Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.182
      1 /*	$NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $");
     83 
     84 #include "vlan.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/in_systm.h>
    110 #include <netinet/in_var.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 /* Headers for TCP  Segmentation Offload (TSO) */
    115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117 #include <netinet/ip.h>			/* for struct ip */
    118 #include <netinet/tcp.h>		/* for struct tcphdr */
    119 
    120 
    121 #include <net/bpf.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/mii/mii.h>
    128 #include <dev/mii/miivar.h>
    129 #include <dev/mii/miidevs.h>
    130 #include <dev/mii/brgphyreg.h>
    131 
    132 #include <dev/pci/if_bgereg.h>
    133 #include <dev/pci/if_bgevar.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 #include <prop/proplib.h>
    137 
    138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    139 
    140 
    141 /*
    142  * Tunable thresholds for rx-side bge interrupt mitigation.
    143  */
    144 
    145 /*
    146  * The pairs of values below were obtained from empirical measurement
    147  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    148  * interrupt for every N packets received, where N is, approximately,
    149  * the second value (rx_max_bds) in each pair.  The values are chosen
    150  * such that moving from one pair to the succeeding pair was observed
    151  * to roughly halve interrupt rate under sustained input packet load.
    152  * The values were empirically chosen to avoid overflowing internal
    153  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    154  * results in internal wrapping and higher interrupt rates.
    155  * The limit of 46 frames was chosen to match NFS workloads.
    156  *
    157  * These values also work well on bcm5701, bcm5704C, and (less
    158  * tested) bcm5703.  On other chipsets, (including the Altima chip
    159  * family), the larger values may overflow internal chip limits,
    160  * leading to increasing interrupt rates rather than lower interrupt
    161  * rates.
    162  *
    163  * Applications using heavy interrupt mitigation (interrupting every
    164  * 32 or 46 frames) in both directions may need to increase the TCP
    165  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    166  * full link bandwidth, due to ACKs and window updates lingering
    167  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    168  */
    169 static const struct bge_load_rx_thresh {
    170 	int rx_ticks;
    171 	int rx_max_bds; }
    172 bge_rx_threshes[] = {
    173 	{ 32,   2 },
    174 	{ 50,   4 },
    175 	{ 100,  8 },
    176 	{ 192, 16 },
    177 	{ 416, 32 },
    178 	{ 598, 46 }
    179 };
    180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    181 
    182 /* XXX patchable; should be sysctl'able */
    183 static int bge_auto_thresh = 1;
    184 static int bge_rx_thresh_lvl;
    185 
    186 static int bge_rxthresh_nodenum;
    187 
    188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    189 
    190 static int bge_probe(device_t, cfdata_t, void *);
    191 static void bge_attach(device_t, device_t, void *);
    192 static void bge_release_resources(struct bge_softc *);
    193 
    194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    199 
    200 static void bge_txeof(struct bge_softc *);
    201 static void bge_rxeof(struct bge_softc *);
    202 
    203 static void bge_asf_driver_up (struct bge_softc *);
    204 static void bge_tick(void *);
    205 static void bge_stats_update(struct bge_softc *);
    206 static void bge_stats_update_regs(struct bge_softc *);
    207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    208 
    209 static int bge_intr(void *);
    210 static void bge_start(struct ifnet *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_setpowerstate(struct bge_softc *, int);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(device_t);
    255 
    256 #define	BGE_RESET_START 1
    257 #define	BGE_RESET_STOP  2
    258 static void bge_sig_post_reset(struct bge_softc *, int);
    259 static void bge_sig_legacy(struct bge_softc *, int);
    260 static void bge_sig_pre_reset(struct bge_softc *, int);
    261 static void bge_stop_fw(struct bge_softc *);
    262 static int bge_reset(struct bge_softc *);
    263 static void bge_link_upd(struct bge_softc *);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC9100,
    317 	  "Altima AC9100 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5700,
    321 	  "Broadcom BCM5700 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5701,
    325 	  "Broadcom BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5702,
    329 	  "Broadcom BCM5702 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    333 	  "Broadcom BCM5702X Gigabit Ethernet" },
    334 	{ PCI_VENDOR_BROADCOM,
    335 	  PCI_PRODUCT_BROADCOM_BCM5703,
    336 	  "Broadcom BCM5703 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    340 	  "Broadcom BCM5703X Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    353 	  },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5705,
    356 	  "Broadcom BCM5705 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    360 	  "Broadcom BCM5705F Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    364 	  "Broadcom BCM5705K Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    368 	  "Broadcom BCM5705M Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    372 	  "Broadcom BCM5705M Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5714,
    376 	  "Broadcom BCM5714 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    380 	  "Broadcom BCM5714S Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5715,
    384 	  "Broadcom BCM5715 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    388 	  "Broadcom BCM5715S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5717,
    392 	  "Broadcom BCM5717 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5718,
    396 	  "Broadcom BCM5718 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5720,
    400 	  "Broadcom BCM5720 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5721,
    404 	  "Broadcom BCM5721 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5722,
    408 	  "Broadcom BCM5722 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5723,
    412 	  "Broadcom BCM5723 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5724,
    416 	  "Broadcom BCM5724 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5750,
    420 	  "Broadcom BCM5750 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    424 	  "Broadcom BCM5750M Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5751,
    428 	  "Broadcom BCM5751 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    432 	  "Broadcom BCM5751F Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    436 	  "Broadcom BCM5751M Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5752,
    440 	  "Broadcom BCM5752 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    444 	  "Broadcom BCM5752M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5753,
    448 	  "Broadcom BCM5753 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    452 	  "Broadcom BCM5753F Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    456 	  "Broadcom BCM5753M Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5754,
    460 	  "Broadcom BCM5754 Gigabit Ethernet",
    461 	},
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    464 	  "Broadcom BCM5754M Gigabit Ethernet",
    465 	},
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5755,
    468 	  "Broadcom BCM5755 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    472 	  "Broadcom BCM5755M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5756,
    476 	  "Broadcom BCM5756 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5761,
    480 	  "Broadcom BCM5761 Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    484 	  "Broadcom BCM5761E Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    488 	  "Broadcom BCM5761S Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    492 	  "Broadcom BCM5761SE Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5764,
    496 	  "Broadcom BCM5764 Gigabit Ethernet",
    497 	  },
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5780,
    500 	  "Broadcom BCM5780 Gigabit Ethernet",
    501 	  },
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    504 	  "Broadcom BCM5780S Gigabit Ethernet",
    505 	  },
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5781,
    508 	  "Broadcom BCM5781 Gigabit Ethernet",
    509 	  },
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5782,
    512 	  "Broadcom BCM5782 Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    516 	  "BCM5784M NetLink 1000baseT Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5786,
    520 	  "Broadcom BCM5786 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5787,
    524 	  "Broadcom BCM5787 Gigabit Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    528 	  "Broadcom BCM5787M Gigabit Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5788,
    532 	  "Broadcom BCM5788 Gigabit Ethernet",
    533 	  },
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5789,
    536 	  "Broadcom BCM5789 Gigabit Ethernet",
    537 	  },
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5901,
    540 	  "Broadcom BCM5901 Fast Ethernet",
    541 	  },
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    544 	  "Broadcom BCM5901A2 Fast Ethernet",
    545 	  },
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    548 	  "Broadcom BCM5903M Fast Ethernet",
    549 	  },
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5906,
    552 	  "Broadcom BCM5906 Fast Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    556 	  "Broadcom BCM5906M Fast Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM57760,
    560 	  "Broadcom BCM57760 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM57761,
    564 	  "Broadcom BCM57761 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM57765,
    568 	  "Broadcom BCM57765 Fast Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM57780,
    572 	  "Broadcom BCM57780 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM57781,
    576 	  "Broadcom BCM57781 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57785,
    580 	  "Broadcom BCM57785 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57788,
    584 	  "Broadcom BCM57788 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57790,
    588 	  "Broadcom BCM57790 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57791,
    592 	  "Broadcom BCM57791 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57795,
    596 	  "Broadcom BCM57795 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_SCHNEIDERKOCH,
    599 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    600 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_3COM,
    603 	  PCI_PRODUCT_3COM_3C996,
    604 	  "3Com 3c996 Gigabit Ethernet",
    605 	  },
    606 	{ 0,
    607 	  0,
    608 	  NULL },
    609 };
    610 
    611 /*
    612  * XXX: how to handle variants based on 5750 and derivatives:
    613  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    614  * in general behave like a 5705, except with additional quirks.
    615  * This driver's current handling of the 5721 is wrong;
    616  * how we map ASIC revision to "quirks" needs more thought.
    617  * (defined here until the thought is done).
    618  */
    619 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    620 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    621 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    622 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    623 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    624 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    625 
    626 static const struct bge_revision {
    627 	uint32_t		br_chipid;
    628 	const char		*br_name;
    629 } bge_revisions[] = {
    630 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    631 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    632 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    633 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    634 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    635 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    636 	/* This is treated like a BCM5700 Bx */
    637 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    638 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    639 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    640 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    641 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    642 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    643 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    644 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    645 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    646 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    647 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    648 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    649 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    650 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    651 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    652 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    653 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    654 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    655 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    656 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    657 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    658 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    659 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    660 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    661 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    662 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    663 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    664 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    665 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    666 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    667 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    668 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    669 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    670 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    671 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    672 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    673 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    674 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    675 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    676 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    677 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    678 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    679 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    680 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    681 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    682 	/* 5754 and 5787 share the same ASIC ID */
    683 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    684 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    685 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    686 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    687 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    688 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    689 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    690 
    691 	{ 0, NULL }
    692 };
    693 
    694 /*
    695  * Some defaults for major revisions, so that newer steppings
    696  * that we don't know about have a shot at working.
    697  */
    698 static const struct bge_revision bge_majorrevs[] = {
    699 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    700 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    701 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    702 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    703 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    704 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    705 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    706 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    707 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    708 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    709 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    710 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    711 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    712 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    713 	/* 5754 and 5787 share the same ASIC ID */
    714 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    715 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    716 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    717 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    718 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    719 
    720 	{ 0, NULL }
    721 };
    722 
    723 static int bge_allow_asf = 1;
    724 
    725 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    726     bge_probe, bge_attach, NULL, NULL);
    727 
    728 static uint32_t
    729 bge_readmem_ind(struct bge_softc *sc, int off)
    730 {
    731 	pcireg_t val;
    732 
    733 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    734 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    735 	return val;
    736 }
    737 
    738 static void
    739 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    740 {
    741 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    742 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    743 }
    744 
    745 /*
    746  * PCI Express only
    747  */
    748 static void
    749 bge_set_max_readrq(struct bge_softc *sc)
    750 {
    751 	device_t dev;
    752 	pcireg_t val;
    753 
    754 	dev = sc->bge_dev;
    755 
    756 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    757 	    + PCI_PCIE_DCSR);
    758 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    759 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    760 			printf("adjust device control 0x%04x ",
    761 			    val);
    762 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    763 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    764 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    765 		    + PCI_PCIE_DCSR, val);
    766 			printf("-> 0x%04x\n", val);
    767 	}
    768 }
    769 
    770 #ifdef notdef
    771 static uint32_t
    772 bge_readreg_ind(struct bge_softc *sc, int off)
    773 {
    774 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    775 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    776 }
    777 #endif
    778 
    779 static void
    780 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    781 {
    782 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    783 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    784 }
    785 
    786 static void
    787 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    788 {
    789 	CSR_WRITE_4(sc, off, val);
    790 }
    791 
    792 static void
    793 bge_writembx(struct bge_softc *sc, int off, int val)
    794 {
    795 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    796 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    797 
    798 	CSR_WRITE_4(sc, off, val);
    799 }
    800 
    801 static uint8_t
    802 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    803 {
    804 	uint32_t access, byte = 0;
    805 	int i;
    806 
    807 	/* Lock. */
    808 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    809 	for (i = 0; i < 8000; i++) {
    810 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    811 			break;
    812 		DELAY(20);
    813 	}
    814 	if (i == 8000)
    815 		return 1;
    816 
    817 	/* Enable access. */
    818 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    819 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    820 
    821 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    822 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    823 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    824 		DELAY(10);
    825 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    826 			DELAY(10);
    827 			break;
    828 		}
    829 	}
    830 
    831 	if (i == BGE_TIMEOUT * 10) {
    832 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    833 		return 1;
    834 	}
    835 
    836 	/* Get result. */
    837 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    838 
    839 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    840 
    841 	/* Disable access. */
    842 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    843 
    844 	/* Unlock. */
    845 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    846 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    847 
    848 	return 0;
    849 }
    850 
    851 /*
    852  * Read a sequence of bytes from NVRAM.
    853  */
    854 static int
    855 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    856 {
    857 	int err = 0, i;
    858 	uint8_t byte = 0;
    859 
    860 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    861 		return 1;
    862 
    863 	for (i = 0; i < cnt; i++) {
    864 		err = bge_nvram_getbyte(sc, off + i, &byte);
    865 		if (err)
    866 			break;
    867 		*(dest + i) = byte;
    868 	}
    869 
    870 	return (err ? 1 : 0);
    871 }
    872 
    873 /*
    874  * Read a byte of data stored in the EEPROM at address 'addr.' The
    875  * BCM570x supports both the traditional bitbang interface and an
    876  * auto access interface for reading the EEPROM. We use the auto
    877  * access method.
    878  */
    879 static uint8_t
    880 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    881 {
    882 	int i;
    883 	uint32_t byte = 0;
    884 
    885 	/*
    886 	 * Enable use of auto EEPROM access so we can avoid
    887 	 * having to use the bitbang method.
    888 	 */
    889 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    890 
    891 	/* Reset the EEPROM, load the clock period. */
    892 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    893 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    894 	DELAY(20);
    895 
    896 	/* Issue the read EEPROM command. */
    897 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    898 
    899 	/* Wait for completion */
    900 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    901 		DELAY(10);
    902 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    903 			break;
    904 	}
    905 
    906 	if (i == BGE_TIMEOUT * 10) {
    907 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    908 		return 1;
    909 	}
    910 
    911 	/* Get result. */
    912 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    913 
    914 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    915 
    916 	return 0;
    917 }
    918 
    919 /*
    920  * Read a sequence of bytes from the EEPROM.
    921  */
    922 static int
    923 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    924 {
    925 	int err = 0, i;
    926 	uint8_t byte = 0;
    927 	char *dest = destv;
    928 
    929 	for (i = 0; i < cnt; i++) {
    930 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    931 		if (err)
    932 			break;
    933 		*(dest + i) = byte;
    934 	}
    935 
    936 	return (err ? 1 : 0);
    937 }
    938 
    939 static int
    940 bge_miibus_readreg(device_t dev, int phy, int reg)
    941 {
    942 	struct bge_softc *sc = device_private(dev);
    943 	uint32_t val;
    944 	uint32_t autopoll;
    945 	int i;
    946 
    947 	/*
    948 	 * Broadcom's own driver always assumes the internal
    949 	 * PHY is at GMII address 1. On some chips, the PHY responds
    950 	 * to accesses at all addresses, which could cause us to
    951 	 * bogusly attach the PHY 32 times at probe type. Always
    952 	 * restricting the lookup to address 1 is simpler than
    953 	 * trying to figure out which chips revisions should be
    954 	 * special-cased.
    955 	 */
    956 	if (phy != 1)
    957 		return 0;
    958 
    959 	/* Reading with autopolling on may trigger PCI errors */
    960 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    961 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    962 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    963 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    964 		DELAY(40);
    965 	}
    966 
    967 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    968 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    969 
    970 	for (i = 0; i < BGE_TIMEOUT; i++) {
    971 		val = CSR_READ_4(sc, BGE_MI_COMM);
    972 		if (!(val & BGE_MICOMM_BUSY))
    973 			break;
    974 		delay(10);
    975 	}
    976 
    977 	if (i == BGE_TIMEOUT) {
    978 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    979 		val = 0;
    980 		goto done;
    981 	}
    982 
    983 	val = CSR_READ_4(sc, BGE_MI_COMM);
    984 
    985 done:
    986 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    987 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    988 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    989 		DELAY(40);
    990 	}
    991 
    992 	if (val & BGE_MICOMM_READFAIL)
    993 		return 0;
    994 
    995 	return (val & 0xFFFF);
    996 }
    997 
    998 static void
    999 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1000 {
   1001 	struct bge_softc *sc = device_private(dev);
   1002 	uint32_t autopoll;
   1003 	int i;
   1004 
   1005 	if (phy!=1) {
   1006 		return;
   1007 	}
   1008 
   1009 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1010 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1011 		return;
   1012 	}
   1013 
   1014 	/* Reading with autopolling on may trigger PCI errors */
   1015 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1016 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1017 		delay(40);
   1018 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1019 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1020 		delay(10); /* 40 usec is supposed to be adequate */
   1021 	}
   1022 
   1023 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1024 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1025 
   1026 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1027 		delay(10);
   1028 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1029 			delay(5);
   1030 			CSR_READ_4(sc, BGE_MI_COMM);
   1031 			break;
   1032 		}
   1033 	}
   1034 
   1035 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1036 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1037 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1038 		delay(40);
   1039 	}
   1040 
   1041 	if (i == BGE_TIMEOUT)
   1042 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1043 }
   1044 
   1045 static void
   1046 bge_miibus_statchg(device_t dev)
   1047 {
   1048 	struct bge_softc *sc = device_private(dev);
   1049 	struct mii_data *mii = &sc->bge_mii;
   1050 
   1051 	/*
   1052 	 * Get flow control negotiation result.
   1053 	 */
   1054 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1055 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1056 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1057 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1058 	}
   1059 
   1060 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1061 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1062 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1063 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1064 	else
   1065 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1066 
   1067 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1068 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1069 	else
   1070 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1071 
   1072 	/*
   1073 	 * 802.3x flow control
   1074 	 */
   1075 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1076 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1077 	else
   1078 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1079 
   1080 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1081 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1082 	else
   1083 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1084 }
   1085 
   1086 /*
   1087  * Update rx threshold levels to values in a particular slot
   1088  * of the interrupt-mitigation table bge_rx_threshes.
   1089  */
   1090 static void
   1091 bge_set_thresh(struct ifnet *ifp, int lvl)
   1092 {
   1093 	struct bge_softc *sc = ifp->if_softc;
   1094 	int s;
   1095 
   1096 	/* For now, just save the new Rx-intr thresholds and record
   1097 	 * that a threshold update is pending.  Updating the hardware
   1098 	 * registers here (even at splhigh()) is observed to
   1099 	 * occasionaly cause glitches where Rx-interrupts are not
   1100 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1101 	 */
   1102 	s = splnet();
   1103 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1104 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1105 	sc->bge_pending_rxintr_change = 1;
   1106 	splx(s);
   1107 
   1108 	 return;
   1109 }
   1110 
   1111 
   1112 /*
   1113  * Update Rx thresholds of all bge devices
   1114  */
   1115 static void
   1116 bge_update_all_threshes(int lvl)
   1117 {
   1118 	struct ifnet *ifp;
   1119 	const char * const namebuf = "bge";
   1120 	int namelen;
   1121 
   1122 	if (lvl < 0)
   1123 		lvl = 0;
   1124 	else if (lvl >= NBGE_RX_THRESH)
   1125 		lvl = NBGE_RX_THRESH - 1;
   1126 
   1127 	namelen = strlen(namebuf);
   1128 	/*
   1129 	 * Now search all the interfaces for this name/number
   1130 	 */
   1131 	IFNET_FOREACH(ifp) {
   1132 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1133 		      continue;
   1134 		/* We got a match: update if doing auto-threshold-tuning */
   1135 		if (bge_auto_thresh)
   1136 			bge_set_thresh(ifp, lvl);
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * Handle events that have triggered interrupts.
   1142  */
   1143 static void
   1144 bge_handle_events(struct bge_softc *sc)
   1145 {
   1146 
   1147 	return;
   1148 }
   1149 
   1150 /*
   1151  * Memory management for jumbo frames.
   1152  */
   1153 
   1154 static int
   1155 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1156 {
   1157 	char *ptr, *kva;
   1158 	bus_dma_segment_t	seg;
   1159 	int		i, rseg, state, error;
   1160 	struct bge_jpool_entry   *entry;
   1161 
   1162 	state = error = 0;
   1163 
   1164 	/* Grab a big chunk o' storage. */
   1165 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1166 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1167 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1168 		return ENOBUFS;
   1169 	}
   1170 
   1171 	state = 1;
   1172 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1173 	    BUS_DMA_NOWAIT)) {
   1174 		aprint_error_dev(sc->bge_dev,
   1175 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1176 		error = ENOBUFS;
   1177 		goto out;
   1178 	}
   1179 
   1180 	state = 2;
   1181 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1182 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1183 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1184 		error = ENOBUFS;
   1185 		goto out;
   1186 	}
   1187 
   1188 	state = 3;
   1189 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1190 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1191 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1192 		error = ENOBUFS;
   1193 		goto out;
   1194 	}
   1195 
   1196 	state = 4;
   1197 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1198 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1199 
   1200 	SLIST_INIT(&sc->bge_jfree_listhead);
   1201 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1202 
   1203 	/*
   1204 	 * Now divide it up into 9K pieces and save the addresses
   1205 	 * in an array.
   1206 	 */
   1207 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1208 	for (i = 0; i < BGE_JSLOTS; i++) {
   1209 		sc->bge_cdata.bge_jslots[i] = ptr;
   1210 		ptr += BGE_JLEN;
   1211 		entry = malloc(sizeof(struct bge_jpool_entry),
   1212 		    M_DEVBUF, M_NOWAIT);
   1213 		if (entry == NULL) {
   1214 			aprint_error_dev(sc->bge_dev,
   1215 			    "no memory for jumbo buffer queue!\n");
   1216 			error = ENOBUFS;
   1217 			goto out;
   1218 		}
   1219 		entry->slot = i;
   1220 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1221 				 entry, jpool_entries);
   1222 	}
   1223 out:
   1224 	if (error != 0) {
   1225 		switch (state) {
   1226 		case 4:
   1227 			bus_dmamap_unload(sc->bge_dmatag,
   1228 			    sc->bge_cdata.bge_rx_jumbo_map);
   1229 		case 3:
   1230 			bus_dmamap_destroy(sc->bge_dmatag,
   1231 			    sc->bge_cdata.bge_rx_jumbo_map);
   1232 		case 2:
   1233 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1234 		case 1:
   1235 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1236 			break;
   1237 		default:
   1238 			break;
   1239 		}
   1240 	}
   1241 
   1242 	return error;
   1243 }
   1244 
   1245 /*
   1246  * Allocate a jumbo buffer.
   1247  */
   1248 static void *
   1249 bge_jalloc(struct bge_softc *sc)
   1250 {
   1251 	struct bge_jpool_entry   *entry;
   1252 
   1253 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1254 
   1255 	if (entry == NULL) {
   1256 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1257 		return NULL;
   1258 	}
   1259 
   1260 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1261 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1262 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1263 }
   1264 
   1265 /*
   1266  * Release a jumbo buffer.
   1267  */
   1268 static void
   1269 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1270 {
   1271 	struct bge_jpool_entry *entry;
   1272 	struct bge_softc *sc;
   1273 	int i, s;
   1274 
   1275 	/* Extract the softc struct pointer. */
   1276 	sc = (struct bge_softc *)arg;
   1277 
   1278 	if (sc == NULL)
   1279 		panic("bge_jfree: can't find softc pointer!");
   1280 
   1281 	/* calculate the slot this buffer belongs to */
   1282 
   1283 	i = ((char *)buf
   1284 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1285 
   1286 	if ((i < 0) || (i >= BGE_JSLOTS))
   1287 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1288 
   1289 	s = splvm();
   1290 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1291 	if (entry == NULL)
   1292 		panic("bge_jfree: buffer not in use!");
   1293 	entry->slot = i;
   1294 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1295 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1296 
   1297 	if (__predict_true(m != NULL))
   1298   		pool_cache_put(mb_cache, m);
   1299 	splx(s);
   1300 }
   1301 
   1302 
   1303 /*
   1304  * Intialize a standard receive ring descriptor.
   1305  */
   1306 static int
   1307 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1308     bus_dmamap_t dmamap)
   1309 {
   1310 	struct mbuf		*m_new = NULL;
   1311 	struct bge_rx_bd	*r;
   1312 	int			error;
   1313 
   1314 	if (dmamap == NULL) {
   1315 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1316 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1317 		if (error != 0)
   1318 			return error;
   1319 	}
   1320 
   1321 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1322 
   1323 	if (m == NULL) {
   1324 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1325 		if (m_new == NULL)
   1326 			return ENOBUFS;
   1327 
   1328 		MCLGET(m_new, M_DONTWAIT);
   1329 		if (!(m_new->m_flags & M_EXT)) {
   1330 			m_freem(m_new);
   1331 			return ENOBUFS;
   1332 		}
   1333 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1334 
   1335 	} else {
   1336 		m_new = m;
   1337 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1338 		m_new->m_data = m_new->m_ext.ext_buf;
   1339 	}
   1340 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1341 	    m_adj(m_new, ETHER_ALIGN);
   1342 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1343 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1344 		return ENOBUFS;
   1345 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1346 	    BUS_DMASYNC_PREREAD);
   1347 
   1348 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1349 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1350 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1351 	r->bge_flags = BGE_RXBDFLAG_END;
   1352 	r->bge_len = m_new->m_len;
   1353 	r->bge_idx = i;
   1354 
   1355 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1356 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1357 		i * sizeof (struct bge_rx_bd),
   1358 	    sizeof (struct bge_rx_bd),
   1359 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1360 
   1361 	return 0;
   1362 }
   1363 
   1364 /*
   1365  * Initialize a jumbo receive ring descriptor. This allocates
   1366  * a jumbo buffer from the pool managed internally by the driver.
   1367  */
   1368 static int
   1369 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1370 {
   1371 	struct mbuf *m_new = NULL;
   1372 	struct bge_rx_bd *r;
   1373 	void *buf = NULL;
   1374 
   1375 	if (m == NULL) {
   1376 
   1377 		/* Allocate the mbuf. */
   1378 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1379 		if (m_new == NULL)
   1380 			return ENOBUFS;
   1381 
   1382 		/* Allocate the jumbo buffer */
   1383 		buf = bge_jalloc(sc);
   1384 		if (buf == NULL) {
   1385 			m_freem(m_new);
   1386 			aprint_error_dev(sc->bge_dev,
   1387 			    "jumbo allocation failed -- packet dropped!\n");
   1388 			return ENOBUFS;
   1389 		}
   1390 
   1391 		/* Attach the buffer to the mbuf. */
   1392 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1393 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1394 		    bge_jfree, sc);
   1395 		m_new->m_flags |= M_EXT_RW;
   1396 	} else {
   1397 		m_new = m;
   1398 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1399 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1400 	}
   1401 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1402 	    m_adj(m_new, ETHER_ALIGN);
   1403 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1404 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1405 	    BUS_DMASYNC_PREREAD);
   1406 	/* Set up the descriptor. */
   1407 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1408 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1409 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1410 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1411 	r->bge_len = m_new->m_len;
   1412 	r->bge_idx = i;
   1413 
   1414 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1415 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1416 		i * sizeof (struct bge_rx_bd),
   1417 	    sizeof (struct bge_rx_bd),
   1418 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1419 
   1420 	return 0;
   1421 }
   1422 
   1423 /*
   1424  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1425  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1426  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1427  * the NIC.
   1428  */
   1429 static int
   1430 bge_init_rx_ring_std(struct bge_softc *sc)
   1431 {
   1432 	int i;
   1433 
   1434 	if (sc->bge_flags & BGE_RXRING_VALID)
   1435 		return 0;
   1436 
   1437 	for (i = 0; i < BGE_SSLOTS; i++) {
   1438 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1439 			return ENOBUFS;
   1440 	}
   1441 
   1442 	sc->bge_std = i - 1;
   1443 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1444 
   1445 	sc->bge_flags |= BGE_RXRING_VALID;
   1446 
   1447 	return 0;
   1448 }
   1449 
   1450 static void
   1451 bge_free_rx_ring_std(struct bge_softc *sc)
   1452 {
   1453 	int i;
   1454 
   1455 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1456 		return;
   1457 
   1458 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1459 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1460 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1461 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1462 			bus_dmamap_destroy(sc->bge_dmatag,
   1463 			    sc->bge_cdata.bge_rx_std_map[i]);
   1464 		}
   1465 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1466 		    sizeof(struct bge_rx_bd));
   1467 	}
   1468 
   1469 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1470 }
   1471 
   1472 static int
   1473 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1474 {
   1475 	int i;
   1476 	volatile struct bge_rcb *rcb;
   1477 
   1478 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1479 		return 0;
   1480 
   1481 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1482 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1483 			return ENOBUFS;
   1484 	};
   1485 
   1486 	sc->bge_jumbo = i - 1;
   1487 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1488 
   1489 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1490 	rcb->bge_maxlen_flags = 0;
   1491 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1492 
   1493 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1494 
   1495 	return 0;
   1496 }
   1497 
   1498 static void
   1499 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1500 {
   1501 	int i;
   1502 
   1503 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1504 		return;
   1505 
   1506 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1507 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1508 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1509 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1510 		}
   1511 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1512 		    sizeof(struct bge_rx_bd));
   1513 	}
   1514 
   1515 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1516 }
   1517 
   1518 static void
   1519 bge_free_tx_ring(struct bge_softc *sc)
   1520 {
   1521 	int i, freed;
   1522 	struct txdmamap_pool_entry *dma;
   1523 
   1524 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1525 		return;
   1526 
   1527 	freed = 0;
   1528 
   1529 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1530 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1531 			freed++;
   1532 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1533 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1534 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1535 					    link);
   1536 			sc->txdma[i] = 0;
   1537 		}
   1538 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1539 		    sizeof(struct bge_tx_bd));
   1540 	}
   1541 
   1542 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1543 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1544 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1545 		free(dma, M_DEVBUF);
   1546 	}
   1547 
   1548 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1549 }
   1550 
   1551 static int
   1552 bge_init_tx_ring(struct bge_softc *sc)
   1553 {
   1554 	int i;
   1555 	bus_dmamap_t dmamap;
   1556 	struct txdmamap_pool_entry *dma;
   1557 
   1558 	if (sc->bge_flags & BGE_TXRING_VALID)
   1559 		return 0;
   1560 
   1561 	sc->bge_txcnt = 0;
   1562 	sc->bge_tx_saved_considx = 0;
   1563 
   1564 	/* Initialize transmit producer index for host-memory send ring. */
   1565 	sc->bge_tx_prodidx = 0;
   1566 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1567 	/* 5700 b2 errata */
   1568 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1569 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1570 
   1571 	/* NIC-memory send ring not used; initialize to zero. */
   1572 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1573 	/* 5700 b2 errata */
   1574 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1575 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1576 
   1577 	SLIST_INIT(&sc->txdma_list);
   1578 	for (i = 0; i < BGE_RSLOTS; i++) {
   1579 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1580 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1581 		    &dmamap))
   1582 			return ENOBUFS;
   1583 		if (dmamap == NULL)
   1584 			panic("dmamap NULL in bge_init_tx_ring");
   1585 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1586 		if (dma == NULL) {
   1587 			aprint_error_dev(sc->bge_dev,
   1588 			    "can't alloc txdmamap_pool_entry\n");
   1589 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1590 			return ENOMEM;
   1591 		}
   1592 		dma->dmamap = dmamap;
   1593 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1594 	}
   1595 
   1596 	sc->bge_flags |= BGE_TXRING_VALID;
   1597 
   1598 	return 0;
   1599 }
   1600 
   1601 static void
   1602 bge_setmulti(struct bge_softc *sc)
   1603 {
   1604 	struct ethercom		*ac = &sc->ethercom;
   1605 	struct ifnet		*ifp = &ac->ec_if;
   1606 	struct ether_multi	*enm;
   1607 	struct ether_multistep  step;
   1608 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1609 	uint32_t		h;
   1610 	int			i;
   1611 
   1612 	if (ifp->if_flags & IFF_PROMISC)
   1613 		goto allmulti;
   1614 
   1615 	/* Now program new ones. */
   1616 	ETHER_FIRST_MULTI(step, ac, enm);
   1617 	while (enm != NULL) {
   1618 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1619 			/*
   1620 			 * We must listen to a range of multicast addresses.
   1621 			 * For now, just accept all multicasts, rather than
   1622 			 * trying to set only those filter bits needed to match
   1623 			 * the range.  (At this time, the only use of address
   1624 			 * ranges is for IP multicast routing, for which the
   1625 			 * range is big enough to require all bits set.)
   1626 			 */
   1627 			goto allmulti;
   1628 		}
   1629 
   1630 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1631 
   1632 		/* Just want the 7 least-significant bits. */
   1633 		h &= 0x7f;
   1634 
   1635 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1636 		ETHER_NEXT_MULTI(step, enm);
   1637 	}
   1638 
   1639 	ifp->if_flags &= ~IFF_ALLMULTI;
   1640 	goto setit;
   1641 
   1642  allmulti:
   1643 	ifp->if_flags |= IFF_ALLMULTI;
   1644 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1645 
   1646  setit:
   1647 	for (i = 0; i < 4; i++)
   1648 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1649 }
   1650 
   1651 static void
   1652 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1653 {
   1654 	/*
   1655 	 * Some chips don't like this so only do this if ASF is enabled
   1656 	 */
   1657 	if (sc->bge_asf_mode)
   1658 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1659 
   1660 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1661 		switch (type) {
   1662 		case BGE_RESET_START:
   1663 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1664 			break;
   1665 		case BGE_RESET_STOP:
   1666 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1667 			break;
   1668 		}
   1669 	}
   1670 }
   1671 
   1672 static void
   1673 bge_sig_post_reset(struct bge_softc *sc, int type)
   1674 {
   1675 
   1676 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1677 		switch (type) {
   1678 		case BGE_RESET_START:
   1679 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1680 			/* START DONE */
   1681 			break;
   1682 		case BGE_RESET_STOP:
   1683 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1684 			break;
   1685 		}
   1686 	}
   1687 }
   1688 
   1689 static void
   1690 bge_sig_legacy(struct bge_softc *sc, int type)
   1691 {
   1692 
   1693 	if (sc->bge_asf_mode) {
   1694 		switch (type) {
   1695 		case BGE_RESET_START:
   1696 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1697 			break;
   1698 		case BGE_RESET_STOP:
   1699 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1700 			break;
   1701 		}
   1702 	}
   1703 }
   1704 
   1705 static void
   1706 bge_stop_fw(struct bge_softc *sc)
   1707 {
   1708 	int i;
   1709 
   1710 	if (sc->bge_asf_mode) {
   1711 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1712 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1713 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1714 
   1715 		for (i = 0; i < 100; i++) {
   1716 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1717 				break;
   1718 			DELAY(10);
   1719 		}
   1720 	}
   1721 }
   1722 
   1723 static int
   1724 bge_poll_fw(struct bge_softc *sc)
   1725 {
   1726 	uint32_t val;
   1727 	int i;
   1728 
   1729 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1730 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1731 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1732 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1733 				break;
   1734 			DELAY(100);
   1735 		}
   1736 		if (i >= BGE_TIMEOUT) {
   1737 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1738 			return -1;
   1739 		}
   1740 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1741 		/*
   1742 		 * Poll the value location we just wrote until
   1743 		 * we see the 1's complement of the magic number.
   1744 		 * This indicates that the firmware initialization
   1745 		 * is complete.
   1746 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1747 		 */
   1748 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1749 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1750 			if (val == ~BGE_MAGIC_NUMBER)
   1751 				break;
   1752 			DELAY(10);
   1753 		}
   1754 
   1755 		if (i >= BGE_TIMEOUT) {
   1756 			aprint_error_dev(sc->bge_dev,
   1757 			    "firmware handshake timed out, val = %x\n", val);
   1758 			return -1;
   1759 		}
   1760 	}
   1761 
   1762 	return 0;
   1763 }
   1764 
   1765 /*
   1766  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1767  * self-test results.
   1768  */
   1769 static int
   1770 bge_chipinit(struct bge_softc *sc)
   1771 {
   1772 	int i;
   1773 	uint32_t dma_rw_ctl;
   1774 
   1775 	/* Set endianness before we access any non-PCI registers. */
   1776 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1777 	    BGE_INIT);
   1778 
   1779 	/* Set power state to D0. */
   1780 	bge_setpowerstate(sc, 0);
   1781 
   1782 	/* Clear the MAC control register */
   1783 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1784 
   1785 	/*
   1786 	 * Clear the MAC statistics block in the NIC's
   1787 	 * internal memory.
   1788 	 */
   1789 	for (i = BGE_STATS_BLOCK;
   1790 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1791 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1792 
   1793 	for (i = BGE_STATUS_BLOCK;
   1794 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1795 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1796 
   1797 	/* Set up the PCI DMA control register. */
   1798 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1799 	if (sc->bge_flags & BGE_PCIE) {
   1800 		/* Read watermark not used, 128 bytes for write. */
   1801 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1802 		    device_xname(sc->bge_dev)));
   1803 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1804 	} else if (sc->bge_flags & BGE_PCIX) {
   1805 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1806 		    device_xname(sc->bge_dev)));
   1807 		/* PCI-X bus */
   1808 		if (BGE_IS_5714_FAMILY(sc)) {
   1809 			/* 256 bytes for read and write. */
   1810 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1811 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1812 
   1813 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1814 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1815 			else
   1816 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1817 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1818 			/* 1536 bytes for read, 384 bytes for write. */
   1819 			dma_rw_ctl |=
   1820 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1821 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1822 		} else {
   1823 			/* 384 bytes for read and write. */
   1824 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1825 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1826 			    (0x0F);
   1827 		}
   1828 
   1829 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1830 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1831 			uint32_t tmp;
   1832 
   1833 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1834 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1835 			if (tmp == 6 || tmp == 7)
   1836 				dma_rw_ctl |=
   1837 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1838 
   1839 			/* Set PCI-X DMA write workaround. */
   1840 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1841 		}
   1842 	} else {
   1843 		/* Conventional PCI bus: 256 bytes for read and write. */
   1844 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1845 		    device_xname(sc->bge_dev)));
   1846 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1847 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1848 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1849 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1850 			dma_rw_ctl |= 0x0F;
   1851 	}
   1852 
   1853 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1854 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1855 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1856 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1857 
   1858 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1859 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1860 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1861 
   1862 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1863 	    dma_rw_ctl);
   1864 
   1865 	/*
   1866 	 * Set up general mode register.
   1867 	 */
   1868 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1869 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1870 	    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
   1871 
   1872 	/*
   1873 	 * BCM5701 B5 have a bug causing data corruption when using
   1874 	 * 64-bit DMA reads, which can be terminated early and then
   1875 	 * completed later as 32-bit accesses, in combination with
   1876 	 * certain bridges.
   1877 	 */
   1878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1879 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1880 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1881 
   1882 	/*
   1883 	 * Tell the firmware the driver is running
   1884 	 */
   1885 	if (sc->bge_asf_mode & ASF_STACKUP)
   1886 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1887 
   1888 	/*
   1889 	 * Disable memory write invalidate.  Apparently it is not supported
   1890 	 * properly by these devices.
   1891 	 */
   1892 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1893 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1894 
   1895 #ifdef __brokenalpha__
   1896 	/*
   1897 	 * Must insure that we do not cross an 8K (bytes) boundary
   1898 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1899 	 * restriction on some ALPHA platforms with early revision
   1900 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1901 	 */
   1902 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1903 #endif
   1904 
   1905 	/* Set the timer prescaler (always 66MHz) */
   1906 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1907 
   1908 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1909 		DELAY(40);	/* XXX */
   1910 
   1911 		/* Put PHY into ready state */
   1912 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1913 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1914 		DELAY(40);
   1915 	}
   1916 
   1917 	return 0;
   1918 }
   1919 
   1920 static int
   1921 bge_blockinit(struct bge_softc *sc)
   1922 {
   1923 	volatile struct bge_rcb	 *rcb;
   1924 	bus_size_t rcb_addr;
   1925 	int i;
   1926 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1927 	bge_hostaddr taddr;
   1928 	uint32_t val;
   1929 
   1930 	/*
   1931 	 * Initialize the memory window pointer register so that
   1932 	 * we can access the first 32K of internal NIC RAM. This will
   1933 	 * allow us to set up the TX send ring RCBs and the RX return
   1934 	 * ring RCBs, plus other things which live in NIC memory.
   1935 	 */
   1936 
   1937 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1938 
   1939 	/* Step 33: Configure mbuf memory pool */
   1940 	if (BGE_IS_5700_FAMILY(sc)) {
   1941 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1942 		    BGE_BUFFPOOL_1);
   1943 
   1944 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1945 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1946 		else
   1947 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1948 
   1949 		/* Configure DMA resource pool */
   1950 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1951 		    BGE_DMA_DESCRIPTORS);
   1952 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1953 	}
   1954 
   1955 	/* Step 35: Configure mbuf pool watermarks */
   1956 #ifdef ORIG_WPAUL_VALUES
   1957 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1958 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1959 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1960 #else
   1961 
   1962 	/* new broadcom docs strongly recommend these: */
   1963 	if (!BGE_IS_5705_PLUS(sc)) {
   1964 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1965 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1966 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1967 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1968 		} else {
   1969 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1970 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1971 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1972 		}
   1973 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1974 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1975 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1976 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1977 	} else {
   1978 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1979 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1981 	}
   1982 #endif
   1983 
   1984 	/* Step 36: Configure DMA resource watermarks */
   1985 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1986 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1987 
   1988 	/* Step 38: Enable buffer manager */
   1989 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1990 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   1991 
   1992 	/* Step 39: Poll for buffer manager start indication */
   1993 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   1994 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1995 			break;
   1996 		DELAY(10);
   1997 	}
   1998 
   1999 	if (i == BGE_TIMEOUT * 2) {
   2000 		aprint_error_dev(sc->bge_dev,
   2001 		    "buffer manager failed to start\n");
   2002 		return ENXIO;
   2003 	}
   2004 
   2005 	/* Step 40: Enable flow-through queues */
   2006 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2007 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2008 
   2009 	/* Wait until queue initialization is complete */
   2010 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2011 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2012 			break;
   2013 		DELAY(10);
   2014 	}
   2015 
   2016 	if (i == BGE_TIMEOUT * 2) {
   2017 		aprint_error_dev(sc->bge_dev,
   2018 		    "flow-through queue init failed\n");
   2019 		return ENXIO;
   2020 	}
   2021 
   2022 	/* Step 41: Initialize the standard RX ring control block */
   2023 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2024 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2025 	if (BGE_IS_5705_PLUS(sc))
   2026 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2027 	else
   2028 		rcb->bge_maxlen_flags =
   2029 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2030 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2031 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2032 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2033 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2034 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2035 
   2036 	/*
   2037 	 * Step 42: Initialize the jumbo RX ring control block
   2038 	 * We set the 'ring disabled' bit in the flags
   2039 	 * field until we're actually ready to start
   2040 	 * using this ring (i.e. once we set the MTU
   2041 	 * high enough to require it).
   2042 	 */
   2043 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2044 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2045 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2046 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2047 		rcb->bge_maxlen_flags =
   2048 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2049 			BGE_RCB_FLAG_RING_DISABLED);
   2050 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2051 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2052 		    rcb->bge_hostaddr.bge_addr_hi);
   2053 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2054 		    rcb->bge_hostaddr.bge_addr_lo);
   2055 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2056 		    rcb->bge_maxlen_flags);
   2057 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2058 
   2059 		/* Set up dummy disabled mini ring RCB */
   2060 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2061 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2062 		    BGE_RCB_FLAG_RING_DISABLED);
   2063 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2064 		    rcb->bge_maxlen_flags);
   2065 
   2066 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2067 		    offsetof(struct bge_ring_data, bge_info),
   2068 		    sizeof (struct bge_gib),
   2069 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2070 	}
   2071 
   2072 	/*
   2073 	 * Set the BD ring replenish thresholds. The recommended
   2074 	 * values are 1/8th the number of descriptors allocated to
   2075 	 * each ring.
   2076 	 */
   2077 	i = BGE_STD_RX_RING_CNT / 8;
   2078 
   2079 	/*
   2080 	 * Use a value of 8 for the following chips to workaround HW errata.
   2081 	 * Some of these chips have been added based on empirical
   2082 	 * evidence (they don't work unless this is done).
   2083 	 */
   2084 	if (BGE_IS_5705_PLUS(sc))
   2085 		i = 8;
   2086 
   2087 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2088 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2089 
   2090 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2091 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   2092 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2093 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2094 	}
   2095 
   2096 	/*
   2097 	 * Disable all unused send rings by setting the 'ring disabled'
   2098 	 * bit in the flags field of all the TX send ring control blocks.
   2099 	 * These are located in NIC memory.
   2100 	 */
   2101 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2102 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2103 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2104 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2105 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2106 		rcb_addr += sizeof(struct bge_rcb);
   2107 	}
   2108 
   2109 	/* Configure TX RCB 0 (we use only the first ring) */
   2110 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2111 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2112 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2113 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2114 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2115 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2116 	if (BGE_IS_5700_FAMILY(sc))
   2117 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2118 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2119 
   2120 	/* Disable all unused RX return rings */
   2121 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2122 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2123 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2124 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2125 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2126 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2127 			BGE_RCB_FLAG_RING_DISABLED));
   2128 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2129 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2130 		    (i * (sizeof(uint64_t))), 0);
   2131 		rcb_addr += sizeof(struct bge_rcb);
   2132 	}
   2133 
   2134 	/* Initialize RX ring indexes */
   2135 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2136 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2137 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2138 
   2139 	/*
   2140 	 * Set up RX return ring 0
   2141 	 * Note that the NIC address for RX return rings is 0x00000000.
   2142 	 * The return rings live entirely within the host, so the
   2143 	 * nicaddr field in the RCB isn't used.
   2144 	 */
   2145 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2146 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2147 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2148 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2149 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2150 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2151 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2152 
   2153 	/* Set random backoff seed for TX */
   2154 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2155 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2156 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2157 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2158 	    BGE_TX_BACKOFF_SEED_MASK);
   2159 
   2160 	/* Set inter-packet gap */
   2161 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2162 
   2163 	/*
   2164 	 * Specify which ring to use for packets that don't match
   2165 	 * any RX rules.
   2166 	 */
   2167 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2168 
   2169 	/*
   2170 	 * Configure number of RX lists. One interrupt distribution
   2171 	 * list, sixteen active lists, one bad frames class.
   2172 	 */
   2173 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2174 
   2175 	/* Inialize RX list placement stats mask. */
   2176 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2177 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2178 
   2179 	/* Disable host coalescing until we get it set up */
   2180 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2181 
   2182 	/* Poll to make sure it's shut down. */
   2183 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2184 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2185 			break;
   2186 		DELAY(10);
   2187 	}
   2188 
   2189 	if (i == BGE_TIMEOUT * 2) {
   2190 		aprint_error_dev(sc->bge_dev,
   2191 		    "host coalescing engine failed to idle\n");
   2192 		return ENXIO;
   2193 	}
   2194 
   2195 	/* Set up host coalescing defaults */
   2196 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2197 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2198 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2199 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2200 	if (BGE_IS_5700_FAMILY(sc)) {
   2201 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2202 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2203 	}
   2204 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2205 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2206 
   2207 	/* Set up address of statistics block */
   2208 	if (BGE_IS_5700_FAMILY(sc)) {
   2209 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2210 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2211 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2212 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2213 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2214 	}
   2215 
   2216 	/* Set up address of status block */
   2217 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2218 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2219 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2220 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2221 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2222 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2223 
   2224 	/* Turn on host coalescing state machine */
   2225 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2226 
   2227 	/* Turn on RX BD completion state machine and enable attentions */
   2228 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2229 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2230 
   2231 	/* Turn on RX list placement state machine */
   2232 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2233 
   2234 	/* Turn on RX list selector state machine. */
   2235 	if (BGE_IS_5700_FAMILY(sc))
   2236 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2237 
   2238 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2239 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2240 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2241 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2242 
   2243 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2244 		val |= BGE_PORTMODE_TBI;
   2245 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2246 		val |= BGE_PORTMODE_GMII;
   2247 	else
   2248 		val |= BGE_PORTMODE_MII;
   2249 
   2250 	/* Turn on DMA, clear stats */
   2251 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2252 
   2253 	/* Set misc. local control, enable interrupts on attentions */
   2254 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2255 
   2256 #ifdef notdef
   2257 	/* Assert GPIO pins for PHY reset */
   2258 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2259 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2260 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2261 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2262 #endif
   2263 
   2264 #if defined(not_quite_yet)
   2265 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2266 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2267 		sc->bge_local_ctrl_reg |=
   2268 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2269 	}
   2270 #endif
   2271 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2272 
   2273 	/* Turn on DMA completion state machine */
   2274 	if (BGE_IS_5700_FAMILY(sc))
   2275 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2276 
   2277 	/* Turn on write DMA state machine */
   2278 	{
   2279 		uint32_t bge_wdma_mode =
   2280 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2281 
   2282 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2283 		if (BGE_IS_5755_PLUS(sc))
   2284 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2285 
   2286 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2287 	}
   2288 
   2289 	/* Turn on read DMA state machine */
   2290 	{
   2291 		uint32_t dma_read_modebits;
   2292 
   2293 		dma_read_modebits =
   2294 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2295 
   2296 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2297 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2298 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2299 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2300 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2301 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2302 
   2303 		if (sc->bge_flags & BGE_PCIE)
   2304 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2305 		if (sc->bge_flags & BGE_TSO)
   2306 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2307 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2308 		delay(40);
   2309 	}
   2310 
   2311 	/* Turn on RX data completion state machine */
   2312 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2313 
   2314 	/* Turn on RX BD initiator state machine */
   2315 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2316 
   2317 	/* Turn on RX data and RX BD initiator state machine */
   2318 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2319 
   2320 	/* Turn on Mbuf cluster free state machine */
   2321 	if (BGE_IS_5700_FAMILY(sc))
   2322 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2323 
   2324 	/* Turn on send BD completion state machine */
   2325 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2326 
   2327 	/* Turn on send data completion state machine */
   2328 	val = BGE_SDCMODE_ENABLE;
   2329 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2330 		val |= BGE_SDCMODE_CDELAY;
   2331 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2332 
   2333 	/* Turn on send data initiator state machine */
   2334 	if (sc->bge_flags & BGE_TSO) {
   2335 		/* XXX: magic value from Linux driver */
   2336 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2337 	} else
   2338 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2339 
   2340 	/* Turn on send BD initiator state machine */
   2341 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2342 
   2343 	/* Turn on send BD selector state machine */
   2344 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2345 
   2346 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2347 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2348 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2349 
   2350 	/* ack/clear link change events */
   2351 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2352 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2353 	    BGE_MACSTAT_LINK_CHANGED);
   2354 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2355 
   2356 	/* Enable PHY auto polling (for MII/GMII only) */
   2357 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2358 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2359 	} else {
   2360 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2361 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2362 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2363 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2364 			    BGE_EVTENB_MI_INTERRUPT);
   2365 	}
   2366 
   2367 	/*
   2368 	 * Clear any pending link state attention.
   2369 	 * Otherwise some link state change events may be lost until attention
   2370 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2371 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2372 	 * state change attentions implies clearing pending attention.
   2373 	 */
   2374 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2375 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2376 	    BGE_MACSTAT_LINK_CHANGED);
   2377 
   2378 	/* Enable link state change attentions. */
   2379 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2380 
   2381 	return 0;
   2382 }
   2383 
   2384 static const struct bge_revision *
   2385 bge_lookup_rev(uint32_t chipid)
   2386 {
   2387 	const struct bge_revision *br;
   2388 
   2389 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2390 		if (br->br_chipid == chipid)
   2391 			return br;
   2392 	}
   2393 
   2394 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2395 		if (br->br_chipid == BGE_ASICREV(chipid))
   2396 			return br;
   2397 	}
   2398 
   2399 	return NULL;
   2400 }
   2401 
   2402 static const struct bge_product *
   2403 bge_lookup(const struct pci_attach_args *pa)
   2404 {
   2405 	const struct bge_product *bp;
   2406 
   2407 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2408 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2409 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2410 			return bp;
   2411 	}
   2412 
   2413 	return NULL;
   2414 }
   2415 
   2416 static int
   2417 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2418 {
   2419 #ifdef NOTYET
   2420 	uint32_t pm_ctl = 0;
   2421 
   2422 	/* XXX FIXME: make sure indirect accesses enabled? */
   2423 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2424 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2425 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2426 
   2427 	/* clear the PME_assert bit and power state bits, enable PME */
   2428 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2429 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2430 	pm_ctl |= (1 << 8);
   2431 
   2432 	if (powerlevel == 0) {
   2433 		pm_ctl |= PCIM_PSTAT_D0;
   2434 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2435 		    pm_ctl, 2);
   2436 		DELAY(10000);
   2437 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2438 		DELAY(10000);
   2439 
   2440 #ifdef NOTYET
   2441 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2442 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2443 #endif
   2444 		DELAY(40); DELAY(40); DELAY(40);
   2445 		DELAY(10000);	/* above not quite adequate on 5700 */
   2446 		return 0;
   2447 	}
   2448 
   2449 
   2450 	/*
   2451 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2452 	 * GMII gpio pins. Example code assumes all hardware vendors
   2453 	 * followed Broadom's sample pcb layout. Until we verify that
   2454 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2455 	 */
   2456 	aprint_error_dev(sc->bge_dev,
   2457 	    "power state %d unimplemented; check GPIO pins\n",
   2458 	    powerlevel);
   2459 #endif
   2460 	return EOPNOTSUPP;
   2461 }
   2462 
   2463 
   2464 /*
   2465  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2466  * against our list and return its name if we find a match. Note
   2467  * that since the Broadcom controller contains VPD support, we
   2468  * can get the device name string from the controller itself instead
   2469  * of the compiled-in string. This is a little slow, but it guarantees
   2470  * we'll always announce the right product name.
   2471  */
   2472 static int
   2473 bge_probe(device_t parent, cfdata_t match, void *aux)
   2474 {
   2475 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2476 
   2477 	if (bge_lookup(pa) != NULL)
   2478 		return 1;
   2479 
   2480 	return 0;
   2481 }
   2482 
   2483 static void
   2484 bge_attach(device_t parent, device_t self, void *aux)
   2485 {
   2486 	struct bge_softc	*sc = device_private(self);
   2487 	struct pci_attach_args	*pa = aux;
   2488 	prop_dictionary_t dict;
   2489 	const struct bge_product *bp;
   2490 	const struct bge_revision *br;
   2491 	pci_chipset_tag_t	pc;
   2492 	pci_intr_handle_t	ih;
   2493 	const char		*intrstr = NULL;
   2494 	bus_dma_segment_t	seg;
   2495 	int			rseg;
   2496 	uint32_t		hwcfg = 0;
   2497 	uint32_t		command;
   2498 	struct ifnet		*ifp;
   2499 	uint32_t		misccfg;
   2500 	void *			kva;
   2501 	u_char			eaddr[ETHER_ADDR_LEN];
   2502 	pcireg_t		memtype, subid;
   2503 	bus_addr_t		memaddr;
   2504 	bus_size_t		memsize;
   2505 	uint32_t		pm_ctl;
   2506 	bool			no_seeprom;
   2507 
   2508 	bp = bge_lookup(pa);
   2509 	KASSERT(bp != NULL);
   2510 
   2511 	sc->sc_pc = pa->pa_pc;
   2512 	sc->sc_pcitag = pa->pa_tag;
   2513 	sc->bge_dev = self;
   2514 
   2515 	pc = sc->sc_pc;
   2516 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2517 
   2518 	aprint_naive(": Ethernet controller\n");
   2519 	aprint_normal(": %s\n", bp->bp_name);
   2520 
   2521 	/*
   2522 	 * Map control/status registers.
   2523 	 */
   2524 	DPRINTFN(5, ("Map control/status regs\n"));
   2525 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2526 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2527 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2528 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2529 
   2530 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2531 		aprint_error_dev(sc->bge_dev,
   2532 		    "failed to enable memory mapping!\n");
   2533 		return;
   2534 	}
   2535 
   2536 	DPRINTFN(5, ("pci_mem_find\n"));
   2537 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2538 	switch (memtype) {
   2539 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2540 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2541 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2542 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2543 		    &memaddr, &memsize) == 0)
   2544 			break;
   2545 	default:
   2546 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2547 		return;
   2548 	}
   2549 
   2550 	DPRINTFN(5, ("pci_intr_map\n"));
   2551 	if (pci_intr_map(pa, &ih)) {
   2552 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2553 		return;
   2554 	}
   2555 
   2556 	DPRINTFN(5, ("pci_intr_string\n"));
   2557 	intrstr = pci_intr_string(pc, ih);
   2558 
   2559 	DPRINTFN(5, ("pci_intr_establish\n"));
   2560 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2561 
   2562 	if (sc->bge_intrhand == NULL) {
   2563 		aprint_error_dev(sc->bge_dev,
   2564 		    "couldn't establish interrupt%s%s\n",
   2565 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2566 		return;
   2567 	}
   2568 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2569 
   2570 	/*
   2571 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2572 	 * can clobber the chip's PCI config-space power control registers,
   2573 	 * leaving the card in D3 powersave state.
   2574 	 * We do not have memory-mapped registers in this state,
   2575 	 * so force device into D0 state before starting initialization.
   2576 	 */
   2577 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2578 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2579 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2580 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2581 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2582 
   2583 	/*
   2584 	 * Save ASIC rev.
   2585 	 */
   2586 	sc->bge_chipid =
   2587 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2588 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2589 
   2590 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2591 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2592 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2593 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2594 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2595 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2596 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2597 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2598 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2599 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2600 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2601 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2602 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2603 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2604 		else
   2605 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2606 			    BGE_PCI_PRODID_ASICREV);
   2607 	}
   2608 
   2609 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2610 	        &sc->bge_pciecap, NULL) != 0) {
   2611 		/* PCIe */
   2612 		sc->bge_flags |= BGE_PCIE;
   2613 		bge_set_max_readrq(sc);
   2614 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2615 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2616 		/* PCI-X */
   2617 		sc->bge_flags |= BGE_PCIX;
   2618 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2619 			&sc->bge_pcixcap, NULL) == 0)
   2620 			aprint_error_dev(sc->bge_dev,
   2621 			    "unable to find PCIX capability\n");
   2622 	}
   2623 
   2624 	/* chipid */
   2625 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2626 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2627 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2628 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2629 		sc->bge_flags |= BGE_5700_FAMILY;
   2630 
   2631 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2632 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2633 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2634 		sc->bge_flags |= BGE_5714_FAMILY;
   2635 
   2636 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2641 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2642 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2643 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2645 		sc->bge_flags |= BGE_5755_PLUS;
   2646 
   2647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2650 	    BGE_IS_5755_PLUS(sc) ||
   2651 	    BGE_IS_5714_FAMILY(sc))
   2652 		sc->bge_flags |= BGE_5750_PLUS;
   2653 
   2654 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2655 	    BGE_IS_5750_OR_BEYOND(sc))
   2656 		sc->bge_flags |= BGE_5705_PLUS;
   2657 
   2658 	/*
   2659 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2660 	 * been observed in the first few bytes of some received packets.
   2661 	 * Aligning the packet buffer in memory eliminates the corruption.
   2662 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2663 	 * which do not support unaligned accesses, we will realign the
   2664 	 * payloads by copying the received packets.
   2665 	 */
   2666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2667 	    sc->bge_flags & BGE_PCIX)
   2668 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2669 
   2670 	if (BGE_IS_5700_FAMILY(sc))
   2671 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2672 
   2673 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2674 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2675 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2676 		sc->bge_flags |= BGE_NO_3LED;
   2677 
   2678 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2679 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2680 
   2681 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2682 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2683 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2684 		sc->bge_flags |= BGE_IS_5788;
   2685 
   2686 	/*
   2687 	 * Some controllers seem to require a special firmware to use
   2688 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2689 	 * claims that the TSO performed by the firmware is slower than
   2690 	 * hardware based TSO. Moreover the firmware based TSO has one
   2691 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2692 	 * header is greater than 80 bytes. The workaround for the TSO
   2693 	 * bug exist but it seems it's too expensive than not using
   2694 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2695 	 * the TSO to the controllers that are not affected TSO issues
   2696 	 * (e.g. 5755 or higher).
   2697 	 */
   2698 	if (BGE_IS_5755_PLUS(sc)) {
   2699 		/*
   2700 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2701 		 * explicit device id check is required.
   2702 		 */
   2703 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2704 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2705 			sc->bge_flags |= BGE_TSO;
   2706 	}
   2707 
   2708 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2709 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2710 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2711 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2712 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2713 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2714 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2715 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2716 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2717 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2718 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2719 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2720 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2721 		sc->bge_flags |= BGE_10_100_ONLY;
   2722 
   2723 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2724 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2725 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2726 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2727 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2728 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2729 
   2730 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2731 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2732 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2733 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2734 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2735 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2736 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2737 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2738 
   2739 	if (BGE_IS_5705_PLUS(sc) &&
   2740 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2741 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2742 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2743 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2744 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2745 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2746 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2747 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2748 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2749 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2750 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2751 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2752 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2753 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2754 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2755 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2756 	}
   2757 
   2758 	/*
   2759 	 * SEEPROM check.
   2760 	 * First check if firmware knows we do not have SEEPROM.
   2761 	 */
   2762 	if (prop_dictionary_get_bool(device_properties(self),
   2763 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2764 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2765 
   2766 	/* Now check the 'ROM failed' bit on the RX CPU */
   2767 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2768 		sc->bge_flags |= BGE_NO_EEPROM;
   2769 
   2770 	/* Try to reset the chip. */
   2771 	DPRINTFN(5, ("bge_reset\n"));
   2772 	bge_reset(sc);
   2773 
   2774 	sc->bge_asf_mode = 0;
   2775 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2776 	    == BGE_MAGIC_NUMBER)) {
   2777 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2778 		    & BGE_HWCFG_ASF) {
   2779 			sc->bge_asf_mode |= ASF_ENABLE;
   2780 			sc->bge_asf_mode |= ASF_STACKUP;
   2781 			if (BGE_IS_5750_OR_BEYOND(sc)) {
   2782 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2783 			}
   2784 		}
   2785 	}
   2786 
   2787 	/* Try to reset the chip again the nice way. */
   2788 	bge_stop_fw(sc);
   2789 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2790 	if (bge_reset(sc))
   2791 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2792 
   2793 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2794 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2795 
   2796 	if (bge_chipinit(sc)) {
   2797 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2798 		bge_release_resources(sc);
   2799 		return;
   2800 	}
   2801 
   2802 	/*
   2803 	 * Get station address from the EEPROM
   2804 	 */
   2805 	if (bge_get_eaddr(sc, eaddr)) {
   2806 		aprint_error_dev(sc->bge_dev,
   2807 		    "failed to read station address\n");
   2808 		bge_release_resources(sc);
   2809 		return;
   2810 	}
   2811 
   2812 	br = bge_lookup_rev(sc->bge_chipid);
   2813 
   2814 	if (br == NULL) {
   2815 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2816 		    sc->bge_chipid);
   2817 	} else {
   2818 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2819 		    br->br_name, sc->bge_chipid);
   2820 	}
   2821 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2822 
   2823 	/* Allocate the general information block and ring buffers. */
   2824 	if (pci_dma64_available(pa))
   2825 		sc->bge_dmatag = pa->pa_dmat64;
   2826 	else
   2827 		sc->bge_dmatag = pa->pa_dmat;
   2828 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2829 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2830 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2831 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2832 		return;
   2833 	}
   2834 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2835 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2836 			   sizeof(struct bge_ring_data), &kva,
   2837 			   BUS_DMA_NOWAIT)) {
   2838 		aprint_error_dev(sc->bge_dev,
   2839 		    "can't map DMA buffers (%zu bytes)\n",
   2840 		    sizeof(struct bge_ring_data));
   2841 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2842 		return;
   2843 	}
   2844 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2845 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2846 	    sizeof(struct bge_ring_data), 0,
   2847 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2848 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2849 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2850 				 sizeof(struct bge_ring_data));
   2851 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2852 		return;
   2853 	}
   2854 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2855 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2856 			    sizeof(struct bge_ring_data), NULL,
   2857 			    BUS_DMA_NOWAIT)) {
   2858 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2859 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2860 				 sizeof(struct bge_ring_data));
   2861 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2862 		return;
   2863 	}
   2864 
   2865 	DPRINTFN(5, ("bzero\n"));
   2866 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2867 
   2868 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2869 
   2870 	/* Try to allocate memory for jumbo buffers. */
   2871 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2872 		if (bge_alloc_jumbo_mem(sc)) {
   2873 			aprint_error_dev(sc->bge_dev,
   2874 			    "jumbo buffer allocation failed\n");
   2875 		} else
   2876 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2877 	}
   2878 
   2879 	/* Set default tuneable values. */
   2880 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2881 	sc->bge_rx_coal_ticks = 150;
   2882 	sc->bge_rx_max_coal_bds = 64;
   2883 #ifdef ORIG_WPAUL_VALUES
   2884 	sc->bge_tx_coal_ticks = 150;
   2885 	sc->bge_tx_max_coal_bds = 128;
   2886 #else
   2887 	sc->bge_tx_coal_ticks = 300;
   2888 	sc->bge_tx_max_coal_bds = 400;
   2889 #endif
   2890 	if (BGE_IS_5705_PLUS(sc)) {
   2891 		sc->bge_tx_coal_ticks = (12 * 5);
   2892 		sc->bge_tx_max_coal_bds = (12 * 5);
   2893 			aprint_verbose_dev(sc->bge_dev,
   2894 			    "setting short Tx thresholds\n");
   2895 	}
   2896 
   2897 	if (BGE_IS_5705_PLUS(sc))
   2898 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2899 	else
   2900 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2901 
   2902 	/* Set up ifnet structure */
   2903 	ifp = &sc->ethercom.ec_if;
   2904 	ifp->if_softc = sc;
   2905 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2906 	ifp->if_ioctl = bge_ioctl;
   2907 	ifp->if_stop = bge_stop;
   2908 	ifp->if_start = bge_start;
   2909 	ifp->if_init = bge_init;
   2910 	ifp->if_watchdog = bge_watchdog;
   2911 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2912 	IFQ_SET_READY(&ifp->if_snd);
   2913 	DPRINTFN(5, ("strcpy if_xname\n"));
   2914 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2915 
   2916 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2917 		sc->ethercom.ec_if.if_capabilities |=
   2918 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2919 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2920 		sc->ethercom.ec_if.if_capabilities |=
   2921 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2922 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2923 #endif
   2924 	sc->ethercom.ec_capabilities |=
   2925 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2926 
   2927 	if (sc->bge_flags & BGE_TSO)
   2928 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2929 
   2930 	/*
   2931 	 * Do MII setup.
   2932 	 */
   2933 	DPRINTFN(5, ("mii setup\n"));
   2934 	sc->bge_mii.mii_ifp = ifp;
   2935 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2936 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2937 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2938 
   2939 	/*
   2940 	 * Figure out what sort of media we have by checking the
   2941 	 * hardware config word in the first 32k of NIC internal memory,
   2942 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2943 	 * cards, this value appears to be unset. If that's the
   2944 	 * case, we have to rely on identifying the NIC by its PCI
   2945 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2946 	 */
   2947 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2948 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2949 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2950 		bge_read_eeprom(sc, (void *)&hwcfg,
   2951 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2952 		hwcfg = be32toh(hwcfg);
   2953 	}
   2954 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2955 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2956 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2957 		if (BGE_IS_5714_FAMILY(sc))
   2958 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2959 		else
   2960 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2961 	}
   2962 
   2963 	/* set phyflags before mii_attach() */
   2964 	dict = device_properties(self);
   2965 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2966 
   2967 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2968 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2969 		    bge_ifmedia_sts);
   2970 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   2971 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   2972 			    0, NULL);
   2973 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   2974 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   2975 		/* Pretend the user requested this setting */
   2976 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2977 	} else {
   2978 		/*
   2979 		 * Do transceiver setup and tell the firmware the
   2980 		 * driver is down so we can try to get access the
   2981 		 * probe if ASF is running.  Retry a couple of times
   2982 		 * if we get a conflict with the ASF firmware accessing
   2983 		 * the PHY.
   2984 		 */
   2985 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2986 		bge_asf_driver_up(sc);
   2987 
   2988 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2989 			     bge_ifmedia_sts);
   2990 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2991 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2992 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2993 
   2994 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   2995 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   2996 			ifmedia_add(&sc->bge_mii.mii_media,
   2997 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2998 			ifmedia_set(&sc->bge_mii.mii_media,
   2999 				    IFM_ETHER|IFM_MANUAL);
   3000 		} else
   3001 			ifmedia_set(&sc->bge_mii.mii_media,
   3002 				    IFM_ETHER|IFM_AUTO);
   3003 
   3004 		/*
   3005 		 * Now tell the firmware we are going up after probing the PHY
   3006 		 */
   3007 		if (sc->bge_asf_mode & ASF_STACKUP)
   3008 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3009 	}
   3010 
   3011 	/*
   3012 	 * Call MI attach routine.
   3013 	 */
   3014 	DPRINTFN(5, ("if_attach\n"));
   3015 	if_attach(ifp);
   3016 	DPRINTFN(5, ("ether_ifattach\n"));
   3017 	ether_ifattach(ifp, eaddr);
   3018 #if NRND > 0
   3019 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3020 		RND_TYPE_NET, 0);
   3021 #endif
   3022 #ifdef BGE_EVENT_COUNTERS
   3023 	/*
   3024 	 * Attach event counters.
   3025 	 */
   3026 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3027 	    NULL, device_xname(sc->bge_dev), "intr");
   3028 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3029 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3030 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3031 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3032 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3033 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3034 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3035 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3036 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3037 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3038 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3039 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3040 #endif /* BGE_EVENT_COUNTERS */
   3041 	DPRINTFN(5, ("callout_init\n"));
   3042 	callout_init(&sc->bge_timeout, 0);
   3043 
   3044 	if (pmf_device_register(self, NULL, NULL))
   3045 		pmf_class_network_register(self, ifp);
   3046 	else
   3047 		aprint_error_dev(self, "couldn't establish power handler\n");
   3048 
   3049 #ifdef BGE_DEBUG
   3050 	bge_debug_info(sc);
   3051 #endif
   3052 }
   3053 
   3054 static void
   3055 bge_release_resources(struct bge_softc *sc)
   3056 {
   3057 	if (sc->bge_vpd_prodname != NULL)
   3058 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3059 
   3060 	if (sc->bge_vpd_readonly != NULL)
   3061 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3062 }
   3063 
   3064 static int
   3065 bge_reset(struct bge_softc *sc)
   3066 {
   3067 	uint32_t cachesize, command, pcistate, marbmode;
   3068 #if 0
   3069 	uint32_t new_pcistate;
   3070 #endif
   3071 	pcireg_t devctl, reg;
   3072 	int i, val;
   3073 	void (*write_op)(struct bge_softc *, int, int);
   3074 
   3075 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
   3076 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3077 	    	if (sc->bge_flags & BGE_PCIE)
   3078 			write_op = bge_writemem_direct;
   3079 		else
   3080 			write_op = bge_writemem_ind;
   3081 	} else
   3082 		write_op = bge_writereg_ind;
   3083 
   3084 	/* Save some important PCI state. */
   3085 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3086 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3087 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3088 
   3089 	/* Step 5a: Enable memory arbiter. */
   3090 	marbmode = 0;
   3091 	if (BGE_IS_5714_FAMILY(sc))
   3092 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3093 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3094 
   3095 	/* Step 5b-5d: */
   3096 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3097 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3098 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3099 
   3100 	/* XXX ???: Disable fastboot on controllers that support it. */
   3101 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3102 	    BGE_IS_5755_PLUS(sc))
   3103 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3104 
   3105 	/*
   3106 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3107 	 * When firmware finishes its initialization it will
   3108 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3109 	 */
   3110 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3111 
   3112 	/* Step 7: */
   3113 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3114 	/*
   3115 	 * XXX: from FreeBSD/Linux; no documentation
   3116 	 */
   3117 	if (sc->bge_flags & BGE_PCIE) {
   3118 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3119 			/* PCI Express 1.0 system */
   3120 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3121 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3122 			/*
   3123 			 * Prevent PCI Express link training
   3124 			 * during global reset.
   3125 			 */
   3126 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3127 			val |= (1<<29);
   3128 		}
   3129 	}
   3130 
   3131 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3132 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3133 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3134 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3135 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3136 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3137 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3138 	}
   3139 
   3140 	/*
   3141 	 * Set GPHY Power Down Override to leave GPHY
   3142 	 * powered up in D0 uninitialized.
   3143 	 */
   3144 	if (BGE_IS_5705_PLUS(sc))
   3145 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3146 
   3147 	/* XXX 5721, 5751 and 5752 */
   3148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3149 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3150 
   3151 	/* Issue global reset */
   3152 	write_op(sc, BGE_MISC_CFG, val);
   3153 
   3154 	/* Step 8: wait for complete */
   3155 	if (sc->bge_flags & BGE_PCIE)
   3156 		delay(100*1000); /* too big */
   3157 	else
   3158 		delay(100);
   3159 
   3160 	/* From Linux: dummy read to flush PCI posted writes */
   3161 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3162 
   3163 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3164 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3165 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3166 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3167 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3168 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3169 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3170 
   3171 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3172 	if (sc->bge_flags & BGE_PCIX) {
   3173 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3174 		    + PCI_PCIX_CMD);
   3175 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3176 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3177 	}
   3178 
   3179 	if (sc->bge_flags & BGE_PCIE) {
   3180 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3181 			DELAY(500000);
   3182 			/* XXX: Magic Numbers */
   3183 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3184 			    BGE_PCI_UNKNOWN0);
   3185 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3186 			    BGE_PCI_UNKNOWN0,
   3187 			    reg | (1 << 15));
   3188 		}
   3189 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3190 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3191 		/* Clear enable no snoop and disable relaxed ordering. */
   3192 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3193 		/* Set PCIE max payload size to 128. */
   3194 		devctl &= ~(0x00e0);
   3195 		/* Clear device status register. Write 1b to clear */
   3196 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3197 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3198 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3199 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3200 	}
   3201 
   3202 	/* Step 12: Enable memory arbiter. */
   3203 	marbmode = 0;
   3204 	if (BGE_IS_5714_FAMILY(sc))
   3205 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3206 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3207 
   3208 	/* Step 17: Poll until the firmware iitializeation is complete */
   3209 	bge_poll_fw(sc);
   3210 
   3211 	/* XXX 5721, 5751 and 5752 */
   3212 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3213 		/* Step 19: */
   3214 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3215 		/* Step 20: */
   3216 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3217 	}
   3218 
   3219 	/*
   3220 	 * Step 18: wirte mac mode
   3221 	 * XXX Write 0x0c for 5703S and 5704S
   3222 	 */
   3223 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3224 
   3225 
   3226 	/* Step 21: 5822 B0 errata */
   3227 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3228 		pcireg_t msidata;
   3229 
   3230 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3231 		    BGE_PCI_MSI_DATA);
   3232 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3233 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3234 		    msidata);
   3235 	}
   3236 
   3237 	/* Step 23: restore cache line size */
   3238 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3239 
   3240 #if 0
   3241 	/*
   3242 	 * XXX Wait for the value of the PCISTATE register to
   3243 	 * return to its original pre-reset state. This is a
   3244 	 * fairly good indicator of reset completion. If we don't
   3245 	 * wait for the reset to fully complete, trying to read
   3246 	 * from the device's non-PCI registers may yield garbage
   3247 	 * results.
   3248 	 */
   3249 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3250 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3251 		    BGE_PCI_PCISTATE);
   3252 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3253 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3254 			break;
   3255 		DELAY(10);
   3256 	}
   3257 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3258 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3259 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3260 	}
   3261 #endif
   3262 
   3263 	/* Step 28: Fix up byte swapping */
   3264 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3265 
   3266 	/* Tell the ASF firmware we are up */
   3267 	if (sc->bge_asf_mode & ASF_STACKUP)
   3268 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3269 
   3270 	/*
   3271 	 * The 5704 in TBI mode apparently needs some special
   3272 	 * adjustment to insure the SERDES drive level is set
   3273 	 * to 1.2V.
   3274 	 */
   3275 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3276 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3277 		uint32_t serdescfg;
   3278 
   3279 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3280 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3281 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3282 	}
   3283 
   3284 	if (sc->bge_flags & BGE_PCIE &&
   3285 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3286 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3287 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3288 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3289 		uint32_t v;
   3290 
   3291 		/* Enable PCI Express bug fix */
   3292 		v = CSR_READ_4(sc, 0x7c00);
   3293 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3294 	}
   3295 	DELAY(10000);
   3296 
   3297 	return 0;
   3298 }
   3299 
   3300 /*
   3301  * Frame reception handling. This is called if there's a frame
   3302  * on the receive return list.
   3303  *
   3304  * Note: we have to be able to handle two possibilities here:
   3305  * 1) the frame is from the jumbo recieve ring
   3306  * 2) the frame is from the standard receive ring
   3307  */
   3308 
   3309 static void
   3310 bge_rxeof(struct bge_softc *sc)
   3311 {
   3312 	struct ifnet *ifp;
   3313 	uint16_t rx_prod, rx_cons;
   3314 	int stdcnt = 0, jumbocnt = 0;
   3315 	bus_dmamap_t dmamap;
   3316 	bus_addr_t offset, toff;
   3317 	bus_size_t tlen;
   3318 	int tosync;
   3319 
   3320 	rx_cons = sc->bge_rx_saved_considx;
   3321 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3322 
   3323 	/* Nothing to do */
   3324 	if (rx_cons == rx_prod)
   3325 		return;
   3326 
   3327 	ifp = &sc->ethercom.ec_if;
   3328 
   3329 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3330 	    offsetof(struct bge_ring_data, bge_status_block),
   3331 	    sizeof (struct bge_status_block),
   3332 	    BUS_DMASYNC_POSTREAD);
   3333 
   3334 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3335 	tosync = rx_prod - rx_cons;
   3336 
   3337 #if NRND > 0
   3338 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3339 		rnd_add_uint32(&sc->rnd_source, tosync);
   3340 #endif
   3341 
   3342 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3343 
   3344 	if (tosync < 0) {
   3345 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3346 		    sizeof (struct bge_rx_bd);
   3347 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3348 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3349 		tosync = -tosync;
   3350 	}
   3351 
   3352 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3353 	    offset, tosync * sizeof (struct bge_rx_bd),
   3354 	    BUS_DMASYNC_POSTREAD);
   3355 
   3356 	while (rx_cons != rx_prod) {
   3357 		struct bge_rx_bd	*cur_rx;
   3358 		uint32_t		rxidx;
   3359 		struct mbuf		*m = NULL;
   3360 
   3361 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3362 
   3363 		rxidx = cur_rx->bge_idx;
   3364 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3365 
   3366 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3367 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3368 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3369 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3370 			jumbocnt++;
   3371 			bus_dmamap_sync(sc->bge_dmatag,
   3372 			    sc->bge_cdata.bge_rx_jumbo_map,
   3373 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3374 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3375 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3376 				ifp->if_ierrors++;
   3377 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3378 				continue;
   3379 			}
   3380 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3381 					     NULL)== ENOBUFS) {
   3382 				ifp->if_ierrors++;
   3383 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3384 				continue;
   3385 			}
   3386 		} else {
   3387 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3388 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3389 
   3390 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3391 			stdcnt++;
   3392 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3393 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3394 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3395 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3396 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3397 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3398 				ifp->if_ierrors++;
   3399 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3400 				continue;
   3401 			}
   3402 			if (bge_newbuf_std(sc, sc->bge_std,
   3403 			    NULL, dmamap) == ENOBUFS) {
   3404 				ifp->if_ierrors++;
   3405 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3406 				continue;
   3407 			}
   3408 		}
   3409 
   3410 		ifp->if_ipackets++;
   3411 #ifndef __NO_STRICT_ALIGNMENT
   3412 		/*
   3413 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3414 		 * the Rx buffer has the layer-2 header unaligned.
   3415 		 * If our CPU requires alignment, re-align by copying.
   3416 		 */
   3417 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3418 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3419 				cur_rx->bge_len);
   3420 			m->m_data += ETHER_ALIGN;
   3421 		}
   3422 #endif
   3423 
   3424 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3425 		m->m_pkthdr.rcvif = ifp;
   3426 
   3427 		/*
   3428 		 * Handle BPF listeners. Let the BPF user see the packet.
   3429 		 */
   3430 		bpf_mtap(ifp, m);
   3431 
   3432 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3433 
   3434 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3435 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3436 		/*
   3437 		 * Rx transport checksum-offload may also
   3438 		 * have bugs with packets which, when transmitted,
   3439 		 * were `runts' requiring padding.
   3440 		 */
   3441 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3442 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3443 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3444 			m->m_pkthdr.csum_data =
   3445 			    cur_rx->bge_tcp_udp_csum;
   3446 			m->m_pkthdr.csum_flags |=
   3447 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3448 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   3449 		}
   3450 
   3451 		/*
   3452 		 * If we received a packet with a vlan tag, pass it
   3453 		 * to vlan_input() instead of ether_input().
   3454 		 */
   3455 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3456 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3457 		}
   3458 
   3459 		(*ifp->if_input)(ifp, m);
   3460 	}
   3461 
   3462 	sc->bge_rx_saved_considx = rx_cons;
   3463 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3464 	if (stdcnt)
   3465 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3466 	if (jumbocnt)
   3467 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3468 }
   3469 
   3470 static void
   3471 bge_txeof(struct bge_softc *sc)
   3472 {
   3473 	struct bge_tx_bd *cur_tx = NULL;
   3474 	struct ifnet *ifp;
   3475 	struct txdmamap_pool_entry *dma;
   3476 	bus_addr_t offset, toff;
   3477 	bus_size_t tlen;
   3478 	int tosync;
   3479 	struct mbuf *m;
   3480 
   3481 	ifp = &sc->ethercom.ec_if;
   3482 
   3483 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3484 	    offsetof(struct bge_ring_data, bge_status_block),
   3485 	    sizeof (struct bge_status_block),
   3486 	    BUS_DMASYNC_POSTREAD);
   3487 
   3488 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3489 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3490 	    sc->bge_tx_saved_considx;
   3491 
   3492 #if NRND > 0
   3493 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3494 		rnd_add_uint32(&sc->rnd_source, tosync);
   3495 #endif
   3496 
   3497 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3498 
   3499 	if (tosync < 0) {
   3500 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3501 		    sizeof (struct bge_tx_bd);
   3502 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3503 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3504 		tosync = -tosync;
   3505 	}
   3506 
   3507 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3508 	    offset, tosync * sizeof (struct bge_tx_bd),
   3509 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3510 
   3511 	/*
   3512 	 * Go through our tx ring and free mbufs for those
   3513 	 * frames that have been sent.
   3514 	 */
   3515 	while (sc->bge_tx_saved_considx !=
   3516 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3517 		uint32_t		idx = 0;
   3518 
   3519 		idx = sc->bge_tx_saved_considx;
   3520 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3521 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3522 			ifp->if_opackets++;
   3523 		m = sc->bge_cdata.bge_tx_chain[idx];
   3524 		if (m != NULL) {
   3525 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3526 			dma = sc->txdma[idx];
   3527 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3528 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3529 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3530 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3531 			sc->txdma[idx] = NULL;
   3532 
   3533 			m_freem(m);
   3534 		}
   3535 		sc->bge_txcnt--;
   3536 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3537 		ifp->if_timer = 0;
   3538 	}
   3539 
   3540 	if (cur_tx != NULL)
   3541 		ifp->if_flags &= ~IFF_OACTIVE;
   3542 }
   3543 
   3544 static int
   3545 bge_intr(void *xsc)
   3546 {
   3547 	struct bge_softc *sc;
   3548 	struct ifnet *ifp;
   3549 	uint32_t statusword;
   3550 
   3551 	sc = xsc;
   3552 	ifp = &sc->ethercom.ec_if;
   3553 
   3554 	/* It is possible for the interrupt to arrive before
   3555 	 * the status block is updated prior to the interrupt.
   3556 	 * Reading the PCI State register will confirm whether the
   3557 	 * interrupt is ours and will flush the status block.
   3558 	 */
   3559 
   3560 	/* read status word from status block */
   3561 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3562 
   3563 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3564 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3565 		/* Ack interrupt and stop others from occuring. */
   3566 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3567 
   3568 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3569 
   3570 		/* clear status word */
   3571 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3572 
   3573 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3574 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3575 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3576 			bge_link_upd(sc);
   3577 
   3578 		if (ifp->if_flags & IFF_RUNNING) {
   3579 			/* Check RX return ring producer/consumer */
   3580 			bge_rxeof(sc);
   3581 
   3582 			/* Check TX ring producer/consumer */
   3583 			bge_txeof(sc);
   3584 		}
   3585 
   3586 		if (sc->bge_pending_rxintr_change) {
   3587 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3588 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3589 			uint32_t junk;
   3590 
   3591 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3592 			DELAY(10);
   3593 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3594 
   3595 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3596 			DELAY(10);
   3597 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3598 
   3599 			sc->bge_pending_rxintr_change = 0;
   3600 		}
   3601 		bge_handle_events(sc);
   3602 
   3603 		/* Re-enable interrupts. */
   3604 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3605 
   3606 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3607 			bge_start(ifp);
   3608 
   3609 		return 1;
   3610 	} else
   3611 		return 0;
   3612 }
   3613 
   3614 static void
   3615 bge_asf_driver_up(struct bge_softc *sc)
   3616 {
   3617 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3618 		/* Send ASF heartbeat aprox. every 2s */
   3619 		if (sc->bge_asf_count)
   3620 			sc->bge_asf_count --;
   3621 		else {
   3622 			sc->bge_asf_count = 2;
   3623 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3624 			    BGE_FW_DRV_ALIVE);
   3625 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3626 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3627 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3628 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3629 		}
   3630 	}
   3631 }
   3632 
   3633 static void
   3634 bge_tick(void *xsc)
   3635 {
   3636 	struct bge_softc *sc = xsc;
   3637 	struct mii_data *mii = &sc->bge_mii;
   3638 	int s;
   3639 
   3640 	s = splnet();
   3641 
   3642 	if (BGE_IS_5705_PLUS(sc))
   3643 		bge_stats_update_regs(sc);
   3644 	else
   3645 		bge_stats_update(sc);
   3646 
   3647 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3648 		/*
   3649 		 * Since in TBI mode auto-polling can't be used we should poll
   3650 		 * link status manually. Here we register pending link event
   3651 		 * and trigger interrupt.
   3652 		 */
   3653 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3654 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3655 	} else {
   3656 		/*
   3657 		 * Do not touch PHY if we have link up. This could break
   3658 		 * IPMI/ASF mode or produce extra input errors.
   3659 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3660 		 */
   3661 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3662 			mii_tick(mii);
   3663 	}
   3664 
   3665 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3666 
   3667 	splx(s);
   3668 }
   3669 
   3670 static void
   3671 bge_stats_update_regs(struct bge_softc *sc)
   3672 {
   3673 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3674 
   3675 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3676 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3677 
   3678 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3679 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3680 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3681 }
   3682 
   3683 static void
   3684 bge_stats_update(struct bge_softc *sc)
   3685 {
   3686 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3687 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3688 
   3689 #define READ_STAT(sc, stats, stat) \
   3690 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3691 
   3692 	ifp->if_collisions +=
   3693 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3694 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3695 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3696 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3697 	  ifp->if_collisions;
   3698 
   3699 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3700 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3701 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3702 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3703 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3704 		      READ_STAT(sc, stats,
   3705 		      		xoffPauseFramesReceived.bge_addr_lo));
   3706 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3707 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3708 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3709 		      READ_STAT(sc, stats,
   3710 		      		macControlFramesReceived.bge_addr_lo));
   3711 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3712 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3713 
   3714 #undef READ_STAT
   3715 
   3716 #ifdef notdef
   3717 	ifp->if_collisions +=
   3718 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3719 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3720 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3721 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3722 	   ifp->if_collisions;
   3723 #endif
   3724 }
   3725 
   3726 /*
   3727  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3728  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3729  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3730  * the hardware checksum assist gives incorrect results (possibly
   3731  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3732  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3733  */
   3734 static inline int
   3735 bge_cksum_pad(struct mbuf *pkt)
   3736 {
   3737 	struct mbuf *last = NULL;
   3738 	int padlen;
   3739 
   3740 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3741 
   3742 	/* if there's only the packet-header and we can pad there, use it. */
   3743 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3744 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3745 		last = pkt;
   3746 	} else {
   3747 		/*
   3748 		 * Walk packet chain to find last mbuf. We will either
   3749 		 * pad there, or append a new mbuf and pad it
   3750 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3751 		 */
   3752 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3753 	      	       continue; /* do nothing */
   3754 		}
   3755 
   3756 		/* `last' now points to last in chain. */
   3757 		if (M_TRAILINGSPACE(last) < padlen) {
   3758 			/* Allocate new empty mbuf, pad it. Compact later. */
   3759 			struct mbuf *n;
   3760 			MGET(n, M_DONTWAIT, MT_DATA);
   3761 			if (n == NULL)
   3762 				return ENOBUFS;
   3763 			n->m_len = 0;
   3764 			last->m_next = n;
   3765 			last = n;
   3766 		}
   3767 	}
   3768 
   3769 	KDASSERT(!M_READONLY(last));
   3770 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3771 
   3772 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3773 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3774 	last->m_len += padlen;
   3775 	pkt->m_pkthdr.len += padlen;
   3776 	return 0;
   3777 }
   3778 
   3779 /*
   3780  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3781  */
   3782 static inline int
   3783 bge_compact_dma_runt(struct mbuf *pkt)
   3784 {
   3785 	struct mbuf	*m, *prev;
   3786 	int 		totlen, prevlen;
   3787 
   3788 	prev = NULL;
   3789 	totlen = 0;
   3790 	prevlen = -1;
   3791 
   3792 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3793 		int mlen = m->m_len;
   3794 		int shortfall = 8 - mlen ;
   3795 
   3796 		totlen += mlen;
   3797 		if (mlen == 0) {
   3798 			continue;
   3799 		}
   3800 		if (mlen >= 8)
   3801 			continue;
   3802 
   3803 		/* If we get here, mbuf data is too small for DMA engine.
   3804 		 * Try to fix by shuffling data to prev or next in chain.
   3805 		 * If that fails, do a compacting deep-copy of the whole chain.
   3806 		 */
   3807 
   3808 		/* Internal frag. If fits in prev, copy it there. */
   3809 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3810 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3811 			prev->m_len += mlen;
   3812 			m->m_len = 0;
   3813 			/* XXX stitch chain */
   3814 			prev->m_next = m_free(m);
   3815 			m = prev;
   3816 			continue;
   3817 		}
   3818 		else if (m->m_next != NULL &&
   3819 			     M_TRAILINGSPACE(m) >= shortfall &&
   3820 			     m->m_next->m_len >= (8 + shortfall)) {
   3821 		    /* m is writable and have enough data in next, pull up. */
   3822 
   3823 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3824 			    shortfall);
   3825 			m->m_len += shortfall;
   3826 			m->m_next->m_len -= shortfall;
   3827 			m->m_next->m_data += shortfall;
   3828 		}
   3829 		else if (m->m_next == NULL || 1) {
   3830 		  	/* Got a runt at the very end of the packet.
   3831 			 * borrow data from the tail of the preceding mbuf and
   3832 			 * update its length in-place. (The original data is still
   3833 			 * valid, so we can do this even if prev is not writable.)
   3834 			 */
   3835 
   3836 			/* if we'd make prev a runt, just move all of its data. */
   3837 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3838 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3839 
   3840 			if ((prev->m_len - shortfall) < 8)
   3841 				shortfall = prev->m_len;
   3842 
   3843 #ifdef notyet	/* just do the safe slow thing for now */
   3844 			if (!M_READONLY(m)) {
   3845 				if (M_LEADINGSPACE(m) < shorfall) {
   3846 					void *m_dat;
   3847 					m_dat = (m->m_flags & M_PKTHDR) ?
   3848 					  m->m_pktdat : m->dat;
   3849 					memmove(m_dat, mtod(m, void*), m->m_len);
   3850 					m->m_data = m_dat;
   3851 				    }
   3852 			} else
   3853 #endif	/* just do the safe slow thing */
   3854 			{
   3855 				struct mbuf * n = NULL;
   3856 				int newprevlen = prev->m_len - shortfall;
   3857 
   3858 				MGET(n, M_NOWAIT, MT_DATA);
   3859 				if (n == NULL)
   3860 				   return ENOBUFS;
   3861 				KASSERT(m->m_len + shortfall < MLEN
   3862 					/*,
   3863 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3864 
   3865 				/* first copy the data we're stealing from prev */
   3866 				memcpy(n->m_data, prev->m_data + newprevlen,
   3867 				    shortfall);
   3868 
   3869 				/* update prev->m_len accordingly */
   3870 				prev->m_len -= shortfall;
   3871 
   3872 				/* copy data from runt m */
   3873 				memcpy(n->m_data + shortfall, m->m_data,
   3874 				    m->m_len);
   3875 
   3876 				/* n holds what we stole from prev, plus m */
   3877 				n->m_len = shortfall + m->m_len;
   3878 
   3879 				/* stitch n into chain and free m */
   3880 				n->m_next = m->m_next;
   3881 				prev->m_next = n;
   3882 				/* KASSERT(m->m_next == NULL); */
   3883 				m->m_next = NULL;
   3884 				m_free(m);
   3885 				m = n;	/* for continuing loop */
   3886 			}
   3887 		}
   3888 		prevlen = m->m_len;
   3889 	}
   3890 	return 0;
   3891 }
   3892 
   3893 /*
   3894  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3895  * pointers to descriptors.
   3896  */
   3897 static int
   3898 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3899 {
   3900 	struct bge_tx_bd	*f = NULL;
   3901 	uint32_t		frag, cur;
   3902 	uint16_t		csum_flags = 0;
   3903 	uint16_t		txbd_tso_flags = 0;
   3904 	struct txdmamap_pool_entry *dma;
   3905 	bus_dmamap_t dmamap;
   3906 	int			i = 0;
   3907 	struct m_tag		*mtag;
   3908 	int			use_tso, maxsegsize, error;
   3909 
   3910 	cur = frag = *txidx;
   3911 
   3912 	if (m_head->m_pkthdr.csum_flags) {
   3913 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3914 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3915 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3916 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3917 	}
   3918 
   3919 	/*
   3920 	 * If we were asked to do an outboard checksum, and the NIC
   3921 	 * has the bug where it sometimes adds in the Ethernet padding,
   3922 	 * explicitly pad with zeros so the cksum will be correct either way.
   3923 	 * (For now, do this for all chip versions, until newer
   3924 	 * are confirmed to not require the workaround.)
   3925 	 */
   3926 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3927 #ifdef notyet
   3928 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3929 #endif
   3930 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3931 		goto check_dma_bug;
   3932 
   3933 	if (bge_cksum_pad(m_head) != 0)
   3934 	    return ENOBUFS;
   3935 
   3936 check_dma_bug:
   3937 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3938 		goto doit;
   3939 
   3940 	/*
   3941 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3942 	 * less than eight bytes.  If we encounter a teeny mbuf
   3943 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3944 	 */
   3945 	if (bge_compact_dma_runt(m_head) != 0)
   3946 		return ENOBUFS;
   3947 
   3948 doit:
   3949 	dma = SLIST_FIRST(&sc->txdma_list);
   3950 	if (dma == NULL)
   3951 		return ENOBUFS;
   3952 	dmamap = dma->dmamap;
   3953 
   3954 	/*
   3955 	 * Set up any necessary TSO state before we start packing...
   3956 	 */
   3957 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3958 	if (!use_tso) {
   3959 		maxsegsize = 0;
   3960 	} else {	/* TSO setup */
   3961 		unsigned  mss;
   3962 		struct ether_header *eh;
   3963 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3964 		struct mbuf * m0 = m_head;
   3965 		struct ip *ip;
   3966 		struct tcphdr *th;
   3967 		int iphl, hlen;
   3968 
   3969 		/*
   3970 		 * XXX It would be nice if the mbuf pkthdr had offset
   3971 		 * fields for the protocol headers.
   3972 		 */
   3973 
   3974 		eh = mtod(m0, struct ether_header *);
   3975 		switch (htons(eh->ether_type)) {
   3976 		case ETHERTYPE_IP:
   3977 			offset = ETHER_HDR_LEN;
   3978 			break;
   3979 
   3980 		case ETHERTYPE_VLAN:
   3981 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3982 			break;
   3983 
   3984 		default:
   3985 			/*
   3986 			 * Don't support this protocol or encapsulation.
   3987 			 */
   3988 			return ENOBUFS;
   3989 		}
   3990 
   3991 		/*
   3992 		 * TCP/IP headers are in the first mbuf; we can do
   3993 		 * this the easy way.
   3994 		 */
   3995 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   3996 		hlen = iphl + offset;
   3997 		if (__predict_false(m0->m_len <
   3998 				    (hlen + sizeof(struct tcphdr)))) {
   3999 
   4000 			aprint_debug_dev(sc->bge_dev,
   4001 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4002 			    "not handled yet\n",
   4003 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4004 #ifdef NOTYET
   4005 			/*
   4006 			 * XXX jonathan (at) NetBSD.org: untested.
   4007 			 * how to force  this branch to be taken?
   4008 			 */
   4009 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4010 
   4011 			m_copydata(m0, offset, sizeof(ip), &ip);
   4012 			m_copydata(m0, hlen, sizeof(th), &th);
   4013 
   4014 			ip.ip_len = 0;
   4015 
   4016 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4017 			    sizeof(ip.ip_len), &ip.ip_len);
   4018 
   4019 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4020 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4021 
   4022 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4023 			    sizeof(th.th_sum), &th.th_sum);
   4024 
   4025 			hlen += th.th_off << 2;
   4026 			iptcp_opt_words	= hlen;
   4027 #else
   4028 			/*
   4029 			 * if_wm "hard" case not yet supported, can we not
   4030 			 * mandate it out of existence?
   4031 			 */
   4032 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4033 
   4034 			return ENOBUFS;
   4035 #endif
   4036 		} else {
   4037 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4038 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4039 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4040 
   4041 			/* Total IP/TCP options, in 32-bit words */
   4042 			iptcp_opt_words = (ip_tcp_hlen
   4043 					   - sizeof(struct tcphdr)
   4044 					   - sizeof(struct ip)) >> 2;
   4045 		}
   4046 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   4047 			th->th_sum = 0;
   4048 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4049 		} else {
   4050 			/*
   4051 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4052 			 * Requires TSO firmware patch for 5701/5703/5704.
   4053 			 */
   4054 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4055 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4056 		}
   4057 
   4058 		mss = m_head->m_pkthdr.segsz;
   4059 		txbd_tso_flags |=
   4060 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4061 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4062 
   4063 		/*
   4064 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4065 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4066 		 * the NIC copies 40 bytes of IP/TCP header from the
   4067 		 * supplied header into the IP/TCP header portion of
   4068 		 * each post-TSO-segment. If the supplied packet has IP or
   4069 		 * TCP options, we need to tell the NIC to copy those extra
   4070 		 * bytes into each  post-TSO header, in addition to the normal
   4071 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4072 		 * Unfortunately, the driver encoding of option length
   4073 		 * varies across different ASIC families.
   4074 		 */
   4075 		tcp_seg_flags = 0;
   4076 		if (iptcp_opt_words) {
   4077 			if (BGE_IS_5705_PLUS(sc)) {
   4078 				tcp_seg_flags =
   4079 					iptcp_opt_words << 11;
   4080 			} else {
   4081 				txbd_tso_flags |=
   4082 					iptcp_opt_words << 12;
   4083 			}
   4084 		}
   4085 		maxsegsize = mss | tcp_seg_flags;
   4086 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4087 
   4088 	}	/* TSO setup */
   4089 
   4090 	/*
   4091 	 * Start packing the mbufs in this chain into
   4092 	 * the fragment pointers. Stop when we run out
   4093 	 * of fragments or hit the end of the mbuf chain.
   4094 	 */
   4095 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4096 	    BUS_DMA_NOWAIT);
   4097 	if (error)
   4098 		return ENOBUFS;
   4099 	/*
   4100 	 * Sanity check: avoid coming within 16 descriptors
   4101 	 * of the end of the ring.
   4102 	 */
   4103 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4104 		BGE_TSO_PRINTF(("%s: "
   4105 		    " dmamap_load_mbuf too close to ring wrap\n",
   4106 		    device_xname(sc->bge_dev)));
   4107 		goto fail_unload;
   4108 	}
   4109 
   4110 	mtag = sc->ethercom.ec_nvlans ?
   4111 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4112 
   4113 
   4114 	/* Iterate over dmap-map fragments. */
   4115 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4116 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4117 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4118 			break;
   4119 
   4120 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4121 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4122 
   4123 		/*
   4124 		 * For 5751 and follow-ons, for TSO we must turn
   4125 		 * off checksum-assist flag in the tx-descr, and
   4126 		 * supply the ASIC-revision-specific encoding
   4127 		 * of TSO flags and segsize.
   4128 		 */
   4129 		if (use_tso) {
   4130 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4131 				f->bge_rsvd = maxsegsize;
   4132 				f->bge_flags = csum_flags | txbd_tso_flags;
   4133 			} else {
   4134 				f->bge_rsvd = 0;
   4135 				f->bge_flags =
   4136 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4137 			}
   4138 		} else {
   4139 			f->bge_rsvd = 0;
   4140 			f->bge_flags = csum_flags;
   4141 		}
   4142 
   4143 		if (mtag != NULL) {
   4144 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4145 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4146 		} else {
   4147 			f->bge_vlan_tag = 0;
   4148 		}
   4149 		cur = frag;
   4150 		BGE_INC(frag, BGE_TX_RING_CNT);
   4151 	}
   4152 
   4153 	if (i < dmamap->dm_nsegs) {
   4154 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4155 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4156 		goto fail_unload;
   4157 	}
   4158 
   4159 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4160 	    BUS_DMASYNC_PREWRITE);
   4161 
   4162 	if (frag == sc->bge_tx_saved_considx) {
   4163 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4164 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4165 
   4166 		goto fail_unload;
   4167 	}
   4168 
   4169 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4170 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4171 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4172 	sc->txdma[cur] = dma;
   4173 	sc->bge_txcnt += dmamap->dm_nsegs;
   4174 
   4175 	*txidx = frag;
   4176 
   4177 	return 0;
   4178 
   4179 fail_unload:
   4180 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4181 
   4182 	return ENOBUFS;
   4183 }
   4184 
   4185 /*
   4186  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4187  * to the mbuf data regions directly in the transmit descriptors.
   4188  */
   4189 static void
   4190 bge_start(struct ifnet *ifp)
   4191 {
   4192 	struct bge_softc *sc;
   4193 	struct mbuf *m_head = NULL;
   4194 	uint32_t prodidx;
   4195 	int pkts = 0;
   4196 
   4197 	sc = ifp->if_softc;
   4198 
   4199 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4200 		return;
   4201 
   4202 	prodidx = sc->bge_tx_prodidx;
   4203 
   4204 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4205 		IFQ_POLL(&ifp->if_snd, m_head);
   4206 		if (m_head == NULL)
   4207 			break;
   4208 
   4209 #if 0
   4210 		/*
   4211 		 * XXX
   4212 		 * safety overkill.  If this is a fragmented packet chain
   4213 		 * with delayed TCP/UDP checksums, then only encapsulate
   4214 		 * it if we have enough descriptors to handle the entire
   4215 		 * chain at once.
   4216 		 * (paranoia -- may not actually be needed)
   4217 		 */
   4218 		if (m_head->m_flags & M_FIRSTFRAG &&
   4219 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4220 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4221 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4222 				ifp->if_flags |= IFF_OACTIVE;
   4223 				break;
   4224 			}
   4225 		}
   4226 #endif
   4227 
   4228 		/*
   4229 		 * Pack the data into the transmit ring. If we
   4230 		 * don't have room, set the OACTIVE flag and wait
   4231 		 * for the NIC to drain the ring.
   4232 		 */
   4233 		if (bge_encap(sc, m_head, &prodidx)) {
   4234 			ifp->if_flags |= IFF_OACTIVE;
   4235 			break;
   4236 		}
   4237 
   4238 		/* now we are committed to transmit the packet */
   4239 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4240 		pkts++;
   4241 
   4242 		/*
   4243 		 * If there's a BPF listener, bounce a copy of this frame
   4244 		 * to him.
   4245 		 */
   4246 		bpf_mtap(ifp, m_head);
   4247 	}
   4248 	if (pkts == 0)
   4249 		return;
   4250 
   4251 	/* Transmit */
   4252 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4253 	/* 5700 b2 errata */
   4254 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4255 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4256 
   4257 	sc->bge_tx_prodidx = prodidx;
   4258 
   4259 	/*
   4260 	 * Set a timeout in case the chip goes out to lunch.
   4261 	 */
   4262 	ifp->if_timer = 5;
   4263 }
   4264 
   4265 static int
   4266 bge_init(struct ifnet *ifp)
   4267 {
   4268 	struct bge_softc *sc = ifp->if_softc;
   4269 	const uint16_t *m;
   4270 	int s, error = 0;
   4271 
   4272 	s = splnet();
   4273 
   4274 	ifp = &sc->ethercom.ec_if;
   4275 
   4276 	/* Cancel pending I/O and flush buffers. */
   4277 	bge_stop(ifp, 0);
   4278 
   4279 	bge_stop_fw(sc);
   4280 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4281 	bge_reset(sc);
   4282 	bge_sig_legacy(sc, BGE_RESET_START);
   4283 	bge_sig_post_reset(sc, BGE_RESET_START);
   4284 
   4285 	bge_chipinit(sc);
   4286 
   4287 	/*
   4288 	 * Init the various state machines, ring
   4289 	 * control blocks and firmware.
   4290 	 */
   4291 	error = bge_blockinit(sc);
   4292 	if (error != 0) {
   4293 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4294 		    error);
   4295 		splx(s);
   4296 		return error;
   4297 	}
   4298 
   4299 	ifp = &sc->ethercom.ec_if;
   4300 
   4301 	/* Specify MTU. */
   4302 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4303 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4304 
   4305 	/* Load our MAC address. */
   4306 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4307 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4308 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4309 
   4310 	/* Enable or disable promiscuous mode as needed. */
   4311 	if (ifp->if_flags & IFF_PROMISC)
   4312 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4313 	else
   4314 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4315 
   4316 	/* Program multicast filter. */
   4317 	bge_setmulti(sc);
   4318 
   4319 	/* Init RX ring. */
   4320 	bge_init_rx_ring_std(sc);
   4321 
   4322 	/*
   4323 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4324 	 * memory to insure that the chip has in fact read the first
   4325 	 * entry of the ring.
   4326 	 */
   4327 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4328 		uint32_t		v, i;
   4329 		for (i = 0; i < 10; i++) {
   4330 			DELAY(20);
   4331 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4332 			if (v == (MCLBYTES - ETHER_ALIGN))
   4333 				break;
   4334 		}
   4335 		if (i == 10)
   4336 			aprint_error_dev(sc->bge_dev,
   4337 			    "5705 A0 chip failed to load RX ring\n");
   4338 	}
   4339 
   4340 	/* Init jumbo RX ring. */
   4341 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4342 		bge_init_rx_ring_jumbo(sc);
   4343 
   4344 	/* Init our RX return ring index */
   4345 	sc->bge_rx_saved_considx = 0;
   4346 
   4347 	/* Init TX ring. */
   4348 	bge_init_tx_ring(sc);
   4349 
   4350 	/* Turn on transmitter */
   4351 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4352 
   4353 	/* Turn on receiver */
   4354 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4355 
   4356 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4357 
   4358 	/* Tell firmware we're alive. */
   4359 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4360 
   4361 	/* Enable host interrupts. */
   4362 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4363 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4364 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4365 
   4366 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4367 		goto out;
   4368 
   4369 	ifp->if_flags |= IFF_RUNNING;
   4370 	ifp->if_flags &= ~IFF_OACTIVE;
   4371 
   4372 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4373 
   4374 out:
   4375 	splx(s);
   4376 
   4377 	return error;
   4378 }
   4379 
   4380 /*
   4381  * Set media options.
   4382  */
   4383 static int
   4384 bge_ifmedia_upd(struct ifnet *ifp)
   4385 {
   4386 	struct bge_softc *sc = ifp->if_softc;
   4387 	struct mii_data *mii = &sc->bge_mii;
   4388 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4389 	int rc;
   4390 
   4391 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4392 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4393 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4394 			return EINVAL;
   4395 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4396 		case IFM_AUTO:
   4397 			/*
   4398 			 * The BCM5704 ASIC appears to have a special
   4399 			 * mechanism for programming the autoneg
   4400 			 * advertisement registers in TBI mode.
   4401 			 */
   4402 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4403 				uint32_t sgdig;
   4404 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4405 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4406 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4407 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4408 					sgdig |= BGE_SGDIGCFG_AUTO |
   4409 					    BGE_SGDIGCFG_PAUSE_CAP |
   4410 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4411 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4412 					    sgdig | BGE_SGDIGCFG_SEND);
   4413 					DELAY(5);
   4414 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4415 				}
   4416 			}
   4417 			break;
   4418 		case IFM_1000_SX:
   4419 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4420 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4421 				    BGE_MACMODE_HALF_DUPLEX);
   4422 			} else {
   4423 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4424 				    BGE_MACMODE_HALF_DUPLEX);
   4425 			}
   4426 			break;
   4427 		default:
   4428 			return EINVAL;
   4429 		}
   4430 		/* XXX 802.3x flow control for 1000BASE-SX */
   4431 		return 0;
   4432 	}
   4433 
   4434 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4435 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4436 		return 0;
   4437 
   4438 	/*
   4439 	 * Force an interrupt so that we will call bge_link_upd
   4440 	 * if needed and clear any pending link state attention.
   4441 	 * Without this we are not getting any further interrupts
   4442 	 * for link state changes and thus will not UP the link and
   4443 	 * not be able to send in bge_start. The only way to get
   4444 	 * things working was to receive a packet and get a RX intr.
   4445 	 */
   4446 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4447 	    sc->bge_flags & BGE_IS_5788)
   4448 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4449 	else
   4450 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4451 
   4452 	return rc;
   4453 }
   4454 
   4455 /*
   4456  * Report current media status.
   4457  */
   4458 static void
   4459 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4460 {
   4461 	struct bge_softc *sc = ifp->if_softc;
   4462 	struct mii_data *mii = &sc->bge_mii;
   4463 
   4464 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4465 		ifmr->ifm_status = IFM_AVALID;
   4466 		ifmr->ifm_active = IFM_ETHER;
   4467 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4468 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4469 			ifmr->ifm_status |= IFM_ACTIVE;
   4470 		ifmr->ifm_active |= IFM_1000_SX;
   4471 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4472 			ifmr->ifm_active |= IFM_HDX;
   4473 		else
   4474 			ifmr->ifm_active |= IFM_FDX;
   4475 		return;
   4476 	}
   4477 
   4478 	mii_pollstat(mii);
   4479 	ifmr->ifm_status = mii->mii_media_status;
   4480 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4481 	    sc->bge_flowflags;
   4482 }
   4483 
   4484 static int
   4485 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4486 {
   4487 	struct bge_softc *sc = ifp->if_softc;
   4488 	struct ifreq *ifr = (struct ifreq *) data;
   4489 	int s, error = 0;
   4490 	struct mii_data *mii;
   4491 
   4492 	s = splnet();
   4493 
   4494 	switch (command) {
   4495 	case SIOCSIFFLAGS:
   4496 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4497 			break;
   4498 		if (ifp->if_flags & IFF_UP) {
   4499 			/*
   4500 			 * If only the state of the PROMISC flag changed,
   4501 			 * then just use the 'set promisc mode' command
   4502 			 * instead of reinitializing the entire NIC. Doing
   4503 			 * a full re-init means reloading the firmware and
   4504 			 * waiting for it to start up, which may take a
   4505 			 * second or two.
   4506 			 */
   4507 			if (ifp->if_flags & IFF_RUNNING &&
   4508 			    ifp->if_flags & IFF_PROMISC &&
   4509 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   4510 				BGE_SETBIT(sc, BGE_RX_MODE,
   4511 				    BGE_RXMODE_RX_PROMISC);
   4512 			} else if (ifp->if_flags & IFF_RUNNING &&
   4513 			    !(ifp->if_flags & IFF_PROMISC) &&
   4514 			    sc->bge_if_flags & IFF_PROMISC) {
   4515 				BGE_CLRBIT(sc, BGE_RX_MODE,
   4516 				    BGE_RXMODE_RX_PROMISC);
   4517 			} else if (!(sc->bge_if_flags & IFF_UP))
   4518 				bge_init(ifp);
   4519 		} else {
   4520 			if (ifp->if_flags & IFF_RUNNING)
   4521 				bge_stop(ifp, 1);
   4522 		}
   4523 		sc->bge_if_flags = ifp->if_flags;
   4524 		error = 0;
   4525 		break;
   4526 	case SIOCSIFMEDIA:
   4527 		/* XXX Flow control is not supported for 1000BASE-SX */
   4528 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4529 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4530 			sc->bge_flowflags = 0;
   4531 		}
   4532 
   4533 		/* Flow control requires full-duplex mode. */
   4534 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4535 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4536 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4537 		}
   4538 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4539 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4540 				/* We can do both TXPAUSE and RXPAUSE. */
   4541 				ifr->ifr_media |=
   4542 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4543 			}
   4544 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4545 		}
   4546 		/* FALLTHROUGH */
   4547 	case SIOCGIFMEDIA:
   4548 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4549 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4550 			    command);
   4551 		} else {
   4552 			mii = &sc->bge_mii;
   4553 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4554 			    command);
   4555 		}
   4556 		break;
   4557 	default:
   4558 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4559 			break;
   4560 
   4561 		error = 0;
   4562 
   4563 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4564 			;
   4565 		else if (ifp->if_flags & IFF_RUNNING)
   4566 			bge_setmulti(sc);
   4567 		break;
   4568 	}
   4569 
   4570 	splx(s);
   4571 
   4572 	return error;
   4573 }
   4574 
   4575 static void
   4576 bge_watchdog(struct ifnet *ifp)
   4577 {
   4578 	struct bge_softc *sc;
   4579 
   4580 	sc = ifp->if_softc;
   4581 
   4582 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4583 
   4584 	ifp->if_flags &= ~IFF_RUNNING;
   4585 	bge_init(ifp);
   4586 
   4587 	ifp->if_oerrors++;
   4588 }
   4589 
   4590 static void
   4591 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4592 {
   4593 	int i;
   4594 
   4595 	BGE_CLRBIT(sc, reg, bit);
   4596 
   4597 	for (i = 0; i < 1000; i++) {
   4598 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4599 			return;
   4600 		delay(100);
   4601 	}
   4602 
   4603 	/*
   4604 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4605 	 * on some environment (and once after boot?)
   4606 	 */
   4607 	if (reg != BGE_SRS_MODE)
   4608 		aprint_error_dev(sc->bge_dev,
   4609 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4610 		    (u_long)reg, bit);
   4611 }
   4612 
   4613 /*
   4614  * Stop the adapter and free any mbufs allocated to the
   4615  * RX and TX lists.
   4616  */
   4617 static void
   4618 bge_stop(struct ifnet *ifp, int disable)
   4619 {
   4620 	struct bge_softc *sc = ifp->if_softc;
   4621 
   4622 	callout_stop(&sc->bge_timeout);
   4623 
   4624 	/*
   4625 	 * Tell firmware we're shutting down.
   4626 	 */
   4627 	bge_stop_fw(sc);
   4628 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4629 
   4630 	/* Disable host interrupts. */
   4631 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4632 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4633 
   4634 	/*
   4635 	 * Disable all of the receiver blocks
   4636 	 */
   4637 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4638 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4639 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4640 	if (BGE_IS_5700_FAMILY(sc))
   4641 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4642 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4643 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4644 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4645 
   4646 	/*
   4647 	 * Disable all of the transmit blocks
   4648 	 */
   4649 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4650 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4651 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4652 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4653 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4654 	if (BGE_IS_5700_FAMILY(sc))
   4655 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4656 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4657 
   4658 	/*
   4659 	 * Shut down all of the memory managers and related
   4660 	 * state machines.
   4661 	 */
   4662 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4663 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4664 	if (BGE_IS_5700_FAMILY(sc))
   4665 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4666 
   4667 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4668 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4669 
   4670 	if (BGE_IS_5700_FAMILY(sc)) {
   4671 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4672 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4673 	}
   4674 
   4675 	bge_reset(sc);
   4676 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4677 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4678 
   4679 	/*
   4680 	 * Keep the ASF firmware running if up.
   4681 	 */
   4682 	if (sc->bge_asf_mode & ASF_STACKUP)
   4683 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4684 	else
   4685 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4686 
   4687 	/* Free the RX lists. */
   4688 	bge_free_rx_ring_std(sc);
   4689 
   4690 	/* Free jumbo RX list. */
   4691 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4692 		bge_free_rx_ring_jumbo(sc);
   4693 
   4694 	/* Free TX buffers. */
   4695 	bge_free_tx_ring(sc);
   4696 
   4697 	/*
   4698 	 * Isolate/power down the PHY.
   4699 	 */
   4700 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4701 		mii_down(&sc->bge_mii);
   4702 
   4703 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4704 
   4705 	/* Clear MAC's link state (PHY may still have link UP). */
   4706 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4707 
   4708 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4709 }
   4710 
   4711 static void
   4712 bge_link_upd(struct bge_softc *sc)
   4713 {
   4714 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4715 	struct mii_data *mii = &sc->bge_mii;
   4716 	uint32_t status;
   4717 	int link;
   4718 
   4719 	/* Clear 'pending link event' flag */
   4720 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4721 
   4722 	/*
   4723 	 * Process link state changes.
   4724 	 * Grrr. The link status word in the status block does
   4725 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4726 	 * according to all available information. Hence, we have
   4727 	 * to enable MII interrupts in order to properly obtain
   4728 	 * async link changes. Unfortunately, this also means that
   4729 	 * we have to read the MAC status register to detect link
   4730 	 * changes, thereby adding an additional register access to
   4731 	 * the interrupt handler.
   4732 	 */
   4733 
   4734 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4735 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4736 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4737 			mii_pollstat(mii);
   4738 
   4739 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4740 			    mii->mii_media_status & IFM_ACTIVE &&
   4741 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4742 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4743 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4744 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4745 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4746 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4747 
   4748 			/* Clear the interrupt */
   4749 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4750 			    BGE_EVTENB_MI_INTERRUPT);
   4751 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4752 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4753 			    BRGPHY_INTRS);
   4754 		}
   4755 		return;
   4756 	}
   4757 
   4758 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4759 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4760 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4761 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4762 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4763 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4764 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4765 					    BGE_MACMODE_TBI_SEND_CFGS);
   4766 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4767 				if_link_state_change(ifp, LINK_STATE_UP);
   4768 			}
   4769 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4770 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4771 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4772 		}
   4773 	/*
   4774 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4775 	 * This should not happen since mii callouts are locked now, but
   4776 	 * we keep this check for debug.
   4777 	 */
   4778 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4779 		/*
   4780 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4781 		 * bit in status word always set. Workaround this bug by
   4782 		 * reading PHY link status directly.
   4783 		 */
   4784 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4785 		    BGE_STS_LINK : 0;
   4786 
   4787 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4788 			mii_pollstat(mii);
   4789 
   4790 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4791 			    mii->mii_media_status & IFM_ACTIVE &&
   4792 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4793 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4794 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4795 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4796 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4797 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4798 		}
   4799 	}
   4800 
   4801 	/* Clear the attention */
   4802 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4803 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4804 	    BGE_MACSTAT_LINK_CHANGED);
   4805 }
   4806 
   4807 static int
   4808 sysctl_bge_verify(SYSCTLFN_ARGS)
   4809 {
   4810 	int error, t;
   4811 	struct sysctlnode node;
   4812 
   4813 	node = *rnode;
   4814 	t = *(int*)rnode->sysctl_data;
   4815 	node.sysctl_data = &t;
   4816 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4817 	if (error || newp == NULL)
   4818 		return error;
   4819 
   4820 #if 0
   4821 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4822 	    node.sysctl_num, rnode->sysctl_num));
   4823 #endif
   4824 
   4825 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4826 		if (t < 0 || t >= NBGE_RX_THRESH)
   4827 			return EINVAL;
   4828 		bge_update_all_threshes(t);
   4829 	} else
   4830 		return EINVAL;
   4831 
   4832 	*(int*)rnode->sysctl_data = t;
   4833 
   4834 	return 0;
   4835 }
   4836 
   4837 /*
   4838  * Set up sysctl(3) MIB, hw.bge.*.
   4839  *
   4840  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   4841  */
   4842 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   4843 {
   4844 	int rc, bge_root_num;
   4845 	const struct sysctlnode *node;
   4846 
   4847 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   4848 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4849 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4850 		goto err;
   4851 	}
   4852 
   4853 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4854 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   4855 	    SYSCTL_DESCR("BGE interface controls"),
   4856 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4857 		goto err;
   4858 	}
   4859 
   4860 	bge_root_num = node->sysctl_num;
   4861 
   4862 	/* BGE Rx interrupt mitigation level */
   4863 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   4864 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   4865 	    CTLTYPE_INT, "rx_lvl",
   4866 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4867 	    sysctl_bge_verify, 0,
   4868 	    &bge_rx_thresh_lvl,
   4869 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4870 	    CTL_EOL)) != 0) {
   4871 		goto err;
   4872 	}
   4873 
   4874 	bge_rxthresh_nodenum = node->sysctl_num;
   4875 
   4876 	return;
   4877 
   4878 err:
   4879 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4880 }
   4881 
   4882 #ifdef BGE_DEBUG
   4883 void
   4884 bge_debug_info(struct bge_softc *sc)
   4885 {
   4886 
   4887 	printf("Hardware Flags:\n");
   4888 	if (BGE_IS_5755_PLUS(sc))
   4889 		printf(" - 5755 Plus\n");
   4890 	if (BGE_IS_5750_OR_BEYOND(sc))
   4891 		printf(" - 5750 Plus\n");
   4892 	if (BGE_IS_5705_PLUS(sc))
   4893 		printf(" - 5705 Plus\n");
   4894 	if (BGE_IS_5714_FAMILY(sc))
   4895 		printf(" - 5714 Family\n");
   4896 	if (BGE_IS_5700_FAMILY(sc))
   4897 		printf(" - 5700 Family\n");
   4898 	if (sc->bge_flags & BGE_IS_5788)
   4899 		printf(" - 5788\n");
   4900 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4901 		printf(" - Supports Jumbo Frames\n");
   4902 	if (sc->bge_flags & BGE_NO_EEPROM)
   4903 		printf(" - No EEPROM\n");
   4904 	if (sc->bge_flags & BGE_PCIX)
   4905 		printf(" - PCI-X Bus\n");
   4906 	if (sc->bge_flags & BGE_PCIE)
   4907 		printf(" - PCI Express Bus\n");
   4908 	if (sc->bge_flags & BGE_NO_3LED)
   4909 		printf(" - No 3 LEDs\n");
   4910 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4911 		printf(" - RX Alignment Bug\n");
   4912 	if (sc->bge_flags & BGE_TSO)
   4913 		printf(" - TSO\n");
   4914 }
   4915 #endif /* BGE_DEBUG */
   4916 
   4917 static int
   4918 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4919 {
   4920 	prop_dictionary_t dict;
   4921 	prop_data_t ea;
   4922 
   4923 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4924 		return 1;
   4925 
   4926 	dict = device_properties(sc->bge_dev);
   4927 	ea = prop_dictionary_get(dict, "mac-address");
   4928 	if (ea != NULL) {
   4929 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4930 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4931 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4932 		return 0;
   4933 	}
   4934 
   4935 	return 1;
   4936 }
   4937 
   4938 static int
   4939 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4940 {
   4941 	uint32_t mac_addr;
   4942 
   4943 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4944 	if ((mac_addr >> 16) == 0x484b) {
   4945 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4946 		ether_addr[1] = (uint8_t)mac_addr;
   4947 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4948 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4949 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4950 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4951 		ether_addr[5] = (uint8_t)mac_addr;
   4952 		return 0;
   4953 	}
   4954 	return 1;
   4955 }
   4956 
   4957 static int
   4958 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4959 {
   4960 	int mac_offset = BGE_EE_MAC_OFFSET;
   4961 
   4962 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4963 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4964 
   4965 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4966 	    ETHER_ADDR_LEN));
   4967 }
   4968 
   4969 static int
   4970 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4971 {
   4972 
   4973 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4974 		return 1;
   4975 
   4976 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4977 	   ETHER_ADDR_LEN));
   4978 }
   4979 
   4980 static int
   4981 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4982 {
   4983 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4984 		/* NOTE: Order is critical */
   4985 		bge_get_eaddr_fw,
   4986 		bge_get_eaddr_mem,
   4987 		bge_get_eaddr_nvram,
   4988 		bge_get_eaddr_eeprom,
   4989 		NULL
   4990 	};
   4991 	const bge_eaddr_fcn_t *func;
   4992 
   4993 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4994 		if ((*func)(sc, eaddr) == 0)
   4995 			break;
   4996 	}
   4997 	return (*func == NULL ? ENXIO : 0);
   4998 }
   4999