Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.198
      1 /*	$NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $");
     83 
     84 #include "vlan.h"
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/in_systm.h>
    110 #include <netinet/in_var.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 /* Headers for TCP  Segmentation Offload (TSO) */
    115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    117 #include <netinet/ip.h>			/* for struct ip */
    118 #include <netinet/tcp.h>		/* for struct tcphdr */
    119 
    120 
    121 #include <net/bpf.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/mii/mii.h>
    128 #include <dev/mii/miivar.h>
    129 #include <dev/mii/miidevs.h>
    130 #include <dev/mii/brgphyreg.h>
    131 
    132 #include <dev/pci/if_bgereg.h>
    133 #include <dev/pci/if_bgevar.h>
    134 
    135 #include <prop/proplib.h>
    136 
    137 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    138 
    139 
    140 /*
    141  * Tunable thresholds for rx-side bge interrupt mitigation.
    142  */
    143 
    144 /*
    145  * The pairs of values below were obtained from empirical measurement
    146  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    147  * interrupt for every N packets received, where N is, approximately,
    148  * the second value (rx_max_bds) in each pair.  The values are chosen
    149  * such that moving from one pair to the succeeding pair was observed
    150  * to roughly halve interrupt rate under sustained input packet load.
    151  * The values were empirically chosen to avoid overflowing internal
    152  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    153  * results in internal wrapping and higher interrupt rates.
    154  * The limit of 46 frames was chosen to match NFS workloads.
    155  *
    156  * These values also work well on bcm5701, bcm5704C, and (less
    157  * tested) bcm5703.  On other chipsets, (including the Altima chip
    158  * family), the larger values may overflow internal chip limits,
    159  * leading to increasing interrupt rates rather than lower interrupt
    160  * rates.
    161  *
    162  * Applications using heavy interrupt mitigation (interrupting every
    163  * 32 or 46 frames) in both directions may need to increase the TCP
    164  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    165  * full link bandwidth, due to ACKs and window updates lingering
    166  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    167  */
    168 static const struct bge_load_rx_thresh {
    169 	int rx_ticks;
    170 	int rx_max_bds; }
    171 bge_rx_threshes[] = {
    172 	{ 32,   2 },
    173 	{ 50,   4 },
    174 	{ 100,  8 },
    175 	{ 192, 16 },
    176 	{ 416, 32 },
    177 	{ 598, 46 }
    178 };
    179 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    180 
    181 /* XXX patchable; should be sysctl'able */
    182 static int bge_auto_thresh = 1;
    183 static int bge_rx_thresh_lvl;
    184 
    185 static int bge_rxthresh_nodenum;
    186 
    187 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    188 
    189 static int bge_probe(device_t, cfdata_t, void *);
    190 static void bge_attach(device_t, device_t, void *);
    191 static void bge_release_resources(struct bge_softc *);
    192 
    193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    198 
    199 static void bge_txeof(struct bge_softc *);
    200 static void bge_rxeof(struct bge_softc *);
    201 
    202 static void bge_asf_driver_up (struct bge_softc *);
    203 static void bge_tick(void *);
    204 static void bge_stats_update(struct bge_softc *);
    205 static void bge_stats_update_regs(struct bge_softc *);
    206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    207 
    208 static int bge_intr(void *);
    209 static void bge_start(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_setpowerstate(struct bge_softc *, int);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(device_t);
    255 
    256 #define	BGE_RESET_START 1
    257 #define	BGE_RESET_STOP  2
    258 static void bge_sig_post_reset(struct bge_softc *, int);
    259 static void bge_sig_legacy(struct bge_softc *, int);
    260 static void bge_sig_pre_reset(struct bge_softc *, int);
    261 static void bge_stop_fw(struct bge_softc *);
    262 static int bge_reset(struct bge_softc *);
    263 static void bge_link_upd(struct bge_softc *);
    264 static void sysctl_bge_init(struct bge_softc *);
    265 static int sysctl_bge_verify(SYSCTLFN_PROTO);
    266 
    267 #ifdef BGE_DEBUG
    268 #define DPRINTF(x)	if (bgedebug) printf x
    269 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    270 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    271 int	bgedebug = 0;
    272 int	bge_tso_debug = 0;
    273 void		bge_debug_info(struct bge_softc *);
    274 #else
    275 #define DPRINTF(x)
    276 #define DPRINTFN(n,x)
    277 #define BGE_TSO_PRINTF(x)
    278 #endif
    279 
    280 #ifdef BGE_EVENT_COUNTERS
    281 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    282 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    283 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    284 #else
    285 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    286 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    287 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    288 #endif
    289 
    290 static const struct bge_product {
    291 	pci_vendor_id_t		bp_vendor;
    292 	pci_product_id_t	bp_product;
    293 	const char		*bp_name;
    294 } bge_products[] = {
    295 	/*
    296 	 * The BCM5700 documentation seems to indicate that the hardware
    297 	 * still has the Alteon vendor ID burned into it, though it
    298 	 * should always be overridden by the value in the EEPROM.  We'll
    299 	 * check for it anyway.
    300 	 */
    301 	{ PCI_VENDOR_ALTEON,
    302 	  PCI_PRODUCT_ALTEON_BCM5700,
    303 	  "Broadcom BCM5700 Gigabit Ethernet",
    304 	  },
    305 	{ PCI_VENDOR_ALTEON,
    306 	  PCI_PRODUCT_ALTEON_BCM5701,
    307 	  "Broadcom BCM5701 Gigabit Ethernet",
    308 	  },
    309 	{ PCI_VENDOR_ALTIMA,
    310 	  PCI_PRODUCT_ALTIMA_AC1000,
    311 	  "Altima AC1000 Gigabit Ethernet",
    312 	  },
    313 	{ PCI_VENDOR_ALTIMA,
    314 	  PCI_PRODUCT_ALTIMA_AC1001,
    315 	  "Altima AC1001 Gigabit Ethernet",
    316 	   },
    317 	{ PCI_VENDOR_ALTIMA,
    318 	  PCI_PRODUCT_ALTIMA_AC9100,
    319 	  "Altima AC9100 Gigabit Ethernet",
    320 	  },
    321 	{ PCI_VENDOR_BROADCOM,
    322 	  PCI_PRODUCT_BROADCOM_BCM5700,
    323 	  "Broadcom BCM5700 Gigabit Ethernet",
    324 	  },
    325 	{ PCI_VENDOR_BROADCOM,
    326 	  PCI_PRODUCT_BROADCOM_BCM5701,
    327 	  "Broadcom BCM5701 Gigabit Ethernet",
    328 	  },
    329 	{ PCI_VENDOR_BROADCOM,
    330 	  PCI_PRODUCT_BROADCOM_BCM5702,
    331 	  "Broadcom BCM5702 Gigabit Ethernet",
    332 	  },
    333 	{ PCI_VENDOR_BROADCOM,
    334 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    335 	  "Broadcom BCM5702X Gigabit Ethernet" },
    336 	{ PCI_VENDOR_BROADCOM,
    337 	  PCI_PRODUCT_BROADCOM_BCM5703,
    338 	  "Broadcom BCM5703 Gigabit Ethernet",
    339 	  },
    340 	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    342 	  "Broadcom BCM5703X Gigabit Ethernet",
    343 	  },
    344 	{ PCI_VENDOR_BROADCOM,
    345 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    346 	  "Broadcom BCM5703 Gigabit Ethernet",
    347 	  },
    348 	{ PCI_VENDOR_BROADCOM,
    349 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    350 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    351 	  },
    352 	{ PCI_VENDOR_BROADCOM,
    353 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    354 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    355 	  },
    356 	{ PCI_VENDOR_BROADCOM,
    357 	  PCI_PRODUCT_BROADCOM_BCM5705,
    358 	  "Broadcom BCM5705 Gigabit Ethernet",
    359 	  },
    360 	{ PCI_VENDOR_BROADCOM,
    361 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    362 	  "Broadcom BCM5705F Gigabit Ethernet",
    363 	  },
    364 	{ PCI_VENDOR_BROADCOM,
    365 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    366 	  "Broadcom BCM5705K Gigabit Ethernet",
    367 	  },
    368 	{ PCI_VENDOR_BROADCOM,
    369 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    370 	  "Broadcom BCM5705M Gigabit Ethernet",
    371 	  },
    372 	{ PCI_VENDOR_BROADCOM,
    373 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    374 	  "Broadcom BCM5705M Gigabit Ethernet",
    375 	  },
    376 	{ PCI_VENDOR_BROADCOM,
    377 	  PCI_PRODUCT_BROADCOM_BCM5714,
    378 	  "Broadcom BCM5714 Gigabit Ethernet",
    379 	  },
    380 	{ PCI_VENDOR_BROADCOM,
    381 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    382 	  "Broadcom BCM5714S Gigabit Ethernet",
    383 	  },
    384 	{ PCI_VENDOR_BROADCOM,
    385 	  PCI_PRODUCT_BROADCOM_BCM5715,
    386 	  "Broadcom BCM5715 Gigabit Ethernet",
    387 	  },
    388 	{ PCI_VENDOR_BROADCOM,
    389 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    390 	  "Broadcom BCM5715S Gigabit Ethernet",
    391 	  },
    392 	{ PCI_VENDOR_BROADCOM,
    393 	  PCI_PRODUCT_BROADCOM_BCM5717,
    394 	  "Broadcom BCM5717 Gigabit Ethernet",
    395 	  },
    396 	{ PCI_VENDOR_BROADCOM,
    397 	  PCI_PRODUCT_BROADCOM_BCM5718,
    398 	  "Broadcom BCM5718 Gigabit Ethernet",
    399 	  },
    400 	{ PCI_VENDOR_BROADCOM,
    401 	  PCI_PRODUCT_BROADCOM_BCM5720,
    402 	  "Broadcom BCM5720 Gigabit Ethernet",
    403 	  },
    404 	{ PCI_VENDOR_BROADCOM,
    405 	  PCI_PRODUCT_BROADCOM_BCM5721,
    406 	  "Broadcom BCM5721 Gigabit Ethernet",
    407 	  },
    408 	{ PCI_VENDOR_BROADCOM,
    409 	  PCI_PRODUCT_BROADCOM_BCM5722,
    410 	  "Broadcom BCM5722 Gigabit Ethernet",
    411 	  },
    412 	{ PCI_VENDOR_BROADCOM,
    413 	  PCI_PRODUCT_BROADCOM_BCM5723,
    414 	  "Broadcom BCM5723 Gigabit Ethernet",
    415 	  },
    416 	{ PCI_VENDOR_BROADCOM,
    417 	  PCI_PRODUCT_BROADCOM_BCM5724,
    418 	  "Broadcom BCM5724 Gigabit Ethernet",
    419 	  },
    420 	{ PCI_VENDOR_BROADCOM,
    421 	  PCI_PRODUCT_BROADCOM_BCM5750,
    422 	  "Broadcom BCM5750 Gigabit Ethernet",
    423 	  },
    424 	{ PCI_VENDOR_BROADCOM,
    425 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    426 	  "Broadcom BCM5750M Gigabit Ethernet",
    427 	  },
    428 	{ PCI_VENDOR_BROADCOM,
    429 	  PCI_PRODUCT_BROADCOM_BCM5751,
    430 	  "Broadcom BCM5751 Gigabit Ethernet",
    431 	  },
    432 	{ PCI_VENDOR_BROADCOM,
    433 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    434 	  "Broadcom BCM5751F Gigabit Ethernet",
    435 	  },
    436 	{ PCI_VENDOR_BROADCOM,
    437 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    438 	  "Broadcom BCM5751M Gigabit Ethernet",
    439 	  },
    440 	{ PCI_VENDOR_BROADCOM,
    441 	  PCI_PRODUCT_BROADCOM_BCM5752,
    442 	  "Broadcom BCM5752 Gigabit Ethernet",
    443 	  },
    444 	{ PCI_VENDOR_BROADCOM,
    445 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    446 	  "Broadcom BCM5752M Gigabit Ethernet",
    447 	  },
    448 	{ PCI_VENDOR_BROADCOM,
    449 	  PCI_PRODUCT_BROADCOM_BCM5753,
    450 	  "Broadcom BCM5753 Gigabit Ethernet",
    451 	  },
    452 	{ PCI_VENDOR_BROADCOM,
    453 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    454 	  "Broadcom BCM5753F Gigabit Ethernet",
    455 	  },
    456 	{ PCI_VENDOR_BROADCOM,
    457 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    458 	  "Broadcom BCM5753M Gigabit Ethernet",
    459 	  },
    460 	{ PCI_VENDOR_BROADCOM,
    461 	  PCI_PRODUCT_BROADCOM_BCM5754,
    462 	  "Broadcom BCM5754 Gigabit Ethernet",
    463 	},
    464 	{ PCI_VENDOR_BROADCOM,
    465 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    466 	  "Broadcom BCM5754M Gigabit Ethernet",
    467 	},
    468 	{ PCI_VENDOR_BROADCOM,
    469 	  PCI_PRODUCT_BROADCOM_BCM5755,
    470 	  "Broadcom BCM5755 Gigabit Ethernet",
    471 	},
    472 	{ PCI_VENDOR_BROADCOM,
    473 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    474 	  "Broadcom BCM5755M Gigabit Ethernet",
    475 	},
    476 	{ PCI_VENDOR_BROADCOM,
    477 	  PCI_PRODUCT_BROADCOM_BCM5756,
    478 	  "Broadcom BCM5756 Gigabit Ethernet",
    479 	},
    480 	{ PCI_VENDOR_BROADCOM,
    481 	  PCI_PRODUCT_BROADCOM_BCM5761,
    482 	  "Broadcom BCM5761 Gigabit Ethernet",
    483 	},
    484 	{ PCI_VENDOR_BROADCOM,
    485 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    486 	  "Broadcom BCM5761E Gigabit Ethernet",
    487 	},
    488 	{ PCI_VENDOR_BROADCOM,
    489 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    490 	  "Broadcom BCM5761S Gigabit Ethernet",
    491 	},
    492 	{ PCI_VENDOR_BROADCOM,
    493 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    494 	  "Broadcom BCM5761SE Gigabit Ethernet",
    495 	},
    496 	{ PCI_VENDOR_BROADCOM,
    497 	  PCI_PRODUCT_BROADCOM_BCM5764,
    498 	  "Broadcom BCM5764 Gigabit Ethernet",
    499 	  },
    500 	{ PCI_VENDOR_BROADCOM,
    501 	  PCI_PRODUCT_BROADCOM_BCM5780,
    502 	  "Broadcom BCM5780 Gigabit Ethernet",
    503 	  },
    504 	{ PCI_VENDOR_BROADCOM,
    505 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    506 	  "Broadcom BCM5780S Gigabit Ethernet",
    507 	  },
    508 	{ PCI_VENDOR_BROADCOM,
    509 	  PCI_PRODUCT_BROADCOM_BCM5781,
    510 	  "Broadcom BCM5781 Gigabit Ethernet",
    511 	  },
    512 	{ PCI_VENDOR_BROADCOM,
    513 	  PCI_PRODUCT_BROADCOM_BCM5782,
    514 	  "Broadcom BCM5782 Gigabit Ethernet",
    515 	},
    516 	{ PCI_VENDOR_BROADCOM,
    517 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    518 	  "BCM5784M NetLink 1000baseT Ethernet",
    519 	},
    520 	{ PCI_VENDOR_BROADCOM,
    521 	  PCI_PRODUCT_BROADCOM_BCM5786,
    522 	  "Broadcom BCM5786 Gigabit Ethernet",
    523 	},
    524 	{ PCI_VENDOR_BROADCOM,
    525 	  PCI_PRODUCT_BROADCOM_BCM5787,
    526 	  "Broadcom BCM5787 Gigabit Ethernet",
    527 	},
    528 	{ PCI_VENDOR_BROADCOM,
    529 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    530 	  "Broadcom BCM5787M Gigabit Ethernet",
    531 	},
    532 	{ PCI_VENDOR_BROADCOM,
    533 	  PCI_PRODUCT_BROADCOM_BCM5788,
    534 	  "Broadcom BCM5788 Gigabit Ethernet",
    535 	  },
    536 	{ PCI_VENDOR_BROADCOM,
    537 	  PCI_PRODUCT_BROADCOM_BCM5789,
    538 	  "Broadcom BCM5789 Gigabit Ethernet",
    539 	  },
    540 	{ PCI_VENDOR_BROADCOM,
    541 	  PCI_PRODUCT_BROADCOM_BCM5901,
    542 	  "Broadcom BCM5901 Fast Ethernet",
    543 	  },
    544 	{ PCI_VENDOR_BROADCOM,
    545 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    546 	  "Broadcom BCM5901A2 Fast Ethernet",
    547 	  },
    548 	{ PCI_VENDOR_BROADCOM,
    549 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    550 	  "Broadcom BCM5903M Fast Ethernet",
    551 	  },
    552 	{ PCI_VENDOR_BROADCOM,
    553 	  PCI_PRODUCT_BROADCOM_BCM5906,
    554 	  "Broadcom BCM5906 Fast Ethernet",
    555 	  },
    556 	{ PCI_VENDOR_BROADCOM,
    557 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    558 	  "Broadcom BCM5906M Fast Ethernet",
    559 	  },
    560 	{ PCI_VENDOR_BROADCOM,
    561 	  PCI_PRODUCT_BROADCOM_BCM57760,
    562 	  "Broadcom BCM57760 Fast Ethernet",
    563 	  },
    564 	{ PCI_VENDOR_BROADCOM,
    565 	  PCI_PRODUCT_BROADCOM_BCM57761,
    566 	  "Broadcom BCM57761 Fast Ethernet",
    567 	  },
    568 	{ PCI_VENDOR_BROADCOM,
    569 	  PCI_PRODUCT_BROADCOM_BCM57765,
    570 	  "Broadcom BCM57765 Fast Ethernet",
    571 	  },
    572 	{ PCI_VENDOR_BROADCOM,
    573 	  PCI_PRODUCT_BROADCOM_BCM57780,
    574 	  "Broadcom BCM57780 Fast Ethernet",
    575 	  },
    576 	{ PCI_VENDOR_BROADCOM,
    577 	  PCI_PRODUCT_BROADCOM_BCM57781,
    578 	  "Broadcom BCM57781 Fast Ethernet",
    579 	  },
    580 	{ PCI_VENDOR_BROADCOM,
    581 	  PCI_PRODUCT_BROADCOM_BCM57785,
    582 	  "Broadcom BCM57785 Fast Ethernet",
    583 	  },
    584 	{ PCI_VENDOR_BROADCOM,
    585 	  PCI_PRODUCT_BROADCOM_BCM57788,
    586 	  "Broadcom BCM57788 Fast Ethernet",
    587 	  },
    588 	{ PCI_VENDOR_BROADCOM,
    589 	  PCI_PRODUCT_BROADCOM_BCM57790,
    590 	  "Broadcom BCM57790 Fast Ethernet",
    591 	  },
    592 	{ PCI_VENDOR_BROADCOM,
    593 	  PCI_PRODUCT_BROADCOM_BCM57791,
    594 	  "Broadcom BCM57791 Fast Ethernet",
    595 	  },
    596 	{ PCI_VENDOR_BROADCOM,
    597 	  PCI_PRODUCT_BROADCOM_BCM57795,
    598 	  "Broadcom BCM57795 Fast Ethernet",
    599 	  },
    600 	{ PCI_VENDOR_SCHNEIDERKOCH,
    601 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    602 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    603 	  },
    604 	{ PCI_VENDOR_3COM,
    605 	  PCI_PRODUCT_3COM_3C996,
    606 	  "3Com 3c996 Gigabit Ethernet",
    607 	  },
    608 	{ PCI_VENDOR_FUJITSU4,
    609 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    610 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    611 	  },
    612 	{ PCI_VENDOR_FUJITSU4,
    613 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    614 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    615 	  },
    616 	{ PCI_VENDOR_FUJITSU4,
    617 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    618 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    619 	  },
    620 	{ 0,
    621 	  0,
    622 	  NULL },
    623 };
    624 
    625 /*
    626  * XXX: how to handle variants based on 5750 and derivatives:
    627  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    628  * in general behave like a 5705, except with additional quirks.
    629  * This driver's current handling of the 5721 is wrong;
    630  * how we map ASIC revision to "quirks" needs more thought.
    631  * (defined here until the thought is done).
    632  */
    633 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    634 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    635 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    636 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    637 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    638 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    639 
    640 static const struct bge_revision {
    641 	uint32_t		br_chipid;
    642 	const char		*br_name;
    643 } bge_revisions[] = {
    644 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    645 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    646 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    647 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    648 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    649 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    650 	/* This is treated like a BCM5700 Bx */
    651 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    652 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    653 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    654 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    655 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    656 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    657 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    658 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    659 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    660 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    661 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    662 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    663 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    664 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    665 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    666 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    667 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    668 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    669 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    670 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    671 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    672 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    673 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    674 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    675 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    676 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    677 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    678 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    679 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    680 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    681 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    682 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    683 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    684 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    685 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    686 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    687 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    688 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    689 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    690 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    691 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    692 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    693 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    694 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    695 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    696 	/* 5754 and 5787 share the same ASIC ID */
    697 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    698 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    699 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    700 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    701 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    702 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    703 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    704 
    705 	{ 0, NULL }
    706 };
    707 
    708 /*
    709  * Some defaults for major revisions, so that newer steppings
    710  * that we don't know about have a shot at working.
    711  */
    712 static const struct bge_revision bge_majorrevs[] = {
    713 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    714 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    715 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    716 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    717 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    718 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    719 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    720 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    721 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    722 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    723 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    724 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    725 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    726 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    727 	/* 5754 and 5787 share the same ASIC ID */
    728 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    729 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    730 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    731 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    732 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    733 
    734 	{ 0, NULL }
    735 };
    736 
    737 static int bge_allow_asf = 1;
    738 
    739 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    740     bge_probe, bge_attach, NULL, NULL);
    741 
    742 static uint32_t
    743 bge_readmem_ind(struct bge_softc *sc, int off)
    744 {
    745 	pcireg_t val;
    746 
    747 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    748 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    749 	return val;
    750 }
    751 
    752 static void
    753 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    754 {
    755 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    756 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    757 }
    758 
    759 /*
    760  * PCI Express only
    761  */
    762 static void
    763 bge_set_max_readrq(struct bge_softc *sc)
    764 {
    765 	pcireg_t val;
    766 
    767 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    768 	    + PCI_PCIE_DCSR);
    769 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    770 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    771 		aprint_verbose_dev(sc->bge_dev,
    772 		    "adjust device control 0x%04x ", val);
    773 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    774 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    775 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    776 		    + PCI_PCIE_DCSR, val);
    777 		aprint_verbose("-> 0x%04x\n", val);
    778 	}
    779 }
    780 
    781 #ifdef notdef
    782 static uint32_t
    783 bge_readreg_ind(struct bge_softc *sc, int off)
    784 {
    785 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    786 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    787 }
    788 #endif
    789 
    790 static void
    791 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    792 {
    793 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    794 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    795 }
    796 
    797 static void
    798 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    799 {
    800 	CSR_WRITE_4(sc, off, val);
    801 }
    802 
    803 static void
    804 bge_writembx(struct bge_softc *sc, int off, int val)
    805 {
    806 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    807 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    808 
    809 	CSR_WRITE_4(sc, off, val);
    810 }
    811 
    812 static uint8_t
    813 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    814 {
    815 	uint32_t access, byte = 0;
    816 	int i;
    817 
    818 	/* Lock. */
    819 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    820 	for (i = 0; i < 8000; i++) {
    821 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    822 			break;
    823 		DELAY(20);
    824 	}
    825 	if (i == 8000)
    826 		return 1;
    827 
    828 	/* Enable access. */
    829 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    830 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    831 
    832 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    833 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    834 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    835 		DELAY(10);
    836 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    837 			DELAY(10);
    838 			break;
    839 		}
    840 	}
    841 
    842 	if (i == BGE_TIMEOUT * 10) {
    843 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    844 		return 1;
    845 	}
    846 
    847 	/* Get result. */
    848 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    849 
    850 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    851 
    852 	/* Disable access. */
    853 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    854 
    855 	/* Unlock. */
    856 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    857 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    858 
    859 	return 0;
    860 }
    861 
    862 /*
    863  * Read a sequence of bytes from NVRAM.
    864  */
    865 static int
    866 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    867 {
    868 	int err = 0, i;
    869 	uint8_t byte = 0;
    870 
    871 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    872 		return 1;
    873 
    874 	for (i = 0; i < cnt; i++) {
    875 		err = bge_nvram_getbyte(sc, off + i, &byte);
    876 		if (err)
    877 			break;
    878 		*(dest + i) = byte;
    879 	}
    880 
    881 	return (err ? 1 : 0);
    882 }
    883 
    884 /*
    885  * Read a byte of data stored in the EEPROM at address 'addr.' The
    886  * BCM570x supports both the traditional bitbang interface and an
    887  * auto access interface for reading the EEPROM. We use the auto
    888  * access method.
    889  */
    890 static uint8_t
    891 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    892 {
    893 	int i;
    894 	uint32_t byte = 0;
    895 
    896 	/*
    897 	 * Enable use of auto EEPROM access so we can avoid
    898 	 * having to use the bitbang method.
    899 	 */
    900 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    901 
    902 	/* Reset the EEPROM, load the clock period. */
    903 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    904 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    905 	DELAY(20);
    906 
    907 	/* Issue the read EEPROM command. */
    908 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    909 
    910 	/* Wait for completion */
    911 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    912 		DELAY(10);
    913 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    914 			break;
    915 	}
    916 
    917 	if (i == BGE_TIMEOUT * 10) {
    918 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    919 		return 1;
    920 	}
    921 
    922 	/* Get result. */
    923 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    924 
    925 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    926 
    927 	return 0;
    928 }
    929 
    930 /*
    931  * Read a sequence of bytes from the EEPROM.
    932  */
    933 static int
    934 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    935 {
    936 	int err = 0, i;
    937 	uint8_t byte = 0;
    938 	char *dest = destv;
    939 
    940 	for (i = 0; i < cnt; i++) {
    941 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    942 		if (err)
    943 			break;
    944 		*(dest + i) = byte;
    945 	}
    946 
    947 	return (err ? 1 : 0);
    948 }
    949 
    950 static int
    951 bge_miibus_readreg(device_t dev, int phy, int reg)
    952 {
    953 	struct bge_softc *sc = device_private(dev);
    954 	uint32_t val;
    955 	uint32_t autopoll;
    956 	int i;
    957 
    958 	/*
    959 	 * Broadcom's own driver always assumes the internal
    960 	 * PHY is at GMII address 1. On some chips, the PHY responds
    961 	 * to accesses at all addresses, which could cause us to
    962 	 * bogusly attach the PHY 32 times at probe type. Always
    963 	 * restricting the lookup to address 1 is simpler than
    964 	 * trying to figure out which chips revisions should be
    965 	 * special-cased.
    966 	 */
    967 	if (phy != 1)
    968 		return 0;
    969 
    970 	/* Reading with autopolling on may trigger PCI errors */
    971 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    972 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    973 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    974 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    975 		DELAY(40);
    976 	}
    977 
    978 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    979 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    980 
    981 	for (i = 0; i < BGE_TIMEOUT; i++) {
    982 		val = CSR_READ_4(sc, BGE_MI_COMM);
    983 		if (!(val & BGE_MICOMM_BUSY))
    984 			break;
    985 		delay(10);
    986 	}
    987 
    988 	if (i == BGE_TIMEOUT) {
    989 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    990 		val = 0;
    991 		goto done;
    992 	}
    993 
    994 	val = CSR_READ_4(sc, BGE_MI_COMM);
    995 
    996 done:
    997 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    998 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    999 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1000 		DELAY(40);
   1001 	}
   1002 
   1003 	if (val & BGE_MICOMM_READFAIL)
   1004 		return 0;
   1005 
   1006 	return (val & 0xFFFF);
   1007 }
   1008 
   1009 static void
   1010 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1011 {
   1012 	struct bge_softc *sc = device_private(dev);
   1013 	uint32_t autopoll;
   1014 	int i;
   1015 
   1016 	if (phy!=1) {
   1017 		return;
   1018 	}
   1019 
   1020 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1021 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1022 		return;
   1023 	}
   1024 
   1025 	/* Reading with autopolling on may trigger PCI errors */
   1026 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1027 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1028 		delay(40);
   1029 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1030 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1031 		delay(10); /* 40 usec is supposed to be adequate */
   1032 	}
   1033 
   1034 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1035 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1036 
   1037 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1038 		delay(10);
   1039 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1040 			delay(5);
   1041 			CSR_READ_4(sc, BGE_MI_COMM);
   1042 			break;
   1043 		}
   1044 	}
   1045 
   1046 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1047 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1048 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1049 		delay(40);
   1050 	}
   1051 
   1052 	if (i == BGE_TIMEOUT)
   1053 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1054 }
   1055 
   1056 static void
   1057 bge_miibus_statchg(device_t dev)
   1058 {
   1059 	struct bge_softc *sc = device_private(dev);
   1060 	struct mii_data *mii = &sc->bge_mii;
   1061 
   1062 	/*
   1063 	 * Get flow control negotiation result.
   1064 	 */
   1065 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1066 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1067 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1068 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1069 	}
   1070 
   1071 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1072 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1073 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1074 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1075 	else
   1076 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1077 
   1078 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1079 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1080 	else
   1081 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1082 
   1083 	/*
   1084 	 * 802.3x flow control
   1085 	 */
   1086 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1087 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1088 	else
   1089 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1090 
   1091 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1092 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1093 	else
   1094 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1095 }
   1096 
   1097 /*
   1098  * Update rx threshold levels to values in a particular slot
   1099  * of the interrupt-mitigation table bge_rx_threshes.
   1100  */
   1101 static void
   1102 bge_set_thresh(struct ifnet *ifp, int lvl)
   1103 {
   1104 	struct bge_softc *sc = ifp->if_softc;
   1105 	int s;
   1106 
   1107 	/* For now, just save the new Rx-intr thresholds and record
   1108 	 * that a threshold update is pending.  Updating the hardware
   1109 	 * registers here (even at splhigh()) is observed to
   1110 	 * occasionaly cause glitches where Rx-interrupts are not
   1111 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1112 	 */
   1113 	s = splnet();
   1114 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1115 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1116 	sc->bge_pending_rxintr_change = 1;
   1117 	splx(s);
   1118 
   1119 	 return;
   1120 }
   1121 
   1122 
   1123 /*
   1124  * Update Rx thresholds of all bge devices
   1125  */
   1126 static void
   1127 bge_update_all_threshes(int lvl)
   1128 {
   1129 	struct ifnet *ifp;
   1130 	const char * const namebuf = "bge";
   1131 	int namelen;
   1132 
   1133 	if (lvl < 0)
   1134 		lvl = 0;
   1135 	else if (lvl >= NBGE_RX_THRESH)
   1136 		lvl = NBGE_RX_THRESH - 1;
   1137 
   1138 	namelen = strlen(namebuf);
   1139 	/*
   1140 	 * Now search all the interfaces for this name/number
   1141 	 */
   1142 	IFNET_FOREACH(ifp) {
   1143 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1144 		      continue;
   1145 		/* We got a match: update if doing auto-threshold-tuning */
   1146 		if (bge_auto_thresh)
   1147 			bge_set_thresh(ifp, lvl);
   1148 	}
   1149 }
   1150 
   1151 /*
   1152  * Handle events that have triggered interrupts.
   1153  */
   1154 static void
   1155 bge_handle_events(struct bge_softc *sc)
   1156 {
   1157 
   1158 	return;
   1159 }
   1160 
   1161 /*
   1162  * Memory management for jumbo frames.
   1163  */
   1164 
   1165 static int
   1166 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1167 {
   1168 	char *ptr, *kva;
   1169 	bus_dma_segment_t	seg;
   1170 	int		i, rseg, state, error;
   1171 	struct bge_jpool_entry   *entry;
   1172 
   1173 	state = error = 0;
   1174 
   1175 	/* Grab a big chunk o' storage. */
   1176 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1177 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1178 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1179 		return ENOBUFS;
   1180 	}
   1181 
   1182 	state = 1;
   1183 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1184 	    BUS_DMA_NOWAIT)) {
   1185 		aprint_error_dev(sc->bge_dev,
   1186 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1187 		error = ENOBUFS;
   1188 		goto out;
   1189 	}
   1190 
   1191 	state = 2;
   1192 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1193 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1194 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1195 		error = ENOBUFS;
   1196 		goto out;
   1197 	}
   1198 
   1199 	state = 3;
   1200 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1201 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1202 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1203 		error = ENOBUFS;
   1204 		goto out;
   1205 	}
   1206 
   1207 	state = 4;
   1208 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1209 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1210 
   1211 	SLIST_INIT(&sc->bge_jfree_listhead);
   1212 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1213 
   1214 	/*
   1215 	 * Now divide it up into 9K pieces and save the addresses
   1216 	 * in an array.
   1217 	 */
   1218 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1219 	for (i = 0; i < BGE_JSLOTS; i++) {
   1220 		sc->bge_cdata.bge_jslots[i] = ptr;
   1221 		ptr += BGE_JLEN;
   1222 		entry = malloc(sizeof(struct bge_jpool_entry),
   1223 		    M_DEVBUF, M_NOWAIT);
   1224 		if (entry == NULL) {
   1225 			aprint_error_dev(sc->bge_dev,
   1226 			    "no memory for jumbo buffer queue!\n");
   1227 			error = ENOBUFS;
   1228 			goto out;
   1229 		}
   1230 		entry->slot = i;
   1231 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1232 				 entry, jpool_entries);
   1233 	}
   1234 out:
   1235 	if (error != 0) {
   1236 		switch (state) {
   1237 		case 4:
   1238 			bus_dmamap_unload(sc->bge_dmatag,
   1239 			    sc->bge_cdata.bge_rx_jumbo_map);
   1240 		case 3:
   1241 			bus_dmamap_destroy(sc->bge_dmatag,
   1242 			    sc->bge_cdata.bge_rx_jumbo_map);
   1243 		case 2:
   1244 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1245 		case 1:
   1246 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1247 			break;
   1248 		default:
   1249 			break;
   1250 		}
   1251 	}
   1252 
   1253 	return error;
   1254 }
   1255 
   1256 /*
   1257  * Allocate a jumbo buffer.
   1258  */
   1259 static void *
   1260 bge_jalloc(struct bge_softc *sc)
   1261 {
   1262 	struct bge_jpool_entry   *entry;
   1263 
   1264 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1265 
   1266 	if (entry == NULL) {
   1267 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1268 		return NULL;
   1269 	}
   1270 
   1271 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1272 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1273 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1274 }
   1275 
   1276 /*
   1277  * Release a jumbo buffer.
   1278  */
   1279 static void
   1280 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1281 {
   1282 	struct bge_jpool_entry *entry;
   1283 	struct bge_softc *sc;
   1284 	int i, s;
   1285 
   1286 	/* Extract the softc struct pointer. */
   1287 	sc = (struct bge_softc *)arg;
   1288 
   1289 	if (sc == NULL)
   1290 		panic("bge_jfree: can't find softc pointer!");
   1291 
   1292 	/* calculate the slot this buffer belongs to */
   1293 
   1294 	i = ((char *)buf
   1295 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1296 
   1297 	if ((i < 0) || (i >= BGE_JSLOTS))
   1298 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1299 
   1300 	s = splvm();
   1301 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1302 	if (entry == NULL)
   1303 		panic("bge_jfree: buffer not in use!");
   1304 	entry->slot = i;
   1305 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1306 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1307 
   1308 	if (__predict_true(m != NULL))
   1309   		pool_cache_put(mb_cache, m);
   1310 	splx(s);
   1311 }
   1312 
   1313 
   1314 /*
   1315  * Initialize a standard receive ring descriptor.
   1316  */
   1317 static int
   1318 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1319     bus_dmamap_t dmamap)
   1320 {
   1321 	struct mbuf		*m_new = NULL;
   1322 	struct bge_rx_bd	*r;
   1323 	int			error;
   1324 
   1325 	if (dmamap == NULL) {
   1326 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1327 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1328 		if (error != 0)
   1329 			return error;
   1330 	}
   1331 
   1332 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1333 
   1334 	if (m == NULL) {
   1335 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1336 		if (m_new == NULL)
   1337 			return ENOBUFS;
   1338 
   1339 		MCLGET(m_new, M_DONTWAIT);
   1340 		if (!(m_new->m_flags & M_EXT)) {
   1341 			m_freem(m_new);
   1342 			return ENOBUFS;
   1343 		}
   1344 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1345 
   1346 	} else {
   1347 		m_new = m;
   1348 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1349 		m_new->m_data = m_new->m_ext.ext_buf;
   1350 	}
   1351 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1352 	    m_adj(m_new, ETHER_ALIGN);
   1353 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1354 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1355 		return ENOBUFS;
   1356 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1357 	    BUS_DMASYNC_PREREAD);
   1358 
   1359 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1360 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1361 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1362 	r->bge_flags = BGE_RXBDFLAG_END;
   1363 	r->bge_len = m_new->m_len;
   1364 	r->bge_idx = i;
   1365 
   1366 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1367 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1368 		i * sizeof (struct bge_rx_bd),
   1369 	    sizeof (struct bge_rx_bd),
   1370 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1371 
   1372 	return 0;
   1373 }
   1374 
   1375 /*
   1376  * Initialize a jumbo receive ring descriptor. This allocates
   1377  * a jumbo buffer from the pool managed internally by the driver.
   1378  */
   1379 static int
   1380 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1381 {
   1382 	struct mbuf *m_new = NULL;
   1383 	struct bge_rx_bd *r;
   1384 	void *buf = NULL;
   1385 
   1386 	if (m == NULL) {
   1387 
   1388 		/* Allocate the mbuf. */
   1389 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1390 		if (m_new == NULL)
   1391 			return ENOBUFS;
   1392 
   1393 		/* Allocate the jumbo buffer */
   1394 		buf = bge_jalloc(sc);
   1395 		if (buf == NULL) {
   1396 			m_freem(m_new);
   1397 			aprint_error_dev(sc->bge_dev,
   1398 			    "jumbo allocation failed -- packet dropped!\n");
   1399 			return ENOBUFS;
   1400 		}
   1401 
   1402 		/* Attach the buffer to the mbuf. */
   1403 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1404 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1405 		    bge_jfree, sc);
   1406 		m_new->m_flags |= M_EXT_RW;
   1407 	} else {
   1408 		m_new = m;
   1409 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1410 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1411 	}
   1412 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1413 	    m_adj(m_new, ETHER_ALIGN);
   1414 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1415 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1416 	    BUS_DMASYNC_PREREAD);
   1417 	/* Set up the descriptor. */
   1418 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1419 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1420 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1421 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1422 	r->bge_len = m_new->m_len;
   1423 	r->bge_idx = i;
   1424 
   1425 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1426 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1427 		i * sizeof (struct bge_rx_bd),
   1428 	    sizeof (struct bge_rx_bd),
   1429 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1430 
   1431 	return 0;
   1432 }
   1433 
   1434 /*
   1435  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1436  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1437  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1438  * the NIC.
   1439  */
   1440 static int
   1441 bge_init_rx_ring_std(struct bge_softc *sc)
   1442 {
   1443 	int i;
   1444 
   1445 	if (sc->bge_flags & BGE_RXRING_VALID)
   1446 		return 0;
   1447 
   1448 	for (i = 0; i < BGE_SSLOTS; i++) {
   1449 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1450 			return ENOBUFS;
   1451 	}
   1452 
   1453 	sc->bge_std = i - 1;
   1454 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1455 
   1456 	sc->bge_flags |= BGE_RXRING_VALID;
   1457 
   1458 	return 0;
   1459 }
   1460 
   1461 static void
   1462 bge_free_rx_ring_std(struct bge_softc *sc)
   1463 {
   1464 	int i;
   1465 
   1466 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1467 		return;
   1468 
   1469 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1470 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1471 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1472 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1473 			bus_dmamap_destroy(sc->bge_dmatag,
   1474 			    sc->bge_cdata.bge_rx_std_map[i]);
   1475 		}
   1476 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1477 		    sizeof(struct bge_rx_bd));
   1478 	}
   1479 
   1480 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1481 }
   1482 
   1483 static int
   1484 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1485 {
   1486 	int i;
   1487 	volatile struct bge_rcb *rcb;
   1488 
   1489 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1490 		return 0;
   1491 
   1492 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1493 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1494 			return ENOBUFS;
   1495 	};
   1496 
   1497 	sc->bge_jumbo = i - 1;
   1498 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1499 
   1500 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1501 	rcb->bge_maxlen_flags = 0;
   1502 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1503 
   1504 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1505 
   1506 	return 0;
   1507 }
   1508 
   1509 static void
   1510 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1511 {
   1512 	int i;
   1513 
   1514 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1515 		return;
   1516 
   1517 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1518 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1519 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1520 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1521 		}
   1522 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1523 		    sizeof(struct bge_rx_bd));
   1524 	}
   1525 
   1526 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1527 }
   1528 
   1529 static void
   1530 bge_free_tx_ring(struct bge_softc *sc)
   1531 {
   1532 	int i, freed;
   1533 	struct txdmamap_pool_entry *dma;
   1534 
   1535 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1536 		return;
   1537 
   1538 	freed = 0;
   1539 
   1540 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1541 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1542 			freed++;
   1543 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1544 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1545 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1546 					    link);
   1547 			sc->txdma[i] = 0;
   1548 		}
   1549 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1550 		    sizeof(struct bge_tx_bd));
   1551 	}
   1552 
   1553 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1554 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1555 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1556 		free(dma, M_DEVBUF);
   1557 	}
   1558 
   1559 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1560 }
   1561 
   1562 static int
   1563 bge_init_tx_ring(struct bge_softc *sc)
   1564 {
   1565 	int i;
   1566 	bus_dmamap_t dmamap;
   1567 	struct txdmamap_pool_entry *dma;
   1568 
   1569 	if (sc->bge_flags & BGE_TXRING_VALID)
   1570 		return 0;
   1571 
   1572 	sc->bge_txcnt = 0;
   1573 	sc->bge_tx_saved_considx = 0;
   1574 
   1575 	/* Initialize transmit producer index for host-memory send ring. */
   1576 	sc->bge_tx_prodidx = 0;
   1577 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1578 	/* 5700 b2 errata */
   1579 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1580 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1581 
   1582 	/* NIC-memory send ring not used; initialize to zero. */
   1583 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1584 	/* 5700 b2 errata */
   1585 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1586 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1587 
   1588 	SLIST_INIT(&sc->txdma_list);
   1589 	for (i = 0; i < BGE_RSLOTS; i++) {
   1590 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1591 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1592 		    &dmamap))
   1593 			return ENOBUFS;
   1594 		if (dmamap == NULL)
   1595 			panic("dmamap NULL in bge_init_tx_ring");
   1596 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1597 		if (dma == NULL) {
   1598 			aprint_error_dev(sc->bge_dev,
   1599 			    "can't alloc txdmamap_pool_entry\n");
   1600 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1601 			return ENOMEM;
   1602 		}
   1603 		dma->dmamap = dmamap;
   1604 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1605 	}
   1606 
   1607 	sc->bge_flags |= BGE_TXRING_VALID;
   1608 
   1609 	return 0;
   1610 }
   1611 
   1612 static void
   1613 bge_setmulti(struct bge_softc *sc)
   1614 {
   1615 	struct ethercom		*ac = &sc->ethercom;
   1616 	struct ifnet		*ifp = &ac->ec_if;
   1617 	struct ether_multi	*enm;
   1618 	struct ether_multistep  step;
   1619 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1620 	uint32_t		h;
   1621 	int			i;
   1622 
   1623 	if (ifp->if_flags & IFF_PROMISC)
   1624 		goto allmulti;
   1625 
   1626 	/* Now program new ones. */
   1627 	ETHER_FIRST_MULTI(step, ac, enm);
   1628 	while (enm != NULL) {
   1629 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1630 			/*
   1631 			 * We must listen to a range of multicast addresses.
   1632 			 * For now, just accept all multicasts, rather than
   1633 			 * trying to set only those filter bits needed to match
   1634 			 * the range.  (At this time, the only use of address
   1635 			 * ranges is for IP multicast routing, for which the
   1636 			 * range is big enough to require all bits set.)
   1637 			 */
   1638 			goto allmulti;
   1639 		}
   1640 
   1641 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1642 
   1643 		/* Just want the 7 least-significant bits. */
   1644 		h &= 0x7f;
   1645 
   1646 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1647 		ETHER_NEXT_MULTI(step, enm);
   1648 	}
   1649 
   1650 	ifp->if_flags &= ~IFF_ALLMULTI;
   1651 	goto setit;
   1652 
   1653  allmulti:
   1654 	ifp->if_flags |= IFF_ALLMULTI;
   1655 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1656 
   1657  setit:
   1658 	for (i = 0; i < 4; i++)
   1659 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1660 }
   1661 
   1662 static void
   1663 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1664 {
   1665 	/*
   1666 	 * Some chips don't like this so only do this if ASF is enabled
   1667 	 */
   1668 	if (sc->bge_asf_mode)
   1669 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1670 
   1671 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1672 		switch (type) {
   1673 		case BGE_RESET_START:
   1674 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1675 			break;
   1676 		case BGE_RESET_STOP:
   1677 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1678 			break;
   1679 		}
   1680 	}
   1681 }
   1682 
   1683 static void
   1684 bge_sig_post_reset(struct bge_softc *sc, int type)
   1685 {
   1686 
   1687 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1688 		switch (type) {
   1689 		case BGE_RESET_START:
   1690 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1691 			/* START DONE */
   1692 			break;
   1693 		case BGE_RESET_STOP:
   1694 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1695 			break;
   1696 		}
   1697 	}
   1698 }
   1699 
   1700 static void
   1701 bge_sig_legacy(struct bge_softc *sc, int type)
   1702 {
   1703 
   1704 	if (sc->bge_asf_mode) {
   1705 		switch (type) {
   1706 		case BGE_RESET_START:
   1707 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1708 			break;
   1709 		case BGE_RESET_STOP:
   1710 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1711 			break;
   1712 		}
   1713 	}
   1714 }
   1715 
   1716 static void
   1717 bge_stop_fw(struct bge_softc *sc)
   1718 {
   1719 	int i;
   1720 
   1721 	if (sc->bge_asf_mode) {
   1722 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1723 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1724 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1725 
   1726 		for (i = 0; i < 100; i++) {
   1727 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1728 				break;
   1729 			DELAY(10);
   1730 		}
   1731 	}
   1732 }
   1733 
   1734 static int
   1735 bge_poll_fw(struct bge_softc *sc)
   1736 {
   1737 	uint32_t val;
   1738 	int i;
   1739 
   1740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1741 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1742 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1743 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1744 				break;
   1745 			DELAY(100);
   1746 		}
   1747 		if (i >= BGE_TIMEOUT) {
   1748 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1749 			return -1;
   1750 		}
   1751 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1752 		/*
   1753 		 * Poll the value location we just wrote until
   1754 		 * we see the 1's complement of the magic number.
   1755 		 * This indicates that the firmware initialization
   1756 		 * is complete.
   1757 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1758 		 */
   1759 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1760 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1761 			if (val == ~BGE_MAGIC_NUMBER)
   1762 				break;
   1763 			DELAY(10);
   1764 		}
   1765 
   1766 		if (i >= BGE_TIMEOUT) {
   1767 			aprint_error_dev(sc->bge_dev,
   1768 			    "firmware handshake timed out, val = %x\n", val);
   1769 			return -1;
   1770 		}
   1771 	}
   1772 
   1773 	return 0;
   1774 }
   1775 
   1776 /*
   1777  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1778  * self-test results.
   1779  */
   1780 static int
   1781 bge_chipinit(struct bge_softc *sc)
   1782 {
   1783 	int i;
   1784 	uint32_t dma_rw_ctl;
   1785 
   1786 	/* Set endianness before we access any non-PCI registers. */
   1787 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1788 	    BGE_INIT);
   1789 
   1790 	/* Set power state to D0. */
   1791 	bge_setpowerstate(sc, 0);
   1792 
   1793 	/* Clear the MAC control register */
   1794 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1795 
   1796 	/*
   1797 	 * Clear the MAC statistics block in the NIC's
   1798 	 * internal memory.
   1799 	 */
   1800 	for (i = BGE_STATS_BLOCK;
   1801 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1802 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1803 
   1804 	for (i = BGE_STATUS_BLOCK;
   1805 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1806 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1807 
   1808 	/* Set up the PCI DMA control register. */
   1809 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1810 	if (sc->bge_flags & BGE_PCIE) {
   1811 		/* Read watermark not used, 128 bytes for write. */
   1812 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1813 		    device_xname(sc->bge_dev)));
   1814 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1815 	} else if (sc->bge_flags & BGE_PCIX) {
   1816 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1817 		    device_xname(sc->bge_dev)));
   1818 		/* PCI-X bus */
   1819 		if (BGE_IS_5714_FAMILY(sc)) {
   1820 			/* 256 bytes for read and write. */
   1821 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1822 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1823 
   1824 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1825 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1826 			else
   1827 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1828 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1829 			/* 1536 bytes for read, 384 bytes for write. */
   1830 			dma_rw_ctl |=
   1831 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1832 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1833 		} else {
   1834 			/* 384 bytes for read and write. */
   1835 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1836 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1837 			    (0x0F);
   1838 		}
   1839 
   1840 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1841 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1842 			uint32_t tmp;
   1843 
   1844 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1845 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1846 			if (tmp == 6 || tmp == 7)
   1847 				dma_rw_ctl |=
   1848 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1849 
   1850 			/* Set PCI-X DMA write workaround. */
   1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1852 		}
   1853 	} else {
   1854 		/* Conventional PCI bus: 256 bytes for read and write. */
   1855 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1856 		    device_xname(sc->bge_dev)));
   1857 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1858 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1859 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1860 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1861 			dma_rw_ctl |= 0x0F;
   1862 	}
   1863 
   1864 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1865 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1866 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1867 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1868 
   1869 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1870 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1871 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1872 
   1873 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1874 	    dma_rw_ctl);
   1875 
   1876 	/*
   1877 	 * Set up general mode register.
   1878 	 */
   1879 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1880 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1881 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1882 
   1883 	/*
   1884 	 * BCM5701 B5 have a bug causing data corruption when using
   1885 	 * 64-bit DMA reads, which can be terminated early and then
   1886 	 * completed later as 32-bit accesses, in combination with
   1887 	 * certain bridges.
   1888 	 */
   1889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1890 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1891 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1892 
   1893 	/*
   1894 	 * Tell the firmware the driver is running
   1895 	 */
   1896 	if (sc->bge_asf_mode & ASF_STACKUP)
   1897 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1898 
   1899 	/*
   1900 	 * Disable memory write invalidate.  Apparently it is not supported
   1901 	 * properly by these devices.
   1902 	 */
   1903 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1904 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1905 
   1906 #ifdef __brokenalpha__
   1907 	/*
   1908 	 * Must insure that we do not cross an 8K (bytes) boundary
   1909 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1910 	 * restriction on some ALPHA platforms with early revision
   1911 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1912 	 */
   1913 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1914 #endif
   1915 
   1916 	/* Set the timer prescaler (always 66MHz) */
   1917 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1918 
   1919 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1920 		DELAY(40);	/* XXX */
   1921 
   1922 		/* Put PHY into ready state */
   1923 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1924 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1925 		DELAY(40);
   1926 	}
   1927 
   1928 	return 0;
   1929 }
   1930 
   1931 static int
   1932 bge_blockinit(struct bge_softc *sc)
   1933 {
   1934 	volatile struct bge_rcb	 *rcb;
   1935 	bus_size_t rcb_addr;
   1936 	int i;
   1937 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1938 	bge_hostaddr taddr;
   1939 	uint32_t val;
   1940 
   1941 	/*
   1942 	 * Initialize the memory window pointer register so that
   1943 	 * we can access the first 32K of internal NIC RAM. This will
   1944 	 * allow us to set up the TX send ring RCBs and the RX return
   1945 	 * ring RCBs, plus other things which live in NIC memory.
   1946 	 */
   1947 
   1948 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1949 
   1950 	/* Step 33: Configure mbuf memory pool */
   1951 	if (BGE_IS_5700_FAMILY(sc)) {
   1952 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1953 		    BGE_BUFFPOOL_1);
   1954 
   1955 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1957 		else
   1958 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1959 
   1960 		/* Configure DMA resource pool */
   1961 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1962 		    BGE_DMA_DESCRIPTORS);
   1963 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1964 	}
   1965 
   1966 	/* Step 35: Configure mbuf pool watermarks */
   1967 #ifdef ORIG_WPAUL_VALUES
   1968 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1969 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1970 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1971 #else
   1972 
   1973 	/* new broadcom docs strongly recommend these: */
   1974 	if (!BGE_IS_5705_PLUS(sc)) {
   1975 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1976 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1977 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1978 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1979 		} else {
   1980 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1981 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1982 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1983 		}
   1984 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1986 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1987 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1988 	} else {
   1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1991 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1992 	}
   1993 #endif
   1994 
   1995 	/* Step 36: Configure DMA resource watermarks */
   1996 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1997 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1998 
   1999 	/* Step 38: Enable buffer manager */
   2000 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2001 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2002 
   2003 	/* Step 39: Poll for buffer manager start indication */
   2004 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2005 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2006 			break;
   2007 		DELAY(10);
   2008 	}
   2009 
   2010 	if (i == BGE_TIMEOUT * 2) {
   2011 		aprint_error_dev(sc->bge_dev,
   2012 		    "buffer manager failed to start\n");
   2013 		return ENXIO;
   2014 	}
   2015 
   2016 	/* Step 40: Enable flow-through queues */
   2017 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2019 
   2020 	/* Wait until queue initialization is complete */
   2021 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2022 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2023 			break;
   2024 		DELAY(10);
   2025 	}
   2026 
   2027 	if (i == BGE_TIMEOUT * 2) {
   2028 		aprint_error_dev(sc->bge_dev,
   2029 		    "flow-through queue init failed\n");
   2030 		return ENXIO;
   2031 	}
   2032 
   2033 	/* Step 41: Initialize the standard RX ring control block */
   2034 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2035 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2036 	if (BGE_IS_5705_PLUS(sc))
   2037 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2038 	else
   2039 		rcb->bge_maxlen_flags =
   2040 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2041 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2042 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2043 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2044 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2045 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2046 
   2047 	/*
   2048 	 * Step 42: Initialize the jumbo RX ring control block
   2049 	 * We set the 'ring disabled' bit in the flags
   2050 	 * field until we're actually ready to start
   2051 	 * using this ring (i.e. once we set the MTU
   2052 	 * high enough to require it).
   2053 	 */
   2054 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2055 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2056 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2057 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2058 		rcb->bge_maxlen_flags =
   2059 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2060 			BGE_RCB_FLAG_RING_DISABLED);
   2061 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2062 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2063 		    rcb->bge_hostaddr.bge_addr_hi);
   2064 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2065 		    rcb->bge_hostaddr.bge_addr_lo);
   2066 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2067 		    rcb->bge_maxlen_flags);
   2068 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2069 
   2070 		/* Set up dummy disabled mini ring RCB */
   2071 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2072 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2073 		    BGE_RCB_FLAG_RING_DISABLED);
   2074 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2075 		    rcb->bge_maxlen_flags);
   2076 
   2077 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2078 		    offsetof(struct bge_ring_data, bge_info),
   2079 		    sizeof (struct bge_gib),
   2080 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2081 	}
   2082 
   2083 	/*
   2084 	 * Set the BD ring replenish thresholds. The recommended
   2085 	 * values are 1/8th the number of descriptors allocated to
   2086 	 * each ring.
   2087 	 */
   2088 	i = BGE_STD_RX_RING_CNT / 8;
   2089 
   2090 	/*
   2091 	 * Use a value of 8 for the following chips to workaround HW errata.
   2092 	 * Some of these chips have been added based on empirical
   2093 	 * evidence (they don't work unless this is done).
   2094 	 */
   2095 	if (BGE_IS_5705_PLUS(sc))
   2096 		i = 8;
   2097 
   2098 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2099 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2100 
   2101 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2102 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   2103 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2104 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2105 	}
   2106 
   2107 	/*
   2108 	 * Disable all unused send rings by setting the 'ring disabled'
   2109 	 * bit in the flags field of all the TX send ring control blocks.
   2110 	 * These are located in NIC memory.
   2111 	 */
   2112 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2113 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2114 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2115 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2116 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2117 		rcb_addr += sizeof(struct bge_rcb);
   2118 	}
   2119 
   2120 	/* Configure TX RCB 0 (we use only the first ring) */
   2121 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2122 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2123 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2124 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2125 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2126 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2127 	if (BGE_IS_5700_FAMILY(sc))
   2128 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2129 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2130 
   2131 	/* Disable all unused RX return rings */
   2132 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2133 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2134 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2135 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2136 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2137 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2138 			BGE_RCB_FLAG_RING_DISABLED));
   2139 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2140 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2141 		    (i * (sizeof(uint64_t))), 0);
   2142 		rcb_addr += sizeof(struct bge_rcb);
   2143 	}
   2144 
   2145 	/* Initialize RX ring indexes */
   2146 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2147 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2148 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2149 
   2150 	/*
   2151 	 * Set up RX return ring 0
   2152 	 * Note that the NIC address for RX return rings is 0x00000000.
   2153 	 * The return rings live entirely within the host, so the
   2154 	 * nicaddr field in the RCB isn't used.
   2155 	 */
   2156 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2157 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2158 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2159 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2160 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2161 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2162 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2163 
   2164 	/* Set random backoff seed for TX */
   2165 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2166 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2167 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2168 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2169 	    BGE_TX_BACKOFF_SEED_MASK);
   2170 
   2171 	/* Set inter-packet gap */
   2172 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2173 
   2174 	/*
   2175 	 * Specify which ring to use for packets that don't match
   2176 	 * any RX rules.
   2177 	 */
   2178 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2179 
   2180 	/*
   2181 	 * Configure number of RX lists. One interrupt distribution
   2182 	 * list, sixteen active lists, one bad frames class.
   2183 	 */
   2184 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2185 
   2186 	/* Inialize RX list placement stats mask. */
   2187 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2188 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2189 
   2190 	/* Disable host coalescing until we get it set up */
   2191 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2192 
   2193 	/* Poll to make sure it's shut down. */
   2194 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2195 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2196 			break;
   2197 		DELAY(10);
   2198 	}
   2199 
   2200 	if (i == BGE_TIMEOUT * 2) {
   2201 		aprint_error_dev(sc->bge_dev,
   2202 		    "host coalescing engine failed to idle\n");
   2203 		return ENXIO;
   2204 	}
   2205 
   2206 	/* Set up host coalescing defaults */
   2207 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2208 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2209 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2210 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2211 	if (BGE_IS_5700_FAMILY(sc)) {
   2212 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2213 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2214 	}
   2215 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2216 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2217 
   2218 	/* Set up address of statistics block */
   2219 	if (BGE_IS_5700_FAMILY(sc)) {
   2220 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2221 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2222 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2223 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2224 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2225 	}
   2226 
   2227 	/* Set up address of status block */
   2228 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2229 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2230 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2231 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2232 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2233 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2234 
   2235 	/* Turn on host coalescing state machine */
   2236 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2237 
   2238 	/* Turn on RX BD completion state machine and enable attentions */
   2239 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2240 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2241 
   2242 	/* Turn on RX list placement state machine */
   2243 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2244 
   2245 	/* Turn on RX list selector state machine. */
   2246 	if (BGE_IS_5700_FAMILY(sc))
   2247 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2248 
   2249 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2250 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2251 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2252 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2253 
   2254 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2255 		val |= BGE_PORTMODE_TBI;
   2256 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2257 		val |= BGE_PORTMODE_GMII;
   2258 	else
   2259 		val |= BGE_PORTMODE_MII;
   2260 
   2261 	/* Turn on DMA, clear stats */
   2262 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2263 
   2264 	/* Set misc. local control, enable interrupts on attentions */
   2265 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2266 
   2267 #ifdef notdef
   2268 	/* Assert GPIO pins for PHY reset */
   2269 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2270 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2271 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2272 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2273 #endif
   2274 
   2275 #if defined(not_quite_yet)
   2276 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2277 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2278 		sc->bge_local_ctrl_reg |=
   2279 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2280 	}
   2281 #endif
   2282 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2283 
   2284 	/* Turn on DMA completion state machine */
   2285 	if (BGE_IS_5700_FAMILY(sc))
   2286 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2287 
   2288 	/* Turn on write DMA state machine */
   2289 	{
   2290 		uint32_t bge_wdma_mode =
   2291 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2292 
   2293 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2294 		if (BGE_IS_5755_PLUS(sc))
   2295 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2296 
   2297 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2298 	}
   2299 
   2300 	/* Turn on read DMA state machine */
   2301 	{
   2302 		uint32_t dma_read_modebits;
   2303 
   2304 		dma_read_modebits =
   2305 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2306 
   2307 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2308 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2309 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2310 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2311 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2312 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2313 
   2314 		if (sc->bge_flags & BGE_PCIE)
   2315 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2316 		if (sc->bge_flags & BGE_TSO)
   2317 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2318 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2319 		delay(40);
   2320 	}
   2321 
   2322 	/* Turn on RX data completion state machine */
   2323 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2324 
   2325 	/* Turn on RX BD initiator state machine */
   2326 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2327 
   2328 	/* Turn on RX data and RX BD initiator state machine */
   2329 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2330 
   2331 	/* Turn on Mbuf cluster free state machine */
   2332 	if (BGE_IS_5700_FAMILY(sc))
   2333 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2334 
   2335 	/* Turn on send BD completion state machine */
   2336 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2337 
   2338 	/* Turn on send data completion state machine */
   2339 	val = BGE_SDCMODE_ENABLE;
   2340 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2341 		val |= BGE_SDCMODE_CDELAY;
   2342 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2343 
   2344 	/* Turn on send data initiator state machine */
   2345 	if (sc->bge_flags & BGE_TSO) {
   2346 		/* XXX: magic value from Linux driver */
   2347 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2348 	} else
   2349 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2350 
   2351 	/* Turn on send BD initiator state machine */
   2352 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2353 
   2354 	/* Turn on send BD selector state machine */
   2355 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2356 
   2357 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2358 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2359 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2360 
   2361 	/* ack/clear link change events */
   2362 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2363 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2364 	    BGE_MACSTAT_LINK_CHANGED);
   2365 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2366 
   2367 	/* Enable PHY auto polling (for MII/GMII only) */
   2368 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2369 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2370 	} else {
   2371 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2372 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2373 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2374 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2375 			    BGE_EVTENB_MI_INTERRUPT);
   2376 	}
   2377 
   2378 	/*
   2379 	 * Clear any pending link state attention.
   2380 	 * Otherwise some link state change events may be lost until attention
   2381 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2382 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2383 	 * state change attentions implies clearing pending attention.
   2384 	 */
   2385 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2386 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2387 	    BGE_MACSTAT_LINK_CHANGED);
   2388 
   2389 	/* Enable link state change attentions. */
   2390 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2391 
   2392 	return 0;
   2393 }
   2394 
   2395 static const struct bge_revision *
   2396 bge_lookup_rev(uint32_t chipid)
   2397 {
   2398 	const struct bge_revision *br;
   2399 
   2400 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2401 		if (br->br_chipid == chipid)
   2402 			return br;
   2403 	}
   2404 
   2405 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2406 		if (br->br_chipid == BGE_ASICREV(chipid))
   2407 			return br;
   2408 	}
   2409 
   2410 	return NULL;
   2411 }
   2412 
   2413 static const struct bge_product *
   2414 bge_lookup(const struct pci_attach_args *pa)
   2415 {
   2416 	const struct bge_product *bp;
   2417 
   2418 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2419 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2420 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2421 			return bp;
   2422 	}
   2423 
   2424 	return NULL;
   2425 }
   2426 
   2427 static int
   2428 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2429 {
   2430 #ifdef NOTYET
   2431 	uint32_t pm_ctl = 0;
   2432 
   2433 	/* XXX FIXME: make sure indirect accesses enabled? */
   2434 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2435 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2436 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2437 
   2438 	/* clear the PME_assert bit and power state bits, enable PME */
   2439 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2440 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2441 	pm_ctl |= (1 << 8);
   2442 
   2443 	if (powerlevel == 0) {
   2444 		pm_ctl |= PCIM_PSTAT_D0;
   2445 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2446 		    pm_ctl, 2);
   2447 		DELAY(10000);
   2448 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2449 		DELAY(10000);
   2450 
   2451 #ifdef NOTYET
   2452 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2453 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2454 #endif
   2455 		DELAY(40); DELAY(40); DELAY(40);
   2456 		DELAY(10000);	/* above not quite adequate on 5700 */
   2457 		return 0;
   2458 	}
   2459 
   2460 
   2461 	/*
   2462 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2463 	 * GMII gpio pins. Example code assumes all hardware vendors
   2464 	 * followed Broadcom's sample pcb layout. Until we verify that
   2465 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2466 	 */
   2467 	aprint_error_dev(sc->bge_dev,
   2468 	    "power state %d unimplemented; check GPIO pins\n",
   2469 	    powerlevel);
   2470 #endif
   2471 	return EOPNOTSUPP;
   2472 }
   2473 
   2474 
   2475 /*
   2476  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2477  * against our list and return its name if we find a match. Note
   2478  * that since the Broadcom controller contains VPD support, we
   2479  * can get the device name string from the controller itself instead
   2480  * of the compiled-in string. This is a little slow, but it guarantees
   2481  * we'll always announce the right product name.
   2482  */
   2483 static int
   2484 bge_probe(device_t parent, cfdata_t match, void *aux)
   2485 {
   2486 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2487 
   2488 	if (bge_lookup(pa) != NULL)
   2489 		return 1;
   2490 
   2491 	return 0;
   2492 }
   2493 
   2494 static void
   2495 bge_attach(device_t parent, device_t self, void *aux)
   2496 {
   2497 	struct bge_softc	*sc = device_private(self);
   2498 	struct pci_attach_args	*pa = aux;
   2499 	prop_dictionary_t dict;
   2500 	const struct bge_product *bp;
   2501 	const struct bge_revision *br;
   2502 	pci_chipset_tag_t	pc;
   2503 	pci_intr_handle_t	ih;
   2504 	const char		*intrstr = NULL;
   2505 	bus_dma_segment_t	seg;
   2506 	int			rseg;
   2507 	uint32_t		hwcfg = 0;
   2508 	uint32_t		command;
   2509 	struct ifnet		*ifp;
   2510 	uint32_t		misccfg;
   2511 	void *			kva;
   2512 	u_char			eaddr[ETHER_ADDR_LEN];
   2513 	pcireg_t		memtype, subid;
   2514 	bus_addr_t		memaddr;
   2515 	bus_size_t		memsize;
   2516 	uint32_t		pm_ctl;
   2517 	bool			no_seeprom;
   2518 
   2519 	bp = bge_lookup(pa);
   2520 	KASSERT(bp != NULL);
   2521 
   2522 	sc->sc_pc = pa->pa_pc;
   2523 	sc->sc_pcitag = pa->pa_tag;
   2524 	sc->bge_dev = self;
   2525 
   2526 	pc = sc->sc_pc;
   2527 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2528 
   2529 	aprint_naive(": Ethernet controller\n");
   2530 	aprint_normal(": %s\n", bp->bp_name);
   2531 
   2532 	/*
   2533 	 * Map control/status registers.
   2534 	 */
   2535 	DPRINTFN(5, ("Map control/status regs\n"));
   2536 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2537 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2538 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2539 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2540 
   2541 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2542 		aprint_error_dev(sc->bge_dev,
   2543 		    "failed to enable memory mapping!\n");
   2544 		return;
   2545 	}
   2546 
   2547 	DPRINTFN(5, ("pci_mem_find\n"));
   2548 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2549 	switch (memtype) {
   2550 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2551 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2552 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2553 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2554 		    &memaddr, &memsize) == 0)
   2555 			break;
   2556 	default:
   2557 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2558 		return;
   2559 	}
   2560 
   2561 	DPRINTFN(5, ("pci_intr_map\n"));
   2562 	if (pci_intr_map(pa, &ih)) {
   2563 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2564 		return;
   2565 	}
   2566 
   2567 	DPRINTFN(5, ("pci_intr_string\n"));
   2568 	intrstr = pci_intr_string(pc, ih);
   2569 
   2570 	DPRINTFN(5, ("pci_intr_establish\n"));
   2571 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2572 
   2573 	if (sc->bge_intrhand == NULL) {
   2574 		aprint_error_dev(sc->bge_dev,
   2575 		    "couldn't establish interrupt%s%s\n",
   2576 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2577 		return;
   2578 	}
   2579 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2580 
   2581 	/*
   2582 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2583 	 * can clobber the chip's PCI config-space power control registers,
   2584 	 * leaving the card in D3 powersave state.
   2585 	 * We do not have memory-mapped registers in this state,
   2586 	 * so force device into D0 state before starting initialization.
   2587 	 */
   2588 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2589 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2590 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2591 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2592 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2593 
   2594 	/*
   2595 	 * Save ASIC rev.
   2596 	 */
   2597 	sc->bge_chipid =
   2598 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2599 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2600 
   2601 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2602 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2603 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2604 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2605 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2606 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2607 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2608 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2609 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2610 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2611 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2612 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2613 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2614 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2615 		else
   2616 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2617 			    BGE_PCI_PRODID_ASICREV);
   2618 	}
   2619 
   2620 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2621 	        &sc->bge_pciecap, NULL) != 0)
   2622 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2623 		/* PCIe */
   2624 		sc->bge_flags |= BGE_PCIE;
   2625 		bge_set_max_readrq(sc);
   2626 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2627 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2628 		/* PCI-X */
   2629 		sc->bge_flags |= BGE_PCIX;
   2630 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2631 			&sc->bge_pcixcap, NULL) == 0)
   2632 			aprint_error_dev(sc->bge_dev,
   2633 			    "unable to find PCIX capability\n");
   2634 	}
   2635 
   2636 	/* chipid */
   2637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2641 		sc->bge_flags |= BGE_5700_FAMILY;
   2642 
   2643 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2646 		sc->bge_flags |= BGE_5714_FAMILY;
   2647 
   2648 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2649 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2651 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2652 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2653 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2655 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2657 		sc->bge_flags |= BGE_5755_PLUS;
   2658 
   2659 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2660 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2662 	    BGE_IS_5755_PLUS(sc) ||
   2663 	    BGE_IS_5714_FAMILY(sc))
   2664 		sc->bge_flags |= BGE_5750_PLUS;
   2665 
   2666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2667 	    BGE_IS_5750_OR_BEYOND(sc))
   2668 		sc->bge_flags |= BGE_5705_PLUS;
   2669 
   2670 	/*
   2671 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2672 	 * been observed in the first few bytes of some received packets.
   2673 	 * Aligning the packet buffer in memory eliminates the corruption.
   2674 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2675 	 * which do not support unaligned accesses, we will realign the
   2676 	 * payloads by copying the received packets.
   2677 	 */
   2678 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2679 	    sc->bge_flags & BGE_PCIX)
   2680 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2681 
   2682 	if (BGE_IS_5700_FAMILY(sc))
   2683 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2684 
   2685 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2686 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2687 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2688 		sc->bge_flags |= BGE_NO_3LED;
   2689 
   2690 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2691 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2692 
   2693 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2694 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2695 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2696 		sc->bge_flags |= BGE_IS_5788;
   2697 
   2698 	/*
   2699 	 * Some controllers seem to require a special firmware to use
   2700 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2701 	 * claims that the TSO performed by the firmware is slower than
   2702 	 * hardware based TSO. Moreover the firmware based TSO has one
   2703 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2704 	 * header is greater than 80 bytes. The workaround for the TSO
   2705 	 * bug exist but it seems it's too expensive than not using
   2706 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2707 	 * the TSO to the controllers that are not affected TSO issues
   2708 	 * (e.g. 5755 or higher).
   2709 	 */
   2710 	if (BGE_IS_5755_PLUS(sc)) {
   2711 		/*
   2712 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2713 		 * explicit device id check is required.
   2714 		 */
   2715 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2716 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2717 			sc->bge_flags |= BGE_TSO;
   2718 	}
   2719 
   2720 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2721 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2722 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2723 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2724 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2725 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2726 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2727 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2728 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2729 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2730 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2731 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2732 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2733 		sc->bge_flags |= BGE_10_100_ONLY;
   2734 
   2735 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2736 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2737 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2738 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2739 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2740 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2741 
   2742 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2743 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2744 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2745 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2746 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2747 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2748 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2749 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2750 
   2751 	if (BGE_IS_5705_PLUS(sc) &&
   2752 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2753 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2754 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2755 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2756 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2757 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2758 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2759 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2760 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2761 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2762 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2763 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2764 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2765 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2766 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2767 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2768 	}
   2769 
   2770 	/*
   2771 	 * SEEPROM check.
   2772 	 * First check if firmware knows we do not have SEEPROM.
   2773 	 */
   2774 	if (prop_dictionary_get_bool(device_properties(self),
   2775 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2776 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2777 
   2778 	/* Now check the 'ROM failed' bit on the RX CPU */
   2779 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2780 		sc->bge_flags |= BGE_NO_EEPROM;
   2781 
   2782 	/* Try to reset the chip. */
   2783 	DPRINTFN(5, ("bge_reset\n"));
   2784 	bge_reset(sc);
   2785 
   2786 	sc->bge_asf_mode = 0;
   2787 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2788 	    == BGE_MAGIC_NUMBER)) {
   2789 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2790 		    & BGE_HWCFG_ASF) {
   2791 			sc->bge_asf_mode |= ASF_ENABLE;
   2792 			sc->bge_asf_mode |= ASF_STACKUP;
   2793 			if (BGE_IS_5750_OR_BEYOND(sc)) {
   2794 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2795 			}
   2796 		}
   2797 	}
   2798 
   2799 	/* Try to reset the chip again the nice way. */
   2800 	bge_stop_fw(sc);
   2801 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2802 	if (bge_reset(sc))
   2803 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2804 
   2805 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2806 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2807 
   2808 	if (bge_chipinit(sc)) {
   2809 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2810 		bge_release_resources(sc);
   2811 		return;
   2812 	}
   2813 
   2814 	/*
   2815 	 * Get station address from the EEPROM
   2816 	 */
   2817 	if (bge_get_eaddr(sc, eaddr)) {
   2818 		aprint_error_dev(sc->bge_dev,
   2819 		    "failed to read station address\n");
   2820 		bge_release_resources(sc);
   2821 		return;
   2822 	}
   2823 
   2824 	br = bge_lookup_rev(sc->bge_chipid);
   2825 
   2826 	if (br == NULL) {
   2827 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2828 		    sc->bge_chipid);
   2829 	} else {
   2830 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2831 		    br->br_name, sc->bge_chipid);
   2832 	}
   2833 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2834 
   2835 	/* Allocate the general information block and ring buffers. */
   2836 	if (pci_dma64_available(pa))
   2837 		sc->bge_dmatag = pa->pa_dmat64;
   2838 	else
   2839 		sc->bge_dmatag = pa->pa_dmat;
   2840 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2841 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2842 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2843 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2844 		return;
   2845 	}
   2846 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2847 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2848 			   sizeof(struct bge_ring_data), &kva,
   2849 			   BUS_DMA_NOWAIT)) {
   2850 		aprint_error_dev(sc->bge_dev,
   2851 		    "can't map DMA buffers (%zu bytes)\n",
   2852 		    sizeof(struct bge_ring_data));
   2853 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2854 		return;
   2855 	}
   2856 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2857 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2858 	    sizeof(struct bge_ring_data), 0,
   2859 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2860 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2861 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2862 				 sizeof(struct bge_ring_data));
   2863 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2864 		return;
   2865 	}
   2866 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2867 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2868 			    sizeof(struct bge_ring_data), NULL,
   2869 			    BUS_DMA_NOWAIT)) {
   2870 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2871 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2872 				 sizeof(struct bge_ring_data));
   2873 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2874 		return;
   2875 	}
   2876 
   2877 	DPRINTFN(5, ("bzero\n"));
   2878 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2879 
   2880 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2881 
   2882 	/* Try to allocate memory for jumbo buffers. */
   2883 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2884 		if (bge_alloc_jumbo_mem(sc)) {
   2885 			aprint_error_dev(sc->bge_dev,
   2886 			    "jumbo buffer allocation failed\n");
   2887 		} else
   2888 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2889 	}
   2890 
   2891 	/* Set default tuneable values. */
   2892 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2893 	sc->bge_rx_coal_ticks = 150;
   2894 	sc->bge_rx_max_coal_bds = 64;
   2895 #ifdef ORIG_WPAUL_VALUES
   2896 	sc->bge_tx_coal_ticks = 150;
   2897 	sc->bge_tx_max_coal_bds = 128;
   2898 #else
   2899 	sc->bge_tx_coal_ticks = 300;
   2900 	sc->bge_tx_max_coal_bds = 400;
   2901 #endif
   2902 	if (BGE_IS_5705_PLUS(sc)) {
   2903 		sc->bge_tx_coal_ticks = (12 * 5);
   2904 		sc->bge_tx_max_coal_bds = (12 * 5);
   2905 			aprint_verbose_dev(sc->bge_dev,
   2906 			    "setting short Tx thresholds\n");
   2907 	}
   2908 
   2909 	if (BGE_IS_5705_PLUS(sc))
   2910 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2911 	else
   2912 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2913 
   2914 	/* Set up ifnet structure */
   2915 	ifp = &sc->ethercom.ec_if;
   2916 	ifp->if_softc = sc;
   2917 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2918 	ifp->if_ioctl = bge_ioctl;
   2919 	ifp->if_stop = bge_stop;
   2920 	ifp->if_start = bge_start;
   2921 	ifp->if_init = bge_init;
   2922 	ifp->if_watchdog = bge_watchdog;
   2923 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2924 	IFQ_SET_READY(&ifp->if_snd);
   2925 	DPRINTFN(5, ("strcpy if_xname\n"));
   2926 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2927 
   2928 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2929 		sc->ethercom.ec_if.if_capabilities |=
   2930 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2931 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2932 		sc->ethercom.ec_if.if_capabilities |=
   2933 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2934 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2935 #endif
   2936 	sc->ethercom.ec_capabilities |=
   2937 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2938 
   2939 	if (sc->bge_flags & BGE_TSO)
   2940 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2941 
   2942 	/*
   2943 	 * Do MII setup.
   2944 	 */
   2945 	DPRINTFN(5, ("mii setup\n"));
   2946 	sc->bge_mii.mii_ifp = ifp;
   2947 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2948 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2949 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2950 
   2951 	/*
   2952 	 * Figure out what sort of media we have by checking the
   2953 	 * hardware config word in the first 32k of NIC internal memory,
   2954 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2955 	 * cards, this value appears to be unset. If that's the
   2956 	 * case, we have to rely on identifying the NIC by its PCI
   2957 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2958 	 */
   2959 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2960 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2961 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2962 		bge_read_eeprom(sc, (void *)&hwcfg,
   2963 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2964 		hwcfg = be32toh(hwcfg);
   2965 	}
   2966 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2967 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2968 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2969 		if (BGE_IS_5714_FAMILY(sc))
   2970 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2971 		else
   2972 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2973 	}
   2974 
   2975 	/* set phyflags and chipid before mii_attach() */
   2976 	dict = device_properties(self);
   2977 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2978 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   2979 
   2980 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2981 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2982 		    bge_ifmedia_sts);
   2983 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   2984 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   2985 			    0, NULL);
   2986 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   2987 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   2988 		/* Pretend the user requested this setting */
   2989 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2990 	} else {
   2991 		/*
   2992 		 * Do transceiver setup and tell the firmware the
   2993 		 * driver is down so we can try to get access the
   2994 		 * probe if ASF is running.  Retry a couple of times
   2995 		 * if we get a conflict with the ASF firmware accessing
   2996 		 * the PHY.
   2997 		 */
   2998 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2999 		bge_asf_driver_up(sc);
   3000 
   3001 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3002 			     bge_ifmedia_sts);
   3003 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3004 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3005 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3006 
   3007 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3008 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3009 			ifmedia_add(&sc->bge_mii.mii_media,
   3010 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3011 			ifmedia_set(&sc->bge_mii.mii_media,
   3012 				    IFM_ETHER|IFM_MANUAL);
   3013 		} else
   3014 			ifmedia_set(&sc->bge_mii.mii_media,
   3015 				    IFM_ETHER|IFM_AUTO);
   3016 
   3017 		/*
   3018 		 * Now tell the firmware we are going up after probing the PHY
   3019 		 */
   3020 		if (sc->bge_asf_mode & ASF_STACKUP)
   3021 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3022 	}
   3023 
   3024 	/*
   3025 	 * Call MI attach routine.
   3026 	 */
   3027 	DPRINTFN(5, ("if_attach\n"));
   3028 	if_attach(ifp);
   3029 	DPRINTFN(5, ("ether_ifattach\n"));
   3030 	ether_ifattach(ifp, eaddr);
   3031 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3032 #if NRND > 0
   3033 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3034 		RND_TYPE_NET, 0);
   3035 #endif
   3036 #ifdef BGE_EVENT_COUNTERS
   3037 	/*
   3038 	 * Attach event counters.
   3039 	 */
   3040 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3041 	    NULL, device_xname(sc->bge_dev), "intr");
   3042 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3043 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3044 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3045 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3046 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3047 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3048 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3049 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3050 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3051 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3052 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3053 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3054 #endif /* BGE_EVENT_COUNTERS */
   3055 	DPRINTFN(5, ("callout_init\n"));
   3056 	callout_init(&sc->bge_timeout, 0);
   3057 
   3058 	if (pmf_device_register(self, NULL, NULL))
   3059 		pmf_class_network_register(self, ifp);
   3060 	else
   3061 		aprint_error_dev(self, "couldn't establish power handler\n");
   3062 
   3063 	sysctl_bge_init(sc);
   3064 
   3065 #ifdef BGE_DEBUG
   3066 	bge_debug_info(sc);
   3067 #endif
   3068 }
   3069 
   3070 static void
   3071 bge_release_resources(struct bge_softc *sc)
   3072 {
   3073 	if (sc->bge_vpd_prodname != NULL)
   3074 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3075 
   3076 	if (sc->bge_vpd_readonly != NULL)
   3077 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3078 }
   3079 
   3080 static int
   3081 bge_reset(struct bge_softc *sc)
   3082 {
   3083 	uint32_t cachesize, command, pcistate, marbmode;
   3084 #if 0
   3085 	uint32_t new_pcistate;
   3086 #endif
   3087 	pcireg_t devctl, reg;
   3088 	int i, val;
   3089 	void (*write_op)(struct bge_softc *, int, int);
   3090 
   3091 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
   3092 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3093 	    	if (sc->bge_flags & BGE_PCIE)
   3094 			write_op = bge_writemem_direct;
   3095 		else
   3096 			write_op = bge_writemem_ind;
   3097 	} else
   3098 		write_op = bge_writereg_ind;
   3099 
   3100 	/* Save some important PCI state. */
   3101 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3102 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3103 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3104 
   3105 	/* Step 5a: Enable memory arbiter. */
   3106 	marbmode = 0;
   3107 	if (BGE_IS_5714_FAMILY(sc))
   3108 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3109 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3110 
   3111 	/* Step 5b-5d: */
   3112 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3113 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3114 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3115 
   3116 	/* XXX ???: Disable fastboot on controllers that support it. */
   3117 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3118 	    BGE_IS_5755_PLUS(sc))
   3119 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3120 
   3121 	/*
   3122 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3123 	 * When firmware finishes its initialization it will
   3124 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3125 	 */
   3126 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3127 
   3128 	/* Step 7: */
   3129 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3130 	/*
   3131 	 * XXX: from FreeBSD/Linux; no documentation
   3132 	 */
   3133 	if (sc->bge_flags & BGE_PCIE) {
   3134 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3135 			/* PCI Express 1.0 system */
   3136 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3137 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3138 			/*
   3139 			 * Prevent PCI Express link training
   3140 			 * during global reset.
   3141 			 */
   3142 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3143 			val |= (1<<29);
   3144 		}
   3145 	}
   3146 
   3147 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3148 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3149 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3150 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3151 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3152 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3153 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3154 	}
   3155 
   3156 	/*
   3157 	 * Set GPHY Power Down Override to leave GPHY
   3158 	 * powered up in D0 uninitialized.
   3159 	 */
   3160 	if (BGE_IS_5705_PLUS(sc))
   3161 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3162 
   3163 	/* XXX 5721, 5751 and 5752 */
   3164 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3165 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3166 
   3167 	/* Issue global reset */
   3168 	write_op(sc, BGE_MISC_CFG, val);
   3169 
   3170 	/* Step 8: wait for complete */
   3171 	if (sc->bge_flags & BGE_PCIE)
   3172 		delay(100*1000); /* too big */
   3173 	else
   3174 		delay(100);
   3175 
   3176 	/* From Linux: dummy read to flush PCI posted writes */
   3177 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3178 
   3179 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3180 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3181 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3182 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3183 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3184 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3185 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3186 
   3187 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3188 	if (sc->bge_flags & BGE_PCIX) {
   3189 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3190 		    + PCI_PCIX_CMD);
   3191 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3192 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3193 	}
   3194 
   3195 	if (sc->bge_flags & BGE_PCIE) {
   3196 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3197 			DELAY(500000);
   3198 			/* XXX: Magic Numbers */
   3199 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3200 			    BGE_PCI_UNKNOWN0);
   3201 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3202 			    BGE_PCI_UNKNOWN0,
   3203 			    reg | (1 << 15));
   3204 		}
   3205 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3206 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3207 		/* Clear enable no snoop and disable relaxed ordering. */
   3208 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3209 		/* Set PCIE max payload size to 128. */
   3210 		devctl &= ~(0x00e0);
   3211 		/* Clear device status register. Write 1b to clear */
   3212 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3213 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3214 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3215 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3216 	}
   3217 
   3218 	/* Step 12: Enable memory arbiter. */
   3219 	marbmode = 0;
   3220 	if (BGE_IS_5714_FAMILY(sc))
   3221 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3222 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3223 
   3224 	/* Step 17: Poll until the firmware initialization is complete */
   3225 	bge_poll_fw(sc);
   3226 
   3227 	/* XXX 5721, 5751 and 5752 */
   3228 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3229 		/* Step 19: */
   3230 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3231 		/* Step 20: */
   3232 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3233 	}
   3234 
   3235 	/*
   3236 	 * Step 18: wirte mac mode
   3237 	 * XXX Write 0x0c for 5703S and 5704S
   3238 	 */
   3239 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3240 
   3241 
   3242 	/* Step 21: 5822 B0 errata */
   3243 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3244 		pcireg_t msidata;
   3245 
   3246 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3247 		    BGE_PCI_MSI_DATA);
   3248 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3249 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3250 		    msidata);
   3251 	}
   3252 
   3253 	/* Step 23: restore cache line size */
   3254 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3255 
   3256 #if 0
   3257 	/*
   3258 	 * XXX Wait for the value of the PCISTATE register to
   3259 	 * return to its original pre-reset state. This is a
   3260 	 * fairly good indicator of reset completion. If we don't
   3261 	 * wait for the reset to fully complete, trying to read
   3262 	 * from the device's non-PCI registers may yield garbage
   3263 	 * results.
   3264 	 */
   3265 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3266 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3267 		    BGE_PCI_PCISTATE);
   3268 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3269 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3270 			break;
   3271 		DELAY(10);
   3272 	}
   3273 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3274 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3275 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3276 	}
   3277 #endif
   3278 
   3279 	/* Step 28: Fix up byte swapping */
   3280 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3281 
   3282 	/* Tell the ASF firmware we are up */
   3283 	if (sc->bge_asf_mode & ASF_STACKUP)
   3284 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3285 
   3286 	/*
   3287 	 * The 5704 in TBI mode apparently needs some special
   3288 	 * adjustment to insure the SERDES drive level is set
   3289 	 * to 1.2V.
   3290 	 */
   3291 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3292 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3293 		uint32_t serdescfg;
   3294 
   3295 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3296 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3297 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3298 	}
   3299 
   3300 	if (sc->bge_flags & BGE_PCIE &&
   3301 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3302 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3303 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3304 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3305 		uint32_t v;
   3306 
   3307 		/* Enable PCI Express bug fix */
   3308 		v = CSR_READ_4(sc, 0x7c00);
   3309 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3310 	}
   3311 	DELAY(10000);
   3312 
   3313 	return 0;
   3314 }
   3315 
   3316 /*
   3317  * Frame reception handling. This is called if there's a frame
   3318  * on the receive return list.
   3319  *
   3320  * Note: we have to be able to handle two possibilities here:
   3321  * 1) the frame is from the jumbo receive ring
   3322  * 2) the frame is from the standard receive ring
   3323  */
   3324 
   3325 static void
   3326 bge_rxeof(struct bge_softc *sc)
   3327 {
   3328 	struct ifnet *ifp;
   3329 	uint16_t rx_prod, rx_cons;
   3330 	int stdcnt = 0, jumbocnt = 0;
   3331 	bus_dmamap_t dmamap;
   3332 	bus_addr_t offset, toff;
   3333 	bus_size_t tlen;
   3334 	int tosync;
   3335 
   3336 	rx_cons = sc->bge_rx_saved_considx;
   3337 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3338 
   3339 	/* Nothing to do */
   3340 	if (rx_cons == rx_prod)
   3341 		return;
   3342 
   3343 	ifp = &sc->ethercom.ec_if;
   3344 
   3345 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3346 	    offsetof(struct bge_ring_data, bge_status_block),
   3347 	    sizeof (struct bge_status_block),
   3348 	    BUS_DMASYNC_POSTREAD);
   3349 
   3350 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3351 	tosync = rx_prod - rx_cons;
   3352 
   3353 #if NRND > 0
   3354 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3355 		rnd_add_uint32(&sc->rnd_source, tosync);
   3356 #endif
   3357 
   3358 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3359 
   3360 	if (tosync < 0) {
   3361 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3362 		    sizeof (struct bge_rx_bd);
   3363 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3364 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3365 		tosync = -tosync;
   3366 	}
   3367 
   3368 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3369 	    offset, tosync * sizeof (struct bge_rx_bd),
   3370 	    BUS_DMASYNC_POSTREAD);
   3371 
   3372 	while (rx_cons != rx_prod) {
   3373 		struct bge_rx_bd	*cur_rx;
   3374 		uint32_t		rxidx;
   3375 		struct mbuf		*m = NULL;
   3376 
   3377 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3378 
   3379 		rxidx = cur_rx->bge_idx;
   3380 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3381 
   3382 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3383 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3384 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3385 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3386 			jumbocnt++;
   3387 			bus_dmamap_sync(sc->bge_dmatag,
   3388 			    sc->bge_cdata.bge_rx_jumbo_map,
   3389 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3390 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3391 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3392 				ifp->if_ierrors++;
   3393 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3394 				continue;
   3395 			}
   3396 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3397 					     NULL)== ENOBUFS) {
   3398 				ifp->if_ierrors++;
   3399 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3400 				continue;
   3401 			}
   3402 		} else {
   3403 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3404 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3405 
   3406 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3407 			stdcnt++;
   3408 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3409 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3410 			if (dmamap == NULL) {
   3411 				ifp->if_ierrors++;
   3412 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3413 				continue;
   3414 			}
   3415 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3416 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3417 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3418 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3419 				ifp->if_ierrors++;
   3420 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3421 				continue;
   3422 			}
   3423 			if (bge_newbuf_std(sc, sc->bge_std,
   3424 			    NULL, dmamap) == ENOBUFS) {
   3425 				ifp->if_ierrors++;
   3426 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3427 				continue;
   3428 			}
   3429 		}
   3430 
   3431 		ifp->if_ipackets++;
   3432 #ifndef __NO_STRICT_ALIGNMENT
   3433 		/*
   3434 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3435 		 * the Rx buffer has the layer-2 header unaligned.
   3436 		 * If our CPU requires alignment, re-align by copying.
   3437 		 */
   3438 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3439 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3440 				cur_rx->bge_len);
   3441 			m->m_data += ETHER_ALIGN;
   3442 		}
   3443 #endif
   3444 
   3445 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3446 		m->m_pkthdr.rcvif = ifp;
   3447 
   3448 		/*
   3449 		 * Handle BPF listeners. Let the BPF user see the packet.
   3450 		 */
   3451 		bpf_mtap(ifp, m);
   3452 
   3453 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3454 
   3455 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3456 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3457 		/*
   3458 		 * Rx transport checksum-offload may also
   3459 		 * have bugs with packets which, when transmitted,
   3460 		 * were `runts' requiring padding.
   3461 		 */
   3462 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3463 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3464 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3465 			m->m_pkthdr.csum_data =
   3466 			    cur_rx->bge_tcp_udp_csum;
   3467 			m->m_pkthdr.csum_flags |=
   3468 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3469 			     M_CSUM_DATA);
   3470 		}
   3471 
   3472 		/*
   3473 		 * If we received a packet with a vlan tag, pass it
   3474 		 * to vlan_input() instead of ether_input().
   3475 		 */
   3476 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3477 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3478 		}
   3479 
   3480 		(*ifp->if_input)(ifp, m);
   3481 	}
   3482 
   3483 	sc->bge_rx_saved_considx = rx_cons;
   3484 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3485 	if (stdcnt)
   3486 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3487 	if (jumbocnt)
   3488 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3489 }
   3490 
   3491 static void
   3492 bge_txeof(struct bge_softc *sc)
   3493 {
   3494 	struct bge_tx_bd *cur_tx = NULL;
   3495 	struct ifnet *ifp;
   3496 	struct txdmamap_pool_entry *dma;
   3497 	bus_addr_t offset, toff;
   3498 	bus_size_t tlen;
   3499 	int tosync;
   3500 	struct mbuf *m;
   3501 
   3502 	ifp = &sc->ethercom.ec_if;
   3503 
   3504 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3505 	    offsetof(struct bge_ring_data, bge_status_block),
   3506 	    sizeof (struct bge_status_block),
   3507 	    BUS_DMASYNC_POSTREAD);
   3508 
   3509 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3510 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3511 	    sc->bge_tx_saved_considx;
   3512 
   3513 #if NRND > 0
   3514 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
   3515 		rnd_add_uint32(&sc->rnd_source, tosync);
   3516 #endif
   3517 
   3518 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3519 
   3520 	if (tosync < 0) {
   3521 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3522 		    sizeof (struct bge_tx_bd);
   3523 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3524 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3525 		tosync = -tosync;
   3526 	}
   3527 
   3528 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3529 	    offset, tosync * sizeof (struct bge_tx_bd),
   3530 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3531 
   3532 	/*
   3533 	 * Go through our tx ring and free mbufs for those
   3534 	 * frames that have been sent.
   3535 	 */
   3536 	while (sc->bge_tx_saved_considx !=
   3537 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3538 		uint32_t		idx = 0;
   3539 
   3540 		idx = sc->bge_tx_saved_considx;
   3541 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3542 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3543 			ifp->if_opackets++;
   3544 		m = sc->bge_cdata.bge_tx_chain[idx];
   3545 		if (m != NULL) {
   3546 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3547 			dma = sc->txdma[idx];
   3548 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3549 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3550 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3551 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3552 			sc->txdma[idx] = NULL;
   3553 
   3554 			m_freem(m);
   3555 		}
   3556 		sc->bge_txcnt--;
   3557 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3558 		ifp->if_timer = 0;
   3559 	}
   3560 
   3561 	if (cur_tx != NULL)
   3562 		ifp->if_flags &= ~IFF_OACTIVE;
   3563 }
   3564 
   3565 static int
   3566 bge_intr(void *xsc)
   3567 {
   3568 	struct bge_softc *sc;
   3569 	struct ifnet *ifp;
   3570 	uint32_t statusword;
   3571 
   3572 	sc = xsc;
   3573 	ifp = &sc->ethercom.ec_if;
   3574 
   3575 	/* It is possible for the interrupt to arrive before
   3576 	 * the status block is updated prior to the interrupt.
   3577 	 * Reading the PCI State register will confirm whether the
   3578 	 * interrupt is ours and will flush the status block.
   3579 	 */
   3580 
   3581 	/* read status word from status block */
   3582 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3583 
   3584 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3585 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3586 		/* Ack interrupt and stop others from occuring. */
   3587 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3588 
   3589 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3590 
   3591 		/* clear status word */
   3592 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3593 
   3594 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3595 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3596 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3597 			bge_link_upd(sc);
   3598 
   3599 		if (ifp->if_flags & IFF_RUNNING) {
   3600 			/* Check RX return ring producer/consumer */
   3601 			bge_rxeof(sc);
   3602 
   3603 			/* Check TX ring producer/consumer */
   3604 			bge_txeof(sc);
   3605 		}
   3606 
   3607 		if (sc->bge_pending_rxintr_change) {
   3608 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3609 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3610 			uint32_t junk;
   3611 
   3612 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3613 			DELAY(10);
   3614 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3615 
   3616 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3617 			DELAY(10);
   3618 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3619 
   3620 			sc->bge_pending_rxintr_change = 0;
   3621 		}
   3622 		bge_handle_events(sc);
   3623 
   3624 		/* Re-enable interrupts. */
   3625 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3626 
   3627 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3628 			bge_start(ifp);
   3629 
   3630 		return 1;
   3631 	} else
   3632 		return 0;
   3633 }
   3634 
   3635 static void
   3636 bge_asf_driver_up(struct bge_softc *sc)
   3637 {
   3638 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3639 		/* Send ASF heartbeat aprox. every 2s */
   3640 		if (sc->bge_asf_count)
   3641 			sc->bge_asf_count --;
   3642 		else {
   3643 			sc->bge_asf_count = 2;
   3644 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3645 			    BGE_FW_DRV_ALIVE);
   3646 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3647 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3648 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3649 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3650 		}
   3651 	}
   3652 }
   3653 
   3654 static void
   3655 bge_tick(void *xsc)
   3656 {
   3657 	struct bge_softc *sc = xsc;
   3658 	struct mii_data *mii = &sc->bge_mii;
   3659 	int s;
   3660 
   3661 	s = splnet();
   3662 
   3663 	if (BGE_IS_5705_PLUS(sc))
   3664 		bge_stats_update_regs(sc);
   3665 	else
   3666 		bge_stats_update(sc);
   3667 
   3668 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3669 		/*
   3670 		 * Since in TBI mode auto-polling can't be used we should poll
   3671 		 * link status manually. Here we register pending link event
   3672 		 * and trigger interrupt.
   3673 		 */
   3674 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3675 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3676 	} else {
   3677 		/*
   3678 		 * Do not touch PHY if we have link up. This could break
   3679 		 * IPMI/ASF mode or produce extra input errors.
   3680 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3681 		 */
   3682 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3683 			mii_tick(mii);
   3684 	}
   3685 
   3686 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3687 
   3688 	splx(s);
   3689 }
   3690 
   3691 static void
   3692 bge_stats_update_regs(struct bge_softc *sc)
   3693 {
   3694 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3695 
   3696 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3697 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3698 
   3699 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3700 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3701 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3702 }
   3703 
   3704 static void
   3705 bge_stats_update(struct bge_softc *sc)
   3706 {
   3707 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3708 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3709 
   3710 #define READ_STAT(sc, stats, stat) \
   3711 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3712 
   3713 	ifp->if_collisions +=
   3714 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3715 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3716 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3717 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3718 	  ifp->if_collisions;
   3719 
   3720 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3721 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3722 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3723 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3724 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3725 		      READ_STAT(sc, stats,
   3726 		      		xoffPauseFramesReceived.bge_addr_lo));
   3727 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3728 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3729 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3730 		      READ_STAT(sc, stats,
   3731 		      		macControlFramesReceived.bge_addr_lo));
   3732 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3733 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3734 
   3735 #undef READ_STAT
   3736 
   3737 #ifdef notdef
   3738 	ifp->if_collisions +=
   3739 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3740 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3741 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3742 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3743 	   ifp->if_collisions;
   3744 #endif
   3745 }
   3746 
   3747 /*
   3748  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3749  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3750  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3751  * the hardware checksum assist gives incorrect results (possibly
   3752  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3753  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3754  */
   3755 static inline int
   3756 bge_cksum_pad(struct mbuf *pkt)
   3757 {
   3758 	struct mbuf *last = NULL;
   3759 	int padlen;
   3760 
   3761 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3762 
   3763 	/* if there's only the packet-header and we can pad there, use it. */
   3764 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3765 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3766 		last = pkt;
   3767 	} else {
   3768 		/*
   3769 		 * Walk packet chain to find last mbuf. We will either
   3770 		 * pad there, or append a new mbuf and pad it
   3771 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3772 		 */
   3773 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3774 	      	       continue; /* do nothing */
   3775 		}
   3776 
   3777 		/* `last' now points to last in chain. */
   3778 		if (M_TRAILINGSPACE(last) < padlen) {
   3779 			/* Allocate new empty mbuf, pad it. Compact later. */
   3780 			struct mbuf *n;
   3781 			MGET(n, M_DONTWAIT, MT_DATA);
   3782 			if (n == NULL)
   3783 				return ENOBUFS;
   3784 			n->m_len = 0;
   3785 			last->m_next = n;
   3786 			last = n;
   3787 		}
   3788 	}
   3789 
   3790 	KDASSERT(!M_READONLY(last));
   3791 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3792 
   3793 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3794 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3795 	last->m_len += padlen;
   3796 	pkt->m_pkthdr.len += padlen;
   3797 	return 0;
   3798 }
   3799 
   3800 /*
   3801  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3802  */
   3803 static inline int
   3804 bge_compact_dma_runt(struct mbuf *pkt)
   3805 {
   3806 	struct mbuf	*m, *prev;
   3807 	int 		totlen, prevlen;
   3808 
   3809 	prev = NULL;
   3810 	totlen = 0;
   3811 	prevlen = -1;
   3812 
   3813 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3814 		int mlen = m->m_len;
   3815 		int shortfall = 8 - mlen ;
   3816 
   3817 		totlen += mlen;
   3818 		if (mlen == 0) {
   3819 			continue;
   3820 		}
   3821 		if (mlen >= 8)
   3822 			continue;
   3823 
   3824 		/* If we get here, mbuf data is too small for DMA engine.
   3825 		 * Try to fix by shuffling data to prev or next in chain.
   3826 		 * If that fails, do a compacting deep-copy of the whole chain.
   3827 		 */
   3828 
   3829 		/* Internal frag. If fits in prev, copy it there. */
   3830 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3831 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3832 			prev->m_len += mlen;
   3833 			m->m_len = 0;
   3834 			/* XXX stitch chain */
   3835 			prev->m_next = m_free(m);
   3836 			m = prev;
   3837 			continue;
   3838 		}
   3839 		else if (m->m_next != NULL &&
   3840 			     M_TRAILINGSPACE(m) >= shortfall &&
   3841 			     m->m_next->m_len >= (8 + shortfall)) {
   3842 		    /* m is writable and have enough data in next, pull up. */
   3843 
   3844 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3845 			    shortfall);
   3846 			m->m_len += shortfall;
   3847 			m->m_next->m_len -= shortfall;
   3848 			m->m_next->m_data += shortfall;
   3849 		}
   3850 		else if (m->m_next == NULL || 1) {
   3851 		  	/* Got a runt at the very end of the packet.
   3852 			 * borrow data from the tail of the preceding mbuf and
   3853 			 * update its length in-place. (The original data is still
   3854 			 * valid, so we can do this even if prev is not writable.)
   3855 			 */
   3856 
   3857 			/* if we'd make prev a runt, just move all of its data. */
   3858 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3859 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3860 
   3861 			if ((prev->m_len - shortfall) < 8)
   3862 				shortfall = prev->m_len;
   3863 
   3864 #ifdef notyet	/* just do the safe slow thing for now */
   3865 			if (!M_READONLY(m)) {
   3866 				if (M_LEADINGSPACE(m) < shorfall) {
   3867 					void *m_dat;
   3868 					m_dat = (m->m_flags & M_PKTHDR) ?
   3869 					  m->m_pktdat : m->dat;
   3870 					memmove(m_dat, mtod(m, void*), m->m_len);
   3871 					m->m_data = m_dat;
   3872 				    }
   3873 			} else
   3874 #endif	/* just do the safe slow thing */
   3875 			{
   3876 				struct mbuf * n = NULL;
   3877 				int newprevlen = prev->m_len - shortfall;
   3878 
   3879 				MGET(n, M_NOWAIT, MT_DATA);
   3880 				if (n == NULL)
   3881 				   return ENOBUFS;
   3882 				KASSERT(m->m_len + shortfall < MLEN
   3883 					/*,
   3884 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3885 
   3886 				/* first copy the data we're stealing from prev */
   3887 				memcpy(n->m_data, prev->m_data + newprevlen,
   3888 				    shortfall);
   3889 
   3890 				/* update prev->m_len accordingly */
   3891 				prev->m_len -= shortfall;
   3892 
   3893 				/* copy data from runt m */
   3894 				memcpy(n->m_data + shortfall, m->m_data,
   3895 				    m->m_len);
   3896 
   3897 				/* n holds what we stole from prev, plus m */
   3898 				n->m_len = shortfall + m->m_len;
   3899 
   3900 				/* stitch n into chain and free m */
   3901 				n->m_next = m->m_next;
   3902 				prev->m_next = n;
   3903 				/* KASSERT(m->m_next == NULL); */
   3904 				m->m_next = NULL;
   3905 				m_free(m);
   3906 				m = n;	/* for continuing loop */
   3907 			}
   3908 		}
   3909 		prevlen = m->m_len;
   3910 	}
   3911 	return 0;
   3912 }
   3913 
   3914 /*
   3915  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3916  * pointers to descriptors.
   3917  */
   3918 static int
   3919 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3920 {
   3921 	struct bge_tx_bd	*f = NULL;
   3922 	uint32_t		frag, cur;
   3923 	uint16_t		csum_flags = 0;
   3924 	uint16_t		txbd_tso_flags = 0;
   3925 	struct txdmamap_pool_entry *dma;
   3926 	bus_dmamap_t dmamap;
   3927 	int			i = 0;
   3928 	struct m_tag		*mtag;
   3929 	int			use_tso, maxsegsize, error;
   3930 
   3931 	cur = frag = *txidx;
   3932 
   3933 	if (m_head->m_pkthdr.csum_flags) {
   3934 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3935 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3936 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3937 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3938 	}
   3939 
   3940 	/*
   3941 	 * If we were asked to do an outboard checksum, and the NIC
   3942 	 * has the bug where it sometimes adds in the Ethernet padding,
   3943 	 * explicitly pad with zeros so the cksum will be correct either way.
   3944 	 * (For now, do this for all chip versions, until newer
   3945 	 * are confirmed to not require the workaround.)
   3946 	 */
   3947 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3948 #ifdef notyet
   3949 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3950 #endif
   3951 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3952 		goto check_dma_bug;
   3953 
   3954 	if (bge_cksum_pad(m_head) != 0)
   3955 	    return ENOBUFS;
   3956 
   3957 check_dma_bug:
   3958 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3959 		goto doit;
   3960 
   3961 	/*
   3962 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3963 	 * less than eight bytes.  If we encounter a teeny mbuf
   3964 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3965 	 */
   3966 	if (bge_compact_dma_runt(m_head) != 0)
   3967 		return ENOBUFS;
   3968 
   3969 doit:
   3970 	dma = SLIST_FIRST(&sc->txdma_list);
   3971 	if (dma == NULL)
   3972 		return ENOBUFS;
   3973 	dmamap = dma->dmamap;
   3974 
   3975 	/*
   3976 	 * Set up any necessary TSO state before we start packing...
   3977 	 */
   3978 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3979 	if (!use_tso) {
   3980 		maxsegsize = 0;
   3981 	} else {	/* TSO setup */
   3982 		unsigned  mss;
   3983 		struct ether_header *eh;
   3984 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3985 		struct mbuf * m0 = m_head;
   3986 		struct ip *ip;
   3987 		struct tcphdr *th;
   3988 		int iphl, hlen;
   3989 
   3990 		/*
   3991 		 * XXX It would be nice if the mbuf pkthdr had offset
   3992 		 * fields for the protocol headers.
   3993 		 */
   3994 
   3995 		eh = mtod(m0, struct ether_header *);
   3996 		switch (htons(eh->ether_type)) {
   3997 		case ETHERTYPE_IP:
   3998 			offset = ETHER_HDR_LEN;
   3999 			break;
   4000 
   4001 		case ETHERTYPE_VLAN:
   4002 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4003 			break;
   4004 
   4005 		default:
   4006 			/*
   4007 			 * Don't support this protocol or encapsulation.
   4008 			 */
   4009 			return ENOBUFS;
   4010 		}
   4011 
   4012 		/*
   4013 		 * TCP/IP headers are in the first mbuf; we can do
   4014 		 * this the easy way.
   4015 		 */
   4016 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4017 		hlen = iphl + offset;
   4018 		if (__predict_false(m0->m_len <
   4019 				    (hlen + sizeof(struct tcphdr)))) {
   4020 
   4021 			aprint_debug_dev(sc->bge_dev,
   4022 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4023 			    "not handled yet\n",
   4024 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4025 #ifdef NOTYET
   4026 			/*
   4027 			 * XXX jonathan (at) NetBSD.org: untested.
   4028 			 * how to force  this branch to be taken?
   4029 			 */
   4030 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4031 
   4032 			m_copydata(m0, offset, sizeof(ip), &ip);
   4033 			m_copydata(m0, hlen, sizeof(th), &th);
   4034 
   4035 			ip.ip_len = 0;
   4036 
   4037 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4038 			    sizeof(ip.ip_len), &ip.ip_len);
   4039 
   4040 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4041 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4042 
   4043 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4044 			    sizeof(th.th_sum), &th.th_sum);
   4045 
   4046 			hlen += th.th_off << 2;
   4047 			iptcp_opt_words	= hlen;
   4048 #else
   4049 			/*
   4050 			 * if_wm "hard" case not yet supported, can we not
   4051 			 * mandate it out of existence?
   4052 			 */
   4053 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4054 
   4055 			return ENOBUFS;
   4056 #endif
   4057 		} else {
   4058 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4059 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4060 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4061 
   4062 			/* Total IP/TCP options, in 32-bit words */
   4063 			iptcp_opt_words = (ip_tcp_hlen
   4064 					   - sizeof(struct tcphdr)
   4065 					   - sizeof(struct ip)) >> 2;
   4066 		}
   4067 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   4068 			th->th_sum = 0;
   4069 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4070 		} else {
   4071 			/*
   4072 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4073 			 * Requires TSO firmware patch for 5701/5703/5704.
   4074 			 */
   4075 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4076 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4077 		}
   4078 
   4079 		mss = m_head->m_pkthdr.segsz;
   4080 		txbd_tso_flags |=
   4081 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4082 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4083 
   4084 		/*
   4085 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4086 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4087 		 * the NIC copies 40 bytes of IP/TCP header from the
   4088 		 * supplied header into the IP/TCP header portion of
   4089 		 * each post-TSO-segment. If the supplied packet has IP or
   4090 		 * TCP options, we need to tell the NIC to copy those extra
   4091 		 * bytes into each  post-TSO header, in addition to the normal
   4092 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4093 		 * Unfortunately, the driver encoding of option length
   4094 		 * varies across different ASIC families.
   4095 		 */
   4096 		tcp_seg_flags = 0;
   4097 		if (iptcp_opt_words) {
   4098 			if (BGE_IS_5705_PLUS(sc)) {
   4099 				tcp_seg_flags =
   4100 					iptcp_opt_words << 11;
   4101 			} else {
   4102 				txbd_tso_flags |=
   4103 					iptcp_opt_words << 12;
   4104 			}
   4105 		}
   4106 		maxsegsize = mss | tcp_seg_flags;
   4107 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4108 
   4109 	}	/* TSO setup */
   4110 
   4111 	/*
   4112 	 * Start packing the mbufs in this chain into
   4113 	 * the fragment pointers. Stop when we run out
   4114 	 * of fragments or hit the end of the mbuf chain.
   4115 	 */
   4116 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4117 	    BUS_DMA_NOWAIT);
   4118 	if (error)
   4119 		return ENOBUFS;
   4120 	/*
   4121 	 * Sanity check: avoid coming within 16 descriptors
   4122 	 * of the end of the ring.
   4123 	 */
   4124 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4125 		BGE_TSO_PRINTF(("%s: "
   4126 		    " dmamap_load_mbuf too close to ring wrap\n",
   4127 		    device_xname(sc->bge_dev)));
   4128 		goto fail_unload;
   4129 	}
   4130 
   4131 	mtag = sc->ethercom.ec_nvlans ?
   4132 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4133 
   4134 
   4135 	/* Iterate over dmap-map fragments. */
   4136 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4137 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4138 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4139 			break;
   4140 
   4141 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4142 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4143 
   4144 		/*
   4145 		 * For 5751 and follow-ons, for TSO we must turn
   4146 		 * off checksum-assist flag in the tx-descr, and
   4147 		 * supply the ASIC-revision-specific encoding
   4148 		 * of TSO flags and segsize.
   4149 		 */
   4150 		if (use_tso) {
   4151 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4152 				f->bge_rsvd = maxsegsize;
   4153 				f->bge_flags = csum_flags | txbd_tso_flags;
   4154 			} else {
   4155 				f->bge_rsvd = 0;
   4156 				f->bge_flags =
   4157 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4158 			}
   4159 		} else {
   4160 			f->bge_rsvd = 0;
   4161 			f->bge_flags = csum_flags;
   4162 		}
   4163 
   4164 		if (mtag != NULL) {
   4165 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4166 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4167 		} else {
   4168 			f->bge_vlan_tag = 0;
   4169 		}
   4170 		cur = frag;
   4171 		BGE_INC(frag, BGE_TX_RING_CNT);
   4172 	}
   4173 
   4174 	if (i < dmamap->dm_nsegs) {
   4175 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4176 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4177 		goto fail_unload;
   4178 	}
   4179 
   4180 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4181 	    BUS_DMASYNC_PREWRITE);
   4182 
   4183 	if (frag == sc->bge_tx_saved_considx) {
   4184 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4185 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4186 
   4187 		goto fail_unload;
   4188 	}
   4189 
   4190 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4191 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4192 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4193 	sc->txdma[cur] = dma;
   4194 	sc->bge_txcnt += dmamap->dm_nsegs;
   4195 
   4196 	*txidx = frag;
   4197 
   4198 	return 0;
   4199 
   4200 fail_unload:
   4201 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4202 
   4203 	return ENOBUFS;
   4204 }
   4205 
   4206 /*
   4207  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4208  * to the mbuf data regions directly in the transmit descriptors.
   4209  */
   4210 static void
   4211 bge_start(struct ifnet *ifp)
   4212 {
   4213 	struct bge_softc *sc;
   4214 	struct mbuf *m_head = NULL;
   4215 	uint32_t prodidx;
   4216 	int pkts = 0;
   4217 
   4218 	sc = ifp->if_softc;
   4219 
   4220 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4221 		return;
   4222 
   4223 	prodidx = sc->bge_tx_prodidx;
   4224 
   4225 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4226 		IFQ_POLL(&ifp->if_snd, m_head);
   4227 		if (m_head == NULL)
   4228 			break;
   4229 
   4230 #if 0
   4231 		/*
   4232 		 * XXX
   4233 		 * safety overkill.  If this is a fragmented packet chain
   4234 		 * with delayed TCP/UDP checksums, then only encapsulate
   4235 		 * it if we have enough descriptors to handle the entire
   4236 		 * chain at once.
   4237 		 * (paranoia -- may not actually be needed)
   4238 		 */
   4239 		if (m_head->m_flags & M_FIRSTFRAG &&
   4240 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4241 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4242 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4243 				ifp->if_flags |= IFF_OACTIVE;
   4244 				break;
   4245 			}
   4246 		}
   4247 #endif
   4248 
   4249 		/*
   4250 		 * Pack the data into the transmit ring. If we
   4251 		 * don't have room, set the OACTIVE flag and wait
   4252 		 * for the NIC to drain the ring.
   4253 		 */
   4254 		if (bge_encap(sc, m_head, &prodidx)) {
   4255 			ifp->if_flags |= IFF_OACTIVE;
   4256 			break;
   4257 		}
   4258 
   4259 		/* now we are committed to transmit the packet */
   4260 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4261 		pkts++;
   4262 
   4263 		/*
   4264 		 * If there's a BPF listener, bounce a copy of this frame
   4265 		 * to him.
   4266 		 */
   4267 		bpf_mtap(ifp, m_head);
   4268 	}
   4269 	if (pkts == 0)
   4270 		return;
   4271 
   4272 	/* Transmit */
   4273 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4274 	/* 5700 b2 errata */
   4275 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4276 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4277 
   4278 	sc->bge_tx_prodidx = prodidx;
   4279 
   4280 	/*
   4281 	 * Set a timeout in case the chip goes out to lunch.
   4282 	 */
   4283 	ifp->if_timer = 5;
   4284 }
   4285 
   4286 static int
   4287 bge_init(struct ifnet *ifp)
   4288 {
   4289 	struct bge_softc *sc = ifp->if_softc;
   4290 	const uint16_t *m;
   4291 	int s, error = 0;
   4292 
   4293 	s = splnet();
   4294 
   4295 	ifp = &sc->ethercom.ec_if;
   4296 
   4297 	/* Cancel pending I/O and flush buffers. */
   4298 	bge_stop(ifp, 0);
   4299 
   4300 	bge_stop_fw(sc);
   4301 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4302 	bge_reset(sc);
   4303 	bge_sig_legacy(sc, BGE_RESET_START);
   4304 	bge_sig_post_reset(sc, BGE_RESET_START);
   4305 
   4306 	bge_chipinit(sc);
   4307 
   4308 	/*
   4309 	 * Init the various state machines, ring
   4310 	 * control blocks and firmware.
   4311 	 */
   4312 	error = bge_blockinit(sc);
   4313 	if (error != 0) {
   4314 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4315 		    error);
   4316 		splx(s);
   4317 		return error;
   4318 	}
   4319 
   4320 	ifp = &sc->ethercom.ec_if;
   4321 
   4322 	/* Specify MTU. */
   4323 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4324 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4325 
   4326 	/* Load our MAC address. */
   4327 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4328 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4329 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4330 
   4331 	/* Enable or disable promiscuous mode as needed. */
   4332 	if (ifp->if_flags & IFF_PROMISC)
   4333 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4334 	else
   4335 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4336 
   4337 	/* Program multicast filter. */
   4338 	bge_setmulti(sc);
   4339 
   4340 	/* Init RX ring. */
   4341 	bge_init_rx_ring_std(sc);
   4342 
   4343 	/*
   4344 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4345 	 * memory to insure that the chip has in fact read the first
   4346 	 * entry of the ring.
   4347 	 */
   4348 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4349 		uint32_t		v, i;
   4350 		for (i = 0; i < 10; i++) {
   4351 			DELAY(20);
   4352 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4353 			if (v == (MCLBYTES - ETHER_ALIGN))
   4354 				break;
   4355 		}
   4356 		if (i == 10)
   4357 			aprint_error_dev(sc->bge_dev,
   4358 			    "5705 A0 chip failed to load RX ring\n");
   4359 	}
   4360 
   4361 	/* Init jumbo RX ring. */
   4362 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4363 		bge_init_rx_ring_jumbo(sc);
   4364 
   4365 	/* Init our RX return ring index */
   4366 	sc->bge_rx_saved_considx = 0;
   4367 
   4368 	/* Init TX ring. */
   4369 	bge_init_tx_ring(sc);
   4370 
   4371 	/* Turn on transmitter */
   4372 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4373 
   4374 	/* Turn on receiver */
   4375 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4376 
   4377 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4378 
   4379 	/* Tell firmware we're alive. */
   4380 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4381 
   4382 	/* Enable host interrupts. */
   4383 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4384 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4385 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4386 
   4387 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4388 		goto out;
   4389 
   4390 	ifp->if_flags |= IFF_RUNNING;
   4391 	ifp->if_flags &= ~IFF_OACTIVE;
   4392 
   4393 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4394 
   4395 out:
   4396 	sc->bge_if_flags = ifp->if_flags;
   4397 	splx(s);
   4398 
   4399 	return error;
   4400 }
   4401 
   4402 /*
   4403  * Set media options.
   4404  */
   4405 static int
   4406 bge_ifmedia_upd(struct ifnet *ifp)
   4407 {
   4408 	struct bge_softc *sc = ifp->if_softc;
   4409 	struct mii_data *mii = &sc->bge_mii;
   4410 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4411 	int rc;
   4412 
   4413 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4414 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4415 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4416 			return EINVAL;
   4417 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4418 		case IFM_AUTO:
   4419 			/*
   4420 			 * The BCM5704 ASIC appears to have a special
   4421 			 * mechanism for programming the autoneg
   4422 			 * advertisement registers in TBI mode.
   4423 			 */
   4424 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4425 				uint32_t sgdig;
   4426 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4427 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4428 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4429 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4430 					sgdig |= BGE_SGDIGCFG_AUTO |
   4431 					    BGE_SGDIGCFG_PAUSE_CAP |
   4432 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4433 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4434 					    sgdig | BGE_SGDIGCFG_SEND);
   4435 					DELAY(5);
   4436 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4437 				}
   4438 			}
   4439 			break;
   4440 		case IFM_1000_SX:
   4441 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4442 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4443 				    BGE_MACMODE_HALF_DUPLEX);
   4444 			} else {
   4445 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4446 				    BGE_MACMODE_HALF_DUPLEX);
   4447 			}
   4448 			break;
   4449 		default:
   4450 			return EINVAL;
   4451 		}
   4452 		/* XXX 802.3x flow control for 1000BASE-SX */
   4453 		return 0;
   4454 	}
   4455 
   4456 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4457 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4458 		return 0;
   4459 
   4460 	/*
   4461 	 * Force an interrupt so that we will call bge_link_upd
   4462 	 * if needed and clear any pending link state attention.
   4463 	 * Without this we are not getting any further interrupts
   4464 	 * for link state changes and thus will not UP the link and
   4465 	 * not be able to send in bge_start. The only way to get
   4466 	 * things working was to receive a packet and get a RX intr.
   4467 	 */
   4468 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4469 	    sc->bge_flags & BGE_IS_5788)
   4470 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4471 	else
   4472 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4473 
   4474 	return rc;
   4475 }
   4476 
   4477 /*
   4478  * Report current media status.
   4479  */
   4480 static void
   4481 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4482 {
   4483 	struct bge_softc *sc = ifp->if_softc;
   4484 	struct mii_data *mii = &sc->bge_mii;
   4485 
   4486 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4487 		ifmr->ifm_status = IFM_AVALID;
   4488 		ifmr->ifm_active = IFM_ETHER;
   4489 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4490 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4491 			ifmr->ifm_status |= IFM_ACTIVE;
   4492 		ifmr->ifm_active |= IFM_1000_SX;
   4493 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4494 			ifmr->ifm_active |= IFM_HDX;
   4495 		else
   4496 			ifmr->ifm_active |= IFM_FDX;
   4497 		return;
   4498 	}
   4499 
   4500 	mii_pollstat(mii);
   4501 	ifmr->ifm_status = mii->mii_media_status;
   4502 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4503 	    sc->bge_flowflags;
   4504 }
   4505 
   4506 static int
   4507 bge_ifflags_cb(struct ethercom *ec)
   4508 {
   4509 	struct ifnet *ifp = &ec->ec_if;
   4510 	struct bge_softc *sc = ifp->if_softc;
   4511 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4512 
   4513 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4514 		return ENETRESET;
   4515 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4516 		return 0;
   4517 
   4518 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4519 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4520 	else
   4521 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4522 
   4523 	bge_setmulti(sc);
   4524 
   4525 	sc->bge_if_flags = ifp->if_flags;
   4526 	return 0;
   4527 }
   4528 
   4529 static int
   4530 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4531 {
   4532 	struct bge_softc *sc = ifp->if_softc;
   4533 	struct ifreq *ifr = (struct ifreq *) data;
   4534 	int s, error = 0;
   4535 	struct mii_data *mii;
   4536 
   4537 	s = splnet();
   4538 
   4539 	switch (command) {
   4540 	case SIOCSIFMEDIA:
   4541 		/* XXX Flow control is not supported for 1000BASE-SX */
   4542 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4543 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4544 			sc->bge_flowflags = 0;
   4545 		}
   4546 
   4547 		/* Flow control requires full-duplex mode. */
   4548 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4549 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4550 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4551 		}
   4552 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4553 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4554 				/* We can do both TXPAUSE and RXPAUSE. */
   4555 				ifr->ifr_media |=
   4556 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4557 			}
   4558 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4559 		}
   4560 		/* FALLTHROUGH */
   4561 	case SIOCGIFMEDIA:
   4562 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4563 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4564 			    command);
   4565 		} else {
   4566 			mii = &sc->bge_mii;
   4567 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4568 			    command);
   4569 		}
   4570 		break;
   4571 	default:
   4572 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4573 			break;
   4574 
   4575 		error = 0;
   4576 
   4577 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4578 			;
   4579 		else if (ifp->if_flags & IFF_RUNNING)
   4580 			bge_setmulti(sc);
   4581 		break;
   4582 	}
   4583 
   4584 	splx(s);
   4585 
   4586 	return error;
   4587 }
   4588 
   4589 static void
   4590 bge_watchdog(struct ifnet *ifp)
   4591 {
   4592 	struct bge_softc *sc;
   4593 
   4594 	sc = ifp->if_softc;
   4595 
   4596 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4597 
   4598 	ifp->if_flags &= ~IFF_RUNNING;
   4599 	bge_init(ifp);
   4600 
   4601 	ifp->if_oerrors++;
   4602 }
   4603 
   4604 static void
   4605 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4606 {
   4607 	int i;
   4608 
   4609 	BGE_CLRBIT(sc, reg, bit);
   4610 
   4611 	for (i = 0; i < 1000; i++) {
   4612 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4613 			return;
   4614 		delay(100);
   4615 	}
   4616 
   4617 	/*
   4618 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4619 	 * on some environment (and once after boot?)
   4620 	 */
   4621 	if (reg != BGE_SRS_MODE)
   4622 		aprint_error_dev(sc->bge_dev,
   4623 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4624 		    (u_long)reg, bit);
   4625 }
   4626 
   4627 /*
   4628  * Stop the adapter and free any mbufs allocated to the
   4629  * RX and TX lists.
   4630  */
   4631 static void
   4632 bge_stop(struct ifnet *ifp, int disable)
   4633 {
   4634 	struct bge_softc *sc = ifp->if_softc;
   4635 
   4636 	callout_stop(&sc->bge_timeout);
   4637 
   4638 	/*
   4639 	 * Tell firmware we're shutting down.
   4640 	 */
   4641 	bge_stop_fw(sc);
   4642 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4643 
   4644 	/* Disable host interrupts. */
   4645 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4646 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4647 
   4648 	/*
   4649 	 * Disable all of the receiver blocks
   4650 	 */
   4651 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4652 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4653 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4654 	if (BGE_IS_5700_FAMILY(sc))
   4655 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4656 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4657 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4658 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4659 
   4660 	/*
   4661 	 * Disable all of the transmit blocks
   4662 	 */
   4663 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4664 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4665 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4666 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4667 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4668 	if (BGE_IS_5700_FAMILY(sc))
   4669 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4670 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4671 
   4672 	/*
   4673 	 * Shut down all of the memory managers and related
   4674 	 * state machines.
   4675 	 */
   4676 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4677 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4678 	if (BGE_IS_5700_FAMILY(sc))
   4679 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4680 
   4681 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4682 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4683 
   4684 	if (BGE_IS_5700_FAMILY(sc)) {
   4685 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4686 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4687 	}
   4688 
   4689 	bge_reset(sc);
   4690 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4691 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4692 
   4693 	/*
   4694 	 * Keep the ASF firmware running if up.
   4695 	 */
   4696 	if (sc->bge_asf_mode & ASF_STACKUP)
   4697 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4698 	else
   4699 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4700 
   4701 	/* Free the RX lists. */
   4702 	bge_free_rx_ring_std(sc);
   4703 
   4704 	/* Free jumbo RX list. */
   4705 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4706 		bge_free_rx_ring_jumbo(sc);
   4707 
   4708 	/* Free TX buffers. */
   4709 	bge_free_tx_ring(sc);
   4710 
   4711 	/*
   4712 	 * Isolate/power down the PHY.
   4713 	 */
   4714 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4715 		mii_down(&sc->bge_mii);
   4716 
   4717 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4718 
   4719 	/* Clear MAC's link state (PHY may still have link UP). */
   4720 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4721 
   4722 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4723 }
   4724 
   4725 static void
   4726 bge_link_upd(struct bge_softc *sc)
   4727 {
   4728 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4729 	struct mii_data *mii = &sc->bge_mii;
   4730 	uint32_t status;
   4731 	int link;
   4732 
   4733 	/* Clear 'pending link event' flag */
   4734 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4735 
   4736 	/*
   4737 	 * Process link state changes.
   4738 	 * Grrr. The link status word in the status block does
   4739 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4740 	 * according to all available information. Hence, we have
   4741 	 * to enable MII interrupts in order to properly obtain
   4742 	 * async link changes. Unfortunately, this also means that
   4743 	 * we have to read the MAC status register to detect link
   4744 	 * changes, thereby adding an additional register access to
   4745 	 * the interrupt handler.
   4746 	 */
   4747 
   4748 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4749 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4750 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4751 			mii_pollstat(mii);
   4752 
   4753 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4754 			    mii->mii_media_status & IFM_ACTIVE &&
   4755 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4756 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4757 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4758 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4759 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4760 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4761 
   4762 			/* Clear the interrupt */
   4763 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4764 			    BGE_EVTENB_MI_INTERRUPT);
   4765 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4766 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4767 			    BRGPHY_INTRS);
   4768 		}
   4769 		return;
   4770 	}
   4771 
   4772 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4773 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4774 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4775 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4776 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4777 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4778 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4779 					    BGE_MACMODE_TBI_SEND_CFGS);
   4780 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4781 				if_link_state_change(ifp, LINK_STATE_UP);
   4782 			}
   4783 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4784 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4785 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4786 		}
   4787 	/*
   4788 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4789 	 * This should not happen since mii callouts are locked now, but
   4790 	 * we keep this check for debug.
   4791 	 */
   4792 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4793 		/*
   4794 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4795 		 * bit in status word always set. Workaround this bug by
   4796 		 * reading PHY link status directly.
   4797 		 */
   4798 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4799 		    BGE_STS_LINK : 0;
   4800 
   4801 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4802 			mii_pollstat(mii);
   4803 
   4804 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4805 			    mii->mii_media_status & IFM_ACTIVE &&
   4806 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4807 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4808 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4809 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4810 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4811 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4812 		}
   4813 	}
   4814 
   4815 	/* Clear the attention */
   4816 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4817 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4818 	    BGE_MACSTAT_LINK_CHANGED);
   4819 }
   4820 
   4821 static int
   4822 sysctl_bge_verify(SYSCTLFN_ARGS)
   4823 {
   4824 	int error, t;
   4825 	struct sysctlnode node;
   4826 
   4827 	node = *rnode;
   4828 	t = *(int*)rnode->sysctl_data;
   4829 	node.sysctl_data = &t;
   4830 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4831 	if (error || newp == NULL)
   4832 		return error;
   4833 
   4834 #if 0
   4835 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4836 	    node.sysctl_num, rnode->sysctl_num));
   4837 #endif
   4838 
   4839 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4840 		if (t < 0 || t >= NBGE_RX_THRESH)
   4841 			return EINVAL;
   4842 		bge_update_all_threshes(t);
   4843 	} else
   4844 		return EINVAL;
   4845 
   4846 	*(int*)rnode->sysctl_data = t;
   4847 
   4848 	return 0;
   4849 }
   4850 
   4851 /*
   4852  * Set up sysctl(3) MIB, hw.bge.*.
   4853  */
   4854 static void
   4855 sysctl_bge_init(struct bge_softc *sc)
   4856 {
   4857 	int rc, bge_root_num;
   4858 	const struct sysctlnode *node;
   4859 
   4860 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4861 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4862 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4863 		goto err;
   4864 	}
   4865 
   4866 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4867 	    0, CTLTYPE_NODE, "bge",
   4868 	    SYSCTL_DESCR("BGE interface controls"),
   4869 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4870 		goto err;
   4871 	}
   4872 
   4873 	bge_root_num = node->sysctl_num;
   4874 
   4875 	/* BGE Rx interrupt mitigation level */
   4876 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4877 	    CTLFLAG_READWRITE,
   4878 	    CTLTYPE_INT, "rx_lvl",
   4879 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4880 	    sysctl_bge_verify, 0,
   4881 	    &bge_rx_thresh_lvl,
   4882 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4883 	    CTL_EOL)) != 0) {
   4884 		goto err;
   4885 	}
   4886 
   4887 	bge_rxthresh_nodenum = node->sysctl_num;
   4888 
   4889 	return;
   4890 
   4891 err:
   4892 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4893 }
   4894 
   4895 #ifdef BGE_DEBUG
   4896 void
   4897 bge_debug_info(struct bge_softc *sc)
   4898 {
   4899 
   4900 	printf("Hardware Flags:\n");
   4901 	if (BGE_IS_5755_PLUS(sc))
   4902 		printf(" - 5755 Plus\n");
   4903 	if (BGE_IS_5750_OR_BEYOND(sc))
   4904 		printf(" - 5750 Plus\n");
   4905 	if (BGE_IS_5705_PLUS(sc))
   4906 		printf(" - 5705 Plus\n");
   4907 	if (BGE_IS_5714_FAMILY(sc))
   4908 		printf(" - 5714 Family\n");
   4909 	if (BGE_IS_5700_FAMILY(sc))
   4910 		printf(" - 5700 Family\n");
   4911 	if (sc->bge_flags & BGE_IS_5788)
   4912 		printf(" - 5788\n");
   4913 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4914 		printf(" - Supports Jumbo Frames\n");
   4915 	if (sc->bge_flags & BGE_NO_EEPROM)
   4916 		printf(" - No EEPROM\n");
   4917 	if (sc->bge_flags & BGE_PCIX)
   4918 		printf(" - PCI-X Bus\n");
   4919 	if (sc->bge_flags & BGE_PCIE)
   4920 		printf(" - PCI Express Bus\n");
   4921 	if (sc->bge_flags & BGE_NO_3LED)
   4922 		printf(" - No 3 LEDs\n");
   4923 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4924 		printf(" - RX Alignment Bug\n");
   4925 	if (sc->bge_flags & BGE_TSO)
   4926 		printf(" - TSO\n");
   4927 }
   4928 #endif /* BGE_DEBUG */
   4929 
   4930 static int
   4931 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4932 {
   4933 	prop_dictionary_t dict;
   4934 	prop_data_t ea;
   4935 
   4936 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4937 		return 1;
   4938 
   4939 	dict = device_properties(sc->bge_dev);
   4940 	ea = prop_dictionary_get(dict, "mac-address");
   4941 	if (ea != NULL) {
   4942 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4943 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4944 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4945 		return 0;
   4946 	}
   4947 
   4948 	return 1;
   4949 }
   4950 
   4951 static int
   4952 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4953 {
   4954 	uint32_t mac_addr;
   4955 
   4956 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4957 	if ((mac_addr >> 16) == 0x484b) {
   4958 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4959 		ether_addr[1] = (uint8_t)mac_addr;
   4960 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4961 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4962 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4963 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4964 		ether_addr[5] = (uint8_t)mac_addr;
   4965 		return 0;
   4966 	}
   4967 	return 1;
   4968 }
   4969 
   4970 static int
   4971 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4972 {
   4973 	int mac_offset = BGE_EE_MAC_OFFSET;
   4974 
   4975 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4976 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4977 
   4978 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4979 	    ETHER_ADDR_LEN));
   4980 }
   4981 
   4982 static int
   4983 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4984 {
   4985 
   4986 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4987 		return 1;
   4988 
   4989 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4990 	   ETHER_ADDR_LEN));
   4991 }
   4992 
   4993 static int
   4994 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4995 {
   4996 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4997 		/* NOTE: Order is critical */
   4998 		bge_get_eaddr_fw,
   4999 		bge_get_eaddr_mem,
   5000 		bge_get_eaddr_nvram,
   5001 		bge_get_eaddr_eeprom,
   5002 		NULL
   5003 	};
   5004 	const bge_eaddr_fcn_t *func;
   5005 
   5006 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5007 		if ((*func)(sc, eaddr) == 0)
   5008 			break;
   5009 	}
   5010 	return (*func == NULL ? ENXIO : 0);
   5011 }
   5012