Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.201
      1 /*	$NetBSD: if_bge.c,v 1.201 2012/07/22 14:33:01 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.201 2012/07/22 14:33:01 matt Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writemem_direct(struct bge_softc *, int, int);
    247 static void bge_writereg_ind(struct bge_softc *, int, int);
    248 static void bge_set_max_readrq(struct bge_softc *);
    249 
    250 static int bge_miibus_readreg(device_t, int, int);
    251 static void bge_miibus_writereg(device_t, int, int, int);
    252 static void bge_miibus_statchg(struct ifnet *);
    253 
    254 #define	BGE_RESET_START 1
    255 #define	BGE_RESET_STOP  2
    256 static void bge_sig_post_reset(struct bge_softc *, int);
    257 static void bge_sig_legacy(struct bge_softc *, int);
    258 static void bge_sig_pre_reset(struct bge_softc *, int);
    259 static void bge_stop_fw(struct bge_softc *);
    260 static int bge_reset(struct bge_softc *);
    261 static void bge_link_upd(struct bge_softc *);
    262 static void sysctl_bge_init(struct bge_softc *);
    263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC9100,
    317 	  "Altima AC9100 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5700,
    321 	  "Broadcom BCM5700 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5701,
    325 	  "Broadcom BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5702,
    329 	  "Broadcom BCM5702 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    333 	  "Broadcom BCM5702X Gigabit Ethernet" },
    334 	{ PCI_VENDOR_BROADCOM,
    335 	  PCI_PRODUCT_BROADCOM_BCM5703,
    336 	  "Broadcom BCM5703 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    340 	  "Broadcom BCM5703X Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    353 	  },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5705,
    356 	  "Broadcom BCM5705 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    360 	  "Broadcom BCM5705F Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    364 	  "Broadcom BCM5705K Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    368 	  "Broadcom BCM5705M Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    372 	  "Broadcom BCM5705M Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5714,
    376 	  "Broadcom BCM5714 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    380 	  "Broadcom BCM5714S Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5715,
    384 	  "Broadcom BCM5715 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    388 	  "Broadcom BCM5715S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5717,
    392 	  "Broadcom BCM5717 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5718,
    396 	  "Broadcom BCM5718 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5720,
    400 	  "Broadcom BCM5720 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5721,
    404 	  "Broadcom BCM5721 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5722,
    408 	  "Broadcom BCM5722 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5723,
    412 	  "Broadcom BCM5723 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5724,
    416 	  "Broadcom BCM5724 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5750,
    420 	  "Broadcom BCM5750 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    424 	  "Broadcom BCM5750M Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5751,
    428 	  "Broadcom BCM5751 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    432 	  "Broadcom BCM5751F Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    436 	  "Broadcom BCM5751M Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5752,
    440 	  "Broadcom BCM5752 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    444 	  "Broadcom BCM5752M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5753,
    448 	  "Broadcom BCM5753 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    452 	  "Broadcom BCM5753F Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    456 	  "Broadcom BCM5753M Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5754,
    460 	  "Broadcom BCM5754 Gigabit Ethernet",
    461 	},
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    464 	  "Broadcom BCM5754M Gigabit Ethernet",
    465 	},
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5755,
    468 	  "Broadcom BCM5755 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    472 	  "Broadcom BCM5755M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5756,
    476 	  "Broadcom BCM5756 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5761,
    480 	  "Broadcom BCM5761 Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    484 	  "Broadcom BCM5761E Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    488 	  "Broadcom BCM5761S Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    492 	  "Broadcom BCM5761SE Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5764,
    496 	  "Broadcom BCM5764 Gigabit Ethernet",
    497 	  },
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5780,
    500 	  "Broadcom BCM5780 Gigabit Ethernet",
    501 	  },
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    504 	  "Broadcom BCM5780S Gigabit Ethernet",
    505 	  },
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5781,
    508 	  "Broadcom BCM5781 Gigabit Ethernet",
    509 	  },
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5782,
    512 	  "Broadcom BCM5782 Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    516 	  "BCM5784M NetLink 1000baseT Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5786,
    520 	  "Broadcom BCM5786 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5787,
    524 	  "Broadcom BCM5787 Gigabit Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    528 	  "Broadcom BCM5787M Gigabit Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5788,
    532 	  "Broadcom BCM5788 Gigabit Ethernet",
    533 	  },
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5789,
    536 	  "Broadcom BCM5789 Gigabit Ethernet",
    537 	  },
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5901,
    540 	  "Broadcom BCM5901 Fast Ethernet",
    541 	  },
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    544 	  "Broadcom BCM5901A2 Fast Ethernet",
    545 	  },
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    548 	  "Broadcom BCM5903M Fast Ethernet",
    549 	  },
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5906,
    552 	  "Broadcom BCM5906 Fast Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    556 	  "Broadcom BCM5906M Fast Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM57760,
    560 	  "Broadcom BCM57760 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM57761,
    564 	  "Broadcom BCM57761 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM57765,
    568 	  "Broadcom BCM57765 Fast Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM57780,
    572 	  "Broadcom BCM57780 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM57781,
    576 	  "Broadcom BCM57781 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57785,
    580 	  "Broadcom BCM57785 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57788,
    584 	  "Broadcom BCM57788 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57790,
    588 	  "Broadcom BCM57790 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57791,
    592 	  "Broadcom BCM57791 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57795,
    596 	  "Broadcom BCM57795 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_SCHNEIDERKOCH,
    599 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    600 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_3COM,
    603 	  PCI_PRODUCT_3COM_3C996,
    604 	  "3Com 3c996 Gigabit Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_FUJITSU4,
    607 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    608 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_FUJITSU4,
    611 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    612 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_FUJITSU4,
    615 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    616 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    617 	  },
    618 	{ 0,
    619 	  0,
    620 	  NULL },
    621 };
    622 
    623 /*
    624  * XXX: how to handle variants based on 5750 and derivatives:
    625  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    626  * in general behave like a 5705, except with additional quirks.
    627  * This driver's current handling of the 5721 is wrong;
    628  * how we map ASIC revision to "quirks" needs more thought.
    629  * (defined here until the thought is done).
    630  */
    631 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    632 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    633 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    634 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    635 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    636 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    637 
    638 static const struct bge_revision {
    639 	uint32_t		br_chipid;
    640 	const char		*br_name;
    641 } bge_revisions[] = {
    642 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    643 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    644 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    645 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    646 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    647 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    648 	/* This is treated like a BCM5700 Bx */
    649 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    650 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    651 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    652 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    653 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    654 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    655 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    656 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    657 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    658 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    659 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    660 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    661 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    662 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    663 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    664 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    665 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    666 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    667 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    668 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    669 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    670 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    671 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    672 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    673 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    674 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    675 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    676 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    677 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    678 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    679 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    680 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    681 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    682 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    683 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    684 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    685 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    686 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    687 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    688 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    689 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    690 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    691 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    692 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    693 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    694 	/* 5754 and 5787 share the same ASIC ID */
    695 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    696 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    697 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    698 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    699 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    700 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    701 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    702 
    703 	{ 0, NULL }
    704 };
    705 
    706 /*
    707  * Some defaults for major revisions, so that newer steppings
    708  * that we don't know about have a shot at working.
    709  */
    710 static const struct bge_revision bge_majorrevs[] = {
    711 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    712 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    713 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    714 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    715 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    716 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    717 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    718 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    719 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    720 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    721 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    722 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    723 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    724 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    725 	/* 5754 and 5787 share the same ASIC ID */
    726 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    727 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    728 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    729 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    730 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    731 
    732 	{ 0, NULL }
    733 };
    734 
    735 static int bge_allow_asf = 1;
    736 
    737 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    738     bge_probe, bge_attach, NULL, NULL);
    739 
    740 static uint32_t
    741 bge_readmem_ind(struct bge_softc *sc, int off)
    742 {
    743 	pcireg_t val;
    744 
    745 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    746 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    747 	return val;
    748 }
    749 
    750 static void
    751 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    752 {
    753 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    754 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    755 }
    756 
    757 /*
    758  * PCI Express only
    759  */
    760 static void
    761 bge_set_max_readrq(struct bge_softc *sc)
    762 {
    763 	pcireg_t val;
    764 
    765 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    766 	    + PCI_PCIE_DCSR);
    767 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    768 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    769 		aprint_verbose_dev(sc->bge_dev,
    770 		    "adjust device control 0x%04x ", val);
    771 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    772 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    773 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    774 		    + PCI_PCIE_DCSR, val);
    775 		aprint_verbose("-> 0x%04x\n", val);
    776 	}
    777 }
    778 
    779 #ifdef notdef
    780 static uint32_t
    781 bge_readreg_ind(struct bge_softc *sc, int off)
    782 {
    783 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    784 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    785 }
    786 #endif
    787 
    788 static void
    789 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    790 {
    791 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    792 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    793 }
    794 
    795 static void
    796 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    797 {
    798 	CSR_WRITE_4(sc, off, val);
    799 }
    800 
    801 static void
    802 bge_writembx(struct bge_softc *sc, int off, int val)
    803 {
    804 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    805 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    806 
    807 	CSR_WRITE_4(sc, off, val);
    808 }
    809 
    810 static uint8_t
    811 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    812 {
    813 	uint32_t access, byte = 0;
    814 	int i;
    815 
    816 	/* Lock. */
    817 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    818 	for (i = 0; i < 8000; i++) {
    819 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    820 			break;
    821 		DELAY(20);
    822 	}
    823 	if (i == 8000)
    824 		return 1;
    825 
    826 	/* Enable access. */
    827 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    828 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    829 
    830 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    831 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    832 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    833 		DELAY(10);
    834 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    835 			DELAY(10);
    836 			break;
    837 		}
    838 	}
    839 
    840 	if (i == BGE_TIMEOUT * 10) {
    841 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    842 		return 1;
    843 	}
    844 
    845 	/* Get result. */
    846 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    847 
    848 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    849 
    850 	/* Disable access. */
    851 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    852 
    853 	/* Unlock. */
    854 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    855 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    856 
    857 	return 0;
    858 }
    859 
    860 /*
    861  * Read a sequence of bytes from NVRAM.
    862  */
    863 static int
    864 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    865 {
    866 	int err = 0, i;
    867 	uint8_t byte = 0;
    868 
    869 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    870 		return 1;
    871 
    872 	for (i = 0; i < cnt; i++) {
    873 		err = bge_nvram_getbyte(sc, off + i, &byte);
    874 		if (err)
    875 			break;
    876 		*(dest + i) = byte;
    877 	}
    878 
    879 	return (err ? 1 : 0);
    880 }
    881 
    882 /*
    883  * Read a byte of data stored in the EEPROM at address 'addr.' The
    884  * BCM570x supports both the traditional bitbang interface and an
    885  * auto access interface for reading the EEPROM. We use the auto
    886  * access method.
    887  */
    888 static uint8_t
    889 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    890 {
    891 	int i;
    892 	uint32_t byte = 0;
    893 
    894 	/*
    895 	 * Enable use of auto EEPROM access so we can avoid
    896 	 * having to use the bitbang method.
    897 	 */
    898 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    899 
    900 	/* Reset the EEPROM, load the clock period. */
    901 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    902 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    903 	DELAY(20);
    904 
    905 	/* Issue the read EEPROM command. */
    906 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    907 
    908 	/* Wait for completion */
    909 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    910 		DELAY(10);
    911 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    912 			break;
    913 	}
    914 
    915 	if (i == BGE_TIMEOUT * 10) {
    916 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    917 		return 1;
    918 	}
    919 
    920 	/* Get result. */
    921 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    922 
    923 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    924 
    925 	return 0;
    926 }
    927 
    928 /*
    929  * Read a sequence of bytes from the EEPROM.
    930  */
    931 static int
    932 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    933 {
    934 	int err = 0, i;
    935 	uint8_t byte = 0;
    936 	char *dest = destv;
    937 
    938 	for (i = 0; i < cnt; i++) {
    939 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    940 		if (err)
    941 			break;
    942 		*(dest + i) = byte;
    943 	}
    944 
    945 	return (err ? 1 : 0);
    946 }
    947 
    948 static int
    949 bge_miibus_readreg(device_t dev, int phy, int reg)
    950 {
    951 	struct bge_softc *sc = device_private(dev);
    952 	uint32_t val;
    953 	uint32_t autopoll;
    954 	int i;
    955 
    956 	/*
    957 	 * Broadcom's own driver always assumes the internal
    958 	 * PHY is at GMII address 1. On some chips, the PHY responds
    959 	 * to accesses at all addresses, which could cause us to
    960 	 * bogusly attach the PHY 32 times at probe type. Always
    961 	 * restricting the lookup to address 1 is simpler than
    962 	 * trying to figure out which chips revisions should be
    963 	 * special-cased.
    964 	 */
    965 	if (phy != 1)
    966 		return 0;
    967 
    968 	/* Reading with autopolling on may trigger PCI errors */
    969 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    970 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    971 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    972 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    973 		DELAY(40);
    974 	}
    975 
    976 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    977 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    978 
    979 	for (i = 0; i < BGE_TIMEOUT; i++) {
    980 		val = CSR_READ_4(sc, BGE_MI_COMM);
    981 		if (!(val & BGE_MICOMM_BUSY))
    982 			break;
    983 		delay(10);
    984 	}
    985 
    986 	if (i == BGE_TIMEOUT) {
    987 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    988 		val = 0;
    989 		goto done;
    990 	}
    991 
    992 	val = CSR_READ_4(sc, BGE_MI_COMM);
    993 
    994 done:
    995 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    996 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
    997 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    998 		DELAY(40);
    999 	}
   1000 
   1001 	if (val & BGE_MICOMM_READFAIL)
   1002 		return 0;
   1003 
   1004 	return (val & 0xFFFF);
   1005 }
   1006 
   1007 static void
   1008 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1009 {
   1010 	struct bge_softc *sc = device_private(dev);
   1011 	uint32_t autopoll;
   1012 	int i;
   1013 
   1014 	if (phy!=1) {
   1015 		return;
   1016 	}
   1017 
   1018 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1019 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1020 		return;
   1021 	}
   1022 
   1023 	/* Reading with autopolling on may trigger PCI errors */
   1024 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1025 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1026 		delay(40);
   1027 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1028 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1029 		delay(10); /* 40 usec is supposed to be adequate */
   1030 	}
   1031 
   1032 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1033 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1034 
   1035 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1036 		delay(10);
   1037 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1038 			delay(5);
   1039 			CSR_READ_4(sc, BGE_MI_COMM);
   1040 			break;
   1041 		}
   1042 	}
   1043 
   1044 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1045 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1046 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1047 		delay(40);
   1048 	}
   1049 
   1050 	if (i == BGE_TIMEOUT)
   1051 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1052 }
   1053 
   1054 static void
   1055 bge_miibus_statchg(struct ifnet *ifp)
   1056 {
   1057 	struct bge_softc *sc = ifp->if_softc;
   1058 	struct mii_data *mii = &sc->bge_mii;
   1059 
   1060 	/*
   1061 	 * Get flow control negotiation result.
   1062 	 */
   1063 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1064 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1065 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1066 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1067 	}
   1068 
   1069 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1070 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1071 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1072 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1073 	else
   1074 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1075 
   1076 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1077 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1078 	else
   1079 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1080 
   1081 	/*
   1082 	 * 802.3x flow control
   1083 	 */
   1084 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1085 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1086 	else
   1087 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1088 
   1089 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1090 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1091 	else
   1092 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1093 }
   1094 
   1095 /*
   1096  * Update rx threshold levels to values in a particular slot
   1097  * of the interrupt-mitigation table bge_rx_threshes.
   1098  */
   1099 static void
   1100 bge_set_thresh(struct ifnet *ifp, int lvl)
   1101 {
   1102 	struct bge_softc *sc = ifp->if_softc;
   1103 	int s;
   1104 
   1105 	/* For now, just save the new Rx-intr thresholds and record
   1106 	 * that a threshold update is pending.  Updating the hardware
   1107 	 * registers here (even at splhigh()) is observed to
   1108 	 * occasionaly cause glitches where Rx-interrupts are not
   1109 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1110 	 */
   1111 	s = splnet();
   1112 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1113 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1114 	sc->bge_pending_rxintr_change = 1;
   1115 	splx(s);
   1116 
   1117 	 return;
   1118 }
   1119 
   1120 
   1121 /*
   1122  * Update Rx thresholds of all bge devices
   1123  */
   1124 static void
   1125 bge_update_all_threshes(int lvl)
   1126 {
   1127 	struct ifnet *ifp;
   1128 	const char * const namebuf = "bge";
   1129 	int namelen;
   1130 
   1131 	if (lvl < 0)
   1132 		lvl = 0;
   1133 	else if (lvl >= NBGE_RX_THRESH)
   1134 		lvl = NBGE_RX_THRESH - 1;
   1135 
   1136 	namelen = strlen(namebuf);
   1137 	/*
   1138 	 * Now search all the interfaces for this name/number
   1139 	 */
   1140 	IFNET_FOREACH(ifp) {
   1141 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1142 		      continue;
   1143 		/* We got a match: update if doing auto-threshold-tuning */
   1144 		if (bge_auto_thresh)
   1145 			bge_set_thresh(ifp, lvl);
   1146 	}
   1147 }
   1148 
   1149 /*
   1150  * Handle events that have triggered interrupts.
   1151  */
   1152 static void
   1153 bge_handle_events(struct bge_softc *sc)
   1154 {
   1155 
   1156 	return;
   1157 }
   1158 
   1159 /*
   1160  * Memory management for jumbo frames.
   1161  */
   1162 
   1163 static int
   1164 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1165 {
   1166 	char *ptr, *kva;
   1167 	bus_dma_segment_t	seg;
   1168 	int		i, rseg, state, error;
   1169 	struct bge_jpool_entry   *entry;
   1170 
   1171 	state = error = 0;
   1172 
   1173 	/* Grab a big chunk o' storage. */
   1174 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1175 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1176 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1177 		return ENOBUFS;
   1178 	}
   1179 
   1180 	state = 1;
   1181 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1182 	    BUS_DMA_NOWAIT)) {
   1183 		aprint_error_dev(sc->bge_dev,
   1184 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1185 		error = ENOBUFS;
   1186 		goto out;
   1187 	}
   1188 
   1189 	state = 2;
   1190 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1191 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1192 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1193 		error = ENOBUFS;
   1194 		goto out;
   1195 	}
   1196 
   1197 	state = 3;
   1198 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1199 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1200 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1201 		error = ENOBUFS;
   1202 		goto out;
   1203 	}
   1204 
   1205 	state = 4;
   1206 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1207 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1208 
   1209 	SLIST_INIT(&sc->bge_jfree_listhead);
   1210 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1211 
   1212 	/*
   1213 	 * Now divide it up into 9K pieces and save the addresses
   1214 	 * in an array.
   1215 	 */
   1216 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1217 	for (i = 0; i < BGE_JSLOTS; i++) {
   1218 		sc->bge_cdata.bge_jslots[i] = ptr;
   1219 		ptr += BGE_JLEN;
   1220 		entry = malloc(sizeof(struct bge_jpool_entry),
   1221 		    M_DEVBUF, M_NOWAIT);
   1222 		if (entry == NULL) {
   1223 			aprint_error_dev(sc->bge_dev,
   1224 			    "no memory for jumbo buffer queue!\n");
   1225 			error = ENOBUFS;
   1226 			goto out;
   1227 		}
   1228 		entry->slot = i;
   1229 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1230 				 entry, jpool_entries);
   1231 	}
   1232 out:
   1233 	if (error != 0) {
   1234 		switch (state) {
   1235 		case 4:
   1236 			bus_dmamap_unload(sc->bge_dmatag,
   1237 			    sc->bge_cdata.bge_rx_jumbo_map);
   1238 		case 3:
   1239 			bus_dmamap_destroy(sc->bge_dmatag,
   1240 			    sc->bge_cdata.bge_rx_jumbo_map);
   1241 		case 2:
   1242 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1243 		case 1:
   1244 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1245 			break;
   1246 		default:
   1247 			break;
   1248 		}
   1249 	}
   1250 
   1251 	return error;
   1252 }
   1253 
   1254 /*
   1255  * Allocate a jumbo buffer.
   1256  */
   1257 static void *
   1258 bge_jalloc(struct bge_softc *sc)
   1259 {
   1260 	struct bge_jpool_entry   *entry;
   1261 
   1262 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1263 
   1264 	if (entry == NULL) {
   1265 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1266 		return NULL;
   1267 	}
   1268 
   1269 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1270 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1271 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1272 }
   1273 
   1274 /*
   1275  * Release a jumbo buffer.
   1276  */
   1277 static void
   1278 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1279 {
   1280 	struct bge_jpool_entry *entry;
   1281 	struct bge_softc *sc;
   1282 	int i, s;
   1283 
   1284 	/* Extract the softc struct pointer. */
   1285 	sc = (struct bge_softc *)arg;
   1286 
   1287 	if (sc == NULL)
   1288 		panic("bge_jfree: can't find softc pointer!");
   1289 
   1290 	/* calculate the slot this buffer belongs to */
   1291 
   1292 	i = ((char *)buf
   1293 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1294 
   1295 	if ((i < 0) || (i >= BGE_JSLOTS))
   1296 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1297 
   1298 	s = splvm();
   1299 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1300 	if (entry == NULL)
   1301 		panic("bge_jfree: buffer not in use!");
   1302 	entry->slot = i;
   1303 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1304 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1305 
   1306 	if (__predict_true(m != NULL))
   1307   		pool_cache_put(mb_cache, m);
   1308 	splx(s);
   1309 }
   1310 
   1311 
   1312 /*
   1313  * Initialize a standard receive ring descriptor.
   1314  */
   1315 static int
   1316 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1317     bus_dmamap_t dmamap)
   1318 {
   1319 	struct mbuf		*m_new = NULL;
   1320 	struct bge_rx_bd	*r;
   1321 	int			error;
   1322 
   1323 	if (dmamap == NULL) {
   1324 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1325 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1326 		if (error != 0)
   1327 			return error;
   1328 	}
   1329 
   1330 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1331 
   1332 	if (m == NULL) {
   1333 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1334 		if (m_new == NULL)
   1335 			return ENOBUFS;
   1336 
   1337 		MCLGET(m_new, M_DONTWAIT);
   1338 		if (!(m_new->m_flags & M_EXT)) {
   1339 			m_freem(m_new);
   1340 			return ENOBUFS;
   1341 		}
   1342 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1343 
   1344 	} else {
   1345 		m_new = m;
   1346 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1347 		m_new->m_data = m_new->m_ext.ext_buf;
   1348 	}
   1349 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1350 	    m_adj(m_new, ETHER_ALIGN);
   1351 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1352 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1353 		return ENOBUFS;
   1354 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1355 	    BUS_DMASYNC_PREREAD);
   1356 
   1357 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1358 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1359 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1360 	r->bge_flags = BGE_RXBDFLAG_END;
   1361 	r->bge_len = m_new->m_len;
   1362 	r->bge_idx = i;
   1363 
   1364 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1365 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1366 		i * sizeof (struct bge_rx_bd),
   1367 	    sizeof (struct bge_rx_bd),
   1368 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1369 
   1370 	return 0;
   1371 }
   1372 
   1373 /*
   1374  * Initialize a jumbo receive ring descriptor. This allocates
   1375  * a jumbo buffer from the pool managed internally by the driver.
   1376  */
   1377 static int
   1378 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1379 {
   1380 	struct mbuf *m_new = NULL;
   1381 	struct bge_rx_bd *r;
   1382 	void *buf = NULL;
   1383 
   1384 	if (m == NULL) {
   1385 
   1386 		/* Allocate the mbuf. */
   1387 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1388 		if (m_new == NULL)
   1389 			return ENOBUFS;
   1390 
   1391 		/* Allocate the jumbo buffer */
   1392 		buf = bge_jalloc(sc);
   1393 		if (buf == NULL) {
   1394 			m_freem(m_new);
   1395 			aprint_error_dev(sc->bge_dev,
   1396 			    "jumbo allocation failed -- packet dropped!\n");
   1397 			return ENOBUFS;
   1398 		}
   1399 
   1400 		/* Attach the buffer to the mbuf. */
   1401 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1402 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1403 		    bge_jfree, sc);
   1404 		m_new->m_flags |= M_EXT_RW;
   1405 	} else {
   1406 		m_new = m;
   1407 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1408 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1409 	}
   1410 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1411 	    m_adj(m_new, ETHER_ALIGN);
   1412 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1413 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1414 	    BUS_DMASYNC_PREREAD);
   1415 	/* Set up the descriptor. */
   1416 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1417 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1418 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1419 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1420 	r->bge_len = m_new->m_len;
   1421 	r->bge_idx = i;
   1422 
   1423 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1424 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1425 		i * sizeof (struct bge_rx_bd),
   1426 	    sizeof (struct bge_rx_bd),
   1427 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1428 
   1429 	return 0;
   1430 }
   1431 
   1432 /*
   1433  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1434  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1435  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1436  * the NIC.
   1437  */
   1438 static int
   1439 bge_init_rx_ring_std(struct bge_softc *sc)
   1440 {
   1441 	int i;
   1442 
   1443 	if (sc->bge_flags & BGE_RXRING_VALID)
   1444 		return 0;
   1445 
   1446 	for (i = 0; i < BGE_SSLOTS; i++) {
   1447 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1448 			return ENOBUFS;
   1449 	}
   1450 
   1451 	sc->bge_std = i - 1;
   1452 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1453 
   1454 	sc->bge_flags |= BGE_RXRING_VALID;
   1455 
   1456 	return 0;
   1457 }
   1458 
   1459 static void
   1460 bge_free_rx_ring_std(struct bge_softc *sc)
   1461 {
   1462 	int i;
   1463 
   1464 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1465 		return;
   1466 
   1467 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1468 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1469 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1470 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1471 			bus_dmamap_destroy(sc->bge_dmatag,
   1472 			    sc->bge_cdata.bge_rx_std_map[i]);
   1473 		}
   1474 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1475 		    sizeof(struct bge_rx_bd));
   1476 	}
   1477 
   1478 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1479 }
   1480 
   1481 static int
   1482 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1483 {
   1484 	int i;
   1485 	volatile struct bge_rcb *rcb;
   1486 
   1487 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1488 		return 0;
   1489 
   1490 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1491 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1492 			return ENOBUFS;
   1493 	};
   1494 
   1495 	sc->bge_jumbo = i - 1;
   1496 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1497 
   1498 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1499 	rcb->bge_maxlen_flags = 0;
   1500 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1501 
   1502 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1503 
   1504 	return 0;
   1505 }
   1506 
   1507 static void
   1508 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1509 {
   1510 	int i;
   1511 
   1512 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1513 		return;
   1514 
   1515 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1516 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1517 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1518 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1519 		}
   1520 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1521 		    sizeof(struct bge_rx_bd));
   1522 	}
   1523 
   1524 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1525 }
   1526 
   1527 static void
   1528 bge_free_tx_ring(struct bge_softc *sc)
   1529 {
   1530 	int i, freed;
   1531 	struct txdmamap_pool_entry *dma;
   1532 
   1533 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1534 		return;
   1535 
   1536 	freed = 0;
   1537 
   1538 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1539 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1540 			freed++;
   1541 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1542 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1543 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1544 					    link);
   1545 			sc->txdma[i] = 0;
   1546 		}
   1547 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1548 		    sizeof(struct bge_tx_bd));
   1549 	}
   1550 
   1551 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1552 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1553 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1554 		free(dma, M_DEVBUF);
   1555 	}
   1556 
   1557 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1558 }
   1559 
   1560 static int
   1561 bge_init_tx_ring(struct bge_softc *sc)
   1562 {
   1563 	int i;
   1564 	bus_dmamap_t dmamap;
   1565 	struct txdmamap_pool_entry *dma;
   1566 
   1567 	if (sc->bge_flags & BGE_TXRING_VALID)
   1568 		return 0;
   1569 
   1570 	sc->bge_txcnt = 0;
   1571 	sc->bge_tx_saved_considx = 0;
   1572 
   1573 	/* Initialize transmit producer index for host-memory send ring. */
   1574 	sc->bge_tx_prodidx = 0;
   1575 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1576 	/* 5700 b2 errata */
   1577 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1578 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1579 
   1580 	/* NIC-memory send ring not used; initialize to zero. */
   1581 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1582 	/* 5700 b2 errata */
   1583 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1584 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1585 
   1586 	SLIST_INIT(&sc->txdma_list);
   1587 	for (i = 0; i < BGE_RSLOTS; i++) {
   1588 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1589 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1590 		    &dmamap))
   1591 			return ENOBUFS;
   1592 		if (dmamap == NULL)
   1593 			panic("dmamap NULL in bge_init_tx_ring");
   1594 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1595 		if (dma == NULL) {
   1596 			aprint_error_dev(sc->bge_dev,
   1597 			    "can't alloc txdmamap_pool_entry\n");
   1598 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1599 			return ENOMEM;
   1600 		}
   1601 		dma->dmamap = dmamap;
   1602 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1603 	}
   1604 
   1605 	sc->bge_flags |= BGE_TXRING_VALID;
   1606 
   1607 	return 0;
   1608 }
   1609 
   1610 static void
   1611 bge_setmulti(struct bge_softc *sc)
   1612 {
   1613 	struct ethercom		*ac = &sc->ethercom;
   1614 	struct ifnet		*ifp = &ac->ec_if;
   1615 	struct ether_multi	*enm;
   1616 	struct ether_multistep  step;
   1617 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1618 	uint32_t		h;
   1619 	int			i;
   1620 
   1621 	if (ifp->if_flags & IFF_PROMISC)
   1622 		goto allmulti;
   1623 
   1624 	/* Now program new ones. */
   1625 	ETHER_FIRST_MULTI(step, ac, enm);
   1626 	while (enm != NULL) {
   1627 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1628 			/*
   1629 			 * We must listen to a range of multicast addresses.
   1630 			 * For now, just accept all multicasts, rather than
   1631 			 * trying to set only those filter bits needed to match
   1632 			 * the range.  (At this time, the only use of address
   1633 			 * ranges is for IP multicast routing, for which the
   1634 			 * range is big enough to require all bits set.)
   1635 			 */
   1636 			goto allmulti;
   1637 		}
   1638 
   1639 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1640 
   1641 		/* Just want the 7 least-significant bits. */
   1642 		h &= 0x7f;
   1643 
   1644 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1645 		ETHER_NEXT_MULTI(step, enm);
   1646 	}
   1647 
   1648 	ifp->if_flags &= ~IFF_ALLMULTI;
   1649 	goto setit;
   1650 
   1651  allmulti:
   1652 	ifp->if_flags |= IFF_ALLMULTI;
   1653 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1654 
   1655  setit:
   1656 	for (i = 0; i < 4; i++)
   1657 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1658 }
   1659 
   1660 static void
   1661 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1662 {
   1663 	/*
   1664 	 * Some chips don't like this so only do this if ASF is enabled
   1665 	 */
   1666 	if (sc->bge_asf_mode)
   1667 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1668 
   1669 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1670 		switch (type) {
   1671 		case BGE_RESET_START:
   1672 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1673 			break;
   1674 		case BGE_RESET_STOP:
   1675 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1676 			break;
   1677 		}
   1678 	}
   1679 }
   1680 
   1681 static void
   1682 bge_sig_post_reset(struct bge_softc *sc, int type)
   1683 {
   1684 
   1685 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1686 		switch (type) {
   1687 		case BGE_RESET_START:
   1688 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1689 			/* START DONE */
   1690 			break;
   1691 		case BGE_RESET_STOP:
   1692 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1693 			break;
   1694 		}
   1695 	}
   1696 }
   1697 
   1698 static void
   1699 bge_sig_legacy(struct bge_softc *sc, int type)
   1700 {
   1701 
   1702 	if (sc->bge_asf_mode) {
   1703 		switch (type) {
   1704 		case BGE_RESET_START:
   1705 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1706 			break;
   1707 		case BGE_RESET_STOP:
   1708 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1709 			break;
   1710 		}
   1711 	}
   1712 }
   1713 
   1714 static void
   1715 bge_stop_fw(struct bge_softc *sc)
   1716 {
   1717 	int i;
   1718 
   1719 	if (sc->bge_asf_mode) {
   1720 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1721 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1722 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1723 
   1724 		for (i = 0; i < 100; i++) {
   1725 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1726 				break;
   1727 			DELAY(10);
   1728 		}
   1729 	}
   1730 }
   1731 
   1732 static int
   1733 bge_poll_fw(struct bge_softc *sc)
   1734 {
   1735 	uint32_t val;
   1736 	int i;
   1737 
   1738 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1739 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1740 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1741 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1742 				break;
   1743 			DELAY(100);
   1744 		}
   1745 		if (i >= BGE_TIMEOUT) {
   1746 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1747 			return -1;
   1748 		}
   1749 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1750 		/*
   1751 		 * Poll the value location we just wrote until
   1752 		 * we see the 1's complement of the magic number.
   1753 		 * This indicates that the firmware initialization
   1754 		 * is complete.
   1755 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1756 		 */
   1757 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1758 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1759 			if (val == ~BGE_MAGIC_NUMBER)
   1760 				break;
   1761 			DELAY(10);
   1762 		}
   1763 
   1764 		if (i >= BGE_TIMEOUT) {
   1765 			aprint_error_dev(sc->bge_dev,
   1766 			    "firmware handshake timed out, val = %x\n", val);
   1767 			return -1;
   1768 		}
   1769 	}
   1770 
   1771 	return 0;
   1772 }
   1773 
   1774 /*
   1775  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1776  * self-test results.
   1777  */
   1778 static int
   1779 bge_chipinit(struct bge_softc *sc)
   1780 {
   1781 	int i;
   1782 	uint32_t dma_rw_ctl;
   1783 
   1784 	/* Set endianness before we access any non-PCI registers. */
   1785 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1786 	    BGE_INIT);
   1787 
   1788 	/* Set power state to D0. */
   1789 	bge_setpowerstate(sc, 0);
   1790 
   1791 	/* Clear the MAC control register */
   1792 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1793 
   1794 	/*
   1795 	 * Clear the MAC statistics block in the NIC's
   1796 	 * internal memory.
   1797 	 */
   1798 	for (i = BGE_STATS_BLOCK;
   1799 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1800 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1801 
   1802 	for (i = BGE_STATUS_BLOCK;
   1803 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1804 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1805 
   1806 	/* Set up the PCI DMA control register. */
   1807 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1808 	if (sc->bge_flags & BGE_PCIE) {
   1809 		/* Read watermark not used, 128 bytes for write. */
   1810 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1811 		    device_xname(sc->bge_dev)));
   1812 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1813 	} else if (sc->bge_flags & BGE_PCIX) {
   1814 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1815 		    device_xname(sc->bge_dev)));
   1816 		/* PCI-X bus */
   1817 		if (BGE_IS_5714_FAMILY(sc)) {
   1818 			/* 256 bytes for read and write. */
   1819 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1820 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1821 
   1822 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1823 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1824 			else
   1825 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1826 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1827 			/* 1536 bytes for read, 384 bytes for write. */
   1828 			dma_rw_ctl |=
   1829 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1830 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1831 		} else {
   1832 			/* 384 bytes for read and write. */
   1833 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1834 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1835 			    (0x0F);
   1836 		}
   1837 
   1838 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1839 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1840 			uint32_t tmp;
   1841 
   1842 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1843 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1844 			if (tmp == 6 || tmp == 7)
   1845 				dma_rw_ctl |=
   1846 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1847 
   1848 			/* Set PCI-X DMA write workaround. */
   1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1850 		}
   1851 	} else {
   1852 		/* Conventional PCI bus: 256 bytes for read and write. */
   1853 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1854 		    device_xname(sc->bge_dev)));
   1855 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1856 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1857 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1858 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1859 			dma_rw_ctl |= 0x0F;
   1860 	}
   1861 
   1862 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1863 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1864 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1865 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1866 
   1867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1868 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1869 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1870 
   1871 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1872 	    dma_rw_ctl);
   1873 
   1874 	/*
   1875 	 * Set up general mode register.
   1876 	 */
   1877 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1878 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1879 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1880 
   1881 	/*
   1882 	 * BCM5701 B5 have a bug causing data corruption when using
   1883 	 * 64-bit DMA reads, which can be terminated early and then
   1884 	 * completed later as 32-bit accesses, in combination with
   1885 	 * certain bridges.
   1886 	 */
   1887 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1888 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1889 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1890 
   1891 	/*
   1892 	 * Tell the firmware the driver is running
   1893 	 */
   1894 	if (sc->bge_asf_mode & ASF_STACKUP)
   1895 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1896 
   1897 	/*
   1898 	 * Disable memory write invalidate.  Apparently it is not supported
   1899 	 * properly by these devices.
   1900 	 */
   1901 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1902 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1903 
   1904 #ifdef __brokenalpha__
   1905 	/*
   1906 	 * Must insure that we do not cross an 8K (bytes) boundary
   1907 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1908 	 * restriction on some ALPHA platforms with early revision
   1909 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1910 	 */
   1911 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1912 #endif
   1913 
   1914 	/* Set the timer prescaler (always 66MHz) */
   1915 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1916 
   1917 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1918 		DELAY(40);	/* XXX */
   1919 
   1920 		/* Put PHY into ready state */
   1921 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1922 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1923 		DELAY(40);
   1924 	}
   1925 
   1926 	return 0;
   1927 }
   1928 
   1929 static int
   1930 bge_blockinit(struct bge_softc *sc)
   1931 {
   1932 	volatile struct bge_rcb	 *rcb;
   1933 	bus_size_t rcb_addr;
   1934 	int i;
   1935 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1936 	bge_hostaddr taddr;
   1937 	uint32_t val;
   1938 
   1939 	/*
   1940 	 * Initialize the memory window pointer register so that
   1941 	 * we can access the first 32K of internal NIC RAM. This will
   1942 	 * allow us to set up the TX send ring RCBs and the RX return
   1943 	 * ring RCBs, plus other things which live in NIC memory.
   1944 	 */
   1945 
   1946 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1947 
   1948 	/* Step 33: Configure mbuf memory pool */
   1949 	if (BGE_IS_5700_FAMILY(sc)) {
   1950 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1951 		    BGE_BUFFPOOL_1);
   1952 
   1953 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1954 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1955 		else
   1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1957 
   1958 		/* Configure DMA resource pool */
   1959 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1960 		    BGE_DMA_DESCRIPTORS);
   1961 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1962 	}
   1963 
   1964 	/* Step 35: Configure mbuf pool watermarks */
   1965 #ifdef ORIG_WPAUL_VALUES
   1966 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1967 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1968 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1969 #else
   1970 
   1971 	/* new broadcom docs strongly recommend these: */
   1972 	if (!BGE_IS_5705_PLUS(sc)) {
   1973 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1974 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1975 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1976 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1977 		} else {
   1978 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1979 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1980 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1981 		}
   1982 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1983 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1986 	} else {
   1987 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1988 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1990 	}
   1991 #endif
   1992 
   1993 	/* Step 36: Configure DMA resource watermarks */
   1994 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1995 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1996 
   1997 	/* Step 38: Enable buffer manager */
   1998 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1999 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2000 
   2001 	/* Step 39: Poll for buffer manager start indication */
   2002 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2003 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2004 			break;
   2005 		DELAY(10);
   2006 	}
   2007 
   2008 	if (i == BGE_TIMEOUT * 2) {
   2009 		aprint_error_dev(sc->bge_dev,
   2010 		    "buffer manager failed to start\n");
   2011 		return ENXIO;
   2012 	}
   2013 
   2014 	/* Step 40: Enable flow-through queues */
   2015 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2016 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2017 
   2018 	/* Wait until queue initialization is complete */
   2019 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2020 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2021 			break;
   2022 		DELAY(10);
   2023 	}
   2024 
   2025 	if (i == BGE_TIMEOUT * 2) {
   2026 		aprint_error_dev(sc->bge_dev,
   2027 		    "flow-through queue init failed\n");
   2028 		return ENXIO;
   2029 	}
   2030 
   2031 	/* Step 41: Initialize the standard RX ring control block */
   2032 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2033 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2034 	if (BGE_IS_5705_PLUS(sc))
   2035 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2036 	else
   2037 		rcb->bge_maxlen_flags =
   2038 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2039 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2040 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2041 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2042 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2043 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2044 
   2045 	/*
   2046 	 * Step 42: Initialize the jumbo RX ring control block
   2047 	 * We set the 'ring disabled' bit in the flags
   2048 	 * field until we're actually ready to start
   2049 	 * using this ring (i.e. once we set the MTU
   2050 	 * high enough to require it).
   2051 	 */
   2052 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2053 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2054 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2055 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2056 		rcb->bge_maxlen_flags =
   2057 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2058 			BGE_RCB_FLAG_RING_DISABLED);
   2059 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2060 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2061 		    rcb->bge_hostaddr.bge_addr_hi);
   2062 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2063 		    rcb->bge_hostaddr.bge_addr_lo);
   2064 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2065 		    rcb->bge_maxlen_flags);
   2066 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2067 
   2068 		/* Set up dummy disabled mini ring RCB */
   2069 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2070 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2071 		    BGE_RCB_FLAG_RING_DISABLED);
   2072 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2073 		    rcb->bge_maxlen_flags);
   2074 
   2075 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2076 		    offsetof(struct bge_ring_data, bge_info),
   2077 		    sizeof (struct bge_gib),
   2078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2079 	}
   2080 
   2081 	/*
   2082 	 * Set the BD ring replenish thresholds. The recommended
   2083 	 * values are 1/8th the number of descriptors allocated to
   2084 	 * each ring.
   2085 	 */
   2086 	i = BGE_STD_RX_RING_CNT / 8;
   2087 
   2088 	/*
   2089 	 * Use a value of 8 for the following chips to workaround HW errata.
   2090 	 * Some of these chips have been added based on empirical
   2091 	 * evidence (they don't work unless this is done).
   2092 	 */
   2093 	if (BGE_IS_5705_PLUS(sc))
   2094 		i = 8;
   2095 
   2096 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2097 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2098 
   2099 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2100 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
   2101 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2102 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2103 	}
   2104 
   2105 	/*
   2106 	 * Disable all unused send rings by setting the 'ring disabled'
   2107 	 * bit in the flags field of all the TX send ring control blocks.
   2108 	 * These are located in NIC memory.
   2109 	 */
   2110 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2111 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2112 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2113 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2114 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2115 		rcb_addr += sizeof(struct bge_rcb);
   2116 	}
   2117 
   2118 	/* Configure TX RCB 0 (we use only the first ring) */
   2119 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2120 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2121 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2122 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2123 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2124 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2125 	if (BGE_IS_5700_FAMILY(sc))
   2126 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2127 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2128 
   2129 	/* Disable all unused RX return rings */
   2130 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2131 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2132 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2133 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2134 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2135 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2136 			BGE_RCB_FLAG_RING_DISABLED));
   2137 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2138 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2139 		    (i * (sizeof(uint64_t))), 0);
   2140 		rcb_addr += sizeof(struct bge_rcb);
   2141 	}
   2142 
   2143 	/* Initialize RX ring indexes */
   2144 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2145 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2146 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2147 
   2148 	/*
   2149 	 * Set up RX return ring 0
   2150 	 * Note that the NIC address for RX return rings is 0x00000000.
   2151 	 * The return rings live entirely within the host, so the
   2152 	 * nicaddr field in the RCB isn't used.
   2153 	 */
   2154 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2155 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2156 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2157 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2158 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2159 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2160 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2161 
   2162 	/* Set random backoff seed for TX */
   2163 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2164 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2165 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2166 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2167 	    BGE_TX_BACKOFF_SEED_MASK);
   2168 
   2169 	/* Set inter-packet gap */
   2170 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2171 
   2172 	/*
   2173 	 * Specify which ring to use for packets that don't match
   2174 	 * any RX rules.
   2175 	 */
   2176 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2177 
   2178 	/*
   2179 	 * Configure number of RX lists. One interrupt distribution
   2180 	 * list, sixteen active lists, one bad frames class.
   2181 	 */
   2182 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2183 
   2184 	/* Inialize RX list placement stats mask. */
   2185 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2186 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2187 
   2188 	/* Disable host coalescing until we get it set up */
   2189 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2190 
   2191 	/* Poll to make sure it's shut down. */
   2192 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2193 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2194 			break;
   2195 		DELAY(10);
   2196 	}
   2197 
   2198 	if (i == BGE_TIMEOUT * 2) {
   2199 		aprint_error_dev(sc->bge_dev,
   2200 		    "host coalescing engine failed to idle\n");
   2201 		return ENXIO;
   2202 	}
   2203 
   2204 	/* Set up host coalescing defaults */
   2205 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2206 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2207 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2208 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2209 	if (BGE_IS_5700_FAMILY(sc)) {
   2210 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2211 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2212 	}
   2213 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2214 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2215 
   2216 	/* Set up address of statistics block */
   2217 	if (BGE_IS_5700_FAMILY(sc)) {
   2218 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2219 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2220 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2221 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2222 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2223 	}
   2224 
   2225 	/* Set up address of status block */
   2226 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2227 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2228 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2229 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2230 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2231 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2232 
   2233 	/* Turn on host coalescing state machine */
   2234 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2235 
   2236 	/* Turn on RX BD completion state machine and enable attentions */
   2237 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2238 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2239 
   2240 	/* Turn on RX list placement state machine */
   2241 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2242 
   2243 	/* Turn on RX list selector state machine. */
   2244 	if (BGE_IS_5700_FAMILY(sc))
   2245 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2246 
   2247 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2248 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2249 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2250 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2251 
   2252 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2253 		val |= BGE_PORTMODE_TBI;
   2254 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2255 		val |= BGE_PORTMODE_GMII;
   2256 	else
   2257 		val |= BGE_PORTMODE_MII;
   2258 
   2259 	/* Turn on DMA, clear stats */
   2260 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2261 
   2262 	/* Set misc. local control, enable interrupts on attentions */
   2263 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2264 
   2265 #ifdef notdef
   2266 	/* Assert GPIO pins for PHY reset */
   2267 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2268 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2269 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2270 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2271 #endif
   2272 
   2273 #if defined(not_quite_yet)
   2274 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2275 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2276 		sc->bge_local_ctrl_reg |=
   2277 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2278 	}
   2279 #endif
   2280 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2281 
   2282 	/* Turn on DMA completion state machine */
   2283 	if (BGE_IS_5700_FAMILY(sc))
   2284 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2285 
   2286 	/* Turn on write DMA state machine */
   2287 	{
   2288 		uint32_t bge_wdma_mode =
   2289 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
   2290 
   2291 		/* Enable host coalescing bug fix; see Linux tg3.c */
   2292 		if (BGE_IS_5755_PLUS(sc))
   2293 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2294 
   2295 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
   2296 	}
   2297 
   2298 	/* Turn on read DMA state machine */
   2299 	{
   2300 		uint32_t dma_read_modebits;
   2301 
   2302 		dma_read_modebits =
   2303 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2304 
   2305 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2306 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2307 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2308 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2309 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2310 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2311 
   2312 		if (sc->bge_flags & BGE_PCIE)
   2313 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2314 		if (sc->bge_flags & BGE_TSO)
   2315 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
   2316 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
   2317 		delay(40);
   2318 	}
   2319 
   2320 	/* Turn on RX data completion state machine */
   2321 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2322 
   2323 	/* Turn on RX BD initiator state machine */
   2324 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2325 
   2326 	/* Turn on RX data and RX BD initiator state machine */
   2327 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2328 
   2329 	/* Turn on Mbuf cluster free state machine */
   2330 	if (BGE_IS_5700_FAMILY(sc))
   2331 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2332 
   2333 	/* Turn on send BD completion state machine */
   2334 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2335 
   2336 	/* Turn on send data completion state machine */
   2337 	val = BGE_SDCMODE_ENABLE;
   2338 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2339 		val |= BGE_SDCMODE_CDELAY;
   2340 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2341 
   2342 	/* Turn on send data initiator state machine */
   2343 	if (sc->bge_flags & BGE_TSO) {
   2344 		/* XXX: magic value from Linux driver */
   2345 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2346 	} else
   2347 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2348 
   2349 	/* Turn on send BD initiator state machine */
   2350 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2351 
   2352 	/* Turn on send BD selector state machine */
   2353 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2354 
   2355 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2356 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2357 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2358 
   2359 	/* ack/clear link change events */
   2360 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2361 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2362 	    BGE_MACSTAT_LINK_CHANGED);
   2363 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2364 
   2365 	/* Enable PHY auto polling (for MII/GMII only) */
   2366 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2367 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2368 	} else {
   2369 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2370 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2371 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2372 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2373 			    BGE_EVTENB_MI_INTERRUPT);
   2374 	}
   2375 
   2376 	/*
   2377 	 * Clear any pending link state attention.
   2378 	 * Otherwise some link state change events may be lost until attention
   2379 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2380 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2381 	 * state change attentions implies clearing pending attention.
   2382 	 */
   2383 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2384 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2385 	    BGE_MACSTAT_LINK_CHANGED);
   2386 
   2387 	/* Enable link state change attentions. */
   2388 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2389 
   2390 	return 0;
   2391 }
   2392 
   2393 static const struct bge_revision *
   2394 bge_lookup_rev(uint32_t chipid)
   2395 {
   2396 	const struct bge_revision *br;
   2397 
   2398 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2399 		if (br->br_chipid == chipid)
   2400 			return br;
   2401 	}
   2402 
   2403 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2404 		if (br->br_chipid == BGE_ASICREV(chipid))
   2405 			return br;
   2406 	}
   2407 
   2408 	return NULL;
   2409 }
   2410 
   2411 static const struct bge_product *
   2412 bge_lookup(const struct pci_attach_args *pa)
   2413 {
   2414 	const struct bge_product *bp;
   2415 
   2416 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2417 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2418 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2419 			return bp;
   2420 	}
   2421 
   2422 	return NULL;
   2423 }
   2424 
   2425 static int
   2426 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2427 {
   2428 #ifdef NOTYET
   2429 	uint32_t pm_ctl = 0;
   2430 
   2431 	/* XXX FIXME: make sure indirect accesses enabled? */
   2432 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2433 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2434 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2435 
   2436 	/* clear the PME_assert bit and power state bits, enable PME */
   2437 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2438 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2439 	pm_ctl |= (1 << 8);
   2440 
   2441 	if (powerlevel == 0) {
   2442 		pm_ctl |= PCIM_PSTAT_D0;
   2443 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2444 		    pm_ctl, 2);
   2445 		DELAY(10000);
   2446 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2447 		DELAY(10000);
   2448 
   2449 #ifdef NOTYET
   2450 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2451 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2452 #endif
   2453 		DELAY(40); DELAY(40); DELAY(40);
   2454 		DELAY(10000);	/* above not quite adequate on 5700 */
   2455 		return 0;
   2456 	}
   2457 
   2458 
   2459 	/*
   2460 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2461 	 * GMII gpio pins. Example code assumes all hardware vendors
   2462 	 * followed Broadcom's sample pcb layout. Until we verify that
   2463 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2464 	 */
   2465 	aprint_error_dev(sc->bge_dev,
   2466 	    "power state %d unimplemented; check GPIO pins\n",
   2467 	    powerlevel);
   2468 #endif
   2469 	return EOPNOTSUPP;
   2470 }
   2471 
   2472 
   2473 /*
   2474  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2475  * against our list and return its name if we find a match. Note
   2476  * that since the Broadcom controller contains VPD support, we
   2477  * can get the device name string from the controller itself instead
   2478  * of the compiled-in string. This is a little slow, but it guarantees
   2479  * we'll always announce the right product name.
   2480  */
   2481 static int
   2482 bge_probe(device_t parent, cfdata_t match, void *aux)
   2483 {
   2484 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2485 
   2486 	if (bge_lookup(pa) != NULL)
   2487 		return 1;
   2488 
   2489 	return 0;
   2490 }
   2491 
   2492 static void
   2493 bge_attach(device_t parent, device_t self, void *aux)
   2494 {
   2495 	struct bge_softc	*sc = device_private(self);
   2496 	struct pci_attach_args	*pa = aux;
   2497 	prop_dictionary_t dict;
   2498 	const struct bge_product *bp;
   2499 	const struct bge_revision *br;
   2500 	pci_chipset_tag_t	pc;
   2501 	pci_intr_handle_t	ih;
   2502 	const char		*intrstr = NULL;
   2503 	bus_dma_segment_t	seg;
   2504 	int			rseg;
   2505 	uint32_t		hwcfg = 0;
   2506 	uint32_t		command;
   2507 	struct ifnet		*ifp;
   2508 	uint32_t		misccfg;
   2509 	void *			kva;
   2510 	u_char			eaddr[ETHER_ADDR_LEN];
   2511 	pcireg_t		memtype, subid;
   2512 	bus_addr_t		memaddr;
   2513 	bus_size_t		memsize;
   2514 	uint32_t		pm_ctl;
   2515 	bool			no_seeprom;
   2516 
   2517 	bp = bge_lookup(pa);
   2518 	KASSERT(bp != NULL);
   2519 
   2520 	sc->sc_pc = pa->pa_pc;
   2521 	sc->sc_pcitag = pa->pa_tag;
   2522 	sc->bge_dev = self;
   2523 
   2524 	pc = sc->sc_pc;
   2525 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2526 
   2527 	aprint_naive(": Ethernet controller\n");
   2528 	aprint_normal(": %s\n", bp->bp_name);
   2529 
   2530 	/*
   2531 	 * Map control/status registers.
   2532 	 */
   2533 	DPRINTFN(5, ("Map control/status regs\n"));
   2534 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2535 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2536 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2537 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2538 
   2539 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2540 		aprint_error_dev(sc->bge_dev,
   2541 		    "failed to enable memory mapping!\n");
   2542 		return;
   2543 	}
   2544 
   2545 	DPRINTFN(5, ("pci_mem_find\n"));
   2546 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2547 	switch (memtype) {
   2548 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2549 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2550 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2551 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2552 		    &memaddr, &memsize) == 0)
   2553 			break;
   2554 	default:
   2555 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2556 		return;
   2557 	}
   2558 
   2559 	DPRINTFN(5, ("pci_intr_map\n"));
   2560 	if (pci_intr_map(pa, &ih)) {
   2561 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2562 		return;
   2563 	}
   2564 
   2565 	DPRINTFN(5, ("pci_intr_string\n"));
   2566 	intrstr = pci_intr_string(pc, ih);
   2567 
   2568 	DPRINTFN(5, ("pci_intr_establish\n"));
   2569 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2570 
   2571 	if (sc->bge_intrhand == NULL) {
   2572 		aprint_error_dev(sc->bge_dev,
   2573 		    "couldn't establish interrupt%s%s\n",
   2574 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2575 		return;
   2576 	}
   2577 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2578 
   2579 	/*
   2580 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2581 	 * can clobber the chip's PCI config-space power control registers,
   2582 	 * leaving the card in D3 powersave state.
   2583 	 * We do not have memory-mapped registers in this state,
   2584 	 * so force device into D0 state before starting initialization.
   2585 	 */
   2586 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2587 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2588 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2589 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2590 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2591 
   2592 	/*
   2593 	 * Save ASIC rev.
   2594 	 */
   2595 	sc->bge_chipid =
   2596 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2597 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2598 
   2599 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2600 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
   2601 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
   2602 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
   2603 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2604 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2605 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
   2606 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
   2607 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
   2608 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
   2609 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   2610 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
   2611 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2612 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2613 		else
   2614 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2615 			    BGE_PCI_PRODID_ASICREV);
   2616 	}
   2617 
   2618 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2619 	        &sc->bge_pciecap, NULL) != 0)
   2620 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2621 		/* PCIe */
   2622 		sc->bge_flags |= BGE_PCIE;
   2623 		bge_set_max_readrq(sc);
   2624 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2625 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2626 		/* PCI-X */
   2627 		sc->bge_flags |= BGE_PCIX;
   2628 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2629 			&sc->bge_pcixcap, NULL) == 0)
   2630 			aprint_error_dev(sc->bge_dev,
   2631 			    "unable to find PCIX capability\n");
   2632 	}
   2633 
   2634 	/* chipid */
   2635 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2636 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2637 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2639 		sc->bge_flags |= BGE_5700_FAMILY;
   2640 
   2641 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2642 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2643 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2644 		sc->bge_flags |= BGE_5714_FAMILY;
   2645 
   2646 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2651 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2652 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2653 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2655 		sc->bge_flags |= BGE_5755_PLUS;
   2656 
   2657 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2658 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2659 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2660 	    BGE_IS_5755_PLUS(sc) ||
   2661 	    BGE_IS_5714_FAMILY(sc))
   2662 		sc->bge_flags |= BGE_5750_PLUS;
   2663 
   2664 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2665 	    BGE_IS_5750_OR_BEYOND(sc))
   2666 		sc->bge_flags |= BGE_5705_PLUS;
   2667 
   2668 	/*
   2669 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2670 	 * been observed in the first few bytes of some received packets.
   2671 	 * Aligning the packet buffer in memory eliminates the corruption.
   2672 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2673 	 * which do not support unaligned accesses, we will realign the
   2674 	 * payloads by copying the received packets.
   2675 	 */
   2676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2677 	    sc->bge_flags & BGE_PCIX)
   2678 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2679 
   2680 	if (BGE_IS_5700_FAMILY(sc))
   2681 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2682 
   2683 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2684 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2685 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2686 		sc->bge_flags |= BGE_NO_3LED;
   2687 
   2688 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2689 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2690 
   2691 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2692 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2693 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2694 		sc->bge_flags |= BGE_IS_5788;
   2695 
   2696 	/*
   2697 	 * Some controllers seem to require a special firmware to use
   2698 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2699 	 * claims that the TSO performed by the firmware is slower than
   2700 	 * hardware based TSO. Moreover the firmware based TSO has one
   2701 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2702 	 * header is greater than 80 bytes. The workaround for the TSO
   2703 	 * bug exist but it seems it's too expensive than not using
   2704 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2705 	 * the TSO to the controllers that are not affected TSO issues
   2706 	 * (e.g. 5755 or higher).
   2707 	 */
   2708 	if (BGE_IS_5755_PLUS(sc)) {
   2709 		/*
   2710 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2711 		 * explicit device id check is required.
   2712 		 */
   2713 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2714 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2715 			sc->bge_flags |= BGE_TSO;
   2716 	}
   2717 
   2718 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2719 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2720 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2721 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2722 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2723 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2724 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2725 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2726 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2727 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2728 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2729 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2730 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2731 		sc->bge_flags |= BGE_10_100_ONLY;
   2732 
   2733 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2734 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2735 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2736 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2737 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2738 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2739 
   2740 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2741 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2742 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2743 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2744 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2745 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2746 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2747 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2748 
   2749 	if (BGE_IS_5705_PLUS(sc) &&
   2750 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2751 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2752 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2753 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2754 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2755 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2756 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2757 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2758 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2759 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2760 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2761 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2762 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2763 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2764 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2765 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2766 	}
   2767 
   2768 	/*
   2769 	 * SEEPROM check.
   2770 	 * First check if firmware knows we do not have SEEPROM.
   2771 	 */
   2772 	if (prop_dictionary_get_bool(device_properties(self),
   2773 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2774 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2775 
   2776 	/* Now check the 'ROM failed' bit on the RX CPU */
   2777 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2778 		sc->bge_flags |= BGE_NO_EEPROM;
   2779 
   2780 	/* Try to reset the chip. */
   2781 	DPRINTFN(5, ("bge_reset\n"));
   2782 	bge_reset(sc);
   2783 
   2784 	sc->bge_asf_mode = 0;
   2785 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2786 	    == BGE_MAGIC_NUMBER)) {
   2787 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2788 		    & BGE_HWCFG_ASF) {
   2789 			sc->bge_asf_mode |= ASF_ENABLE;
   2790 			sc->bge_asf_mode |= ASF_STACKUP;
   2791 			if (BGE_IS_5750_OR_BEYOND(sc)) {
   2792 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2793 			}
   2794 		}
   2795 	}
   2796 
   2797 	/* Try to reset the chip again the nice way. */
   2798 	bge_stop_fw(sc);
   2799 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2800 	if (bge_reset(sc))
   2801 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2802 
   2803 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2804 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2805 
   2806 	if (bge_chipinit(sc)) {
   2807 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2808 		bge_release_resources(sc);
   2809 		return;
   2810 	}
   2811 
   2812 	/*
   2813 	 * Get station address from the EEPROM
   2814 	 */
   2815 	if (bge_get_eaddr(sc, eaddr)) {
   2816 		aprint_error_dev(sc->bge_dev,
   2817 		    "failed to read station address\n");
   2818 		bge_release_resources(sc);
   2819 		return;
   2820 	}
   2821 
   2822 	br = bge_lookup_rev(sc->bge_chipid);
   2823 
   2824 	if (br == NULL) {
   2825 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2826 		    sc->bge_chipid);
   2827 	} else {
   2828 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2829 		    br->br_name, sc->bge_chipid);
   2830 	}
   2831 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2832 
   2833 	/* Allocate the general information block and ring buffers. */
   2834 	if (pci_dma64_available(pa))
   2835 		sc->bge_dmatag = pa->pa_dmat64;
   2836 	else
   2837 		sc->bge_dmatag = pa->pa_dmat;
   2838 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2839 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2840 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2841 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2842 		return;
   2843 	}
   2844 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2845 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2846 			   sizeof(struct bge_ring_data), &kva,
   2847 			   BUS_DMA_NOWAIT)) {
   2848 		aprint_error_dev(sc->bge_dev,
   2849 		    "can't map DMA buffers (%zu bytes)\n",
   2850 		    sizeof(struct bge_ring_data));
   2851 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2852 		return;
   2853 	}
   2854 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2855 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2856 	    sizeof(struct bge_ring_data), 0,
   2857 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2858 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2859 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2860 				 sizeof(struct bge_ring_data));
   2861 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2862 		return;
   2863 	}
   2864 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2865 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2866 			    sizeof(struct bge_ring_data), NULL,
   2867 			    BUS_DMA_NOWAIT)) {
   2868 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2869 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2870 				 sizeof(struct bge_ring_data));
   2871 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2872 		return;
   2873 	}
   2874 
   2875 	DPRINTFN(5, ("bzero\n"));
   2876 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2877 
   2878 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2879 
   2880 	/* Try to allocate memory for jumbo buffers. */
   2881 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2882 		if (bge_alloc_jumbo_mem(sc)) {
   2883 			aprint_error_dev(sc->bge_dev,
   2884 			    "jumbo buffer allocation failed\n");
   2885 		} else
   2886 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2887 	}
   2888 
   2889 	/* Set default tuneable values. */
   2890 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2891 	sc->bge_rx_coal_ticks = 150;
   2892 	sc->bge_rx_max_coal_bds = 64;
   2893 #ifdef ORIG_WPAUL_VALUES
   2894 	sc->bge_tx_coal_ticks = 150;
   2895 	sc->bge_tx_max_coal_bds = 128;
   2896 #else
   2897 	sc->bge_tx_coal_ticks = 300;
   2898 	sc->bge_tx_max_coal_bds = 400;
   2899 #endif
   2900 	if (BGE_IS_5705_PLUS(sc)) {
   2901 		sc->bge_tx_coal_ticks = (12 * 5);
   2902 		sc->bge_tx_max_coal_bds = (12 * 5);
   2903 			aprint_verbose_dev(sc->bge_dev,
   2904 			    "setting short Tx thresholds\n");
   2905 	}
   2906 
   2907 	if (BGE_IS_5705_PLUS(sc))
   2908 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2909 	else
   2910 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2911 
   2912 	/* Set up ifnet structure */
   2913 	ifp = &sc->ethercom.ec_if;
   2914 	ifp->if_softc = sc;
   2915 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2916 	ifp->if_ioctl = bge_ioctl;
   2917 	ifp->if_stop = bge_stop;
   2918 	ifp->if_start = bge_start;
   2919 	ifp->if_init = bge_init;
   2920 	ifp->if_watchdog = bge_watchdog;
   2921 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2922 	IFQ_SET_READY(&ifp->if_snd);
   2923 	DPRINTFN(5, ("strcpy if_xname\n"));
   2924 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2925 
   2926 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2927 		sc->ethercom.ec_if.if_capabilities |=
   2928 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2929 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2930 		sc->ethercom.ec_if.if_capabilities |=
   2931 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2932 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2933 #endif
   2934 	sc->ethercom.ec_capabilities |=
   2935 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2936 
   2937 	if (sc->bge_flags & BGE_TSO)
   2938 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2939 
   2940 	/*
   2941 	 * Do MII setup.
   2942 	 */
   2943 	DPRINTFN(5, ("mii setup\n"));
   2944 	sc->bge_mii.mii_ifp = ifp;
   2945 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2946 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2947 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2948 
   2949 	/*
   2950 	 * Figure out what sort of media we have by checking the
   2951 	 * hardware config word in the first 32k of NIC internal memory,
   2952 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2953 	 * cards, this value appears to be unset. If that's the
   2954 	 * case, we have to rely on identifying the NIC by its PCI
   2955 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2956 	 */
   2957 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2958 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2959 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2960 		bge_read_eeprom(sc, (void *)&hwcfg,
   2961 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2962 		hwcfg = be32toh(hwcfg);
   2963 	}
   2964 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2965 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2966 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2967 		if (BGE_IS_5714_FAMILY(sc))
   2968 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2969 		else
   2970 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2971 	}
   2972 
   2973 	/* set phyflags and chipid before mii_attach() */
   2974 	dict = device_properties(self);
   2975 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   2976 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   2977 
   2978 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2979 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2980 		    bge_ifmedia_sts);
   2981 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   2982 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   2983 			    0, NULL);
   2984 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   2985 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   2986 		/* Pretend the user requested this setting */
   2987 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   2988 	} else {
   2989 		/*
   2990 		 * Do transceiver setup and tell the firmware the
   2991 		 * driver is down so we can try to get access the
   2992 		 * probe if ASF is running.  Retry a couple of times
   2993 		 * if we get a conflict with the ASF firmware accessing
   2994 		 * the PHY.
   2995 		 */
   2996 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2997 		bge_asf_driver_up(sc);
   2998 
   2999 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3000 			     bge_ifmedia_sts);
   3001 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3002 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3003 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3004 
   3005 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3006 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3007 			ifmedia_add(&sc->bge_mii.mii_media,
   3008 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3009 			ifmedia_set(&sc->bge_mii.mii_media,
   3010 				    IFM_ETHER|IFM_MANUAL);
   3011 		} else
   3012 			ifmedia_set(&sc->bge_mii.mii_media,
   3013 				    IFM_ETHER|IFM_AUTO);
   3014 
   3015 		/*
   3016 		 * Now tell the firmware we are going up after probing the PHY
   3017 		 */
   3018 		if (sc->bge_asf_mode & ASF_STACKUP)
   3019 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3020 	}
   3021 
   3022 	/*
   3023 	 * Call MI attach routine.
   3024 	 */
   3025 	DPRINTFN(5, ("if_attach\n"));
   3026 	if_attach(ifp);
   3027 	DPRINTFN(5, ("ether_ifattach\n"));
   3028 	ether_ifattach(ifp, eaddr);
   3029 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3030 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3031 		RND_TYPE_NET, 0);
   3032 #ifdef BGE_EVENT_COUNTERS
   3033 	/*
   3034 	 * Attach event counters.
   3035 	 */
   3036 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3037 	    NULL, device_xname(sc->bge_dev), "intr");
   3038 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3039 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3040 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3041 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3042 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3043 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3044 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3045 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3046 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3047 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3048 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3049 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3050 #endif /* BGE_EVENT_COUNTERS */
   3051 	DPRINTFN(5, ("callout_init\n"));
   3052 	callout_init(&sc->bge_timeout, 0);
   3053 
   3054 	if (pmf_device_register(self, NULL, NULL))
   3055 		pmf_class_network_register(self, ifp);
   3056 	else
   3057 		aprint_error_dev(self, "couldn't establish power handler\n");
   3058 
   3059 	sysctl_bge_init(sc);
   3060 
   3061 #ifdef BGE_DEBUG
   3062 	bge_debug_info(sc);
   3063 #endif
   3064 }
   3065 
   3066 static void
   3067 bge_release_resources(struct bge_softc *sc)
   3068 {
   3069 	if (sc->bge_vpd_prodname != NULL)
   3070 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3071 
   3072 	if (sc->bge_vpd_readonly != NULL)
   3073 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3074 }
   3075 
   3076 static int
   3077 bge_reset(struct bge_softc *sc)
   3078 {
   3079 	uint32_t cachesize, command, pcistate, marbmode;
   3080 #if 0
   3081 	uint32_t new_pcistate;
   3082 #endif
   3083 	pcireg_t devctl, reg;
   3084 	int i, val;
   3085 	void (*write_op)(struct bge_softc *, int, int);
   3086 
   3087 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
   3088 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3089 	    	if (sc->bge_flags & BGE_PCIE)
   3090 			write_op = bge_writemem_direct;
   3091 		else
   3092 			write_op = bge_writemem_ind;
   3093 	} else
   3094 		write_op = bge_writereg_ind;
   3095 
   3096 	/* Save some important PCI state. */
   3097 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3098 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3099 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3100 
   3101 	/* Step 5a: Enable memory arbiter. */
   3102 	marbmode = 0;
   3103 	if (BGE_IS_5714_FAMILY(sc))
   3104 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3105 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3106 
   3107 	/* Step 5b-5d: */
   3108 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3109 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3110 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3111 
   3112 	/* XXX ???: Disable fastboot on controllers that support it. */
   3113 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3114 	    BGE_IS_5755_PLUS(sc))
   3115 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3116 
   3117 	/*
   3118 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3119 	 * When firmware finishes its initialization it will
   3120 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3121 	 */
   3122 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3123 
   3124 	/* Step 7: */
   3125 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3126 	/*
   3127 	 * XXX: from FreeBSD/Linux; no documentation
   3128 	 */
   3129 	if (sc->bge_flags & BGE_PCIE) {
   3130 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3131 			/* PCI Express 1.0 system */
   3132 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3133 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3134 			/*
   3135 			 * Prevent PCI Express link training
   3136 			 * during global reset.
   3137 			 */
   3138 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3139 			val |= (1<<29);
   3140 		}
   3141 	}
   3142 
   3143 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3144 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3145 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3146 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3147 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3148 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3149 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3150 	}
   3151 
   3152 	/*
   3153 	 * Set GPHY Power Down Override to leave GPHY
   3154 	 * powered up in D0 uninitialized.
   3155 	 */
   3156 	if (BGE_IS_5705_PLUS(sc))
   3157 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3158 
   3159 	/* XXX 5721, 5751 and 5752 */
   3160 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3161 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3162 
   3163 	/* Issue global reset */
   3164 	write_op(sc, BGE_MISC_CFG, val);
   3165 
   3166 	/* Step 8: wait for complete */
   3167 	if (sc->bge_flags & BGE_PCIE)
   3168 		delay(100*1000); /* too big */
   3169 	else
   3170 		delay(100);
   3171 
   3172 	/* From Linux: dummy read to flush PCI posted writes */
   3173 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3174 
   3175 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3176 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3177 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3178 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3179 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3180 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3181 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3182 
   3183 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3184 	if (sc->bge_flags & BGE_PCIX) {
   3185 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3186 		    + PCI_PCIX_CMD);
   3187 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3188 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3189 	}
   3190 
   3191 	if (sc->bge_flags & BGE_PCIE) {
   3192 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3193 			DELAY(500000);
   3194 			/* XXX: Magic Numbers */
   3195 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3196 			    BGE_PCI_UNKNOWN0);
   3197 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3198 			    BGE_PCI_UNKNOWN0,
   3199 			    reg | (1 << 15));
   3200 		}
   3201 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3202 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3203 		/* Clear enable no snoop and disable relaxed ordering. */
   3204 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3205 		/* Set PCIE max payload size to 128. */
   3206 		devctl &= ~(0x00e0);
   3207 		/* Clear device status register. Write 1b to clear */
   3208 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3209 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3210 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3211 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3212 	}
   3213 
   3214 	/* Step 12: Enable memory arbiter. */
   3215 	marbmode = 0;
   3216 	if (BGE_IS_5714_FAMILY(sc))
   3217 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3218 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3219 
   3220 	/* Step 17: Poll until the firmware initialization is complete */
   3221 	bge_poll_fw(sc);
   3222 
   3223 	/* XXX 5721, 5751 and 5752 */
   3224 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3225 		/* Step 19: */
   3226 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3227 		/* Step 20: */
   3228 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3229 	}
   3230 
   3231 	/*
   3232 	 * Step 18: wirte mac mode
   3233 	 * XXX Write 0x0c for 5703S and 5704S
   3234 	 */
   3235 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3236 
   3237 
   3238 	/* Step 21: 5822 B0 errata */
   3239 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3240 		pcireg_t msidata;
   3241 
   3242 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3243 		    BGE_PCI_MSI_DATA);
   3244 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3245 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3246 		    msidata);
   3247 	}
   3248 
   3249 	/* Step 23: restore cache line size */
   3250 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3251 
   3252 #if 0
   3253 	/*
   3254 	 * XXX Wait for the value of the PCISTATE register to
   3255 	 * return to its original pre-reset state. This is a
   3256 	 * fairly good indicator of reset completion. If we don't
   3257 	 * wait for the reset to fully complete, trying to read
   3258 	 * from the device's non-PCI registers may yield garbage
   3259 	 * results.
   3260 	 */
   3261 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3262 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3263 		    BGE_PCI_PCISTATE);
   3264 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3265 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3266 			break;
   3267 		DELAY(10);
   3268 	}
   3269 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3270 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3271 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3272 	}
   3273 #endif
   3274 
   3275 	/* Step 28: Fix up byte swapping */
   3276 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3277 
   3278 	/* Tell the ASF firmware we are up */
   3279 	if (sc->bge_asf_mode & ASF_STACKUP)
   3280 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3281 
   3282 	/*
   3283 	 * The 5704 in TBI mode apparently needs some special
   3284 	 * adjustment to insure the SERDES drive level is set
   3285 	 * to 1.2V.
   3286 	 */
   3287 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3288 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3289 		uint32_t serdescfg;
   3290 
   3291 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3292 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3293 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3294 	}
   3295 
   3296 	if (sc->bge_flags & BGE_PCIE &&
   3297 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3298 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3299 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3300 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
   3301 		uint32_t v;
   3302 
   3303 		/* Enable PCI Express bug fix */
   3304 		v = CSR_READ_4(sc, 0x7c00);
   3305 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3306 	}
   3307 	DELAY(10000);
   3308 
   3309 	return 0;
   3310 }
   3311 
   3312 /*
   3313  * Frame reception handling. This is called if there's a frame
   3314  * on the receive return list.
   3315  *
   3316  * Note: we have to be able to handle two possibilities here:
   3317  * 1) the frame is from the jumbo receive ring
   3318  * 2) the frame is from the standard receive ring
   3319  */
   3320 
   3321 static void
   3322 bge_rxeof(struct bge_softc *sc)
   3323 {
   3324 	struct ifnet *ifp;
   3325 	uint16_t rx_prod, rx_cons;
   3326 	int stdcnt = 0, jumbocnt = 0;
   3327 	bus_dmamap_t dmamap;
   3328 	bus_addr_t offset, toff;
   3329 	bus_size_t tlen;
   3330 	int tosync;
   3331 
   3332 	rx_cons = sc->bge_rx_saved_considx;
   3333 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3334 
   3335 	/* Nothing to do */
   3336 	if (rx_cons == rx_prod)
   3337 		return;
   3338 
   3339 	ifp = &sc->ethercom.ec_if;
   3340 
   3341 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3342 	    offsetof(struct bge_ring_data, bge_status_block),
   3343 	    sizeof (struct bge_status_block),
   3344 	    BUS_DMASYNC_POSTREAD);
   3345 
   3346 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3347 	tosync = rx_prod - rx_cons;
   3348 
   3349 	if (tosync != 0)
   3350 		rnd_add_uint32(&sc->rnd_source, tosync);
   3351 
   3352 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3353 
   3354 	if (tosync < 0) {
   3355 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3356 		    sizeof (struct bge_rx_bd);
   3357 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3358 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3359 		tosync = -tosync;
   3360 	}
   3361 
   3362 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3363 	    offset, tosync * sizeof (struct bge_rx_bd),
   3364 	    BUS_DMASYNC_POSTREAD);
   3365 
   3366 	while (rx_cons != rx_prod) {
   3367 		struct bge_rx_bd	*cur_rx;
   3368 		uint32_t		rxidx;
   3369 		struct mbuf		*m = NULL;
   3370 
   3371 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3372 
   3373 		rxidx = cur_rx->bge_idx;
   3374 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3375 
   3376 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3377 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3378 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3379 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3380 			jumbocnt++;
   3381 			bus_dmamap_sync(sc->bge_dmatag,
   3382 			    sc->bge_cdata.bge_rx_jumbo_map,
   3383 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3384 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3385 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3386 				ifp->if_ierrors++;
   3387 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3388 				continue;
   3389 			}
   3390 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3391 					     NULL)== ENOBUFS) {
   3392 				ifp->if_ierrors++;
   3393 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3394 				continue;
   3395 			}
   3396 		} else {
   3397 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3398 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3399 
   3400 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3401 			stdcnt++;
   3402 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3403 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3404 			if (dmamap == NULL) {
   3405 				ifp->if_ierrors++;
   3406 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3407 				continue;
   3408 			}
   3409 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3410 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3411 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3412 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3413 				ifp->if_ierrors++;
   3414 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3415 				continue;
   3416 			}
   3417 			if (bge_newbuf_std(sc, sc->bge_std,
   3418 			    NULL, dmamap) == ENOBUFS) {
   3419 				ifp->if_ierrors++;
   3420 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3421 				continue;
   3422 			}
   3423 		}
   3424 
   3425 		ifp->if_ipackets++;
   3426 #ifndef __NO_STRICT_ALIGNMENT
   3427 		/*
   3428 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3429 		 * the Rx buffer has the layer-2 header unaligned.
   3430 		 * If our CPU requires alignment, re-align by copying.
   3431 		 */
   3432 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3433 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3434 				cur_rx->bge_len);
   3435 			m->m_data += ETHER_ALIGN;
   3436 		}
   3437 #endif
   3438 
   3439 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3440 		m->m_pkthdr.rcvif = ifp;
   3441 
   3442 		/*
   3443 		 * Handle BPF listeners. Let the BPF user see the packet.
   3444 		 */
   3445 		bpf_mtap(ifp, m);
   3446 
   3447 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3448 
   3449 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3450 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3451 		/*
   3452 		 * Rx transport checksum-offload may also
   3453 		 * have bugs with packets which, when transmitted,
   3454 		 * were `runts' requiring padding.
   3455 		 */
   3456 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3457 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3458 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3459 			m->m_pkthdr.csum_data =
   3460 			    cur_rx->bge_tcp_udp_csum;
   3461 			m->m_pkthdr.csum_flags |=
   3462 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3463 			     M_CSUM_DATA);
   3464 		}
   3465 
   3466 		/*
   3467 		 * If we received a packet with a vlan tag, pass it
   3468 		 * to vlan_input() instead of ether_input().
   3469 		 */
   3470 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3471 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3472 		}
   3473 
   3474 		(*ifp->if_input)(ifp, m);
   3475 	}
   3476 
   3477 	sc->bge_rx_saved_considx = rx_cons;
   3478 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3479 	if (stdcnt)
   3480 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3481 	if (jumbocnt)
   3482 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3483 }
   3484 
   3485 static void
   3486 bge_txeof(struct bge_softc *sc)
   3487 {
   3488 	struct bge_tx_bd *cur_tx = NULL;
   3489 	struct ifnet *ifp;
   3490 	struct txdmamap_pool_entry *dma;
   3491 	bus_addr_t offset, toff;
   3492 	bus_size_t tlen;
   3493 	int tosync;
   3494 	struct mbuf *m;
   3495 
   3496 	ifp = &sc->ethercom.ec_if;
   3497 
   3498 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3499 	    offsetof(struct bge_ring_data, bge_status_block),
   3500 	    sizeof (struct bge_status_block),
   3501 	    BUS_DMASYNC_POSTREAD);
   3502 
   3503 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3504 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3505 	    sc->bge_tx_saved_considx;
   3506 
   3507 	if (tosync != 0)
   3508 		rnd_add_uint32(&sc->rnd_source, tosync);
   3509 
   3510 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3511 
   3512 	if (tosync < 0) {
   3513 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3514 		    sizeof (struct bge_tx_bd);
   3515 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3516 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3517 		tosync = -tosync;
   3518 	}
   3519 
   3520 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3521 	    offset, tosync * sizeof (struct bge_tx_bd),
   3522 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3523 
   3524 	/*
   3525 	 * Go through our tx ring and free mbufs for those
   3526 	 * frames that have been sent.
   3527 	 */
   3528 	while (sc->bge_tx_saved_considx !=
   3529 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3530 		uint32_t		idx = 0;
   3531 
   3532 		idx = sc->bge_tx_saved_considx;
   3533 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3534 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3535 			ifp->if_opackets++;
   3536 		m = sc->bge_cdata.bge_tx_chain[idx];
   3537 		if (m != NULL) {
   3538 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3539 			dma = sc->txdma[idx];
   3540 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3541 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3542 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3543 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3544 			sc->txdma[idx] = NULL;
   3545 
   3546 			m_freem(m);
   3547 		}
   3548 		sc->bge_txcnt--;
   3549 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3550 		ifp->if_timer = 0;
   3551 	}
   3552 
   3553 	if (cur_tx != NULL)
   3554 		ifp->if_flags &= ~IFF_OACTIVE;
   3555 }
   3556 
   3557 static int
   3558 bge_intr(void *xsc)
   3559 {
   3560 	struct bge_softc *sc;
   3561 	struct ifnet *ifp;
   3562 	uint32_t statusword;
   3563 
   3564 	sc = xsc;
   3565 	ifp = &sc->ethercom.ec_if;
   3566 
   3567 	/* It is possible for the interrupt to arrive before
   3568 	 * the status block is updated prior to the interrupt.
   3569 	 * Reading the PCI State register will confirm whether the
   3570 	 * interrupt is ours and will flush the status block.
   3571 	 */
   3572 
   3573 	/* read status word from status block */
   3574 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3575 
   3576 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3577 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3578 		/* Ack interrupt and stop others from occuring. */
   3579 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3580 
   3581 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3582 
   3583 		/* clear status word */
   3584 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3585 
   3586 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3587 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3588 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3589 			bge_link_upd(sc);
   3590 
   3591 		if (ifp->if_flags & IFF_RUNNING) {
   3592 			/* Check RX return ring producer/consumer */
   3593 			bge_rxeof(sc);
   3594 
   3595 			/* Check TX ring producer/consumer */
   3596 			bge_txeof(sc);
   3597 		}
   3598 
   3599 		if (sc->bge_pending_rxintr_change) {
   3600 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3601 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3602 			uint32_t junk;
   3603 
   3604 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3605 			DELAY(10);
   3606 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3607 
   3608 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3609 			DELAY(10);
   3610 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3611 
   3612 			sc->bge_pending_rxintr_change = 0;
   3613 		}
   3614 		bge_handle_events(sc);
   3615 
   3616 		/* Re-enable interrupts. */
   3617 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3618 
   3619 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3620 			bge_start(ifp);
   3621 
   3622 		return 1;
   3623 	} else
   3624 		return 0;
   3625 }
   3626 
   3627 static void
   3628 bge_asf_driver_up(struct bge_softc *sc)
   3629 {
   3630 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3631 		/* Send ASF heartbeat aprox. every 2s */
   3632 		if (sc->bge_asf_count)
   3633 			sc->bge_asf_count --;
   3634 		else {
   3635 			sc->bge_asf_count = 2;
   3636 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3637 			    BGE_FW_DRV_ALIVE);
   3638 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3639 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3640 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3641 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3642 		}
   3643 	}
   3644 }
   3645 
   3646 static void
   3647 bge_tick(void *xsc)
   3648 {
   3649 	struct bge_softc *sc = xsc;
   3650 	struct mii_data *mii = &sc->bge_mii;
   3651 	int s;
   3652 
   3653 	s = splnet();
   3654 
   3655 	if (BGE_IS_5705_PLUS(sc))
   3656 		bge_stats_update_regs(sc);
   3657 	else
   3658 		bge_stats_update(sc);
   3659 
   3660 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3661 		/*
   3662 		 * Since in TBI mode auto-polling can't be used we should poll
   3663 		 * link status manually. Here we register pending link event
   3664 		 * and trigger interrupt.
   3665 		 */
   3666 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3667 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3668 	} else {
   3669 		/*
   3670 		 * Do not touch PHY if we have link up. This could break
   3671 		 * IPMI/ASF mode or produce extra input errors.
   3672 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3673 		 */
   3674 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3675 			mii_tick(mii);
   3676 	}
   3677 
   3678 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3679 
   3680 	splx(s);
   3681 }
   3682 
   3683 static void
   3684 bge_stats_update_regs(struct bge_softc *sc)
   3685 {
   3686 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3687 
   3688 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3689 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3690 
   3691 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3692 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3693 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3694 }
   3695 
   3696 static void
   3697 bge_stats_update(struct bge_softc *sc)
   3698 {
   3699 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3700 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3701 
   3702 #define READ_STAT(sc, stats, stat) \
   3703 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3704 
   3705 	ifp->if_collisions +=
   3706 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3707 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3708 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3709 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3710 	  ifp->if_collisions;
   3711 
   3712 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3713 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3714 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3715 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3716 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3717 		      READ_STAT(sc, stats,
   3718 		      		xoffPauseFramesReceived.bge_addr_lo));
   3719 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3720 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3721 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3722 		      READ_STAT(sc, stats,
   3723 		      		macControlFramesReceived.bge_addr_lo));
   3724 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3725 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3726 
   3727 #undef READ_STAT
   3728 
   3729 #ifdef notdef
   3730 	ifp->if_collisions +=
   3731 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3732 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3733 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3734 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3735 	   ifp->if_collisions;
   3736 #endif
   3737 }
   3738 
   3739 /*
   3740  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3741  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3742  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3743  * the hardware checksum assist gives incorrect results (possibly
   3744  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3745  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3746  */
   3747 static inline int
   3748 bge_cksum_pad(struct mbuf *pkt)
   3749 {
   3750 	struct mbuf *last = NULL;
   3751 	int padlen;
   3752 
   3753 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3754 
   3755 	/* if there's only the packet-header and we can pad there, use it. */
   3756 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3757 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3758 		last = pkt;
   3759 	} else {
   3760 		/*
   3761 		 * Walk packet chain to find last mbuf. We will either
   3762 		 * pad there, or append a new mbuf and pad it
   3763 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3764 		 */
   3765 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3766 	      	       continue; /* do nothing */
   3767 		}
   3768 
   3769 		/* `last' now points to last in chain. */
   3770 		if (M_TRAILINGSPACE(last) < padlen) {
   3771 			/* Allocate new empty mbuf, pad it. Compact later. */
   3772 			struct mbuf *n;
   3773 			MGET(n, M_DONTWAIT, MT_DATA);
   3774 			if (n == NULL)
   3775 				return ENOBUFS;
   3776 			n->m_len = 0;
   3777 			last->m_next = n;
   3778 			last = n;
   3779 		}
   3780 	}
   3781 
   3782 	KDASSERT(!M_READONLY(last));
   3783 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3784 
   3785 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3786 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3787 	last->m_len += padlen;
   3788 	pkt->m_pkthdr.len += padlen;
   3789 	return 0;
   3790 }
   3791 
   3792 /*
   3793  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3794  */
   3795 static inline int
   3796 bge_compact_dma_runt(struct mbuf *pkt)
   3797 {
   3798 	struct mbuf	*m, *prev;
   3799 	int 		totlen, prevlen;
   3800 
   3801 	prev = NULL;
   3802 	totlen = 0;
   3803 	prevlen = -1;
   3804 
   3805 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3806 		int mlen = m->m_len;
   3807 		int shortfall = 8 - mlen ;
   3808 
   3809 		totlen += mlen;
   3810 		if (mlen == 0) {
   3811 			continue;
   3812 		}
   3813 		if (mlen >= 8)
   3814 			continue;
   3815 
   3816 		/* If we get here, mbuf data is too small for DMA engine.
   3817 		 * Try to fix by shuffling data to prev or next in chain.
   3818 		 * If that fails, do a compacting deep-copy of the whole chain.
   3819 		 */
   3820 
   3821 		/* Internal frag. If fits in prev, copy it there. */
   3822 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3823 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3824 			prev->m_len += mlen;
   3825 			m->m_len = 0;
   3826 			/* XXX stitch chain */
   3827 			prev->m_next = m_free(m);
   3828 			m = prev;
   3829 			continue;
   3830 		}
   3831 		else if (m->m_next != NULL &&
   3832 			     M_TRAILINGSPACE(m) >= shortfall &&
   3833 			     m->m_next->m_len >= (8 + shortfall)) {
   3834 		    /* m is writable and have enough data in next, pull up. */
   3835 
   3836 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3837 			    shortfall);
   3838 			m->m_len += shortfall;
   3839 			m->m_next->m_len -= shortfall;
   3840 			m->m_next->m_data += shortfall;
   3841 		}
   3842 		else if (m->m_next == NULL || 1) {
   3843 		  	/* Got a runt at the very end of the packet.
   3844 			 * borrow data from the tail of the preceding mbuf and
   3845 			 * update its length in-place. (The original data is still
   3846 			 * valid, so we can do this even if prev is not writable.)
   3847 			 */
   3848 
   3849 			/* if we'd make prev a runt, just move all of its data. */
   3850 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3851 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3852 
   3853 			if ((prev->m_len - shortfall) < 8)
   3854 				shortfall = prev->m_len;
   3855 
   3856 #ifdef notyet	/* just do the safe slow thing for now */
   3857 			if (!M_READONLY(m)) {
   3858 				if (M_LEADINGSPACE(m) < shorfall) {
   3859 					void *m_dat;
   3860 					m_dat = (m->m_flags & M_PKTHDR) ?
   3861 					  m->m_pktdat : m->dat;
   3862 					memmove(m_dat, mtod(m, void*), m->m_len);
   3863 					m->m_data = m_dat;
   3864 				    }
   3865 			} else
   3866 #endif	/* just do the safe slow thing */
   3867 			{
   3868 				struct mbuf * n = NULL;
   3869 				int newprevlen = prev->m_len - shortfall;
   3870 
   3871 				MGET(n, M_NOWAIT, MT_DATA);
   3872 				if (n == NULL)
   3873 				   return ENOBUFS;
   3874 				KASSERT(m->m_len + shortfall < MLEN
   3875 					/*,
   3876 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3877 
   3878 				/* first copy the data we're stealing from prev */
   3879 				memcpy(n->m_data, prev->m_data + newprevlen,
   3880 				    shortfall);
   3881 
   3882 				/* update prev->m_len accordingly */
   3883 				prev->m_len -= shortfall;
   3884 
   3885 				/* copy data from runt m */
   3886 				memcpy(n->m_data + shortfall, m->m_data,
   3887 				    m->m_len);
   3888 
   3889 				/* n holds what we stole from prev, plus m */
   3890 				n->m_len = shortfall + m->m_len;
   3891 
   3892 				/* stitch n into chain and free m */
   3893 				n->m_next = m->m_next;
   3894 				prev->m_next = n;
   3895 				/* KASSERT(m->m_next == NULL); */
   3896 				m->m_next = NULL;
   3897 				m_free(m);
   3898 				m = n;	/* for continuing loop */
   3899 			}
   3900 		}
   3901 		prevlen = m->m_len;
   3902 	}
   3903 	return 0;
   3904 }
   3905 
   3906 /*
   3907  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3908  * pointers to descriptors.
   3909  */
   3910 static int
   3911 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3912 {
   3913 	struct bge_tx_bd	*f = NULL;
   3914 	uint32_t		frag, cur;
   3915 	uint16_t		csum_flags = 0;
   3916 	uint16_t		txbd_tso_flags = 0;
   3917 	struct txdmamap_pool_entry *dma;
   3918 	bus_dmamap_t dmamap;
   3919 	int			i = 0;
   3920 	struct m_tag		*mtag;
   3921 	int			use_tso, maxsegsize, error;
   3922 
   3923 	cur = frag = *txidx;
   3924 
   3925 	if (m_head->m_pkthdr.csum_flags) {
   3926 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3927 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3928 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3929 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3930 	}
   3931 
   3932 	/*
   3933 	 * If we were asked to do an outboard checksum, and the NIC
   3934 	 * has the bug where it sometimes adds in the Ethernet padding,
   3935 	 * explicitly pad with zeros so the cksum will be correct either way.
   3936 	 * (For now, do this for all chip versions, until newer
   3937 	 * are confirmed to not require the workaround.)
   3938 	 */
   3939 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3940 #ifdef notyet
   3941 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3942 #endif
   3943 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3944 		goto check_dma_bug;
   3945 
   3946 	if (bge_cksum_pad(m_head) != 0)
   3947 	    return ENOBUFS;
   3948 
   3949 check_dma_bug:
   3950 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3951 		goto doit;
   3952 
   3953 	/*
   3954 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3955 	 * less than eight bytes.  If we encounter a teeny mbuf
   3956 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3957 	 */
   3958 	if (bge_compact_dma_runt(m_head) != 0)
   3959 		return ENOBUFS;
   3960 
   3961 doit:
   3962 	dma = SLIST_FIRST(&sc->txdma_list);
   3963 	if (dma == NULL)
   3964 		return ENOBUFS;
   3965 	dmamap = dma->dmamap;
   3966 
   3967 	/*
   3968 	 * Set up any necessary TSO state before we start packing...
   3969 	 */
   3970 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3971 	if (!use_tso) {
   3972 		maxsegsize = 0;
   3973 	} else {	/* TSO setup */
   3974 		unsigned  mss;
   3975 		struct ether_header *eh;
   3976 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   3977 		struct mbuf * m0 = m_head;
   3978 		struct ip *ip;
   3979 		struct tcphdr *th;
   3980 		int iphl, hlen;
   3981 
   3982 		/*
   3983 		 * XXX It would be nice if the mbuf pkthdr had offset
   3984 		 * fields for the protocol headers.
   3985 		 */
   3986 
   3987 		eh = mtod(m0, struct ether_header *);
   3988 		switch (htons(eh->ether_type)) {
   3989 		case ETHERTYPE_IP:
   3990 			offset = ETHER_HDR_LEN;
   3991 			break;
   3992 
   3993 		case ETHERTYPE_VLAN:
   3994 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3995 			break;
   3996 
   3997 		default:
   3998 			/*
   3999 			 * Don't support this protocol or encapsulation.
   4000 			 */
   4001 			return ENOBUFS;
   4002 		}
   4003 
   4004 		/*
   4005 		 * TCP/IP headers are in the first mbuf; we can do
   4006 		 * this the easy way.
   4007 		 */
   4008 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4009 		hlen = iphl + offset;
   4010 		if (__predict_false(m0->m_len <
   4011 				    (hlen + sizeof(struct tcphdr)))) {
   4012 
   4013 			aprint_debug_dev(sc->bge_dev,
   4014 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4015 			    "not handled yet\n",
   4016 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4017 #ifdef NOTYET
   4018 			/*
   4019 			 * XXX jonathan (at) NetBSD.org: untested.
   4020 			 * how to force  this branch to be taken?
   4021 			 */
   4022 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4023 
   4024 			m_copydata(m0, offset, sizeof(ip), &ip);
   4025 			m_copydata(m0, hlen, sizeof(th), &th);
   4026 
   4027 			ip.ip_len = 0;
   4028 
   4029 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4030 			    sizeof(ip.ip_len), &ip.ip_len);
   4031 
   4032 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4033 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4034 
   4035 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4036 			    sizeof(th.th_sum), &th.th_sum);
   4037 
   4038 			hlen += th.th_off << 2;
   4039 			iptcp_opt_words	= hlen;
   4040 #else
   4041 			/*
   4042 			 * if_wm "hard" case not yet supported, can we not
   4043 			 * mandate it out of existence?
   4044 			 */
   4045 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4046 
   4047 			return ENOBUFS;
   4048 #endif
   4049 		} else {
   4050 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4051 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4052 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4053 
   4054 			/* Total IP/TCP options, in 32-bit words */
   4055 			iptcp_opt_words = (ip_tcp_hlen
   4056 					   - sizeof(struct tcphdr)
   4057 					   - sizeof(struct ip)) >> 2;
   4058 		}
   4059 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   4060 			th->th_sum = 0;
   4061 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4062 		} else {
   4063 			/*
   4064 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4065 			 * Requires TSO firmware patch for 5701/5703/5704.
   4066 			 */
   4067 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4068 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4069 		}
   4070 
   4071 		mss = m_head->m_pkthdr.segsz;
   4072 		txbd_tso_flags |=
   4073 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4074 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4075 
   4076 		/*
   4077 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4078 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4079 		 * the NIC copies 40 bytes of IP/TCP header from the
   4080 		 * supplied header into the IP/TCP header portion of
   4081 		 * each post-TSO-segment. If the supplied packet has IP or
   4082 		 * TCP options, we need to tell the NIC to copy those extra
   4083 		 * bytes into each  post-TSO header, in addition to the normal
   4084 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4085 		 * Unfortunately, the driver encoding of option length
   4086 		 * varies across different ASIC families.
   4087 		 */
   4088 		tcp_seg_flags = 0;
   4089 		if (iptcp_opt_words) {
   4090 			if (BGE_IS_5705_PLUS(sc)) {
   4091 				tcp_seg_flags =
   4092 					iptcp_opt_words << 11;
   4093 			} else {
   4094 				txbd_tso_flags |=
   4095 					iptcp_opt_words << 12;
   4096 			}
   4097 		}
   4098 		maxsegsize = mss | tcp_seg_flags;
   4099 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4100 
   4101 	}	/* TSO setup */
   4102 
   4103 	/*
   4104 	 * Start packing the mbufs in this chain into
   4105 	 * the fragment pointers. Stop when we run out
   4106 	 * of fragments or hit the end of the mbuf chain.
   4107 	 */
   4108 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4109 	    BUS_DMA_NOWAIT);
   4110 	if (error)
   4111 		return ENOBUFS;
   4112 	/*
   4113 	 * Sanity check: avoid coming within 16 descriptors
   4114 	 * of the end of the ring.
   4115 	 */
   4116 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4117 		BGE_TSO_PRINTF(("%s: "
   4118 		    " dmamap_load_mbuf too close to ring wrap\n",
   4119 		    device_xname(sc->bge_dev)));
   4120 		goto fail_unload;
   4121 	}
   4122 
   4123 	mtag = sc->ethercom.ec_nvlans ?
   4124 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4125 
   4126 
   4127 	/* Iterate over dmap-map fragments. */
   4128 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4129 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4130 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4131 			break;
   4132 
   4133 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4134 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4135 
   4136 		/*
   4137 		 * For 5751 and follow-ons, for TSO we must turn
   4138 		 * off checksum-assist flag in the tx-descr, and
   4139 		 * supply the ASIC-revision-specific encoding
   4140 		 * of TSO flags and segsize.
   4141 		 */
   4142 		if (use_tso) {
   4143 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4144 				f->bge_rsvd = maxsegsize;
   4145 				f->bge_flags = csum_flags | txbd_tso_flags;
   4146 			} else {
   4147 				f->bge_rsvd = 0;
   4148 				f->bge_flags =
   4149 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4150 			}
   4151 		} else {
   4152 			f->bge_rsvd = 0;
   4153 			f->bge_flags = csum_flags;
   4154 		}
   4155 
   4156 		if (mtag != NULL) {
   4157 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4158 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4159 		} else {
   4160 			f->bge_vlan_tag = 0;
   4161 		}
   4162 		cur = frag;
   4163 		BGE_INC(frag, BGE_TX_RING_CNT);
   4164 	}
   4165 
   4166 	if (i < dmamap->dm_nsegs) {
   4167 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4168 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4169 		goto fail_unload;
   4170 	}
   4171 
   4172 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4173 	    BUS_DMASYNC_PREWRITE);
   4174 
   4175 	if (frag == sc->bge_tx_saved_considx) {
   4176 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4177 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4178 
   4179 		goto fail_unload;
   4180 	}
   4181 
   4182 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4183 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4184 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4185 	sc->txdma[cur] = dma;
   4186 	sc->bge_txcnt += dmamap->dm_nsegs;
   4187 
   4188 	*txidx = frag;
   4189 
   4190 	return 0;
   4191 
   4192 fail_unload:
   4193 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4194 
   4195 	return ENOBUFS;
   4196 }
   4197 
   4198 /*
   4199  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4200  * to the mbuf data regions directly in the transmit descriptors.
   4201  */
   4202 static void
   4203 bge_start(struct ifnet *ifp)
   4204 {
   4205 	struct bge_softc *sc;
   4206 	struct mbuf *m_head = NULL;
   4207 	uint32_t prodidx;
   4208 	int pkts = 0;
   4209 
   4210 	sc = ifp->if_softc;
   4211 
   4212 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4213 		return;
   4214 
   4215 	prodidx = sc->bge_tx_prodidx;
   4216 
   4217 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4218 		IFQ_POLL(&ifp->if_snd, m_head);
   4219 		if (m_head == NULL)
   4220 			break;
   4221 
   4222 #if 0
   4223 		/*
   4224 		 * XXX
   4225 		 * safety overkill.  If this is a fragmented packet chain
   4226 		 * with delayed TCP/UDP checksums, then only encapsulate
   4227 		 * it if we have enough descriptors to handle the entire
   4228 		 * chain at once.
   4229 		 * (paranoia -- may not actually be needed)
   4230 		 */
   4231 		if (m_head->m_flags & M_FIRSTFRAG &&
   4232 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4233 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4234 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4235 				ifp->if_flags |= IFF_OACTIVE;
   4236 				break;
   4237 			}
   4238 		}
   4239 #endif
   4240 
   4241 		/*
   4242 		 * Pack the data into the transmit ring. If we
   4243 		 * don't have room, set the OACTIVE flag and wait
   4244 		 * for the NIC to drain the ring.
   4245 		 */
   4246 		if (bge_encap(sc, m_head, &prodidx)) {
   4247 			ifp->if_flags |= IFF_OACTIVE;
   4248 			break;
   4249 		}
   4250 
   4251 		/* now we are committed to transmit the packet */
   4252 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4253 		pkts++;
   4254 
   4255 		/*
   4256 		 * If there's a BPF listener, bounce a copy of this frame
   4257 		 * to him.
   4258 		 */
   4259 		bpf_mtap(ifp, m_head);
   4260 	}
   4261 	if (pkts == 0)
   4262 		return;
   4263 
   4264 	/* Transmit */
   4265 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4266 	/* 5700 b2 errata */
   4267 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4268 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4269 
   4270 	sc->bge_tx_prodidx = prodidx;
   4271 
   4272 	/*
   4273 	 * Set a timeout in case the chip goes out to lunch.
   4274 	 */
   4275 	ifp->if_timer = 5;
   4276 }
   4277 
   4278 static int
   4279 bge_init(struct ifnet *ifp)
   4280 {
   4281 	struct bge_softc *sc = ifp->if_softc;
   4282 	const uint16_t *m;
   4283 	int s, error = 0;
   4284 
   4285 	s = splnet();
   4286 
   4287 	ifp = &sc->ethercom.ec_if;
   4288 
   4289 	/* Cancel pending I/O and flush buffers. */
   4290 	bge_stop(ifp, 0);
   4291 
   4292 	bge_stop_fw(sc);
   4293 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4294 	bge_reset(sc);
   4295 	bge_sig_legacy(sc, BGE_RESET_START);
   4296 	bge_sig_post_reset(sc, BGE_RESET_START);
   4297 
   4298 	bge_chipinit(sc);
   4299 
   4300 	/*
   4301 	 * Init the various state machines, ring
   4302 	 * control blocks and firmware.
   4303 	 */
   4304 	error = bge_blockinit(sc);
   4305 	if (error != 0) {
   4306 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4307 		    error);
   4308 		splx(s);
   4309 		return error;
   4310 	}
   4311 
   4312 	ifp = &sc->ethercom.ec_if;
   4313 
   4314 	/* Specify MTU. */
   4315 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4316 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4317 
   4318 	/* Load our MAC address. */
   4319 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4320 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4321 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4322 
   4323 	/* Enable or disable promiscuous mode as needed. */
   4324 	if (ifp->if_flags & IFF_PROMISC)
   4325 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4326 	else
   4327 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4328 
   4329 	/* Program multicast filter. */
   4330 	bge_setmulti(sc);
   4331 
   4332 	/* Init RX ring. */
   4333 	bge_init_rx_ring_std(sc);
   4334 
   4335 	/*
   4336 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4337 	 * memory to insure that the chip has in fact read the first
   4338 	 * entry of the ring.
   4339 	 */
   4340 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4341 		uint32_t		v, i;
   4342 		for (i = 0; i < 10; i++) {
   4343 			DELAY(20);
   4344 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4345 			if (v == (MCLBYTES - ETHER_ALIGN))
   4346 				break;
   4347 		}
   4348 		if (i == 10)
   4349 			aprint_error_dev(sc->bge_dev,
   4350 			    "5705 A0 chip failed to load RX ring\n");
   4351 	}
   4352 
   4353 	/* Init jumbo RX ring. */
   4354 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4355 		bge_init_rx_ring_jumbo(sc);
   4356 
   4357 	/* Init our RX return ring index */
   4358 	sc->bge_rx_saved_considx = 0;
   4359 
   4360 	/* Init TX ring. */
   4361 	bge_init_tx_ring(sc);
   4362 
   4363 	/* Turn on transmitter */
   4364 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4365 
   4366 	/* Turn on receiver */
   4367 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4368 
   4369 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4370 
   4371 	/* Tell firmware we're alive. */
   4372 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4373 
   4374 	/* Enable host interrupts. */
   4375 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4376 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4377 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4378 
   4379 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4380 		goto out;
   4381 
   4382 	ifp->if_flags |= IFF_RUNNING;
   4383 	ifp->if_flags &= ~IFF_OACTIVE;
   4384 
   4385 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4386 
   4387 out:
   4388 	sc->bge_if_flags = ifp->if_flags;
   4389 	splx(s);
   4390 
   4391 	return error;
   4392 }
   4393 
   4394 /*
   4395  * Set media options.
   4396  */
   4397 static int
   4398 bge_ifmedia_upd(struct ifnet *ifp)
   4399 {
   4400 	struct bge_softc *sc = ifp->if_softc;
   4401 	struct mii_data *mii = &sc->bge_mii;
   4402 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4403 	int rc;
   4404 
   4405 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4406 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4407 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4408 			return EINVAL;
   4409 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4410 		case IFM_AUTO:
   4411 			/*
   4412 			 * The BCM5704 ASIC appears to have a special
   4413 			 * mechanism for programming the autoneg
   4414 			 * advertisement registers in TBI mode.
   4415 			 */
   4416 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4417 				uint32_t sgdig;
   4418 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4419 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4420 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4421 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4422 					sgdig |= BGE_SGDIGCFG_AUTO |
   4423 					    BGE_SGDIGCFG_PAUSE_CAP |
   4424 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4425 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4426 					    sgdig | BGE_SGDIGCFG_SEND);
   4427 					DELAY(5);
   4428 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4429 				}
   4430 			}
   4431 			break;
   4432 		case IFM_1000_SX:
   4433 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4434 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4435 				    BGE_MACMODE_HALF_DUPLEX);
   4436 			} else {
   4437 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4438 				    BGE_MACMODE_HALF_DUPLEX);
   4439 			}
   4440 			break;
   4441 		default:
   4442 			return EINVAL;
   4443 		}
   4444 		/* XXX 802.3x flow control for 1000BASE-SX */
   4445 		return 0;
   4446 	}
   4447 
   4448 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4449 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4450 		return 0;
   4451 
   4452 	/*
   4453 	 * Force an interrupt so that we will call bge_link_upd
   4454 	 * if needed and clear any pending link state attention.
   4455 	 * Without this we are not getting any further interrupts
   4456 	 * for link state changes and thus will not UP the link and
   4457 	 * not be able to send in bge_start. The only way to get
   4458 	 * things working was to receive a packet and get a RX intr.
   4459 	 */
   4460 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4461 	    sc->bge_flags & BGE_IS_5788)
   4462 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4463 	else
   4464 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4465 
   4466 	return rc;
   4467 }
   4468 
   4469 /*
   4470  * Report current media status.
   4471  */
   4472 static void
   4473 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4474 {
   4475 	struct bge_softc *sc = ifp->if_softc;
   4476 	struct mii_data *mii = &sc->bge_mii;
   4477 
   4478 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4479 		ifmr->ifm_status = IFM_AVALID;
   4480 		ifmr->ifm_active = IFM_ETHER;
   4481 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4482 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4483 			ifmr->ifm_status |= IFM_ACTIVE;
   4484 		ifmr->ifm_active |= IFM_1000_SX;
   4485 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4486 			ifmr->ifm_active |= IFM_HDX;
   4487 		else
   4488 			ifmr->ifm_active |= IFM_FDX;
   4489 		return;
   4490 	}
   4491 
   4492 	mii_pollstat(mii);
   4493 	ifmr->ifm_status = mii->mii_media_status;
   4494 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4495 	    sc->bge_flowflags;
   4496 }
   4497 
   4498 static int
   4499 bge_ifflags_cb(struct ethercom *ec)
   4500 {
   4501 	struct ifnet *ifp = &ec->ec_if;
   4502 	struct bge_softc *sc = ifp->if_softc;
   4503 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4504 
   4505 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4506 		return ENETRESET;
   4507 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4508 		return 0;
   4509 
   4510 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4511 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4512 	else
   4513 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4514 
   4515 	bge_setmulti(sc);
   4516 
   4517 	sc->bge_if_flags = ifp->if_flags;
   4518 	return 0;
   4519 }
   4520 
   4521 static int
   4522 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4523 {
   4524 	struct bge_softc *sc = ifp->if_softc;
   4525 	struct ifreq *ifr = (struct ifreq *) data;
   4526 	int s, error = 0;
   4527 	struct mii_data *mii;
   4528 
   4529 	s = splnet();
   4530 
   4531 	switch (command) {
   4532 	case SIOCSIFMEDIA:
   4533 		/* XXX Flow control is not supported for 1000BASE-SX */
   4534 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4535 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4536 			sc->bge_flowflags = 0;
   4537 		}
   4538 
   4539 		/* Flow control requires full-duplex mode. */
   4540 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4541 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4542 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4543 		}
   4544 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4545 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4546 				/* We can do both TXPAUSE and RXPAUSE. */
   4547 				ifr->ifr_media |=
   4548 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4549 			}
   4550 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4551 		}
   4552 		/* FALLTHROUGH */
   4553 	case SIOCGIFMEDIA:
   4554 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4555 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4556 			    command);
   4557 		} else {
   4558 			mii = &sc->bge_mii;
   4559 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4560 			    command);
   4561 		}
   4562 		break;
   4563 	default:
   4564 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4565 			break;
   4566 
   4567 		error = 0;
   4568 
   4569 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4570 			;
   4571 		else if (ifp->if_flags & IFF_RUNNING)
   4572 			bge_setmulti(sc);
   4573 		break;
   4574 	}
   4575 
   4576 	splx(s);
   4577 
   4578 	return error;
   4579 }
   4580 
   4581 static void
   4582 bge_watchdog(struct ifnet *ifp)
   4583 {
   4584 	struct bge_softc *sc;
   4585 
   4586 	sc = ifp->if_softc;
   4587 
   4588 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4589 
   4590 	ifp->if_flags &= ~IFF_RUNNING;
   4591 	bge_init(ifp);
   4592 
   4593 	ifp->if_oerrors++;
   4594 }
   4595 
   4596 static void
   4597 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4598 {
   4599 	int i;
   4600 
   4601 	BGE_CLRBIT(sc, reg, bit);
   4602 
   4603 	for (i = 0; i < 1000; i++) {
   4604 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4605 			return;
   4606 		delay(100);
   4607 	}
   4608 
   4609 	/*
   4610 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4611 	 * on some environment (and once after boot?)
   4612 	 */
   4613 	if (reg != BGE_SRS_MODE)
   4614 		aprint_error_dev(sc->bge_dev,
   4615 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4616 		    (u_long)reg, bit);
   4617 }
   4618 
   4619 /*
   4620  * Stop the adapter and free any mbufs allocated to the
   4621  * RX and TX lists.
   4622  */
   4623 static void
   4624 bge_stop(struct ifnet *ifp, int disable)
   4625 {
   4626 	struct bge_softc *sc = ifp->if_softc;
   4627 
   4628 	callout_stop(&sc->bge_timeout);
   4629 
   4630 	/*
   4631 	 * Tell firmware we're shutting down.
   4632 	 */
   4633 	bge_stop_fw(sc);
   4634 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4635 
   4636 	/* Disable host interrupts. */
   4637 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4638 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4639 
   4640 	/*
   4641 	 * Disable all of the receiver blocks
   4642 	 */
   4643 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4644 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4645 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4646 	if (BGE_IS_5700_FAMILY(sc))
   4647 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4648 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4649 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4650 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4651 
   4652 	/*
   4653 	 * Disable all of the transmit blocks
   4654 	 */
   4655 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4656 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4657 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4658 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4659 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4660 	if (BGE_IS_5700_FAMILY(sc))
   4661 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4662 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4663 
   4664 	/*
   4665 	 * Shut down all of the memory managers and related
   4666 	 * state machines.
   4667 	 */
   4668 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4669 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4670 	if (BGE_IS_5700_FAMILY(sc))
   4671 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4672 
   4673 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4674 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4675 
   4676 	if (BGE_IS_5700_FAMILY(sc)) {
   4677 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4678 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4679 	}
   4680 
   4681 	bge_reset(sc);
   4682 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4683 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4684 
   4685 	/*
   4686 	 * Keep the ASF firmware running if up.
   4687 	 */
   4688 	if (sc->bge_asf_mode & ASF_STACKUP)
   4689 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4690 	else
   4691 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4692 
   4693 	/* Free the RX lists. */
   4694 	bge_free_rx_ring_std(sc);
   4695 
   4696 	/* Free jumbo RX list. */
   4697 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4698 		bge_free_rx_ring_jumbo(sc);
   4699 
   4700 	/* Free TX buffers. */
   4701 	bge_free_tx_ring(sc);
   4702 
   4703 	/*
   4704 	 * Isolate/power down the PHY.
   4705 	 */
   4706 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4707 		mii_down(&sc->bge_mii);
   4708 
   4709 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4710 
   4711 	/* Clear MAC's link state (PHY may still have link UP). */
   4712 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4713 
   4714 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4715 }
   4716 
   4717 static void
   4718 bge_link_upd(struct bge_softc *sc)
   4719 {
   4720 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4721 	struct mii_data *mii = &sc->bge_mii;
   4722 	uint32_t status;
   4723 	int link;
   4724 
   4725 	/* Clear 'pending link event' flag */
   4726 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4727 
   4728 	/*
   4729 	 * Process link state changes.
   4730 	 * Grrr. The link status word in the status block does
   4731 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4732 	 * according to all available information. Hence, we have
   4733 	 * to enable MII interrupts in order to properly obtain
   4734 	 * async link changes. Unfortunately, this also means that
   4735 	 * we have to read the MAC status register to detect link
   4736 	 * changes, thereby adding an additional register access to
   4737 	 * the interrupt handler.
   4738 	 */
   4739 
   4740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4741 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4742 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4743 			mii_pollstat(mii);
   4744 
   4745 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4746 			    mii->mii_media_status & IFM_ACTIVE &&
   4747 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4748 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4749 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4750 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4751 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4752 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4753 
   4754 			/* Clear the interrupt */
   4755 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4756 			    BGE_EVTENB_MI_INTERRUPT);
   4757 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4758 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4759 			    BRGPHY_INTRS);
   4760 		}
   4761 		return;
   4762 	}
   4763 
   4764 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4765 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4766 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4767 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4768 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4769 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4770 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4771 					    BGE_MACMODE_TBI_SEND_CFGS);
   4772 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4773 				if_link_state_change(ifp, LINK_STATE_UP);
   4774 			}
   4775 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4776 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4777 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4778 		}
   4779 	/*
   4780 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4781 	 * This should not happen since mii callouts are locked now, but
   4782 	 * we keep this check for debug.
   4783 	 */
   4784 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4785 		/*
   4786 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4787 		 * bit in status word always set. Workaround this bug by
   4788 		 * reading PHY link status directly.
   4789 		 */
   4790 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4791 		    BGE_STS_LINK : 0;
   4792 
   4793 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4794 			mii_pollstat(mii);
   4795 
   4796 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4797 			    mii->mii_media_status & IFM_ACTIVE &&
   4798 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4799 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4800 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4801 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4802 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4803 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4804 		}
   4805 	}
   4806 
   4807 	/* Clear the attention */
   4808 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4809 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4810 	    BGE_MACSTAT_LINK_CHANGED);
   4811 }
   4812 
   4813 static int
   4814 sysctl_bge_verify(SYSCTLFN_ARGS)
   4815 {
   4816 	int error, t;
   4817 	struct sysctlnode node;
   4818 
   4819 	node = *rnode;
   4820 	t = *(int*)rnode->sysctl_data;
   4821 	node.sysctl_data = &t;
   4822 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4823 	if (error || newp == NULL)
   4824 		return error;
   4825 
   4826 #if 0
   4827 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4828 	    node.sysctl_num, rnode->sysctl_num));
   4829 #endif
   4830 
   4831 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4832 		if (t < 0 || t >= NBGE_RX_THRESH)
   4833 			return EINVAL;
   4834 		bge_update_all_threshes(t);
   4835 	} else
   4836 		return EINVAL;
   4837 
   4838 	*(int*)rnode->sysctl_data = t;
   4839 
   4840 	return 0;
   4841 }
   4842 
   4843 /*
   4844  * Set up sysctl(3) MIB, hw.bge.*.
   4845  */
   4846 static void
   4847 sysctl_bge_init(struct bge_softc *sc)
   4848 {
   4849 	int rc, bge_root_num;
   4850 	const struct sysctlnode *node;
   4851 
   4852 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4853 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4854 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4855 		goto err;
   4856 	}
   4857 
   4858 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4859 	    0, CTLTYPE_NODE, "bge",
   4860 	    SYSCTL_DESCR("BGE interface controls"),
   4861 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4862 		goto err;
   4863 	}
   4864 
   4865 	bge_root_num = node->sysctl_num;
   4866 
   4867 	/* BGE Rx interrupt mitigation level */
   4868 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4869 	    CTLFLAG_READWRITE,
   4870 	    CTLTYPE_INT, "rx_lvl",
   4871 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4872 	    sysctl_bge_verify, 0,
   4873 	    &bge_rx_thresh_lvl,
   4874 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4875 	    CTL_EOL)) != 0) {
   4876 		goto err;
   4877 	}
   4878 
   4879 	bge_rxthresh_nodenum = node->sysctl_num;
   4880 
   4881 	return;
   4882 
   4883 err:
   4884 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4885 }
   4886 
   4887 #ifdef BGE_DEBUG
   4888 void
   4889 bge_debug_info(struct bge_softc *sc)
   4890 {
   4891 
   4892 	printf("Hardware Flags:\n");
   4893 	if (BGE_IS_5755_PLUS(sc))
   4894 		printf(" - 5755 Plus\n");
   4895 	if (BGE_IS_5750_OR_BEYOND(sc))
   4896 		printf(" - 5750 Plus\n");
   4897 	if (BGE_IS_5705_PLUS(sc))
   4898 		printf(" - 5705 Plus\n");
   4899 	if (BGE_IS_5714_FAMILY(sc))
   4900 		printf(" - 5714 Family\n");
   4901 	if (BGE_IS_5700_FAMILY(sc))
   4902 		printf(" - 5700 Family\n");
   4903 	if (sc->bge_flags & BGE_IS_5788)
   4904 		printf(" - 5788\n");
   4905 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4906 		printf(" - Supports Jumbo Frames\n");
   4907 	if (sc->bge_flags & BGE_NO_EEPROM)
   4908 		printf(" - No EEPROM\n");
   4909 	if (sc->bge_flags & BGE_PCIX)
   4910 		printf(" - PCI-X Bus\n");
   4911 	if (sc->bge_flags & BGE_PCIE)
   4912 		printf(" - PCI Express Bus\n");
   4913 	if (sc->bge_flags & BGE_NO_3LED)
   4914 		printf(" - No 3 LEDs\n");
   4915 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4916 		printf(" - RX Alignment Bug\n");
   4917 	if (sc->bge_flags & BGE_TSO)
   4918 		printf(" - TSO\n");
   4919 }
   4920 #endif /* BGE_DEBUG */
   4921 
   4922 static int
   4923 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4924 {
   4925 	prop_dictionary_t dict;
   4926 	prop_data_t ea;
   4927 
   4928 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4929 		return 1;
   4930 
   4931 	dict = device_properties(sc->bge_dev);
   4932 	ea = prop_dictionary_get(dict, "mac-address");
   4933 	if (ea != NULL) {
   4934 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4935 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4936 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4937 		return 0;
   4938 	}
   4939 
   4940 	return 1;
   4941 }
   4942 
   4943 static int
   4944 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4945 {
   4946 	uint32_t mac_addr;
   4947 
   4948 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4949 	if ((mac_addr >> 16) == 0x484b) {
   4950 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4951 		ether_addr[1] = (uint8_t)mac_addr;
   4952 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4953 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4954 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4955 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4956 		ether_addr[5] = (uint8_t)mac_addr;
   4957 		return 0;
   4958 	}
   4959 	return 1;
   4960 }
   4961 
   4962 static int
   4963 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4964 {
   4965 	int mac_offset = BGE_EE_MAC_OFFSET;
   4966 
   4967 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4968 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4969 
   4970 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4971 	    ETHER_ADDR_LEN));
   4972 }
   4973 
   4974 static int
   4975 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   4976 {
   4977 
   4978 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4979 		return 1;
   4980 
   4981 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   4982 	   ETHER_ADDR_LEN));
   4983 }
   4984 
   4985 static int
   4986 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   4987 {
   4988 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   4989 		/* NOTE: Order is critical */
   4990 		bge_get_eaddr_fw,
   4991 		bge_get_eaddr_mem,
   4992 		bge_get_eaddr_nvram,
   4993 		bge_get_eaddr_eeprom,
   4994 		NULL
   4995 	};
   4996 	const bge_eaddr_fcn_t *func;
   4997 
   4998 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   4999 		if ((*func)(sc, eaddr) == 0)
   5000 			break;
   5001 	}
   5002 	return (*func == NULL ? ENXIO : 0);
   5003 }
   5004