if_bge.c revision 1.182 1 /* $NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $");
83
84 #include "vlan.h"
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NRND > 0
104 #include <sys/rnd.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #endif
113
114 /* Headers for TCP Segmentation Offload (TSO) */
115 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
116 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
117 #include <netinet/ip.h> /* for struct ip */
118 #include <netinet/tcp.h> /* for struct tcphdr */
119
120
121 #include <net/bpf.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/miidevs.h>
130 #include <dev/mii/brgphyreg.h>
131
132 #include <dev/pci/if_bgereg.h>
133 #include <dev/pci/if_bgevar.h>
134
135 #include <uvm/uvm_extern.h>
136 #include <prop/proplib.h>
137
138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
139
140
141 /*
142 * Tunable thresholds for rx-side bge interrupt mitigation.
143 */
144
145 /*
146 * The pairs of values below were obtained from empirical measurement
147 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
148 * interrupt for every N packets received, where N is, approximately,
149 * the second value (rx_max_bds) in each pair. The values are chosen
150 * such that moving from one pair to the succeeding pair was observed
151 * to roughly halve interrupt rate under sustained input packet load.
152 * The values were empirically chosen to avoid overflowing internal
153 * limits on the bcm5700: inreasing rx_ticks much beyond 600
154 * results in internal wrapping and higher interrupt rates.
155 * The limit of 46 frames was chosen to match NFS workloads.
156 *
157 * These values also work well on bcm5701, bcm5704C, and (less
158 * tested) bcm5703. On other chipsets, (including the Altima chip
159 * family), the larger values may overflow internal chip limits,
160 * leading to increasing interrupt rates rather than lower interrupt
161 * rates.
162 *
163 * Applications using heavy interrupt mitigation (interrupting every
164 * 32 or 46 frames) in both directions may need to increase the TCP
165 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
166 * full link bandwidth, due to ACKs and window updates lingering
167 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
168 */
169 static const struct bge_load_rx_thresh {
170 int rx_ticks;
171 int rx_max_bds; }
172 bge_rx_threshes[] = {
173 { 32, 2 },
174 { 50, 4 },
175 { 100, 8 },
176 { 192, 16 },
177 { 416, 32 },
178 { 598, 46 }
179 };
180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
181
182 /* XXX patchable; should be sysctl'able */
183 static int bge_auto_thresh = 1;
184 static int bge_rx_thresh_lvl;
185
186 static int bge_rxthresh_nodenum;
187
188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
189
190 static int bge_probe(device_t, cfdata_t, void *);
191 static void bge_attach(device_t, device_t, void *);
192 static void bge_release_resources(struct bge_softc *);
193
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxeof(struct bge_softc *);
202
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_setpowerstate(struct bge_softc *, int);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(device_t);
255
256 #define BGE_RESET_START 1
257 #define BGE_RESET_STOP 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC9100,
317 "Altima AC9100 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_BROADCOM,
320 PCI_PRODUCT_BROADCOM_BCM5700,
321 "Broadcom BCM5700 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_BROADCOM,
324 PCI_PRODUCT_BROADCOM_BCM5701,
325 "Broadcom BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5702,
329 "Broadcom BCM5702 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5702X,
333 "Broadcom BCM5702X Gigabit Ethernet" },
334 { PCI_VENDOR_BROADCOM,
335 PCI_PRODUCT_BROADCOM_BCM5703,
336 "Broadcom BCM5703 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5703X,
340 "Broadcom BCM5703X Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5704C,
348 "Broadcom BCM5704C Dual Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5704S,
352 "Broadcom BCM5704S Dual Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5705,
356 "Broadcom BCM5705 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5705F,
360 "Broadcom BCM5705F Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705K,
364 "Broadcom BCM5705K Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705M,
368 "Broadcom BCM5705M Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 "Broadcom BCM5705M Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5714,
376 "Broadcom BCM5714 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5714S,
380 "Broadcom BCM5714S Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5715,
384 "Broadcom BCM5715 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5715S,
388 "Broadcom BCM5715S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5717,
392 "Broadcom BCM5717 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5718,
396 "Broadcom BCM5718 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5720,
400 "Broadcom BCM5720 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5721,
404 "Broadcom BCM5721 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5722,
408 "Broadcom BCM5722 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5723,
412 "Broadcom BCM5723 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5724,
416 "Broadcom BCM5724 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5750,
420 "Broadcom BCM5750 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5750M,
424 "Broadcom BCM5750M Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5751,
428 "Broadcom BCM5751 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5751F,
432 "Broadcom BCM5751F Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751M,
436 "Broadcom BCM5751M Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5752,
440 "Broadcom BCM5752 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5752M,
444 "Broadcom BCM5752M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5753,
448 "Broadcom BCM5753 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5753F,
452 "Broadcom BCM5753F Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753M,
456 "Broadcom BCM5753M Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5754,
460 "Broadcom BCM5754 Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5754M,
464 "Broadcom BCM5754M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5755,
468 "Broadcom BCM5755 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5755M,
472 "Broadcom BCM5755M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5756,
476 "Broadcom BCM5756 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5761,
480 "Broadcom BCM5761 Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5761E,
484 "Broadcom BCM5761E Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761S,
488 "Broadcom BCM5761S Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761SE,
492 "Broadcom BCM5761SE Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5764,
496 "Broadcom BCM5764 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5780,
500 "Broadcom BCM5780 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5780S,
504 "Broadcom BCM5780S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5781,
508 "Broadcom BCM5781 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5782,
512 "Broadcom BCM5782 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5784M,
516 "BCM5784M NetLink 1000baseT Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5786,
520 "Broadcom BCM5786 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5787,
524 "Broadcom BCM5787 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5787M,
528 "Broadcom BCM5787M Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5788,
532 "Broadcom BCM5788 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5789,
536 "Broadcom BCM5789 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5901,
540 "Broadcom BCM5901 Fast Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5901A2,
544 "Broadcom BCM5901A2 Fast Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5903M,
548 "Broadcom BCM5903M Fast Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5906,
552 "Broadcom BCM5906 Fast Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5906M,
556 "Broadcom BCM5906M Fast Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM57760,
560 "Broadcom BCM57760 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM57761,
564 "Broadcom BCM57761 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM57765,
568 "Broadcom BCM57765 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM57780,
572 "Broadcom BCM57780 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM57781,
576 "Broadcom BCM57781 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57785,
580 "Broadcom BCM57785 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57788,
584 "Broadcom BCM57788 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57790,
588 "Broadcom BCM57790 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57791,
592 "Broadcom BCM57791 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57795,
596 "Broadcom BCM57795 Fast Ethernet",
597 },
598 { PCI_VENDOR_SCHNEIDERKOCH,
599 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
600 "SysKonnect SK-9Dx1 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_3COM,
603 PCI_PRODUCT_3COM_3C996,
604 "3Com 3c996 Gigabit Ethernet",
605 },
606 { 0,
607 0,
608 NULL },
609 };
610
611 /*
612 * XXX: how to handle variants based on 5750 and derivatives:
613 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
614 * in general behave like a 5705, except with additional quirks.
615 * This driver's current handling of the 5721 is wrong;
616 * how we map ASIC revision to "quirks" needs more thought.
617 * (defined here until the thought is done).
618 */
619 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
620 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
621 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
622 #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
623 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
624 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
625
626 static const struct bge_revision {
627 uint32_t br_chipid;
628 const char *br_name;
629 } bge_revisions[] = {
630 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
631 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
632 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
633 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
634 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
635 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
636 /* This is treated like a BCM5700 Bx */
637 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
638 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
639 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
640 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
641 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
642 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
643 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
644 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
645 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
646 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
647 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
648 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
649 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
650 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
651 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
652 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
653 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
654 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
655 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
656 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
657 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
658 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
659 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
660 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
661 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
662 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
663 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
664 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
665 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
666 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
667 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
668 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
669 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
670 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
671 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
672 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
673 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
674 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
675 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
676 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
677 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
678 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
679 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
680 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
681 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
682 /* 5754 and 5787 share the same ASIC ID */
683 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
684 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
685 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
686 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
687 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
688 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
689 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
690
691 { 0, NULL }
692 };
693
694 /*
695 * Some defaults for major revisions, so that newer steppings
696 * that we don't know about have a shot at working.
697 */
698 static const struct bge_revision bge_majorrevs[] = {
699 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
700 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
701 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
702 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
703 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
704 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
705 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
706 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
707 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
708 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
709 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
710 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
711 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
712 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
713 /* 5754 and 5787 share the same ASIC ID */
714 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
715 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
716 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
717 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
718 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
719
720 { 0, NULL }
721 };
722
723 static int bge_allow_asf = 1;
724
725 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
726 bge_probe, bge_attach, NULL, NULL);
727
728 static uint32_t
729 bge_readmem_ind(struct bge_softc *sc, int off)
730 {
731 pcireg_t val;
732
733 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
734 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
735 return val;
736 }
737
738 static void
739 bge_writemem_ind(struct bge_softc *sc, int off, int val)
740 {
741 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
742 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
743 }
744
745 /*
746 * PCI Express only
747 */
748 static void
749 bge_set_max_readrq(struct bge_softc *sc)
750 {
751 device_t dev;
752 pcireg_t val;
753
754 dev = sc->bge_dev;
755
756 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
757 + PCI_PCIE_DCSR);
758 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
759 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
760 printf("adjust device control 0x%04x ",
761 val);
762 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
763 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
764 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
765 + PCI_PCIE_DCSR, val);
766 printf("-> 0x%04x\n", val);
767 }
768 }
769
770 #ifdef notdef
771 static uint32_t
772 bge_readreg_ind(struct bge_softc *sc, int off)
773 {
774 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
775 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
776 }
777 #endif
778
779 static void
780 bge_writereg_ind(struct bge_softc *sc, int off, int val)
781 {
782 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
783 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
784 }
785
786 static void
787 bge_writemem_direct(struct bge_softc *sc, int off, int val)
788 {
789 CSR_WRITE_4(sc, off, val);
790 }
791
792 static void
793 bge_writembx(struct bge_softc *sc, int off, int val)
794 {
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
796 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
797
798 CSR_WRITE_4(sc, off, val);
799 }
800
801 static uint8_t
802 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
803 {
804 uint32_t access, byte = 0;
805 int i;
806
807 /* Lock. */
808 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
809 for (i = 0; i < 8000; i++) {
810 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
811 break;
812 DELAY(20);
813 }
814 if (i == 8000)
815 return 1;
816
817 /* Enable access. */
818 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
819 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
820
821 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
822 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
823 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
824 DELAY(10);
825 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
826 DELAY(10);
827 break;
828 }
829 }
830
831 if (i == BGE_TIMEOUT * 10) {
832 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
833 return 1;
834 }
835
836 /* Get result. */
837 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
838
839 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
840
841 /* Disable access. */
842 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
843
844 /* Unlock. */
845 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
846 CSR_READ_4(sc, BGE_NVRAM_SWARB);
847
848 return 0;
849 }
850
851 /*
852 * Read a sequence of bytes from NVRAM.
853 */
854 static int
855 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
856 {
857 int err = 0, i;
858 uint8_t byte = 0;
859
860 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
861 return 1;
862
863 for (i = 0; i < cnt; i++) {
864 err = bge_nvram_getbyte(sc, off + i, &byte);
865 if (err)
866 break;
867 *(dest + i) = byte;
868 }
869
870 return (err ? 1 : 0);
871 }
872
873 /*
874 * Read a byte of data stored in the EEPROM at address 'addr.' The
875 * BCM570x supports both the traditional bitbang interface and an
876 * auto access interface for reading the EEPROM. We use the auto
877 * access method.
878 */
879 static uint8_t
880 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
881 {
882 int i;
883 uint32_t byte = 0;
884
885 /*
886 * Enable use of auto EEPROM access so we can avoid
887 * having to use the bitbang method.
888 */
889 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
890
891 /* Reset the EEPROM, load the clock period. */
892 CSR_WRITE_4(sc, BGE_EE_ADDR,
893 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
894 DELAY(20);
895
896 /* Issue the read EEPROM command. */
897 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
898
899 /* Wait for completion */
900 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
901 DELAY(10);
902 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
903 break;
904 }
905
906 if (i == BGE_TIMEOUT * 10) {
907 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
908 return 1;
909 }
910
911 /* Get result. */
912 byte = CSR_READ_4(sc, BGE_EE_DATA);
913
914 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
915
916 return 0;
917 }
918
919 /*
920 * Read a sequence of bytes from the EEPROM.
921 */
922 static int
923 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
924 {
925 int err = 0, i;
926 uint8_t byte = 0;
927 char *dest = destv;
928
929 for (i = 0; i < cnt; i++) {
930 err = bge_eeprom_getbyte(sc, off + i, &byte);
931 if (err)
932 break;
933 *(dest + i) = byte;
934 }
935
936 return (err ? 1 : 0);
937 }
938
939 static int
940 bge_miibus_readreg(device_t dev, int phy, int reg)
941 {
942 struct bge_softc *sc = device_private(dev);
943 uint32_t val;
944 uint32_t autopoll;
945 int i;
946
947 /*
948 * Broadcom's own driver always assumes the internal
949 * PHY is at GMII address 1. On some chips, the PHY responds
950 * to accesses at all addresses, which could cause us to
951 * bogusly attach the PHY 32 times at probe type. Always
952 * restricting the lookup to address 1 is simpler than
953 * trying to figure out which chips revisions should be
954 * special-cased.
955 */
956 if (phy != 1)
957 return 0;
958
959 /* Reading with autopolling on may trigger PCI errors */
960 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
961 if (autopoll & BGE_MIMODE_AUTOPOLL) {
962 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
963 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
964 DELAY(40);
965 }
966
967 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
968 BGE_MIPHY(phy) | BGE_MIREG(reg));
969
970 for (i = 0; i < BGE_TIMEOUT; i++) {
971 val = CSR_READ_4(sc, BGE_MI_COMM);
972 if (!(val & BGE_MICOMM_BUSY))
973 break;
974 delay(10);
975 }
976
977 if (i == BGE_TIMEOUT) {
978 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
979 val = 0;
980 goto done;
981 }
982
983 val = CSR_READ_4(sc, BGE_MI_COMM);
984
985 done:
986 if (autopoll & BGE_MIMODE_AUTOPOLL) {
987 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
988 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
989 DELAY(40);
990 }
991
992 if (val & BGE_MICOMM_READFAIL)
993 return 0;
994
995 return (val & 0xFFFF);
996 }
997
998 static void
999 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1000 {
1001 struct bge_softc *sc = device_private(dev);
1002 uint32_t autopoll;
1003 int i;
1004
1005 if (phy!=1) {
1006 return;
1007 }
1008
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1010 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1011 return;
1012 }
1013
1014 /* Reading with autopolling on may trigger PCI errors */
1015 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1016 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1017 delay(40);
1018 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1019 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1020 delay(10); /* 40 usec is supposed to be adequate */
1021 }
1022
1023 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1024 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1025
1026 for (i = 0; i < BGE_TIMEOUT; i++) {
1027 delay(10);
1028 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1029 delay(5);
1030 CSR_READ_4(sc, BGE_MI_COMM);
1031 break;
1032 }
1033 }
1034
1035 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1036 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1037 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1038 delay(40);
1039 }
1040
1041 if (i == BGE_TIMEOUT)
1042 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1043 }
1044
1045 static void
1046 bge_miibus_statchg(device_t dev)
1047 {
1048 struct bge_softc *sc = device_private(dev);
1049 struct mii_data *mii = &sc->bge_mii;
1050
1051 /*
1052 * Get flow control negotiation result.
1053 */
1054 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1055 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1056 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1057 mii->mii_media_active &= ~IFM_ETH_FMASK;
1058 }
1059
1060 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1061 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1062 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1063 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1064 else
1065 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1066
1067 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1068 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1069 else
1070 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1071
1072 /*
1073 * 802.3x flow control
1074 */
1075 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1076 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1077 else
1078 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1079
1080 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1081 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1082 else
1083 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1084 }
1085
1086 /*
1087 * Update rx threshold levels to values in a particular slot
1088 * of the interrupt-mitigation table bge_rx_threshes.
1089 */
1090 static void
1091 bge_set_thresh(struct ifnet *ifp, int lvl)
1092 {
1093 struct bge_softc *sc = ifp->if_softc;
1094 int s;
1095
1096 /* For now, just save the new Rx-intr thresholds and record
1097 * that a threshold update is pending. Updating the hardware
1098 * registers here (even at splhigh()) is observed to
1099 * occasionaly cause glitches where Rx-interrupts are not
1100 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1101 */
1102 s = splnet();
1103 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1104 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1105 sc->bge_pending_rxintr_change = 1;
1106 splx(s);
1107
1108 return;
1109 }
1110
1111
1112 /*
1113 * Update Rx thresholds of all bge devices
1114 */
1115 static void
1116 bge_update_all_threshes(int lvl)
1117 {
1118 struct ifnet *ifp;
1119 const char * const namebuf = "bge";
1120 int namelen;
1121
1122 if (lvl < 0)
1123 lvl = 0;
1124 else if (lvl >= NBGE_RX_THRESH)
1125 lvl = NBGE_RX_THRESH - 1;
1126
1127 namelen = strlen(namebuf);
1128 /*
1129 * Now search all the interfaces for this name/number
1130 */
1131 IFNET_FOREACH(ifp) {
1132 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1133 continue;
1134 /* We got a match: update if doing auto-threshold-tuning */
1135 if (bge_auto_thresh)
1136 bge_set_thresh(ifp, lvl);
1137 }
1138 }
1139
1140 /*
1141 * Handle events that have triggered interrupts.
1142 */
1143 static void
1144 bge_handle_events(struct bge_softc *sc)
1145 {
1146
1147 return;
1148 }
1149
1150 /*
1151 * Memory management for jumbo frames.
1152 */
1153
1154 static int
1155 bge_alloc_jumbo_mem(struct bge_softc *sc)
1156 {
1157 char *ptr, *kva;
1158 bus_dma_segment_t seg;
1159 int i, rseg, state, error;
1160 struct bge_jpool_entry *entry;
1161
1162 state = error = 0;
1163
1164 /* Grab a big chunk o' storage. */
1165 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1166 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1167 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1168 return ENOBUFS;
1169 }
1170
1171 state = 1;
1172 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1173 BUS_DMA_NOWAIT)) {
1174 aprint_error_dev(sc->bge_dev,
1175 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1176 error = ENOBUFS;
1177 goto out;
1178 }
1179
1180 state = 2;
1181 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1182 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1183 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1184 error = ENOBUFS;
1185 goto out;
1186 }
1187
1188 state = 3;
1189 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1190 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1191 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1192 error = ENOBUFS;
1193 goto out;
1194 }
1195
1196 state = 4;
1197 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1198 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1199
1200 SLIST_INIT(&sc->bge_jfree_listhead);
1201 SLIST_INIT(&sc->bge_jinuse_listhead);
1202
1203 /*
1204 * Now divide it up into 9K pieces and save the addresses
1205 * in an array.
1206 */
1207 ptr = sc->bge_cdata.bge_jumbo_buf;
1208 for (i = 0; i < BGE_JSLOTS; i++) {
1209 sc->bge_cdata.bge_jslots[i] = ptr;
1210 ptr += BGE_JLEN;
1211 entry = malloc(sizeof(struct bge_jpool_entry),
1212 M_DEVBUF, M_NOWAIT);
1213 if (entry == NULL) {
1214 aprint_error_dev(sc->bge_dev,
1215 "no memory for jumbo buffer queue!\n");
1216 error = ENOBUFS;
1217 goto out;
1218 }
1219 entry->slot = i;
1220 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1221 entry, jpool_entries);
1222 }
1223 out:
1224 if (error != 0) {
1225 switch (state) {
1226 case 4:
1227 bus_dmamap_unload(sc->bge_dmatag,
1228 sc->bge_cdata.bge_rx_jumbo_map);
1229 case 3:
1230 bus_dmamap_destroy(sc->bge_dmatag,
1231 sc->bge_cdata.bge_rx_jumbo_map);
1232 case 2:
1233 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1234 case 1:
1235 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1236 break;
1237 default:
1238 break;
1239 }
1240 }
1241
1242 return error;
1243 }
1244
1245 /*
1246 * Allocate a jumbo buffer.
1247 */
1248 static void *
1249 bge_jalloc(struct bge_softc *sc)
1250 {
1251 struct bge_jpool_entry *entry;
1252
1253 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1254
1255 if (entry == NULL) {
1256 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1257 return NULL;
1258 }
1259
1260 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1261 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1262 return (sc->bge_cdata.bge_jslots[entry->slot]);
1263 }
1264
1265 /*
1266 * Release a jumbo buffer.
1267 */
1268 static void
1269 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1270 {
1271 struct bge_jpool_entry *entry;
1272 struct bge_softc *sc;
1273 int i, s;
1274
1275 /* Extract the softc struct pointer. */
1276 sc = (struct bge_softc *)arg;
1277
1278 if (sc == NULL)
1279 panic("bge_jfree: can't find softc pointer!");
1280
1281 /* calculate the slot this buffer belongs to */
1282
1283 i = ((char *)buf
1284 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1285
1286 if ((i < 0) || (i >= BGE_JSLOTS))
1287 panic("bge_jfree: asked to free buffer that we don't manage!");
1288
1289 s = splvm();
1290 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1291 if (entry == NULL)
1292 panic("bge_jfree: buffer not in use!");
1293 entry->slot = i;
1294 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1295 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1296
1297 if (__predict_true(m != NULL))
1298 pool_cache_put(mb_cache, m);
1299 splx(s);
1300 }
1301
1302
1303 /*
1304 * Intialize a standard receive ring descriptor.
1305 */
1306 static int
1307 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1308 bus_dmamap_t dmamap)
1309 {
1310 struct mbuf *m_new = NULL;
1311 struct bge_rx_bd *r;
1312 int error;
1313
1314 if (dmamap == NULL) {
1315 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1316 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1317 if (error != 0)
1318 return error;
1319 }
1320
1321 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1322
1323 if (m == NULL) {
1324 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1325 if (m_new == NULL)
1326 return ENOBUFS;
1327
1328 MCLGET(m_new, M_DONTWAIT);
1329 if (!(m_new->m_flags & M_EXT)) {
1330 m_freem(m_new);
1331 return ENOBUFS;
1332 }
1333 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1334
1335 } else {
1336 m_new = m;
1337 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1338 m_new->m_data = m_new->m_ext.ext_buf;
1339 }
1340 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1341 m_adj(m_new, ETHER_ALIGN);
1342 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1343 BUS_DMA_READ|BUS_DMA_NOWAIT))
1344 return ENOBUFS;
1345 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1346 BUS_DMASYNC_PREREAD);
1347
1348 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1349 r = &sc->bge_rdata->bge_rx_std_ring[i];
1350 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1351 r->bge_flags = BGE_RXBDFLAG_END;
1352 r->bge_len = m_new->m_len;
1353 r->bge_idx = i;
1354
1355 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1356 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1357 i * sizeof (struct bge_rx_bd),
1358 sizeof (struct bge_rx_bd),
1359 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Initialize a jumbo receive ring descriptor. This allocates
1366 * a jumbo buffer from the pool managed internally by the driver.
1367 */
1368 static int
1369 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1370 {
1371 struct mbuf *m_new = NULL;
1372 struct bge_rx_bd *r;
1373 void *buf = NULL;
1374
1375 if (m == NULL) {
1376
1377 /* Allocate the mbuf. */
1378 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1379 if (m_new == NULL)
1380 return ENOBUFS;
1381
1382 /* Allocate the jumbo buffer */
1383 buf = bge_jalloc(sc);
1384 if (buf == NULL) {
1385 m_freem(m_new);
1386 aprint_error_dev(sc->bge_dev,
1387 "jumbo allocation failed -- packet dropped!\n");
1388 return ENOBUFS;
1389 }
1390
1391 /* Attach the buffer to the mbuf. */
1392 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1393 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1394 bge_jfree, sc);
1395 m_new->m_flags |= M_EXT_RW;
1396 } else {
1397 m_new = m;
1398 buf = m_new->m_data = m_new->m_ext.ext_buf;
1399 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1400 }
1401 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1402 m_adj(m_new, ETHER_ALIGN);
1403 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1404 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1405 BUS_DMASYNC_PREREAD);
1406 /* Set up the descriptor. */
1407 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1408 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1409 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1410 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1411 r->bge_len = m_new->m_len;
1412 r->bge_idx = i;
1413
1414 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1415 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1416 i * sizeof (struct bge_rx_bd),
1417 sizeof (struct bge_rx_bd),
1418 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1419
1420 return 0;
1421 }
1422
1423 /*
1424 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1425 * that's 1MB or memory, which is a lot. For now, we fill only the first
1426 * 256 ring entries and hope that our CPU is fast enough to keep up with
1427 * the NIC.
1428 */
1429 static int
1430 bge_init_rx_ring_std(struct bge_softc *sc)
1431 {
1432 int i;
1433
1434 if (sc->bge_flags & BGE_RXRING_VALID)
1435 return 0;
1436
1437 for (i = 0; i < BGE_SSLOTS; i++) {
1438 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1439 return ENOBUFS;
1440 }
1441
1442 sc->bge_std = i - 1;
1443 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1444
1445 sc->bge_flags |= BGE_RXRING_VALID;
1446
1447 return 0;
1448 }
1449
1450 static void
1451 bge_free_rx_ring_std(struct bge_softc *sc)
1452 {
1453 int i;
1454
1455 if (!(sc->bge_flags & BGE_RXRING_VALID))
1456 return;
1457
1458 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1459 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1460 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1461 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1462 bus_dmamap_destroy(sc->bge_dmatag,
1463 sc->bge_cdata.bge_rx_std_map[i]);
1464 }
1465 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1466 sizeof(struct bge_rx_bd));
1467 }
1468
1469 sc->bge_flags &= ~BGE_RXRING_VALID;
1470 }
1471
1472 static int
1473 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1474 {
1475 int i;
1476 volatile struct bge_rcb *rcb;
1477
1478 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1479 return 0;
1480
1481 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1482 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1483 return ENOBUFS;
1484 };
1485
1486 sc->bge_jumbo = i - 1;
1487 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1488
1489 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1490 rcb->bge_maxlen_flags = 0;
1491 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1492
1493 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1494
1495 return 0;
1496 }
1497
1498 static void
1499 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1500 {
1501 int i;
1502
1503 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1504 return;
1505
1506 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1507 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1508 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1509 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1510 }
1511 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1512 sizeof(struct bge_rx_bd));
1513 }
1514
1515 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1516 }
1517
1518 static void
1519 bge_free_tx_ring(struct bge_softc *sc)
1520 {
1521 int i, freed;
1522 struct txdmamap_pool_entry *dma;
1523
1524 if (!(sc->bge_flags & BGE_TXRING_VALID))
1525 return;
1526
1527 freed = 0;
1528
1529 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1530 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1531 freed++;
1532 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1533 sc->bge_cdata.bge_tx_chain[i] = NULL;
1534 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1535 link);
1536 sc->txdma[i] = 0;
1537 }
1538 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1539 sizeof(struct bge_tx_bd));
1540 }
1541
1542 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1543 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1544 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1545 free(dma, M_DEVBUF);
1546 }
1547
1548 sc->bge_flags &= ~BGE_TXRING_VALID;
1549 }
1550
1551 static int
1552 bge_init_tx_ring(struct bge_softc *sc)
1553 {
1554 int i;
1555 bus_dmamap_t dmamap;
1556 struct txdmamap_pool_entry *dma;
1557
1558 if (sc->bge_flags & BGE_TXRING_VALID)
1559 return 0;
1560
1561 sc->bge_txcnt = 0;
1562 sc->bge_tx_saved_considx = 0;
1563
1564 /* Initialize transmit producer index for host-memory send ring. */
1565 sc->bge_tx_prodidx = 0;
1566 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1567 /* 5700 b2 errata */
1568 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1569 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1570
1571 /* NIC-memory send ring not used; initialize to zero. */
1572 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1573 /* 5700 b2 errata */
1574 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1575 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1576
1577 SLIST_INIT(&sc->txdma_list);
1578 for (i = 0; i < BGE_RSLOTS; i++) {
1579 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1580 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1581 &dmamap))
1582 return ENOBUFS;
1583 if (dmamap == NULL)
1584 panic("dmamap NULL in bge_init_tx_ring");
1585 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1586 if (dma == NULL) {
1587 aprint_error_dev(sc->bge_dev,
1588 "can't alloc txdmamap_pool_entry\n");
1589 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1590 return ENOMEM;
1591 }
1592 dma->dmamap = dmamap;
1593 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1594 }
1595
1596 sc->bge_flags |= BGE_TXRING_VALID;
1597
1598 return 0;
1599 }
1600
1601 static void
1602 bge_setmulti(struct bge_softc *sc)
1603 {
1604 struct ethercom *ac = &sc->ethercom;
1605 struct ifnet *ifp = &ac->ec_if;
1606 struct ether_multi *enm;
1607 struct ether_multistep step;
1608 uint32_t hashes[4] = { 0, 0, 0, 0 };
1609 uint32_t h;
1610 int i;
1611
1612 if (ifp->if_flags & IFF_PROMISC)
1613 goto allmulti;
1614
1615 /* Now program new ones. */
1616 ETHER_FIRST_MULTI(step, ac, enm);
1617 while (enm != NULL) {
1618 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1619 /*
1620 * We must listen to a range of multicast addresses.
1621 * For now, just accept all multicasts, rather than
1622 * trying to set only those filter bits needed to match
1623 * the range. (At this time, the only use of address
1624 * ranges is for IP multicast routing, for which the
1625 * range is big enough to require all bits set.)
1626 */
1627 goto allmulti;
1628 }
1629
1630 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1631
1632 /* Just want the 7 least-significant bits. */
1633 h &= 0x7f;
1634
1635 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1636 ETHER_NEXT_MULTI(step, enm);
1637 }
1638
1639 ifp->if_flags &= ~IFF_ALLMULTI;
1640 goto setit;
1641
1642 allmulti:
1643 ifp->if_flags |= IFF_ALLMULTI;
1644 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1645
1646 setit:
1647 for (i = 0; i < 4; i++)
1648 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1649 }
1650
1651 static void
1652 bge_sig_pre_reset(struct bge_softc *sc, int type)
1653 {
1654 /*
1655 * Some chips don't like this so only do this if ASF is enabled
1656 */
1657 if (sc->bge_asf_mode)
1658 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1659
1660 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1661 switch (type) {
1662 case BGE_RESET_START:
1663 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1664 break;
1665 case BGE_RESET_STOP:
1666 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1667 break;
1668 }
1669 }
1670 }
1671
1672 static void
1673 bge_sig_post_reset(struct bge_softc *sc, int type)
1674 {
1675
1676 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1677 switch (type) {
1678 case BGE_RESET_START:
1679 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1680 /* START DONE */
1681 break;
1682 case BGE_RESET_STOP:
1683 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1684 break;
1685 }
1686 }
1687 }
1688
1689 static void
1690 bge_sig_legacy(struct bge_softc *sc, int type)
1691 {
1692
1693 if (sc->bge_asf_mode) {
1694 switch (type) {
1695 case BGE_RESET_START:
1696 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1697 break;
1698 case BGE_RESET_STOP:
1699 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1700 break;
1701 }
1702 }
1703 }
1704
1705 static void
1706 bge_stop_fw(struct bge_softc *sc)
1707 {
1708 int i;
1709
1710 if (sc->bge_asf_mode) {
1711 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1712 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1713 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1714
1715 for (i = 0; i < 100; i++) {
1716 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1717 break;
1718 DELAY(10);
1719 }
1720 }
1721 }
1722
1723 static int
1724 bge_poll_fw(struct bge_softc *sc)
1725 {
1726 uint32_t val;
1727 int i;
1728
1729 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1730 for (i = 0; i < BGE_TIMEOUT; i++) {
1731 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1732 if (val & BGE_VCPU_STATUS_INIT_DONE)
1733 break;
1734 DELAY(100);
1735 }
1736 if (i >= BGE_TIMEOUT) {
1737 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1738 return -1;
1739 }
1740 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1741 /*
1742 * Poll the value location we just wrote until
1743 * we see the 1's complement of the magic number.
1744 * This indicates that the firmware initialization
1745 * is complete.
1746 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1747 */
1748 for (i = 0; i < BGE_TIMEOUT; i++) {
1749 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1750 if (val == ~BGE_MAGIC_NUMBER)
1751 break;
1752 DELAY(10);
1753 }
1754
1755 if (i >= BGE_TIMEOUT) {
1756 aprint_error_dev(sc->bge_dev,
1757 "firmware handshake timed out, val = %x\n", val);
1758 return -1;
1759 }
1760 }
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1767 * self-test results.
1768 */
1769 static int
1770 bge_chipinit(struct bge_softc *sc)
1771 {
1772 int i;
1773 uint32_t dma_rw_ctl;
1774
1775 /* Set endianness before we access any non-PCI registers. */
1776 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1777 BGE_INIT);
1778
1779 /* Set power state to D0. */
1780 bge_setpowerstate(sc, 0);
1781
1782 /* Clear the MAC control register */
1783 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1784
1785 /*
1786 * Clear the MAC statistics block in the NIC's
1787 * internal memory.
1788 */
1789 for (i = BGE_STATS_BLOCK;
1790 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1791 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1792
1793 for (i = BGE_STATUS_BLOCK;
1794 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1795 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1796
1797 /* Set up the PCI DMA control register. */
1798 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1799 if (sc->bge_flags & BGE_PCIE) {
1800 /* Read watermark not used, 128 bytes for write. */
1801 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1802 device_xname(sc->bge_dev)));
1803 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1804 } else if (sc->bge_flags & BGE_PCIX) {
1805 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1806 device_xname(sc->bge_dev)));
1807 /* PCI-X bus */
1808 if (BGE_IS_5714_FAMILY(sc)) {
1809 /* 256 bytes for read and write. */
1810 dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1811 (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1812
1813 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1814 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1815 else
1816 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1817 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1818 /* 1536 bytes for read, 384 bytes for write. */
1819 dma_rw_ctl |=
1820 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1821 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1822 } else {
1823 /* 384 bytes for read and write. */
1824 dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1825 (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1826 (0x0F);
1827 }
1828
1829 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1830 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1831 uint32_t tmp;
1832
1833 /* Set ONEDMA_ATONCE for hardware workaround. */
1834 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1835 if (tmp == 6 || tmp == 7)
1836 dma_rw_ctl |=
1837 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1838
1839 /* Set PCI-X DMA write workaround. */
1840 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1841 }
1842 } else {
1843 /* Conventional PCI bus: 256 bytes for read and write. */
1844 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1845 device_xname(sc->bge_dev)));
1846 dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1847 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1848 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1849 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1850 dma_rw_ctl |= 0x0F;
1851 }
1852
1853 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1854 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1855 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1856 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1857
1858 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1859 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1860 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1861
1862 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1863 dma_rw_ctl);
1864
1865 /*
1866 * Set up general mode register.
1867 */
1868 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1869 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1870 BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1871
1872 /*
1873 * BCM5701 B5 have a bug causing data corruption when using
1874 * 64-bit DMA reads, which can be terminated early and then
1875 * completed later as 32-bit accesses, in combination with
1876 * certain bridges.
1877 */
1878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1879 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1880 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1881
1882 /*
1883 * Tell the firmware the driver is running
1884 */
1885 if (sc->bge_asf_mode & ASF_STACKUP)
1886 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1887
1888 /*
1889 * Disable memory write invalidate. Apparently it is not supported
1890 * properly by these devices.
1891 */
1892 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1893 PCI_COMMAND_INVALIDATE_ENABLE);
1894
1895 #ifdef __brokenalpha__
1896 /*
1897 * Must insure that we do not cross an 8K (bytes) boundary
1898 * for DMA reads. Our highest limit is 1K bytes. This is a
1899 * restriction on some ALPHA platforms with early revision
1900 * 21174 PCI chipsets, such as the AlphaPC 164lx
1901 */
1902 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1903 #endif
1904
1905 /* Set the timer prescaler (always 66MHz) */
1906 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1907
1908 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1909 DELAY(40); /* XXX */
1910
1911 /* Put PHY into ready state */
1912 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1913 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1914 DELAY(40);
1915 }
1916
1917 return 0;
1918 }
1919
1920 static int
1921 bge_blockinit(struct bge_softc *sc)
1922 {
1923 volatile struct bge_rcb *rcb;
1924 bus_size_t rcb_addr;
1925 int i;
1926 struct ifnet *ifp = &sc->ethercom.ec_if;
1927 bge_hostaddr taddr;
1928 uint32_t val;
1929
1930 /*
1931 * Initialize the memory window pointer register so that
1932 * we can access the first 32K of internal NIC RAM. This will
1933 * allow us to set up the TX send ring RCBs and the RX return
1934 * ring RCBs, plus other things which live in NIC memory.
1935 */
1936
1937 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1938
1939 /* Step 33: Configure mbuf memory pool */
1940 if (BGE_IS_5700_FAMILY(sc)) {
1941 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1942 BGE_BUFFPOOL_1);
1943
1944 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1945 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1946 else
1947 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1948
1949 /* Configure DMA resource pool */
1950 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1951 BGE_DMA_DESCRIPTORS);
1952 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1953 }
1954
1955 /* Step 35: Configure mbuf pool watermarks */
1956 #ifdef ORIG_WPAUL_VALUES
1957 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1958 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1959 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1960 #else
1961
1962 /* new broadcom docs strongly recommend these: */
1963 if (!BGE_IS_5705_PLUS(sc)) {
1964 if (ifp->if_mtu > ETHER_MAX_LEN) {
1965 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1966 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1968 } else {
1969 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1970 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1972 }
1973 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1974 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1976 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1977 } else {
1978 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1979 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1981 }
1982 #endif
1983
1984 /* Step 36: Configure DMA resource watermarks */
1985 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1986 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1987
1988 /* Step 38: Enable buffer manager */
1989 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1990 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1991
1992 /* Step 39: Poll for buffer manager start indication */
1993 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1994 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1995 break;
1996 DELAY(10);
1997 }
1998
1999 if (i == BGE_TIMEOUT * 2) {
2000 aprint_error_dev(sc->bge_dev,
2001 "buffer manager failed to start\n");
2002 return ENXIO;
2003 }
2004
2005 /* Step 40: Enable flow-through queues */
2006 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2007 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2008
2009 /* Wait until queue initialization is complete */
2010 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2011 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2012 break;
2013 DELAY(10);
2014 }
2015
2016 if (i == BGE_TIMEOUT * 2) {
2017 aprint_error_dev(sc->bge_dev,
2018 "flow-through queue init failed\n");
2019 return ENXIO;
2020 }
2021
2022 /* Step 41: Initialize the standard RX ring control block */
2023 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2024 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2025 if (BGE_IS_5705_PLUS(sc))
2026 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2027 else
2028 rcb->bge_maxlen_flags =
2029 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2030 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2031 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2032 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2033 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2034 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2035
2036 /*
2037 * Step 42: Initialize the jumbo RX ring control block
2038 * We set the 'ring disabled' bit in the flags
2039 * field until we're actually ready to start
2040 * using this ring (i.e. once we set the MTU
2041 * high enough to require it).
2042 */
2043 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2044 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2045 BGE_HOSTADDR(rcb->bge_hostaddr,
2046 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2047 rcb->bge_maxlen_flags =
2048 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2049 BGE_RCB_FLAG_RING_DISABLED);
2050 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2051 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2052 rcb->bge_hostaddr.bge_addr_hi);
2053 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2054 rcb->bge_hostaddr.bge_addr_lo);
2055 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2056 rcb->bge_maxlen_flags);
2057 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2058
2059 /* Set up dummy disabled mini ring RCB */
2060 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2061 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2062 BGE_RCB_FLAG_RING_DISABLED);
2063 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2064 rcb->bge_maxlen_flags);
2065
2066 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2067 offsetof(struct bge_ring_data, bge_info),
2068 sizeof (struct bge_gib),
2069 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2070 }
2071
2072 /*
2073 * Set the BD ring replenish thresholds. The recommended
2074 * values are 1/8th the number of descriptors allocated to
2075 * each ring.
2076 */
2077 i = BGE_STD_RX_RING_CNT / 8;
2078
2079 /*
2080 * Use a value of 8 for the following chips to workaround HW errata.
2081 * Some of these chips have been added based on empirical
2082 * evidence (they don't work unless this is done).
2083 */
2084 if (BGE_IS_5705_PLUS(sc))
2085 i = 8;
2086
2087 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2088 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2089
2090 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2091 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2092 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2093 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2094 }
2095
2096 /*
2097 * Disable all unused send rings by setting the 'ring disabled'
2098 * bit in the flags field of all the TX send ring control blocks.
2099 * These are located in NIC memory.
2100 */
2101 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2102 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2103 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2104 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2105 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2106 rcb_addr += sizeof(struct bge_rcb);
2107 }
2108
2109 /* Configure TX RCB 0 (we use only the first ring) */
2110 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2111 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2112 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2113 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2114 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2115 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2116 if (BGE_IS_5700_FAMILY(sc))
2117 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2118 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2119
2120 /* Disable all unused RX return rings */
2121 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2122 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2123 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2124 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2125 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2126 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2127 BGE_RCB_FLAG_RING_DISABLED));
2128 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2129 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2130 (i * (sizeof(uint64_t))), 0);
2131 rcb_addr += sizeof(struct bge_rcb);
2132 }
2133
2134 /* Initialize RX ring indexes */
2135 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2136 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2137 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2138
2139 /*
2140 * Set up RX return ring 0
2141 * Note that the NIC address for RX return rings is 0x00000000.
2142 * The return rings live entirely within the host, so the
2143 * nicaddr field in the RCB isn't used.
2144 */
2145 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2146 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2147 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2148 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2149 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2150 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2151 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2152
2153 /* Set random backoff seed for TX */
2154 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2155 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2156 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2157 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2158 BGE_TX_BACKOFF_SEED_MASK);
2159
2160 /* Set inter-packet gap */
2161 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2162
2163 /*
2164 * Specify which ring to use for packets that don't match
2165 * any RX rules.
2166 */
2167 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2168
2169 /*
2170 * Configure number of RX lists. One interrupt distribution
2171 * list, sixteen active lists, one bad frames class.
2172 */
2173 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2174
2175 /* Inialize RX list placement stats mask. */
2176 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2177 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2178
2179 /* Disable host coalescing until we get it set up */
2180 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2181
2182 /* Poll to make sure it's shut down. */
2183 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2184 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2185 break;
2186 DELAY(10);
2187 }
2188
2189 if (i == BGE_TIMEOUT * 2) {
2190 aprint_error_dev(sc->bge_dev,
2191 "host coalescing engine failed to idle\n");
2192 return ENXIO;
2193 }
2194
2195 /* Set up host coalescing defaults */
2196 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2197 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2198 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2199 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2200 if (BGE_IS_5700_FAMILY(sc)) {
2201 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2202 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2203 }
2204 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2205 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2206
2207 /* Set up address of statistics block */
2208 if (BGE_IS_5700_FAMILY(sc)) {
2209 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2210 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2211 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2212 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2213 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2214 }
2215
2216 /* Set up address of status block */
2217 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2218 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2219 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2220 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2221 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2222 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2223
2224 /* Turn on host coalescing state machine */
2225 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2226
2227 /* Turn on RX BD completion state machine and enable attentions */
2228 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2229 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2230
2231 /* Turn on RX list placement state machine */
2232 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2233
2234 /* Turn on RX list selector state machine. */
2235 if (BGE_IS_5700_FAMILY(sc))
2236 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2237
2238 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2239 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2240 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2241 BGE_MACMODE_FRMHDR_DMA_ENB;
2242
2243 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2244 val |= BGE_PORTMODE_TBI;
2245 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2246 val |= BGE_PORTMODE_GMII;
2247 else
2248 val |= BGE_PORTMODE_MII;
2249
2250 /* Turn on DMA, clear stats */
2251 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2252
2253 /* Set misc. local control, enable interrupts on attentions */
2254 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2255
2256 #ifdef notdef
2257 /* Assert GPIO pins for PHY reset */
2258 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2259 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2260 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2261 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2262 #endif
2263
2264 #if defined(not_quite_yet)
2265 /* Linux driver enables enable gpio pin #1 on 5700s */
2266 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2267 sc->bge_local_ctrl_reg |=
2268 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2269 }
2270 #endif
2271 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2272
2273 /* Turn on DMA completion state machine */
2274 if (BGE_IS_5700_FAMILY(sc))
2275 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2276
2277 /* Turn on write DMA state machine */
2278 {
2279 uint32_t bge_wdma_mode =
2280 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2281
2282 /* Enable host coalescing bug fix; see Linux tg3.c */
2283 if (BGE_IS_5755_PLUS(sc))
2284 bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2285
2286 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2287 }
2288
2289 /* Turn on read DMA state machine */
2290 {
2291 uint32_t dma_read_modebits;
2292
2293 dma_read_modebits =
2294 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2295
2296 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2297 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2298 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2299 dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2300 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2301 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2302
2303 if (sc->bge_flags & BGE_PCIE)
2304 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2305 if (sc->bge_flags & BGE_TSO)
2306 dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2307 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2308 delay(40);
2309 }
2310
2311 /* Turn on RX data completion state machine */
2312 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2313
2314 /* Turn on RX BD initiator state machine */
2315 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2316
2317 /* Turn on RX data and RX BD initiator state machine */
2318 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2319
2320 /* Turn on Mbuf cluster free state machine */
2321 if (BGE_IS_5700_FAMILY(sc))
2322 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2323
2324 /* Turn on send BD completion state machine */
2325 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2326
2327 /* Turn on send data completion state machine */
2328 val = BGE_SDCMODE_ENABLE;
2329 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2330 val |= BGE_SDCMODE_CDELAY;
2331 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2332
2333 /* Turn on send data initiator state machine */
2334 if (sc->bge_flags & BGE_TSO) {
2335 /* XXX: magic value from Linux driver */
2336 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2337 } else
2338 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2339
2340 /* Turn on send BD initiator state machine */
2341 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2342
2343 /* Turn on send BD selector state machine */
2344 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2345
2346 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2347 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2348 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2349
2350 /* ack/clear link change events */
2351 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2352 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2353 BGE_MACSTAT_LINK_CHANGED);
2354 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2355
2356 /* Enable PHY auto polling (for MII/GMII only) */
2357 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2358 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2359 } else {
2360 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2361 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2362 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2363 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2364 BGE_EVTENB_MI_INTERRUPT);
2365 }
2366
2367 /*
2368 * Clear any pending link state attention.
2369 * Otherwise some link state change events may be lost until attention
2370 * is cleared by bge_intr() -> bge_link_upd() sequence.
2371 * It's not necessary on newer BCM chips - perhaps enabling link
2372 * state change attentions implies clearing pending attention.
2373 */
2374 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2375 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2376 BGE_MACSTAT_LINK_CHANGED);
2377
2378 /* Enable link state change attentions. */
2379 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2380
2381 return 0;
2382 }
2383
2384 static const struct bge_revision *
2385 bge_lookup_rev(uint32_t chipid)
2386 {
2387 const struct bge_revision *br;
2388
2389 for (br = bge_revisions; br->br_name != NULL; br++) {
2390 if (br->br_chipid == chipid)
2391 return br;
2392 }
2393
2394 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2395 if (br->br_chipid == BGE_ASICREV(chipid))
2396 return br;
2397 }
2398
2399 return NULL;
2400 }
2401
2402 static const struct bge_product *
2403 bge_lookup(const struct pci_attach_args *pa)
2404 {
2405 const struct bge_product *bp;
2406
2407 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2408 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2409 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2410 return bp;
2411 }
2412
2413 return NULL;
2414 }
2415
2416 static int
2417 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2418 {
2419 #ifdef NOTYET
2420 uint32_t pm_ctl = 0;
2421
2422 /* XXX FIXME: make sure indirect accesses enabled? */
2423 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2424 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2425 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2426
2427 /* clear the PME_assert bit and power state bits, enable PME */
2428 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2429 pm_ctl &= ~PCIM_PSTAT_DMASK;
2430 pm_ctl |= (1 << 8);
2431
2432 if (powerlevel == 0) {
2433 pm_ctl |= PCIM_PSTAT_D0;
2434 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2435 pm_ctl, 2);
2436 DELAY(10000);
2437 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2438 DELAY(10000);
2439
2440 #ifdef NOTYET
2441 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2442 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2443 #endif
2444 DELAY(40); DELAY(40); DELAY(40);
2445 DELAY(10000); /* above not quite adequate on 5700 */
2446 return 0;
2447 }
2448
2449
2450 /*
2451 * Entering ACPI power states D1-D3 is achieved by wiggling
2452 * GMII gpio pins. Example code assumes all hardware vendors
2453 * followed Broadom's sample pcb layout. Until we verify that
2454 * for all supported OEM cards, states D1-D3 are unsupported.
2455 */
2456 aprint_error_dev(sc->bge_dev,
2457 "power state %d unimplemented; check GPIO pins\n",
2458 powerlevel);
2459 #endif
2460 return EOPNOTSUPP;
2461 }
2462
2463
2464 /*
2465 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2466 * against our list and return its name if we find a match. Note
2467 * that since the Broadcom controller contains VPD support, we
2468 * can get the device name string from the controller itself instead
2469 * of the compiled-in string. This is a little slow, but it guarantees
2470 * we'll always announce the right product name.
2471 */
2472 static int
2473 bge_probe(device_t parent, cfdata_t match, void *aux)
2474 {
2475 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2476
2477 if (bge_lookup(pa) != NULL)
2478 return 1;
2479
2480 return 0;
2481 }
2482
2483 static void
2484 bge_attach(device_t parent, device_t self, void *aux)
2485 {
2486 struct bge_softc *sc = device_private(self);
2487 struct pci_attach_args *pa = aux;
2488 prop_dictionary_t dict;
2489 const struct bge_product *bp;
2490 const struct bge_revision *br;
2491 pci_chipset_tag_t pc;
2492 pci_intr_handle_t ih;
2493 const char *intrstr = NULL;
2494 bus_dma_segment_t seg;
2495 int rseg;
2496 uint32_t hwcfg = 0;
2497 uint32_t command;
2498 struct ifnet *ifp;
2499 uint32_t misccfg;
2500 void * kva;
2501 u_char eaddr[ETHER_ADDR_LEN];
2502 pcireg_t memtype, subid;
2503 bus_addr_t memaddr;
2504 bus_size_t memsize;
2505 uint32_t pm_ctl;
2506 bool no_seeprom;
2507
2508 bp = bge_lookup(pa);
2509 KASSERT(bp != NULL);
2510
2511 sc->sc_pc = pa->pa_pc;
2512 sc->sc_pcitag = pa->pa_tag;
2513 sc->bge_dev = self;
2514
2515 pc = sc->sc_pc;
2516 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2517
2518 aprint_naive(": Ethernet controller\n");
2519 aprint_normal(": %s\n", bp->bp_name);
2520
2521 /*
2522 * Map control/status registers.
2523 */
2524 DPRINTFN(5, ("Map control/status regs\n"));
2525 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2526 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2527 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2528 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2529
2530 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2531 aprint_error_dev(sc->bge_dev,
2532 "failed to enable memory mapping!\n");
2533 return;
2534 }
2535
2536 DPRINTFN(5, ("pci_mem_find\n"));
2537 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2538 switch (memtype) {
2539 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2540 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2541 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2542 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2543 &memaddr, &memsize) == 0)
2544 break;
2545 default:
2546 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2547 return;
2548 }
2549
2550 DPRINTFN(5, ("pci_intr_map\n"));
2551 if (pci_intr_map(pa, &ih)) {
2552 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2553 return;
2554 }
2555
2556 DPRINTFN(5, ("pci_intr_string\n"));
2557 intrstr = pci_intr_string(pc, ih);
2558
2559 DPRINTFN(5, ("pci_intr_establish\n"));
2560 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2561
2562 if (sc->bge_intrhand == NULL) {
2563 aprint_error_dev(sc->bge_dev,
2564 "couldn't establish interrupt%s%s\n",
2565 intrstr ? " at " : "", intrstr ? intrstr : "");
2566 return;
2567 }
2568 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2569
2570 /*
2571 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2572 * can clobber the chip's PCI config-space power control registers,
2573 * leaving the card in D3 powersave state.
2574 * We do not have memory-mapped registers in this state,
2575 * so force device into D0 state before starting initialization.
2576 */
2577 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2578 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2579 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2580 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2581 DELAY(1000); /* 27 usec is allegedly sufficent */
2582
2583 /*
2584 * Save ASIC rev.
2585 */
2586 sc->bge_chipid =
2587 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2588 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2589
2590 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2591 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2592 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2593 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2594 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2595 BGE_PCI_GEN2_PRODID_ASICREV);
2596 else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2597 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2598 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2599 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2600 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2601 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2602 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2603 BGE_PCI_GEN15_PRODID_ASICREV);
2604 else
2605 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2606 BGE_PCI_PRODID_ASICREV);
2607 }
2608
2609 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2610 &sc->bge_pciecap, NULL) != 0) {
2611 /* PCIe */
2612 sc->bge_flags |= BGE_PCIE;
2613 bge_set_max_readrq(sc);
2614 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2615 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2616 /* PCI-X */
2617 sc->bge_flags |= BGE_PCIX;
2618 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2619 &sc->bge_pcixcap, NULL) == 0)
2620 aprint_error_dev(sc->bge_dev,
2621 "unable to find PCIX capability\n");
2622 }
2623
2624 /* chipid */
2625 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2626 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2627 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2628 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2629 sc->bge_flags |= BGE_5700_FAMILY;
2630
2631 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2632 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2633 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2634 sc->bge_flags |= BGE_5714_FAMILY;
2635
2636 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2637 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2638 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2639 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2640 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2641 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2642 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2643 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2644 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2645 sc->bge_flags |= BGE_5755_PLUS;
2646
2647 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2649 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2650 BGE_IS_5755_PLUS(sc) ||
2651 BGE_IS_5714_FAMILY(sc))
2652 sc->bge_flags |= BGE_5750_PLUS;
2653
2654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2655 BGE_IS_5750_OR_BEYOND(sc))
2656 sc->bge_flags |= BGE_5705_PLUS;
2657
2658 /*
2659 * When using the BCM5701 in PCI-X mode, data corruption has
2660 * been observed in the first few bytes of some received packets.
2661 * Aligning the packet buffer in memory eliminates the corruption.
2662 * Unfortunately, this misaligns the packet payloads. On platforms
2663 * which do not support unaligned accesses, we will realign the
2664 * payloads by copying the received packets.
2665 */
2666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2667 sc->bge_flags & BGE_PCIX)
2668 sc->bge_flags |= BGE_RX_ALIGNBUG;
2669
2670 if (BGE_IS_5700_FAMILY(sc))
2671 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2672
2673 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2674 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2675 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2676 sc->bge_flags |= BGE_NO_3LED;
2677
2678 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2679 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2680
2681 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2682 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2683 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2684 sc->bge_flags |= BGE_IS_5788;
2685
2686 /*
2687 * Some controllers seem to require a special firmware to use
2688 * TSO. But the firmware is not available to FreeBSD and Linux
2689 * claims that the TSO performed by the firmware is slower than
2690 * hardware based TSO. Moreover the firmware based TSO has one
2691 * known bug which can't handle TSO if ethernet header + IP/TCP
2692 * header is greater than 80 bytes. The workaround for the TSO
2693 * bug exist but it seems it's too expensive than not using
2694 * TSO at all. Some hardwares also have the TSO bug so limit
2695 * the TSO to the controllers that are not affected TSO issues
2696 * (e.g. 5755 or higher).
2697 */
2698 if (BGE_IS_5755_PLUS(sc)) {
2699 /*
2700 * BCM5754 and BCM5787 shares the same ASIC id so
2701 * explicit device id check is required.
2702 */
2703 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2704 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2705 sc->bge_flags |= BGE_TSO;
2706 }
2707
2708 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2709 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2710 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2711 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2712 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2713 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2714 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2715 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2716 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2717 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2718 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2719 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2720 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2721 sc->bge_flags |= BGE_10_100_ONLY;
2722
2723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2724 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2725 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2726 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2727 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2728 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2729
2730 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2731 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2732 sc->bge_flags |= BGE_PHY_CRC_BUG;
2733 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2734 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2735 sc->bge_flags |= BGE_PHY_ADC_BUG;
2736 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2737 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2738
2739 if (BGE_IS_5705_PLUS(sc) &&
2740 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2741 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2742 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2743 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2744 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2745 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2746 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2747 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2748 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2749 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2750 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2751 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2752 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2753 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2754 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2755 sc->bge_flags |= BGE_PHY_BER_BUG;
2756 }
2757
2758 /*
2759 * SEEPROM check.
2760 * First check if firmware knows we do not have SEEPROM.
2761 */
2762 if (prop_dictionary_get_bool(device_properties(self),
2763 "without-seeprom", &no_seeprom) && no_seeprom)
2764 sc->bge_flags |= BGE_NO_EEPROM;
2765
2766 /* Now check the 'ROM failed' bit on the RX CPU */
2767 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2768 sc->bge_flags |= BGE_NO_EEPROM;
2769
2770 /* Try to reset the chip. */
2771 DPRINTFN(5, ("bge_reset\n"));
2772 bge_reset(sc);
2773
2774 sc->bge_asf_mode = 0;
2775 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2776 == BGE_MAGIC_NUMBER)) {
2777 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2778 & BGE_HWCFG_ASF) {
2779 sc->bge_asf_mode |= ASF_ENABLE;
2780 sc->bge_asf_mode |= ASF_STACKUP;
2781 if (BGE_IS_5750_OR_BEYOND(sc)) {
2782 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2783 }
2784 }
2785 }
2786
2787 /* Try to reset the chip again the nice way. */
2788 bge_stop_fw(sc);
2789 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2790 if (bge_reset(sc))
2791 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2792
2793 bge_sig_legacy(sc, BGE_RESET_STOP);
2794 bge_sig_post_reset(sc, BGE_RESET_STOP);
2795
2796 if (bge_chipinit(sc)) {
2797 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2798 bge_release_resources(sc);
2799 return;
2800 }
2801
2802 /*
2803 * Get station address from the EEPROM
2804 */
2805 if (bge_get_eaddr(sc, eaddr)) {
2806 aprint_error_dev(sc->bge_dev,
2807 "failed to read station address\n");
2808 bge_release_resources(sc);
2809 return;
2810 }
2811
2812 br = bge_lookup_rev(sc->bge_chipid);
2813
2814 if (br == NULL) {
2815 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2816 sc->bge_chipid);
2817 } else {
2818 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2819 br->br_name, sc->bge_chipid);
2820 }
2821 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2822
2823 /* Allocate the general information block and ring buffers. */
2824 if (pci_dma64_available(pa))
2825 sc->bge_dmatag = pa->pa_dmat64;
2826 else
2827 sc->bge_dmatag = pa->pa_dmat;
2828 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2829 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2830 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2831 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2832 return;
2833 }
2834 DPRINTFN(5, ("bus_dmamem_map\n"));
2835 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2836 sizeof(struct bge_ring_data), &kva,
2837 BUS_DMA_NOWAIT)) {
2838 aprint_error_dev(sc->bge_dev,
2839 "can't map DMA buffers (%zu bytes)\n",
2840 sizeof(struct bge_ring_data));
2841 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2842 return;
2843 }
2844 DPRINTFN(5, ("bus_dmamem_create\n"));
2845 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2846 sizeof(struct bge_ring_data), 0,
2847 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2848 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2849 bus_dmamem_unmap(sc->bge_dmatag, kva,
2850 sizeof(struct bge_ring_data));
2851 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2852 return;
2853 }
2854 DPRINTFN(5, ("bus_dmamem_load\n"));
2855 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2856 sizeof(struct bge_ring_data), NULL,
2857 BUS_DMA_NOWAIT)) {
2858 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2859 bus_dmamem_unmap(sc->bge_dmatag, kva,
2860 sizeof(struct bge_ring_data));
2861 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2862 return;
2863 }
2864
2865 DPRINTFN(5, ("bzero\n"));
2866 sc->bge_rdata = (struct bge_ring_data *)kva;
2867
2868 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2869
2870 /* Try to allocate memory for jumbo buffers. */
2871 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2872 if (bge_alloc_jumbo_mem(sc)) {
2873 aprint_error_dev(sc->bge_dev,
2874 "jumbo buffer allocation failed\n");
2875 } else
2876 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2877 }
2878
2879 /* Set default tuneable values. */
2880 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2881 sc->bge_rx_coal_ticks = 150;
2882 sc->bge_rx_max_coal_bds = 64;
2883 #ifdef ORIG_WPAUL_VALUES
2884 sc->bge_tx_coal_ticks = 150;
2885 sc->bge_tx_max_coal_bds = 128;
2886 #else
2887 sc->bge_tx_coal_ticks = 300;
2888 sc->bge_tx_max_coal_bds = 400;
2889 #endif
2890 if (BGE_IS_5705_PLUS(sc)) {
2891 sc->bge_tx_coal_ticks = (12 * 5);
2892 sc->bge_tx_max_coal_bds = (12 * 5);
2893 aprint_verbose_dev(sc->bge_dev,
2894 "setting short Tx thresholds\n");
2895 }
2896
2897 if (BGE_IS_5705_PLUS(sc))
2898 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2899 else
2900 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2901
2902 /* Set up ifnet structure */
2903 ifp = &sc->ethercom.ec_if;
2904 ifp->if_softc = sc;
2905 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2906 ifp->if_ioctl = bge_ioctl;
2907 ifp->if_stop = bge_stop;
2908 ifp->if_start = bge_start;
2909 ifp->if_init = bge_init;
2910 ifp->if_watchdog = bge_watchdog;
2911 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2912 IFQ_SET_READY(&ifp->if_snd);
2913 DPRINTFN(5, ("strcpy if_xname\n"));
2914 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2915
2916 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2917 sc->ethercom.ec_if.if_capabilities |=
2918 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2919 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2920 sc->ethercom.ec_if.if_capabilities |=
2921 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2922 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2923 #endif
2924 sc->ethercom.ec_capabilities |=
2925 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2926
2927 if (sc->bge_flags & BGE_TSO)
2928 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2929
2930 /*
2931 * Do MII setup.
2932 */
2933 DPRINTFN(5, ("mii setup\n"));
2934 sc->bge_mii.mii_ifp = ifp;
2935 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2936 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2937 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2938
2939 /*
2940 * Figure out what sort of media we have by checking the
2941 * hardware config word in the first 32k of NIC internal memory,
2942 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2943 * cards, this value appears to be unset. If that's the
2944 * case, we have to rely on identifying the NIC by its PCI
2945 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2946 */
2947 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2948 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2949 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2950 bge_read_eeprom(sc, (void *)&hwcfg,
2951 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2952 hwcfg = be32toh(hwcfg);
2953 }
2954 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2955 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2956 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2957 if (BGE_IS_5714_FAMILY(sc))
2958 sc->bge_flags |= BGE_PHY_FIBER_MII;
2959 else
2960 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2961 }
2962
2963 /* set phyflags before mii_attach() */
2964 dict = device_properties(self);
2965 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2966
2967 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2968 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2969 bge_ifmedia_sts);
2970 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2971 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2972 0, NULL);
2973 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2974 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2975 /* Pretend the user requested this setting */
2976 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2977 } else {
2978 /*
2979 * Do transceiver setup and tell the firmware the
2980 * driver is down so we can try to get access the
2981 * probe if ASF is running. Retry a couple of times
2982 * if we get a conflict with the ASF firmware accessing
2983 * the PHY.
2984 */
2985 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2986 bge_asf_driver_up(sc);
2987
2988 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2989 bge_ifmedia_sts);
2990 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2991 MII_PHY_ANY, MII_OFFSET_ANY,
2992 MIIF_FORCEANEG|MIIF_DOPAUSE);
2993
2994 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2995 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2996 ifmedia_add(&sc->bge_mii.mii_media,
2997 IFM_ETHER|IFM_MANUAL, 0, NULL);
2998 ifmedia_set(&sc->bge_mii.mii_media,
2999 IFM_ETHER|IFM_MANUAL);
3000 } else
3001 ifmedia_set(&sc->bge_mii.mii_media,
3002 IFM_ETHER|IFM_AUTO);
3003
3004 /*
3005 * Now tell the firmware we are going up after probing the PHY
3006 */
3007 if (sc->bge_asf_mode & ASF_STACKUP)
3008 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3009 }
3010
3011 /*
3012 * Call MI attach routine.
3013 */
3014 DPRINTFN(5, ("if_attach\n"));
3015 if_attach(ifp);
3016 DPRINTFN(5, ("ether_ifattach\n"));
3017 ether_ifattach(ifp, eaddr);
3018 #if NRND > 0
3019 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3020 RND_TYPE_NET, 0);
3021 #endif
3022 #ifdef BGE_EVENT_COUNTERS
3023 /*
3024 * Attach event counters.
3025 */
3026 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3027 NULL, device_xname(sc->bge_dev), "intr");
3028 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3029 NULL, device_xname(sc->bge_dev), "tx_xoff");
3030 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3031 NULL, device_xname(sc->bge_dev), "tx_xon");
3032 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3033 NULL, device_xname(sc->bge_dev), "rx_xoff");
3034 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3035 NULL, device_xname(sc->bge_dev), "rx_xon");
3036 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3037 NULL, device_xname(sc->bge_dev), "rx_macctl");
3038 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3039 NULL, device_xname(sc->bge_dev), "xoffentered");
3040 #endif /* BGE_EVENT_COUNTERS */
3041 DPRINTFN(5, ("callout_init\n"));
3042 callout_init(&sc->bge_timeout, 0);
3043
3044 if (pmf_device_register(self, NULL, NULL))
3045 pmf_class_network_register(self, ifp);
3046 else
3047 aprint_error_dev(self, "couldn't establish power handler\n");
3048
3049 #ifdef BGE_DEBUG
3050 bge_debug_info(sc);
3051 #endif
3052 }
3053
3054 static void
3055 bge_release_resources(struct bge_softc *sc)
3056 {
3057 if (sc->bge_vpd_prodname != NULL)
3058 free(sc->bge_vpd_prodname, M_DEVBUF);
3059
3060 if (sc->bge_vpd_readonly != NULL)
3061 free(sc->bge_vpd_readonly, M_DEVBUF);
3062 }
3063
3064 static int
3065 bge_reset(struct bge_softc *sc)
3066 {
3067 uint32_t cachesize, command, pcistate, marbmode;
3068 #if 0
3069 uint32_t new_pcistate;
3070 #endif
3071 pcireg_t devctl, reg;
3072 int i, val;
3073 void (*write_op)(struct bge_softc *, int, int);
3074
3075 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3076 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3077 if (sc->bge_flags & BGE_PCIE)
3078 write_op = bge_writemem_direct;
3079 else
3080 write_op = bge_writemem_ind;
3081 } else
3082 write_op = bge_writereg_ind;
3083
3084 /* Save some important PCI state. */
3085 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3086 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3087 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3088
3089 /* Step 5a: Enable memory arbiter. */
3090 marbmode = 0;
3091 if (BGE_IS_5714_FAMILY(sc))
3092 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3093 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3094
3095 /* Step 5b-5d: */
3096 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3097 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3098 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3099
3100 /* XXX ???: Disable fastboot on controllers that support it. */
3101 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3102 BGE_IS_5755_PLUS(sc))
3103 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3104
3105 /*
3106 * Step 6: Write the magic number to SRAM at offset 0xB50.
3107 * When firmware finishes its initialization it will
3108 * write ~BGE_MAGIC_NUMBER to the same location.
3109 */
3110 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3111
3112 /* Step 7: */
3113 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3114 /*
3115 * XXX: from FreeBSD/Linux; no documentation
3116 */
3117 if (sc->bge_flags & BGE_PCIE) {
3118 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3119 /* PCI Express 1.0 system */
3120 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3121 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3122 /*
3123 * Prevent PCI Express link training
3124 * during global reset.
3125 */
3126 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3127 val |= (1<<29);
3128 }
3129 }
3130
3131 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3132 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3133 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3134 i | BGE_VCPU_STATUS_DRV_RESET);
3135 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3136 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3137 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3138 }
3139
3140 /*
3141 * Set GPHY Power Down Override to leave GPHY
3142 * powered up in D0 uninitialized.
3143 */
3144 if (BGE_IS_5705_PLUS(sc))
3145 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3146
3147 /* XXX 5721, 5751 and 5752 */
3148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3149 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3150
3151 /* Issue global reset */
3152 write_op(sc, BGE_MISC_CFG, val);
3153
3154 /* Step 8: wait for complete */
3155 if (sc->bge_flags & BGE_PCIE)
3156 delay(100*1000); /* too big */
3157 else
3158 delay(100);
3159
3160 /* From Linux: dummy read to flush PCI posted writes */
3161 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3162
3163 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3164 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3165 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3166 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3167 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3168 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3169 write_op(sc, BGE_MISC_CFG, (65 << 1));
3170
3171 /* Step 11: disable PCI-X Relaxed Ordering. */
3172 if (sc->bge_flags & BGE_PCIX) {
3173 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3174 + PCI_PCIX_CMD);
3175 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3176 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3177 }
3178
3179 if (sc->bge_flags & BGE_PCIE) {
3180 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3181 DELAY(500000);
3182 /* XXX: Magic Numbers */
3183 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3184 BGE_PCI_UNKNOWN0);
3185 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3186 BGE_PCI_UNKNOWN0,
3187 reg | (1 << 15));
3188 }
3189 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3190 sc->bge_pciecap + PCI_PCIE_DCSR);
3191 /* Clear enable no snoop and disable relaxed ordering. */
3192 devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3193 /* Set PCIE max payload size to 128. */
3194 devctl &= ~(0x00e0);
3195 /* Clear device status register. Write 1b to clear */
3196 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3197 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3198 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3199 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3200 }
3201
3202 /* Step 12: Enable memory arbiter. */
3203 marbmode = 0;
3204 if (BGE_IS_5714_FAMILY(sc))
3205 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3206 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3207
3208 /* Step 17: Poll until the firmware iitializeation is complete */
3209 bge_poll_fw(sc);
3210
3211 /* XXX 5721, 5751 and 5752 */
3212 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3213 /* Step 19: */
3214 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3215 /* Step 20: */
3216 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3217 }
3218
3219 /*
3220 * Step 18: wirte mac mode
3221 * XXX Write 0x0c for 5703S and 5704S
3222 */
3223 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3224
3225
3226 /* Step 21: 5822 B0 errata */
3227 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3228 pcireg_t msidata;
3229
3230 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3231 BGE_PCI_MSI_DATA);
3232 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3233 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3234 msidata);
3235 }
3236
3237 /* Step 23: restore cache line size */
3238 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3239
3240 #if 0
3241 /*
3242 * XXX Wait for the value of the PCISTATE register to
3243 * return to its original pre-reset state. This is a
3244 * fairly good indicator of reset completion. If we don't
3245 * wait for the reset to fully complete, trying to read
3246 * from the device's non-PCI registers may yield garbage
3247 * results.
3248 */
3249 for (i = 0; i < BGE_TIMEOUT; i++) {
3250 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3251 BGE_PCI_PCISTATE);
3252 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3253 (pcistate & ~BGE_PCISTATE_RESERVED))
3254 break;
3255 DELAY(10);
3256 }
3257 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3258 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3259 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3260 }
3261 #endif
3262
3263 /* Step 28: Fix up byte swapping */
3264 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3265
3266 /* Tell the ASF firmware we are up */
3267 if (sc->bge_asf_mode & ASF_STACKUP)
3268 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3269
3270 /*
3271 * The 5704 in TBI mode apparently needs some special
3272 * adjustment to insure the SERDES drive level is set
3273 * to 1.2V.
3274 */
3275 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3276 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3277 uint32_t serdescfg;
3278
3279 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3280 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3281 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3282 }
3283
3284 if (sc->bge_flags & BGE_PCIE &&
3285 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3286 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3287 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3288 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3289 uint32_t v;
3290
3291 /* Enable PCI Express bug fix */
3292 v = CSR_READ_4(sc, 0x7c00);
3293 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3294 }
3295 DELAY(10000);
3296
3297 return 0;
3298 }
3299
3300 /*
3301 * Frame reception handling. This is called if there's a frame
3302 * on the receive return list.
3303 *
3304 * Note: we have to be able to handle two possibilities here:
3305 * 1) the frame is from the jumbo recieve ring
3306 * 2) the frame is from the standard receive ring
3307 */
3308
3309 static void
3310 bge_rxeof(struct bge_softc *sc)
3311 {
3312 struct ifnet *ifp;
3313 uint16_t rx_prod, rx_cons;
3314 int stdcnt = 0, jumbocnt = 0;
3315 bus_dmamap_t dmamap;
3316 bus_addr_t offset, toff;
3317 bus_size_t tlen;
3318 int tosync;
3319
3320 rx_cons = sc->bge_rx_saved_considx;
3321 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3322
3323 /* Nothing to do */
3324 if (rx_cons == rx_prod)
3325 return;
3326
3327 ifp = &sc->ethercom.ec_if;
3328
3329 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3330 offsetof(struct bge_ring_data, bge_status_block),
3331 sizeof (struct bge_status_block),
3332 BUS_DMASYNC_POSTREAD);
3333
3334 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3335 tosync = rx_prod - rx_cons;
3336
3337 #if NRND > 0
3338 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3339 rnd_add_uint32(&sc->rnd_source, tosync);
3340 #endif
3341
3342 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3343
3344 if (tosync < 0) {
3345 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3346 sizeof (struct bge_rx_bd);
3347 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3348 toff, tlen, BUS_DMASYNC_POSTREAD);
3349 tosync = -tosync;
3350 }
3351
3352 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3353 offset, tosync * sizeof (struct bge_rx_bd),
3354 BUS_DMASYNC_POSTREAD);
3355
3356 while (rx_cons != rx_prod) {
3357 struct bge_rx_bd *cur_rx;
3358 uint32_t rxidx;
3359 struct mbuf *m = NULL;
3360
3361 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3362
3363 rxidx = cur_rx->bge_idx;
3364 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3365
3366 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3367 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3368 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3369 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3370 jumbocnt++;
3371 bus_dmamap_sync(sc->bge_dmatag,
3372 sc->bge_cdata.bge_rx_jumbo_map,
3373 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3374 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3375 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3376 ifp->if_ierrors++;
3377 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3378 continue;
3379 }
3380 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3381 NULL)== ENOBUFS) {
3382 ifp->if_ierrors++;
3383 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3384 continue;
3385 }
3386 } else {
3387 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3388 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3389
3390 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3391 stdcnt++;
3392 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3393 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3394 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3395 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3396 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3397 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3398 ifp->if_ierrors++;
3399 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3400 continue;
3401 }
3402 if (bge_newbuf_std(sc, sc->bge_std,
3403 NULL, dmamap) == ENOBUFS) {
3404 ifp->if_ierrors++;
3405 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3406 continue;
3407 }
3408 }
3409
3410 ifp->if_ipackets++;
3411 #ifndef __NO_STRICT_ALIGNMENT
3412 /*
3413 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3414 * the Rx buffer has the layer-2 header unaligned.
3415 * If our CPU requires alignment, re-align by copying.
3416 */
3417 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3418 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3419 cur_rx->bge_len);
3420 m->m_data += ETHER_ALIGN;
3421 }
3422 #endif
3423
3424 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3425 m->m_pkthdr.rcvif = ifp;
3426
3427 /*
3428 * Handle BPF listeners. Let the BPF user see the packet.
3429 */
3430 bpf_mtap(ifp, m);
3431
3432 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3433
3434 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3435 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3436 /*
3437 * Rx transport checksum-offload may also
3438 * have bugs with packets which, when transmitted,
3439 * were `runts' requiring padding.
3440 */
3441 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3442 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3443 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3444 m->m_pkthdr.csum_data =
3445 cur_rx->bge_tcp_udp_csum;
3446 m->m_pkthdr.csum_flags |=
3447 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3448 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3449 }
3450
3451 /*
3452 * If we received a packet with a vlan tag, pass it
3453 * to vlan_input() instead of ether_input().
3454 */
3455 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3456 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3457 }
3458
3459 (*ifp->if_input)(ifp, m);
3460 }
3461
3462 sc->bge_rx_saved_considx = rx_cons;
3463 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3464 if (stdcnt)
3465 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3466 if (jumbocnt)
3467 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3468 }
3469
3470 static void
3471 bge_txeof(struct bge_softc *sc)
3472 {
3473 struct bge_tx_bd *cur_tx = NULL;
3474 struct ifnet *ifp;
3475 struct txdmamap_pool_entry *dma;
3476 bus_addr_t offset, toff;
3477 bus_size_t tlen;
3478 int tosync;
3479 struct mbuf *m;
3480
3481 ifp = &sc->ethercom.ec_if;
3482
3483 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3484 offsetof(struct bge_ring_data, bge_status_block),
3485 sizeof (struct bge_status_block),
3486 BUS_DMASYNC_POSTREAD);
3487
3488 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3489 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3490 sc->bge_tx_saved_considx;
3491
3492 #if NRND > 0
3493 if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3494 rnd_add_uint32(&sc->rnd_source, tosync);
3495 #endif
3496
3497 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3498
3499 if (tosync < 0) {
3500 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3501 sizeof (struct bge_tx_bd);
3502 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3503 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3504 tosync = -tosync;
3505 }
3506
3507 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3508 offset, tosync * sizeof (struct bge_tx_bd),
3509 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3510
3511 /*
3512 * Go through our tx ring and free mbufs for those
3513 * frames that have been sent.
3514 */
3515 while (sc->bge_tx_saved_considx !=
3516 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3517 uint32_t idx = 0;
3518
3519 idx = sc->bge_tx_saved_considx;
3520 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3521 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3522 ifp->if_opackets++;
3523 m = sc->bge_cdata.bge_tx_chain[idx];
3524 if (m != NULL) {
3525 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3526 dma = sc->txdma[idx];
3527 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3528 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3529 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3530 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3531 sc->txdma[idx] = NULL;
3532
3533 m_freem(m);
3534 }
3535 sc->bge_txcnt--;
3536 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3537 ifp->if_timer = 0;
3538 }
3539
3540 if (cur_tx != NULL)
3541 ifp->if_flags &= ~IFF_OACTIVE;
3542 }
3543
3544 static int
3545 bge_intr(void *xsc)
3546 {
3547 struct bge_softc *sc;
3548 struct ifnet *ifp;
3549 uint32_t statusword;
3550
3551 sc = xsc;
3552 ifp = &sc->ethercom.ec_if;
3553
3554 /* It is possible for the interrupt to arrive before
3555 * the status block is updated prior to the interrupt.
3556 * Reading the PCI State register will confirm whether the
3557 * interrupt is ours and will flush the status block.
3558 */
3559
3560 /* read status word from status block */
3561 statusword = sc->bge_rdata->bge_status_block.bge_status;
3562
3563 if ((statusword & BGE_STATFLAG_UPDATED) ||
3564 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3565 /* Ack interrupt and stop others from occuring. */
3566 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3567
3568 BGE_EVCNT_INCR(sc->bge_ev_intr);
3569
3570 /* clear status word */
3571 sc->bge_rdata->bge_status_block.bge_status = 0;
3572
3573 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3574 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3575 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3576 bge_link_upd(sc);
3577
3578 if (ifp->if_flags & IFF_RUNNING) {
3579 /* Check RX return ring producer/consumer */
3580 bge_rxeof(sc);
3581
3582 /* Check TX ring producer/consumer */
3583 bge_txeof(sc);
3584 }
3585
3586 if (sc->bge_pending_rxintr_change) {
3587 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3588 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3589 uint32_t junk;
3590
3591 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3592 DELAY(10);
3593 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3594
3595 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3596 DELAY(10);
3597 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3598
3599 sc->bge_pending_rxintr_change = 0;
3600 }
3601 bge_handle_events(sc);
3602
3603 /* Re-enable interrupts. */
3604 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3605
3606 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3607 bge_start(ifp);
3608
3609 return 1;
3610 } else
3611 return 0;
3612 }
3613
3614 static void
3615 bge_asf_driver_up(struct bge_softc *sc)
3616 {
3617 if (sc->bge_asf_mode & ASF_STACKUP) {
3618 /* Send ASF heartbeat aprox. every 2s */
3619 if (sc->bge_asf_count)
3620 sc->bge_asf_count --;
3621 else {
3622 sc->bge_asf_count = 2;
3623 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3624 BGE_FW_DRV_ALIVE);
3625 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3626 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3627 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3628 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3629 }
3630 }
3631 }
3632
3633 static void
3634 bge_tick(void *xsc)
3635 {
3636 struct bge_softc *sc = xsc;
3637 struct mii_data *mii = &sc->bge_mii;
3638 int s;
3639
3640 s = splnet();
3641
3642 if (BGE_IS_5705_PLUS(sc))
3643 bge_stats_update_regs(sc);
3644 else
3645 bge_stats_update(sc);
3646
3647 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3648 /*
3649 * Since in TBI mode auto-polling can't be used we should poll
3650 * link status manually. Here we register pending link event
3651 * and trigger interrupt.
3652 */
3653 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3654 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3655 } else {
3656 /*
3657 * Do not touch PHY if we have link up. This could break
3658 * IPMI/ASF mode or produce extra input errors.
3659 * (extra input errors was reported for bcm5701 & bcm5704).
3660 */
3661 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3662 mii_tick(mii);
3663 }
3664
3665 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3666
3667 splx(s);
3668 }
3669
3670 static void
3671 bge_stats_update_regs(struct bge_softc *sc)
3672 {
3673 struct ifnet *ifp = &sc->ethercom.ec_if;
3674
3675 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3676 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3677
3678 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3679 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3680 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3681 }
3682
3683 static void
3684 bge_stats_update(struct bge_softc *sc)
3685 {
3686 struct ifnet *ifp = &sc->ethercom.ec_if;
3687 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3688
3689 #define READ_STAT(sc, stats, stat) \
3690 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3691
3692 ifp->if_collisions +=
3693 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3694 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3695 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3696 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3697 ifp->if_collisions;
3698
3699 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3700 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3701 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3702 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3703 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3704 READ_STAT(sc, stats,
3705 xoffPauseFramesReceived.bge_addr_lo));
3706 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3707 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3708 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3709 READ_STAT(sc, stats,
3710 macControlFramesReceived.bge_addr_lo));
3711 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3712 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3713
3714 #undef READ_STAT
3715
3716 #ifdef notdef
3717 ifp->if_collisions +=
3718 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3719 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3720 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3721 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3722 ifp->if_collisions;
3723 #endif
3724 }
3725
3726 /*
3727 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3728 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3729 * but when such padded frames employ the bge IP/TCP checksum offload,
3730 * the hardware checksum assist gives incorrect results (possibly
3731 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3732 * If we pad such runts with zeros, the onboard checksum comes out correct.
3733 */
3734 static inline int
3735 bge_cksum_pad(struct mbuf *pkt)
3736 {
3737 struct mbuf *last = NULL;
3738 int padlen;
3739
3740 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3741
3742 /* if there's only the packet-header and we can pad there, use it. */
3743 if (pkt->m_pkthdr.len == pkt->m_len &&
3744 M_TRAILINGSPACE(pkt) >= padlen) {
3745 last = pkt;
3746 } else {
3747 /*
3748 * Walk packet chain to find last mbuf. We will either
3749 * pad there, or append a new mbuf and pad it
3750 * (thus perhaps avoiding the bcm5700 dma-min bug).
3751 */
3752 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3753 continue; /* do nothing */
3754 }
3755
3756 /* `last' now points to last in chain. */
3757 if (M_TRAILINGSPACE(last) < padlen) {
3758 /* Allocate new empty mbuf, pad it. Compact later. */
3759 struct mbuf *n;
3760 MGET(n, M_DONTWAIT, MT_DATA);
3761 if (n == NULL)
3762 return ENOBUFS;
3763 n->m_len = 0;
3764 last->m_next = n;
3765 last = n;
3766 }
3767 }
3768
3769 KDASSERT(!M_READONLY(last));
3770 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3771
3772 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3773 memset(mtod(last, char *) + last->m_len, 0, padlen);
3774 last->m_len += padlen;
3775 pkt->m_pkthdr.len += padlen;
3776 return 0;
3777 }
3778
3779 /*
3780 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3781 */
3782 static inline int
3783 bge_compact_dma_runt(struct mbuf *pkt)
3784 {
3785 struct mbuf *m, *prev;
3786 int totlen, prevlen;
3787
3788 prev = NULL;
3789 totlen = 0;
3790 prevlen = -1;
3791
3792 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3793 int mlen = m->m_len;
3794 int shortfall = 8 - mlen ;
3795
3796 totlen += mlen;
3797 if (mlen == 0) {
3798 continue;
3799 }
3800 if (mlen >= 8)
3801 continue;
3802
3803 /* If we get here, mbuf data is too small for DMA engine.
3804 * Try to fix by shuffling data to prev or next in chain.
3805 * If that fails, do a compacting deep-copy of the whole chain.
3806 */
3807
3808 /* Internal frag. If fits in prev, copy it there. */
3809 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3810 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3811 prev->m_len += mlen;
3812 m->m_len = 0;
3813 /* XXX stitch chain */
3814 prev->m_next = m_free(m);
3815 m = prev;
3816 continue;
3817 }
3818 else if (m->m_next != NULL &&
3819 M_TRAILINGSPACE(m) >= shortfall &&
3820 m->m_next->m_len >= (8 + shortfall)) {
3821 /* m is writable and have enough data in next, pull up. */
3822
3823 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3824 shortfall);
3825 m->m_len += shortfall;
3826 m->m_next->m_len -= shortfall;
3827 m->m_next->m_data += shortfall;
3828 }
3829 else if (m->m_next == NULL || 1) {
3830 /* Got a runt at the very end of the packet.
3831 * borrow data from the tail of the preceding mbuf and
3832 * update its length in-place. (The original data is still
3833 * valid, so we can do this even if prev is not writable.)
3834 */
3835
3836 /* if we'd make prev a runt, just move all of its data. */
3837 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3838 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3839
3840 if ((prev->m_len - shortfall) < 8)
3841 shortfall = prev->m_len;
3842
3843 #ifdef notyet /* just do the safe slow thing for now */
3844 if (!M_READONLY(m)) {
3845 if (M_LEADINGSPACE(m) < shorfall) {
3846 void *m_dat;
3847 m_dat = (m->m_flags & M_PKTHDR) ?
3848 m->m_pktdat : m->dat;
3849 memmove(m_dat, mtod(m, void*), m->m_len);
3850 m->m_data = m_dat;
3851 }
3852 } else
3853 #endif /* just do the safe slow thing */
3854 {
3855 struct mbuf * n = NULL;
3856 int newprevlen = prev->m_len - shortfall;
3857
3858 MGET(n, M_NOWAIT, MT_DATA);
3859 if (n == NULL)
3860 return ENOBUFS;
3861 KASSERT(m->m_len + shortfall < MLEN
3862 /*,
3863 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3864
3865 /* first copy the data we're stealing from prev */
3866 memcpy(n->m_data, prev->m_data + newprevlen,
3867 shortfall);
3868
3869 /* update prev->m_len accordingly */
3870 prev->m_len -= shortfall;
3871
3872 /* copy data from runt m */
3873 memcpy(n->m_data + shortfall, m->m_data,
3874 m->m_len);
3875
3876 /* n holds what we stole from prev, plus m */
3877 n->m_len = shortfall + m->m_len;
3878
3879 /* stitch n into chain and free m */
3880 n->m_next = m->m_next;
3881 prev->m_next = n;
3882 /* KASSERT(m->m_next == NULL); */
3883 m->m_next = NULL;
3884 m_free(m);
3885 m = n; /* for continuing loop */
3886 }
3887 }
3888 prevlen = m->m_len;
3889 }
3890 return 0;
3891 }
3892
3893 /*
3894 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3895 * pointers to descriptors.
3896 */
3897 static int
3898 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3899 {
3900 struct bge_tx_bd *f = NULL;
3901 uint32_t frag, cur;
3902 uint16_t csum_flags = 0;
3903 uint16_t txbd_tso_flags = 0;
3904 struct txdmamap_pool_entry *dma;
3905 bus_dmamap_t dmamap;
3906 int i = 0;
3907 struct m_tag *mtag;
3908 int use_tso, maxsegsize, error;
3909
3910 cur = frag = *txidx;
3911
3912 if (m_head->m_pkthdr.csum_flags) {
3913 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3914 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3915 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3916 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3917 }
3918
3919 /*
3920 * If we were asked to do an outboard checksum, and the NIC
3921 * has the bug where it sometimes adds in the Ethernet padding,
3922 * explicitly pad with zeros so the cksum will be correct either way.
3923 * (For now, do this for all chip versions, until newer
3924 * are confirmed to not require the workaround.)
3925 */
3926 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3927 #ifdef notyet
3928 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3929 #endif
3930 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3931 goto check_dma_bug;
3932
3933 if (bge_cksum_pad(m_head) != 0)
3934 return ENOBUFS;
3935
3936 check_dma_bug:
3937 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3938 goto doit;
3939
3940 /*
3941 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3942 * less than eight bytes. If we encounter a teeny mbuf
3943 * at the end of a chain, we can pad. Otherwise, copy.
3944 */
3945 if (bge_compact_dma_runt(m_head) != 0)
3946 return ENOBUFS;
3947
3948 doit:
3949 dma = SLIST_FIRST(&sc->txdma_list);
3950 if (dma == NULL)
3951 return ENOBUFS;
3952 dmamap = dma->dmamap;
3953
3954 /*
3955 * Set up any necessary TSO state before we start packing...
3956 */
3957 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3958 if (!use_tso) {
3959 maxsegsize = 0;
3960 } else { /* TSO setup */
3961 unsigned mss;
3962 struct ether_header *eh;
3963 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3964 struct mbuf * m0 = m_head;
3965 struct ip *ip;
3966 struct tcphdr *th;
3967 int iphl, hlen;
3968
3969 /*
3970 * XXX It would be nice if the mbuf pkthdr had offset
3971 * fields for the protocol headers.
3972 */
3973
3974 eh = mtod(m0, struct ether_header *);
3975 switch (htons(eh->ether_type)) {
3976 case ETHERTYPE_IP:
3977 offset = ETHER_HDR_LEN;
3978 break;
3979
3980 case ETHERTYPE_VLAN:
3981 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3982 break;
3983
3984 default:
3985 /*
3986 * Don't support this protocol or encapsulation.
3987 */
3988 return ENOBUFS;
3989 }
3990
3991 /*
3992 * TCP/IP headers are in the first mbuf; we can do
3993 * this the easy way.
3994 */
3995 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3996 hlen = iphl + offset;
3997 if (__predict_false(m0->m_len <
3998 (hlen + sizeof(struct tcphdr)))) {
3999
4000 aprint_debug_dev(sc->bge_dev,
4001 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4002 "not handled yet\n",
4003 m0->m_len, hlen+ sizeof(struct tcphdr));
4004 #ifdef NOTYET
4005 /*
4006 * XXX jonathan (at) NetBSD.org: untested.
4007 * how to force this branch to be taken?
4008 */
4009 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4010
4011 m_copydata(m0, offset, sizeof(ip), &ip);
4012 m_copydata(m0, hlen, sizeof(th), &th);
4013
4014 ip.ip_len = 0;
4015
4016 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4017 sizeof(ip.ip_len), &ip.ip_len);
4018
4019 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4020 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4021
4022 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4023 sizeof(th.th_sum), &th.th_sum);
4024
4025 hlen += th.th_off << 2;
4026 iptcp_opt_words = hlen;
4027 #else
4028 /*
4029 * if_wm "hard" case not yet supported, can we not
4030 * mandate it out of existence?
4031 */
4032 (void) ip; (void)th; (void) ip_tcp_hlen;
4033
4034 return ENOBUFS;
4035 #endif
4036 } else {
4037 ip = (struct ip *) (mtod(m0, char *) + offset);
4038 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4039 ip_tcp_hlen = iphl + (th->th_off << 2);
4040
4041 /* Total IP/TCP options, in 32-bit words */
4042 iptcp_opt_words = (ip_tcp_hlen
4043 - sizeof(struct tcphdr)
4044 - sizeof(struct ip)) >> 2;
4045 }
4046 if (BGE_IS_5750_OR_BEYOND(sc)) {
4047 th->th_sum = 0;
4048 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4049 } else {
4050 /*
4051 * XXX jonathan (at) NetBSD.org: 5705 untested.
4052 * Requires TSO firmware patch for 5701/5703/5704.
4053 */
4054 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4055 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4056 }
4057
4058 mss = m_head->m_pkthdr.segsz;
4059 txbd_tso_flags |=
4060 BGE_TXBDFLAG_CPU_PRE_DMA |
4061 BGE_TXBDFLAG_CPU_POST_DMA;
4062
4063 /*
4064 * Our NIC TSO-assist assumes TSO has standard, optionless
4065 * IPv4 and TCP headers, which total 40 bytes. By default,
4066 * the NIC copies 40 bytes of IP/TCP header from the
4067 * supplied header into the IP/TCP header portion of
4068 * each post-TSO-segment. If the supplied packet has IP or
4069 * TCP options, we need to tell the NIC to copy those extra
4070 * bytes into each post-TSO header, in addition to the normal
4071 * 40-byte IP/TCP header (and to leave space accordingly).
4072 * Unfortunately, the driver encoding of option length
4073 * varies across different ASIC families.
4074 */
4075 tcp_seg_flags = 0;
4076 if (iptcp_opt_words) {
4077 if (BGE_IS_5705_PLUS(sc)) {
4078 tcp_seg_flags =
4079 iptcp_opt_words << 11;
4080 } else {
4081 txbd_tso_flags |=
4082 iptcp_opt_words << 12;
4083 }
4084 }
4085 maxsegsize = mss | tcp_seg_flags;
4086 ip->ip_len = htons(mss + ip_tcp_hlen);
4087
4088 } /* TSO setup */
4089
4090 /*
4091 * Start packing the mbufs in this chain into
4092 * the fragment pointers. Stop when we run out
4093 * of fragments or hit the end of the mbuf chain.
4094 */
4095 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4096 BUS_DMA_NOWAIT);
4097 if (error)
4098 return ENOBUFS;
4099 /*
4100 * Sanity check: avoid coming within 16 descriptors
4101 * of the end of the ring.
4102 */
4103 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4104 BGE_TSO_PRINTF(("%s: "
4105 " dmamap_load_mbuf too close to ring wrap\n",
4106 device_xname(sc->bge_dev)));
4107 goto fail_unload;
4108 }
4109
4110 mtag = sc->ethercom.ec_nvlans ?
4111 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4112
4113
4114 /* Iterate over dmap-map fragments. */
4115 for (i = 0; i < dmamap->dm_nsegs; i++) {
4116 f = &sc->bge_rdata->bge_tx_ring[frag];
4117 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4118 break;
4119
4120 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4121 f->bge_len = dmamap->dm_segs[i].ds_len;
4122
4123 /*
4124 * For 5751 and follow-ons, for TSO we must turn
4125 * off checksum-assist flag in the tx-descr, and
4126 * supply the ASIC-revision-specific encoding
4127 * of TSO flags and segsize.
4128 */
4129 if (use_tso) {
4130 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4131 f->bge_rsvd = maxsegsize;
4132 f->bge_flags = csum_flags | txbd_tso_flags;
4133 } else {
4134 f->bge_rsvd = 0;
4135 f->bge_flags =
4136 (csum_flags | txbd_tso_flags) & 0x0fff;
4137 }
4138 } else {
4139 f->bge_rsvd = 0;
4140 f->bge_flags = csum_flags;
4141 }
4142
4143 if (mtag != NULL) {
4144 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4145 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4146 } else {
4147 f->bge_vlan_tag = 0;
4148 }
4149 cur = frag;
4150 BGE_INC(frag, BGE_TX_RING_CNT);
4151 }
4152
4153 if (i < dmamap->dm_nsegs) {
4154 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4155 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4156 goto fail_unload;
4157 }
4158
4159 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4160 BUS_DMASYNC_PREWRITE);
4161
4162 if (frag == sc->bge_tx_saved_considx) {
4163 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4164 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4165
4166 goto fail_unload;
4167 }
4168
4169 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4170 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4171 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4172 sc->txdma[cur] = dma;
4173 sc->bge_txcnt += dmamap->dm_nsegs;
4174
4175 *txidx = frag;
4176
4177 return 0;
4178
4179 fail_unload:
4180 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4181
4182 return ENOBUFS;
4183 }
4184
4185 /*
4186 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4187 * to the mbuf data regions directly in the transmit descriptors.
4188 */
4189 static void
4190 bge_start(struct ifnet *ifp)
4191 {
4192 struct bge_softc *sc;
4193 struct mbuf *m_head = NULL;
4194 uint32_t prodidx;
4195 int pkts = 0;
4196
4197 sc = ifp->if_softc;
4198
4199 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4200 return;
4201
4202 prodidx = sc->bge_tx_prodidx;
4203
4204 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4205 IFQ_POLL(&ifp->if_snd, m_head);
4206 if (m_head == NULL)
4207 break;
4208
4209 #if 0
4210 /*
4211 * XXX
4212 * safety overkill. If this is a fragmented packet chain
4213 * with delayed TCP/UDP checksums, then only encapsulate
4214 * it if we have enough descriptors to handle the entire
4215 * chain at once.
4216 * (paranoia -- may not actually be needed)
4217 */
4218 if (m_head->m_flags & M_FIRSTFRAG &&
4219 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4220 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4221 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4222 ifp->if_flags |= IFF_OACTIVE;
4223 break;
4224 }
4225 }
4226 #endif
4227
4228 /*
4229 * Pack the data into the transmit ring. If we
4230 * don't have room, set the OACTIVE flag and wait
4231 * for the NIC to drain the ring.
4232 */
4233 if (bge_encap(sc, m_head, &prodidx)) {
4234 ifp->if_flags |= IFF_OACTIVE;
4235 break;
4236 }
4237
4238 /* now we are committed to transmit the packet */
4239 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4240 pkts++;
4241
4242 /*
4243 * If there's a BPF listener, bounce a copy of this frame
4244 * to him.
4245 */
4246 bpf_mtap(ifp, m_head);
4247 }
4248 if (pkts == 0)
4249 return;
4250
4251 /* Transmit */
4252 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4253 /* 5700 b2 errata */
4254 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4255 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4256
4257 sc->bge_tx_prodidx = prodidx;
4258
4259 /*
4260 * Set a timeout in case the chip goes out to lunch.
4261 */
4262 ifp->if_timer = 5;
4263 }
4264
4265 static int
4266 bge_init(struct ifnet *ifp)
4267 {
4268 struct bge_softc *sc = ifp->if_softc;
4269 const uint16_t *m;
4270 int s, error = 0;
4271
4272 s = splnet();
4273
4274 ifp = &sc->ethercom.ec_if;
4275
4276 /* Cancel pending I/O and flush buffers. */
4277 bge_stop(ifp, 0);
4278
4279 bge_stop_fw(sc);
4280 bge_sig_pre_reset(sc, BGE_RESET_START);
4281 bge_reset(sc);
4282 bge_sig_legacy(sc, BGE_RESET_START);
4283 bge_sig_post_reset(sc, BGE_RESET_START);
4284
4285 bge_chipinit(sc);
4286
4287 /*
4288 * Init the various state machines, ring
4289 * control blocks and firmware.
4290 */
4291 error = bge_blockinit(sc);
4292 if (error != 0) {
4293 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4294 error);
4295 splx(s);
4296 return error;
4297 }
4298
4299 ifp = &sc->ethercom.ec_if;
4300
4301 /* Specify MTU. */
4302 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4303 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4304
4305 /* Load our MAC address. */
4306 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4307 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4308 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4309
4310 /* Enable or disable promiscuous mode as needed. */
4311 if (ifp->if_flags & IFF_PROMISC)
4312 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4313 else
4314 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4315
4316 /* Program multicast filter. */
4317 bge_setmulti(sc);
4318
4319 /* Init RX ring. */
4320 bge_init_rx_ring_std(sc);
4321
4322 /*
4323 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4324 * memory to insure that the chip has in fact read the first
4325 * entry of the ring.
4326 */
4327 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4328 uint32_t v, i;
4329 for (i = 0; i < 10; i++) {
4330 DELAY(20);
4331 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4332 if (v == (MCLBYTES - ETHER_ALIGN))
4333 break;
4334 }
4335 if (i == 10)
4336 aprint_error_dev(sc->bge_dev,
4337 "5705 A0 chip failed to load RX ring\n");
4338 }
4339
4340 /* Init jumbo RX ring. */
4341 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4342 bge_init_rx_ring_jumbo(sc);
4343
4344 /* Init our RX return ring index */
4345 sc->bge_rx_saved_considx = 0;
4346
4347 /* Init TX ring. */
4348 bge_init_tx_ring(sc);
4349
4350 /* Turn on transmitter */
4351 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4352
4353 /* Turn on receiver */
4354 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4355
4356 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4357
4358 /* Tell firmware we're alive. */
4359 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4360
4361 /* Enable host interrupts. */
4362 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4363 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4364 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4365
4366 if ((error = bge_ifmedia_upd(ifp)) != 0)
4367 goto out;
4368
4369 ifp->if_flags |= IFF_RUNNING;
4370 ifp->if_flags &= ~IFF_OACTIVE;
4371
4372 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4373
4374 out:
4375 splx(s);
4376
4377 return error;
4378 }
4379
4380 /*
4381 * Set media options.
4382 */
4383 static int
4384 bge_ifmedia_upd(struct ifnet *ifp)
4385 {
4386 struct bge_softc *sc = ifp->if_softc;
4387 struct mii_data *mii = &sc->bge_mii;
4388 struct ifmedia *ifm = &sc->bge_ifmedia;
4389 int rc;
4390
4391 /* If this is a 1000baseX NIC, enable the TBI port. */
4392 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4393 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4394 return EINVAL;
4395 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4396 case IFM_AUTO:
4397 /*
4398 * The BCM5704 ASIC appears to have a special
4399 * mechanism for programming the autoneg
4400 * advertisement registers in TBI mode.
4401 */
4402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4403 uint32_t sgdig;
4404 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4405 if (sgdig & BGE_SGDIGSTS_DONE) {
4406 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4407 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4408 sgdig |= BGE_SGDIGCFG_AUTO |
4409 BGE_SGDIGCFG_PAUSE_CAP |
4410 BGE_SGDIGCFG_ASYM_PAUSE;
4411 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4412 sgdig | BGE_SGDIGCFG_SEND);
4413 DELAY(5);
4414 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4415 }
4416 }
4417 break;
4418 case IFM_1000_SX:
4419 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4420 BGE_CLRBIT(sc, BGE_MAC_MODE,
4421 BGE_MACMODE_HALF_DUPLEX);
4422 } else {
4423 BGE_SETBIT(sc, BGE_MAC_MODE,
4424 BGE_MACMODE_HALF_DUPLEX);
4425 }
4426 break;
4427 default:
4428 return EINVAL;
4429 }
4430 /* XXX 802.3x flow control for 1000BASE-SX */
4431 return 0;
4432 }
4433
4434 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4435 if ((rc = mii_mediachg(mii)) == ENXIO)
4436 return 0;
4437
4438 /*
4439 * Force an interrupt so that we will call bge_link_upd
4440 * if needed and clear any pending link state attention.
4441 * Without this we are not getting any further interrupts
4442 * for link state changes and thus will not UP the link and
4443 * not be able to send in bge_start. The only way to get
4444 * things working was to receive a packet and get a RX intr.
4445 */
4446 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4447 sc->bge_flags & BGE_IS_5788)
4448 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4449 else
4450 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4451
4452 return rc;
4453 }
4454
4455 /*
4456 * Report current media status.
4457 */
4458 static void
4459 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4460 {
4461 struct bge_softc *sc = ifp->if_softc;
4462 struct mii_data *mii = &sc->bge_mii;
4463
4464 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4465 ifmr->ifm_status = IFM_AVALID;
4466 ifmr->ifm_active = IFM_ETHER;
4467 if (CSR_READ_4(sc, BGE_MAC_STS) &
4468 BGE_MACSTAT_TBI_PCS_SYNCHED)
4469 ifmr->ifm_status |= IFM_ACTIVE;
4470 ifmr->ifm_active |= IFM_1000_SX;
4471 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4472 ifmr->ifm_active |= IFM_HDX;
4473 else
4474 ifmr->ifm_active |= IFM_FDX;
4475 return;
4476 }
4477
4478 mii_pollstat(mii);
4479 ifmr->ifm_status = mii->mii_media_status;
4480 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4481 sc->bge_flowflags;
4482 }
4483
4484 static int
4485 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4486 {
4487 struct bge_softc *sc = ifp->if_softc;
4488 struct ifreq *ifr = (struct ifreq *) data;
4489 int s, error = 0;
4490 struct mii_data *mii;
4491
4492 s = splnet();
4493
4494 switch (command) {
4495 case SIOCSIFFLAGS:
4496 if ((error = ifioctl_common(ifp, command, data)) != 0)
4497 break;
4498 if (ifp->if_flags & IFF_UP) {
4499 /*
4500 * If only the state of the PROMISC flag changed,
4501 * then just use the 'set promisc mode' command
4502 * instead of reinitializing the entire NIC. Doing
4503 * a full re-init means reloading the firmware and
4504 * waiting for it to start up, which may take a
4505 * second or two.
4506 */
4507 if (ifp->if_flags & IFF_RUNNING &&
4508 ifp->if_flags & IFF_PROMISC &&
4509 !(sc->bge_if_flags & IFF_PROMISC)) {
4510 BGE_SETBIT(sc, BGE_RX_MODE,
4511 BGE_RXMODE_RX_PROMISC);
4512 } else if (ifp->if_flags & IFF_RUNNING &&
4513 !(ifp->if_flags & IFF_PROMISC) &&
4514 sc->bge_if_flags & IFF_PROMISC) {
4515 BGE_CLRBIT(sc, BGE_RX_MODE,
4516 BGE_RXMODE_RX_PROMISC);
4517 } else if (!(sc->bge_if_flags & IFF_UP))
4518 bge_init(ifp);
4519 } else {
4520 if (ifp->if_flags & IFF_RUNNING)
4521 bge_stop(ifp, 1);
4522 }
4523 sc->bge_if_flags = ifp->if_flags;
4524 error = 0;
4525 break;
4526 case SIOCSIFMEDIA:
4527 /* XXX Flow control is not supported for 1000BASE-SX */
4528 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4529 ifr->ifr_media &= ~IFM_ETH_FMASK;
4530 sc->bge_flowflags = 0;
4531 }
4532
4533 /* Flow control requires full-duplex mode. */
4534 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4535 (ifr->ifr_media & IFM_FDX) == 0) {
4536 ifr->ifr_media &= ~IFM_ETH_FMASK;
4537 }
4538 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4539 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4540 /* We can do both TXPAUSE and RXPAUSE. */
4541 ifr->ifr_media |=
4542 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4543 }
4544 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4545 }
4546 /* FALLTHROUGH */
4547 case SIOCGIFMEDIA:
4548 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4549 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4550 command);
4551 } else {
4552 mii = &sc->bge_mii;
4553 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4554 command);
4555 }
4556 break;
4557 default:
4558 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4559 break;
4560
4561 error = 0;
4562
4563 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4564 ;
4565 else if (ifp->if_flags & IFF_RUNNING)
4566 bge_setmulti(sc);
4567 break;
4568 }
4569
4570 splx(s);
4571
4572 return error;
4573 }
4574
4575 static void
4576 bge_watchdog(struct ifnet *ifp)
4577 {
4578 struct bge_softc *sc;
4579
4580 sc = ifp->if_softc;
4581
4582 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4583
4584 ifp->if_flags &= ~IFF_RUNNING;
4585 bge_init(ifp);
4586
4587 ifp->if_oerrors++;
4588 }
4589
4590 static void
4591 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4592 {
4593 int i;
4594
4595 BGE_CLRBIT(sc, reg, bit);
4596
4597 for (i = 0; i < 1000; i++) {
4598 if ((CSR_READ_4(sc, reg) & bit) == 0)
4599 return;
4600 delay(100);
4601 }
4602
4603 /*
4604 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4605 * on some environment (and once after boot?)
4606 */
4607 if (reg != BGE_SRS_MODE)
4608 aprint_error_dev(sc->bge_dev,
4609 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4610 (u_long)reg, bit);
4611 }
4612
4613 /*
4614 * Stop the adapter and free any mbufs allocated to the
4615 * RX and TX lists.
4616 */
4617 static void
4618 bge_stop(struct ifnet *ifp, int disable)
4619 {
4620 struct bge_softc *sc = ifp->if_softc;
4621
4622 callout_stop(&sc->bge_timeout);
4623
4624 /*
4625 * Tell firmware we're shutting down.
4626 */
4627 bge_stop_fw(sc);
4628 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4629
4630 /* Disable host interrupts. */
4631 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4632 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4633
4634 /*
4635 * Disable all of the receiver blocks
4636 */
4637 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4638 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4639 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4640 if (BGE_IS_5700_FAMILY(sc))
4641 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4642 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4643 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4644 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4645
4646 /*
4647 * Disable all of the transmit blocks
4648 */
4649 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4650 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4651 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4652 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4653 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4654 if (BGE_IS_5700_FAMILY(sc))
4655 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4656 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4657
4658 /*
4659 * Shut down all of the memory managers and related
4660 * state machines.
4661 */
4662 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4663 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4664 if (BGE_IS_5700_FAMILY(sc))
4665 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4666
4667 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4668 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4669
4670 if (BGE_IS_5700_FAMILY(sc)) {
4671 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4672 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4673 }
4674
4675 bge_reset(sc);
4676 bge_sig_legacy(sc, BGE_RESET_STOP);
4677 bge_sig_post_reset(sc, BGE_RESET_STOP);
4678
4679 /*
4680 * Keep the ASF firmware running if up.
4681 */
4682 if (sc->bge_asf_mode & ASF_STACKUP)
4683 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4684 else
4685 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4686
4687 /* Free the RX lists. */
4688 bge_free_rx_ring_std(sc);
4689
4690 /* Free jumbo RX list. */
4691 if (BGE_IS_JUMBO_CAPABLE(sc))
4692 bge_free_rx_ring_jumbo(sc);
4693
4694 /* Free TX buffers. */
4695 bge_free_tx_ring(sc);
4696
4697 /*
4698 * Isolate/power down the PHY.
4699 */
4700 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4701 mii_down(&sc->bge_mii);
4702
4703 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4704
4705 /* Clear MAC's link state (PHY may still have link UP). */
4706 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4707
4708 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4709 }
4710
4711 static void
4712 bge_link_upd(struct bge_softc *sc)
4713 {
4714 struct ifnet *ifp = &sc->ethercom.ec_if;
4715 struct mii_data *mii = &sc->bge_mii;
4716 uint32_t status;
4717 int link;
4718
4719 /* Clear 'pending link event' flag */
4720 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4721
4722 /*
4723 * Process link state changes.
4724 * Grrr. The link status word in the status block does
4725 * not work correctly on the BCM5700 rev AX and BX chips,
4726 * according to all available information. Hence, we have
4727 * to enable MII interrupts in order to properly obtain
4728 * async link changes. Unfortunately, this also means that
4729 * we have to read the MAC status register to detect link
4730 * changes, thereby adding an additional register access to
4731 * the interrupt handler.
4732 */
4733
4734 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4735 status = CSR_READ_4(sc, BGE_MAC_STS);
4736 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4737 mii_pollstat(mii);
4738
4739 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4740 mii->mii_media_status & IFM_ACTIVE &&
4741 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4742 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4743 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4744 (!(mii->mii_media_status & IFM_ACTIVE) ||
4745 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4746 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4747
4748 /* Clear the interrupt */
4749 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4750 BGE_EVTENB_MI_INTERRUPT);
4751 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4752 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4753 BRGPHY_INTRS);
4754 }
4755 return;
4756 }
4757
4758 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4759 status = CSR_READ_4(sc, BGE_MAC_STS);
4760 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4761 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4762 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4763 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4764 BGE_CLRBIT(sc, BGE_MAC_MODE,
4765 BGE_MACMODE_TBI_SEND_CFGS);
4766 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4767 if_link_state_change(ifp, LINK_STATE_UP);
4768 }
4769 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4770 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4771 if_link_state_change(ifp, LINK_STATE_DOWN);
4772 }
4773 /*
4774 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4775 * This should not happen since mii callouts are locked now, but
4776 * we keep this check for debug.
4777 */
4778 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4779 /*
4780 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4781 * bit in status word always set. Workaround this bug by
4782 * reading PHY link status directly.
4783 */
4784 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4785 BGE_STS_LINK : 0;
4786
4787 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4788 mii_pollstat(mii);
4789
4790 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4791 mii->mii_media_status & IFM_ACTIVE &&
4792 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4793 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4794 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4795 (!(mii->mii_media_status & IFM_ACTIVE) ||
4796 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4797 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4798 }
4799 }
4800
4801 /* Clear the attention */
4802 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4803 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4804 BGE_MACSTAT_LINK_CHANGED);
4805 }
4806
4807 static int
4808 sysctl_bge_verify(SYSCTLFN_ARGS)
4809 {
4810 int error, t;
4811 struct sysctlnode node;
4812
4813 node = *rnode;
4814 t = *(int*)rnode->sysctl_data;
4815 node.sysctl_data = &t;
4816 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4817 if (error || newp == NULL)
4818 return error;
4819
4820 #if 0
4821 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4822 node.sysctl_num, rnode->sysctl_num));
4823 #endif
4824
4825 if (node.sysctl_num == bge_rxthresh_nodenum) {
4826 if (t < 0 || t >= NBGE_RX_THRESH)
4827 return EINVAL;
4828 bge_update_all_threshes(t);
4829 } else
4830 return EINVAL;
4831
4832 *(int*)rnode->sysctl_data = t;
4833
4834 return 0;
4835 }
4836
4837 /*
4838 * Set up sysctl(3) MIB, hw.bge.*.
4839 *
4840 * TBD condition SYSCTL_PERMANENT on being an LKM or not
4841 */
4842 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4843 {
4844 int rc, bge_root_num;
4845 const struct sysctlnode *node;
4846
4847 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4848 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4849 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4850 goto err;
4851 }
4852
4853 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4854 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4855 SYSCTL_DESCR("BGE interface controls"),
4856 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4857 goto err;
4858 }
4859
4860 bge_root_num = node->sysctl_num;
4861
4862 /* BGE Rx interrupt mitigation level */
4863 if ((rc = sysctl_createv(clog, 0, NULL, &node,
4864 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4865 CTLTYPE_INT, "rx_lvl",
4866 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4867 sysctl_bge_verify, 0,
4868 &bge_rx_thresh_lvl,
4869 0, CTL_HW, bge_root_num, CTL_CREATE,
4870 CTL_EOL)) != 0) {
4871 goto err;
4872 }
4873
4874 bge_rxthresh_nodenum = node->sysctl_num;
4875
4876 return;
4877
4878 err:
4879 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4880 }
4881
4882 #ifdef BGE_DEBUG
4883 void
4884 bge_debug_info(struct bge_softc *sc)
4885 {
4886
4887 printf("Hardware Flags:\n");
4888 if (BGE_IS_5755_PLUS(sc))
4889 printf(" - 5755 Plus\n");
4890 if (BGE_IS_5750_OR_BEYOND(sc))
4891 printf(" - 5750 Plus\n");
4892 if (BGE_IS_5705_PLUS(sc))
4893 printf(" - 5705 Plus\n");
4894 if (BGE_IS_5714_FAMILY(sc))
4895 printf(" - 5714 Family\n");
4896 if (BGE_IS_5700_FAMILY(sc))
4897 printf(" - 5700 Family\n");
4898 if (sc->bge_flags & BGE_IS_5788)
4899 printf(" - 5788\n");
4900 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4901 printf(" - Supports Jumbo Frames\n");
4902 if (sc->bge_flags & BGE_NO_EEPROM)
4903 printf(" - No EEPROM\n");
4904 if (sc->bge_flags & BGE_PCIX)
4905 printf(" - PCI-X Bus\n");
4906 if (sc->bge_flags & BGE_PCIE)
4907 printf(" - PCI Express Bus\n");
4908 if (sc->bge_flags & BGE_NO_3LED)
4909 printf(" - No 3 LEDs\n");
4910 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4911 printf(" - RX Alignment Bug\n");
4912 if (sc->bge_flags & BGE_TSO)
4913 printf(" - TSO\n");
4914 }
4915 #endif /* BGE_DEBUG */
4916
4917 static int
4918 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4919 {
4920 prop_dictionary_t dict;
4921 prop_data_t ea;
4922
4923 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4924 return 1;
4925
4926 dict = device_properties(sc->bge_dev);
4927 ea = prop_dictionary_get(dict, "mac-address");
4928 if (ea != NULL) {
4929 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4930 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4931 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4932 return 0;
4933 }
4934
4935 return 1;
4936 }
4937
4938 static int
4939 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4940 {
4941 uint32_t mac_addr;
4942
4943 mac_addr = bge_readmem_ind(sc, 0x0c14);
4944 if ((mac_addr >> 16) == 0x484b) {
4945 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4946 ether_addr[1] = (uint8_t)mac_addr;
4947 mac_addr = bge_readmem_ind(sc, 0x0c18);
4948 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4949 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4950 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4951 ether_addr[5] = (uint8_t)mac_addr;
4952 return 0;
4953 }
4954 return 1;
4955 }
4956
4957 static int
4958 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4959 {
4960 int mac_offset = BGE_EE_MAC_OFFSET;
4961
4962 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4963 mac_offset = BGE_EE_MAC_OFFSET_5906;
4964
4965 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4966 ETHER_ADDR_LEN));
4967 }
4968
4969 static int
4970 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4971 {
4972
4973 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4974 return 1;
4975
4976 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4977 ETHER_ADDR_LEN));
4978 }
4979
4980 static int
4981 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4982 {
4983 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4984 /* NOTE: Order is critical */
4985 bge_get_eaddr_fw,
4986 bge_get_eaddr_mem,
4987 bge_get_eaddr_nvram,
4988 bge_get_eaddr_eeprom,
4989 NULL
4990 };
4991 const bge_eaddr_fcn_t *func;
4992
4993 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4994 if ((*func)(sc, eaddr) == 0)
4995 break;
4996 }
4997 return (*func == NULL ? ENXIO : 0);
4998 }
4999