if_bge.c revision 1.203 1 /* $NetBSD: if_bge.c,v 1.203 2013/02/22 06:11:17 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.203 2013/02/22 06:11:17 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_START 1
255 #define BGE_RESET_STOP 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void sysctl_bge_init(struct bge_softc *);
263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC9100,
317 "Altima AC9100 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_BROADCOM,
320 PCI_PRODUCT_BROADCOM_BCM5700,
321 "Broadcom BCM5700 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_BROADCOM,
324 PCI_PRODUCT_BROADCOM_BCM5701,
325 "Broadcom BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5702,
329 "Broadcom BCM5702 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5702X,
333 "Broadcom BCM5702X Gigabit Ethernet" },
334 { PCI_VENDOR_BROADCOM,
335 PCI_PRODUCT_BROADCOM_BCM5703,
336 "Broadcom BCM5703 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5703X,
340 "Broadcom BCM5703X Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5704C,
348 "Broadcom BCM5704C Dual Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5704S,
352 "Broadcom BCM5704S Dual Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5705,
356 "Broadcom BCM5705 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5705F,
360 "Broadcom BCM5705F Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705K,
364 "Broadcom BCM5705K Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705M,
368 "Broadcom BCM5705M Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 "Broadcom BCM5705M Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5714,
376 "Broadcom BCM5714 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5714S,
380 "Broadcom BCM5714S Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5715,
384 "Broadcom BCM5715 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5715S,
388 "Broadcom BCM5715S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5717,
392 "Broadcom BCM5717 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5718,
396 "Broadcom BCM5718 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5720,
400 "Broadcom BCM5720 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5721,
404 "Broadcom BCM5721 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5722,
408 "Broadcom BCM5722 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5723,
412 "Broadcom BCM5723 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5724,
416 "Broadcom BCM5724 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5750,
420 "Broadcom BCM5750 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5750M,
424 "Broadcom BCM5750M Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5751,
428 "Broadcom BCM5751 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5751F,
432 "Broadcom BCM5751F Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751M,
436 "Broadcom BCM5751M Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5752,
440 "Broadcom BCM5752 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5752M,
444 "Broadcom BCM5752M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5753,
448 "Broadcom BCM5753 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5753F,
452 "Broadcom BCM5753F Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753M,
456 "Broadcom BCM5753M Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5754,
460 "Broadcom BCM5754 Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5754M,
464 "Broadcom BCM5754M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5755,
468 "Broadcom BCM5755 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5755M,
472 "Broadcom BCM5755M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5756,
476 "Broadcom BCM5756 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5761,
480 "Broadcom BCM5761 Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5761E,
484 "Broadcom BCM5761E Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761S,
488 "Broadcom BCM5761S Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761SE,
492 "Broadcom BCM5761SE Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5764,
496 "Broadcom BCM5764 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5780,
500 "Broadcom BCM5780 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5780S,
504 "Broadcom BCM5780S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5781,
508 "Broadcom BCM5781 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5782,
512 "Broadcom BCM5782 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5784M,
516 "BCM5784M NetLink 1000baseT Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5786,
520 "Broadcom BCM5786 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5787,
524 "Broadcom BCM5787 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5787M,
528 "Broadcom BCM5787M Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5788,
532 "Broadcom BCM5788 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5789,
536 "Broadcom BCM5789 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5901,
540 "Broadcom BCM5901 Fast Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5901A2,
544 "Broadcom BCM5901A2 Fast Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5903M,
548 "Broadcom BCM5903M Fast Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5906,
552 "Broadcom BCM5906 Fast Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5906M,
556 "Broadcom BCM5906M Fast Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM57760,
560 "Broadcom BCM57760 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM57761,
564 "Broadcom BCM57761 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM57762,
568 "Broadcom BCM57762 Gigabit Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM57765,
572 "Broadcom BCM57765 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM57780,
576 "Broadcom BCM57780 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57781,
580 "Broadcom BCM57781 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57785,
584 "Broadcom BCM57785 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57788,
588 "Broadcom BCM57788 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57790,
592 "Broadcom BCM57790 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57791,
596 "Broadcom BCM57791 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57795,
600 "Broadcom BCM57795 Fast Ethernet",
601 },
602 { PCI_VENDOR_SCHNEIDERKOCH,
603 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
604 "SysKonnect SK-9Dx1 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_3COM,
607 PCI_PRODUCT_3COM_3C996,
608 "3Com 3c996 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_FUJITSU4,
611 PCI_PRODUCT_FUJITSU4_PW008GE4,
612 "Fujitsu PW008GE4 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_FUJITSU4,
615 PCI_PRODUCT_FUJITSU4_PW008GE5,
616 "Fujitsu PW008GE5 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_FUJITSU4,
619 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
620 "Fujitsu Primepower 250/450 Gigabit Ethernet",
621 },
622 { 0,
623 0,
624 NULL },
625 };
626
627 /*
628 * XXX: how to handle variants based on 5750 and derivatives:
629 * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
630 * in general behave like a 5705, except with additional quirks.
631 * This driver's current handling of the 5721 is wrong;
632 * how we map ASIC revision to "quirks" needs more thought.
633 * (defined here until the thought is done).
634 */
635 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
636 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
637 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
638 #define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
639 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
640 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
641
642 static const struct bge_revision {
643 uint32_t br_chipid;
644 const char *br_name;
645 } bge_revisions[] = {
646 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
647 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
648 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
649 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
650 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
651 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
652 /* This is treated like a BCM5700 Bx */
653 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
654 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
655 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
656 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
657 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
658 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
659 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
660 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
661 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
662 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
663 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
664 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
665 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
666 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
667 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
668 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
669 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
670 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
671 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
672 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
673 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
674 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
675 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
676 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
677 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
678 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
679 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
680 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
681 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
682 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
683 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
684 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
685 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
686 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
687 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
688 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
689 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
690 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
691 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
692 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
693 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
694 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
695 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
696 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
697 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
698 /* 5754 and 5787 share the same ASIC ID */
699 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
700 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
701 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
702 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
703 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
704 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
705 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
706
707 { 0, NULL }
708 };
709
710 /*
711 * Some defaults for major revisions, so that newer steppings
712 * that we don't know about have a shot at working.
713 */
714 static const struct bge_revision bge_majorrevs[] = {
715 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
716 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
717 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
718 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
719 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
720 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
721 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
722 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
723 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
724 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
725 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
726 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
727 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
728 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
729 /* 5754 and 5787 share the same ASIC ID */
730 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
731 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
732 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
733 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
734 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
735 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
736
737 { 0, NULL }
738 };
739
740 static int bge_allow_asf = 1;
741
742 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
743 bge_probe, bge_attach, NULL, NULL);
744
745 static uint32_t
746 bge_readmem_ind(struct bge_softc *sc, int off)
747 {
748 pcireg_t val;
749
750 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
751 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
752 return val;
753 }
754
755 static void
756 bge_writemem_ind(struct bge_softc *sc, int off, int val)
757 {
758 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
759 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
760 }
761
762 /*
763 * PCI Express only
764 */
765 static void
766 bge_set_max_readrq(struct bge_softc *sc)
767 {
768 pcireg_t val;
769
770 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
771 + PCI_PCIE_DCSR);
772 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
773 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
774 aprint_verbose_dev(sc->bge_dev,
775 "adjust device control 0x%04x ", val);
776 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
777 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
778 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
779 + PCI_PCIE_DCSR, val);
780 aprint_verbose("-> 0x%04x\n", val);
781 }
782 }
783
784 #ifdef notdef
785 static uint32_t
786 bge_readreg_ind(struct bge_softc *sc, int off)
787 {
788 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
789 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
790 }
791 #endif
792
793 static void
794 bge_writereg_ind(struct bge_softc *sc, int off, int val)
795 {
796 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
797 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
798 }
799
800 static void
801 bge_writemem_direct(struct bge_softc *sc, int off, int val)
802 {
803 CSR_WRITE_4(sc, off, val);
804 }
805
806 static void
807 bge_writembx(struct bge_softc *sc, int off, int val)
808 {
809 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
810 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
811
812 CSR_WRITE_4(sc, off, val);
813 }
814
815 static uint8_t
816 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
817 {
818 uint32_t access, byte = 0;
819 int i;
820
821 /* Lock. */
822 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
823 for (i = 0; i < 8000; i++) {
824 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
825 break;
826 DELAY(20);
827 }
828 if (i == 8000)
829 return 1;
830
831 /* Enable access. */
832 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
833 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
834
835 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
836 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
837 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
838 DELAY(10);
839 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
840 DELAY(10);
841 break;
842 }
843 }
844
845 if (i == BGE_TIMEOUT * 10) {
846 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
847 return 1;
848 }
849
850 /* Get result. */
851 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
852
853 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
854
855 /* Disable access. */
856 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
857
858 /* Unlock. */
859 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
860 CSR_READ_4(sc, BGE_NVRAM_SWARB);
861
862 return 0;
863 }
864
865 /*
866 * Read a sequence of bytes from NVRAM.
867 */
868 static int
869 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
870 {
871 int error = 0, i;
872 uint8_t byte = 0;
873
874 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
875 return 1;
876
877 for (i = 0; i < cnt; i++) {
878 error = bge_nvram_getbyte(sc, off + i, &byte);
879 if (error)
880 break;
881 *(dest + i) = byte;
882 }
883
884 return (error ? 1 : 0);
885 }
886
887 /*
888 * Read a byte of data stored in the EEPROM at address 'addr.' The
889 * BCM570x supports both the traditional bitbang interface and an
890 * auto access interface for reading the EEPROM. We use the auto
891 * access method.
892 */
893 static uint8_t
894 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
895 {
896 int i;
897 uint32_t byte = 0;
898
899 /*
900 * Enable use of auto EEPROM access so we can avoid
901 * having to use the bitbang method.
902 */
903 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
904
905 /* Reset the EEPROM, load the clock period. */
906 CSR_WRITE_4(sc, BGE_EE_ADDR,
907 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
908 DELAY(20);
909
910 /* Issue the read EEPROM command. */
911 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
912
913 /* Wait for completion */
914 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
915 DELAY(10);
916 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
917 break;
918 }
919
920 if (i == BGE_TIMEOUT * 10) {
921 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
922 return 1;
923 }
924
925 /* Get result. */
926 byte = CSR_READ_4(sc, BGE_EE_DATA);
927
928 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
929
930 return 0;
931 }
932
933 /*
934 * Read a sequence of bytes from the EEPROM.
935 */
936 static int
937 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
938 {
939 int error = 0, i;
940 uint8_t byte = 0;
941 char *dest = destv;
942
943 for (i = 0; i < cnt; i++) {
944 error = bge_eeprom_getbyte(sc, off + i, &byte);
945 if (error)
946 break;
947 *(dest + i) = byte;
948 }
949
950 return (error ? 1 : 0);
951 }
952
953 static int
954 bge_miibus_readreg(device_t dev, int phy, int reg)
955 {
956 struct bge_softc *sc = device_private(dev);
957 uint32_t val;
958 uint32_t autopoll;
959 int i;
960
961 /*
962 * Broadcom's own driver always assumes the internal
963 * PHY is at GMII address 1. On some chips, the PHY responds
964 * to accesses at all addresses, which could cause us to
965 * bogusly attach the PHY 32 times at probe type. Always
966 * restricting the lookup to address 1 is simpler than
967 * trying to figure out which chips revisions should be
968 * special-cased.
969 */
970 if (phy != 1)
971 return 0;
972
973 /* Reading with autopolling on may trigger PCI errors */
974 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
975 if (autopoll & BGE_MIMODE_AUTOPOLL) {
976 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
977 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
978 DELAY(40);
979 }
980
981 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
982 BGE_MIPHY(phy) | BGE_MIREG(reg));
983
984 for (i = 0; i < BGE_TIMEOUT; i++) {
985 val = CSR_READ_4(sc, BGE_MI_COMM);
986 if (!(val & BGE_MICOMM_BUSY))
987 break;
988 delay(10);
989 }
990
991 if (i == BGE_TIMEOUT) {
992 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
993 val = 0;
994 goto done;
995 }
996
997 val = CSR_READ_4(sc, BGE_MI_COMM);
998
999 done:
1000 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1001 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1002 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1003 DELAY(40);
1004 }
1005
1006 if (val & BGE_MICOMM_READFAIL)
1007 return 0;
1008
1009 return (val & 0xFFFF);
1010 }
1011
1012 static void
1013 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1014 {
1015 struct bge_softc *sc = device_private(dev);
1016 uint32_t autopoll;
1017 int i;
1018
1019 if (phy!=1) {
1020 return;
1021 }
1022
1023 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1024 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1025 return;
1026 }
1027
1028 /* Reading with autopolling on may trigger PCI errors */
1029 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1030 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1031 delay(40);
1032 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1033 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1034 delay(10); /* 40 usec is supposed to be adequate */
1035 }
1036
1037 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1038 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1039
1040 for (i = 0; i < BGE_TIMEOUT; i++) {
1041 delay(10);
1042 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1043 delay(5);
1044 CSR_READ_4(sc, BGE_MI_COMM);
1045 break;
1046 }
1047 }
1048
1049 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1050 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1051 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1052 delay(40);
1053 }
1054
1055 if (i == BGE_TIMEOUT)
1056 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1057 }
1058
1059 static void
1060 bge_miibus_statchg(struct ifnet *ifp)
1061 {
1062 struct bge_softc *sc = ifp->if_softc;
1063 struct mii_data *mii = &sc->bge_mii;
1064
1065 /*
1066 * Get flow control negotiation result.
1067 */
1068 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1069 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1070 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1071 mii->mii_media_active &= ~IFM_ETH_FMASK;
1072 }
1073
1074 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1075 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1076 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1077 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1078 else
1079 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1080
1081 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1082 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1083 else
1084 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1085
1086 /*
1087 * 802.3x flow control
1088 */
1089 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1090 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1091 else
1092 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1093
1094 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1095 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1096 else
1097 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1098 }
1099
1100 /*
1101 * Update rx threshold levels to values in a particular slot
1102 * of the interrupt-mitigation table bge_rx_threshes.
1103 */
1104 static void
1105 bge_set_thresh(struct ifnet *ifp, int lvl)
1106 {
1107 struct bge_softc *sc = ifp->if_softc;
1108 int s;
1109
1110 /* For now, just save the new Rx-intr thresholds and record
1111 * that a threshold update is pending. Updating the hardware
1112 * registers here (even at splhigh()) is observed to
1113 * occasionaly cause glitches where Rx-interrupts are not
1114 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1115 */
1116 s = splnet();
1117 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1118 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1119 sc->bge_pending_rxintr_change = 1;
1120 splx(s);
1121
1122 return;
1123 }
1124
1125
1126 /*
1127 * Update Rx thresholds of all bge devices
1128 */
1129 static void
1130 bge_update_all_threshes(int lvl)
1131 {
1132 struct ifnet *ifp;
1133 const char * const namebuf = "bge";
1134 int namelen;
1135
1136 if (lvl < 0)
1137 lvl = 0;
1138 else if (lvl >= NBGE_RX_THRESH)
1139 lvl = NBGE_RX_THRESH - 1;
1140
1141 namelen = strlen(namebuf);
1142 /*
1143 * Now search all the interfaces for this name/number
1144 */
1145 IFNET_FOREACH(ifp) {
1146 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1147 continue;
1148 /* We got a match: update if doing auto-threshold-tuning */
1149 if (bge_auto_thresh)
1150 bge_set_thresh(ifp, lvl);
1151 }
1152 }
1153
1154 /*
1155 * Handle events that have triggered interrupts.
1156 */
1157 static void
1158 bge_handle_events(struct bge_softc *sc)
1159 {
1160
1161 return;
1162 }
1163
1164 /*
1165 * Memory management for jumbo frames.
1166 */
1167
1168 static int
1169 bge_alloc_jumbo_mem(struct bge_softc *sc)
1170 {
1171 char *ptr, *kva;
1172 bus_dma_segment_t seg;
1173 int i, rseg, state, error;
1174 struct bge_jpool_entry *entry;
1175
1176 state = error = 0;
1177
1178 /* Grab a big chunk o' storage. */
1179 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1180 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1181 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1182 return ENOBUFS;
1183 }
1184
1185 state = 1;
1186 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1187 BUS_DMA_NOWAIT)) {
1188 aprint_error_dev(sc->bge_dev,
1189 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1190 error = ENOBUFS;
1191 goto out;
1192 }
1193
1194 state = 2;
1195 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1196 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1197 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1198 error = ENOBUFS;
1199 goto out;
1200 }
1201
1202 state = 3;
1203 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1204 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1205 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1206 error = ENOBUFS;
1207 goto out;
1208 }
1209
1210 state = 4;
1211 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1212 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1213
1214 SLIST_INIT(&sc->bge_jfree_listhead);
1215 SLIST_INIT(&sc->bge_jinuse_listhead);
1216
1217 /*
1218 * Now divide it up into 9K pieces and save the addresses
1219 * in an array.
1220 */
1221 ptr = sc->bge_cdata.bge_jumbo_buf;
1222 for (i = 0; i < BGE_JSLOTS; i++) {
1223 sc->bge_cdata.bge_jslots[i] = ptr;
1224 ptr += BGE_JLEN;
1225 entry = malloc(sizeof(struct bge_jpool_entry),
1226 M_DEVBUF, M_NOWAIT);
1227 if (entry == NULL) {
1228 aprint_error_dev(sc->bge_dev,
1229 "no memory for jumbo buffer queue!\n");
1230 error = ENOBUFS;
1231 goto out;
1232 }
1233 entry->slot = i;
1234 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1235 entry, jpool_entries);
1236 }
1237 out:
1238 if (error != 0) {
1239 switch (state) {
1240 case 4:
1241 bus_dmamap_unload(sc->bge_dmatag,
1242 sc->bge_cdata.bge_rx_jumbo_map);
1243 case 3:
1244 bus_dmamap_destroy(sc->bge_dmatag,
1245 sc->bge_cdata.bge_rx_jumbo_map);
1246 case 2:
1247 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1248 case 1:
1249 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1250 break;
1251 default:
1252 break;
1253 }
1254 }
1255
1256 return error;
1257 }
1258
1259 /*
1260 * Allocate a jumbo buffer.
1261 */
1262 static void *
1263 bge_jalloc(struct bge_softc *sc)
1264 {
1265 struct bge_jpool_entry *entry;
1266
1267 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1268
1269 if (entry == NULL) {
1270 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1271 return NULL;
1272 }
1273
1274 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1275 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1276 return (sc->bge_cdata.bge_jslots[entry->slot]);
1277 }
1278
1279 /*
1280 * Release a jumbo buffer.
1281 */
1282 static void
1283 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1284 {
1285 struct bge_jpool_entry *entry;
1286 struct bge_softc *sc;
1287 int i, s;
1288
1289 /* Extract the softc struct pointer. */
1290 sc = (struct bge_softc *)arg;
1291
1292 if (sc == NULL)
1293 panic("bge_jfree: can't find softc pointer!");
1294
1295 /* calculate the slot this buffer belongs to */
1296
1297 i = ((char *)buf
1298 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1299
1300 if ((i < 0) || (i >= BGE_JSLOTS))
1301 panic("bge_jfree: asked to free buffer that we don't manage!");
1302
1303 s = splvm();
1304 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1305 if (entry == NULL)
1306 panic("bge_jfree: buffer not in use!");
1307 entry->slot = i;
1308 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1309 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1310
1311 if (__predict_true(m != NULL))
1312 pool_cache_put(mb_cache, m);
1313 splx(s);
1314 }
1315
1316
1317 /*
1318 * Initialize a standard receive ring descriptor.
1319 */
1320 static int
1321 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1322 bus_dmamap_t dmamap)
1323 {
1324 struct mbuf *m_new = NULL;
1325 struct bge_rx_bd *r;
1326 int error;
1327
1328 if (dmamap == NULL) {
1329 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1330 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1331 if (error != 0)
1332 return error;
1333 }
1334
1335 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1336
1337 if (m == NULL) {
1338 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1339 if (m_new == NULL)
1340 return ENOBUFS;
1341
1342 MCLGET(m_new, M_DONTWAIT);
1343 if (!(m_new->m_flags & M_EXT)) {
1344 m_freem(m_new);
1345 return ENOBUFS;
1346 }
1347 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1348
1349 } else {
1350 m_new = m;
1351 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1352 m_new->m_data = m_new->m_ext.ext_buf;
1353 }
1354 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1355 m_adj(m_new, ETHER_ALIGN);
1356 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1357 BUS_DMA_READ|BUS_DMA_NOWAIT))
1358 return ENOBUFS;
1359 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1360 BUS_DMASYNC_PREREAD);
1361
1362 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1363 r = &sc->bge_rdata->bge_rx_std_ring[i];
1364 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1365 r->bge_flags = BGE_RXBDFLAG_END;
1366 r->bge_len = m_new->m_len;
1367 r->bge_idx = i;
1368
1369 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1370 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1371 i * sizeof (struct bge_rx_bd),
1372 sizeof (struct bge_rx_bd),
1373 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1374
1375 return 0;
1376 }
1377
1378 /*
1379 * Initialize a jumbo receive ring descriptor. This allocates
1380 * a jumbo buffer from the pool managed internally by the driver.
1381 */
1382 static int
1383 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1384 {
1385 struct mbuf *m_new = NULL;
1386 struct bge_rx_bd *r;
1387 void *buf = NULL;
1388
1389 if (m == NULL) {
1390
1391 /* Allocate the mbuf. */
1392 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1393 if (m_new == NULL)
1394 return ENOBUFS;
1395
1396 /* Allocate the jumbo buffer */
1397 buf = bge_jalloc(sc);
1398 if (buf == NULL) {
1399 m_freem(m_new);
1400 aprint_error_dev(sc->bge_dev,
1401 "jumbo allocation failed -- packet dropped!\n");
1402 return ENOBUFS;
1403 }
1404
1405 /* Attach the buffer to the mbuf. */
1406 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1407 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1408 bge_jfree, sc);
1409 m_new->m_flags |= M_EXT_RW;
1410 } else {
1411 m_new = m;
1412 buf = m_new->m_data = m_new->m_ext.ext_buf;
1413 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1414 }
1415 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1416 m_adj(m_new, ETHER_ALIGN);
1417 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1418 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1419 BUS_DMASYNC_PREREAD);
1420 /* Set up the descriptor. */
1421 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1422 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1423 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1424 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1425 r->bge_len = m_new->m_len;
1426 r->bge_idx = i;
1427
1428 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1429 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1430 i * sizeof (struct bge_rx_bd),
1431 sizeof (struct bge_rx_bd),
1432 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1439 * that's 1MB or memory, which is a lot. For now, we fill only the first
1440 * 256 ring entries and hope that our CPU is fast enough to keep up with
1441 * the NIC.
1442 */
1443 static int
1444 bge_init_rx_ring_std(struct bge_softc *sc)
1445 {
1446 int i;
1447
1448 if (sc->bge_flags & BGE_RXRING_VALID)
1449 return 0;
1450
1451 for (i = 0; i < BGE_SSLOTS; i++) {
1452 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1453 return ENOBUFS;
1454 }
1455
1456 sc->bge_std = i - 1;
1457 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1458
1459 sc->bge_flags |= BGE_RXRING_VALID;
1460
1461 return 0;
1462 }
1463
1464 static void
1465 bge_free_rx_ring_std(struct bge_softc *sc)
1466 {
1467 int i;
1468
1469 if (!(sc->bge_flags & BGE_RXRING_VALID))
1470 return;
1471
1472 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1473 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1474 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1475 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1476 bus_dmamap_destroy(sc->bge_dmatag,
1477 sc->bge_cdata.bge_rx_std_map[i]);
1478 }
1479 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1480 sizeof(struct bge_rx_bd));
1481 }
1482
1483 sc->bge_flags &= ~BGE_RXRING_VALID;
1484 }
1485
1486 static int
1487 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1488 {
1489 int i;
1490 volatile struct bge_rcb *rcb;
1491
1492 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1493 return 0;
1494
1495 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1496 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1497 return ENOBUFS;
1498 };
1499
1500 sc->bge_jumbo = i - 1;
1501 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1502
1503 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1504 rcb->bge_maxlen_flags = 0;
1505 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1506
1507 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1508
1509 return 0;
1510 }
1511
1512 static void
1513 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1514 {
1515 int i;
1516
1517 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1518 return;
1519
1520 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1521 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1522 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1523 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1524 }
1525 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1526 sizeof(struct bge_rx_bd));
1527 }
1528
1529 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1530 }
1531
1532 static void
1533 bge_free_tx_ring(struct bge_softc *sc)
1534 {
1535 int i, freed;
1536 struct txdmamap_pool_entry *dma;
1537
1538 if (!(sc->bge_flags & BGE_TXRING_VALID))
1539 return;
1540
1541 freed = 0;
1542
1543 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1544 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1545 freed++;
1546 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1547 sc->bge_cdata.bge_tx_chain[i] = NULL;
1548 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1549 link);
1550 sc->txdma[i] = 0;
1551 }
1552 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1553 sizeof(struct bge_tx_bd));
1554 }
1555
1556 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1557 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1558 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1559 free(dma, M_DEVBUF);
1560 }
1561
1562 sc->bge_flags &= ~BGE_TXRING_VALID;
1563 }
1564
1565 static int
1566 bge_init_tx_ring(struct bge_softc *sc)
1567 {
1568 int i;
1569 bus_dmamap_t dmamap;
1570 struct txdmamap_pool_entry *dma;
1571
1572 if (sc->bge_flags & BGE_TXRING_VALID)
1573 return 0;
1574
1575 sc->bge_txcnt = 0;
1576 sc->bge_tx_saved_considx = 0;
1577
1578 /* Initialize transmit producer index for host-memory send ring. */
1579 sc->bge_tx_prodidx = 0;
1580 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1581 /* 5700 b2 errata */
1582 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1583 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1584
1585 /* NIC-memory send ring not used; initialize to zero. */
1586 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1587 /* 5700 b2 errata */
1588 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1589 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1590
1591 SLIST_INIT(&sc->txdma_list);
1592 for (i = 0; i < BGE_RSLOTS; i++) {
1593 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1594 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1595 &dmamap))
1596 return ENOBUFS;
1597 if (dmamap == NULL)
1598 panic("dmamap NULL in bge_init_tx_ring");
1599 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1600 if (dma == NULL) {
1601 aprint_error_dev(sc->bge_dev,
1602 "can't alloc txdmamap_pool_entry\n");
1603 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1604 return ENOMEM;
1605 }
1606 dma->dmamap = dmamap;
1607 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1608 }
1609
1610 sc->bge_flags |= BGE_TXRING_VALID;
1611
1612 return 0;
1613 }
1614
1615 static void
1616 bge_setmulti(struct bge_softc *sc)
1617 {
1618 struct ethercom *ac = &sc->ethercom;
1619 struct ifnet *ifp = &ac->ec_if;
1620 struct ether_multi *enm;
1621 struct ether_multistep step;
1622 uint32_t hashes[4] = { 0, 0, 0, 0 };
1623 uint32_t h;
1624 int i;
1625
1626 if (ifp->if_flags & IFF_PROMISC)
1627 goto allmulti;
1628
1629 /* Now program new ones. */
1630 ETHER_FIRST_MULTI(step, ac, enm);
1631 while (enm != NULL) {
1632 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1633 /*
1634 * We must listen to a range of multicast addresses.
1635 * For now, just accept all multicasts, rather than
1636 * trying to set only those filter bits needed to match
1637 * the range. (At this time, the only use of address
1638 * ranges is for IP multicast routing, for which the
1639 * range is big enough to require all bits set.)
1640 */
1641 goto allmulti;
1642 }
1643
1644 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1645
1646 /* Just want the 7 least-significant bits. */
1647 h &= 0x7f;
1648
1649 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1650 ETHER_NEXT_MULTI(step, enm);
1651 }
1652
1653 ifp->if_flags &= ~IFF_ALLMULTI;
1654 goto setit;
1655
1656 allmulti:
1657 ifp->if_flags |= IFF_ALLMULTI;
1658 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1659
1660 setit:
1661 for (i = 0; i < 4; i++)
1662 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1663 }
1664
1665 static void
1666 bge_sig_pre_reset(struct bge_softc *sc, int type)
1667 {
1668 /*
1669 * Some chips don't like this so only do this if ASF is enabled
1670 */
1671 if (sc->bge_asf_mode)
1672 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1673
1674 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1675 switch (type) {
1676 case BGE_RESET_START:
1677 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1678 break;
1679 case BGE_RESET_STOP:
1680 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1681 break;
1682 }
1683 }
1684 }
1685
1686 static void
1687 bge_sig_post_reset(struct bge_softc *sc, int type)
1688 {
1689
1690 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1691 switch (type) {
1692 case BGE_RESET_START:
1693 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1694 /* START DONE */
1695 break;
1696 case BGE_RESET_STOP:
1697 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1698 break;
1699 }
1700 }
1701 }
1702
1703 static void
1704 bge_sig_legacy(struct bge_softc *sc, int type)
1705 {
1706
1707 if (sc->bge_asf_mode) {
1708 switch (type) {
1709 case BGE_RESET_START:
1710 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1711 break;
1712 case BGE_RESET_STOP:
1713 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1714 break;
1715 }
1716 }
1717 }
1718
1719 static void
1720 bge_stop_fw(struct bge_softc *sc)
1721 {
1722 int i;
1723
1724 if (sc->bge_asf_mode) {
1725 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1726 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1727 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1728
1729 for (i = 0; i < 100; i++) {
1730 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1731 break;
1732 DELAY(10);
1733 }
1734 }
1735 }
1736
1737 static int
1738 bge_poll_fw(struct bge_softc *sc)
1739 {
1740 uint32_t val;
1741 int i;
1742
1743 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1744 for (i = 0; i < BGE_TIMEOUT; i++) {
1745 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1746 if (val & BGE_VCPU_STATUS_INIT_DONE)
1747 break;
1748 DELAY(100);
1749 }
1750 if (i >= BGE_TIMEOUT) {
1751 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1752 return -1;
1753 }
1754 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1755 /*
1756 * Poll the value location we just wrote until
1757 * we see the 1's complement of the magic number.
1758 * This indicates that the firmware initialization
1759 * is complete.
1760 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1761 */
1762 for (i = 0; i < BGE_TIMEOUT; i++) {
1763 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1764 if (val == ~BGE_MAGIC_NUMBER)
1765 break;
1766 DELAY(10);
1767 }
1768
1769 if (i >= BGE_TIMEOUT) {
1770 aprint_error_dev(sc->bge_dev,
1771 "firmware handshake timed out, val = %x\n", val);
1772 return -1;
1773 }
1774 }
1775
1776 return 0;
1777 }
1778
1779 /*
1780 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1781 * self-test results.
1782 */
1783 static int
1784 bge_chipinit(struct bge_softc *sc)
1785 {
1786 int i;
1787 uint32_t dma_rw_ctl;
1788
1789 /* Set endianness before we access any non-PCI registers. */
1790 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1791 BGE_INIT);
1792
1793 /* Set power state to D0. */
1794 bge_setpowerstate(sc, 0);
1795
1796 /* Clear the MAC control register */
1797 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1798
1799 /*
1800 * Clear the MAC statistics block in the NIC's
1801 * internal memory.
1802 */
1803 for (i = BGE_STATS_BLOCK;
1804 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1805 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1806
1807 for (i = BGE_STATUS_BLOCK;
1808 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1809 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1810
1811 /* Set up the PCI DMA control register. */
1812 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1813 if (sc->bge_flags & BGE_PCIE) {
1814 /* Read watermark not used, 128 bytes for write. */
1815 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1816 device_xname(sc->bge_dev)));
1817 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1818 } else if (sc->bge_flags & BGE_PCIX) {
1819 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1820 device_xname(sc->bge_dev)));
1821 /* PCI-X bus */
1822 if (BGE_IS_5714_FAMILY(sc)) {
1823 /* 256 bytes for read and write. */
1824 dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1825 (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1826
1827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1828 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1829 else
1830 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1831 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1832 /* 1536 bytes for read, 384 bytes for write. */
1833 dma_rw_ctl |=
1834 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1835 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1836 } else {
1837 /* 384 bytes for read and write. */
1838 dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1839 (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1840 (0x0F);
1841 }
1842
1843 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1844 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1845 uint32_t tmp;
1846
1847 /* Set ONEDMA_ATONCE for hardware workaround. */
1848 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1849 if (tmp == 6 || tmp == 7)
1850 dma_rw_ctl |=
1851 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1852
1853 /* Set PCI-X DMA write workaround. */
1854 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1855 }
1856 } else {
1857 /* Conventional PCI bus: 256 bytes for read and write. */
1858 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1859 device_xname(sc->bge_dev)));
1860 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1861 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1862 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1863 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1864 dma_rw_ctl |= 0x0F;
1865 }
1866
1867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1868 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1869 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1870 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1871
1872 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1873 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1874 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1875
1876 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1877 dma_rw_ctl);
1878
1879 /*
1880 * Set up general mode register.
1881 */
1882 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1883 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1884 BGE_MODECTL_TX_NO_PHDR_CSUM);
1885
1886 /*
1887 * BCM5701 B5 have a bug causing data corruption when using
1888 * 64-bit DMA reads, which can be terminated early and then
1889 * completed later as 32-bit accesses, in combination with
1890 * certain bridges.
1891 */
1892 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1893 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1894 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1895
1896 /*
1897 * Tell the firmware the driver is running
1898 */
1899 if (sc->bge_asf_mode & ASF_STACKUP)
1900 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1901
1902 /*
1903 * Disable memory write invalidate. Apparently it is not supported
1904 * properly by these devices.
1905 */
1906 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1907 PCI_COMMAND_INVALIDATE_ENABLE);
1908
1909 #ifdef __brokenalpha__
1910 /*
1911 * Must insure that we do not cross an 8K (bytes) boundary
1912 * for DMA reads. Our highest limit is 1K bytes. This is a
1913 * restriction on some ALPHA platforms with early revision
1914 * 21174 PCI chipsets, such as the AlphaPC 164lx
1915 */
1916 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1917 #endif
1918
1919 /* Set the timer prescaler (always 66MHz) */
1920 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1921
1922 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1923 DELAY(40); /* XXX */
1924
1925 /* Put PHY into ready state */
1926 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1927 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1928 DELAY(40);
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int
1935 bge_blockinit(struct bge_softc *sc)
1936 {
1937 volatile struct bge_rcb *rcb;
1938 bus_size_t rcb_addr;
1939 int i;
1940 struct ifnet *ifp = &sc->ethercom.ec_if;
1941 bge_hostaddr taddr;
1942 uint32_t val;
1943
1944 /*
1945 * Initialize the memory window pointer register so that
1946 * we can access the first 32K of internal NIC RAM. This will
1947 * allow us to set up the TX send ring RCBs and the RX return
1948 * ring RCBs, plus other things which live in NIC memory.
1949 */
1950
1951 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1952
1953 /* Step 33: Configure mbuf memory pool */
1954 if (BGE_IS_5700_FAMILY(sc)) {
1955 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1956 BGE_BUFFPOOL_1);
1957
1958 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1959 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1960 else
1961 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1962
1963 /* Configure DMA resource pool */
1964 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1965 BGE_DMA_DESCRIPTORS);
1966 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1967 }
1968
1969 /* Step 35: Configure mbuf pool watermarks */
1970 #ifdef ORIG_WPAUL_VALUES
1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1973 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1974 #else
1975
1976 /* new broadcom docs strongly recommend these: */
1977 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1978 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
1979 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1981 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1982 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1983 } else if (BGE_IS_5705_PLUS(sc)) {
1984 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1985
1986 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1987 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1988 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1989 } else {
1990 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1991 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1992 }
1993 } else if (!BGE_IS_5705_PLUS(sc)) {
1994 if (ifp->if_mtu > ETHER_MAX_LEN) {
1995 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1996 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1997 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1998 } else {
1999 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2000 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2001 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2002 }
2003 } else {
2004 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2005 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2006 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2007 }
2008 #endif
2009
2010 /* Step 36: Configure DMA resource watermarks */
2011 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2012 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2013
2014 /* Step 38: Enable buffer manager */
2015 CSR_WRITE_4(sc, BGE_BMAN_MODE,
2016 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2017
2018 /* Step 39: Poll for buffer manager start indication */
2019 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2020 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2021 break;
2022 DELAY(10);
2023 }
2024
2025 if (i == BGE_TIMEOUT * 2) {
2026 aprint_error_dev(sc->bge_dev,
2027 "buffer manager failed to start\n");
2028 return ENXIO;
2029 }
2030
2031 /* Step 40: Enable flow-through queues */
2032 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2033 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2034
2035 /* Wait until queue initialization is complete */
2036 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2037 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2038 break;
2039 DELAY(10);
2040 }
2041
2042 if (i == BGE_TIMEOUT * 2) {
2043 aprint_error_dev(sc->bge_dev,
2044 "flow-through queue init failed\n");
2045 return ENXIO;
2046 }
2047
2048 /* Step 41: Initialize the standard RX ring control block */
2049 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2050 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2051 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2052 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2053 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2054 rcb->bge_maxlen_flags =
2055 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2056 else if (BGE_IS_5705_PLUS(sc))
2057 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2058 else
2059 rcb->bge_maxlen_flags =
2060 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2061 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2062 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2063 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2064 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2065 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2066
2067 /*
2068 * Step 42: Initialize the jumbo RX ring control block
2069 * We set the 'ring disabled' bit in the flags
2070 * field until we're actually ready to start
2071 * using this ring (i.e. once we set the MTU
2072 * high enough to require it).
2073 */
2074 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2075 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2076 BGE_HOSTADDR(rcb->bge_hostaddr,
2077 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2078 rcb->bge_maxlen_flags =
2079 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2080 BGE_RCB_FLAG_RING_DISABLED);
2081 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2082 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2083 rcb->bge_hostaddr.bge_addr_hi);
2084 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2085 rcb->bge_hostaddr.bge_addr_lo);
2086 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2087 rcb->bge_maxlen_flags);
2088 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2089
2090 /* Set up dummy disabled mini ring RCB */
2091 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2092 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2093 BGE_RCB_FLAG_RING_DISABLED);
2094 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2095 rcb->bge_maxlen_flags);
2096
2097 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2098 offsetof(struct bge_ring_data, bge_info),
2099 sizeof (struct bge_gib),
2100 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2101 }
2102
2103 /*
2104 * Set the BD ring replenish thresholds. The recommended
2105 * values are 1/8th the number of descriptors allocated to
2106 * each ring.
2107 */
2108 i = BGE_STD_RX_RING_CNT / 8;
2109
2110 /*
2111 * Use a value of 8 for the following chips to workaround HW errata.
2112 * Some of these chips have been added based on empirical
2113 * evidence (they don't work unless this is done).
2114 */
2115 if (BGE_IS_5705_PLUS(sc))
2116 i = 8;
2117
2118 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2119 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2120
2121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2122 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2123 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2124 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2125 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2126 }
2127
2128 /*
2129 * Disable all unused send rings by setting the 'ring disabled'
2130 * bit in the flags field of all the TX send ring control blocks.
2131 * These are located in NIC memory.
2132 */
2133 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2134 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2135 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2136 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2137 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2138 rcb_addr += sizeof(struct bge_rcb);
2139 }
2140
2141 /* Configure TX RCB 0 (we use only the first ring) */
2142 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2143 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2144 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2145 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2146 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2147 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2148 if (BGE_IS_5700_FAMILY(sc))
2149 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2150 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2151
2152 /* Disable all unused RX return rings */
2153 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2154 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2155 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2156 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2157 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2158 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2159 BGE_RCB_FLAG_RING_DISABLED));
2160 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2161 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2162 (i * (sizeof(uint64_t))), 0);
2163 rcb_addr += sizeof(struct bge_rcb);
2164 }
2165
2166 /* Initialize RX ring indexes */
2167 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2168 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2169 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2170
2171 /*
2172 * Set up RX return ring 0
2173 * Note that the NIC address for RX return rings is 0x00000000.
2174 * The return rings live entirely within the host, so the
2175 * nicaddr field in the RCB isn't used.
2176 */
2177 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2178 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2179 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2180 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2181 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2182 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2183 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2184
2185 /* Set random backoff seed for TX */
2186 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2187 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2188 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2189 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2190 BGE_TX_BACKOFF_SEED_MASK);
2191
2192 /* Set inter-packet gap */
2193 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2194
2195 /*
2196 * Specify which ring to use for packets that don't match
2197 * any RX rules.
2198 */
2199 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2200
2201 /*
2202 * Configure number of RX lists. One interrupt distribution
2203 * list, sixteen active lists, one bad frames class.
2204 */
2205 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2206
2207 /* Inialize RX list placement stats mask. */
2208 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2209 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2210
2211 /* Disable host coalescing until we get it set up */
2212 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2213
2214 /* Poll to make sure it's shut down. */
2215 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2216 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2217 break;
2218 DELAY(10);
2219 }
2220
2221 if (i == BGE_TIMEOUT * 2) {
2222 aprint_error_dev(sc->bge_dev,
2223 "host coalescing engine failed to idle\n");
2224 return ENXIO;
2225 }
2226
2227 /* Set up host coalescing defaults */
2228 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2229 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2230 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2231 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2232 if (BGE_IS_5700_FAMILY(sc)) {
2233 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2234 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2235 }
2236 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2237 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2238
2239 /* Set up address of statistics block */
2240 if (BGE_IS_5700_FAMILY(sc)) {
2241 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2242 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2243 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2244 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2245 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2246 }
2247
2248 /* Set up address of status block */
2249 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2250 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2251 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2252 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2253 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2254 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2255
2256 /* Turn on host coalescing state machine */
2257 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2258
2259 /* Turn on RX BD completion state machine and enable attentions */
2260 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2261 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2262
2263 /* Turn on RX list placement state machine */
2264 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2265
2266 /* Turn on RX list selector state machine. */
2267 if (BGE_IS_5700_FAMILY(sc))
2268 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2269
2270 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2271 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2272 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2273 BGE_MACMODE_FRMHDR_DMA_ENB;
2274
2275 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2276 val |= BGE_PORTMODE_TBI;
2277 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2278 val |= BGE_PORTMODE_GMII;
2279 else
2280 val |= BGE_PORTMODE_MII;
2281
2282 /* Turn on DMA, clear stats */
2283 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2284
2285 /* Set misc. local control, enable interrupts on attentions */
2286 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2287
2288 #ifdef notdef
2289 /* Assert GPIO pins for PHY reset */
2290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2291 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2292 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2293 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2294 #endif
2295
2296 #if defined(not_quite_yet)
2297 /* Linux driver enables enable gpio pin #1 on 5700s */
2298 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2299 sc->bge_local_ctrl_reg |=
2300 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2301 }
2302 #endif
2303 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2304
2305 /* Turn on DMA completion state machine */
2306 if (BGE_IS_5700_FAMILY(sc))
2307 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2308
2309 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2310
2311 /* Enable host coalescing bug fix; see Linux tg3.c */
2312 if (BGE_IS_5755_PLUS(sc))
2313 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2314
2315 /* Turn on write DMA state machine */
2316 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2317
2318 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2320 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2321 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2322 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2323 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2324 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2325
2326 if (sc->bge_flags & BGE_PCIE)
2327 val |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2328 if (sc->bge_flags & BGE_TSO)
2329 val |= BGE_RDMAMODE_TSO4_ENABLE;
2330
2331 /* Turn on read DMA state machine */
2332 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2333 delay(40);
2334
2335 /* Turn on RX data completion state machine */
2336 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2337
2338 /* Turn on RX BD initiator state machine */
2339 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2340
2341 /* Turn on RX data and RX BD initiator state machine */
2342 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2343
2344 /* Turn on Mbuf cluster free state machine */
2345 if (BGE_IS_5700_FAMILY(sc))
2346 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2347
2348 /* Turn on send BD completion state machine */
2349 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2350
2351 /* Turn on send data completion state machine */
2352 val = BGE_SDCMODE_ENABLE;
2353 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2354 val |= BGE_SDCMODE_CDELAY;
2355 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2356
2357 /* Turn on send data initiator state machine */
2358 if (sc->bge_flags & BGE_TSO) {
2359 /* XXX: magic value from Linux driver */
2360 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2361 } else
2362 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2363
2364 /* Turn on send BD initiator state machine */
2365 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2366
2367 /* Turn on send BD selector state machine */
2368 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2369
2370 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2371 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2372 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2373
2374 /* ack/clear link change events */
2375 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2376 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2377 BGE_MACSTAT_LINK_CHANGED);
2378 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2379
2380 /* Enable PHY auto polling (for MII/GMII only) */
2381 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2382 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2383 } else {
2384 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2385 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2387 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2388 BGE_EVTENB_MI_INTERRUPT);
2389 }
2390
2391 /*
2392 * Clear any pending link state attention.
2393 * Otherwise some link state change events may be lost until attention
2394 * is cleared by bge_intr() -> bge_link_upd() sequence.
2395 * It's not necessary on newer BCM chips - perhaps enabling link
2396 * state change attentions implies clearing pending attention.
2397 */
2398 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2399 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2400 BGE_MACSTAT_LINK_CHANGED);
2401
2402 /* Enable link state change attentions. */
2403 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2404
2405 return 0;
2406 }
2407
2408 static const struct bge_revision *
2409 bge_lookup_rev(uint32_t chipid)
2410 {
2411 const struct bge_revision *br;
2412
2413 for (br = bge_revisions; br->br_name != NULL; br++) {
2414 if (br->br_chipid == chipid)
2415 return br;
2416 }
2417
2418 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2419 if (br->br_chipid == BGE_ASICREV(chipid))
2420 return br;
2421 }
2422
2423 return NULL;
2424 }
2425
2426 static const struct bge_product *
2427 bge_lookup(const struct pci_attach_args *pa)
2428 {
2429 const struct bge_product *bp;
2430
2431 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2432 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2433 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2434 return bp;
2435 }
2436
2437 return NULL;
2438 }
2439
2440 static int
2441 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2442 {
2443 #ifdef NOTYET
2444 uint32_t pm_ctl = 0;
2445
2446 /* XXX FIXME: make sure indirect accesses enabled? */
2447 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2448 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2449 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2450
2451 /* clear the PME_assert bit and power state bits, enable PME */
2452 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2453 pm_ctl &= ~PCIM_PSTAT_DMASK;
2454 pm_ctl |= (1 << 8);
2455
2456 if (powerlevel == 0) {
2457 pm_ctl |= PCIM_PSTAT_D0;
2458 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2459 pm_ctl, 2);
2460 DELAY(10000);
2461 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2462 DELAY(10000);
2463
2464 #ifdef NOTYET
2465 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2466 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2467 #endif
2468 DELAY(40); DELAY(40); DELAY(40);
2469 DELAY(10000); /* above not quite adequate on 5700 */
2470 return 0;
2471 }
2472
2473
2474 /*
2475 * Entering ACPI power states D1-D3 is achieved by wiggling
2476 * GMII gpio pins. Example code assumes all hardware vendors
2477 * followed Broadcom's sample pcb layout. Until we verify that
2478 * for all supported OEM cards, states D1-D3 are unsupported.
2479 */
2480 aprint_error_dev(sc->bge_dev,
2481 "power state %d unimplemented; check GPIO pins\n",
2482 powerlevel);
2483 #endif
2484 return EOPNOTSUPP;
2485 }
2486
2487
2488 /*
2489 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2490 * against our list and return its name if we find a match. Note
2491 * that since the Broadcom controller contains VPD support, we
2492 * can get the device name string from the controller itself instead
2493 * of the compiled-in string. This is a little slow, but it guarantees
2494 * we'll always announce the right product name.
2495 */
2496 static int
2497 bge_probe(device_t parent, cfdata_t match, void *aux)
2498 {
2499 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2500
2501 if (bge_lookup(pa) != NULL)
2502 return 1;
2503
2504 return 0;
2505 }
2506
2507 static void
2508 bge_attach(device_t parent, device_t self, void *aux)
2509 {
2510 struct bge_softc *sc = device_private(self);
2511 struct pci_attach_args *pa = aux;
2512 prop_dictionary_t dict;
2513 const struct bge_product *bp;
2514 const struct bge_revision *br;
2515 pci_chipset_tag_t pc;
2516 pci_intr_handle_t ih;
2517 const char *intrstr = NULL;
2518 bus_dma_segment_t seg;
2519 int rseg;
2520 uint32_t hwcfg = 0;
2521 uint32_t command;
2522 struct ifnet *ifp;
2523 uint32_t misccfg;
2524 void * kva;
2525 u_char eaddr[ETHER_ADDR_LEN];
2526 pcireg_t memtype, subid;
2527 bus_addr_t memaddr;
2528 bus_size_t memsize;
2529 uint32_t pm_ctl;
2530 bool no_seeprom;
2531
2532 bp = bge_lookup(pa);
2533 KASSERT(bp != NULL);
2534
2535 sc->sc_pc = pa->pa_pc;
2536 sc->sc_pcitag = pa->pa_tag;
2537 sc->bge_dev = self;
2538
2539 pc = sc->sc_pc;
2540 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2541
2542 aprint_naive(": Ethernet controller\n");
2543 aprint_normal(": %s\n", bp->bp_name);
2544
2545 /*
2546 * Map control/status registers.
2547 */
2548 DPRINTFN(5, ("Map control/status regs\n"));
2549 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2550 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2551 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2552 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2553
2554 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2555 aprint_error_dev(sc->bge_dev,
2556 "failed to enable memory mapping!\n");
2557 return;
2558 }
2559
2560 DPRINTFN(5, ("pci_mem_find\n"));
2561 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2562 switch (memtype) {
2563 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2564 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2565 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2566 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2567 &memaddr, &memsize) == 0)
2568 break;
2569 default:
2570 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2571 return;
2572 }
2573
2574 DPRINTFN(5, ("pci_intr_map\n"));
2575 if (pci_intr_map(pa, &ih)) {
2576 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2577 return;
2578 }
2579
2580 DPRINTFN(5, ("pci_intr_string\n"));
2581 intrstr = pci_intr_string(pc, ih);
2582
2583 DPRINTFN(5, ("pci_intr_establish\n"));
2584 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2585
2586 if (sc->bge_intrhand == NULL) {
2587 aprint_error_dev(sc->bge_dev,
2588 "couldn't establish interrupt%s%s\n",
2589 intrstr ? " at " : "", intrstr ? intrstr : "");
2590 return;
2591 }
2592 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2593
2594 /*
2595 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2596 * can clobber the chip's PCI config-space power control registers,
2597 * leaving the card in D3 powersave state.
2598 * We do not have memory-mapped registers in this state,
2599 * so force device into D0 state before starting initialization.
2600 */
2601 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2602 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2603 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2604 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2605 DELAY(1000); /* 27 usec is allegedly sufficent */
2606
2607 /*
2608 * Save ASIC rev.
2609 */
2610 sc->bge_chipid =
2611 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2612 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2613
2614 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2615 switch (PCI_PRODUCT(pa->pa_id)) {
2616 case PCI_PRODUCT_BROADCOM_BCM5717:
2617 case PCI_PRODUCT_BROADCOM_BCM5718:
2618 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
2619 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2620 BGE_PCI_GEN2_PRODID_ASICREV);
2621 break;
2622 case PCI_PRODUCT_BROADCOM_BCM57761:
2623 case PCI_PRODUCT_BROADCOM_BCM57762:
2624 case PCI_PRODUCT_BROADCOM_BCM57765:
2625 case PCI_PRODUCT_BROADCOM_BCM57781:
2626 case PCI_PRODUCT_BROADCOM_BCM57785:
2627 case PCI_PRODUCT_BROADCOM_BCM57791:
2628 case PCI_PRODUCT_BROADCOM_BCM57795:
2629 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2630 BGE_PCI_GEN15_PRODID_ASICREV);
2631 break;
2632 default:
2633 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2634 BGE_PCI_PRODID_ASICREV);
2635 break;
2636 }
2637 }
2638
2639 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2640 &sc->bge_pciecap, NULL) != 0)
2641 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2642 /* PCIe */
2643 sc->bge_flags |= BGE_PCIE;
2644 bge_set_max_readrq(sc);
2645 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2646 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2647 /* PCI-X */
2648 sc->bge_flags |= BGE_PCIX;
2649 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2650 &sc->bge_pcixcap, NULL) == 0)
2651 aprint_error_dev(sc->bge_dev,
2652 "unable to find PCIX capability\n");
2653 }
2654
2655 /* chipid */
2656 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2657 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2658 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2659 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2660 sc->bge_flags |= BGE_5700_FAMILY;
2661
2662 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2663 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2664 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2665 sc->bge_flags |= BGE_5714_FAMILY;
2666
2667 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2668 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2669 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2670 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2671 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2672 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2674 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2676 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2677 sc->bge_flags |= BGE_5755_PLUS;
2678
2679 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2680 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2681 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2682 BGE_IS_5755_PLUS(sc) ||
2683 BGE_IS_5714_FAMILY(sc))
2684 sc->bge_flags |= BGE_5750_PLUS;
2685
2686 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2687 BGE_IS_5750_OR_BEYOND(sc))
2688 sc->bge_flags |= BGE_5705_PLUS;
2689
2690 /*
2691 * When using the BCM5701 in PCI-X mode, data corruption has
2692 * been observed in the first few bytes of some received packets.
2693 * Aligning the packet buffer in memory eliminates the corruption.
2694 * Unfortunately, this misaligns the packet payloads. On platforms
2695 * which do not support unaligned accesses, we will realign the
2696 * payloads by copying the received packets.
2697 */
2698 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2699 sc->bge_flags & BGE_PCIX)
2700 sc->bge_flags |= BGE_RX_ALIGNBUG;
2701
2702 if (BGE_IS_5700_FAMILY(sc))
2703 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2704
2705 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2706 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2707 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2708 sc->bge_flags |= BGE_NO_3LED;
2709
2710 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2711 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2712
2713 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2714 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2715 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2716 sc->bge_flags |= BGE_IS_5788;
2717
2718 /*
2719 * Some controllers seem to require a special firmware to use
2720 * TSO. But the firmware is not available to FreeBSD and Linux
2721 * claims that the TSO performed by the firmware is slower than
2722 * hardware based TSO. Moreover the firmware based TSO has one
2723 * known bug which can't handle TSO if ethernet header + IP/TCP
2724 * header is greater than 80 bytes. The workaround for the TSO
2725 * bug exist but it seems it's too expensive than not using
2726 * TSO at all. Some hardwares also have the TSO bug so limit
2727 * the TSO to the controllers that are not affected TSO issues
2728 * (e.g. 5755 or higher).
2729 */
2730 if (BGE_IS_5755_PLUS(sc)) {
2731 /*
2732 * BCM5754 and BCM5787 shares the same ASIC id so
2733 * explicit device id check is required.
2734 */
2735 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2736 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2737 sc->bge_flags |= BGE_TSO;
2738 }
2739
2740 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2741 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2742 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2743 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2744 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2745 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2746 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2747 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2748 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2749 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2750 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2751 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2752 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2753 sc->bge_flags |= BGE_10_100_ONLY;
2754
2755 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2756 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2757 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2758 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2759 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2760 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2761
2762 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2763 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2764 sc->bge_flags |= BGE_PHY_CRC_BUG;
2765 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2766 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2767 sc->bge_flags |= BGE_PHY_ADC_BUG;
2768 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2769 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2770
2771 if (BGE_IS_5705_PLUS(sc) &&
2772 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2773 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2774 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2775 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2776 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2777 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2778 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2779 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2780 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2781 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2782 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2783 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2784 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2785 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2786 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2787 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2788 sc->bge_flags |= BGE_PHY_BER_BUG;
2789 }
2790
2791 /*
2792 * SEEPROM check.
2793 * First check if firmware knows we do not have SEEPROM.
2794 */
2795 if (prop_dictionary_get_bool(device_properties(self),
2796 "without-seeprom", &no_seeprom) && no_seeprom)
2797 sc->bge_flags |= BGE_NO_EEPROM;
2798
2799 /* Now check the 'ROM failed' bit on the RX CPU */
2800 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2801 sc->bge_flags |= BGE_NO_EEPROM;
2802
2803 /* Try to reset the chip. */
2804 DPRINTFN(5, ("bge_reset\n"));
2805 bge_reset(sc);
2806
2807 sc->bge_asf_mode = 0;
2808 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2809 == BGE_MAGIC_NUMBER)) {
2810 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2811 & BGE_HWCFG_ASF) {
2812 sc->bge_asf_mode |= ASF_ENABLE;
2813 sc->bge_asf_mode |= ASF_STACKUP;
2814 if (BGE_IS_5750_OR_BEYOND(sc)) {
2815 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2816 }
2817 }
2818 }
2819
2820 /* Try to reset the chip again the nice way. */
2821 bge_stop_fw(sc);
2822 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2823 if (bge_reset(sc))
2824 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2825
2826 bge_sig_legacy(sc, BGE_RESET_STOP);
2827 bge_sig_post_reset(sc, BGE_RESET_STOP);
2828
2829 if (bge_chipinit(sc)) {
2830 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2831 bge_release_resources(sc);
2832 return;
2833 }
2834
2835 /*
2836 * Get station address from the EEPROM.
2837 */
2838 if (bge_get_eaddr(sc, eaddr)) {
2839 aprint_error_dev(sc->bge_dev,
2840 "failed to read station address\n");
2841 bge_release_resources(sc);
2842 return;
2843 }
2844
2845 br = bge_lookup_rev(sc->bge_chipid);
2846
2847 if (br == NULL) {
2848 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2849 sc->bge_chipid);
2850 } else {
2851 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2852 br->br_name, sc->bge_chipid);
2853 }
2854 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2855
2856 /* Allocate the general information block and ring buffers. */
2857 if (pci_dma64_available(pa))
2858 sc->bge_dmatag = pa->pa_dmat64;
2859 else
2860 sc->bge_dmatag = pa->pa_dmat;
2861 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2862 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2863 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2864 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2865 return;
2866 }
2867 DPRINTFN(5, ("bus_dmamem_map\n"));
2868 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2869 sizeof(struct bge_ring_data), &kva,
2870 BUS_DMA_NOWAIT)) {
2871 aprint_error_dev(sc->bge_dev,
2872 "can't map DMA buffers (%zu bytes)\n",
2873 sizeof(struct bge_ring_data));
2874 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2875 return;
2876 }
2877 DPRINTFN(5, ("bus_dmamem_create\n"));
2878 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2879 sizeof(struct bge_ring_data), 0,
2880 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2881 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2882 bus_dmamem_unmap(sc->bge_dmatag, kva,
2883 sizeof(struct bge_ring_data));
2884 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2885 return;
2886 }
2887 DPRINTFN(5, ("bus_dmamem_load\n"));
2888 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2889 sizeof(struct bge_ring_data), NULL,
2890 BUS_DMA_NOWAIT)) {
2891 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2892 bus_dmamem_unmap(sc->bge_dmatag, kva,
2893 sizeof(struct bge_ring_data));
2894 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2895 return;
2896 }
2897
2898 DPRINTFN(5, ("bzero\n"));
2899 sc->bge_rdata = (struct bge_ring_data *)kva;
2900
2901 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2902
2903 /* Try to allocate memory for jumbo buffers. */
2904 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2905 if (bge_alloc_jumbo_mem(sc)) {
2906 aprint_error_dev(sc->bge_dev,
2907 "jumbo buffer allocation failed\n");
2908 } else
2909 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2910 }
2911
2912 /* Set default tuneable values. */
2913 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2914 sc->bge_rx_coal_ticks = 150;
2915 sc->bge_rx_max_coal_bds = 64;
2916 #ifdef ORIG_WPAUL_VALUES
2917 sc->bge_tx_coal_ticks = 150;
2918 sc->bge_tx_max_coal_bds = 128;
2919 #else
2920 sc->bge_tx_coal_ticks = 300;
2921 sc->bge_tx_max_coal_bds = 400;
2922 #endif
2923 if (BGE_IS_5705_PLUS(sc)) {
2924 sc->bge_tx_coal_ticks = (12 * 5);
2925 sc->bge_tx_max_coal_bds = (12 * 5);
2926 aprint_verbose_dev(sc->bge_dev,
2927 "setting short Tx thresholds\n");
2928 }
2929
2930 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2931 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2932 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2933 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2934 else if (BGE_IS_5705_PLUS(sc))
2935 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2936 else
2937 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2938
2939 /* Set up ifnet structure */
2940 ifp = &sc->ethercom.ec_if;
2941 ifp->if_softc = sc;
2942 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2943 ifp->if_ioctl = bge_ioctl;
2944 ifp->if_stop = bge_stop;
2945 ifp->if_start = bge_start;
2946 ifp->if_init = bge_init;
2947 ifp->if_watchdog = bge_watchdog;
2948 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2949 IFQ_SET_READY(&ifp->if_snd);
2950 DPRINTFN(5, ("strcpy if_xname\n"));
2951 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2952
2953 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2954 sc->ethercom.ec_if.if_capabilities |=
2955 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2956 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2957 sc->ethercom.ec_if.if_capabilities |=
2958 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2959 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2960 #endif
2961 sc->ethercom.ec_capabilities |=
2962 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2963
2964 if (sc->bge_flags & BGE_TSO)
2965 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2966
2967 /*
2968 * Do MII setup.
2969 */
2970 DPRINTFN(5, ("mii setup\n"));
2971 sc->bge_mii.mii_ifp = ifp;
2972 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2973 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2974 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2975
2976 /*
2977 * Figure out what sort of media we have by checking the hardware
2978 * config word in the first 32k of NIC internal memory, or fall back to
2979 * the config word in the EEPROM. Note: on some BCM5700 cards,
2980 * this value appears to be unset. If that's the case, we have to rely
2981 * on identifying the NIC by its PCI subsystem ID, as we do below for
2982 * the SysKonnect SK-9D41.
2983 */
2984 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2985 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2986 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2987 bge_read_eeprom(sc, (void *)&hwcfg,
2988 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2989 hwcfg = be32toh(hwcfg);
2990 }
2991 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2992 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2993 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2994 if (BGE_IS_5714_FAMILY(sc))
2995 sc->bge_flags |= BGE_PHY_FIBER_MII;
2996 else
2997 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2998 }
2999
3000 /* set phyflags and chipid before mii_attach() */
3001 dict = device_properties(self);
3002 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3003 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3004
3005 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3006 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3007 bge_ifmedia_sts);
3008 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3009 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3010 0, NULL);
3011 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3012 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3013 /* Pretend the user requested this setting */
3014 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3015 } else {
3016 /*
3017 * Do transceiver setup and tell the firmware the
3018 * driver is down so we can try to get access the
3019 * probe if ASF is running. Retry a couple of times
3020 * if we get a conflict with the ASF firmware accessing
3021 * the PHY.
3022 */
3023 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3024 bge_asf_driver_up(sc);
3025
3026 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3027 bge_ifmedia_sts);
3028 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3029 MII_PHY_ANY, MII_OFFSET_ANY,
3030 MIIF_FORCEANEG|MIIF_DOPAUSE);
3031
3032 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3033 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3034 ifmedia_add(&sc->bge_mii.mii_media,
3035 IFM_ETHER|IFM_MANUAL, 0, NULL);
3036 ifmedia_set(&sc->bge_mii.mii_media,
3037 IFM_ETHER|IFM_MANUAL);
3038 } else
3039 ifmedia_set(&sc->bge_mii.mii_media,
3040 IFM_ETHER|IFM_AUTO);
3041
3042 /*
3043 * Now tell the firmware we are going up after probing the PHY
3044 */
3045 if (sc->bge_asf_mode & ASF_STACKUP)
3046 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3047 }
3048
3049 /*
3050 * Call MI attach routine.
3051 */
3052 DPRINTFN(5, ("if_attach\n"));
3053 if_attach(ifp);
3054 DPRINTFN(5, ("ether_ifattach\n"));
3055 ether_ifattach(ifp, eaddr);
3056 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3057 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3058 RND_TYPE_NET, 0);
3059 #ifdef BGE_EVENT_COUNTERS
3060 /*
3061 * Attach event counters.
3062 */
3063 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3064 NULL, device_xname(sc->bge_dev), "intr");
3065 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3066 NULL, device_xname(sc->bge_dev), "tx_xoff");
3067 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3068 NULL, device_xname(sc->bge_dev), "tx_xon");
3069 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3070 NULL, device_xname(sc->bge_dev), "rx_xoff");
3071 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3072 NULL, device_xname(sc->bge_dev), "rx_xon");
3073 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3074 NULL, device_xname(sc->bge_dev), "rx_macctl");
3075 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3076 NULL, device_xname(sc->bge_dev), "xoffentered");
3077 #endif /* BGE_EVENT_COUNTERS */
3078 DPRINTFN(5, ("callout_init\n"));
3079 callout_init(&sc->bge_timeout, 0);
3080
3081 if (pmf_device_register(self, NULL, NULL))
3082 pmf_class_network_register(self, ifp);
3083 else
3084 aprint_error_dev(self, "couldn't establish power handler\n");
3085
3086 sysctl_bge_init(sc);
3087
3088 #ifdef BGE_DEBUG
3089 bge_debug_info(sc);
3090 #endif
3091 }
3092
3093 static void
3094 bge_release_resources(struct bge_softc *sc)
3095 {
3096 if (sc->bge_vpd_prodname != NULL)
3097 free(sc->bge_vpd_prodname, M_DEVBUF);
3098
3099 if (sc->bge_vpd_readonly != NULL)
3100 free(sc->bge_vpd_readonly, M_DEVBUF);
3101 }
3102
3103 static int
3104 bge_reset(struct bge_softc *sc)
3105 {
3106 uint32_t cachesize, command, pcistate, marbmode;
3107 #if 0
3108 uint32_t new_pcistate;
3109 #endif
3110 pcireg_t devctl, reg;
3111 int i, val;
3112 void (*write_op)(struct bge_softc *, int, int);
3113
3114 if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3115 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3116 if (sc->bge_flags & BGE_PCIE)
3117 write_op = bge_writemem_direct;
3118 else
3119 write_op = bge_writemem_ind;
3120 } else
3121 write_op = bge_writereg_ind;
3122
3123 /* Save some important PCI state. */
3124 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3125 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3126 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3127
3128 /* Step 5a: Enable memory arbiter. */
3129 marbmode = 0;
3130 if (BGE_IS_5714_FAMILY(sc))
3131 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3132 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3133
3134 /* Step 5b-5d: */
3135 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3136 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3137 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3138
3139 /* XXX ???: Disable fastboot on controllers that support it. */
3140 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3141 BGE_IS_5755_PLUS(sc))
3142 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3143
3144 /*
3145 * Step 6: Write the magic number to SRAM at offset 0xB50.
3146 * When firmware finishes its initialization it will
3147 * write ~BGE_MAGIC_NUMBER to the same location.
3148 */
3149 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3150
3151 /* Step 7: */
3152 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3153 /*
3154 * XXX: from FreeBSD/Linux; no documentation
3155 */
3156 if (sc->bge_flags & BGE_PCIE) {
3157 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3158 /* PCI Express 1.0 system */
3159 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3160 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3161 /*
3162 * Prevent PCI Express link training
3163 * during global reset.
3164 */
3165 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3166 val |= (1<<29);
3167 }
3168 }
3169
3170 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3171 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3172 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3173 i | BGE_VCPU_STATUS_DRV_RESET);
3174 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3175 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3176 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3177 }
3178
3179 /*
3180 * Set GPHY Power Down Override to leave GPHY
3181 * powered up in D0 uninitialized.
3182 */
3183 if (BGE_IS_5705_PLUS(sc))
3184 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3185
3186 /* XXX 5721, 5751 and 5752 */
3187 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3188 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3189
3190 /* Issue global reset */
3191 write_op(sc, BGE_MISC_CFG, val);
3192
3193 /* Step 8: wait for complete */
3194 if (sc->bge_flags & BGE_PCIE)
3195 delay(100*1000); /* too big */
3196 else
3197 delay(100);
3198
3199 /* From Linux: dummy read to flush PCI posted writes */
3200 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3201
3202 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3203 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3204 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3205 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3206 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3207 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3208 write_op(sc, BGE_MISC_CFG, (65 << 1));
3209
3210 /* Step 11: disable PCI-X Relaxed Ordering. */
3211 if (sc->bge_flags & BGE_PCIX) {
3212 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3213 + PCI_PCIX_CMD);
3214 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3215 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3216 }
3217
3218 if (sc->bge_flags & BGE_PCIE) {
3219 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3220 DELAY(500000);
3221 /* XXX: Magic Numbers */
3222 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3223 BGE_PCI_UNKNOWN0);
3224 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3225 BGE_PCI_UNKNOWN0,
3226 reg | (1 << 15));
3227 }
3228 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3229 sc->bge_pciecap + PCI_PCIE_DCSR);
3230 /* Clear enable no snoop and disable relaxed ordering. */
3231 devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3232 /* Set PCIE max payload size to 128. */
3233 devctl &= ~(0x00e0);
3234 /* Clear device status register. Write 1b to clear */
3235 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3236 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3237 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3238 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3239 }
3240
3241 /* Step 12: Enable memory arbiter. */
3242 marbmode = 0;
3243 if (BGE_IS_5714_FAMILY(sc))
3244 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3245 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3246
3247 /* Step 17: Poll until the firmware initialization is complete */
3248 bge_poll_fw(sc);
3249
3250 /* XXX 5721, 5751 and 5752 */
3251 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3252 /* Step 19: */
3253 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3254 /* Step 20: */
3255 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3256 }
3257
3258 /*
3259 * Step 18: wirte mac mode
3260 * XXX Write 0x0c for 5703S and 5704S
3261 */
3262 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3263
3264
3265 /* Step 21: 5822 B0 errata */
3266 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3267 pcireg_t msidata;
3268
3269 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3270 BGE_PCI_MSI_DATA);
3271 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3272 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3273 msidata);
3274 }
3275
3276 /* Step 23: restore cache line size */
3277 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3278
3279 #if 0
3280 /*
3281 * XXX Wait for the value of the PCISTATE register to
3282 * return to its original pre-reset state. This is a
3283 * fairly good indicator of reset completion. If we don't
3284 * wait for the reset to fully complete, trying to read
3285 * from the device's non-PCI registers may yield garbage
3286 * results.
3287 */
3288 for (i = 0; i < BGE_TIMEOUT; i++) {
3289 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3290 BGE_PCI_PCISTATE);
3291 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3292 (pcistate & ~BGE_PCISTATE_RESERVED))
3293 break;
3294 DELAY(10);
3295 }
3296 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3297 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3298 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3299 }
3300 #endif
3301
3302 /* Step 28: Fix up byte swapping */
3303 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3304
3305 /* Tell the ASF firmware we are up */
3306 if (sc->bge_asf_mode & ASF_STACKUP)
3307 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3308
3309 /*
3310 * The 5704 in TBI mode apparently needs some special
3311 * adjustment to insure the SERDES drive level is set
3312 * to 1.2V.
3313 */
3314 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3315 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3316 uint32_t serdescfg;
3317
3318 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3319 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3320 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3321 }
3322
3323 if (sc->bge_flags & BGE_PCIE &&
3324 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3325 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3326 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3327 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
3328 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
3329 uint32_t v;
3330
3331 /* Enable PCI Express bug fix */
3332 v = CSR_READ_4(sc, 0x7c00);
3333 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3334 }
3335 DELAY(10000);
3336
3337 return 0;
3338 }
3339
3340 /*
3341 * Frame reception handling. This is called if there's a frame
3342 * on the receive return list.
3343 *
3344 * Note: we have to be able to handle two possibilities here:
3345 * 1) the frame is from the jumbo receive ring
3346 * 2) the frame is from the standard receive ring
3347 */
3348
3349 static void
3350 bge_rxeof(struct bge_softc *sc)
3351 {
3352 struct ifnet *ifp;
3353 uint16_t rx_prod, rx_cons;
3354 int stdcnt = 0, jumbocnt = 0;
3355 bus_dmamap_t dmamap;
3356 bus_addr_t offset, toff;
3357 bus_size_t tlen;
3358 int tosync;
3359
3360 rx_cons = sc->bge_rx_saved_considx;
3361 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3362
3363 /* Nothing to do */
3364 if (rx_cons == rx_prod)
3365 return;
3366
3367 ifp = &sc->ethercom.ec_if;
3368
3369 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3370 offsetof(struct bge_ring_data, bge_status_block),
3371 sizeof (struct bge_status_block),
3372 BUS_DMASYNC_POSTREAD);
3373
3374 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3375 tosync = rx_prod - rx_cons;
3376
3377 if (tosync != 0)
3378 rnd_add_uint32(&sc->rnd_source, tosync);
3379
3380 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3381
3382 if (tosync < 0) {
3383 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3384 sizeof (struct bge_rx_bd);
3385 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3386 toff, tlen, BUS_DMASYNC_POSTREAD);
3387 tosync = -tosync;
3388 }
3389
3390 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3391 offset, tosync * sizeof (struct bge_rx_bd),
3392 BUS_DMASYNC_POSTREAD);
3393
3394 while (rx_cons != rx_prod) {
3395 struct bge_rx_bd *cur_rx;
3396 uint32_t rxidx;
3397 struct mbuf *m = NULL;
3398
3399 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3400
3401 rxidx = cur_rx->bge_idx;
3402 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3403
3404 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3405 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3406 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3407 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3408 jumbocnt++;
3409 bus_dmamap_sync(sc->bge_dmatag,
3410 sc->bge_cdata.bge_rx_jumbo_map,
3411 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3412 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3413 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3414 ifp->if_ierrors++;
3415 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3416 continue;
3417 }
3418 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3419 NULL)== ENOBUFS) {
3420 ifp->if_ierrors++;
3421 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3422 continue;
3423 }
3424 } else {
3425 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3426 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3427
3428 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3429 stdcnt++;
3430 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3431 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3432 if (dmamap == NULL) {
3433 ifp->if_ierrors++;
3434 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3435 continue;
3436 }
3437 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3438 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3439 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3440 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3441 ifp->if_ierrors++;
3442 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3443 continue;
3444 }
3445 if (bge_newbuf_std(sc, sc->bge_std,
3446 NULL, dmamap) == ENOBUFS) {
3447 ifp->if_ierrors++;
3448 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3449 continue;
3450 }
3451 }
3452
3453 ifp->if_ipackets++;
3454 #ifndef __NO_STRICT_ALIGNMENT
3455 /*
3456 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3457 * the Rx buffer has the layer-2 header unaligned.
3458 * If our CPU requires alignment, re-align by copying.
3459 */
3460 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3461 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3462 cur_rx->bge_len);
3463 m->m_data += ETHER_ALIGN;
3464 }
3465 #endif
3466
3467 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3468 m->m_pkthdr.rcvif = ifp;
3469
3470 /*
3471 * Handle BPF listeners. Let the BPF user see the packet.
3472 */
3473 bpf_mtap(ifp, m);
3474
3475 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3476
3477 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3478 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3479 /*
3480 * Rx transport checksum-offload may also
3481 * have bugs with packets which, when transmitted,
3482 * were `runts' requiring padding.
3483 */
3484 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3485 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3486 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3487 m->m_pkthdr.csum_data =
3488 cur_rx->bge_tcp_udp_csum;
3489 m->m_pkthdr.csum_flags |=
3490 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3491 M_CSUM_DATA);
3492 }
3493
3494 /*
3495 * If we received a packet with a vlan tag, pass it
3496 * to vlan_input() instead of ether_input().
3497 */
3498 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3499 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3500 }
3501
3502 (*ifp->if_input)(ifp, m);
3503 }
3504
3505 sc->bge_rx_saved_considx = rx_cons;
3506 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3507 if (stdcnt)
3508 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3509 if (jumbocnt)
3510 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3511 }
3512
3513 static void
3514 bge_txeof(struct bge_softc *sc)
3515 {
3516 struct bge_tx_bd *cur_tx = NULL;
3517 struct ifnet *ifp;
3518 struct txdmamap_pool_entry *dma;
3519 bus_addr_t offset, toff;
3520 bus_size_t tlen;
3521 int tosync;
3522 struct mbuf *m;
3523
3524 ifp = &sc->ethercom.ec_if;
3525
3526 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3527 offsetof(struct bge_ring_data, bge_status_block),
3528 sizeof (struct bge_status_block),
3529 BUS_DMASYNC_POSTREAD);
3530
3531 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3532 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3533 sc->bge_tx_saved_considx;
3534
3535 if (tosync != 0)
3536 rnd_add_uint32(&sc->rnd_source, tosync);
3537
3538 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3539
3540 if (tosync < 0) {
3541 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3542 sizeof (struct bge_tx_bd);
3543 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3544 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3545 tosync = -tosync;
3546 }
3547
3548 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3549 offset, tosync * sizeof (struct bge_tx_bd),
3550 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3551
3552 /*
3553 * Go through our tx ring and free mbufs for those
3554 * frames that have been sent.
3555 */
3556 while (sc->bge_tx_saved_considx !=
3557 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3558 uint32_t idx = 0;
3559
3560 idx = sc->bge_tx_saved_considx;
3561 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3562 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3563 ifp->if_opackets++;
3564 m = sc->bge_cdata.bge_tx_chain[idx];
3565 if (m != NULL) {
3566 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3567 dma = sc->txdma[idx];
3568 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3569 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3570 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3571 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3572 sc->txdma[idx] = NULL;
3573
3574 m_freem(m);
3575 }
3576 sc->bge_txcnt--;
3577 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3578 ifp->if_timer = 0;
3579 }
3580
3581 if (cur_tx != NULL)
3582 ifp->if_flags &= ~IFF_OACTIVE;
3583 }
3584
3585 static int
3586 bge_intr(void *xsc)
3587 {
3588 struct bge_softc *sc;
3589 struct ifnet *ifp;
3590 uint32_t statusword;
3591
3592 sc = xsc;
3593 ifp = &sc->ethercom.ec_if;
3594
3595 /* It is possible for the interrupt to arrive before
3596 * the status block is updated prior to the interrupt.
3597 * Reading the PCI State register will confirm whether the
3598 * interrupt is ours and will flush the status block.
3599 */
3600
3601 /* read status word from status block */
3602 statusword = sc->bge_rdata->bge_status_block.bge_status;
3603
3604 if ((statusword & BGE_STATFLAG_UPDATED) ||
3605 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3606 /* Ack interrupt and stop others from occuring. */
3607 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3608
3609 BGE_EVCNT_INCR(sc->bge_ev_intr);
3610
3611 /* clear status word */
3612 sc->bge_rdata->bge_status_block.bge_status = 0;
3613
3614 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3615 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3616 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3617 bge_link_upd(sc);
3618
3619 if (ifp->if_flags & IFF_RUNNING) {
3620 /* Check RX return ring producer/consumer */
3621 bge_rxeof(sc);
3622
3623 /* Check TX ring producer/consumer */
3624 bge_txeof(sc);
3625 }
3626
3627 if (sc->bge_pending_rxintr_change) {
3628 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3629 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3630 uint32_t junk;
3631
3632 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3633 DELAY(10);
3634 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3635
3636 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3637 DELAY(10);
3638 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3639
3640 sc->bge_pending_rxintr_change = 0;
3641 }
3642 bge_handle_events(sc);
3643
3644 /* Re-enable interrupts. */
3645 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3646
3647 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3648 bge_start(ifp);
3649
3650 return 1;
3651 } else
3652 return 0;
3653 }
3654
3655 static void
3656 bge_asf_driver_up(struct bge_softc *sc)
3657 {
3658 if (sc->bge_asf_mode & ASF_STACKUP) {
3659 /* Send ASF heartbeat aprox. every 2s */
3660 if (sc->bge_asf_count)
3661 sc->bge_asf_count --;
3662 else {
3663 sc->bge_asf_count = 2;
3664 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3665 BGE_FW_DRV_ALIVE);
3666 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3667 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3668 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3669 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3670 }
3671 }
3672 }
3673
3674 static void
3675 bge_tick(void *xsc)
3676 {
3677 struct bge_softc *sc = xsc;
3678 struct mii_data *mii = &sc->bge_mii;
3679 int s;
3680
3681 s = splnet();
3682
3683 if (BGE_IS_5705_PLUS(sc))
3684 bge_stats_update_regs(sc);
3685 else
3686 bge_stats_update(sc);
3687
3688 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3689 /*
3690 * Since in TBI mode auto-polling can't be used we should poll
3691 * link status manually. Here we register pending link event
3692 * and trigger interrupt.
3693 */
3694 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3695 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3696 } else {
3697 /*
3698 * Do not touch PHY if we have link up. This could break
3699 * IPMI/ASF mode or produce extra input errors.
3700 * (extra input errors was reported for bcm5701 & bcm5704).
3701 */
3702 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3703 mii_tick(mii);
3704 }
3705
3706 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3707
3708 splx(s);
3709 }
3710
3711 static void
3712 bge_stats_update_regs(struct bge_softc *sc)
3713 {
3714 struct ifnet *ifp = &sc->ethercom.ec_if;
3715
3716 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3717 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3718
3719 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3720 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3721 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3722 }
3723
3724 static void
3725 bge_stats_update(struct bge_softc *sc)
3726 {
3727 struct ifnet *ifp = &sc->ethercom.ec_if;
3728 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3729
3730 #define READ_STAT(sc, stats, stat) \
3731 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3732
3733 ifp->if_collisions +=
3734 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3735 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3736 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3737 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3738 ifp->if_collisions;
3739
3740 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3741 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3742 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3743 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3744 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3745 READ_STAT(sc, stats,
3746 xoffPauseFramesReceived.bge_addr_lo));
3747 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3748 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3749 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3750 READ_STAT(sc, stats,
3751 macControlFramesReceived.bge_addr_lo));
3752 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3753 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3754
3755 #undef READ_STAT
3756
3757 #ifdef notdef
3758 ifp->if_collisions +=
3759 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3760 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3761 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3762 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3763 ifp->if_collisions;
3764 #endif
3765 }
3766
3767 /*
3768 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3769 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3770 * but when such padded frames employ the bge IP/TCP checksum offload,
3771 * the hardware checksum assist gives incorrect results (possibly
3772 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3773 * If we pad such runts with zeros, the onboard checksum comes out correct.
3774 */
3775 static inline int
3776 bge_cksum_pad(struct mbuf *pkt)
3777 {
3778 struct mbuf *last = NULL;
3779 int padlen;
3780
3781 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3782
3783 /* if there's only the packet-header and we can pad there, use it. */
3784 if (pkt->m_pkthdr.len == pkt->m_len &&
3785 M_TRAILINGSPACE(pkt) >= padlen) {
3786 last = pkt;
3787 } else {
3788 /*
3789 * Walk packet chain to find last mbuf. We will either
3790 * pad there, or append a new mbuf and pad it
3791 * (thus perhaps avoiding the bcm5700 dma-min bug).
3792 */
3793 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3794 continue; /* do nothing */
3795 }
3796
3797 /* `last' now points to last in chain. */
3798 if (M_TRAILINGSPACE(last) < padlen) {
3799 /* Allocate new empty mbuf, pad it. Compact later. */
3800 struct mbuf *n;
3801 MGET(n, M_DONTWAIT, MT_DATA);
3802 if (n == NULL)
3803 return ENOBUFS;
3804 n->m_len = 0;
3805 last->m_next = n;
3806 last = n;
3807 }
3808 }
3809
3810 KDASSERT(!M_READONLY(last));
3811 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3812
3813 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3814 memset(mtod(last, char *) + last->m_len, 0, padlen);
3815 last->m_len += padlen;
3816 pkt->m_pkthdr.len += padlen;
3817 return 0;
3818 }
3819
3820 /*
3821 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3822 */
3823 static inline int
3824 bge_compact_dma_runt(struct mbuf *pkt)
3825 {
3826 struct mbuf *m, *prev;
3827 int totlen, prevlen;
3828
3829 prev = NULL;
3830 totlen = 0;
3831 prevlen = -1;
3832
3833 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3834 int mlen = m->m_len;
3835 int shortfall = 8 - mlen ;
3836
3837 totlen += mlen;
3838 if (mlen == 0)
3839 continue;
3840 if (mlen >= 8)
3841 continue;
3842
3843 /* If we get here, mbuf data is too small for DMA engine.
3844 * Try to fix by shuffling data to prev or next in chain.
3845 * If that fails, do a compacting deep-copy of the whole chain.
3846 */
3847
3848 /* Internal frag. If fits in prev, copy it there. */
3849 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3850 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3851 prev->m_len += mlen;
3852 m->m_len = 0;
3853 /* XXX stitch chain */
3854 prev->m_next = m_free(m);
3855 m = prev;
3856 continue;
3857 }
3858 else if (m->m_next != NULL &&
3859 M_TRAILINGSPACE(m) >= shortfall &&
3860 m->m_next->m_len >= (8 + shortfall)) {
3861 /* m is writable and have enough data in next, pull up. */
3862
3863 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3864 shortfall);
3865 m->m_len += shortfall;
3866 m->m_next->m_len -= shortfall;
3867 m->m_next->m_data += shortfall;
3868 }
3869 else if (m->m_next == NULL || 1) {
3870 /* Got a runt at the very end of the packet.
3871 * borrow data from the tail of the preceding mbuf and
3872 * update its length in-place. (The original data is still
3873 * valid, so we can do this even if prev is not writable.)
3874 */
3875
3876 /* if we'd make prev a runt, just move all of its data. */
3877 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3878 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3879
3880 if ((prev->m_len - shortfall) < 8)
3881 shortfall = prev->m_len;
3882
3883 #ifdef notyet /* just do the safe slow thing for now */
3884 if (!M_READONLY(m)) {
3885 if (M_LEADINGSPACE(m) < shorfall) {
3886 void *m_dat;
3887 m_dat = (m->m_flags & M_PKTHDR) ?
3888 m->m_pktdat : m->dat;
3889 memmove(m_dat, mtod(m, void*), m->m_len);
3890 m->m_data = m_dat;
3891 }
3892 } else
3893 #endif /* just do the safe slow thing */
3894 {
3895 struct mbuf * n = NULL;
3896 int newprevlen = prev->m_len - shortfall;
3897
3898 MGET(n, M_NOWAIT, MT_DATA);
3899 if (n == NULL)
3900 return ENOBUFS;
3901 KASSERT(m->m_len + shortfall < MLEN
3902 /*,
3903 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3904
3905 /* first copy the data we're stealing from prev */
3906 memcpy(n->m_data, prev->m_data + newprevlen,
3907 shortfall);
3908
3909 /* update prev->m_len accordingly */
3910 prev->m_len -= shortfall;
3911
3912 /* copy data from runt m */
3913 memcpy(n->m_data + shortfall, m->m_data,
3914 m->m_len);
3915
3916 /* n holds what we stole from prev, plus m */
3917 n->m_len = shortfall + m->m_len;
3918
3919 /* stitch n into chain and free m */
3920 n->m_next = m->m_next;
3921 prev->m_next = n;
3922 /* KASSERT(m->m_next == NULL); */
3923 m->m_next = NULL;
3924 m_free(m);
3925 m = n; /* for continuing loop */
3926 }
3927 }
3928 prevlen = m->m_len;
3929 }
3930 return 0;
3931 }
3932
3933 /*
3934 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3935 * pointers to descriptors.
3936 */
3937 static int
3938 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3939 {
3940 struct bge_tx_bd *f = NULL;
3941 uint32_t frag, cur;
3942 uint16_t csum_flags = 0;
3943 uint16_t txbd_tso_flags = 0;
3944 struct txdmamap_pool_entry *dma;
3945 bus_dmamap_t dmamap;
3946 int i = 0;
3947 struct m_tag *mtag;
3948 int use_tso, maxsegsize, error;
3949
3950 cur = frag = *txidx;
3951
3952 if (m_head->m_pkthdr.csum_flags) {
3953 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3954 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3955 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3956 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3957 }
3958
3959 /*
3960 * If we were asked to do an outboard checksum, and the NIC
3961 * has the bug where it sometimes adds in the Ethernet padding,
3962 * explicitly pad with zeros so the cksum will be correct either way.
3963 * (For now, do this for all chip versions, until newer
3964 * are confirmed to not require the workaround.)
3965 */
3966 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3967 #ifdef notyet
3968 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3969 #endif
3970 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3971 goto check_dma_bug;
3972
3973 if (bge_cksum_pad(m_head) != 0)
3974 return ENOBUFS;
3975
3976 check_dma_bug:
3977 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3978 goto doit;
3979
3980 /*
3981 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3982 * less than eight bytes. If we encounter a teeny mbuf
3983 * at the end of a chain, we can pad. Otherwise, copy.
3984 */
3985 if (bge_compact_dma_runt(m_head) != 0)
3986 return ENOBUFS;
3987
3988 doit:
3989 dma = SLIST_FIRST(&sc->txdma_list);
3990 if (dma == NULL)
3991 return ENOBUFS;
3992 dmamap = dma->dmamap;
3993
3994 /*
3995 * Set up any necessary TSO state before we start packing...
3996 */
3997 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3998 if (!use_tso) {
3999 maxsegsize = 0;
4000 } else { /* TSO setup */
4001 unsigned mss;
4002 struct ether_header *eh;
4003 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4004 struct mbuf * m0 = m_head;
4005 struct ip *ip;
4006 struct tcphdr *th;
4007 int iphl, hlen;
4008
4009 /*
4010 * XXX It would be nice if the mbuf pkthdr had offset
4011 * fields for the protocol headers.
4012 */
4013
4014 eh = mtod(m0, struct ether_header *);
4015 switch (htons(eh->ether_type)) {
4016 case ETHERTYPE_IP:
4017 offset = ETHER_HDR_LEN;
4018 break;
4019
4020 case ETHERTYPE_VLAN:
4021 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4022 break;
4023
4024 default:
4025 /*
4026 * Don't support this protocol or encapsulation.
4027 */
4028 return ENOBUFS;
4029 }
4030
4031 /*
4032 * TCP/IP headers are in the first mbuf; we can do
4033 * this the easy way.
4034 */
4035 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4036 hlen = iphl + offset;
4037 if (__predict_false(m0->m_len <
4038 (hlen + sizeof(struct tcphdr)))) {
4039
4040 aprint_debug_dev(sc->bge_dev,
4041 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4042 "not handled yet\n",
4043 m0->m_len, hlen+ sizeof(struct tcphdr));
4044 #ifdef NOTYET
4045 /*
4046 * XXX jonathan (at) NetBSD.org: untested.
4047 * how to force this branch to be taken?
4048 */
4049 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4050
4051 m_copydata(m0, offset, sizeof(ip), &ip);
4052 m_copydata(m0, hlen, sizeof(th), &th);
4053
4054 ip.ip_len = 0;
4055
4056 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4057 sizeof(ip.ip_len), &ip.ip_len);
4058
4059 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4060 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4061
4062 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4063 sizeof(th.th_sum), &th.th_sum);
4064
4065 hlen += th.th_off << 2;
4066 iptcp_opt_words = hlen;
4067 #else
4068 /*
4069 * if_wm "hard" case not yet supported, can we not
4070 * mandate it out of existence?
4071 */
4072 (void) ip; (void)th; (void) ip_tcp_hlen;
4073
4074 return ENOBUFS;
4075 #endif
4076 } else {
4077 ip = (struct ip *) (mtod(m0, char *) + offset);
4078 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4079 ip_tcp_hlen = iphl + (th->th_off << 2);
4080
4081 /* Total IP/TCP options, in 32-bit words */
4082 iptcp_opt_words = (ip_tcp_hlen
4083 - sizeof(struct tcphdr)
4084 - sizeof(struct ip)) >> 2;
4085 }
4086 if (BGE_IS_5750_OR_BEYOND(sc)) {
4087 th->th_sum = 0;
4088 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4089 } else {
4090 /*
4091 * XXX jonathan (at) NetBSD.org: 5705 untested.
4092 * Requires TSO firmware patch for 5701/5703/5704.
4093 */
4094 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4095 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4096 }
4097
4098 mss = m_head->m_pkthdr.segsz;
4099 txbd_tso_flags |=
4100 BGE_TXBDFLAG_CPU_PRE_DMA |
4101 BGE_TXBDFLAG_CPU_POST_DMA;
4102
4103 /*
4104 * Our NIC TSO-assist assumes TSO has standard, optionless
4105 * IPv4 and TCP headers, which total 40 bytes. By default,
4106 * the NIC copies 40 bytes of IP/TCP header from the
4107 * supplied header into the IP/TCP header portion of
4108 * each post-TSO-segment. If the supplied packet has IP or
4109 * TCP options, we need to tell the NIC to copy those extra
4110 * bytes into each post-TSO header, in addition to the normal
4111 * 40-byte IP/TCP header (and to leave space accordingly).
4112 * Unfortunately, the driver encoding of option length
4113 * varies across different ASIC families.
4114 */
4115 tcp_seg_flags = 0;
4116 if (iptcp_opt_words) {
4117 if (BGE_IS_5705_PLUS(sc)) {
4118 tcp_seg_flags =
4119 iptcp_opt_words << 11;
4120 } else {
4121 txbd_tso_flags |=
4122 iptcp_opt_words << 12;
4123 }
4124 }
4125 maxsegsize = mss | tcp_seg_flags;
4126 ip->ip_len = htons(mss + ip_tcp_hlen);
4127
4128 } /* TSO setup */
4129
4130 /*
4131 * Start packing the mbufs in this chain into
4132 * the fragment pointers. Stop when we run out
4133 * of fragments or hit the end of the mbuf chain.
4134 */
4135 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4136 BUS_DMA_NOWAIT);
4137 if (error)
4138 return ENOBUFS;
4139 /*
4140 * Sanity check: avoid coming within 16 descriptors
4141 * of the end of the ring.
4142 */
4143 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4144 BGE_TSO_PRINTF(("%s: "
4145 " dmamap_load_mbuf too close to ring wrap\n",
4146 device_xname(sc->bge_dev)));
4147 goto fail_unload;
4148 }
4149
4150 mtag = sc->ethercom.ec_nvlans ?
4151 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4152
4153
4154 /* Iterate over dmap-map fragments. */
4155 for (i = 0; i < dmamap->dm_nsegs; i++) {
4156 f = &sc->bge_rdata->bge_tx_ring[frag];
4157 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4158 break;
4159
4160 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4161 f->bge_len = dmamap->dm_segs[i].ds_len;
4162
4163 /*
4164 * For 5751 and follow-ons, for TSO we must turn
4165 * off checksum-assist flag in the tx-descr, and
4166 * supply the ASIC-revision-specific encoding
4167 * of TSO flags and segsize.
4168 */
4169 if (use_tso) {
4170 if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4171 f->bge_rsvd = maxsegsize;
4172 f->bge_flags = csum_flags | txbd_tso_flags;
4173 } else {
4174 f->bge_rsvd = 0;
4175 f->bge_flags =
4176 (csum_flags | txbd_tso_flags) & 0x0fff;
4177 }
4178 } else {
4179 f->bge_rsvd = 0;
4180 f->bge_flags = csum_flags;
4181 }
4182
4183 if (mtag != NULL) {
4184 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4185 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4186 } else {
4187 f->bge_vlan_tag = 0;
4188 }
4189 cur = frag;
4190 BGE_INC(frag, BGE_TX_RING_CNT);
4191 }
4192
4193 if (i < dmamap->dm_nsegs) {
4194 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4195 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4196 goto fail_unload;
4197 }
4198
4199 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4200 BUS_DMASYNC_PREWRITE);
4201
4202 if (frag == sc->bge_tx_saved_considx) {
4203 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4204 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4205
4206 goto fail_unload;
4207 }
4208
4209 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4210 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4211 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4212 sc->txdma[cur] = dma;
4213 sc->bge_txcnt += dmamap->dm_nsegs;
4214
4215 *txidx = frag;
4216
4217 return 0;
4218
4219 fail_unload:
4220 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4221
4222 return ENOBUFS;
4223 }
4224
4225 /*
4226 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4227 * to the mbuf data regions directly in the transmit descriptors.
4228 */
4229 static void
4230 bge_start(struct ifnet *ifp)
4231 {
4232 struct bge_softc *sc;
4233 struct mbuf *m_head = NULL;
4234 uint32_t prodidx;
4235 int pkts = 0;
4236
4237 sc = ifp->if_softc;
4238
4239 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4240 return;
4241
4242 prodidx = sc->bge_tx_prodidx;
4243
4244 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4245 IFQ_POLL(&ifp->if_snd, m_head);
4246 if (m_head == NULL)
4247 break;
4248
4249 #if 0
4250 /*
4251 * XXX
4252 * safety overkill. If this is a fragmented packet chain
4253 * with delayed TCP/UDP checksums, then only encapsulate
4254 * it if we have enough descriptors to handle the entire
4255 * chain at once.
4256 * (paranoia -- may not actually be needed)
4257 */
4258 if (m_head->m_flags & M_FIRSTFRAG &&
4259 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4260 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4261 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4262 ifp->if_flags |= IFF_OACTIVE;
4263 break;
4264 }
4265 }
4266 #endif
4267
4268 /*
4269 * Pack the data into the transmit ring. If we
4270 * don't have room, set the OACTIVE flag and wait
4271 * for the NIC to drain the ring.
4272 */
4273 if (bge_encap(sc, m_head, &prodidx)) {
4274 ifp->if_flags |= IFF_OACTIVE;
4275 break;
4276 }
4277
4278 /* now we are committed to transmit the packet */
4279 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4280 pkts++;
4281
4282 /*
4283 * If there's a BPF listener, bounce a copy of this frame
4284 * to him.
4285 */
4286 bpf_mtap(ifp, m_head);
4287 }
4288 if (pkts == 0)
4289 return;
4290
4291 /* Transmit */
4292 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4293 /* 5700 b2 errata */
4294 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4295 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4296
4297 sc->bge_tx_prodidx = prodidx;
4298
4299 /*
4300 * Set a timeout in case the chip goes out to lunch.
4301 */
4302 ifp->if_timer = 5;
4303 }
4304
4305 static int
4306 bge_init(struct ifnet *ifp)
4307 {
4308 struct bge_softc *sc = ifp->if_softc;
4309 const uint16_t *m;
4310 int s, error = 0;
4311
4312 s = splnet();
4313
4314 ifp = &sc->ethercom.ec_if;
4315
4316 /* Cancel pending I/O and flush buffers. */
4317 bge_stop(ifp, 0);
4318
4319 bge_stop_fw(sc);
4320 bge_sig_pre_reset(sc, BGE_RESET_START);
4321 bge_reset(sc);
4322 bge_sig_legacy(sc, BGE_RESET_START);
4323 bge_sig_post_reset(sc, BGE_RESET_START);
4324
4325 bge_chipinit(sc);
4326
4327 /*
4328 * Init the various state machines, ring
4329 * control blocks and firmware.
4330 */
4331 error = bge_blockinit(sc);
4332 if (error != 0) {
4333 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4334 error);
4335 splx(s);
4336 return error;
4337 }
4338
4339 ifp = &sc->ethercom.ec_if;
4340
4341 /* Specify MTU. */
4342 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4343 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4344
4345 /* Load our MAC address. */
4346 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4347 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4348 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4349
4350 /* Enable or disable promiscuous mode as needed. */
4351 if (ifp->if_flags & IFF_PROMISC)
4352 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4353 else
4354 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4355
4356 /* Program multicast filter. */
4357 bge_setmulti(sc);
4358
4359 /* Init RX ring. */
4360 bge_init_rx_ring_std(sc);
4361
4362 /*
4363 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4364 * memory to insure that the chip has in fact read the first
4365 * entry of the ring.
4366 */
4367 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4368 uint32_t v, i;
4369 for (i = 0; i < 10; i++) {
4370 DELAY(20);
4371 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4372 if (v == (MCLBYTES - ETHER_ALIGN))
4373 break;
4374 }
4375 if (i == 10)
4376 aprint_error_dev(sc->bge_dev,
4377 "5705 A0 chip failed to load RX ring\n");
4378 }
4379
4380 /* Init jumbo RX ring. */
4381 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4382 bge_init_rx_ring_jumbo(sc);
4383
4384 /* Init our RX return ring index */
4385 sc->bge_rx_saved_considx = 0;
4386
4387 /* Init TX ring. */
4388 bge_init_tx_ring(sc);
4389
4390 /* Turn on transmitter */
4391 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4392
4393 /* Turn on receiver */
4394 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4395
4396 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4397
4398 /* Tell firmware we're alive. */
4399 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4400
4401 /* Enable host interrupts. */
4402 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4403 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4404 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4405
4406 if ((error = bge_ifmedia_upd(ifp)) != 0)
4407 goto out;
4408
4409 ifp->if_flags |= IFF_RUNNING;
4410 ifp->if_flags &= ~IFF_OACTIVE;
4411
4412 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4413
4414 out:
4415 sc->bge_if_flags = ifp->if_flags;
4416 splx(s);
4417
4418 return error;
4419 }
4420
4421 /*
4422 * Set media options.
4423 */
4424 static int
4425 bge_ifmedia_upd(struct ifnet *ifp)
4426 {
4427 struct bge_softc *sc = ifp->if_softc;
4428 struct mii_data *mii = &sc->bge_mii;
4429 struct ifmedia *ifm = &sc->bge_ifmedia;
4430 int rc;
4431
4432 /* If this is a 1000baseX NIC, enable the TBI port. */
4433 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4434 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4435 return EINVAL;
4436 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4437 case IFM_AUTO:
4438 /*
4439 * The BCM5704 ASIC appears to have a special
4440 * mechanism for programming the autoneg
4441 * advertisement registers in TBI mode.
4442 */
4443 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4444 uint32_t sgdig;
4445 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4446 if (sgdig & BGE_SGDIGSTS_DONE) {
4447 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4448 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4449 sgdig |= BGE_SGDIGCFG_AUTO |
4450 BGE_SGDIGCFG_PAUSE_CAP |
4451 BGE_SGDIGCFG_ASYM_PAUSE;
4452 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4453 sgdig | BGE_SGDIGCFG_SEND);
4454 DELAY(5);
4455 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4456 }
4457 }
4458 break;
4459 case IFM_1000_SX:
4460 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4461 BGE_CLRBIT(sc, BGE_MAC_MODE,
4462 BGE_MACMODE_HALF_DUPLEX);
4463 } else {
4464 BGE_SETBIT(sc, BGE_MAC_MODE,
4465 BGE_MACMODE_HALF_DUPLEX);
4466 }
4467 break;
4468 default:
4469 return EINVAL;
4470 }
4471 /* XXX 802.3x flow control for 1000BASE-SX */
4472 return 0;
4473 }
4474
4475 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4476 if ((rc = mii_mediachg(mii)) == ENXIO)
4477 return 0;
4478
4479 /*
4480 * Force an interrupt so that we will call bge_link_upd
4481 * if needed and clear any pending link state attention.
4482 * Without this we are not getting any further interrupts
4483 * for link state changes and thus will not UP the link and
4484 * not be able to send in bge_start. The only way to get
4485 * things working was to receive a packet and get a RX intr.
4486 */
4487 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4488 sc->bge_flags & BGE_IS_5788)
4489 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4490 else
4491 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4492
4493 return rc;
4494 }
4495
4496 /*
4497 * Report current media status.
4498 */
4499 static void
4500 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4501 {
4502 struct bge_softc *sc = ifp->if_softc;
4503 struct mii_data *mii = &sc->bge_mii;
4504
4505 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4506 ifmr->ifm_status = IFM_AVALID;
4507 ifmr->ifm_active = IFM_ETHER;
4508 if (CSR_READ_4(sc, BGE_MAC_STS) &
4509 BGE_MACSTAT_TBI_PCS_SYNCHED)
4510 ifmr->ifm_status |= IFM_ACTIVE;
4511 ifmr->ifm_active |= IFM_1000_SX;
4512 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4513 ifmr->ifm_active |= IFM_HDX;
4514 else
4515 ifmr->ifm_active |= IFM_FDX;
4516 return;
4517 }
4518
4519 mii_pollstat(mii);
4520 ifmr->ifm_status = mii->mii_media_status;
4521 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4522 sc->bge_flowflags;
4523 }
4524
4525 static int
4526 bge_ifflags_cb(struct ethercom *ec)
4527 {
4528 struct ifnet *ifp = &ec->ec_if;
4529 struct bge_softc *sc = ifp->if_softc;
4530 int change = ifp->if_flags ^ sc->bge_if_flags;
4531
4532 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4533 return ENETRESET;
4534 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4535 return 0;
4536
4537 if ((ifp->if_flags & IFF_PROMISC) == 0)
4538 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4539 else
4540 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4541
4542 bge_setmulti(sc);
4543
4544 sc->bge_if_flags = ifp->if_flags;
4545 return 0;
4546 }
4547
4548 static int
4549 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4550 {
4551 struct bge_softc *sc = ifp->if_softc;
4552 struct ifreq *ifr = (struct ifreq *) data;
4553 int s, error = 0;
4554 struct mii_data *mii;
4555
4556 s = splnet();
4557
4558 switch (command) {
4559 case SIOCSIFMEDIA:
4560 /* XXX Flow control is not supported for 1000BASE-SX */
4561 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4562 ifr->ifr_media &= ~IFM_ETH_FMASK;
4563 sc->bge_flowflags = 0;
4564 }
4565
4566 /* Flow control requires full-duplex mode. */
4567 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4568 (ifr->ifr_media & IFM_FDX) == 0) {
4569 ifr->ifr_media &= ~IFM_ETH_FMASK;
4570 }
4571 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4572 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4573 /* We can do both TXPAUSE and RXPAUSE. */
4574 ifr->ifr_media |=
4575 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4576 }
4577 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4578 }
4579 /* FALLTHROUGH */
4580 case SIOCGIFMEDIA:
4581 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4582 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4583 command);
4584 } else {
4585 mii = &sc->bge_mii;
4586 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4587 command);
4588 }
4589 break;
4590 default:
4591 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4592 break;
4593
4594 error = 0;
4595
4596 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4597 ;
4598 else if (ifp->if_flags & IFF_RUNNING)
4599 bge_setmulti(sc);
4600 break;
4601 }
4602
4603 splx(s);
4604
4605 return error;
4606 }
4607
4608 static void
4609 bge_watchdog(struct ifnet *ifp)
4610 {
4611 struct bge_softc *sc;
4612
4613 sc = ifp->if_softc;
4614
4615 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4616
4617 ifp->if_flags &= ~IFF_RUNNING;
4618 bge_init(ifp);
4619
4620 ifp->if_oerrors++;
4621 }
4622
4623 static void
4624 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4625 {
4626 int i;
4627
4628 BGE_CLRBIT(sc, reg, bit);
4629
4630 for (i = 0; i < 1000; i++) {
4631 if ((CSR_READ_4(sc, reg) & bit) == 0)
4632 return;
4633 delay(100);
4634 }
4635
4636 /*
4637 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4638 * on some environment (and once after boot?)
4639 */
4640 if (reg != BGE_SRS_MODE)
4641 aprint_error_dev(sc->bge_dev,
4642 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4643 (u_long)reg, bit);
4644 }
4645
4646 /*
4647 * Stop the adapter and free any mbufs allocated to the
4648 * RX and TX lists.
4649 */
4650 static void
4651 bge_stop(struct ifnet *ifp, int disable)
4652 {
4653 struct bge_softc *sc = ifp->if_softc;
4654
4655 callout_stop(&sc->bge_timeout);
4656
4657 /*
4658 * Tell firmware we're shutting down.
4659 */
4660 bge_stop_fw(sc);
4661 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4662
4663 /* Disable host interrupts. */
4664 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4665 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4666
4667 /*
4668 * Disable all of the receiver blocks
4669 */
4670 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4671 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4672 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4673 if (BGE_IS_5700_FAMILY(sc))
4674 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4675 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4676 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4677 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4678
4679 /*
4680 * Disable all of the transmit blocks
4681 */
4682 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4683 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4684 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4685 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4686 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4687 if (BGE_IS_5700_FAMILY(sc))
4688 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4689 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4690
4691 /*
4692 * Shut down all of the memory managers and related
4693 * state machines.
4694 */
4695 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4696 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4697 if (BGE_IS_5700_FAMILY(sc))
4698 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4699
4700 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4701 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4702
4703 if (BGE_IS_5700_FAMILY(sc)) {
4704 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4705 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4706 }
4707
4708 bge_reset(sc);
4709 bge_sig_legacy(sc, BGE_RESET_STOP);
4710 bge_sig_post_reset(sc, BGE_RESET_STOP);
4711
4712 /*
4713 * Keep the ASF firmware running if up.
4714 */
4715 if (sc->bge_asf_mode & ASF_STACKUP)
4716 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4717 else
4718 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4719
4720 /* Free the RX lists. */
4721 bge_free_rx_ring_std(sc);
4722
4723 /* Free jumbo RX list. */
4724 if (BGE_IS_JUMBO_CAPABLE(sc))
4725 bge_free_rx_ring_jumbo(sc);
4726
4727 /* Free TX buffers. */
4728 bge_free_tx_ring(sc);
4729
4730 /*
4731 * Isolate/power down the PHY.
4732 */
4733 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4734 mii_down(&sc->bge_mii);
4735
4736 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4737
4738 /* Clear MAC's link state (PHY may still have link UP). */
4739 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4740
4741 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4742 }
4743
4744 static void
4745 bge_link_upd(struct bge_softc *sc)
4746 {
4747 struct ifnet *ifp = &sc->ethercom.ec_if;
4748 struct mii_data *mii = &sc->bge_mii;
4749 uint32_t status;
4750 int link;
4751
4752 /* Clear 'pending link event' flag */
4753 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4754
4755 /*
4756 * Process link state changes.
4757 * Grrr. The link status word in the status block does
4758 * not work correctly on the BCM5700 rev AX and BX chips,
4759 * according to all available information. Hence, we have
4760 * to enable MII interrupts in order to properly obtain
4761 * async link changes. Unfortunately, this also means that
4762 * we have to read the MAC status register to detect link
4763 * changes, thereby adding an additional register access to
4764 * the interrupt handler.
4765 */
4766
4767 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4768 status = CSR_READ_4(sc, BGE_MAC_STS);
4769 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4770 mii_pollstat(mii);
4771
4772 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4773 mii->mii_media_status & IFM_ACTIVE &&
4774 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4775 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4776 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4777 (!(mii->mii_media_status & IFM_ACTIVE) ||
4778 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4779 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4780
4781 /* Clear the interrupt */
4782 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4783 BGE_EVTENB_MI_INTERRUPT);
4784 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4785 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4786 BRGPHY_INTRS);
4787 }
4788 return;
4789 }
4790
4791 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4792 status = CSR_READ_4(sc, BGE_MAC_STS);
4793 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4794 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4795 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4796 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4797 BGE_CLRBIT(sc, BGE_MAC_MODE,
4798 BGE_MACMODE_TBI_SEND_CFGS);
4799 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4800 if_link_state_change(ifp, LINK_STATE_UP);
4801 }
4802 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4803 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4804 if_link_state_change(ifp, LINK_STATE_DOWN);
4805 }
4806 /*
4807 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4808 * This should not happen since mii callouts are locked now, but
4809 * we keep this check for debug.
4810 */
4811 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4812 /*
4813 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4814 * bit in status word always set. Workaround this bug by
4815 * reading PHY link status directly.
4816 */
4817 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4818 BGE_STS_LINK : 0;
4819
4820 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4821 mii_pollstat(mii);
4822
4823 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4824 mii->mii_media_status & IFM_ACTIVE &&
4825 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4826 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4827 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4828 (!(mii->mii_media_status & IFM_ACTIVE) ||
4829 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4830 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4831 }
4832 }
4833
4834 /* Clear the attention */
4835 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4836 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4837 BGE_MACSTAT_LINK_CHANGED);
4838 }
4839
4840 static int
4841 sysctl_bge_verify(SYSCTLFN_ARGS)
4842 {
4843 int error, t;
4844 struct sysctlnode node;
4845
4846 node = *rnode;
4847 t = *(int*)rnode->sysctl_data;
4848 node.sysctl_data = &t;
4849 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4850 if (error || newp == NULL)
4851 return error;
4852
4853 #if 0
4854 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4855 node.sysctl_num, rnode->sysctl_num));
4856 #endif
4857
4858 if (node.sysctl_num == bge_rxthresh_nodenum) {
4859 if (t < 0 || t >= NBGE_RX_THRESH)
4860 return EINVAL;
4861 bge_update_all_threshes(t);
4862 } else
4863 return EINVAL;
4864
4865 *(int*)rnode->sysctl_data = t;
4866
4867 return 0;
4868 }
4869
4870 /*
4871 * Set up sysctl(3) MIB, hw.bge.*.
4872 */
4873 static void
4874 sysctl_bge_init(struct bge_softc *sc)
4875 {
4876 int rc, bge_root_num;
4877 const struct sysctlnode *node;
4878
4879 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4880 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4881 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4882 goto out;
4883 }
4884
4885 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4886 0, CTLTYPE_NODE, "bge",
4887 SYSCTL_DESCR("BGE interface controls"),
4888 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4889 goto out;
4890 }
4891
4892 bge_root_num = node->sysctl_num;
4893
4894 /* BGE Rx interrupt mitigation level */
4895 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4896 CTLFLAG_READWRITE,
4897 CTLTYPE_INT, "rx_lvl",
4898 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4899 sysctl_bge_verify, 0,
4900 &bge_rx_thresh_lvl,
4901 0, CTL_HW, bge_root_num, CTL_CREATE,
4902 CTL_EOL)) != 0) {
4903 goto out;
4904 }
4905
4906 bge_rxthresh_nodenum = node->sysctl_num;
4907
4908 return;
4909
4910 out:
4911 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4912 }
4913
4914 #ifdef BGE_DEBUG
4915 void
4916 bge_debug_info(struct bge_softc *sc)
4917 {
4918
4919 printf("Hardware Flags:\n");
4920 if (BGE_IS_5755_PLUS(sc))
4921 printf(" - 5755 Plus\n");
4922 if (BGE_IS_5750_OR_BEYOND(sc))
4923 printf(" - 5750 Plus\n");
4924 if (BGE_IS_5705_PLUS(sc))
4925 printf(" - 5705 Plus\n");
4926 if (BGE_IS_5714_FAMILY(sc))
4927 printf(" - 5714 Family\n");
4928 if (BGE_IS_5700_FAMILY(sc))
4929 printf(" - 5700 Family\n");
4930 if (sc->bge_flags & BGE_IS_5788)
4931 printf(" - 5788\n");
4932 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4933 printf(" - Supports Jumbo Frames\n");
4934 if (sc->bge_flags & BGE_NO_EEPROM)
4935 printf(" - No EEPROM\n");
4936 if (sc->bge_flags & BGE_PCIX)
4937 printf(" - PCI-X Bus\n");
4938 if (sc->bge_flags & BGE_PCIE)
4939 printf(" - PCI Express Bus\n");
4940 if (sc->bge_flags & BGE_NO_3LED)
4941 printf(" - No 3 LEDs\n");
4942 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4943 printf(" - RX Alignment Bug\n");
4944 if (sc->bge_flags & BGE_TSO)
4945 printf(" - TSO\n");
4946 }
4947 #endif /* BGE_DEBUG */
4948
4949 static int
4950 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4951 {
4952 prop_dictionary_t dict;
4953 prop_data_t ea;
4954
4955 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4956 return 1;
4957
4958 dict = device_properties(sc->bge_dev);
4959 ea = prop_dictionary_get(dict, "mac-address");
4960 if (ea != NULL) {
4961 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4962 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4963 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4964 return 0;
4965 }
4966
4967 return 1;
4968 }
4969
4970 static int
4971 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4972 {
4973 uint32_t mac_addr;
4974
4975 mac_addr = bge_readmem_ind(sc, 0x0c14);
4976 if ((mac_addr >> 16) == 0x484b) {
4977 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4978 ether_addr[1] = (uint8_t)mac_addr;
4979 mac_addr = bge_readmem_ind(sc, 0x0c18);
4980 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4981 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4982 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4983 ether_addr[5] = (uint8_t)mac_addr;
4984 return 0;
4985 }
4986 return 1;
4987 }
4988
4989 static int
4990 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4991 {
4992 int mac_offset = BGE_EE_MAC_OFFSET;
4993
4994 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4995 mac_offset = BGE_EE_MAC_OFFSET_5906;
4996
4997 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4998 ETHER_ADDR_LEN));
4999 }
5000
5001 static int
5002 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5003 {
5004
5005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5006 return 1;
5007
5008 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5009 ETHER_ADDR_LEN));
5010 }
5011
5012 static int
5013 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5014 {
5015 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5016 /* NOTE: Order is critical */
5017 bge_get_eaddr_fw,
5018 bge_get_eaddr_mem,
5019 bge_get_eaddr_nvram,
5020 bge_get_eaddr_eeprom,
5021 NULL
5022 };
5023 const bge_eaddr_fcn_t *func;
5024
5025 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5026 if ((*func)(sc, eaddr) == 0)
5027 break;
5028 }
5029 return (*func == NULL ? ENXIO : 0);
5030 }
5031