if_bge.c revision 1.200 1 /* $NetBSD: if_bge.c,v 1.200 2012/02/02 19:43:05 tls Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.200 2012/02/02 19:43:05 tls Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(device_t);
253
254 #define BGE_RESET_START 1
255 #define BGE_RESET_STOP 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void sysctl_bge_init(struct bge_softc *);
263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC9100,
317 "Altima AC9100 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_BROADCOM,
320 PCI_PRODUCT_BROADCOM_BCM5700,
321 "Broadcom BCM5700 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_BROADCOM,
324 PCI_PRODUCT_BROADCOM_BCM5701,
325 "Broadcom BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5702,
329 "Broadcom BCM5702 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5702X,
333 "Broadcom BCM5702X Gigabit Ethernet" },
334 { PCI_VENDOR_BROADCOM,
335 PCI_PRODUCT_BROADCOM_BCM5703,
336 "Broadcom BCM5703 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5703X,
340 "Broadcom BCM5703X Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5704C,
348 "Broadcom BCM5704C Dual Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5704S,
352 "Broadcom BCM5704S Dual Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5705,
356 "Broadcom BCM5705 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5705F,
360 "Broadcom BCM5705F Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705K,
364 "Broadcom BCM5705K Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705M,
368 "Broadcom BCM5705M Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 "Broadcom BCM5705M Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5714,
376 "Broadcom BCM5714 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5714S,
380 "Broadcom BCM5714S Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5715,
384 "Broadcom BCM5715 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5715S,
388 "Broadcom BCM5715S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5717,
392 "Broadcom BCM5717 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5718,
396 "Broadcom BCM5718 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5720,
400 "Broadcom BCM5720 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5721,
404 "Broadcom BCM5721 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5722,
408 "Broadcom BCM5722 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5723,
412 "Broadcom BCM5723 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5724,
416 "Broadcom BCM5724 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5750,
420 "Broadcom BCM5750 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5750M,
424 "Broadcom BCM5750M Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5751,
428 "Broadcom BCM5751 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5751F,
432 "Broadcom BCM5751F Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751M,
436 "Broadcom BCM5751M Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5752,
440 "Broadcom BCM5752 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5752M,
444 "Broadcom BCM5752M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5753,
448 "Broadcom BCM5753 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5753F,
452 "Broadcom BCM5753F Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753M,
456 "Broadcom BCM5753M Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5754,
460 "Broadcom BCM5754 Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5754M,
464 "Broadcom BCM5754M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5755,
468 "Broadcom BCM5755 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5755M,
472 "Broadcom BCM5755M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5756,
476 "Broadcom BCM5756 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5761,
480 "Broadcom BCM5761 Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5761E,
484 "Broadcom BCM5761E Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761S,
488 "Broadcom BCM5761S Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761SE,
492 "Broadcom BCM5761SE Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5764,
496 "Broadcom BCM5764 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5780,
500 "Broadcom BCM5780 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5780S,
504 "Broadcom BCM5780S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5781,
508 "Broadcom BCM5781 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5782,
512 "Broadcom BCM5782 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5784M,
516 "BCM5784M NetLink 1000baseT Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5786,
520 "Broadcom BCM5786 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5787,
524 "Broadcom BCM5787 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5787M,
528 "Broadcom BCM5787M Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5788,
532 "Broadcom BCM5788 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5789,
536 "Broadcom BCM5789 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5901,
540 "Broadcom BCM5901 Fast Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5901A2,
544 "Broadcom BCM5901A2 Fast Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5903M,
548 "Broadcom BCM5903M Fast Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5906,
552 "Broadcom BCM5906 Fast Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5906M,
556 "Broadcom BCM5906M Fast Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM57760,
560 "Broadcom BCM57760 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM57761,
564 "Broadcom BCM57761 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM57765,
568 "Broadcom BCM57765 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM57780,
572 "Broadcom BCM57780 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM57781,
576 "Broadcom BCM57781 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57785,
580 "Broadcom BCM57785 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57788,
584 "Broadcom BCM57788 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57790,
588 "Broadcom BCM57790 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57791,
592 "Broadcom BCM57791 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57795,
596 "Broadcom BCM57795 Fast Ethernet",
597 },
598 { PCI_VENDOR_SCHNEIDERKOCH,
599 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
600 "SysKonnect SK-9Dx1 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_3COM,
603 PCI_PRODUCT_3COM_3C996,
604 "3Com 3c996 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_FUJITSU4,
607 PCI_PRODUCT_FUJITSU4_PW008GE4,
608 "Fujitsu PW008GE4 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_FUJITSU4,
611 PCI_PRODUCT_FUJITSU4_PW008GE5,
612 "Fujitsu PW008GE5 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_FUJITSU4,
615 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
616 "Fujitsu Primepower 250/450 Gigabit Ethernet",
617 },
618 { 0,
619 0,
620 NULL },
621 };
622
623 /*
624 * XXX: how to handle variants based on 5750 and derivatives:
625 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
626 * in general behave like a 5705, except with additional quirks.
627 * This driver's current handling of the 5721 is wrong;
628 * how we map ASIC revision to "quirks" needs more thought.
629 * (defined here until the thought is done).
630 */
631 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
632 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
633 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
634 #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
635 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
636 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
637
638 static const struct bge_revision {
639 uint32_t br_chipid;
640 const char *br_name;
641 } bge_revisions[] = {
642 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
643 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
644 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
645 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
646 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
647 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
648 /* This is treated like a BCM5700 Bx */
649 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
650 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
651 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
652 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
653 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
654 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
655 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
656 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
657 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
658 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
659 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
660 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
661 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
662 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
663 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
664 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
665 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
666 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
667 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
668 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
669 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
670 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
671 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
672 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
673 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
674 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
675 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
676 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
677 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
678 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
679 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
680 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
681 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
682 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
683 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
684 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
685 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
686 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
687 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
688 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
689 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
690 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
691 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
692 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
693 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
694 /* 5754 and 5787 share the same ASIC ID */
695 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
696 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
697 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
698 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
699 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
700 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
701 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
702
703 { 0, NULL }
704 };
705
706 /*
707 * Some defaults for major revisions, so that newer steppings
708 * that we don't know about have a shot at working.
709 */
710 static const struct bge_revision bge_majorrevs[] = {
711 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
712 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
713 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
714 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
715 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
716 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
717 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
718 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
719 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
720 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
721 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
722 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
723 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
724 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
725 /* 5754 and 5787 share the same ASIC ID */
726 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
727 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
728 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
729 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
730 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
731
732 { 0, NULL }
733 };
734
735 static int bge_allow_asf = 1;
736
737 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
738 bge_probe, bge_attach, NULL, NULL);
739
740 static uint32_t
741 bge_readmem_ind(struct bge_softc *sc, int off)
742 {
743 pcireg_t val;
744
745 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
746 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
747 return val;
748 }
749
750 static void
751 bge_writemem_ind(struct bge_softc *sc, int off, int val)
752 {
753 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
754 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
755 }
756
757 /*
758 * PCI Express only
759 */
760 static void
761 bge_set_max_readrq(struct bge_softc *sc)
762 {
763 pcireg_t val;
764
765 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
766 + PCI_PCIE_DCSR);
767 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
768 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
769 aprint_verbose_dev(sc->bge_dev,
770 "adjust device control 0x%04x ", val);
771 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
772 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
773 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
774 + PCI_PCIE_DCSR, val);
775 aprint_verbose("-> 0x%04x\n", val);
776 }
777 }
778
779 #ifdef notdef
780 static uint32_t
781 bge_readreg_ind(struct bge_softc *sc, int off)
782 {
783 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
784 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
785 }
786 #endif
787
788 static void
789 bge_writereg_ind(struct bge_softc *sc, int off, int val)
790 {
791 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
792 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
793 }
794
795 static void
796 bge_writemem_direct(struct bge_softc *sc, int off, int val)
797 {
798 CSR_WRITE_4(sc, off, val);
799 }
800
801 static void
802 bge_writembx(struct bge_softc *sc, int off, int val)
803 {
804 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
805 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
806
807 CSR_WRITE_4(sc, off, val);
808 }
809
810 static uint8_t
811 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
812 {
813 uint32_t access, byte = 0;
814 int i;
815
816 /* Lock. */
817 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
818 for (i = 0; i < 8000; i++) {
819 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
820 break;
821 DELAY(20);
822 }
823 if (i == 8000)
824 return 1;
825
826 /* Enable access. */
827 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
828 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
829
830 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
831 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
832 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
833 DELAY(10);
834 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
835 DELAY(10);
836 break;
837 }
838 }
839
840 if (i == BGE_TIMEOUT * 10) {
841 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
842 return 1;
843 }
844
845 /* Get result. */
846 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
847
848 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
849
850 /* Disable access. */
851 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
852
853 /* Unlock. */
854 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
855 CSR_READ_4(sc, BGE_NVRAM_SWARB);
856
857 return 0;
858 }
859
860 /*
861 * Read a sequence of bytes from NVRAM.
862 */
863 static int
864 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
865 {
866 int err = 0, i;
867 uint8_t byte = 0;
868
869 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
870 return 1;
871
872 for (i = 0; i < cnt; i++) {
873 err = bge_nvram_getbyte(sc, off + i, &byte);
874 if (err)
875 break;
876 *(dest + i) = byte;
877 }
878
879 return (err ? 1 : 0);
880 }
881
882 /*
883 * Read a byte of data stored in the EEPROM at address 'addr.' The
884 * BCM570x supports both the traditional bitbang interface and an
885 * auto access interface for reading the EEPROM. We use the auto
886 * access method.
887 */
888 static uint8_t
889 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
890 {
891 int i;
892 uint32_t byte = 0;
893
894 /*
895 * Enable use of auto EEPROM access so we can avoid
896 * having to use the bitbang method.
897 */
898 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
899
900 /* Reset the EEPROM, load the clock period. */
901 CSR_WRITE_4(sc, BGE_EE_ADDR,
902 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
903 DELAY(20);
904
905 /* Issue the read EEPROM command. */
906 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
907
908 /* Wait for completion */
909 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
910 DELAY(10);
911 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
912 break;
913 }
914
915 if (i == BGE_TIMEOUT * 10) {
916 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
917 return 1;
918 }
919
920 /* Get result. */
921 byte = CSR_READ_4(sc, BGE_EE_DATA);
922
923 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
924
925 return 0;
926 }
927
928 /*
929 * Read a sequence of bytes from the EEPROM.
930 */
931 static int
932 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
933 {
934 int err = 0, i;
935 uint8_t byte = 0;
936 char *dest = destv;
937
938 for (i = 0; i < cnt; i++) {
939 err = bge_eeprom_getbyte(sc, off + i, &byte);
940 if (err)
941 break;
942 *(dest + i) = byte;
943 }
944
945 return (err ? 1 : 0);
946 }
947
948 static int
949 bge_miibus_readreg(device_t dev, int phy, int reg)
950 {
951 struct bge_softc *sc = device_private(dev);
952 uint32_t val;
953 uint32_t autopoll;
954 int i;
955
956 /*
957 * Broadcom's own driver always assumes the internal
958 * PHY is at GMII address 1. On some chips, the PHY responds
959 * to accesses at all addresses, which could cause us to
960 * bogusly attach the PHY 32 times at probe type. Always
961 * restricting the lookup to address 1 is simpler than
962 * trying to figure out which chips revisions should be
963 * special-cased.
964 */
965 if (phy != 1)
966 return 0;
967
968 /* Reading with autopolling on may trigger PCI errors */
969 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
970 if (autopoll & BGE_MIMODE_AUTOPOLL) {
971 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
972 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
973 DELAY(40);
974 }
975
976 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
977 BGE_MIPHY(phy) | BGE_MIREG(reg));
978
979 for (i = 0; i < BGE_TIMEOUT; i++) {
980 val = CSR_READ_4(sc, BGE_MI_COMM);
981 if (!(val & BGE_MICOMM_BUSY))
982 break;
983 delay(10);
984 }
985
986 if (i == BGE_TIMEOUT) {
987 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
988 val = 0;
989 goto done;
990 }
991
992 val = CSR_READ_4(sc, BGE_MI_COMM);
993
994 done:
995 if (autopoll & BGE_MIMODE_AUTOPOLL) {
996 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
997 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
998 DELAY(40);
999 }
1000
1001 if (val & BGE_MICOMM_READFAIL)
1002 return 0;
1003
1004 return (val & 0xFFFF);
1005 }
1006
1007 static void
1008 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1009 {
1010 struct bge_softc *sc = device_private(dev);
1011 uint32_t autopoll;
1012 int i;
1013
1014 if (phy!=1) {
1015 return;
1016 }
1017
1018 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1019 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1020 return;
1021 }
1022
1023 /* Reading with autopolling on may trigger PCI errors */
1024 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1025 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1026 delay(40);
1027 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1028 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1029 delay(10); /* 40 usec is supposed to be adequate */
1030 }
1031
1032 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1033 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1034
1035 for (i = 0; i < BGE_TIMEOUT; i++) {
1036 delay(10);
1037 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1038 delay(5);
1039 CSR_READ_4(sc, BGE_MI_COMM);
1040 break;
1041 }
1042 }
1043
1044 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1045 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1046 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1047 delay(40);
1048 }
1049
1050 if (i == BGE_TIMEOUT)
1051 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1052 }
1053
1054 static void
1055 bge_miibus_statchg(device_t dev)
1056 {
1057 struct bge_softc *sc = device_private(dev);
1058 struct mii_data *mii = &sc->bge_mii;
1059
1060 /*
1061 * Get flow control negotiation result.
1062 */
1063 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1064 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1065 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1066 mii->mii_media_active &= ~IFM_ETH_FMASK;
1067 }
1068
1069 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1070 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1071 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1072 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1073 else
1074 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1075
1076 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1077 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1078 else
1079 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1080
1081 /*
1082 * 802.3x flow control
1083 */
1084 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1085 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1086 else
1087 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1088
1089 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1090 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1091 else
1092 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1093 }
1094
1095 /*
1096 * Update rx threshold levels to values in a particular slot
1097 * of the interrupt-mitigation table bge_rx_threshes.
1098 */
1099 static void
1100 bge_set_thresh(struct ifnet *ifp, int lvl)
1101 {
1102 struct bge_softc *sc = ifp->if_softc;
1103 int s;
1104
1105 /* For now, just save the new Rx-intr thresholds and record
1106 * that a threshold update is pending. Updating the hardware
1107 * registers here (even at splhigh()) is observed to
1108 * occasionaly cause glitches where Rx-interrupts are not
1109 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1110 */
1111 s = splnet();
1112 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1113 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1114 sc->bge_pending_rxintr_change = 1;
1115 splx(s);
1116
1117 return;
1118 }
1119
1120
1121 /*
1122 * Update Rx thresholds of all bge devices
1123 */
1124 static void
1125 bge_update_all_threshes(int lvl)
1126 {
1127 struct ifnet *ifp;
1128 const char * const namebuf = "bge";
1129 int namelen;
1130
1131 if (lvl < 0)
1132 lvl = 0;
1133 else if (lvl >= NBGE_RX_THRESH)
1134 lvl = NBGE_RX_THRESH - 1;
1135
1136 namelen = strlen(namebuf);
1137 /*
1138 * Now search all the interfaces for this name/number
1139 */
1140 IFNET_FOREACH(ifp) {
1141 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1142 continue;
1143 /* We got a match: update if doing auto-threshold-tuning */
1144 if (bge_auto_thresh)
1145 bge_set_thresh(ifp, lvl);
1146 }
1147 }
1148
1149 /*
1150 * Handle events that have triggered interrupts.
1151 */
1152 static void
1153 bge_handle_events(struct bge_softc *sc)
1154 {
1155
1156 return;
1157 }
1158
1159 /*
1160 * Memory management for jumbo frames.
1161 */
1162
1163 static int
1164 bge_alloc_jumbo_mem(struct bge_softc *sc)
1165 {
1166 char *ptr, *kva;
1167 bus_dma_segment_t seg;
1168 int i, rseg, state, error;
1169 struct bge_jpool_entry *entry;
1170
1171 state = error = 0;
1172
1173 /* Grab a big chunk o' storage. */
1174 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1175 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1176 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1177 return ENOBUFS;
1178 }
1179
1180 state = 1;
1181 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1182 BUS_DMA_NOWAIT)) {
1183 aprint_error_dev(sc->bge_dev,
1184 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1185 error = ENOBUFS;
1186 goto out;
1187 }
1188
1189 state = 2;
1190 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1191 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1192 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1193 error = ENOBUFS;
1194 goto out;
1195 }
1196
1197 state = 3;
1198 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1199 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1200 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1201 error = ENOBUFS;
1202 goto out;
1203 }
1204
1205 state = 4;
1206 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1207 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1208
1209 SLIST_INIT(&sc->bge_jfree_listhead);
1210 SLIST_INIT(&sc->bge_jinuse_listhead);
1211
1212 /*
1213 * Now divide it up into 9K pieces and save the addresses
1214 * in an array.
1215 */
1216 ptr = sc->bge_cdata.bge_jumbo_buf;
1217 for (i = 0; i < BGE_JSLOTS; i++) {
1218 sc->bge_cdata.bge_jslots[i] = ptr;
1219 ptr += BGE_JLEN;
1220 entry = malloc(sizeof(struct bge_jpool_entry),
1221 M_DEVBUF, M_NOWAIT);
1222 if (entry == NULL) {
1223 aprint_error_dev(sc->bge_dev,
1224 "no memory for jumbo buffer queue!\n");
1225 error = ENOBUFS;
1226 goto out;
1227 }
1228 entry->slot = i;
1229 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1230 entry, jpool_entries);
1231 }
1232 out:
1233 if (error != 0) {
1234 switch (state) {
1235 case 4:
1236 bus_dmamap_unload(sc->bge_dmatag,
1237 sc->bge_cdata.bge_rx_jumbo_map);
1238 case 3:
1239 bus_dmamap_destroy(sc->bge_dmatag,
1240 sc->bge_cdata.bge_rx_jumbo_map);
1241 case 2:
1242 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1243 case 1:
1244 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1245 break;
1246 default:
1247 break;
1248 }
1249 }
1250
1251 return error;
1252 }
1253
1254 /*
1255 * Allocate a jumbo buffer.
1256 */
1257 static void *
1258 bge_jalloc(struct bge_softc *sc)
1259 {
1260 struct bge_jpool_entry *entry;
1261
1262 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1263
1264 if (entry == NULL) {
1265 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1266 return NULL;
1267 }
1268
1269 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1270 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1271 return (sc->bge_cdata.bge_jslots[entry->slot]);
1272 }
1273
1274 /*
1275 * Release a jumbo buffer.
1276 */
1277 static void
1278 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1279 {
1280 struct bge_jpool_entry *entry;
1281 struct bge_softc *sc;
1282 int i, s;
1283
1284 /* Extract the softc struct pointer. */
1285 sc = (struct bge_softc *)arg;
1286
1287 if (sc == NULL)
1288 panic("bge_jfree: can't find softc pointer!");
1289
1290 /* calculate the slot this buffer belongs to */
1291
1292 i = ((char *)buf
1293 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1294
1295 if ((i < 0) || (i >= BGE_JSLOTS))
1296 panic("bge_jfree: asked to free buffer that we don't manage!");
1297
1298 s = splvm();
1299 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1300 if (entry == NULL)
1301 panic("bge_jfree: buffer not in use!");
1302 entry->slot = i;
1303 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1304 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1305
1306 if (__predict_true(m != NULL))
1307 pool_cache_put(mb_cache, m);
1308 splx(s);
1309 }
1310
1311
1312 /*
1313 * Initialize a standard receive ring descriptor.
1314 */
1315 static int
1316 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1317 bus_dmamap_t dmamap)
1318 {
1319 struct mbuf *m_new = NULL;
1320 struct bge_rx_bd *r;
1321 int error;
1322
1323 if (dmamap == NULL) {
1324 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1325 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1326 if (error != 0)
1327 return error;
1328 }
1329
1330 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1331
1332 if (m == NULL) {
1333 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1334 if (m_new == NULL)
1335 return ENOBUFS;
1336
1337 MCLGET(m_new, M_DONTWAIT);
1338 if (!(m_new->m_flags & M_EXT)) {
1339 m_freem(m_new);
1340 return ENOBUFS;
1341 }
1342 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1343
1344 } else {
1345 m_new = m;
1346 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1347 m_new->m_data = m_new->m_ext.ext_buf;
1348 }
1349 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1350 m_adj(m_new, ETHER_ALIGN);
1351 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1352 BUS_DMA_READ|BUS_DMA_NOWAIT))
1353 return ENOBUFS;
1354 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1355 BUS_DMASYNC_PREREAD);
1356
1357 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1358 r = &sc->bge_rdata->bge_rx_std_ring[i];
1359 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1360 r->bge_flags = BGE_RXBDFLAG_END;
1361 r->bge_len = m_new->m_len;
1362 r->bge_idx = i;
1363
1364 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1365 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1366 i * sizeof (struct bge_rx_bd),
1367 sizeof (struct bge_rx_bd),
1368 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1369
1370 return 0;
1371 }
1372
1373 /*
1374 * Initialize a jumbo receive ring descriptor. This allocates
1375 * a jumbo buffer from the pool managed internally by the driver.
1376 */
1377 static int
1378 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1379 {
1380 struct mbuf *m_new = NULL;
1381 struct bge_rx_bd *r;
1382 void *buf = NULL;
1383
1384 if (m == NULL) {
1385
1386 /* Allocate the mbuf. */
1387 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1388 if (m_new == NULL)
1389 return ENOBUFS;
1390
1391 /* Allocate the jumbo buffer */
1392 buf = bge_jalloc(sc);
1393 if (buf == NULL) {
1394 m_freem(m_new);
1395 aprint_error_dev(sc->bge_dev,
1396 "jumbo allocation failed -- packet dropped!\n");
1397 return ENOBUFS;
1398 }
1399
1400 /* Attach the buffer to the mbuf. */
1401 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1402 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1403 bge_jfree, sc);
1404 m_new->m_flags |= M_EXT_RW;
1405 } else {
1406 m_new = m;
1407 buf = m_new->m_data = m_new->m_ext.ext_buf;
1408 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1409 }
1410 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1411 m_adj(m_new, ETHER_ALIGN);
1412 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1413 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1414 BUS_DMASYNC_PREREAD);
1415 /* Set up the descriptor. */
1416 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1417 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1418 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1419 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1420 r->bge_len = m_new->m_len;
1421 r->bge_idx = i;
1422
1423 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1424 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1425 i * sizeof (struct bge_rx_bd),
1426 sizeof (struct bge_rx_bd),
1427 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1428
1429 return 0;
1430 }
1431
1432 /*
1433 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1434 * that's 1MB or memory, which is a lot. For now, we fill only the first
1435 * 256 ring entries and hope that our CPU is fast enough to keep up with
1436 * the NIC.
1437 */
1438 static int
1439 bge_init_rx_ring_std(struct bge_softc *sc)
1440 {
1441 int i;
1442
1443 if (sc->bge_flags & BGE_RXRING_VALID)
1444 return 0;
1445
1446 for (i = 0; i < BGE_SSLOTS; i++) {
1447 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1448 return ENOBUFS;
1449 }
1450
1451 sc->bge_std = i - 1;
1452 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1453
1454 sc->bge_flags |= BGE_RXRING_VALID;
1455
1456 return 0;
1457 }
1458
1459 static void
1460 bge_free_rx_ring_std(struct bge_softc *sc)
1461 {
1462 int i;
1463
1464 if (!(sc->bge_flags & BGE_RXRING_VALID))
1465 return;
1466
1467 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1468 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1469 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1470 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1471 bus_dmamap_destroy(sc->bge_dmatag,
1472 sc->bge_cdata.bge_rx_std_map[i]);
1473 }
1474 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1475 sizeof(struct bge_rx_bd));
1476 }
1477
1478 sc->bge_flags &= ~BGE_RXRING_VALID;
1479 }
1480
1481 static int
1482 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1483 {
1484 int i;
1485 volatile struct bge_rcb *rcb;
1486
1487 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1488 return 0;
1489
1490 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1491 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1492 return ENOBUFS;
1493 };
1494
1495 sc->bge_jumbo = i - 1;
1496 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1497
1498 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1499 rcb->bge_maxlen_flags = 0;
1500 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1501
1502 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1503
1504 return 0;
1505 }
1506
1507 static void
1508 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1509 {
1510 int i;
1511
1512 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1513 return;
1514
1515 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1516 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1517 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1518 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1519 }
1520 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1521 sizeof(struct bge_rx_bd));
1522 }
1523
1524 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1525 }
1526
1527 static void
1528 bge_free_tx_ring(struct bge_softc *sc)
1529 {
1530 int i, freed;
1531 struct txdmamap_pool_entry *dma;
1532
1533 if (!(sc->bge_flags & BGE_TXRING_VALID))
1534 return;
1535
1536 freed = 0;
1537
1538 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1539 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1540 freed++;
1541 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1542 sc->bge_cdata.bge_tx_chain[i] = NULL;
1543 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1544 link);
1545 sc->txdma[i] = 0;
1546 }
1547 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1548 sizeof(struct bge_tx_bd));
1549 }
1550
1551 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1552 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1553 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1554 free(dma, M_DEVBUF);
1555 }
1556
1557 sc->bge_flags &= ~BGE_TXRING_VALID;
1558 }
1559
1560 static int
1561 bge_init_tx_ring(struct bge_softc *sc)
1562 {
1563 int i;
1564 bus_dmamap_t dmamap;
1565 struct txdmamap_pool_entry *dma;
1566
1567 if (sc->bge_flags & BGE_TXRING_VALID)
1568 return 0;
1569
1570 sc->bge_txcnt = 0;
1571 sc->bge_tx_saved_considx = 0;
1572
1573 /* Initialize transmit producer index for host-memory send ring. */
1574 sc->bge_tx_prodidx = 0;
1575 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1576 /* 5700 b2 errata */
1577 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1578 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1579
1580 /* NIC-memory send ring not used; initialize to zero. */
1581 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1582 /* 5700 b2 errata */
1583 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1584 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1585
1586 SLIST_INIT(&sc->txdma_list);
1587 for (i = 0; i < BGE_RSLOTS; i++) {
1588 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1589 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1590 &dmamap))
1591 return ENOBUFS;
1592 if (dmamap == NULL)
1593 panic("dmamap NULL in bge_init_tx_ring");
1594 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1595 if (dma == NULL) {
1596 aprint_error_dev(sc->bge_dev,
1597 "can't alloc txdmamap_pool_entry\n");
1598 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1599 return ENOMEM;
1600 }
1601 dma->dmamap = dmamap;
1602 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1603 }
1604
1605 sc->bge_flags |= BGE_TXRING_VALID;
1606
1607 return 0;
1608 }
1609
1610 static void
1611 bge_setmulti(struct bge_softc *sc)
1612 {
1613 struct ethercom *ac = &sc->ethercom;
1614 struct ifnet *ifp = &ac->ec_if;
1615 struct ether_multi *enm;
1616 struct ether_multistep step;
1617 uint32_t hashes[4] = { 0, 0, 0, 0 };
1618 uint32_t h;
1619 int i;
1620
1621 if (ifp->if_flags & IFF_PROMISC)
1622 goto allmulti;
1623
1624 /* Now program new ones. */
1625 ETHER_FIRST_MULTI(step, ac, enm);
1626 while (enm != NULL) {
1627 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1628 /*
1629 * We must listen to a range of multicast addresses.
1630 * For now, just accept all multicasts, rather than
1631 * trying to set only those filter bits needed to match
1632 * the range. (At this time, the only use of address
1633 * ranges is for IP multicast routing, for which the
1634 * range is big enough to require all bits set.)
1635 */
1636 goto allmulti;
1637 }
1638
1639 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1640
1641 /* Just want the 7 least-significant bits. */
1642 h &= 0x7f;
1643
1644 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1645 ETHER_NEXT_MULTI(step, enm);
1646 }
1647
1648 ifp->if_flags &= ~IFF_ALLMULTI;
1649 goto setit;
1650
1651 allmulti:
1652 ifp->if_flags |= IFF_ALLMULTI;
1653 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1654
1655 setit:
1656 for (i = 0; i < 4; i++)
1657 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1658 }
1659
1660 static void
1661 bge_sig_pre_reset(struct bge_softc *sc, int type)
1662 {
1663 /*
1664 * Some chips don't like this so only do this if ASF is enabled
1665 */
1666 if (sc->bge_asf_mode)
1667 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1668
1669 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1670 switch (type) {
1671 case BGE_RESET_START:
1672 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1673 break;
1674 case BGE_RESET_STOP:
1675 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1676 break;
1677 }
1678 }
1679 }
1680
1681 static void
1682 bge_sig_post_reset(struct bge_softc *sc, int type)
1683 {
1684
1685 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1686 switch (type) {
1687 case BGE_RESET_START:
1688 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1689 /* START DONE */
1690 break;
1691 case BGE_RESET_STOP:
1692 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1693 break;
1694 }
1695 }
1696 }
1697
1698 static void
1699 bge_sig_legacy(struct bge_softc *sc, int type)
1700 {
1701
1702 if (sc->bge_asf_mode) {
1703 switch (type) {
1704 case BGE_RESET_START:
1705 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1706 break;
1707 case BGE_RESET_STOP:
1708 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1709 break;
1710 }
1711 }
1712 }
1713
1714 static void
1715 bge_stop_fw(struct bge_softc *sc)
1716 {
1717 int i;
1718
1719 if (sc->bge_asf_mode) {
1720 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1721 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1722 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1723
1724 for (i = 0; i < 100; i++) {
1725 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1726 break;
1727 DELAY(10);
1728 }
1729 }
1730 }
1731
1732 static int
1733 bge_poll_fw(struct bge_softc *sc)
1734 {
1735 uint32_t val;
1736 int i;
1737
1738 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1739 for (i = 0; i < BGE_TIMEOUT; i++) {
1740 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1741 if (val & BGE_VCPU_STATUS_INIT_DONE)
1742 break;
1743 DELAY(100);
1744 }
1745 if (i >= BGE_TIMEOUT) {
1746 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1747 return -1;
1748 }
1749 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1750 /*
1751 * Poll the value location we just wrote until
1752 * we see the 1's complement of the magic number.
1753 * This indicates that the firmware initialization
1754 * is complete.
1755 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1756 */
1757 for (i = 0; i < BGE_TIMEOUT; i++) {
1758 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1759 if (val == ~BGE_MAGIC_NUMBER)
1760 break;
1761 DELAY(10);
1762 }
1763
1764 if (i >= BGE_TIMEOUT) {
1765 aprint_error_dev(sc->bge_dev,
1766 "firmware handshake timed out, val = %x\n", val);
1767 return -1;
1768 }
1769 }
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1776 * self-test results.
1777 */
1778 static int
1779 bge_chipinit(struct bge_softc *sc)
1780 {
1781 int i;
1782 uint32_t dma_rw_ctl;
1783
1784 /* Set endianness before we access any non-PCI registers. */
1785 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1786 BGE_INIT);
1787
1788 /* Set power state to D0. */
1789 bge_setpowerstate(sc, 0);
1790
1791 /* Clear the MAC control register */
1792 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1793
1794 /*
1795 * Clear the MAC statistics block in the NIC's
1796 * internal memory.
1797 */
1798 for (i = BGE_STATS_BLOCK;
1799 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1800 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1801
1802 for (i = BGE_STATUS_BLOCK;
1803 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1804 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1805
1806 /* Set up the PCI DMA control register. */
1807 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1808 if (sc->bge_flags & BGE_PCIE) {
1809 /* Read watermark not used, 128 bytes for write. */
1810 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1811 device_xname(sc->bge_dev)));
1812 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1813 } else if (sc->bge_flags & BGE_PCIX) {
1814 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1815 device_xname(sc->bge_dev)));
1816 /* PCI-X bus */
1817 if (BGE_IS_5714_FAMILY(sc)) {
1818 /* 256 bytes for read and write. */
1819 dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1820 (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1821
1822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1823 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1824 else
1825 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1826 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1827 /* 1536 bytes for read, 384 bytes for write. */
1828 dma_rw_ctl |=
1829 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1830 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1831 } else {
1832 /* 384 bytes for read and write. */
1833 dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1834 (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1835 (0x0F);
1836 }
1837
1838 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1839 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1840 uint32_t tmp;
1841
1842 /* Set ONEDMA_ATONCE for hardware workaround. */
1843 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1844 if (tmp == 6 || tmp == 7)
1845 dma_rw_ctl |=
1846 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1847
1848 /* Set PCI-X DMA write workaround. */
1849 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1850 }
1851 } else {
1852 /* Conventional PCI bus: 256 bytes for read and write. */
1853 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1854 device_xname(sc->bge_dev)));
1855 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1856 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1857 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1858 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1859 dma_rw_ctl |= 0x0F;
1860 }
1861
1862 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1863 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1864 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1865 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1866
1867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1868 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1869 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1870
1871 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1872 dma_rw_ctl);
1873
1874 /*
1875 * Set up general mode register.
1876 */
1877 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1878 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1879 BGE_MODECTL_TX_NO_PHDR_CSUM);
1880
1881 /*
1882 * BCM5701 B5 have a bug causing data corruption when using
1883 * 64-bit DMA reads, which can be terminated early and then
1884 * completed later as 32-bit accesses, in combination with
1885 * certain bridges.
1886 */
1887 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1888 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1889 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1890
1891 /*
1892 * Tell the firmware the driver is running
1893 */
1894 if (sc->bge_asf_mode & ASF_STACKUP)
1895 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1896
1897 /*
1898 * Disable memory write invalidate. Apparently it is not supported
1899 * properly by these devices.
1900 */
1901 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1902 PCI_COMMAND_INVALIDATE_ENABLE);
1903
1904 #ifdef __brokenalpha__
1905 /*
1906 * Must insure that we do not cross an 8K (bytes) boundary
1907 * for DMA reads. Our highest limit is 1K bytes. This is a
1908 * restriction on some ALPHA platforms with early revision
1909 * 21174 PCI chipsets, such as the AlphaPC 164lx
1910 */
1911 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1912 #endif
1913
1914 /* Set the timer prescaler (always 66MHz) */
1915 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1916
1917 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1918 DELAY(40); /* XXX */
1919
1920 /* Put PHY into ready state */
1921 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1922 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1923 DELAY(40);
1924 }
1925
1926 return 0;
1927 }
1928
1929 static int
1930 bge_blockinit(struct bge_softc *sc)
1931 {
1932 volatile struct bge_rcb *rcb;
1933 bus_size_t rcb_addr;
1934 int i;
1935 struct ifnet *ifp = &sc->ethercom.ec_if;
1936 bge_hostaddr taddr;
1937 uint32_t val;
1938
1939 /*
1940 * Initialize the memory window pointer register so that
1941 * we can access the first 32K of internal NIC RAM. This will
1942 * allow us to set up the TX send ring RCBs and the RX return
1943 * ring RCBs, plus other things which live in NIC memory.
1944 */
1945
1946 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1947
1948 /* Step 33: Configure mbuf memory pool */
1949 if (BGE_IS_5700_FAMILY(sc)) {
1950 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1951 BGE_BUFFPOOL_1);
1952
1953 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1954 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1955 else
1956 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1957
1958 /* Configure DMA resource pool */
1959 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1960 BGE_DMA_DESCRIPTORS);
1961 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1962 }
1963
1964 /* Step 35: Configure mbuf pool watermarks */
1965 #ifdef ORIG_WPAUL_VALUES
1966 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1969 #else
1970
1971 /* new broadcom docs strongly recommend these: */
1972 if (!BGE_IS_5705_PLUS(sc)) {
1973 if (ifp->if_mtu > ETHER_MAX_LEN) {
1974 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1976 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1977 } else {
1978 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1979 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1981 }
1982 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1983 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1984 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1985 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1986 } else {
1987 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1988 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1989 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1990 }
1991 #endif
1992
1993 /* Step 36: Configure DMA resource watermarks */
1994 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1995 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1996
1997 /* Step 38: Enable buffer manager */
1998 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1999 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2000
2001 /* Step 39: Poll for buffer manager start indication */
2002 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2003 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2004 break;
2005 DELAY(10);
2006 }
2007
2008 if (i == BGE_TIMEOUT * 2) {
2009 aprint_error_dev(sc->bge_dev,
2010 "buffer manager failed to start\n");
2011 return ENXIO;
2012 }
2013
2014 /* Step 40: Enable flow-through queues */
2015 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2016 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2017
2018 /* Wait until queue initialization is complete */
2019 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2020 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2021 break;
2022 DELAY(10);
2023 }
2024
2025 if (i == BGE_TIMEOUT * 2) {
2026 aprint_error_dev(sc->bge_dev,
2027 "flow-through queue init failed\n");
2028 return ENXIO;
2029 }
2030
2031 /* Step 41: Initialize the standard RX ring control block */
2032 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2033 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2034 if (BGE_IS_5705_PLUS(sc))
2035 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2036 else
2037 rcb->bge_maxlen_flags =
2038 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2039 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2040 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2041 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2042 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2043 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2044
2045 /*
2046 * Step 42: Initialize the jumbo RX ring control block
2047 * We set the 'ring disabled' bit in the flags
2048 * field until we're actually ready to start
2049 * using this ring (i.e. once we set the MTU
2050 * high enough to require it).
2051 */
2052 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2053 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2054 BGE_HOSTADDR(rcb->bge_hostaddr,
2055 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2056 rcb->bge_maxlen_flags =
2057 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2058 BGE_RCB_FLAG_RING_DISABLED);
2059 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2060 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2061 rcb->bge_hostaddr.bge_addr_hi);
2062 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2063 rcb->bge_hostaddr.bge_addr_lo);
2064 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2065 rcb->bge_maxlen_flags);
2066 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2067
2068 /* Set up dummy disabled mini ring RCB */
2069 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2070 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2071 BGE_RCB_FLAG_RING_DISABLED);
2072 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2073 rcb->bge_maxlen_flags);
2074
2075 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2076 offsetof(struct bge_ring_data, bge_info),
2077 sizeof (struct bge_gib),
2078 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2079 }
2080
2081 /*
2082 * Set the BD ring replenish thresholds. The recommended
2083 * values are 1/8th the number of descriptors allocated to
2084 * each ring.
2085 */
2086 i = BGE_STD_RX_RING_CNT / 8;
2087
2088 /*
2089 * Use a value of 8 for the following chips to workaround HW errata.
2090 * Some of these chips have been added based on empirical
2091 * evidence (they don't work unless this is done).
2092 */
2093 if (BGE_IS_5705_PLUS(sc))
2094 i = 8;
2095
2096 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2097 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2098
2099 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2100 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2101 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2102 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2103 }
2104
2105 /*
2106 * Disable all unused send rings by setting the 'ring disabled'
2107 * bit in the flags field of all the TX send ring control blocks.
2108 * These are located in NIC memory.
2109 */
2110 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2111 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2112 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2113 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2114 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2115 rcb_addr += sizeof(struct bge_rcb);
2116 }
2117
2118 /* Configure TX RCB 0 (we use only the first ring) */
2119 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2120 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2121 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2122 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2123 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2124 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2125 if (BGE_IS_5700_FAMILY(sc))
2126 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2127 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2128
2129 /* Disable all unused RX return rings */
2130 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2131 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2132 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2133 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2134 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2135 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2136 BGE_RCB_FLAG_RING_DISABLED));
2137 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2138 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2139 (i * (sizeof(uint64_t))), 0);
2140 rcb_addr += sizeof(struct bge_rcb);
2141 }
2142
2143 /* Initialize RX ring indexes */
2144 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2145 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2146 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2147
2148 /*
2149 * Set up RX return ring 0
2150 * Note that the NIC address for RX return rings is 0x00000000.
2151 * The return rings live entirely within the host, so the
2152 * nicaddr field in the RCB isn't used.
2153 */
2154 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2155 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2156 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2157 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2158 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2159 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2160 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2161
2162 /* Set random backoff seed for TX */
2163 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2164 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2165 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2166 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2167 BGE_TX_BACKOFF_SEED_MASK);
2168
2169 /* Set inter-packet gap */
2170 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2171
2172 /*
2173 * Specify which ring to use for packets that don't match
2174 * any RX rules.
2175 */
2176 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2177
2178 /*
2179 * Configure number of RX lists. One interrupt distribution
2180 * list, sixteen active lists, one bad frames class.
2181 */
2182 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2183
2184 /* Inialize RX list placement stats mask. */
2185 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2186 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2187
2188 /* Disable host coalescing until we get it set up */
2189 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2190
2191 /* Poll to make sure it's shut down. */
2192 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2193 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2194 break;
2195 DELAY(10);
2196 }
2197
2198 if (i == BGE_TIMEOUT * 2) {
2199 aprint_error_dev(sc->bge_dev,
2200 "host coalescing engine failed to idle\n");
2201 return ENXIO;
2202 }
2203
2204 /* Set up host coalescing defaults */
2205 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2206 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2207 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2208 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2209 if (BGE_IS_5700_FAMILY(sc)) {
2210 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2211 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2212 }
2213 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2214 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2215
2216 /* Set up address of statistics block */
2217 if (BGE_IS_5700_FAMILY(sc)) {
2218 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2219 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2220 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2221 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2222 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2223 }
2224
2225 /* Set up address of status block */
2226 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2227 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2228 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2229 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2230 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2231 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2232
2233 /* Turn on host coalescing state machine */
2234 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2235
2236 /* Turn on RX BD completion state machine and enable attentions */
2237 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2238 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2239
2240 /* Turn on RX list placement state machine */
2241 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2242
2243 /* Turn on RX list selector state machine. */
2244 if (BGE_IS_5700_FAMILY(sc))
2245 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2246
2247 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2248 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2249 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2250 BGE_MACMODE_FRMHDR_DMA_ENB;
2251
2252 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2253 val |= BGE_PORTMODE_TBI;
2254 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2255 val |= BGE_PORTMODE_GMII;
2256 else
2257 val |= BGE_PORTMODE_MII;
2258
2259 /* Turn on DMA, clear stats */
2260 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2261
2262 /* Set misc. local control, enable interrupts on attentions */
2263 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2264
2265 #ifdef notdef
2266 /* Assert GPIO pins for PHY reset */
2267 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2268 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2269 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2270 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2271 #endif
2272
2273 #if defined(not_quite_yet)
2274 /* Linux driver enables enable gpio pin #1 on 5700s */
2275 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2276 sc->bge_local_ctrl_reg |=
2277 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2278 }
2279 #endif
2280 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2281
2282 /* Turn on DMA completion state machine */
2283 if (BGE_IS_5700_FAMILY(sc))
2284 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2285
2286 /* Turn on write DMA state machine */
2287 {
2288 uint32_t bge_wdma_mode =
2289 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2290
2291 /* Enable host coalescing bug fix; see Linux tg3.c */
2292 if (BGE_IS_5755_PLUS(sc))
2293 bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2294
2295 CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2296 }
2297
2298 /* Turn on read DMA state machine */
2299 {
2300 uint32_t dma_read_modebits;
2301
2302 dma_read_modebits =
2303 BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2304
2305 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2306 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2307 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2308 dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2309 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2310 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2311
2312 if (sc->bge_flags & BGE_PCIE)
2313 dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2314 if (sc->bge_flags & BGE_TSO)
2315 dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2316 CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2317 delay(40);
2318 }
2319
2320 /* Turn on RX data completion state machine */
2321 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2322
2323 /* Turn on RX BD initiator state machine */
2324 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2325
2326 /* Turn on RX data and RX BD initiator state machine */
2327 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2328
2329 /* Turn on Mbuf cluster free state machine */
2330 if (BGE_IS_5700_FAMILY(sc))
2331 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2332
2333 /* Turn on send BD completion state machine */
2334 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2335
2336 /* Turn on send data completion state machine */
2337 val = BGE_SDCMODE_ENABLE;
2338 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2339 val |= BGE_SDCMODE_CDELAY;
2340 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2341
2342 /* Turn on send data initiator state machine */
2343 if (sc->bge_flags & BGE_TSO) {
2344 /* XXX: magic value from Linux driver */
2345 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2346 } else
2347 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2348
2349 /* Turn on send BD initiator state machine */
2350 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2351
2352 /* Turn on send BD selector state machine */
2353 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2354
2355 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2356 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2357 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2358
2359 /* ack/clear link change events */
2360 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2361 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2362 BGE_MACSTAT_LINK_CHANGED);
2363 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2364
2365 /* Enable PHY auto polling (for MII/GMII only) */
2366 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2367 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2368 } else {
2369 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2370 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2371 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2372 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2373 BGE_EVTENB_MI_INTERRUPT);
2374 }
2375
2376 /*
2377 * Clear any pending link state attention.
2378 * Otherwise some link state change events may be lost until attention
2379 * is cleared by bge_intr() -> bge_link_upd() sequence.
2380 * It's not necessary on newer BCM chips - perhaps enabling link
2381 * state change attentions implies clearing pending attention.
2382 */
2383 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2384 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2385 BGE_MACSTAT_LINK_CHANGED);
2386
2387 /* Enable link state change attentions. */
2388 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2389
2390 return 0;
2391 }
2392
2393 static const struct bge_revision *
2394 bge_lookup_rev(uint32_t chipid)
2395 {
2396 const struct bge_revision *br;
2397
2398 for (br = bge_revisions; br->br_name != NULL; br++) {
2399 if (br->br_chipid == chipid)
2400 return br;
2401 }
2402
2403 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2404 if (br->br_chipid == BGE_ASICREV(chipid))
2405 return br;
2406 }
2407
2408 return NULL;
2409 }
2410
2411 static const struct bge_product *
2412 bge_lookup(const struct pci_attach_args *pa)
2413 {
2414 const struct bge_product *bp;
2415
2416 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2417 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2418 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2419 return bp;
2420 }
2421
2422 return NULL;
2423 }
2424
2425 static int
2426 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2427 {
2428 #ifdef NOTYET
2429 uint32_t pm_ctl = 0;
2430
2431 /* XXX FIXME: make sure indirect accesses enabled? */
2432 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2433 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2434 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2435
2436 /* clear the PME_assert bit and power state bits, enable PME */
2437 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2438 pm_ctl &= ~PCIM_PSTAT_DMASK;
2439 pm_ctl |= (1 << 8);
2440
2441 if (powerlevel == 0) {
2442 pm_ctl |= PCIM_PSTAT_D0;
2443 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2444 pm_ctl, 2);
2445 DELAY(10000);
2446 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2447 DELAY(10000);
2448
2449 #ifdef NOTYET
2450 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2451 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2452 #endif
2453 DELAY(40); DELAY(40); DELAY(40);
2454 DELAY(10000); /* above not quite adequate on 5700 */
2455 return 0;
2456 }
2457
2458
2459 /*
2460 * Entering ACPI power states D1-D3 is achieved by wiggling
2461 * GMII gpio pins. Example code assumes all hardware vendors
2462 * followed Broadcom's sample pcb layout. Until we verify that
2463 * for all supported OEM cards, states D1-D3 are unsupported.
2464 */
2465 aprint_error_dev(sc->bge_dev,
2466 "power state %d unimplemented; check GPIO pins\n",
2467 powerlevel);
2468 #endif
2469 return EOPNOTSUPP;
2470 }
2471
2472
2473 /*
2474 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2475 * against our list and return its name if we find a match. Note
2476 * that since the Broadcom controller contains VPD support, we
2477 * can get the device name string from the controller itself instead
2478 * of the compiled-in string. This is a little slow, but it guarantees
2479 * we'll always announce the right product name.
2480 */
2481 static int
2482 bge_probe(device_t parent, cfdata_t match, void *aux)
2483 {
2484 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2485
2486 if (bge_lookup(pa) != NULL)
2487 return 1;
2488
2489 return 0;
2490 }
2491
2492 static void
2493 bge_attach(device_t parent, device_t self, void *aux)
2494 {
2495 struct bge_softc *sc = device_private(self);
2496 struct pci_attach_args *pa = aux;
2497 prop_dictionary_t dict;
2498 const struct bge_product *bp;
2499 const struct bge_revision *br;
2500 pci_chipset_tag_t pc;
2501 pci_intr_handle_t ih;
2502 const char *intrstr = NULL;
2503 bus_dma_segment_t seg;
2504 int rseg;
2505 uint32_t hwcfg = 0;
2506 uint32_t command;
2507 struct ifnet *ifp;
2508 uint32_t misccfg;
2509 void * kva;
2510 u_char eaddr[ETHER_ADDR_LEN];
2511 pcireg_t memtype, subid;
2512 bus_addr_t memaddr;
2513 bus_size_t memsize;
2514 uint32_t pm_ctl;
2515 bool no_seeprom;
2516
2517 bp = bge_lookup(pa);
2518 KASSERT(bp != NULL);
2519
2520 sc->sc_pc = pa->pa_pc;
2521 sc->sc_pcitag = pa->pa_tag;
2522 sc->bge_dev = self;
2523
2524 pc = sc->sc_pc;
2525 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2526
2527 aprint_naive(": Ethernet controller\n");
2528 aprint_normal(": %s\n", bp->bp_name);
2529
2530 /*
2531 * Map control/status registers.
2532 */
2533 DPRINTFN(5, ("Map control/status regs\n"));
2534 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2535 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2536 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2537 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2538
2539 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2540 aprint_error_dev(sc->bge_dev,
2541 "failed to enable memory mapping!\n");
2542 return;
2543 }
2544
2545 DPRINTFN(5, ("pci_mem_find\n"));
2546 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2547 switch (memtype) {
2548 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2549 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2550 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2551 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2552 &memaddr, &memsize) == 0)
2553 break;
2554 default:
2555 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2556 return;
2557 }
2558
2559 DPRINTFN(5, ("pci_intr_map\n"));
2560 if (pci_intr_map(pa, &ih)) {
2561 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2562 return;
2563 }
2564
2565 DPRINTFN(5, ("pci_intr_string\n"));
2566 intrstr = pci_intr_string(pc, ih);
2567
2568 DPRINTFN(5, ("pci_intr_establish\n"));
2569 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2570
2571 if (sc->bge_intrhand == NULL) {
2572 aprint_error_dev(sc->bge_dev,
2573 "couldn't establish interrupt%s%s\n",
2574 intrstr ? " at " : "", intrstr ? intrstr : "");
2575 return;
2576 }
2577 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2578
2579 /*
2580 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2581 * can clobber the chip's PCI config-space power control registers,
2582 * leaving the card in D3 powersave state.
2583 * We do not have memory-mapped registers in this state,
2584 * so force device into D0 state before starting initialization.
2585 */
2586 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2587 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2588 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2589 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2590 DELAY(1000); /* 27 usec is allegedly sufficent */
2591
2592 /*
2593 * Save ASIC rev.
2594 */
2595 sc->bge_chipid =
2596 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2597 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2598
2599 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2600 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2601 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2602 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2603 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2604 BGE_PCI_GEN2_PRODID_ASICREV);
2605 else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2606 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2607 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2608 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2609 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2610 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2611 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2612 BGE_PCI_GEN15_PRODID_ASICREV);
2613 else
2614 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2615 BGE_PCI_PRODID_ASICREV);
2616 }
2617
2618 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2619 &sc->bge_pciecap, NULL) != 0)
2620 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2621 /* PCIe */
2622 sc->bge_flags |= BGE_PCIE;
2623 bge_set_max_readrq(sc);
2624 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2625 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2626 /* PCI-X */
2627 sc->bge_flags |= BGE_PCIX;
2628 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2629 &sc->bge_pcixcap, NULL) == 0)
2630 aprint_error_dev(sc->bge_dev,
2631 "unable to find PCIX capability\n");
2632 }
2633
2634 /* chipid */
2635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2636 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2637 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2638 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2639 sc->bge_flags |= BGE_5700_FAMILY;
2640
2641 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2642 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2643 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2644 sc->bge_flags |= BGE_5714_FAMILY;
2645
2646 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2647 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2649 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2650 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2651 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2652 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2653 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2654 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2655 sc->bge_flags |= BGE_5755_PLUS;
2656
2657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2658 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2659 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2660 BGE_IS_5755_PLUS(sc) ||
2661 BGE_IS_5714_FAMILY(sc))
2662 sc->bge_flags |= BGE_5750_PLUS;
2663
2664 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2665 BGE_IS_5750_OR_BEYOND(sc))
2666 sc->bge_flags |= BGE_5705_PLUS;
2667
2668 /*
2669 * When using the BCM5701 in PCI-X mode, data corruption has
2670 * been observed in the first few bytes of some received packets.
2671 * Aligning the packet buffer in memory eliminates the corruption.
2672 * Unfortunately, this misaligns the packet payloads. On platforms
2673 * which do not support unaligned accesses, we will realign the
2674 * payloads by copying the received packets.
2675 */
2676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2677 sc->bge_flags & BGE_PCIX)
2678 sc->bge_flags |= BGE_RX_ALIGNBUG;
2679
2680 if (BGE_IS_5700_FAMILY(sc))
2681 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2682
2683 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2684 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2685 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2686 sc->bge_flags |= BGE_NO_3LED;
2687
2688 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2689 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2690
2691 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2692 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2693 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2694 sc->bge_flags |= BGE_IS_5788;
2695
2696 /*
2697 * Some controllers seem to require a special firmware to use
2698 * TSO. But the firmware is not available to FreeBSD and Linux
2699 * claims that the TSO performed by the firmware is slower than
2700 * hardware based TSO. Moreover the firmware based TSO has one
2701 * known bug which can't handle TSO if ethernet header + IP/TCP
2702 * header is greater than 80 bytes. The workaround for the TSO
2703 * bug exist but it seems it's too expensive than not using
2704 * TSO at all. Some hardwares also have the TSO bug so limit
2705 * the TSO to the controllers that are not affected TSO issues
2706 * (e.g. 5755 or higher).
2707 */
2708 if (BGE_IS_5755_PLUS(sc)) {
2709 /*
2710 * BCM5754 and BCM5787 shares the same ASIC id so
2711 * explicit device id check is required.
2712 */
2713 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2714 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2715 sc->bge_flags |= BGE_TSO;
2716 }
2717
2718 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2719 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2720 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2721 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2722 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2723 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2724 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2725 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2726 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2727 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2728 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2729 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2730 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2731 sc->bge_flags |= BGE_10_100_ONLY;
2732
2733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2734 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2735 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2736 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2737 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2738 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2739
2740 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2741 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2742 sc->bge_flags |= BGE_PHY_CRC_BUG;
2743 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2744 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2745 sc->bge_flags |= BGE_PHY_ADC_BUG;
2746 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2747 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2748
2749 if (BGE_IS_5705_PLUS(sc) &&
2750 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2751 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2752 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2753 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2754 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2755 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2756 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2757 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2758 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2759 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2760 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2761 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2762 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2763 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2764 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2765 sc->bge_flags |= BGE_PHY_BER_BUG;
2766 }
2767
2768 /*
2769 * SEEPROM check.
2770 * First check if firmware knows we do not have SEEPROM.
2771 */
2772 if (prop_dictionary_get_bool(device_properties(self),
2773 "without-seeprom", &no_seeprom) && no_seeprom)
2774 sc->bge_flags |= BGE_NO_EEPROM;
2775
2776 /* Now check the 'ROM failed' bit on the RX CPU */
2777 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2778 sc->bge_flags |= BGE_NO_EEPROM;
2779
2780 /* Try to reset the chip. */
2781 DPRINTFN(5, ("bge_reset\n"));
2782 bge_reset(sc);
2783
2784 sc->bge_asf_mode = 0;
2785 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2786 == BGE_MAGIC_NUMBER)) {
2787 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2788 & BGE_HWCFG_ASF) {
2789 sc->bge_asf_mode |= ASF_ENABLE;
2790 sc->bge_asf_mode |= ASF_STACKUP;
2791 if (BGE_IS_5750_OR_BEYOND(sc)) {
2792 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2793 }
2794 }
2795 }
2796
2797 /* Try to reset the chip again the nice way. */
2798 bge_stop_fw(sc);
2799 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2800 if (bge_reset(sc))
2801 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2802
2803 bge_sig_legacy(sc, BGE_RESET_STOP);
2804 bge_sig_post_reset(sc, BGE_RESET_STOP);
2805
2806 if (bge_chipinit(sc)) {
2807 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2808 bge_release_resources(sc);
2809 return;
2810 }
2811
2812 /*
2813 * Get station address from the EEPROM
2814 */
2815 if (bge_get_eaddr(sc, eaddr)) {
2816 aprint_error_dev(sc->bge_dev,
2817 "failed to read station address\n");
2818 bge_release_resources(sc);
2819 return;
2820 }
2821
2822 br = bge_lookup_rev(sc->bge_chipid);
2823
2824 if (br == NULL) {
2825 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2826 sc->bge_chipid);
2827 } else {
2828 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2829 br->br_name, sc->bge_chipid);
2830 }
2831 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2832
2833 /* Allocate the general information block and ring buffers. */
2834 if (pci_dma64_available(pa))
2835 sc->bge_dmatag = pa->pa_dmat64;
2836 else
2837 sc->bge_dmatag = pa->pa_dmat;
2838 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2839 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2840 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2841 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2842 return;
2843 }
2844 DPRINTFN(5, ("bus_dmamem_map\n"));
2845 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2846 sizeof(struct bge_ring_data), &kva,
2847 BUS_DMA_NOWAIT)) {
2848 aprint_error_dev(sc->bge_dev,
2849 "can't map DMA buffers (%zu bytes)\n",
2850 sizeof(struct bge_ring_data));
2851 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2852 return;
2853 }
2854 DPRINTFN(5, ("bus_dmamem_create\n"));
2855 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2856 sizeof(struct bge_ring_data), 0,
2857 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2858 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2859 bus_dmamem_unmap(sc->bge_dmatag, kva,
2860 sizeof(struct bge_ring_data));
2861 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2862 return;
2863 }
2864 DPRINTFN(5, ("bus_dmamem_load\n"));
2865 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2866 sizeof(struct bge_ring_data), NULL,
2867 BUS_DMA_NOWAIT)) {
2868 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2869 bus_dmamem_unmap(sc->bge_dmatag, kva,
2870 sizeof(struct bge_ring_data));
2871 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2872 return;
2873 }
2874
2875 DPRINTFN(5, ("bzero\n"));
2876 sc->bge_rdata = (struct bge_ring_data *)kva;
2877
2878 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2879
2880 /* Try to allocate memory for jumbo buffers. */
2881 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2882 if (bge_alloc_jumbo_mem(sc)) {
2883 aprint_error_dev(sc->bge_dev,
2884 "jumbo buffer allocation failed\n");
2885 } else
2886 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2887 }
2888
2889 /* Set default tuneable values. */
2890 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2891 sc->bge_rx_coal_ticks = 150;
2892 sc->bge_rx_max_coal_bds = 64;
2893 #ifdef ORIG_WPAUL_VALUES
2894 sc->bge_tx_coal_ticks = 150;
2895 sc->bge_tx_max_coal_bds = 128;
2896 #else
2897 sc->bge_tx_coal_ticks = 300;
2898 sc->bge_tx_max_coal_bds = 400;
2899 #endif
2900 if (BGE_IS_5705_PLUS(sc)) {
2901 sc->bge_tx_coal_ticks = (12 * 5);
2902 sc->bge_tx_max_coal_bds = (12 * 5);
2903 aprint_verbose_dev(sc->bge_dev,
2904 "setting short Tx thresholds\n");
2905 }
2906
2907 if (BGE_IS_5705_PLUS(sc))
2908 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2909 else
2910 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2911
2912 /* Set up ifnet structure */
2913 ifp = &sc->ethercom.ec_if;
2914 ifp->if_softc = sc;
2915 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2916 ifp->if_ioctl = bge_ioctl;
2917 ifp->if_stop = bge_stop;
2918 ifp->if_start = bge_start;
2919 ifp->if_init = bge_init;
2920 ifp->if_watchdog = bge_watchdog;
2921 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2922 IFQ_SET_READY(&ifp->if_snd);
2923 DPRINTFN(5, ("strcpy if_xname\n"));
2924 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2925
2926 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2927 sc->ethercom.ec_if.if_capabilities |=
2928 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2929 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2930 sc->ethercom.ec_if.if_capabilities |=
2931 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2932 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2933 #endif
2934 sc->ethercom.ec_capabilities |=
2935 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2936
2937 if (sc->bge_flags & BGE_TSO)
2938 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2939
2940 /*
2941 * Do MII setup.
2942 */
2943 DPRINTFN(5, ("mii setup\n"));
2944 sc->bge_mii.mii_ifp = ifp;
2945 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2946 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2947 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2948
2949 /*
2950 * Figure out what sort of media we have by checking the
2951 * hardware config word in the first 32k of NIC internal memory,
2952 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2953 * cards, this value appears to be unset. If that's the
2954 * case, we have to rely on identifying the NIC by its PCI
2955 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2956 */
2957 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2958 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2959 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2960 bge_read_eeprom(sc, (void *)&hwcfg,
2961 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2962 hwcfg = be32toh(hwcfg);
2963 }
2964 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2965 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2966 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2967 if (BGE_IS_5714_FAMILY(sc))
2968 sc->bge_flags |= BGE_PHY_FIBER_MII;
2969 else
2970 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2971 }
2972
2973 /* set phyflags and chipid before mii_attach() */
2974 dict = device_properties(self);
2975 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2976 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
2977
2978 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2979 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2980 bge_ifmedia_sts);
2981 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2982 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2983 0, NULL);
2984 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2985 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2986 /* Pretend the user requested this setting */
2987 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2988 } else {
2989 /*
2990 * Do transceiver setup and tell the firmware the
2991 * driver is down so we can try to get access the
2992 * probe if ASF is running. Retry a couple of times
2993 * if we get a conflict with the ASF firmware accessing
2994 * the PHY.
2995 */
2996 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2997 bge_asf_driver_up(sc);
2998
2999 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3000 bge_ifmedia_sts);
3001 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3002 MII_PHY_ANY, MII_OFFSET_ANY,
3003 MIIF_FORCEANEG|MIIF_DOPAUSE);
3004
3005 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3006 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3007 ifmedia_add(&sc->bge_mii.mii_media,
3008 IFM_ETHER|IFM_MANUAL, 0, NULL);
3009 ifmedia_set(&sc->bge_mii.mii_media,
3010 IFM_ETHER|IFM_MANUAL);
3011 } else
3012 ifmedia_set(&sc->bge_mii.mii_media,
3013 IFM_ETHER|IFM_AUTO);
3014
3015 /*
3016 * Now tell the firmware we are going up after probing the PHY
3017 */
3018 if (sc->bge_asf_mode & ASF_STACKUP)
3019 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3020 }
3021
3022 /*
3023 * Call MI attach routine.
3024 */
3025 DPRINTFN(5, ("if_attach\n"));
3026 if_attach(ifp);
3027 DPRINTFN(5, ("ether_ifattach\n"));
3028 ether_ifattach(ifp, eaddr);
3029 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3030 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3031 RND_TYPE_NET, 0);
3032 #ifdef BGE_EVENT_COUNTERS
3033 /*
3034 * Attach event counters.
3035 */
3036 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3037 NULL, device_xname(sc->bge_dev), "intr");
3038 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3039 NULL, device_xname(sc->bge_dev), "tx_xoff");
3040 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3041 NULL, device_xname(sc->bge_dev), "tx_xon");
3042 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3043 NULL, device_xname(sc->bge_dev), "rx_xoff");
3044 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3045 NULL, device_xname(sc->bge_dev), "rx_xon");
3046 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3047 NULL, device_xname(sc->bge_dev), "rx_macctl");
3048 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3049 NULL, device_xname(sc->bge_dev), "xoffentered");
3050 #endif /* BGE_EVENT_COUNTERS */
3051 DPRINTFN(5, ("callout_init\n"));
3052 callout_init(&sc->bge_timeout, 0);
3053
3054 if (pmf_device_register(self, NULL, NULL))
3055 pmf_class_network_register(self, ifp);
3056 else
3057 aprint_error_dev(self, "couldn't establish power handler\n");
3058
3059 sysctl_bge_init(sc);
3060
3061 #ifdef BGE_DEBUG
3062 bge_debug_info(sc);
3063 #endif
3064 }
3065
3066 static void
3067 bge_release_resources(struct bge_softc *sc)
3068 {
3069 if (sc->bge_vpd_prodname != NULL)
3070 free(sc->bge_vpd_prodname, M_DEVBUF);
3071
3072 if (sc->bge_vpd_readonly != NULL)
3073 free(sc->bge_vpd_readonly, M_DEVBUF);
3074 }
3075
3076 static int
3077 bge_reset(struct bge_softc *sc)
3078 {
3079 uint32_t cachesize, command, pcistate, marbmode;
3080 #if 0
3081 uint32_t new_pcistate;
3082 #endif
3083 pcireg_t devctl, reg;
3084 int i, val;
3085 void (*write_op)(struct bge_softc *, int, int);
3086
3087 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3088 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3089 if (sc->bge_flags & BGE_PCIE)
3090 write_op = bge_writemem_direct;
3091 else
3092 write_op = bge_writemem_ind;
3093 } else
3094 write_op = bge_writereg_ind;
3095
3096 /* Save some important PCI state. */
3097 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3098 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3099 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3100
3101 /* Step 5a: Enable memory arbiter. */
3102 marbmode = 0;
3103 if (BGE_IS_5714_FAMILY(sc))
3104 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3105 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3106
3107 /* Step 5b-5d: */
3108 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3109 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3110 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3111
3112 /* XXX ???: Disable fastboot on controllers that support it. */
3113 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3114 BGE_IS_5755_PLUS(sc))
3115 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3116
3117 /*
3118 * Step 6: Write the magic number to SRAM at offset 0xB50.
3119 * When firmware finishes its initialization it will
3120 * write ~BGE_MAGIC_NUMBER to the same location.
3121 */
3122 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3123
3124 /* Step 7: */
3125 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3126 /*
3127 * XXX: from FreeBSD/Linux; no documentation
3128 */
3129 if (sc->bge_flags & BGE_PCIE) {
3130 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3131 /* PCI Express 1.0 system */
3132 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3133 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3134 /*
3135 * Prevent PCI Express link training
3136 * during global reset.
3137 */
3138 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3139 val |= (1<<29);
3140 }
3141 }
3142
3143 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3144 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3145 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3146 i | BGE_VCPU_STATUS_DRV_RESET);
3147 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3148 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3149 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3150 }
3151
3152 /*
3153 * Set GPHY Power Down Override to leave GPHY
3154 * powered up in D0 uninitialized.
3155 */
3156 if (BGE_IS_5705_PLUS(sc))
3157 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3158
3159 /* XXX 5721, 5751 and 5752 */
3160 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3161 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3162
3163 /* Issue global reset */
3164 write_op(sc, BGE_MISC_CFG, val);
3165
3166 /* Step 8: wait for complete */
3167 if (sc->bge_flags & BGE_PCIE)
3168 delay(100*1000); /* too big */
3169 else
3170 delay(100);
3171
3172 /* From Linux: dummy read to flush PCI posted writes */
3173 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3174
3175 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3176 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3177 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3178 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3179 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3180 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3181 write_op(sc, BGE_MISC_CFG, (65 << 1));
3182
3183 /* Step 11: disable PCI-X Relaxed Ordering. */
3184 if (sc->bge_flags & BGE_PCIX) {
3185 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3186 + PCI_PCIX_CMD);
3187 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3188 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3189 }
3190
3191 if (sc->bge_flags & BGE_PCIE) {
3192 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3193 DELAY(500000);
3194 /* XXX: Magic Numbers */
3195 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3196 BGE_PCI_UNKNOWN0);
3197 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3198 BGE_PCI_UNKNOWN0,
3199 reg | (1 << 15));
3200 }
3201 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3202 sc->bge_pciecap + PCI_PCIE_DCSR);
3203 /* Clear enable no snoop and disable relaxed ordering. */
3204 devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3205 /* Set PCIE max payload size to 128. */
3206 devctl &= ~(0x00e0);
3207 /* Clear device status register. Write 1b to clear */
3208 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3209 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3210 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3211 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3212 }
3213
3214 /* Step 12: Enable memory arbiter. */
3215 marbmode = 0;
3216 if (BGE_IS_5714_FAMILY(sc))
3217 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3218 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3219
3220 /* Step 17: Poll until the firmware initialization is complete */
3221 bge_poll_fw(sc);
3222
3223 /* XXX 5721, 5751 and 5752 */
3224 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3225 /* Step 19: */
3226 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3227 /* Step 20: */
3228 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3229 }
3230
3231 /*
3232 * Step 18: wirte mac mode
3233 * XXX Write 0x0c for 5703S and 5704S
3234 */
3235 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3236
3237
3238 /* Step 21: 5822 B0 errata */
3239 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3240 pcireg_t msidata;
3241
3242 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3243 BGE_PCI_MSI_DATA);
3244 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3245 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3246 msidata);
3247 }
3248
3249 /* Step 23: restore cache line size */
3250 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3251
3252 #if 0
3253 /*
3254 * XXX Wait for the value of the PCISTATE register to
3255 * return to its original pre-reset state. This is a
3256 * fairly good indicator of reset completion. If we don't
3257 * wait for the reset to fully complete, trying to read
3258 * from the device's non-PCI registers may yield garbage
3259 * results.
3260 */
3261 for (i = 0; i < BGE_TIMEOUT; i++) {
3262 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3263 BGE_PCI_PCISTATE);
3264 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3265 (pcistate & ~BGE_PCISTATE_RESERVED))
3266 break;
3267 DELAY(10);
3268 }
3269 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3270 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3271 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3272 }
3273 #endif
3274
3275 /* Step 28: Fix up byte swapping */
3276 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3277
3278 /* Tell the ASF firmware we are up */
3279 if (sc->bge_asf_mode & ASF_STACKUP)
3280 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3281
3282 /*
3283 * The 5704 in TBI mode apparently needs some special
3284 * adjustment to insure the SERDES drive level is set
3285 * to 1.2V.
3286 */
3287 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3288 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3289 uint32_t serdescfg;
3290
3291 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3292 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3293 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3294 }
3295
3296 if (sc->bge_flags & BGE_PCIE &&
3297 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3298 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3299 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3300 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3301 uint32_t v;
3302
3303 /* Enable PCI Express bug fix */
3304 v = CSR_READ_4(sc, 0x7c00);
3305 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3306 }
3307 DELAY(10000);
3308
3309 return 0;
3310 }
3311
3312 /*
3313 * Frame reception handling. This is called if there's a frame
3314 * on the receive return list.
3315 *
3316 * Note: we have to be able to handle two possibilities here:
3317 * 1) the frame is from the jumbo receive ring
3318 * 2) the frame is from the standard receive ring
3319 */
3320
3321 static void
3322 bge_rxeof(struct bge_softc *sc)
3323 {
3324 struct ifnet *ifp;
3325 uint16_t rx_prod, rx_cons;
3326 int stdcnt = 0, jumbocnt = 0;
3327 bus_dmamap_t dmamap;
3328 bus_addr_t offset, toff;
3329 bus_size_t tlen;
3330 int tosync;
3331
3332 rx_cons = sc->bge_rx_saved_considx;
3333 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3334
3335 /* Nothing to do */
3336 if (rx_cons == rx_prod)
3337 return;
3338
3339 ifp = &sc->ethercom.ec_if;
3340
3341 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3342 offsetof(struct bge_ring_data, bge_status_block),
3343 sizeof (struct bge_status_block),
3344 BUS_DMASYNC_POSTREAD);
3345
3346 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3347 tosync = rx_prod - rx_cons;
3348
3349 if (tosync != 0)
3350 rnd_add_uint32(&sc->rnd_source, tosync);
3351
3352 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3353
3354 if (tosync < 0) {
3355 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3356 sizeof (struct bge_rx_bd);
3357 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3358 toff, tlen, BUS_DMASYNC_POSTREAD);
3359 tosync = -tosync;
3360 }
3361
3362 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3363 offset, tosync * sizeof (struct bge_rx_bd),
3364 BUS_DMASYNC_POSTREAD);
3365
3366 while (rx_cons != rx_prod) {
3367 struct bge_rx_bd *cur_rx;
3368 uint32_t rxidx;
3369 struct mbuf *m = NULL;
3370
3371 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3372
3373 rxidx = cur_rx->bge_idx;
3374 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3375
3376 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3377 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3378 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3379 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3380 jumbocnt++;
3381 bus_dmamap_sync(sc->bge_dmatag,
3382 sc->bge_cdata.bge_rx_jumbo_map,
3383 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3384 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3385 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3386 ifp->if_ierrors++;
3387 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3388 continue;
3389 }
3390 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3391 NULL)== ENOBUFS) {
3392 ifp->if_ierrors++;
3393 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3394 continue;
3395 }
3396 } else {
3397 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3398 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3399
3400 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3401 stdcnt++;
3402 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3403 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3404 if (dmamap == NULL) {
3405 ifp->if_ierrors++;
3406 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3407 continue;
3408 }
3409 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3410 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3411 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3412 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3413 ifp->if_ierrors++;
3414 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3415 continue;
3416 }
3417 if (bge_newbuf_std(sc, sc->bge_std,
3418 NULL, dmamap) == ENOBUFS) {
3419 ifp->if_ierrors++;
3420 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3421 continue;
3422 }
3423 }
3424
3425 ifp->if_ipackets++;
3426 #ifndef __NO_STRICT_ALIGNMENT
3427 /*
3428 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3429 * the Rx buffer has the layer-2 header unaligned.
3430 * If our CPU requires alignment, re-align by copying.
3431 */
3432 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3433 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3434 cur_rx->bge_len);
3435 m->m_data += ETHER_ALIGN;
3436 }
3437 #endif
3438
3439 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3440 m->m_pkthdr.rcvif = ifp;
3441
3442 /*
3443 * Handle BPF listeners. Let the BPF user see the packet.
3444 */
3445 bpf_mtap(ifp, m);
3446
3447 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3448
3449 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3450 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3451 /*
3452 * Rx transport checksum-offload may also
3453 * have bugs with packets which, when transmitted,
3454 * were `runts' requiring padding.
3455 */
3456 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3457 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3458 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3459 m->m_pkthdr.csum_data =
3460 cur_rx->bge_tcp_udp_csum;
3461 m->m_pkthdr.csum_flags |=
3462 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3463 M_CSUM_DATA);
3464 }
3465
3466 /*
3467 * If we received a packet with a vlan tag, pass it
3468 * to vlan_input() instead of ether_input().
3469 */
3470 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3471 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3472 }
3473
3474 (*ifp->if_input)(ifp, m);
3475 }
3476
3477 sc->bge_rx_saved_considx = rx_cons;
3478 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3479 if (stdcnt)
3480 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3481 if (jumbocnt)
3482 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3483 }
3484
3485 static void
3486 bge_txeof(struct bge_softc *sc)
3487 {
3488 struct bge_tx_bd *cur_tx = NULL;
3489 struct ifnet *ifp;
3490 struct txdmamap_pool_entry *dma;
3491 bus_addr_t offset, toff;
3492 bus_size_t tlen;
3493 int tosync;
3494 struct mbuf *m;
3495
3496 ifp = &sc->ethercom.ec_if;
3497
3498 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3499 offsetof(struct bge_ring_data, bge_status_block),
3500 sizeof (struct bge_status_block),
3501 BUS_DMASYNC_POSTREAD);
3502
3503 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3504 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3505 sc->bge_tx_saved_considx;
3506
3507 if (tosync != 0)
3508 rnd_add_uint32(&sc->rnd_source, tosync);
3509
3510 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3511
3512 if (tosync < 0) {
3513 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3514 sizeof (struct bge_tx_bd);
3515 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3516 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3517 tosync = -tosync;
3518 }
3519
3520 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3521 offset, tosync * sizeof (struct bge_tx_bd),
3522 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3523
3524 /*
3525 * Go through our tx ring and free mbufs for those
3526 * frames that have been sent.
3527 */
3528 while (sc->bge_tx_saved_considx !=
3529 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3530 uint32_t idx = 0;
3531
3532 idx = sc->bge_tx_saved_considx;
3533 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3534 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3535 ifp->if_opackets++;
3536 m = sc->bge_cdata.bge_tx_chain[idx];
3537 if (m != NULL) {
3538 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3539 dma = sc->txdma[idx];
3540 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3541 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3542 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3543 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3544 sc->txdma[idx] = NULL;
3545
3546 m_freem(m);
3547 }
3548 sc->bge_txcnt--;
3549 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3550 ifp->if_timer = 0;
3551 }
3552
3553 if (cur_tx != NULL)
3554 ifp->if_flags &= ~IFF_OACTIVE;
3555 }
3556
3557 static int
3558 bge_intr(void *xsc)
3559 {
3560 struct bge_softc *sc;
3561 struct ifnet *ifp;
3562 uint32_t statusword;
3563
3564 sc = xsc;
3565 ifp = &sc->ethercom.ec_if;
3566
3567 /* It is possible for the interrupt to arrive before
3568 * the status block is updated prior to the interrupt.
3569 * Reading the PCI State register will confirm whether the
3570 * interrupt is ours and will flush the status block.
3571 */
3572
3573 /* read status word from status block */
3574 statusword = sc->bge_rdata->bge_status_block.bge_status;
3575
3576 if ((statusword & BGE_STATFLAG_UPDATED) ||
3577 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3578 /* Ack interrupt and stop others from occuring. */
3579 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3580
3581 BGE_EVCNT_INCR(sc->bge_ev_intr);
3582
3583 /* clear status word */
3584 sc->bge_rdata->bge_status_block.bge_status = 0;
3585
3586 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3587 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3588 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3589 bge_link_upd(sc);
3590
3591 if (ifp->if_flags & IFF_RUNNING) {
3592 /* Check RX return ring producer/consumer */
3593 bge_rxeof(sc);
3594
3595 /* Check TX ring producer/consumer */
3596 bge_txeof(sc);
3597 }
3598
3599 if (sc->bge_pending_rxintr_change) {
3600 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3601 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3602 uint32_t junk;
3603
3604 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3605 DELAY(10);
3606 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3607
3608 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3609 DELAY(10);
3610 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3611
3612 sc->bge_pending_rxintr_change = 0;
3613 }
3614 bge_handle_events(sc);
3615
3616 /* Re-enable interrupts. */
3617 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3618
3619 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3620 bge_start(ifp);
3621
3622 return 1;
3623 } else
3624 return 0;
3625 }
3626
3627 static void
3628 bge_asf_driver_up(struct bge_softc *sc)
3629 {
3630 if (sc->bge_asf_mode & ASF_STACKUP) {
3631 /* Send ASF heartbeat aprox. every 2s */
3632 if (sc->bge_asf_count)
3633 sc->bge_asf_count --;
3634 else {
3635 sc->bge_asf_count = 2;
3636 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3637 BGE_FW_DRV_ALIVE);
3638 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3639 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3640 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3641 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3642 }
3643 }
3644 }
3645
3646 static void
3647 bge_tick(void *xsc)
3648 {
3649 struct bge_softc *sc = xsc;
3650 struct mii_data *mii = &sc->bge_mii;
3651 int s;
3652
3653 s = splnet();
3654
3655 if (BGE_IS_5705_PLUS(sc))
3656 bge_stats_update_regs(sc);
3657 else
3658 bge_stats_update(sc);
3659
3660 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3661 /*
3662 * Since in TBI mode auto-polling can't be used we should poll
3663 * link status manually. Here we register pending link event
3664 * and trigger interrupt.
3665 */
3666 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3667 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3668 } else {
3669 /*
3670 * Do not touch PHY if we have link up. This could break
3671 * IPMI/ASF mode or produce extra input errors.
3672 * (extra input errors was reported for bcm5701 & bcm5704).
3673 */
3674 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3675 mii_tick(mii);
3676 }
3677
3678 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3679
3680 splx(s);
3681 }
3682
3683 static void
3684 bge_stats_update_regs(struct bge_softc *sc)
3685 {
3686 struct ifnet *ifp = &sc->ethercom.ec_if;
3687
3688 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3689 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3690
3691 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3692 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3693 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3694 }
3695
3696 static void
3697 bge_stats_update(struct bge_softc *sc)
3698 {
3699 struct ifnet *ifp = &sc->ethercom.ec_if;
3700 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3701
3702 #define READ_STAT(sc, stats, stat) \
3703 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3704
3705 ifp->if_collisions +=
3706 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3707 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3708 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3709 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3710 ifp->if_collisions;
3711
3712 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3713 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3714 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3715 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3716 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3717 READ_STAT(sc, stats,
3718 xoffPauseFramesReceived.bge_addr_lo));
3719 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3720 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3721 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3722 READ_STAT(sc, stats,
3723 macControlFramesReceived.bge_addr_lo));
3724 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3725 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3726
3727 #undef READ_STAT
3728
3729 #ifdef notdef
3730 ifp->if_collisions +=
3731 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3732 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3733 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3734 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3735 ifp->if_collisions;
3736 #endif
3737 }
3738
3739 /*
3740 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3741 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3742 * but when such padded frames employ the bge IP/TCP checksum offload,
3743 * the hardware checksum assist gives incorrect results (possibly
3744 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3745 * If we pad such runts with zeros, the onboard checksum comes out correct.
3746 */
3747 static inline int
3748 bge_cksum_pad(struct mbuf *pkt)
3749 {
3750 struct mbuf *last = NULL;
3751 int padlen;
3752
3753 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3754
3755 /* if there's only the packet-header and we can pad there, use it. */
3756 if (pkt->m_pkthdr.len == pkt->m_len &&
3757 M_TRAILINGSPACE(pkt) >= padlen) {
3758 last = pkt;
3759 } else {
3760 /*
3761 * Walk packet chain to find last mbuf. We will either
3762 * pad there, or append a new mbuf and pad it
3763 * (thus perhaps avoiding the bcm5700 dma-min bug).
3764 */
3765 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3766 continue; /* do nothing */
3767 }
3768
3769 /* `last' now points to last in chain. */
3770 if (M_TRAILINGSPACE(last) < padlen) {
3771 /* Allocate new empty mbuf, pad it. Compact later. */
3772 struct mbuf *n;
3773 MGET(n, M_DONTWAIT, MT_DATA);
3774 if (n == NULL)
3775 return ENOBUFS;
3776 n->m_len = 0;
3777 last->m_next = n;
3778 last = n;
3779 }
3780 }
3781
3782 KDASSERT(!M_READONLY(last));
3783 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3784
3785 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3786 memset(mtod(last, char *) + last->m_len, 0, padlen);
3787 last->m_len += padlen;
3788 pkt->m_pkthdr.len += padlen;
3789 return 0;
3790 }
3791
3792 /*
3793 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3794 */
3795 static inline int
3796 bge_compact_dma_runt(struct mbuf *pkt)
3797 {
3798 struct mbuf *m, *prev;
3799 int totlen, prevlen;
3800
3801 prev = NULL;
3802 totlen = 0;
3803 prevlen = -1;
3804
3805 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3806 int mlen = m->m_len;
3807 int shortfall = 8 - mlen ;
3808
3809 totlen += mlen;
3810 if (mlen == 0) {
3811 continue;
3812 }
3813 if (mlen >= 8)
3814 continue;
3815
3816 /* If we get here, mbuf data is too small for DMA engine.
3817 * Try to fix by shuffling data to prev or next in chain.
3818 * If that fails, do a compacting deep-copy of the whole chain.
3819 */
3820
3821 /* Internal frag. If fits in prev, copy it there. */
3822 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3823 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3824 prev->m_len += mlen;
3825 m->m_len = 0;
3826 /* XXX stitch chain */
3827 prev->m_next = m_free(m);
3828 m = prev;
3829 continue;
3830 }
3831 else if (m->m_next != NULL &&
3832 M_TRAILINGSPACE(m) >= shortfall &&
3833 m->m_next->m_len >= (8 + shortfall)) {
3834 /* m is writable and have enough data in next, pull up. */
3835
3836 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3837 shortfall);
3838 m->m_len += shortfall;
3839 m->m_next->m_len -= shortfall;
3840 m->m_next->m_data += shortfall;
3841 }
3842 else if (m->m_next == NULL || 1) {
3843 /* Got a runt at the very end of the packet.
3844 * borrow data from the tail of the preceding mbuf and
3845 * update its length in-place. (The original data is still
3846 * valid, so we can do this even if prev is not writable.)
3847 */
3848
3849 /* if we'd make prev a runt, just move all of its data. */
3850 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3851 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3852
3853 if ((prev->m_len - shortfall) < 8)
3854 shortfall = prev->m_len;
3855
3856 #ifdef notyet /* just do the safe slow thing for now */
3857 if (!M_READONLY(m)) {
3858 if (M_LEADINGSPACE(m) < shorfall) {
3859 void *m_dat;
3860 m_dat = (m->m_flags & M_PKTHDR) ?
3861 m->m_pktdat : m->dat;
3862 memmove(m_dat, mtod(m, void*), m->m_len);
3863 m->m_data = m_dat;
3864 }
3865 } else
3866 #endif /* just do the safe slow thing */
3867 {
3868 struct mbuf * n = NULL;
3869 int newprevlen = prev->m_len - shortfall;
3870
3871 MGET(n, M_NOWAIT, MT_DATA);
3872 if (n == NULL)
3873 return ENOBUFS;
3874 KASSERT(m->m_len + shortfall < MLEN
3875 /*,
3876 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3877
3878 /* first copy the data we're stealing from prev */
3879 memcpy(n->m_data, prev->m_data + newprevlen,
3880 shortfall);
3881
3882 /* update prev->m_len accordingly */
3883 prev->m_len -= shortfall;
3884
3885 /* copy data from runt m */
3886 memcpy(n->m_data + shortfall, m->m_data,
3887 m->m_len);
3888
3889 /* n holds what we stole from prev, plus m */
3890 n->m_len = shortfall + m->m_len;
3891
3892 /* stitch n into chain and free m */
3893 n->m_next = m->m_next;
3894 prev->m_next = n;
3895 /* KASSERT(m->m_next == NULL); */
3896 m->m_next = NULL;
3897 m_free(m);
3898 m = n; /* for continuing loop */
3899 }
3900 }
3901 prevlen = m->m_len;
3902 }
3903 return 0;
3904 }
3905
3906 /*
3907 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3908 * pointers to descriptors.
3909 */
3910 static int
3911 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3912 {
3913 struct bge_tx_bd *f = NULL;
3914 uint32_t frag, cur;
3915 uint16_t csum_flags = 0;
3916 uint16_t txbd_tso_flags = 0;
3917 struct txdmamap_pool_entry *dma;
3918 bus_dmamap_t dmamap;
3919 int i = 0;
3920 struct m_tag *mtag;
3921 int use_tso, maxsegsize, error;
3922
3923 cur = frag = *txidx;
3924
3925 if (m_head->m_pkthdr.csum_flags) {
3926 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3927 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3928 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3929 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3930 }
3931
3932 /*
3933 * If we were asked to do an outboard checksum, and the NIC
3934 * has the bug where it sometimes adds in the Ethernet padding,
3935 * explicitly pad with zeros so the cksum will be correct either way.
3936 * (For now, do this for all chip versions, until newer
3937 * are confirmed to not require the workaround.)
3938 */
3939 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3940 #ifdef notyet
3941 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3942 #endif
3943 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3944 goto check_dma_bug;
3945
3946 if (bge_cksum_pad(m_head) != 0)
3947 return ENOBUFS;
3948
3949 check_dma_bug:
3950 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3951 goto doit;
3952
3953 /*
3954 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3955 * less than eight bytes. If we encounter a teeny mbuf
3956 * at the end of a chain, we can pad. Otherwise, copy.
3957 */
3958 if (bge_compact_dma_runt(m_head) != 0)
3959 return ENOBUFS;
3960
3961 doit:
3962 dma = SLIST_FIRST(&sc->txdma_list);
3963 if (dma == NULL)
3964 return ENOBUFS;
3965 dmamap = dma->dmamap;
3966
3967 /*
3968 * Set up any necessary TSO state before we start packing...
3969 */
3970 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3971 if (!use_tso) {
3972 maxsegsize = 0;
3973 } else { /* TSO setup */
3974 unsigned mss;
3975 struct ether_header *eh;
3976 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3977 struct mbuf * m0 = m_head;
3978 struct ip *ip;
3979 struct tcphdr *th;
3980 int iphl, hlen;
3981
3982 /*
3983 * XXX It would be nice if the mbuf pkthdr had offset
3984 * fields for the protocol headers.
3985 */
3986
3987 eh = mtod(m0, struct ether_header *);
3988 switch (htons(eh->ether_type)) {
3989 case ETHERTYPE_IP:
3990 offset = ETHER_HDR_LEN;
3991 break;
3992
3993 case ETHERTYPE_VLAN:
3994 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3995 break;
3996
3997 default:
3998 /*
3999 * Don't support this protocol or encapsulation.
4000 */
4001 return ENOBUFS;
4002 }
4003
4004 /*
4005 * TCP/IP headers are in the first mbuf; we can do
4006 * this the easy way.
4007 */
4008 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4009 hlen = iphl + offset;
4010 if (__predict_false(m0->m_len <
4011 (hlen + sizeof(struct tcphdr)))) {
4012
4013 aprint_debug_dev(sc->bge_dev,
4014 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4015 "not handled yet\n",
4016 m0->m_len, hlen+ sizeof(struct tcphdr));
4017 #ifdef NOTYET
4018 /*
4019 * XXX jonathan (at) NetBSD.org: untested.
4020 * how to force this branch to be taken?
4021 */
4022 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4023
4024 m_copydata(m0, offset, sizeof(ip), &ip);
4025 m_copydata(m0, hlen, sizeof(th), &th);
4026
4027 ip.ip_len = 0;
4028
4029 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4030 sizeof(ip.ip_len), &ip.ip_len);
4031
4032 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4033 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4034
4035 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4036 sizeof(th.th_sum), &th.th_sum);
4037
4038 hlen += th.th_off << 2;
4039 iptcp_opt_words = hlen;
4040 #else
4041 /*
4042 * if_wm "hard" case not yet supported, can we not
4043 * mandate it out of existence?
4044 */
4045 (void) ip; (void)th; (void) ip_tcp_hlen;
4046
4047 return ENOBUFS;
4048 #endif
4049 } else {
4050 ip = (struct ip *) (mtod(m0, char *) + offset);
4051 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4052 ip_tcp_hlen = iphl + (th->th_off << 2);
4053
4054 /* Total IP/TCP options, in 32-bit words */
4055 iptcp_opt_words = (ip_tcp_hlen
4056 - sizeof(struct tcphdr)
4057 - sizeof(struct ip)) >> 2;
4058 }
4059 if (BGE_IS_5750_OR_BEYOND(sc)) {
4060 th->th_sum = 0;
4061 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4062 } else {
4063 /*
4064 * XXX jonathan (at) NetBSD.org: 5705 untested.
4065 * Requires TSO firmware patch for 5701/5703/5704.
4066 */
4067 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4068 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4069 }
4070
4071 mss = m_head->m_pkthdr.segsz;
4072 txbd_tso_flags |=
4073 BGE_TXBDFLAG_CPU_PRE_DMA |
4074 BGE_TXBDFLAG_CPU_POST_DMA;
4075
4076 /*
4077 * Our NIC TSO-assist assumes TSO has standard, optionless
4078 * IPv4 and TCP headers, which total 40 bytes. By default,
4079 * the NIC copies 40 bytes of IP/TCP header from the
4080 * supplied header into the IP/TCP header portion of
4081 * each post-TSO-segment. If the supplied packet has IP or
4082 * TCP options, we need to tell the NIC to copy those extra
4083 * bytes into each post-TSO header, in addition to the normal
4084 * 40-byte IP/TCP header (and to leave space accordingly).
4085 * Unfortunately, the driver encoding of option length
4086 * varies across different ASIC families.
4087 */
4088 tcp_seg_flags = 0;
4089 if (iptcp_opt_words) {
4090 if (BGE_IS_5705_PLUS(sc)) {
4091 tcp_seg_flags =
4092 iptcp_opt_words << 11;
4093 } else {
4094 txbd_tso_flags |=
4095 iptcp_opt_words << 12;
4096 }
4097 }
4098 maxsegsize = mss | tcp_seg_flags;
4099 ip->ip_len = htons(mss + ip_tcp_hlen);
4100
4101 } /* TSO setup */
4102
4103 /*
4104 * Start packing the mbufs in this chain into
4105 * the fragment pointers. Stop when we run out
4106 * of fragments or hit the end of the mbuf chain.
4107 */
4108 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4109 BUS_DMA_NOWAIT);
4110 if (error)
4111 return ENOBUFS;
4112 /*
4113 * Sanity check: avoid coming within 16 descriptors
4114 * of the end of the ring.
4115 */
4116 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4117 BGE_TSO_PRINTF(("%s: "
4118 " dmamap_load_mbuf too close to ring wrap\n",
4119 device_xname(sc->bge_dev)));
4120 goto fail_unload;
4121 }
4122
4123 mtag = sc->ethercom.ec_nvlans ?
4124 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4125
4126
4127 /* Iterate over dmap-map fragments. */
4128 for (i = 0; i < dmamap->dm_nsegs; i++) {
4129 f = &sc->bge_rdata->bge_tx_ring[frag];
4130 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4131 break;
4132
4133 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4134 f->bge_len = dmamap->dm_segs[i].ds_len;
4135
4136 /*
4137 * For 5751 and follow-ons, for TSO we must turn
4138 * off checksum-assist flag in the tx-descr, and
4139 * supply the ASIC-revision-specific encoding
4140 * of TSO flags and segsize.
4141 */
4142 if (use_tso) {
4143 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4144 f->bge_rsvd = maxsegsize;
4145 f->bge_flags = csum_flags | txbd_tso_flags;
4146 } else {
4147 f->bge_rsvd = 0;
4148 f->bge_flags =
4149 (csum_flags | txbd_tso_flags) & 0x0fff;
4150 }
4151 } else {
4152 f->bge_rsvd = 0;
4153 f->bge_flags = csum_flags;
4154 }
4155
4156 if (mtag != NULL) {
4157 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4158 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4159 } else {
4160 f->bge_vlan_tag = 0;
4161 }
4162 cur = frag;
4163 BGE_INC(frag, BGE_TX_RING_CNT);
4164 }
4165
4166 if (i < dmamap->dm_nsegs) {
4167 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4168 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4169 goto fail_unload;
4170 }
4171
4172 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4173 BUS_DMASYNC_PREWRITE);
4174
4175 if (frag == sc->bge_tx_saved_considx) {
4176 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4177 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4178
4179 goto fail_unload;
4180 }
4181
4182 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4183 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4184 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4185 sc->txdma[cur] = dma;
4186 sc->bge_txcnt += dmamap->dm_nsegs;
4187
4188 *txidx = frag;
4189
4190 return 0;
4191
4192 fail_unload:
4193 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4194
4195 return ENOBUFS;
4196 }
4197
4198 /*
4199 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4200 * to the mbuf data regions directly in the transmit descriptors.
4201 */
4202 static void
4203 bge_start(struct ifnet *ifp)
4204 {
4205 struct bge_softc *sc;
4206 struct mbuf *m_head = NULL;
4207 uint32_t prodidx;
4208 int pkts = 0;
4209
4210 sc = ifp->if_softc;
4211
4212 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4213 return;
4214
4215 prodidx = sc->bge_tx_prodidx;
4216
4217 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4218 IFQ_POLL(&ifp->if_snd, m_head);
4219 if (m_head == NULL)
4220 break;
4221
4222 #if 0
4223 /*
4224 * XXX
4225 * safety overkill. If this is a fragmented packet chain
4226 * with delayed TCP/UDP checksums, then only encapsulate
4227 * it if we have enough descriptors to handle the entire
4228 * chain at once.
4229 * (paranoia -- may not actually be needed)
4230 */
4231 if (m_head->m_flags & M_FIRSTFRAG &&
4232 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4233 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4234 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4235 ifp->if_flags |= IFF_OACTIVE;
4236 break;
4237 }
4238 }
4239 #endif
4240
4241 /*
4242 * Pack the data into the transmit ring. If we
4243 * don't have room, set the OACTIVE flag and wait
4244 * for the NIC to drain the ring.
4245 */
4246 if (bge_encap(sc, m_head, &prodidx)) {
4247 ifp->if_flags |= IFF_OACTIVE;
4248 break;
4249 }
4250
4251 /* now we are committed to transmit the packet */
4252 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4253 pkts++;
4254
4255 /*
4256 * If there's a BPF listener, bounce a copy of this frame
4257 * to him.
4258 */
4259 bpf_mtap(ifp, m_head);
4260 }
4261 if (pkts == 0)
4262 return;
4263
4264 /* Transmit */
4265 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4266 /* 5700 b2 errata */
4267 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4268 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4269
4270 sc->bge_tx_prodidx = prodidx;
4271
4272 /*
4273 * Set a timeout in case the chip goes out to lunch.
4274 */
4275 ifp->if_timer = 5;
4276 }
4277
4278 static int
4279 bge_init(struct ifnet *ifp)
4280 {
4281 struct bge_softc *sc = ifp->if_softc;
4282 const uint16_t *m;
4283 int s, error = 0;
4284
4285 s = splnet();
4286
4287 ifp = &sc->ethercom.ec_if;
4288
4289 /* Cancel pending I/O and flush buffers. */
4290 bge_stop(ifp, 0);
4291
4292 bge_stop_fw(sc);
4293 bge_sig_pre_reset(sc, BGE_RESET_START);
4294 bge_reset(sc);
4295 bge_sig_legacy(sc, BGE_RESET_START);
4296 bge_sig_post_reset(sc, BGE_RESET_START);
4297
4298 bge_chipinit(sc);
4299
4300 /*
4301 * Init the various state machines, ring
4302 * control blocks and firmware.
4303 */
4304 error = bge_blockinit(sc);
4305 if (error != 0) {
4306 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4307 error);
4308 splx(s);
4309 return error;
4310 }
4311
4312 ifp = &sc->ethercom.ec_if;
4313
4314 /* Specify MTU. */
4315 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4316 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4317
4318 /* Load our MAC address. */
4319 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4320 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4321 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4322
4323 /* Enable or disable promiscuous mode as needed. */
4324 if (ifp->if_flags & IFF_PROMISC)
4325 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4326 else
4327 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4328
4329 /* Program multicast filter. */
4330 bge_setmulti(sc);
4331
4332 /* Init RX ring. */
4333 bge_init_rx_ring_std(sc);
4334
4335 /*
4336 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4337 * memory to insure that the chip has in fact read the first
4338 * entry of the ring.
4339 */
4340 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4341 uint32_t v, i;
4342 for (i = 0; i < 10; i++) {
4343 DELAY(20);
4344 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4345 if (v == (MCLBYTES - ETHER_ALIGN))
4346 break;
4347 }
4348 if (i == 10)
4349 aprint_error_dev(sc->bge_dev,
4350 "5705 A0 chip failed to load RX ring\n");
4351 }
4352
4353 /* Init jumbo RX ring. */
4354 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4355 bge_init_rx_ring_jumbo(sc);
4356
4357 /* Init our RX return ring index */
4358 sc->bge_rx_saved_considx = 0;
4359
4360 /* Init TX ring. */
4361 bge_init_tx_ring(sc);
4362
4363 /* Turn on transmitter */
4364 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4365
4366 /* Turn on receiver */
4367 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4368
4369 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4370
4371 /* Tell firmware we're alive. */
4372 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4373
4374 /* Enable host interrupts. */
4375 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4376 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4377 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4378
4379 if ((error = bge_ifmedia_upd(ifp)) != 0)
4380 goto out;
4381
4382 ifp->if_flags |= IFF_RUNNING;
4383 ifp->if_flags &= ~IFF_OACTIVE;
4384
4385 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4386
4387 out:
4388 sc->bge_if_flags = ifp->if_flags;
4389 splx(s);
4390
4391 return error;
4392 }
4393
4394 /*
4395 * Set media options.
4396 */
4397 static int
4398 bge_ifmedia_upd(struct ifnet *ifp)
4399 {
4400 struct bge_softc *sc = ifp->if_softc;
4401 struct mii_data *mii = &sc->bge_mii;
4402 struct ifmedia *ifm = &sc->bge_ifmedia;
4403 int rc;
4404
4405 /* If this is a 1000baseX NIC, enable the TBI port. */
4406 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4407 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4408 return EINVAL;
4409 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4410 case IFM_AUTO:
4411 /*
4412 * The BCM5704 ASIC appears to have a special
4413 * mechanism for programming the autoneg
4414 * advertisement registers in TBI mode.
4415 */
4416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4417 uint32_t sgdig;
4418 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4419 if (sgdig & BGE_SGDIGSTS_DONE) {
4420 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4421 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4422 sgdig |= BGE_SGDIGCFG_AUTO |
4423 BGE_SGDIGCFG_PAUSE_CAP |
4424 BGE_SGDIGCFG_ASYM_PAUSE;
4425 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4426 sgdig | BGE_SGDIGCFG_SEND);
4427 DELAY(5);
4428 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4429 }
4430 }
4431 break;
4432 case IFM_1000_SX:
4433 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4434 BGE_CLRBIT(sc, BGE_MAC_MODE,
4435 BGE_MACMODE_HALF_DUPLEX);
4436 } else {
4437 BGE_SETBIT(sc, BGE_MAC_MODE,
4438 BGE_MACMODE_HALF_DUPLEX);
4439 }
4440 break;
4441 default:
4442 return EINVAL;
4443 }
4444 /* XXX 802.3x flow control for 1000BASE-SX */
4445 return 0;
4446 }
4447
4448 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4449 if ((rc = mii_mediachg(mii)) == ENXIO)
4450 return 0;
4451
4452 /*
4453 * Force an interrupt so that we will call bge_link_upd
4454 * if needed and clear any pending link state attention.
4455 * Without this we are not getting any further interrupts
4456 * for link state changes and thus will not UP the link and
4457 * not be able to send in bge_start. The only way to get
4458 * things working was to receive a packet and get a RX intr.
4459 */
4460 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4461 sc->bge_flags & BGE_IS_5788)
4462 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4463 else
4464 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4465
4466 return rc;
4467 }
4468
4469 /*
4470 * Report current media status.
4471 */
4472 static void
4473 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4474 {
4475 struct bge_softc *sc = ifp->if_softc;
4476 struct mii_data *mii = &sc->bge_mii;
4477
4478 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4479 ifmr->ifm_status = IFM_AVALID;
4480 ifmr->ifm_active = IFM_ETHER;
4481 if (CSR_READ_4(sc, BGE_MAC_STS) &
4482 BGE_MACSTAT_TBI_PCS_SYNCHED)
4483 ifmr->ifm_status |= IFM_ACTIVE;
4484 ifmr->ifm_active |= IFM_1000_SX;
4485 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4486 ifmr->ifm_active |= IFM_HDX;
4487 else
4488 ifmr->ifm_active |= IFM_FDX;
4489 return;
4490 }
4491
4492 mii_pollstat(mii);
4493 ifmr->ifm_status = mii->mii_media_status;
4494 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4495 sc->bge_flowflags;
4496 }
4497
4498 static int
4499 bge_ifflags_cb(struct ethercom *ec)
4500 {
4501 struct ifnet *ifp = &ec->ec_if;
4502 struct bge_softc *sc = ifp->if_softc;
4503 int change = ifp->if_flags ^ sc->bge_if_flags;
4504
4505 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4506 return ENETRESET;
4507 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4508 return 0;
4509
4510 if ((ifp->if_flags & IFF_PROMISC) == 0)
4511 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4512 else
4513 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4514
4515 bge_setmulti(sc);
4516
4517 sc->bge_if_flags = ifp->if_flags;
4518 return 0;
4519 }
4520
4521 static int
4522 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4523 {
4524 struct bge_softc *sc = ifp->if_softc;
4525 struct ifreq *ifr = (struct ifreq *) data;
4526 int s, error = 0;
4527 struct mii_data *mii;
4528
4529 s = splnet();
4530
4531 switch (command) {
4532 case SIOCSIFMEDIA:
4533 /* XXX Flow control is not supported for 1000BASE-SX */
4534 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4535 ifr->ifr_media &= ~IFM_ETH_FMASK;
4536 sc->bge_flowflags = 0;
4537 }
4538
4539 /* Flow control requires full-duplex mode. */
4540 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4541 (ifr->ifr_media & IFM_FDX) == 0) {
4542 ifr->ifr_media &= ~IFM_ETH_FMASK;
4543 }
4544 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4545 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4546 /* We can do both TXPAUSE and RXPAUSE. */
4547 ifr->ifr_media |=
4548 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4549 }
4550 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4551 }
4552 /* FALLTHROUGH */
4553 case SIOCGIFMEDIA:
4554 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4555 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4556 command);
4557 } else {
4558 mii = &sc->bge_mii;
4559 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4560 command);
4561 }
4562 break;
4563 default:
4564 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4565 break;
4566
4567 error = 0;
4568
4569 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4570 ;
4571 else if (ifp->if_flags & IFF_RUNNING)
4572 bge_setmulti(sc);
4573 break;
4574 }
4575
4576 splx(s);
4577
4578 return error;
4579 }
4580
4581 static void
4582 bge_watchdog(struct ifnet *ifp)
4583 {
4584 struct bge_softc *sc;
4585
4586 sc = ifp->if_softc;
4587
4588 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4589
4590 ifp->if_flags &= ~IFF_RUNNING;
4591 bge_init(ifp);
4592
4593 ifp->if_oerrors++;
4594 }
4595
4596 static void
4597 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4598 {
4599 int i;
4600
4601 BGE_CLRBIT(sc, reg, bit);
4602
4603 for (i = 0; i < 1000; i++) {
4604 if ((CSR_READ_4(sc, reg) & bit) == 0)
4605 return;
4606 delay(100);
4607 }
4608
4609 /*
4610 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4611 * on some environment (and once after boot?)
4612 */
4613 if (reg != BGE_SRS_MODE)
4614 aprint_error_dev(sc->bge_dev,
4615 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4616 (u_long)reg, bit);
4617 }
4618
4619 /*
4620 * Stop the adapter and free any mbufs allocated to the
4621 * RX and TX lists.
4622 */
4623 static void
4624 bge_stop(struct ifnet *ifp, int disable)
4625 {
4626 struct bge_softc *sc = ifp->if_softc;
4627
4628 callout_stop(&sc->bge_timeout);
4629
4630 /*
4631 * Tell firmware we're shutting down.
4632 */
4633 bge_stop_fw(sc);
4634 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4635
4636 /* Disable host interrupts. */
4637 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4638 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4639
4640 /*
4641 * Disable all of the receiver blocks
4642 */
4643 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4644 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4645 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4646 if (BGE_IS_5700_FAMILY(sc))
4647 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4648 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4649 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4650 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4651
4652 /*
4653 * Disable all of the transmit blocks
4654 */
4655 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4656 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4657 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4658 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4659 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4660 if (BGE_IS_5700_FAMILY(sc))
4661 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4662 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4663
4664 /*
4665 * Shut down all of the memory managers and related
4666 * state machines.
4667 */
4668 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4669 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4670 if (BGE_IS_5700_FAMILY(sc))
4671 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4672
4673 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4674 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4675
4676 if (BGE_IS_5700_FAMILY(sc)) {
4677 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4678 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4679 }
4680
4681 bge_reset(sc);
4682 bge_sig_legacy(sc, BGE_RESET_STOP);
4683 bge_sig_post_reset(sc, BGE_RESET_STOP);
4684
4685 /*
4686 * Keep the ASF firmware running if up.
4687 */
4688 if (sc->bge_asf_mode & ASF_STACKUP)
4689 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4690 else
4691 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4692
4693 /* Free the RX lists. */
4694 bge_free_rx_ring_std(sc);
4695
4696 /* Free jumbo RX list. */
4697 if (BGE_IS_JUMBO_CAPABLE(sc))
4698 bge_free_rx_ring_jumbo(sc);
4699
4700 /* Free TX buffers. */
4701 bge_free_tx_ring(sc);
4702
4703 /*
4704 * Isolate/power down the PHY.
4705 */
4706 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4707 mii_down(&sc->bge_mii);
4708
4709 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4710
4711 /* Clear MAC's link state (PHY may still have link UP). */
4712 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4713
4714 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4715 }
4716
4717 static void
4718 bge_link_upd(struct bge_softc *sc)
4719 {
4720 struct ifnet *ifp = &sc->ethercom.ec_if;
4721 struct mii_data *mii = &sc->bge_mii;
4722 uint32_t status;
4723 int link;
4724
4725 /* Clear 'pending link event' flag */
4726 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4727
4728 /*
4729 * Process link state changes.
4730 * Grrr. The link status word in the status block does
4731 * not work correctly on the BCM5700 rev AX and BX chips,
4732 * according to all available information. Hence, we have
4733 * to enable MII interrupts in order to properly obtain
4734 * async link changes. Unfortunately, this also means that
4735 * we have to read the MAC status register to detect link
4736 * changes, thereby adding an additional register access to
4737 * the interrupt handler.
4738 */
4739
4740 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4741 status = CSR_READ_4(sc, BGE_MAC_STS);
4742 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4743 mii_pollstat(mii);
4744
4745 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4746 mii->mii_media_status & IFM_ACTIVE &&
4747 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4748 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4749 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4750 (!(mii->mii_media_status & IFM_ACTIVE) ||
4751 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4752 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4753
4754 /* Clear the interrupt */
4755 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4756 BGE_EVTENB_MI_INTERRUPT);
4757 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4758 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4759 BRGPHY_INTRS);
4760 }
4761 return;
4762 }
4763
4764 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4765 status = CSR_READ_4(sc, BGE_MAC_STS);
4766 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4767 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4768 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4769 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4770 BGE_CLRBIT(sc, BGE_MAC_MODE,
4771 BGE_MACMODE_TBI_SEND_CFGS);
4772 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4773 if_link_state_change(ifp, LINK_STATE_UP);
4774 }
4775 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4776 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4777 if_link_state_change(ifp, LINK_STATE_DOWN);
4778 }
4779 /*
4780 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4781 * This should not happen since mii callouts are locked now, but
4782 * we keep this check for debug.
4783 */
4784 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4785 /*
4786 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4787 * bit in status word always set. Workaround this bug by
4788 * reading PHY link status directly.
4789 */
4790 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4791 BGE_STS_LINK : 0;
4792
4793 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4794 mii_pollstat(mii);
4795
4796 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4797 mii->mii_media_status & IFM_ACTIVE &&
4798 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4799 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4800 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4801 (!(mii->mii_media_status & IFM_ACTIVE) ||
4802 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4803 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4804 }
4805 }
4806
4807 /* Clear the attention */
4808 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4809 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4810 BGE_MACSTAT_LINK_CHANGED);
4811 }
4812
4813 static int
4814 sysctl_bge_verify(SYSCTLFN_ARGS)
4815 {
4816 int error, t;
4817 struct sysctlnode node;
4818
4819 node = *rnode;
4820 t = *(int*)rnode->sysctl_data;
4821 node.sysctl_data = &t;
4822 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4823 if (error || newp == NULL)
4824 return error;
4825
4826 #if 0
4827 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4828 node.sysctl_num, rnode->sysctl_num));
4829 #endif
4830
4831 if (node.sysctl_num == bge_rxthresh_nodenum) {
4832 if (t < 0 || t >= NBGE_RX_THRESH)
4833 return EINVAL;
4834 bge_update_all_threshes(t);
4835 } else
4836 return EINVAL;
4837
4838 *(int*)rnode->sysctl_data = t;
4839
4840 return 0;
4841 }
4842
4843 /*
4844 * Set up sysctl(3) MIB, hw.bge.*.
4845 */
4846 static void
4847 sysctl_bge_init(struct bge_softc *sc)
4848 {
4849 int rc, bge_root_num;
4850 const struct sysctlnode *node;
4851
4852 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4853 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4854 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4855 goto err;
4856 }
4857
4858 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4859 0, CTLTYPE_NODE, "bge",
4860 SYSCTL_DESCR("BGE interface controls"),
4861 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4862 goto err;
4863 }
4864
4865 bge_root_num = node->sysctl_num;
4866
4867 /* BGE Rx interrupt mitigation level */
4868 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4869 CTLFLAG_READWRITE,
4870 CTLTYPE_INT, "rx_lvl",
4871 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4872 sysctl_bge_verify, 0,
4873 &bge_rx_thresh_lvl,
4874 0, CTL_HW, bge_root_num, CTL_CREATE,
4875 CTL_EOL)) != 0) {
4876 goto err;
4877 }
4878
4879 bge_rxthresh_nodenum = node->sysctl_num;
4880
4881 return;
4882
4883 err:
4884 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4885 }
4886
4887 #ifdef BGE_DEBUG
4888 void
4889 bge_debug_info(struct bge_softc *sc)
4890 {
4891
4892 printf("Hardware Flags:\n");
4893 if (BGE_IS_5755_PLUS(sc))
4894 printf(" - 5755 Plus\n");
4895 if (BGE_IS_5750_OR_BEYOND(sc))
4896 printf(" - 5750 Plus\n");
4897 if (BGE_IS_5705_PLUS(sc))
4898 printf(" - 5705 Plus\n");
4899 if (BGE_IS_5714_FAMILY(sc))
4900 printf(" - 5714 Family\n");
4901 if (BGE_IS_5700_FAMILY(sc))
4902 printf(" - 5700 Family\n");
4903 if (sc->bge_flags & BGE_IS_5788)
4904 printf(" - 5788\n");
4905 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4906 printf(" - Supports Jumbo Frames\n");
4907 if (sc->bge_flags & BGE_NO_EEPROM)
4908 printf(" - No EEPROM\n");
4909 if (sc->bge_flags & BGE_PCIX)
4910 printf(" - PCI-X Bus\n");
4911 if (sc->bge_flags & BGE_PCIE)
4912 printf(" - PCI Express Bus\n");
4913 if (sc->bge_flags & BGE_NO_3LED)
4914 printf(" - No 3 LEDs\n");
4915 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4916 printf(" - RX Alignment Bug\n");
4917 if (sc->bge_flags & BGE_TSO)
4918 printf(" - TSO\n");
4919 }
4920 #endif /* BGE_DEBUG */
4921
4922 static int
4923 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4924 {
4925 prop_dictionary_t dict;
4926 prop_data_t ea;
4927
4928 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4929 return 1;
4930
4931 dict = device_properties(sc->bge_dev);
4932 ea = prop_dictionary_get(dict, "mac-address");
4933 if (ea != NULL) {
4934 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4935 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4936 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4937 return 0;
4938 }
4939
4940 return 1;
4941 }
4942
4943 static int
4944 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4945 {
4946 uint32_t mac_addr;
4947
4948 mac_addr = bge_readmem_ind(sc, 0x0c14);
4949 if ((mac_addr >> 16) == 0x484b) {
4950 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4951 ether_addr[1] = (uint8_t)mac_addr;
4952 mac_addr = bge_readmem_ind(sc, 0x0c18);
4953 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4954 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4955 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4956 ether_addr[5] = (uint8_t)mac_addr;
4957 return 0;
4958 }
4959 return 1;
4960 }
4961
4962 static int
4963 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4964 {
4965 int mac_offset = BGE_EE_MAC_OFFSET;
4966
4967 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4968 mac_offset = BGE_EE_MAC_OFFSET_5906;
4969
4970 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4971 ETHER_ADDR_LEN));
4972 }
4973
4974 static int
4975 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4976 {
4977
4978 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4979 return 1;
4980
4981 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4982 ETHER_ADDR_LEN));
4983 }
4984
4985 static int
4986 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4987 {
4988 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4989 /* NOTE: Order is critical */
4990 bge_get_eaddr_fw,
4991 bge_get_eaddr_mem,
4992 bge_get_eaddr_nvram,
4993 bge_get_eaddr_eeprom,
4994 NULL
4995 };
4996 const bge_eaddr_fcn_t *func;
4997
4998 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4999 if ((*func)(sc, eaddr) == 0)
5000 break;
5001 }
5002 return (*func == NULL ? ENXIO : 0);
5003 }
5004