF_PROMISC) &&
   4467 			    sc->bge_if_flags & IFF_PROMISC) {
   4468 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4469 				    BGE_RXMODE_RX_PROMISC);
   4470 			} else if (!(sc->bge_if_flags & IFF_UP))
   4471 				bge_init(ifp);
   4472 		} else {
   4473 			if (ifp->if_flags & IFF_RUNNING)
   4474 				bge_stop(ifp, 1);
   4475 		}
   4476 		sc->bge_if_flags = ifp->if_flags;
   4477 		error = 0;
   4478 		break;
   4479 	case SIOCSIFMEDIA:
   4480 		/* XXX Flow control is not supported for 1000BASE-SX */
   4481 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4482 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4483 			sc->bge_flowflags = 0;
   4484 		}
   4485 
   4486 		/* Flow control requires full-duplex mode. */
   4487 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4488 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4489 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4490 		}
   4491 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4492 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4493 				/* We can do both TXPAUSE and RXPAUSE. */
   4494 				ifr->ifr_media |=
   4495 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4496 			}
   4497 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4498 		}
   4499 		/* FALLTHROUGH */
   4500 	case SIOCGIFMEDIA:
   4501 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4502 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4503 			    command);
   4504 		} else {
   4505 			mii = &sc->bge_mii;
   4506 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4507 			    command);
   4508 		}
   4509 		break;
   4510 	default:
   4511 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4512 			break;
   4513 
   4514 		error = 0;
   4515 
   4516 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4517 			;
   4518 		else if (ifp->if_flags & IFF_RUNNING)
   4519 			bge_setmulti(sc);
   4520 		break;
   4521 	}
   4522 
   4523 	splx(s);
   4524 
   4525 	return error;
   4526 }
   4527 
   4528 static void
   4529 bge_watchdog(struct ifnet *ifp)
   4530 {
   4531 	struct bge_softc *sc;
   4532 
   4533 	sc = ifp->if_softc;
   4534 
   4535 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4536 
   4537 	ifp->if_flags &= ~IFF_RUNNING;
   4538 	bge_init(ifp);
   4539 
   4540 	ifp->if_oerrors++;
   4541 }
   4542 
   4543 static void
   4544 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4545 {
   4546 	int i;
   4547 
   4548 	BGE_CLRBIT(sc, reg, bit);
   4549 
   4550 	for (i = 0; i < BGE_TIMEOUT; i++) {
   4551 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4552 			return;
   4553 		delay(100);
   4554 		if (sc->bge_flags & BGE_PCIE)
   4555 		  DELAY(1000);
   4556 	}
   4557 
   4558 	/*
   4559 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4560 	 * on some environment (and once after boot?)
   4561 	 */
   4562 	if (reg != BGE_SRS_MODE)
   4563 		aprint_error_dev(sc->bge_dev,
   4564 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4565 		    (u_long)reg, bit);
   4566 }
   4567 
   4568 /*
   4569  * Stop the adapter and free any mbufs allocated to the
   4570  * RX and TX lists.
   4571  */
   4572 static void
   4573 bge_stop(struct ifnet *ifp, int disable)
   4574 {
   4575 	struct bge_softc *sc = ifp->if_softc;
   4576 
   4577 	callout_stop(&sc->bge_timeout);
   4578 
   4579 	/*
   4580 	 * Tell firmware we're shutting down.
   4581 	 */
   4582 	bge_stop_fw(sc);
   4583 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4584 
   4585 	/* Disable host interrupts. */
   4586 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4587 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4588 
   4589 	/*
   4590 	 * Disable all of the receiver blocks
   4591 	 */
   4592 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4593 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4594 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4595 	if (BGE_IS_5700_FAMILY(sc))
   4596 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4597 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4598 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4599 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4600 
   4601 	/*
   4602 	 * Disable all of the transmit blocks
   4603 	 */
   4604 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4605 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4606 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4607 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4608 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4609 	if (BGE_IS_5700_FAMILY(sc))
   4610 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4611 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4612 
   4613 	/*
   4614 	 * Shut down all of the memory managers and related
   4615 	 * state machines.
   4616 	 */
   4617 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4618 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4619 	if (BGE_IS_5700_FAMILY(sc))
   4620 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4621 
   4622 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4623 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4624 
   4625 	if (BGE_IS_5700_FAMILY(sc)) {
   4626 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4627 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4628 	}
   4629 
   4630 	bge_reset(sc);
   4631 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4632 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4633 
   4634 	/*
   4635 	 * Keep the ASF firmware running if up.
   4636 	 */
   4637 	if (sc->bge_asf_mode & ASF_STACKUP)
   4638 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4639 	else
   4640 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4641 
   4642 	/* Free the RX lists. */
   4643 	bge_free_rx_ring_std(sc);
   4644 
   4645 	/* Free jumbo RX list. */
   4646 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4647 		bge_free_rx_ring_jumbo(sc);
   4648 
   4649 	/* Free TX buffers. */
   4650 	bge_free_tx_ring(sc);
   4651 
   4652 	/*
   4653 	 * Isolate/power down the PHY.
   4654 	 */
   4655 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4656 		mii_down(&sc->bge_mii);
   4657 
   4658 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4659 
   4660 	/* Clear MAC's link state (PHY may still have link UP). */
   4661 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4662 
   4663 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4664 }
   4665 
   4666 static void
   4667 bge_link_upd(struct bge_softc *sc)
   4668 {
   4669 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4670 	struct mii_data *mii = &sc->bge_mii;
   4671 	uint32_t status;
   4672 	int link;
   4673 
   4674 	/* Clear 'pending link event' flag */
   4675 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4676 
   4677 	/*
   4678 	 * Process link state changes.
   4679 	 * Grrr. The link status word in the status block does
   4680 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4681 	 * according to all available information. Hence, we have
   4682 	 * to enable MII interrupts in order to properly obtain
   4683 	 * async link changes. Unfortunately, this also means that
   4684 	 * we have to read the MAC status register to detect link
   4685 	 * changes, thereby adding an additional register access to
   4686 	 * the interrupt handler.
   4687 	 */
   4688 
   4689 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4690 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4691 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4692 			mii_pollstat(mii);
   4693 
   4694 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4695 			    mii->mii_media_status & IFM_ACTIVE &&
   4696 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4697 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4698 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4699 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4700 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4701 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4702 
   4703 			/* Clear the interrupt */
   4704 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4705 			    BGE_EVTENB_MI_INTERRUPT);
   4706 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4707 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4708 			    BRGPHY_INTRS);
   4709 		}
   4710 		return;
   4711 	}
   4712 
   4713 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4714 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4715 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4716 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4717 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4718 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4719 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4720 					    BGE_MACMODE_TBI_SEND_CFGS);
   4721 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4722 				if_link_state_change(ifp, LINK_STATE_UP);
   4723 			}
   4724 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4725 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4726 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4727 		}
   4728         /*
   4729 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4730 	 * This should not happen since mii callouts are locked now, but
   4731 	 * we keep this check for debug.
   4732 	 */
   4733 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4734 		/*
   4735 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4736 		 * bit in status word always set. Workaround this bug by
   4737 		 * reading PHY link status directly.
   4738 		 */
   4739 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4740 		    BGE_STS_LINK : 0;
   4741 
   4742 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4743 			mii_pollstat(mii);
   4744 
   4745 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4746 			    mii->mii_media_status & IFM_ACTIVE &&
   4747 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4748 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4749 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4750 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4751 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4752 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4753 		}
   4754 	}
   4755 
   4756 	/* Clear the attention */
   4757 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4758 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4759 	    BGE_MACSTAT_LINK_CHANGED);
   4760 }
   4761 
   4762 static int
   4763 sysctl_bge_verify(SYSCTLFN_ARGS)
   4764 {
   4765 	int error, t;
   4766 	struct sysctlnode node;
   4767 
   4768 	node = *rnode;
   4769 	t = *(int*)rnode->sysctl_data;
   4770 	node.sysctl_data = &t;
   4771 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4772 	if (error || newp == NULL)
   4773 		return error;
   4774 
   4775 #if 0
   4776 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4777 	    node.sysctl_num, rnode->sysctl_num));
   4778 #endif
   4779 
   4780 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4781 		if (t < 0 || t >= NBGE_RX_THRESH)
   4782 			return EINVAL;
   4783 		bge_update_all_threshes(t);
   4784 	} else
   4785 		return EINVAL;
   4786 
   4787 	*(int*)rnode->sysctl_data = t;
   4788 
   4789 	return 0;
   4790 }
   4791 
   4792 /*
   4793  * Set up sysctl(3) MIB, hw.bge.*.
   4794  *
   4795  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4796  */
   4797 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4798 {
   4799 	int rc, bge_root_num;
   4800 	const struct sysctlnode *node;
   4801 
   4802 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4803 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4804 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4805 		goto err;
   4806 	}
   4807 
   4808 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4809 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4810 	    SYSCTL_DESCR("BGE interface controls"),
   4811 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4812 		goto err;
   4813 	}
   4814 
   4815 	bge_root_num = node->sysctl_num;
   4816 
   4817 	/* BGE Rx interrupt mitigation level */
   4818 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4819 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4820 	    CTLTYPE_INT, "rx_lvl",
   4821 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4822 	    sysctl_bge_verify, 0,
   4823 	    &bge_rx_thresh_lvl,
   4824 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4825 	    CTL_EOL)) != 0) {
   4826 		goto err;
   4827 	}
   4828 
   4829 	bge_rxthresh_nodenum = node->sysctl_num;
   4830 
   4831 	return;
   4832 
   4833 err:
   4834 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4835 }
   4836 
   4837 #ifdef BGE_DEBUG
   4838 void
   4839 bge_debug_info(struct bge_softc *sc)
   4840 {
   4841 
   4842 	printf("Hardware Flags:\n");
   4843 	if (BGE_IS_5755_PLUS(sc))
   4844 		printf(" - 5755 Plus\n");
   4845 	if (BGE_IS_5750_OR_BEYOND(sc))
   4846 		printf(" - 5750 Plus\n");
   4847 	if (BGE_IS_5705_PLUS(sc))
   4848 		printf(" - 5705 Plus\n");
   4849 	if (BGE_IS_5714_FAMILY(sc))
   4850 		printf(" - 5714 Family\n");
   4851 	if (BGE_IS_5700_FAMILY(sc))
   4852 		printf(" - 5700 Family\n");
   4853 	if (sc->bge_flags & BGE_IS_5788)
   4854 		printf(" - 5788\n");
   4855 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4856 		printf(" - Supports Jumbo Frames\n");
   4857 	if (sc->bge_flags & BGE_NO_EEPROM)
   4858 		printf(" - No EEPROM\n");
   4859 	if (sc->bge_flags & BGE_PCIX)
   4860 		printf(" - PCI-X Bus\n");
   4861 	if (sc->bge_flags & BGE_PCIE)
   4862 		printf(" - PCI Express Bus\n");
   4863 	if (sc->bge_flags & BGE_NO_3LED)
   4864 		printf(" - No 3 LEDs\n");
   4865 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4866 		printf(" - RX Alignment Bug\n");
   4867 	if (sc->bge_flags & BGE_TSO)
   4868 		printf(" - TSO\n");
   4869 }
   4870 #endif /* BGE_DEBUG */
   4871 
   4872 static int
   4873 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4874 {
   4875 	prop_dictionary_t dict;
   4876 	prop_data_t ea;
   4877 
   4878 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4879 		return 1;
   4880 
   4881 	dict = device_properties(sc->bge_dev);
   4882 	ea = prop_dictionary_get(dict, "mac-address");
   4883 	if (ea != NULL) {
   4884 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4885 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4886 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4887 		return 0;
   4888 	}
   4889 
   4890 	return 1;
   4891 }
   4892 
   4893 static int
   4894 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4895 {
   4896 	uint32_t mac_addr;
   4897 
   4898 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4899 	if ((mac_addr >> 16) == 0x484b) {
   4900 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4901 		ether_addr[1] = (uint8_t)mac_addr;
   4902 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4903 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4904 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4905 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4906 		ether_addr[5] = (uint8_t)mac_addr;
   4907 		return 0;
   4908 	}
   4909 	return 1;
   4910 }
   4911 
   4912 static int
   4913 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4914 {
   4915 	int mac_offset = BGE_EE_MAC_OFFSET;
   4916 
   4917 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4918 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4919 
   4920 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4921 	    ETHER_ADDR_LEN));
   4922 }
   4923 
   4924 static int
   4925 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4926 {
   4927 
   4928 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4929 		return 1;
   4930 
   4931 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4932 	   ETHER_ADDR_LEN));
   4933 }
   4934 
   4935 static int
   4936 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4937 {
   4938 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4939 		/* NOTE: Order is critical */
   4940 		bge_get_eaddr_fw,
   4941 		bge_get_eaddr_mem,
   4942 		bge_get_eaddr_nvram,
   4943 		bge_get_eaddr_eeprom,
   4944 		NULL
   4945 	};
   4946 	const bge_eaddr_fcn_t *func;
   4947 
   4948 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4949 		if ((*func)(sc, eaddr) == 0)
   4950 			break;
   4951 	}
   4952 	return (*func == NULL ? ENXIO : 0);
   4953 }
   4954