Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.203
      1 /*	$NetBSD: if_bge.c,v 1.203 2013/02/22 06:11:17 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.203 2013/02/22 06:11:17 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writemem_direct(struct bge_softc *, int, int);
    247 static void bge_writereg_ind(struct bge_softc *, int, int);
    248 static void bge_set_max_readrq(struct bge_softc *);
    249 
    250 static int bge_miibus_readreg(device_t, int, int);
    251 static void bge_miibus_writereg(device_t, int, int, int);
    252 static void bge_miibus_statchg(struct ifnet *);
    253 
    254 #define	BGE_RESET_START 1
    255 #define	BGE_RESET_STOP  2
    256 static void bge_sig_post_reset(struct bge_softc *, int);
    257 static void bge_sig_legacy(struct bge_softc *, int);
    258 static void bge_sig_pre_reset(struct bge_softc *, int);
    259 static void bge_stop_fw(struct bge_softc *);
    260 static int bge_reset(struct bge_softc *);
    261 static void bge_link_upd(struct bge_softc *);
    262 static void sysctl_bge_init(struct bge_softc *);
    263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC9100,
    317 	  "Altima AC9100 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5700,
    321 	  "Broadcom BCM5700 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5701,
    325 	  "Broadcom BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5702,
    329 	  "Broadcom BCM5702 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    333 	  "Broadcom BCM5702X Gigabit Ethernet" },
    334 	{ PCI_VENDOR_BROADCOM,
    335 	  PCI_PRODUCT_BROADCOM_BCM5703,
    336 	  "Broadcom BCM5703 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    340 	  "Broadcom BCM5703X Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    353 	  },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5705,
    356 	  "Broadcom BCM5705 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    360 	  "Broadcom BCM5705F Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    364 	  "Broadcom BCM5705K Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    368 	  "Broadcom BCM5705M Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    372 	  "Broadcom BCM5705M Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5714,
    376 	  "Broadcom BCM5714 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    380 	  "Broadcom BCM5714S Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5715,
    384 	  "Broadcom BCM5715 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    388 	  "Broadcom BCM5715S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5717,
    392 	  "Broadcom BCM5717 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5718,
    396 	  "Broadcom BCM5718 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5720,
    400 	  "Broadcom BCM5720 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5721,
    404 	  "Broadcom BCM5721 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5722,
    408 	  "Broadcom BCM5722 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5723,
    412 	  "Broadcom BCM5723 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5724,
    416 	  "Broadcom BCM5724 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5750,
    420 	  "Broadcom BCM5750 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    424 	  "Broadcom BCM5750M Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5751,
    428 	  "Broadcom BCM5751 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    432 	  "Broadcom BCM5751F Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    436 	  "Broadcom BCM5751M Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5752,
    440 	  "Broadcom BCM5752 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    444 	  "Broadcom BCM5752M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5753,
    448 	  "Broadcom BCM5753 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    452 	  "Broadcom BCM5753F Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    456 	  "Broadcom BCM5753M Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5754,
    460 	  "Broadcom BCM5754 Gigabit Ethernet",
    461 	},
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    464 	  "Broadcom BCM5754M Gigabit Ethernet",
    465 	},
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5755,
    468 	  "Broadcom BCM5755 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    472 	  "Broadcom BCM5755M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5756,
    476 	  "Broadcom BCM5756 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5761,
    480 	  "Broadcom BCM5761 Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    484 	  "Broadcom BCM5761E Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    488 	  "Broadcom BCM5761S Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    492 	  "Broadcom BCM5761SE Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5764,
    496 	  "Broadcom BCM5764 Gigabit Ethernet",
    497 	  },
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5780,
    500 	  "Broadcom BCM5780 Gigabit Ethernet",
    501 	  },
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    504 	  "Broadcom BCM5780S Gigabit Ethernet",
    505 	  },
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5781,
    508 	  "Broadcom BCM5781 Gigabit Ethernet",
    509 	  },
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5782,
    512 	  "Broadcom BCM5782 Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    516 	  "BCM5784M NetLink 1000baseT Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5786,
    520 	  "Broadcom BCM5786 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5787,
    524 	  "Broadcom BCM5787 Gigabit Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    528 	  "Broadcom BCM5787M Gigabit Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5788,
    532 	  "Broadcom BCM5788 Gigabit Ethernet",
    533 	  },
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5789,
    536 	  "Broadcom BCM5789 Gigabit Ethernet",
    537 	  },
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5901,
    540 	  "Broadcom BCM5901 Fast Ethernet",
    541 	  },
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    544 	  "Broadcom BCM5901A2 Fast Ethernet",
    545 	  },
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    548 	  "Broadcom BCM5903M Fast Ethernet",
    549 	  },
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5906,
    552 	  "Broadcom BCM5906 Fast Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    556 	  "Broadcom BCM5906M Fast Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM57760,
    560 	  "Broadcom BCM57760 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM57761,
    564 	  "Broadcom BCM57761 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM57762,
    568 	  "Broadcom BCM57762 Gigabit Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM57765,
    572 	  "Broadcom BCM57765 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM57780,
    576 	  "Broadcom BCM57780 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57781,
    580 	  "Broadcom BCM57781 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57785,
    584 	  "Broadcom BCM57785 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57788,
    588 	  "Broadcom BCM57788 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57790,
    592 	  "Broadcom BCM57790 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57791,
    596 	  "Broadcom BCM57791 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_BROADCOM,
    599 	  PCI_PRODUCT_BROADCOM_BCM57795,
    600 	  "Broadcom BCM57795 Fast Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_SCHNEIDERKOCH,
    603 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    604 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_3COM,
    607 	  PCI_PRODUCT_3COM_3C996,
    608 	  "3Com 3c996 Gigabit Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_FUJITSU4,
    611 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    612 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_FUJITSU4,
    615 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    616 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    617 	  },
    618 	{ PCI_VENDOR_FUJITSU4,
    619 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    620 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    621 	  },
    622 	{ 0,
    623 	  0,
    624 	  NULL },
    625 };
    626 
    627 /*
    628  * XXX: how to handle variants based on 5750 and derivatives:
    629  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    630  * in general behave like a 5705, except with additional quirks.
    631  * This driver's current handling of the 5721 is wrong;
    632  * how we map ASIC revision to "quirks" needs more thought.
    633  * (defined here until the thought is done).
    634  */
    635 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    636 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    637 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    638 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    639 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    640 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    641 
    642 static const struct bge_revision {
    643 	uint32_t		br_chipid;
    644 	const char		*br_name;
    645 } bge_revisions[] = {
    646 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    647 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    648 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    649 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    650 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    651 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    652 	/* This is treated like a BCM5700 Bx */
    653 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    654 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    655 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    656 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    657 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    658 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    659 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    660 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    661 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    662 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    663 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    664 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    665 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    666 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    667 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    668 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    669 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    670 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    671 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    672 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    673 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    674 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    675 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    676 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    677 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    678 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    679 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    680 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    681 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    682 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    683 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    684 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    685 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    686 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    687 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    688 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    689 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    690 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    691 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    692 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    693 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    694 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    695 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    696 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    697 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    698 	/* 5754 and 5787 share the same ASIC ID */
    699 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    700 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    701 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    702 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    703 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    704 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    705 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    706 
    707 	{ 0, NULL }
    708 };
    709 
    710 /*
    711  * Some defaults for major revisions, so that newer steppings
    712  * that we don't know about have a shot at working.
    713  */
    714 static const struct bge_revision bge_majorrevs[] = {
    715 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    716 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    717 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    718 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    719 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    720 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    721 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    722 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    723 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    724 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    725 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    726 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    727 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    728 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    729 	/* 5754 and 5787 share the same ASIC ID */
    730 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    731 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    732 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    733 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    734 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    735 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    736 
    737 	{ 0, NULL }
    738 };
    739 
    740 static int bge_allow_asf = 1;
    741 
    742 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    743     bge_probe, bge_attach, NULL, NULL);
    744 
    745 static uint32_t
    746 bge_readmem_ind(struct bge_softc *sc, int off)
    747 {
    748 	pcireg_t val;
    749 
    750 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    751 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    752 	return val;
    753 }
    754 
    755 static void
    756 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    757 {
    758 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    759 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    760 }
    761 
    762 /*
    763  * PCI Express only
    764  */
    765 static void
    766 bge_set_max_readrq(struct bge_softc *sc)
    767 {
    768 	pcireg_t val;
    769 
    770 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    771 	    + PCI_PCIE_DCSR);
    772 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    773 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    774 		aprint_verbose_dev(sc->bge_dev,
    775 		    "adjust device control 0x%04x ", val);
    776 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    777 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    778 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    779 		    + PCI_PCIE_DCSR, val);
    780 		aprint_verbose("-> 0x%04x\n", val);
    781 	}
    782 }
    783 
    784 #ifdef notdef
    785 static uint32_t
    786 bge_readreg_ind(struct bge_softc *sc, int off)
    787 {
    788 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    789 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    790 }
    791 #endif
    792 
    793 static void
    794 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    795 {
    796 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    798 }
    799 
    800 static void
    801 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    802 {
    803 	CSR_WRITE_4(sc, off, val);
    804 }
    805 
    806 static void
    807 bge_writembx(struct bge_softc *sc, int off, int val)
    808 {
    809 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    810 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    811 
    812 	CSR_WRITE_4(sc, off, val);
    813 }
    814 
    815 static uint8_t
    816 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    817 {
    818 	uint32_t access, byte = 0;
    819 	int i;
    820 
    821 	/* Lock. */
    822 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    823 	for (i = 0; i < 8000; i++) {
    824 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    825 			break;
    826 		DELAY(20);
    827 	}
    828 	if (i == 8000)
    829 		return 1;
    830 
    831 	/* Enable access. */
    832 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    833 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    834 
    835 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    836 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    837 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    838 		DELAY(10);
    839 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    840 			DELAY(10);
    841 			break;
    842 		}
    843 	}
    844 
    845 	if (i == BGE_TIMEOUT * 10) {
    846 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    847 		return 1;
    848 	}
    849 
    850 	/* Get result. */
    851 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    852 
    853 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    854 
    855 	/* Disable access. */
    856 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    857 
    858 	/* Unlock. */
    859 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    860 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    861 
    862 	return 0;
    863 }
    864 
    865 /*
    866  * Read a sequence of bytes from NVRAM.
    867  */
    868 static int
    869 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    870 {
    871 	int error = 0, i;
    872 	uint8_t byte = 0;
    873 
    874 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    875 		return 1;
    876 
    877 	for (i = 0; i < cnt; i++) {
    878 		error = bge_nvram_getbyte(sc, off + i, &byte);
    879 		if (error)
    880 			break;
    881 		*(dest + i) = byte;
    882 	}
    883 
    884 	return (error ? 1 : 0);
    885 }
    886 
    887 /*
    888  * Read a byte of data stored in the EEPROM at address 'addr.' The
    889  * BCM570x supports both the traditional bitbang interface and an
    890  * auto access interface for reading the EEPROM. We use the auto
    891  * access method.
    892  */
    893 static uint8_t
    894 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    895 {
    896 	int i;
    897 	uint32_t byte = 0;
    898 
    899 	/*
    900 	 * Enable use of auto EEPROM access so we can avoid
    901 	 * having to use the bitbang method.
    902 	 */
    903 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    904 
    905 	/* Reset the EEPROM, load the clock period. */
    906 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    907 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    908 	DELAY(20);
    909 
    910 	/* Issue the read EEPROM command. */
    911 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    912 
    913 	/* Wait for completion */
    914 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    915 		DELAY(10);
    916 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    917 			break;
    918 	}
    919 
    920 	if (i == BGE_TIMEOUT * 10) {
    921 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    922 		return 1;
    923 	}
    924 
    925 	/* Get result. */
    926 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    927 
    928 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    929 
    930 	return 0;
    931 }
    932 
    933 /*
    934  * Read a sequence of bytes from the EEPROM.
    935  */
    936 static int
    937 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    938 {
    939 	int error = 0, i;
    940 	uint8_t byte = 0;
    941 	char *dest = destv;
    942 
    943 	for (i = 0; i < cnt; i++) {
    944 		error = bge_eeprom_getbyte(sc, off + i, &byte);
    945 		if (error)
    946 			break;
    947 		*(dest + i) = byte;
    948 	}
    949 
    950 	return (error ? 1 : 0);
    951 }
    952 
    953 static int
    954 bge_miibus_readreg(device_t dev, int phy, int reg)
    955 {
    956 	struct bge_softc *sc = device_private(dev);
    957 	uint32_t val;
    958 	uint32_t autopoll;
    959 	int i;
    960 
    961 	/*
    962 	 * Broadcom's own driver always assumes the internal
    963 	 * PHY is at GMII address 1. On some chips, the PHY responds
    964 	 * to accesses at all addresses, which could cause us to
    965 	 * bogusly attach the PHY 32 times at probe type. Always
    966 	 * restricting the lookup to address 1 is simpler than
    967 	 * trying to figure out which chips revisions should be
    968 	 * special-cased.
    969 	 */
    970 	if (phy != 1)
    971 		return 0;
    972 
    973 	/* Reading with autopolling on may trigger PCI errors */
    974 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    975 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    976 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    977 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    978 		DELAY(40);
    979 	}
    980 
    981 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    982 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    983 
    984 	for (i = 0; i < BGE_TIMEOUT; i++) {
    985 		val = CSR_READ_4(sc, BGE_MI_COMM);
    986 		if (!(val & BGE_MICOMM_BUSY))
    987 			break;
    988 		delay(10);
    989 	}
    990 
    991 	if (i == BGE_TIMEOUT) {
    992 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    993 		val = 0;
    994 		goto done;
    995 	}
    996 
    997 	val = CSR_READ_4(sc, BGE_MI_COMM);
    998 
    999 done:
   1000 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1001 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1002 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1003 		DELAY(40);
   1004 	}
   1005 
   1006 	if (val & BGE_MICOMM_READFAIL)
   1007 		return 0;
   1008 
   1009 	return (val & 0xFFFF);
   1010 }
   1011 
   1012 static void
   1013 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1014 {
   1015 	struct bge_softc *sc = device_private(dev);
   1016 	uint32_t autopoll;
   1017 	int i;
   1018 
   1019 	if (phy!=1) {
   1020 		return;
   1021 	}
   1022 
   1023 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1024 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1025 		return;
   1026 	}
   1027 
   1028 	/* Reading with autopolling on may trigger PCI errors */
   1029 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1030 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1031 		delay(40);
   1032 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1033 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1034 		delay(10); /* 40 usec is supposed to be adequate */
   1035 	}
   1036 
   1037 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1038 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1039 
   1040 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1041 		delay(10);
   1042 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1043 			delay(5);
   1044 			CSR_READ_4(sc, BGE_MI_COMM);
   1045 			break;
   1046 		}
   1047 	}
   1048 
   1049 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1050 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1051 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1052 		delay(40);
   1053 	}
   1054 
   1055 	if (i == BGE_TIMEOUT)
   1056 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1057 }
   1058 
   1059 static void
   1060 bge_miibus_statchg(struct ifnet *ifp)
   1061 {
   1062 	struct bge_softc *sc = ifp->if_softc;
   1063 	struct mii_data *mii = &sc->bge_mii;
   1064 
   1065 	/*
   1066 	 * Get flow control negotiation result.
   1067 	 */
   1068 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1069 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1070 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1071 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1072 	}
   1073 
   1074 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1075 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1076 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1077 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1078 	else
   1079 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1080 
   1081 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1082 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1083 	else
   1084 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1085 
   1086 	/*
   1087 	 * 802.3x flow control
   1088 	 */
   1089 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1090 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1091 	else
   1092 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1093 
   1094 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1095 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1096 	else
   1097 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1098 }
   1099 
   1100 /*
   1101  * Update rx threshold levels to values in a particular slot
   1102  * of the interrupt-mitigation table bge_rx_threshes.
   1103  */
   1104 static void
   1105 bge_set_thresh(struct ifnet *ifp, int lvl)
   1106 {
   1107 	struct bge_softc *sc = ifp->if_softc;
   1108 	int s;
   1109 
   1110 	/* For now, just save the new Rx-intr thresholds and record
   1111 	 * that a threshold update is pending.  Updating the hardware
   1112 	 * registers here (even at splhigh()) is observed to
   1113 	 * occasionaly cause glitches where Rx-interrupts are not
   1114 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1115 	 */
   1116 	s = splnet();
   1117 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1118 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1119 	sc->bge_pending_rxintr_change = 1;
   1120 	splx(s);
   1121 
   1122 	 return;
   1123 }
   1124 
   1125 
   1126 /*
   1127  * Update Rx thresholds of all bge devices
   1128  */
   1129 static void
   1130 bge_update_all_threshes(int lvl)
   1131 {
   1132 	struct ifnet *ifp;
   1133 	const char * const namebuf = "bge";
   1134 	int namelen;
   1135 
   1136 	if (lvl < 0)
   1137 		lvl = 0;
   1138 	else if (lvl >= NBGE_RX_THRESH)
   1139 		lvl = NBGE_RX_THRESH - 1;
   1140 
   1141 	namelen = strlen(namebuf);
   1142 	/*
   1143 	 * Now search all the interfaces for this name/number
   1144 	 */
   1145 	IFNET_FOREACH(ifp) {
   1146 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1147 		      continue;
   1148 		/* We got a match: update if doing auto-threshold-tuning */
   1149 		if (bge_auto_thresh)
   1150 			bge_set_thresh(ifp, lvl);
   1151 	}
   1152 }
   1153 
   1154 /*
   1155  * Handle events that have triggered interrupts.
   1156  */
   1157 static void
   1158 bge_handle_events(struct bge_softc *sc)
   1159 {
   1160 
   1161 	return;
   1162 }
   1163 
   1164 /*
   1165  * Memory management for jumbo frames.
   1166  */
   1167 
   1168 static int
   1169 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1170 {
   1171 	char *ptr, *kva;
   1172 	bus_dma_segment_t	seg;
   1173 	int		i, rseg, state, error;
   1174 	struct bge_jpool_entry   *entry;
   1175 
   1176 	state = error = 0;
   1177 
   1178 	/* Grab a big chunk o' storage. */
   1179 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1180 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1181 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1182 		return ENOBUFS;
   1183 	}
   1184 
   1185 	state = 1;
   1186 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1187 	    BUS_DMA_NOWAIT)) {
   1188 		aprint_error_dev(sc->bge_dev,
   1189 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1190 		error = ENOBUFS;
   1191 		goto out;
   1192 	}
   1193 
   1194 	state = 2;
   1195 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1196 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1197 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1198 		error = ENOBUFS;
   1199 		goto out;
   1200 	}
   1201 
   1202 	state = 3;
   1203 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1204 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1205 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1206 		error = ENOBUFS;
   1207 		goto out;
   1208 	}
   1209 
   1210 	state = 4;
   1211 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1212 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1213 
   1214 	SLIST_INIT(&sc->bge_jfree_listhead);
   1215 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1216 
   1217 	/*
   1218 	 * Now divide it up into 9K pieces and save the addresses
   1219 	 * in an array.
   1220 	 */
   1221 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1222 	for (i = 0; i < BGE_JSLOTS; i++) {
   1223 		sc->bge_cdata.bge_jslots[i] = ptr;
   1224 		ptr += BGE_JLEN;
   1225 		entry = malloc(sizeof(struct bge_jpool_entry),
   1226 		    M_DEVBUF, M_NOWAIT);
   1227 		if (entry == NULL) {
   1228 			aprint_error_dev(sc->bge_dev,
   1229 			    "no memory for jumbo buffer queue!\n");
   1230 			error = ENOBUFS;
   1231 			goto out;
   1232 		}
   1233 		entry->slot = i;
   1234 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1235 				 entry, jpool_entries);
   1236 	}
   1237 out:
   1238 	if (error != 0) {
   1239 		switch (state) {
   1240 		case 4:
   1241 			bus_dmamap_unload(sc->bge_dmatag,
   1242 			    sc->bge_cdata.bge_rx_jumbo_map);
   1243 		case 3:
   1244 			bus_dmamap_destroy(sc->bge_dmatag,
   1245 			    sc->bge_cdata.bge_rx_jumbo_map);
   1246 		case 2:
   1247 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1248 		case 1:
   1249 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1250 			break;
   1251 		default:
   1252 			break;
   1253 		}
   1254 	}
   1255 
   1256 	return error;
   1257 }
   1258 
   1259 /*
   1260  * Allocate a jumbo buffer.
   1261  */
   1262 static void *
   1263 bge_jalloc(struct bge_softc *sc)
   1264 {
   1265 	struct bge_jpool_entry   *entry;
   1266 
   1267 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1268 
   1269 	if (entry == NULL) {
   1270 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1271 		return NULL;
   1272 	}
   1273 
   1274 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1275 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1276 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1277 }
   1278 
   1279 /*
   1280  * Release a jumbo buffer.
   1281  */
   1282 static void
   1283 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1284 {
   1285 	struct bge_jpool_entry *entry;
   1286 	struct bge_softc *sc;
   1287 	int i, s;
   1288 
   1289 	/* Extract the softc struct pointer. */
   1290 	sc = (struct bge_softc *)arg;
   1291 
   1292 	if (sc == NULL)
   1293 		panic("bge_jfree: can't find softc pointer!");
   1294 
   1295 	/* calculate the slot this buffer belongs to */
   1296 
   1297 	i = ((char *)buf
   1298 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1299 
   1300 	if ((i < 0) || (i >= BGE_JSLOTS))
   1301 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1302 
   1303 	s = splvm();
   1304 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1305 	if (entry == NULL)
   1306 		panic("bge_jfree: buffer not in use!");
   1307 	entry->slot = i;
   1308 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1309 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1310 
   1311 	if (__predict_true(m != NULL))
   1312   		pool_cache_put(mb_cache, m);
   1313 	splx(s);
   1314 }
   1315 
   1316 
   1317 /*
   1318  * Initialize a standard receive ring descriptor.
   1319  */
   1320 static int
   1321 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1322     bus_dmamap_t dmamap)
   1323 {
   1324 	struct mbuf		*m_new = NULL;
   1325 	struct bge_rx_bd	*r;
   1326 	int			error;
   1327 
   1328 	if (dmamap == NULL) {
   1329 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1330 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1331 		if (error != 0)
   1332 			return error;
   1333 	}
   1334 
   1335 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1336 
   1337 	if (m == NULL) {
   1338 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1339 		if (m_new == NULL)
   1340 			return ENOBUFS;
   1341 
   1342 		MCLGET(m_new, M_DONTWAIT);
   1343 		if (!(m_new->m_flags & M_EXT)) {
   1344 			m_freem(m_new);
   1345 			return ENOBUFS;
   1346 		}
   1347 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1348 
   1349 	} else {
   1350 		m_new = m;
   1351 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1352 		m_new->m_data = m_new->m_ext.ext_buf;
   1353 	}
   1354 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1355 	    m_adj(m_new, ETHER_ALIGN);
   1356 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1357 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1358 		return ENOBUFS;
   1359 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1360 	    BUS_DMASYNC_PREREAD);
   1361 
   1362 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1363 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1364 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1365 	r->bge_flags = BGE_RXBDFLAG_END;
   1366 	r->bge_len = m_new->m_len;
   1367 	r->bge_idx = i;
   1368 
   1369 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1370 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1371 		i * sizeof (struct bge_rx_bd),
   1372 	    sizeof (struct bge_rx_bd),
   1373 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 /*
   1379  * Initialize a jumbo receive ring descriptor. This allocates
   1380  * a jumbo buffer from the pool managed internally by the driver.
   1381  */
   1382 static int
   1383 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1384 {
   1385 	struct mbuf *m_new = NULL;
   1386 	struct bge_rx_bd *r;
   1387 	void *buf = NULL;
   1388 
   1389 	if (m == NULL) {
   1390 
   1391 		/* Allocate the mbuf. */
   1392 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1393 		if (m_new == NULL)
   1394 			return ENOBUFS;
   1395 
   1396 		/* Allocate the jumbo buffer */
   1397 		buf = bge_jalloc(sc);
   1398 		if (buf == NULL) {
   1399 			m_freem(m_new);
   1400 			aprint_error_dev(sc->bge_dev,
   1401 			    "jumbo allocation failed -- packet dropped!\n");
   1402 			return ENOBUFS;
   1403 		}
   1404 
   1405 		/* Attach the buffer to the mbuf. */
   1406 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1407 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1408 		    bge_jfree, sc);
   1409 		m_new->m_flags |= M_EXT_RW;
   1410 	} else {
   1411 		m_new = m;
   1412 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1413 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1414 	}
   1415 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1416 	    m_adj(m_new, ETHER_ALIGN);
   1417 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1418 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1419 	    BUS_DMASYNC_PREREAD);
   1420 	/* Set up the descriptor. */
   1421 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1422 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1423 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1424 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1425 	r->bge_len = m_new->m_len;
   1426 	r->bge_idx = i;
   1427 
   1428 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1429 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1430 		i * sizeof (struct bge_rx_bd),
   1431 	    sizeof (struct bge_rx_bd),
   1432 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1433 
   1434 	return 0;
   1435 }
   1436 
   1437 /*
   1438  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1439  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1440  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1441  * the NIC.
   1442  */
   1443 static int
   1444 bge_init_rx_ring_std(struct bge_softc *sc)
   1445 {
   1446 	int i;
   1447 
   1448 	if (sc->bge_flags & BGE_RXRING_VALID)
   1449 		return 0;
   1450 
   1451 	for (i = 0; i < BGE_SSLOTS; i++) {
   1452 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1453 			return ENOBUFS;
   1454 	}
   1455 
   1456 	sc->bge_std = i - 1;
   1457 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1458 
   1459 	sc->bge_flags |= BGE_RXRING_VALID;
   1460 
   1461 	return 0;
   1462 }
   1463 
   1464 static void
   1465 bge_free_rx_ring_std(struct bge_softc *sc)
   1466 {
   1467 	int i;
   1468 
   1469 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1470 		return;
   1471 
   1472 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1473 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1474 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1475 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1476 			bus_dmamap_destroy(sc->bge_dmatag,
   1477 			    sc->bge_cdata.bge_rx_std_map[i]);
   1478 		}
   1479 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1480 		    sizeof(struct bge_rx_bd));
   1481 	}
   1482 
   1483 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1484 }
   1485 
   1486 static int
   1487 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1488 {
   1489 	int i;
   1490 	volatile struct bge_rcb *rcb;
   1491 
   1492 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1493 		return 0;
   1494 
   1495 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1496 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1497 			return ENOBUFS;
   1498 	};
   1499 
   1500 	sc->bge_jumbo = i - 1;
   1501 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1502 
   1503 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1504 	rcb->bge_maxlen_flags = 0;
   1505 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1506 
   1507 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1508 
   1509 	return 0;
   1510 }
   1511 
   1512 static void
   1513 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1514 {
   1515 	int i;
   1516 
   1517 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1518 		return;
   1519 
   1520 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1521 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1522 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1523 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1524 		}
   1525 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1526 		    sizeof(struct bge_rx_bd));
   1527 	}
   1528 
   1529 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1530 }
   1531 
   1532 static void
   1533 bge_free_tx_ring(struct bge_softc *sc)
   1534 {
   1535 	int i, freed;
   1536 	struct txdmamap_pool_entry *dma;
   1537 
   1538 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1539 		return;
   1540 
   1541 	freed = 0;
   1542 
   1543 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1544 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1545 			freed++;
   1546 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1547 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1548 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1549 					    link);
   1550 			sc->txdma[i] = 0;
   1551 		}
   1552 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1553 		    sizeof(struct bge_tx_bd));
   1554 	}
   1555 
   1556 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1557 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1558 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1559 		free(dma, M_DEVBUF);
   1560 	}
   1561 
   1562 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1563 }
   1564 
   1565 static int
   1566 bge_init_tx_ring(struct bge_softc *sc)
   1567 {
   1568 	int i;
   1569 	bus_dmamap_t dmamap;
   1570 	struct txdmamap_pool_entry *dma;
   1571 
   1572 	if (sc->bge_flags & BGE_TXRING_VALID)
   1573 		return 0;
   1574 
   1575 	sc->bge_txcnt = 0;
   1576 	sc->bge_tx_saved_considx = 0;
   1577 
   1578 	/* Initialize transmit producer index for host-memory send ring. */
   1579 	sc->bge_tx_prodidx = 0;
   1580 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1581 	/* 5700 b2 errata */
   1582 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1583 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1584 
   1585 	/* NIC-memory send ring not used; initialize to zero. */
   1586 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1587 	/* 5700 b2 errata */
   1588 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1589 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1590 
   1591 	SLIST_INIT(&sc->txdma_list);
   1592 	for (i = 0; i < BGE_RSLOTS; i++) {
   1593 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1594 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1595 		    &dmamap))
   1596 			return ENOBUFS;
   1597 		if (dmamap == NULL)
   1598 			panic("dmamap NULL in bge_init_tx_ring");
   1599 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1600 		if (dma == NULL) {
   1601 			aprint_error_dev(sc->bge_dev,
   1602 			    "can't alloc txdmamap_pool_entry\n");
   1603 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1604 			return ENOMEM;
   1605 		}
   1606 		dma->dmamap = dmamap;
   1607 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1608 	}
   1609 
   1610 	sc->bge_flags |= BGE_TXRING_VALID;
   1611 
   1612 	return 0;
   1613 }
   1614 
   1615 static void
   1616 bge_setmulti(struct bge_softc *sc)
   1617 {
   1618 	struct ethercom		*ac = &sc->ethercom;
   1619 	struct ifnet		*ifp = &ac->ec_if;
   1620 	struct ether_multi	*enm;
   1621 	struct ether_multistep  step;
   1622 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1623 	uint32_t		h;
   1624 	int			i;
   1625 
   1626 	if (ifp->if_flags & IFF_PROMISC)
   1627 		goto allmulti;
   1628 
   1629 	/* Now program new ones. */
   1630 	ETHER_FIRST_MULTI(step, ac, enm);
   1631 	while (enm != NULL) {
   1632 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1633 			/*
   1634 			 * We must listen to a range of multicast addresses.
   1635 			 * For now, just accept all multicasts, rather than
   1636 			 * trying to set only those filter bits needed to match
   1637 			 * the range.  (At this time, the only use of address
   1638 			 * ranges is for IP multicast routing, for which the
   1639 			 * range is big enough to require all bits set.)
   1640 			 */
   1641 			goto allmulti;
   1642 		}
   1643 
   1644 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1645 
   1646 		/* Just want the 7 least-significant bits. */
   1647 		h &= 0x7f;
   1648 
   1649 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1650 		ETHER_NEXT_MULTI(step, enm);
   1651 	}
   1652 
   1653 	ifp->if_flags &= ~IFF_ALLMULTI;
   1654 	goto setit;
   1655 
   1656  allmulti:
   1657 	ifp->if_flags |= IFF_ALLMULTI;
   1658 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1659 
   1660  setit:
   1661 	for (i = 0; i < 4; i++)
   1662 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1663 }
   1664 
   1665 static void
   1666 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1667 {
   1668 	/*
   1669 	 * Some chips don't like this so only do this if ASF is enabled
   1670 	 */
   1671 	if (sc->bge_asf_mode)
   1672 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1673 
   1674 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1675 		switch (type) {
   1676 		case BGE_RESET_START:
   1677 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1678 			break;
   1679 		case BGE_RESET_STOP:
   1680 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1681 			break;
   1682 		}
   1683 	}
   1684 }
   1685 
   1686 static void
   1687 bge_sig_post_reset(struct bge_softc *sc, int type)
   1688 {
   1689 
   1690 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1691 		switch (type) {
   1692 		case BGE_RESET_START:
   1693 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1694 			/* START DONE */
   1695 			break;
   1696 		case BGE_RESET_STOP:
   1697 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1698 			break;
   1699 		}
   1700 	}
   1701 }
   1702 
   1703 static void
   1704 bge_sig_legacy(struct bge_softc *sc, int type)
   1705 {
   1706 
   1707 	if (sc->bge_asf_mode) {
   1708 		switch (type) {
   1709 		case BGE_RESET_START:
   1710 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1711 			break;
   1712 		case BGE_RESET_STOP:
   1713 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1714 			break;
   1715 		}
   1716 	}
   1717 }
   1718 
   1719 static void
   1720 bge_stop_fw(struct bge_softc *sc)
   1721 {
   1722 	int i;
   1723 
   1724 	if (sc->bge_asf_mode) {
   1725 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1726 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1727 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1728 
   1729 		for (i = 0; i < 100; i++) {
   1730 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1731 				break;
   1732 			DELAY(10);
   1733 		}
   1734 	}
   1735 }
   1736 
   1737 static int
   1738 bge_poll_fw(struct bge_softc *sc)
   1739 {
   1740 	uint32_t val;
   1741 	int i;
   1742 
   1743 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1744 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1745 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1746 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1747 				break;
   1748 			DELAY(100);
   1749 		}
   1750 		if (i >= BGE_TIMEOUT) {
   1751 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1752 			return -1;
   1753 		}
   1754 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1755 		/*
   1756 		 * Poll the value location we just wrote until
   1757 		 * we see the 1's complement of the magic number.
   1758 		 * This indicates that the firmware initialization
   1759 		 * is complete.
   1760 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1761 		 */
   1762 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1763 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1764 			if (val == ~BGE_MAGIC_NUMBER)
   1765 				break;
   1766 			DELAY(10);
   1767 		}
   1768 
   1769 		if (i >= BGE_TIMEOUT) {
   1770 			aprint_error_dev(sc->bge_dev,
   1771 			    "firmware handshake timed out, val = %x\n", val);
   1772 			return -1;
   1773 		}
   1774 	}
   1775 
   1776 	return 0;
   1777 }
   1778 
   1779 /*
   1780  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1781  * self-test results.
   1782  */
   1783 static int
   1784 bge_chipinit(struct bge_softc *sc)
   1785 {
   1786 	int i;
   1787 	uint32_t dma_rw_ctl;
   1788 
   1789 	/* Set endianness before we access any non-PCI registers. */
   1790 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1791 	    BGE_INIT);
   1792 
   1793 	/* Set power state to D0. */
   1794 	bge_setpowerstate(sc, 0);
   1795 
   1796 	/* Clear the MAC control register */
   1797 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1798 
   1799 	/*
   1800 	 * Clear the MAC statistics block in the NIC's
   1801 	 * internal memory.
   1802 	 */
   1803 	for (i = BGE_STATS_BLOCK;
   1804 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1805 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1806 
   1807 	for (i = BGE_STATUS_BLOCK;
   1808 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1809 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1810 
   1811 	/* Set up the PCI DMA control register. */
   1812 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1813 	if (sc->bge_flags & BGE_PCIE) {
   1814 		/* Read watermark not used, 128 bytes for write. */
   1815 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1816 		    device_xname(sc->bge_dev)));
   1817 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1818 	} else if (sc->bge_flags & BGE_PCIX) {
   1819 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1820 		    device_xname(sc->bge_dev)));
   1821 		/* PCI-X bus */
   1822 		if (BGE_IS_5714_FAMILY(sc)) {
   1823 			/* 256 bytes for read and write. */
   1824 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1825 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1826 
   1827 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1828 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1829 			else
   1830 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1831 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1832 			/* 1536 bytes for read, 384 bytes for write. */
   1833 			dma_rw_ctl |=
   1834 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1835 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1836 		} else {
   1837 			/* 384 bytes for read and write. */
   1838 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1839 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1840 			    (0x0F);
   1841 		}
   1842 
   1843 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1844 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1845 			uint32_t tmp;
   1846 
   1847 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1848 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1849 			if (tmp == 6 || tmp == 7)
   1850 				dma_rw_ctl |=
   1851 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1852 
   1853 			/* Set PCI-X DMA write workaround. */
   1854 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1855 		}
   1856 	} else {
   1857 		/* Conventional PCI bus: 256 bytes for read and write. */
   1858 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1859 		    device_xname(sc->bge_dev)));
   1860 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1861 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1862 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1863 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1864 			dma_rw_ctl |= 0x0F;
   1865 	}
   1866 
   1867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1868 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1869 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1870 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1871 
   1872 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1873 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1874 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1875 
   1876 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1877 	    dma_rw_ctl);
   1878 
   1879 	/*
   1880 	 * Set up general mode register.
   1881 	 */
   1882 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1883 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1884 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1885 
   1886 	/*
   1887 	 * BCM5701 B5 have a bug causing data corruption when using
   1888 	 * 64-bit DMA reads, which can be terminated early and then
   1889 	 * completed later as 32-bit accesses, in combination with
   1890 	 * certain bridges.
   1891 	 */
   1892 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1893 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1894 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1895 
   1896 	/*
   1897 	 * Tell the firmware the driver is running
   1898 	 */
   1899 	if (sc->bge_asf_mode & ASF_STACKUP)
   1900 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1901 
   1902 	/*
   1903 	 * Disable memory write invalidate.  Apparently it is not supported
   1904 	 * properly by these devices.
   1905 	 */
   1906 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1907 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1908 
   1909 #ifdef __brokenalpha__
   1910 	/*
   1911 	 * Must insure that we do not cross an 8K (bytes) boundary
   1912 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1913 	 * restriction on some ALPHA platforms with early revision
   1914 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1915 	 */
   1916 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1917 #endif
   1918 
   1919 	/* Set the timer prescaler (always 66MHz) */
   1920 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1921 
   1922 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1923 		DELAY(40);	/* XXX */
   1924 
   1925 		/* Put PHY into ready state */
   1926 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1927 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1928 		DELAY(40);
   1929 	}
   1930 
   1931 	return 0;
   1932 }
   1933 
   1934 static int
   1935 bge_blockinit(struct bge_softc *sc)
   1936 {
   1937 	volatile struct bge_rcb	 *rcb;
   1938 	bus_size_t rcb_addr;
   1939 	int i;
   1940 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1941 	bge_hostaddr taddr;
   1942 	uint32_t val;
   1943 
   1944 	/*
   1945 	 * Initialize the memory window pointer register so that
   1946 	 * we can access the first 32K of internal NIC RAM. This will
   1947 	 * allow us to set up the TX send ring RCBs and the RX return
   1948 	 * ring RCBs, plus other things which live in NIC memory.
   1949 	 */
   1950 
   1951 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1952 
   1953 	/* Step 33: Configure mbuf memory pool */
   1954 	if (BGE_IS_5700_FAMILY(sc)) {
   1955 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1956 		    BGE_BUFFPOOL_1);
   1957 
   1958 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1960 		else
   1961 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1962 
   1963 		/* Configure DMA resource pool */
   1964 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1965 		    BGE_DMA_DESCRIPTORS);
   1966 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1967 	}
   1968 
   1969 	/* Step 35: Configure mbuf pool watermarks */
   1970 #ifdef ORIG_WPAUL_VALUES
   1971 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1972 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1973 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1974 #else
   1975 
   1976 	/* new broadcom docs strongly recommend these: */
   1977 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1978 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   1979 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1981 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   1982 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   1983 	} else if (BGE_IS_5705_PLUS(sc)) {
   1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1985 
   1986 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1987 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1988 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1989 		} else {
   1990 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1991 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1992 		}
   1993 	} else if (!BGE_IS_5705_PLUS(sc)) {
   1994 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1997 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1998 		} else {
   1999 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   2000 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   2001 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   2002 		}
   2003 	} else {
   2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2005 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2007 	}
   2008 #endif
   2009 
   2010 	/* Step 36: Configure DMA resource watermarks */
   2011 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2012 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2013 
   2014 	/* Step 38: Enable buffer manager */
   2015 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2016 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2017 
   2018 	/* Step 39: Poll for buffer manager start indication */
   2019 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2020 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2021 			break;
   2022 		DELAY(10);
   2023 	}
   2024 
   2025 	if (i == BGE_TIMEOUT * 2) {
   2026 		aprint_error_dev(sc->bge_dev,
   2027 		    "buffer manager failed to start\n");
   2028 		return ENXIO;
   2029 	}
   2030 
   2031 	/* Step 40: Enable flow-through queues */
   2032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2033 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2034 
   2035 	/* Wait until queue initialization is complete */
   2036 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2037 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2038 			break;
   2039 		DELAY(10);
   2040 	}
   2041 
   2042 	if (i == BGE_TIMEOUT * 2) {
   2043 		aprint_error_dev(sc->bge_dev,
   2044 		    "flow-through queue init failed\n");
   2045 		return ENXIO;
   2046 	}
   2047 
   2048 	/* Step 41: Initialize the standard RX ring control block */
   2049 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2050 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2051 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2052 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2053 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2054 		rcb->bge_maxlen_flags =
   2055 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2056 	else if (BGE_IS_5705_PLUS(sc))
   2057 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2058 	else
   2059 		rcb->bge_maxlen_flags =
   2060 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2061 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2062 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2063 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2064 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2065 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2066 
   2067 	/*
   2068 	 * Step 42: Initialize the jumbo RX ring control block
   2069 	 * We set the 'ring disabled' bit in the flags
   2070 	 * field until we're actually ready to start
   2071 	 * using this ring (i.e. once we set the MTU
   2072 	 * high enough to require it).
   2073 	 */
   2074 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2075 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2076 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2077 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2078 		rcb->bge_maxlen_flags =
   2079 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2080 			BGE_RCB_FLAG_RING_DISABLED);
   2081 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2082 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2083 		    rcb->bge_hostaddr.bge_addr_hi);
   2084 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2085 		    rcb->bge_hostaddr.bge_addr_lo);
   2086 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2087 		    rcb->bge_maxlen_flags);
   2088 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2089 
   2090 		/* Set up dummy disabled mini ring RCB */
   2091 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2092 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2093 		    BGE_RCB_FLAG_RING_DISABLED);
   2094 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2095 		    rcb->bge_maxlen_flags);
   2096 
   2097 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2098 		    offsetof(struct bge_ring_data, bge_info),
   2099 		    sizeof (struct bge_gib),
   2100 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2101 	}
   2102 
   2103 	/*
   2104 	 * Set the BD ring replenish thresholds. The recommended
   2105 	 * values are 1/8th the number of descriptors allocated to
   2106 	 * each ring.
   2107 	 */
   2108 	i = BGE_STD_RX_RING_CNT / 8;
   2109 
   2110 	/*
   2111 	 * Use a value of 8 for the following chips to workaround HW errata.
   2112 	 * Some of these chips have been added based on empirical
   2113 	 * evidence (they don't work unless this is done).
   2114 	 */
   2115 	if (BGE_IS_5705_PLUS(sc))
   2116 		i = 8;
   2117 
   2118 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2119 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2120 
   2121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2122 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2123 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2124 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2125 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2126 	}
   2127 
   2128 	/*
   2129 	 * Disable all unused send rings by setting the 'ring disabled'
   2130 	 * bit in the flags field of all the TX send ring control blocks.
   2131 	 * These are located in NIC memory.
   2132 	 */
   2133 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2134 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2135 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2136 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2137 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2138 		rcb_addr += sizeof(struct bge_rcb);
   2139 	}
   2140 
   2141 	/* Configure TX RCB 0 (we use only the first ring) */
   2142 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2143 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2144 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2145 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2146 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2147 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2148 	if (BGE_IS_5700_FAMILY(sc))
   2149 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2150 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2151 
   2152 	/* Disable all unused RX return rings */
   2153 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2154 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2155 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2156 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2157 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2158 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2159 			BGE_RCB_FLAG_RING_DISABLED));
   2160 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2161 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2162 		    (i * (sizeof(uint64_t))), 0);
   2163 		rcb_addr += sizeof(struct bge_rcb);
   2164 	}
   2165 
   2166 	/* Initialize RX ring indexes */
   2167 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2168 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2169 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2170 
   2171 	/*
   2172 	 * Set up RX return ring 0
   2173 	 * Note that the NIC address for RX return rings is 0x00000000.
   2174 	 * The return rings live entirely within the host, so the
   2175 	 * nicaddr field in the RCB isn't used.
   2176 	 */
   2177 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2178 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2179 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2180 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2181 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2182 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2183 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2184 
   2185 	/* Set random backoff seed for TX */
   2186 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2187 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2188 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2189 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2190 	    BGE_TX_BACKOFF_SEED_MASK);
   2191 
   2192 	/* Set inter-packet gap */
   2193 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2194 
   2195 	/*
   2196 	 * Specify which ring to use for packets that don't match
   2197 	 * any RX rules.
   2198 	 */
   2199 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2200 
   2201 	/*
   2202 	 * Configure number of RX lists. One interrupt distribution
   2203 	 * list, sixteen active lists, one bad frames class.
   2204 	 */
   2205 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2206 
   2207 	/* Inialize RX list placement stats mask. */
   2208 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2209 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2210 
   2211 	/* Disable host coalescing until we get it set up */
   2212 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2213 
   2214 	/* Poll to make sure it's shut down. */
   2215 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2216 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2217 			break;
   2218 		DELAY(10);
   2219 	}
   2220 
   2221 	if (i == BGE_TIMEOUT * 2) {
   2222 		aprint_error_dev(sc->bge_dev,
   2223 		    "host coalescing engine failed to idle\n");
   2224 		return ENXIO;
   2225 	}
   2226 
   2227 	/* Set up host coalescing defaults */
   2228 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2229 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2230 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2231 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2232 	if (BGE_IS_5700_FAMILY(sc)) {
   2233 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2234 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2235 	}
   2236 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2237 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2238 
   2239 	/* Set up address of statistics block */
   2240 	if (BGE_IS_5700_FAMILY(sc)) {
   2241 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2242 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2243 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2244 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2245 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2246 	}
   2247 
   2248 	/* Set up address of status block */
   2249 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2250 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2251 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2252 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2253 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2254 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2255 
   2256 	/* Turn on host coalescing state machine */
   2257 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2258 
   2259 	/* Turn on RX BD completion state machine and enable attentions */
   2260 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2261 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2262 
   2263 	/* Turn on RX list placement state machine */
   2264 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2265 
   2266 	/* Turn on RX list selector state machine. */
   2267 	if (BGE_IS_5700_FAMILY(sc))
   2268 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2269 
   2270 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2271 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2272 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2273 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2274 
   2275 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2276 		val |= BGE_PORTMODE_TBI;
   2277 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2278 		val |= BGE_PORTMODE_GMII;
   2279 	else
   2280 		val |= BGE_PORTMODE_MII;
   2281 
   2282 	/* Turn on DMA, clear stats */
   2283 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2284 
   2285 	/* Set misc. local control, enable interrupts on attentions */
   2286 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2287 
   2288 #ifdef notdef
   2289 	/* Assert GPIO pins for PHY reset */
   2290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2291 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2292 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2293 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2294 #endif
   2295 
   2296 #if defined(not_quite_yet)
   2297 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2298 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2299 		sc->bge_local_ctrl_reg |=
   2300 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2301 	}
   2302 #endif
   2303 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2304 
   2305 	/* Turn on DMA completion state machine */
   2306 	if (BGE_IS_5700_FAMILY(sc))
   2307 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2308 
   2309 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2310 
   2311 	/* Enable host coalescing bug fix; see Linux tg3.c */
   2312 	if (BGE_IS_5755_PLUS(sc))
   2313 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2314 
   2315 	/* Turn on write DMA state machine */
   2316 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
   2317 
   2318 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2319 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2320 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2321 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2322 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2323 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2324 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2325 
   2326 	if (sc->bge_flags & BGE_PCIE)
   2327 		val |= BGE_RDMA_MODE_FIFO_LONG_BURST;
   2328 	if (sc->bge_flags & BGE_TSO)
   2329 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2330 
   2331 	/* Turn on read DMA state machine */
   2332 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
   2333 	delay(40);
   2334 
   2335 	/* Turn on RX data completion state machine */
   2336 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2337 
   2338 	/* Turn on RX BD initiator state machine */
   2339 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2340 
   2341 	/* Turn on RX data and RX BD initiator state machine */
   2342 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2343 
   2344 	/* Turn on Mbuf cluster free state machine */
   2345 	if (BGE_IS_5700_FAMILY(sc))
   2346 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2347 
   2348 	/* Turn on send BD completion state machine */
   2349 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2350 
   2351 	/* Turn on send data completion state machine */
   2352 	val = BGE_SDCMODE_ENABLE;
   2353 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2354 		val |= BGE_SDCMODE_CDELAY;
   2355 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2356 
   2357 	/* Turn on send data initiator state machine */
   2358 	if (sc->bge_flags & BGE_TSO) {
   2359 		/* XXX: magic value from Linux driver */
   2360 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2361 	} else
   2362 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2363 
   2364 	/* Turn on send BD initiator state machine */
   2365 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2366 
   2367 	/* Turn on send BD selector state machine */
   2368 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2369 
   2370 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2371 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2372 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2373 
   2374 	/* ack/clear link change events */
   2375 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2376 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2377 	    BGE_MACSTAT_LINK_CHANGED);
   2378 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2379 
   2380 	/* Enable PHY auto polling (for MII/GMII only) */
   2381 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2382 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2383 	} else {
   2384 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2385 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2386 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2387 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2388 			    BGE_EVTENB_MI_INTERRUPT);
   2389 	}
   2390 
   2391 	/*
   2392 	 * Clear any pending link state attention.
   2393 	 * Otherwise some link state change events may be lost until attention
   2394 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2395 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2396 	 * state change attentions implies clearing pending attention.
   2397 	 */
   2398 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2399 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2400 	    BGE_MACSTAT_LINK_CHANGED);
   2401 
   2402 	/* Enable link state change attentions. */
   2403 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2404 
   2405 	return 0;
   2406 }
   2407 
   2408 static const struct bge_revision *
   2409 bge_lookup_rev(uint32_t chipid)
   2410 {
   2411 	const struct bge_revision *br;
   2412 
   2413 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2414 		if (br->br_chipid == chipid)
   2415 			return br;
   2416 	}
   2417 
   2418 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2419 		if (br->br_chipid == BGE_ASICREV(chipid))
   2420 			return br;
   2421 	}
   2422 
   2423 	return NULL;
   2424 }
   2425 
   2426 static const struct bge_product *
   2427 bge_lookup(const struct pci_attach_args *pa)
   2428 {
   2429 	const struct bge_product *bp;
   2430 
   2431 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2432 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2433 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2434 			return bp;
   2435 	}
   2436 
   2437 	return NULL;
   2438 }
   2439 
   2440 static int
   2441 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2442 {
   2443 #ifdef NOTYET
   2444 	uint32_t pm_ctl = 0;
   2445 
   2446 	/* XXX FIXME: make sure indirect accesses enabled? */
   2447 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2448 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2449 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2450 
   2451 	/* clear the PME_assert bit and power state bits, enable PME */
   2452 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2453 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2454 	pm_ctl |= (1 << 8);
   2455 
   2456 	if (powerlevel == 0) {
   2457 		pm_ctl |= PCIM_PSTAT_D0;
   2458 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2459 		    pm_ctl, 2);
   2460 		DELAY(10000);
   2461 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2462 		DELAY(10000);
   2463 
   2464 #ifdef NOTYET
   2465 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2466 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2467 #endif
   2468 		DELAY(40); DELAY(40); DELAY(40);
   2469 		DELAY(10000);	/* above not quite adequate on 5700 */
   2470 		return 0;
   2471 	}
   2472 
   2473 
   2474 	/*
   2475 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2476 	 * GMII gpio pins. Example code assumes all hardware vendors
   2477 	 * followed Broadcom's sample pcb layout. Until we verify that
   2478 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2479 	 */
   2480 	aprint_error_dev(sc->bge_dev,
   2481 	    "power state %d unimplemented; check GPIO pins\n",
   2482 	    powerlevel);
   2483 #endif
   2484 	return EOPNOTSUPP;
   2485 }
   2486 
   2487 
   2488 /*
   2489  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2490  * against our list and return its name if we find a match. Note
   2491  * that since the Broadcom controller contains VPD support, we
   2492  * can get the device name string from the controller itself instead
   2493  * of the compiled-in string. This is a little slow, but it guarantees
   2494  * we'll always announce the right product name.
   2495  */
   2496 static int
   2497 bge_probe(device_t parent, cfdata_t match, void *aux)
   2498 {
   2499 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2500 
   2501 	if (bge_lookup(pa) != NULL)
   2502 		return 1;
   2503 
   2504 	return 0;
   2505 }
   2506 
   2507 static void
   2508 bge_attach(device_t parent, device_t self, void *aux)
   2509 {
   2510 	struct bge_softc	*sc = device_private(self);
   2511 	struct pci_attach_args	*pa = aux;
   2512 	prop_dictionary_t dict;
   2513 	const struct bge_product *bp;
   2514 	const struct bge_revision *br;
   2515 	pci_chipset_tag_t	pc;
   2516 	pci_intr_handle_t	ih;
   2517 	const char		*intrstr = NULL;
   2518 	bus_dma_segment_t	seg;
   2519 	int			rseg;
   2520 	uint32_t		hwcfg = 0;
   2521 	uint32_t		command;
   2522 	struct ifnet		*ifp;
   2523 	uint32_t		misccfg;
   2524 	void *			kva;
   2525 	u_char			eaddr[ETHER_ADDR_LEN];
   2526 	pcireg_t		memtype, subid;
   2527 	bus_addr_t		memaddr;
   2528 	bus_size_t		memsize;
   2529 	uint32_t		pm_ctl;
   2530 	bool			no_seeprom;
   2531 
   2532 	bp = bge_lookup(pa);
   2533 	KASSERT(bp != NULL);
   2534 
   2535 	sc->sc_pc = pa->pa_pc;
   2536 	sc->sc_pcitag = pa->pa_tag;
   2537 	sc->bge_dev = self;
   2538 
   2539 	pc = sc->sc_pc;
   2540 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2541 
   2542 	aprint_naive(": Ethernet controller\n");
   2543 	aprint_normal(": %s\n", bp->bp_name);
   2544 
   2545 	/*
   2546 	 * Map control/status registers.
   2547 	 */
   2548 	DPRINTFN(5, ("Map control/status regs\n"));
   2549 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2550 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2551 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2552 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2553 
   2554 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2555 		aprint_error_dev(sc->bge_dev,
   2556 		    "failed to enable memory mapping!\n");
   2557 		return;
   2558 	}
   2559 
   2560 	DPRINTFN(5, ("pci_mem_find\n"));
   2561 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2562 	switch (memtype) {
   2563 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2564 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2565 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2566 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2567 		    &memaddr, &memsize) == 0)
   2568 			break;
   2569 	default:
   2570 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2571 		return;
   2572 	}
   2573 
   2574 	DPRINTFN(5, ("pci_intr_map\n"));
   2575 	if (pci_intr_map(pa, &ih)) {
   2576 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2577 		return;
   2578 	}
   2579 
   2580 	DPRINTFN(5, ("pci_intr_string\n"));
   2581 	intrstr = pci_intr_string(pc, ih);
   2582 
   2583 	DPRINTFN(5, ("pci_intr_establish\n"));
   2584 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2585 
   2586 	if (sc->bge_intrhand == NULL) {
   2587 		aprint_error_dev(sc->bge_dev,
   2588 		    "couldn't establish interrupt%s%s\n",
   2589 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2590 		return;
   2591 	}
   2592 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2593 
   2594 	/*
   2595 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2596 	 * can clobber the chip's PCI config-space power control registers,
   2597 	 * leaving the card in D3 powersave state.
   2598 	 * We do not have memory-mapped registers in this state,
   2599 	 * so force device into D0 state before starting initialization.
   2600 	 */
   2601 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2602 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2603 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2604 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2605 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2606 
   2607 	/*
   2608 	 * Save ASIC rev.
   2609 	 */
   2610 	sc->bge_chipid =
   2611 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2612 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2613 
   2614 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2615 		switch (PCI_PRODUCT(pa->pa_id)) {
   2616 		case PCI_PRODUCT_BROADCOM_BCM5717:
   2617 		case PCI_PRODUCT_BROADCOM_BCM5718:
   2618 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   2619 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2620 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2621 			break;
   2622 		case PCI_PRODUCT_BROADCOM_BCM57761:
   2623 		case PCI_PRODUCT_BROADCOM_BCM57762:
   2624 		case PCI_PRODUCT_BROADCOM_BCM57765:
   2625 		case PCI_PRODUCT_BROADCOM_BCM57781:
   2626 		case PCI_PRODUCT_BROADCOM_BCM57785:
   2627 		case PCI_PRODUCT_BROADCOM_BCM57791:
   2628 		case PCI_PRODUCT_BROADCOM_BCM57795:
   2629 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2630 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2631 			break;
   2632 		default:
   2633 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2634 			    BGE_PCI_PRODID_ASICREV);
   2635 			break;
   2636 		}
   2637 	}
   2638 
   2639 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2640 	        &sc->bge_pciecap, NULL) != 0)
   2641 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2642 		/* PCIe */
   2643 		sc->bge_flags |= BGE_PCIE;
   2644 		bge_set_max_readrq(sc);
   2645 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2646 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2647 		/* PCI-X */
   2648 		sc->bge_flags |= BGE_PCIX;
   2649 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2650 			&sc->bge_pcixcap, NULL) == 0)
   2651 			aprint_error_dev(sc->bge_dev,
   2652 			    "unable to find PCIX capability\n");
   2653 	}
   2654 
   2655 	/* chipid */
   2656 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2658 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2659 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2660 		sc->bge_flags |= BGE_5700_FAMILY;
   2661 
   2662 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2663 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2664 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2665 		sc->bge_flags |= BGE_5714_FAMILY;
   2666 
   2667 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2668 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2669 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2670 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2671 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2672 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2673 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2674 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   2676 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2677 		sc->bge_flags |= BGE_5755_PLUS;
   2678 
   2679 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2680 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2681 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2682 	    BGE_IS_5755_PLUS(sc) ||
   2683 	    BGE_IS_5714_FAMILY(sc))
   2684 		sc->bge_flags |= BGE_5750_PLUS;
   2685 
   2686 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2687 	    BGE_IS_5750_OR_BEYOND(sc))
   2688 		sc->bge_flags |= BGE_5705_PLUS;
   2689 
   2690 	/*
   2691 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2692 	 * been observed in the first few bytes of some received packets.
   2693 	 * Aligning the packet buffer in memory eliminates the corruption.
   2694 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2695 	 * which do not support unaligned accesses, we will realign the
   2696 	 * payloads by copying the received packets.
   2697 	 */
   2698 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2699 	    sc->bge_flags & BGE_PCIX)
   2700 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2701 
   2702 	if (BGE_IS_5700_FAMILY(sc))
   2703 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2704 
   2705 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2706 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2707 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2708 		sc->bge_flags |= BGE_NO_3LED;
   2709 
   2710 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2711 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2712 
   2713 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2714 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2715 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2716 		sc->bge_flags |= BGE_IS_5788;
   2717 
   2718 	/*
   2719 	 * Some controllers seem to require a special firmware to use
   2720 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2721 	 * claims that the TSO performed by the firmware is slower than
   2722 	 * hardware based TSO. Moreover the firmware based TSO has one
   2723 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2724 	 * header is greater than 80 bytes. The workaround for the TSO
   2725 	 * bug exist but it seems it's too expensive than not using
   2726 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2727 	 * the TSO to the controllers that are not affected TSO issues
   2728 	 * (e.g. 5755 or higher).
   2729 	 */
   2730 	if (BGE_IS_5755_PLUS(sc)) {
   2731 		/*
   2732 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2733 		 * explicit device id check is required.
   2734 		 */
   2735 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2736 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2737 			sc->bge_flags |= BGE_TSO;
   2738 	}
   2739 
   2740 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2741 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2742 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2743 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2744 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2745 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2746 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2747 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2748 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2749 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2750 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2751 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2752 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2753 		sc->bge_flags |= BGE_10_100_ONLY;
   2754 
   2755 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2756 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2757 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2758 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2759 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2760 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2761 
   2762 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2763 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2764 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2765 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2766 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2767 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2768 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2769 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2770 
   2771 	if (BGE_IS_5705_PLUS(sc) &&
   2772 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2773 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2774 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2775 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2776 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
   2777 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2778 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2779 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2780 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2781 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2782 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2783 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2784 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2785 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2786 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2787 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2788 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2789 	}
   2790 
   2791 	/*
   2792 	 * SEEPROM check.
   2793 	 * First check if firmware knows we do not have SEEPROM.
   2794 	 */
   2795 	if (prop_dictionary_get_bool(device_properties(self),
   2796 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2797 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2798 
   2799 	/* Now check the 'ROM failed' bit on the RX CPU */
   2800 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2801 		sc->bge_flags |= BGE_NO_EEPROM;
   2802 
   2803 	/* Try to reset the chip. */
   2804 	DPRINTFN(5, ("bge_reset\n"));
   2805 	bge_reset(sc);
   2806 
   2807 	sc->bge_asf_mode = 0;
   2808 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2809 	    == BGE_MAGIC_NUMBER)) {
   2810 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2811 		    & BGE_HWCFG_ASF) {
   2812 			sc->bge_asf_mode |= ASF_ENABLE;
   2813 			sc->bge_asf_mode |= ASF_STACKUP;
   2814 			if (BGE_IS_5750_OR_BEYOND(sc)) {
   2815 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2816 			}
   2817 		}
   2818 	}
   2819 
   2820 	/* Try to reset the chip again the nice way. */
   2821 	bge_stop_fw(sc);
   2822 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2823 	if (bge_reset(sc))
   2824 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2825 
   2826 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2827 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2828 
   2829 	if (bge_chipinit(sc)) {
   2830 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2831 		bge_release_resources(sc);
   2832 		return;
   2833 	}
   2834 
   2835 	/*
   2836 	 * Get station address from the EEPROM.
   2837 	 */
   2838 	if (bge_get_eaddr(sc, eaddr)) {
   2839 		aprint_error_dev(sc->bge_dev,
   2840 		    "failed to read station address\n");
   2841 		bge_release_resources(sc);
   2842 		return;
   2843 	}
   2844 
   2845 	br = bge_lookup_rev(sc->bge_chipid);
   2846 
   2847 	if (br == NULL) {
   2848 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2849 		    sc->bge_chipid);
   2850 	} else {
   2851 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2852 		    br->br_name, sc->bge_chipid);
   2853 	}
   2854 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2855 
   2856 	/* Allocate the general information block and ring buffers. */
   2857 	if (pci_dma64_available(pa))
   2858 		sc->bge_dmatag = pa->pa_dmat64;
   2859 	else
   2860 		sc->bge_dmatag = pa->pa_dmat;
   2861 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2862 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2863 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2864 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2865 		return;
   2866 	}
   2867 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2868 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2869 			   sizeof(struct bge_ring_data), &kva,
   2870 			   BUS_DMA_NOWAIT)) {
   2871 		aprint_error_dev(sc->bge_dev,
   2872 		    "can't map DMA buffers (%zu bytes)\n",
   2873 		    sizeof(struct bge_ring_data));
   2874 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2875 		return;
   2876 	}
   2877 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2878 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2879 	    sizeof(struct bge_ring_data), 0,
   2880 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2881 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2882 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2883 				 sizeof(struct bge_ring_data));
   2884 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2885 		return;
   2886 	}
   2887 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2888 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2889 			    sizeof(struct bge_ring_data), NULL,
   2890 			    BUS_DMA_NOWAIT)) {
   2891 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2892 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2893 				 sizeof(struct bge_ring_data));
   2894 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2895 		return;
   2896 	}
   2897 
   2898 	DPRINTFN(5, ("bzero\n"));
   2899 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2900 
   2901 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2902 
   2903 	/* Try to allocate memory for jumbo buffers. */
   2904 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2905 		if (bge_alloc_jumbo_mem(sc)) {
   2906 			aprint_error_dev(sc->bge_dev,
   2907 			    "jumbo buffer allocation failed\n");
   2908 		} else
   2909 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2910 	}
   2911 
   2912 	/* Set default tuneable values. */
   2913 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2914 	sc->bge_rx_coal_ticks = 150;
   2915 	sc->bge_rx_max_coal_bds = 64;
   2916 #ifdef ORIG_WPAUL_VALUES
   2917 	sc->bge_tx_coal_ticks = 150;
   2918 	sc->bge_tx_max_coal_bds = 128;
   2919 #else
   2920 	sc->bge_tx_coal_ticks = 300;
   2921 	sc->bge_tx_max_coal_bds = 400;
   2922 #endif
   2923 	if (BGE_IS_5705_PLUS(sc)) {
   2924 		sc->bge_tx_coal_ticks = (12 * 5);
   2925 		sc->bge_tx_max_coal_bds = (12 * 5);
   2926 			aprint_verbose_dev(sc->bge_dev,
   2927 			    "setting short Tx thresholds\n");
   2928 	}
   2929 
   2930 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2931 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2932 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2933 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2934 	else if (BGE_IS_5705_PLUS(sc))
   2935 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2936 	else
   2937 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2938 
   2939 	/* Set up ifnet structure */
   2940 	ifp = &sc->ethercom.ec_if;
   2941 	ifp->if_softc = sc;
   2942 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2943 	ifp->if_ioctl = bge_ioctl;
   2944 	ifp->if_stop = bge_stop;
   2945 	ifp->if_start = bge_start;
   2946 	ifp->if_init = bge_init;
   2947 	ifp->if_watchdog = bge_watchdog;
   2948 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2949 	IFQ_SET_READY(&ifp->if_snd);
   2950 	DPRINTFN(5, ("strcpy if_xname\n"));
   2951 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2952 
   2953 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2954 		sc->ethercom.ec_if.if_capabilities |=
   2955 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2956 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2957 		sc->ethercom.ec_if.if_capabilities |=
   2958 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2959 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2960 #endif
   2961 	sc->ethercom.ec_capabilities |=
   2962 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2963 
   2964 	if (sc->bge_flags & BGE_TSO)
   2965 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2966 
   2967 	/*
   2968 	 * Do MII setup.
   2969 	 */
   2970 	DPRINTFN(5, ("mii setup\n"));
   2971 	sc->bge_mii.mii_ifp = ifp;
   2972 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2973 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2974 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2975 
   2976 	/*
   2977 	 * Figure out what sort of media we have by checking the hardware
   2978 	 * config word in the first 32k of NIC internal memory, or fall back to
   2979 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   2980 	 * this value appears to be unset. If that's the case, we have to rely
   2981 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   2982 	 * the SysKonnect SK-9D41.
   2983 	 */
   2984 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2985 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2986 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2987 		bge_read_eeprom(sc, (void *)&hwcfg,
   2988 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2989 		hwcfg = be32toh(hwcfg);
   2990 	}
   2991 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2992 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   2993 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   2994 		if (BGE_IS_5714_FAMILY(sc))
   2995 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   2996 		else
   2997 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   2998 	}
   2999 
   3000 	/* set phyflags and chipid before mii_attach() */
   3001 	dict = device_properties(self);
   3002 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3003 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3004 
   3005 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3006 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3007 		    bge_ifmedia_sts);
   3008 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3009 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3010 			    0, NULL);
   3011 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3012 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3013 		/* Pretend the user requested this setting */
   3014 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3015 	} else {
   3016 		/*
   3017 		 * Do transceiver setup and tell the firmware the
   3018 		 * driver is down so we can try to get access the
   3019 		 * probe if ASF is running.  Retry a couple of times
   3020 		 * if we get a conflict with the ASF firmware accessing
   3021 		 * the PHY.
   3022 		 */
   3023 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3024 		bge_asf_driver_up(sc);
   3025 
   3026 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3027 			     bge_ifmedia_sts);
   3028 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3029 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3030 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3031 
   3032 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3033 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3034 			ifmedia_add(&sc->bge_mii.mii_media,
   3035 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3036 			ifmedia_set(&sc->bge_mii.mii_media,
   3037 				    IFM_ETHER|IFM_MANUAL);
   3038 		} else
   3039 			ifmedia_set(&sc->bge_mii.mii_media,
   3040 				    IFM_ETHER|IFM_AUTO);
   3041 
   3042 		/*
   3043 		 * Now tell the firmware we are going up after probing the PHY
   3044 		 */
   3045 		if (sc->bge_asf_mode & ASF_STACKUP)
   3046 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3047 	}
   3048 
   3049 	/*
   3050 	 * Call MI attach routine.
   3051 	 */
   3052 	DPRINTFN(5, ("if_attach\n"));
   3053 	if_attach(ifp);
   3054 	DPRINTFN(5, ("ether_ifattach\n"));
   3055 	ether_ifattach(ifp, eaddr);
   3056 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3057 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3058 		RND_TYPE_NET, 0);
   3059 #ifdef BGE_EVENT_COUNTERS
   3060 	/*
   3061 	 * Attach event counters.
   3062 	 */
   3063 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3064 	    NULL, device_xname(sc->bge_dev), "intr");
   3065 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3066 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3067 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3068 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3069 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3070 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3071 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3072 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3073 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3074 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3075 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3076 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3077 #endif /* BGE_EVENT_COUNTERS */
   3078 	DPRINTFN(5, ("callout_init\n"));
   3079 	callout_init(&sc->bge_timeout, 0);
   3080 
   3081 	if (pmf_device_register(self, NULL, NULL))
   3082 		pmf_class_network_register(self, ifp);
   3083 	else
   3084 		aprint_error_dev(self, "couldn't establish power handler\n");
   3085 
   3086 	sysctl_bge_init(sc);
   3087 
   3088 #ifdef BGE_DEBUG
   3089 	bge_debug_info(sc);
   3090 #endif
   3091 }
   3092 
   3093 static void
   3094 bge_release_resources(struct bge_softc *sc)
   3095 {
   3096 	if (sc->bge_vpd_prodname != NULL)
   3097 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3098 
   3099 	if (sc->bge_vpd_readonly != NULL)
   3100 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3101 }
   3102 
   3103 static int
   3104 bge_reset(struct bge_softc *sc)
   3105 {
   3106 	uint32_t cachesize, command, pcistate, marbmode;
   3107 #if 0
   3108 	uint32_t new_pcistate;
   3109 #endif
   3110 	pcireg_t devctl, reg;
   3111 	int i, val;
   3112 	void (*write_op)(struct bge_softc *, int, int);
   3113 
   3114 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
   3115 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3116 	    	if (sc->bge_flags & BGE_PCIE)
   3117 			write_op = bge_writemem_direct;
   3118 		else
   3119 			write_op = bge_writemem_ind;
   3120 	} else
   3121 		write_op = bge_writereg_ind;
   3122 
   3123 	/* Save some important PCI state. */
   3124 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3125 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3126 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3127 
   3128 	/* Step 5a: Enable memory arbiter. */
   3129 	marbmode = 0;
   3130 	if (BGE_IS_5714_FAMILY(sc))
   3131 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3132 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3133 
   3134 	/* Step 5b-5d: */
   3135 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3136 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3137 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3138 
   3139 	/* XXX ???: Disable fastboot on controllers that support it. */
   3140 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3141 	    BGE_IS_5755_PLUS(sc))
   3142 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3143 
   3144 	/*
   3145 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3146 	 * When firmware finishes its initialization it will
   3147 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3148 	 */
   3149 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3150 
   3151 	/* Step 7: */
   3152 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3153 	/*
   3154 	 * XXX: from FreeBSD/Linux; no documentation
   3155 	 */
   3156 	if (sc->bge_flags & BGE_PCIE) {
   3157 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3158 			/* PCI Express 1.0 system */
   3159 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3160 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3161 			/*
   3162 			 * Prevent PCI Express link training
   3163 			 * during global reset.
   3164 			 */
   3165 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3166 			val |= (1<<29);
   3167 		}
   3168 	}
   3169 
   3170 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3171 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3172 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3173 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3174 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3175 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3176 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3177 	}
   3178 
   3179 	/*
   3180 	 * Set GPHY Power Down Override to leave GPHY
   3181 	 * powered up in D0 uninitialized.
   3182 	 */
   3183 	if (BGE_IS_5705_PLUS(sc))
   3184 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3185 
   3186 	/* XXX 5721, 5751 and 5752 */
   3187 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3188 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3189 
   3190 	/* Issue global reset */
   3191 	write_op(sc, BGE_MISC_CFG, val);
   3192 
   3193 	/* Step 8: wait for complete */
   3194 	if (sc->bge_flags & BGE_PCIE)
   3195 		delay(100*1000); /* too big */
   3196 	else
   3197 		delay(100);
   3198 
   3199 	/* From Linux: dummy read to flush PCI posted writes */
   3200 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3201 
   3202 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3203 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3204 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3205 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3206 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3207 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3208 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3209 
   3210 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3211 	if (sc->bge_flags & BGE_PCIX) {
   3212 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3213 		    + PCI_PCIX_CMD);
   3214 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3215 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3216 	}
   3217 
   3218 	if (sc->bge_flags & BGE_PCIE) {
   3219 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3220 			DELAY(500000);
   3221 			/* XXX: Magic Numbers */
   3222 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3223 			    BGE_PCI_UNKNOWN0);
   3224 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3225 			    BGE_PCI_UNKNOWN0,
   3226 			    reg | (1 << 15));
   3227 		}
   3228 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3229 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3230 		/* Clear enable no snoop and disable relaxed ordering. */
   3231 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3232 		/* Set PCIE max payload size to 128. */
   3233 		devctl &= ~(0x00e0);
   3234 		/* Clear device status register. Write 1b to clear */
   3235 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3236 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3237 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3238 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3239 	}
   3240 
   3241 	/* Step 12: Enable memory arbiter. */
   3242 	marbmode = 0;
   3243 	if (BGE_IS_5714_FAMILY(sc))
   3244 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3245 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3246 
   3247 	/* Step 17: Poll until the firmware initialization is complete */
   3248 	bge_poll_fw(sc);
   3249 
   3250 	/* XXX 5721, 5751 and 5752 */
   3251 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3252 		/* Step 19: */
   3253 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3254 		/* Step 20: */
   3255 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3256 	}
   3257 
   3258 	/*
   3259 	 * Step 18: wirte mac mode
   3260 	 * XXX Write 0x0c for 5703S and 5704S
   3261 	 */
   3262 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3263 
   3264 
   3265 	/* Step 21: 5822 B0 errata */
   3266 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3267 		pcireg_t msidata;
   3268 
   3269 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3270 		    BGE_PCI_MSI_DATA);
   3271 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3272 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3273 		    msidata);
   3274 	}
   3275 
   3276 	/* Step 23: restore cache line size */
   3277 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3278 
   3279 #if 0
   3280 	/*
   3281 	 * XXX Wait for the value of the PCISTATE register to
   3282 	 * return to its original pre-reset state. This is a
   3283 	 * fairly good indicator of reset completion. If we don't
   3284 	 * wait for the reset to fully complete, trying to read
   3285 	 * from the device's non-PCI registers may yield garbage
   3286 	 * results.
   3287 	 */
   3288 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3289 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3290 		    BGE_PCI_PCISTATE);
   3291 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3292 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3293 			break;
   3294 		DELAY(10);
   3295 	}
   3296 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3297 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3298 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3299 	}
   3300 #endif
   3301 
   3302 	/* Step 28: Fix up byte swapping */
   3303 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3304 
   3305 	/* Tell the ASF firmware we are up */
   3306 	if (sc->bge_asf_mode & ASF_STACKUP)
   3307 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3308 
   3309 	/*
   3310 	 * The 5704 in TBI mode apparently needs some special
   3311 	 * adjustment to insure the SERDES drive level is set
   3312 	 * to 1.2V.
   3313 	 */
   3314 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3315 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3316 		uint32_t serdescfg;
   3317 
   3318 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3319 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3320 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3321 	}
   3322 
   3323 	if (sc->bge_flags & BGE_PCIE &&
   3324 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3325 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3326 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3327 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   3328 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
   3329 		uint32_t v;
   3330 
   3331 		/* Enable PCI Express bug fix */
   3332 		v = CSR_READ_4(sc, 0x7c00);
   3333 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3334 	}
   3335 	DELAY(10000);
   3336 
   3337 	return 0;
   3338 }
   3339 
   3340 /*
   3341  * Frame reception handling. This is called if there's a frame
   3342  * on the receive return list.
   3343  *
   3344  * Note: we have to be able to handle two possibilities here:
   3345  * 1) the frame is from the jumbo receive ring
   3346  * 2) the frame is from the standard receive ring
   3347  */
   3348 
   3349 static void
   3350 bge_rxeof(struct bge_softc *sc)
   3351 {
   3352 	struct ifnet *ifp;
   3353 	uint16_t rx_prod, rx_cons;
   3354 	int stdcnt = 0, jumbocnt = 0;
   3355 	bus_dmamap_t dmamap;
   3356 	bus_addr_t offset, toff;
   3357 	bus_size_t tlen;
   3358 	int tosync;
   3359 
   3360 	rx_cons = sc->bge_rx_saved_considx;
   3361 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3362 
   3363 	/* Nothing to do */
   3364 	if (rx_cons == rx_prod)
   3365 		return;
   3366 
   3367 	ifp = &sc->ethercom.ec_if;
   3368 
   3369 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3370 	    offsetof(struct bge_ring_data, bge_status_block),
   3371 	    sizeof (struct bge_status_block),
   3372 	    BUS_DMASYNC_POSTREAD);
   3373 
   3374 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3375 	tosync = rx_prod - rx_cons;
   3376 
   3377 	if (tosync != 0)
   3378 		rnd_add_uint32(&sc->rnd_source, tosync);
   3379 
   3380 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3381 
   3382 	if (tosync < 0) {
   3383 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3384 		    sizeof (struct bge_rx_bd);
   3385 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3386 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3387 		tosync = -tosync;
   3388 	}
   3389 
   3390 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3391 	    offset, tosync * sizeof (struct bge_rx_bd),
   3392 	    BUS_DMASYNC_POSTREAD);
   3393 
   3394 	while (rx_cons != rx_prod) {
   3395 		struct bge_rx_bd	*cur_rx;
   3396 		uint32_t		rxidx;
   3397 		struct mbuf		*m = NULL;
   3398 
   3399 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3400 
   3401 		rxidx = cur_rx->bge_idx;
   3402 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3403 
   3404 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3405 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3406 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3407 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3408 			jumbocnt++;
   3409 			bus_dmamap_sync(sc->bge_dmatag,
   3410 			    sc->bge_cdata.bge_rx_jumbo_map,
   3411 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3412 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3413 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3414 				ifp->if_ierrors++;
   3415 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3416 				continue;
   3417 			}
   3418 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3419 					     NULL)== ENOBUFS) {
   3420 				ifp->if_ierrors++;
   3421 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3422 				continue;
   3423 			}
   3424 		} else {
   3425 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3426 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3427 
   3428 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3429 			stdcnt++;
   3430 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3431 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3432 			if (dmamap == NULL) {
   3433 				ifp->if_ierrors++;
   3434 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3435 				continue;
   3436 			}
   3437 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3438 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3439 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3440 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3441 				ifp->if_ierrors++;
   3442 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3443 				continue;
   3444 			}
   3445 			if (bge_newbuf_std(sc, sc->bge_std,
   3446 			    NULL, dmamap) == ENOBUFS) {
   3447 				ifp->if_ierrors++;
   3448 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3449 				continue;
   3450 			}
   3451 		}
   3452 
   3453 		ifp->if_ipackets++;
   3454 #ifndef __NO_STRICT_ALIGNMENT
   3455 		/*
   3456 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3457 		 * the Rx buffer has the layer-2 header unaligned.
   3458 		 * If our CPU requires alignment, re-align by copying.
   3459 		 */
   3460 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3461 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3462 				cur_rx->bge_len);
   3463 			m->m_data += ETHER_ALIGN;
   3464 		}
   3465 #endif
   3466 
   3467 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3468 		m->m_pkthdr.rcvif = ifp;
   3469 
   3470 		/*
   3471 		 * Handle BPF listeners. Let the BPF user see the packet.
   3472 		 */
   3473 		bpf_mtap(ifp, m);
   3474 
   3475 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3476 
   3477 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3478 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3479 		/*
   3480 		 * Rx transport checksum-offload may also
   3481 		 * have bugs with packets which, when transmitted,
   3482 		 * were `runts' requiring padding.
   3483 		 */
   3484 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3485 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3486 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3487 			m->m_pkthdr.csum_data =
   3488 			    cur_rx->bge_tcp_udp_csum;
   3489 			m->m_pkthdr.csum_flags |=
   3490 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3491 			     M_CSUM_DATA);
   3492 		}
   3493 
   3494 		/*
   3495 		 * If we received a packet with a vlan tag, pass it
   3496 		 * to vlan_input() instead of ether_input().
   3497 		 */
   3498 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3499 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3500 		}
   3501 
   3502 		(*ifp->if_input)(ifp, m);
   3503 	}
   3504 
   3505 	sc->bge_rx_saved_considx = rx_cons;
   3506 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3507 	if (stdcnt)
   3508 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3509 	if (jumbocnt)
   3510 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3511 }
   3512 
   3513 static void
   3514 bge_txeof(struct bge_softc *sc)
   3515 {
   3516 	struct bge_tx_bd *cur_tx = NULL;
   3517 	struct ifnet *ifp;
   3518 	struct txdmamap_pool_entry *dma;
   3519 	bus_addr_t offset, toff;
   3520 	bus_size_t tlen;
   3521 	int tosync;
   3522 	struct mbuf *m;
   3523 
   3524 	ifp = &sc->ethercom.ec_if;
   3525 
   3526 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3527 	    offsetof(struct bge_ring_data, bge_status_block),
   3528 	    sizeof (struct bge_status_block),
   3529 	    BUS_DMASYNC_POSTREAD);
   3530 
   3531 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3532 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3533 	    sc->bge_tx_saved_considx;
   3534 
   3535 	if (tosync != 0)
   3536 		rnd_add_uint32(&sc->rnd_source, tosync);
   3537 
   3538 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3539 
   3540 	if (tosync < 0) {
   3541 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3542 		    sizeof (struct bge_tx_bd);
   3543 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3544 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3545 		tosync = -tosync;
   3546 	}
   3547 
   3548 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3549 	    offset, tosync * sizeof (struct bge_tx_bd),
   3550 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3551 
   3552 	/*
   3553 	 * Go through our tx ring and free mbufs for those
   3554 	 * frames that have been sent.
   3555 	 */
   3556 	while (sc->bge_tx_saved_considx !=
   3557 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3558 		uint32_t		idx = 0;
   3559 
   3560 		idx = sc->bge_tx_saved_considx;
   3561 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3562 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3563 			ifp->if_opackets++;
   3564 		m = sc->bge_cdata.bge_tx_chain[idx];
   3565 		if (m != NULL) {
   3566 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3567 			dma = sc->txdma[idx];
   3568 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3569 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3570 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3571 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3572 			sc->txdma[idx] = NULL;
   3573 
   3574 			m_freem(m);
   3575 		}
   3576 		sc->bge_txcnt--;
   3577 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3578 		ifp->if_timer = 0;
   3579 	}
   3580 
   3581 	if (cur_tx != NULL)
   3582 		ifp->if_flags &= ~IFF_OACTIVE;
   3583 }
   3584 
   3585 static int
   3586 bge_intr(void *xsc)
   3587 {
   3588 	struct bge_softc *sc;
   3589 	struct ifnet *ifp;
   3590 	uint32_t statusword;
   3591 
   3592 	sc = xsc;
   3593 	ifp = &sc->ethercom.ec_if;
   3594 
   3595 	/* It is possible for the interrupt to arrive before
   3596 	 * the status block is updated prior to the interrupt.
   3597 	 * Reading the PCI State register will confirm whether the
   3598 	 * interrupt is ours and will flush the status block.
   3599 	 */
   3600 
   3601 	/* read status word from status block */
   3602 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3603 
   3604 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3605 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3606 		/* Ack interrupt and stop others from occuring. */
   3607 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3608 
   3609 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3610 
   3611 		/* clear status word */
   3612 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3613 
   3614 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3615 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3616 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3617 			bge_link_upd(sc);
   3618 
   3619 		if (ifp->if_flags & IFF_RUNNING) {
   3620 			/* Check RX return ring producer/consumer */
   3621 			bge_rxeof(sc);
   3622 
   3623 			/* Check TX ring producer/consumer */
   3624 			bge_txeof(sc);
   3625 		}
   3626 
   3627 		if (sc->bge_pending_rxintr_change) {
   3628 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3629 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3630 			uint32_t junk;
   3631 
   3632 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3633 			DELAY(10);
   3634 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3635 
   3636 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3637 			DELAY(10);
   3638 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3639 
   3640 			sc->bge_pending_rxintr_change = 0;
   3641 		}
   3642 		bge_handle_events(sc);
   3643 
   3644 		/* Re-enable interrupts. */
   3645 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3646 
   3647 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3648 			bge_start(ifp);
   3649 
   3650 		return 1;
   3651 	} else
   3652 		return 0;
   3653 }
   3654 
   3655 static void
   3656 bge_asf_driver_up(struct bge_softc *sc)
   3657 {
   3658 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3659 		/* Send ASF heartbeat aprox. every 2s */
   3660 		if (sc->bge_asf_count)
   3661 			sc->bge_asf_count --;
   3662 		else {
   3663 			sc->bge_asf_count = 2;
   3664 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3665 			    BGE_FW_DRV_ALIVE);
   3666 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3667 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3668 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3669 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3670 		}
   3671 	}
   3672 }
   3673 
   3674 static void
   3675 bge_tick(void *xsc)
   3676 {
   3677 	struct bge_softc *sc = xsc;
   3678 	struct mii_data *mii = &sc->bge_mii;
   3679 	int s;
   3680 
   3681 	s = splnet();
   3682 
   3683 	if (BGE_IS_5705_PLUS(sc))
   3684 		bge_stats_update_regs(sc);
   3685 	else
   3686 		bge_stats_update(sc);
   3687 
   3688 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3689 		/*
   3690 		 * Since in TBI mode auto-polling can't be used we should poll
   3691 		 * link status manually. Here we register pending link event
   3692 		 * and trigger interrupt.
   3693 		 */
   3694 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3695 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3696 	} else {
   3697 		/*
   3698 		 * Do not touch PHY if we have link up. This could break
   3699 		 * IPMI/ASF mode or produce extra input errors.
   3700 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3701 		 */
   3702 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3703 			mii_tick(mii);
   3704 	}
   3705 
   3706 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3707 
   3708 	splx(s);
   3709 }
   3710 
   3711 static void
   3712 bge_stats_update_regs(struct bge_softc *sc)
   3713 {
   3714 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3715 
   3716 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3717 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3718 
   3719 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3720 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3721 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3722 }
   3723 
   3724 static void
   3725 bge_stats_update(struct bge_softc *sc)
   3726 {
   3727 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3728 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3729 
   3730 #define READ_STAT(sc, stats, stat) \
   3731 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3732 
   3733 	ifp->if_collisions +=
   3734 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3735 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3736 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3737 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3738 	  ifp->if_collisions;
   3739 
   3740 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3741 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3742 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3743 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3744 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3745 		      READ_STAT(sc, stats,
   3746 		      		xoffPauseFramesReceived.bge_addr_lo));
   3747 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3748 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3749 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3750 		      READ_STAT(sc, stats,
   3751 		      		macControlFramesReceived.bge_addr_lo));
   3752 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3753 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3754 
   3755 #undef READ_STAT
   3756 
   3757 #ifdef notdef
   3758 	ifp->if_collisions +=
   3759 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3760 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3761 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3762 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3763 	   ifp->if_collisions;
   3764 #endif
   3765 }
   3766 
   3767 /*
   3768  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3769  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3770  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3771  * the hardware checksum assist gives incorrect results (possibly
   3772  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3773  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3774  */
   3775 static inline int
   3776 bge_cksum_pad(struct mbuf *pkt)
   3777 {
   3778 	struct mbuf *last = NULL;
   3779 	int padlen;
   3780 
   3781 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3782 
   3783 	/* if there's only the packet-header and we can pad there, use it. */
   3784 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3785 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3786 		last = pkt;
   3787 	} else {
   3788 		/*
   3789 		 * Walk packet chain to find last mbuf. We will either
   3790 		 * pad there, or append a new mbuf and pad it
   3791 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3792 		 */
   3793 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3794 	      	       continue; /* do nothing */
   3795 		}
   3796 
   3797 		/* `last' now points to last in chain. */
   3798 		if (M_TRAILINGSPACE(last) < padlen) {
   3799 			/* Allocate new empty mbuf, pad it. Compact later. */
   3800 			struct mbuf *n;
   3801 			MGET(n, M_DONTWAIT, MT_DATA);
   3802 			if (n == NULL)
   3803 				return ENOBUFS;
   3804 			n->m_len = 0;
   3805 			last->m_next = n;
   3806 			last = n;
   3807 		}
   3808 	}
   3809 
   3810 	KDASSERT(!M_READONLY(last));
   3811 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3812 
   3813 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3814 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3815 	last->m_len += padlen;
   3816 	pkt->m_pkthdr.len += padlen;
   3817 	return 0;
   3818 }
   3819 
   3820 /*
   3821  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3822  */
   3823 static inline int
   3824 bge_compact_dma_runt(struct mbuf *pkt)
   3825 {
   3826 	struct mbuf	*m, *prev;
   3827 	int 		totlen, prevlen;
   3828 
   3829 	prev = NULL;
   3830 	totlen = 0;
   3831 	prevlen = -1;
   3832 
   3833 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3834 		int mlen = m->m_len;
   3835 		int shortfall = 8 - mlen ;
   3836 
   3837 		totlen += mlen;
   3838 		if (mlen == 0)
   3839 			continue;
   3840 		if (mlen >= 8)
   3841 			continue;
   3842 
   3843 		/* If we get here, mbuf data is too small for DMA engine.
   3844 		 * Try to fix by shuffling data to prev or next in chain.
   3845 		 * If that fails, do a compacting deep-copy of the whole chain.
   3846 		 */
   3847 
   3848 		/* Internal frag. If fits in prev, copy it there. */
   3849 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3850 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3851 			prev->m_len += mlen;
   3852 			m->m_len = 0;
   3853 			/* XXX stitch chain */
   3854 			prev->m_next = m_free(m);
   3855 			m = prev;
   3856 			continue;
   3857 		}
   3858 		else if (m->m_next != NULL &&
   3859 			     M_TRAILINGSPACE(m) >= shortfall &&
   3860 			     m->m_next->m_len >= (8 + shortfall)) {
   3861 		    /* m is writable and have enough data in next, pull up. */
   3862 
   3863 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3864 			    shortfall);
   3865 			m->m_len += shortfall;
   3866 			m->m_next->m_len -= shortfall;
   3867 			m->m_next->m_data += shortfall;
   3868 		}
   3869 		else if (m->m_next == NULL || 1) {
   3870 		  	/* Got a runt at the very end of the packet.
   3871 			 * borrow data from the tail of the preceding mbuf and
   3872 			 * update its length in-place. (The original data is still
   3873 			 * valid, so we can do this even if prev is not writable.)
   3874 			 */
   3875 
   3876 			/* if we'd make prev a runt, just move all of its data. */
   3877 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3878 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3879 
   3880 			if ((prev->m_len - shortfall) < 8)
   3881 				shortfall = prev->m_len;
   3882 
   3883 #ifdef notyet	/* just do the safe slow thing for now */
   3884 			if (!M_READONLY(m)) {
   3885 				if (M_LEADINGSPACE(m) < shorfall) {
   3886 					void *m_dat;
   3887 					m_dat = (m->m_flags & M_PKTHDR) ?
   3888 					  m->m_pktdat : m->dat;
   3889 					memmove(m_dat, mtod(m, void*), m->m_len);
   3890 					m->m_data = m_dat;
   3891 				    }
   3892 			} else
   3893 #endif	/* just do the safe slow thing */
   3894 			{
   3895 				struct mbuf * n = NULL;
   3896 				int newprevlen = prev->m_len - shortfall;
   3897 
   3898 				MGET(n, M_NOWAIT, MT_DATA);
   3899 				if (n == NULL)
   3900 				   return ENOBUFS;
   3901 				KASSERT(m->m_len + shortfall < MLEN
   3902 					/*,
   3903 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3904 
   3905 				/* first copy the data we're stealing from prev */
   3906 				memcpy(n->m_data, prev->m_data + newprevlen,
   3907 				    shortfall);
   3908 
   3909 				/* update prev->m_len accordingly */
   3910 				prev->m_len -= shortfall;
   3911 
   3912 				/* copy data from runt m */
   3913 				memcpy(n->m_data + shortfall, m->m_data,
   3914 				    m->m_len);
   3915 
   3916 				/* n holds what we stole from prev, plus m */
   3917 				n->m_len = shortfall + m->m_len;
   3918 
   3919 				/* stitch n into chain and free m */
   3920 				n->m_next = m->m_next;
   3921 				prev->m_next = n;
   3922 				/* KASSERT(m->m_next == NULL); */
   3923 				m->m_next = NULL;
   3924 				m_free(m);
   3925 				m = n;	/* for continuing loop */
   3926 			}
   3927 		}
   3928 		prevlen = m->m_len;
   3929 	}
   3930 	return 0;
   3931 }
   3932 
   3933 /*
   3934  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3935  * pointers to descriptors.
   3936  */
   3937 static int
   3938 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3939 {
   3940 	struct bge_tx_bd	*f = NULL;
   3941 	uint32_t		frag, cur;
   3942 	uint16_t		csum_flags = 0;
   3943 	uint16_t		txbd_tso_flags = 0;
   3944 	struct txdmamap_pool_entry *dma;
   3945 	bus_dmamap_t dmamap;
   3946 	int			i = 0;
   3947 	struct m_tag		*mtag;
   3948 	int			use_tso, maxsegsize, error;
   3949 
   3950 	cur = frag = *txidx;
   3951 
   3952 	if (m_head->m_pkthdr.csum_flags) {
   3953 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3954 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3955 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3956 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3957 	}
   3958 
   3959 	/*
   3960 	 * If we were asked to do an outboard checksum, and the NIC
   3961 	 * has the bug where it sometimes adds in the Ethernet padding,
   3962 	 * explicitly pad with zeros so the cksum will be correct either way.
   3963 	 * (For now, do this for all chip versions, until newer
   3964 	 * are confirmed to not require the workaround.)
   3965 	 */
   3966 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3967 #ifdef notyet
   3968 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3969 #endif
   3970 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3971 		goto check_dma_bug;
   3972 
   3973 	if (bge_cksum_pad(m_head) != 0)
   3974 	    return ENOBUFS;
   3975 
   3976 check_dma_bug:
   3977 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3978 		goto doit;
   3979 
   3980 	/*
   3981 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3982 	 * less than eight bytes.  If we encounter a teeny mbuf
   3983 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3984 	 */
   3985 	if (bge_compact_dma_runt(m_head) != 0)
   3986 		return ENOBUFS;
   3987 
   3988 doit:
   3989 	dma = SLIST_FIRST(&sc->txdma_list);
   3990 	if (dma == NULL)
   3991 		return ENOBUFS;
   3992 	dmamap = dma->dmamap;
   3993 
   3994 	/*
   3995 	 * Set up any necessary TSO state before we start packing...
   3996 	 */
   3997 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   3998 	if (!use_tso) {
   3999 		maxsegsize = 0;
   4000 	} else {	/* TSO setup */
   4001 		unsigned  mss;
   4002 		struct ether_header *eh;
   4003 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4004 		struct mbuf * m0 = m_head;
   4005 		struct ip *ip;
   4006 		struct tcphdr *th;
   4007 		int iphl, hlen;
   4008 
   4009 		/*
   4010 		 * XXX It would be nice if the mbuf pkthdr had offset
   4011 		 * fields for the protocol headers.
   4012 		 */
   4013 
   4014 		eh = mtod(m0, struct ether_header *);
   4015 		switch (htons(eh->ether_type)) {
   4016 		case ETHERTYPE_IP:
   4017 			offset = ETHER_HDR_LEN;
   4018 			break;
   4019 
   4020 		case ETHERTYPE_VLAN:
   4021 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4022 			break;
   4023 
   4024 		default:
   4025 			/*
   4026 			 * Don't support this protocol or encapsulation.
   4027 			 */
   4028 			return ENOBUFS;
   4029 		}
   4030 
   4031 		/*
   4032 		 * TCP/IP headers are in the first mbuf; we can do
   4033 		 * this the easy way.
   4034 		 */
   4035 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4036 		hlen = iphl + offset;
   4037 		if (__predict_false(m0->m_len <
   4038 				    (hlen + sizeof(struct tcphdr)))) {
   4039 
   4040 			aprint_debug_dev(sc->bge_dev,
   4041 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4042 			    "not handled yet\n",
   4043 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4044 #ifdef NOTYET
   4045 			/*
   4046 			 * XXX jonathan (at) NetBSD.org: untested.
   4047 			 * how to force  this branch to be taken?
   4048 			 */
   4049 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4050 
   4051 			m_copydata(m0, offset, sizeof(ip), &ip);
   4052 			m_copydata(m0, hlen, sizeof(th), &th);
   4053 
   4054 			ip.ip_len = 0;
   4055 
   4056 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4057 			    sizeof(ip.ip_len), &ip.ip_len);
   4058 
   4059 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4060 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4061 
   4062 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4063 			    sizeof(th.th_sum), &th.th_sum);
   4064 
   4065 			hlen += th.th_off << 2;
   4066 			iptcp_opt_words	= hlen;
   4067 #else
   4068 			/*
   4069 			 * if_wm "hard" case not yet supported, can we not
   4070 			 * mandate it out of existence?
   4071 			 */
   4072 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4073 
   4074 			return ENOBUFS;
   4075 #endif
   4076 		} else {
   4077 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4078 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4079 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4080 
   4081 			/* Total IP/TCP options, in 32-bit words */
   4082 			iptcp_opt_words = (ip_tcp_hlen
   4083 					   - sizeof(struct tcphdr)
   4084 					   - sizeof(struct ip)) >> 2;
   4085 		}
   4086 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   4087 			th->th_sum = 0;
   4088 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4089 		} else {
   4090 			/*
   4091 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4092 			 * Requires TSO firmware patch for 5701/5703/5704.
   4093 			 */
   4094 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4095 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4096 		}
   4097 
   4098 		mss = m_head->m_pkthdr.segsz;
   4099 		txbd_tso_flags |=
   4100 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4101 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4102 
   4103 		/*
   4104 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4105 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4106 		 * the NIC copies 40 bytes of IP/TCP header from the
   4107 		 * supplied header into the IP/TCP header portion of
   4108 		 * each post-TSO-segment. If the supplied packet has IP or
   4109 		 * TCP options, we need to tell the NIC to copy those extra
   4110 		 * bytes into each  post-TSO header, in addition to the normal
   4111 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4112 		 * Unfortunately, the driver encoding of option length
   4113 		 * varies across different ASIC families.
   4114 		 */
   4115 		tcp_seg_flags = 0;
   4116 		if (iptcp_opt_words) {
   4117 			if (BGE_IS_5705_PLUS(sc)) {
   4118 				tcp_seg_flags =
   4119 					iptcp_opt_words << 11;
   4120 			} else {
   4121 				txbd_tso_flags |=
   4122 					iptcp_opt_words << 12;
   4123 			}
   4124 		}
   4125 		maxsegsize = mss | tcp_seg_flags;
   4126 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4127 
   4128 	}	/* TSO setup */
   4129 
   4130 	/*
   4131 	 * Start packing the mbufs in this chain into
   4132 	 * the fragment pointers. Stop when we run out
   4133 	 * of fragments or hit the end of the mbuf chain.
   4134 	 */
   4135 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4136 	    BUS_DMA_NOWAIT);
   4137 	if (error)
   4138 		return ENOBUFS;
   4139 	/*
   4140 	 * Sanity check: avoid coming within 16 descriptors
   4141 	 * of the end of the ring.
   4142 	 */
   4143 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4144 		BGE_TSO_PRINTF(("%s: "
   4145 		    " dmamap_load_mbuf too close to ring wrap\n",
   4146 		    device_xname(sc->bge_dev)));
   4147 		goto fail_unload;
   4148 	}
   4149 
   4150 	mtag = sc->ethercom.ec_nvlans ?
   4151 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4152 
   4153 
   4154 	/* Iterate over dmap-map fragments. */
   4155 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4156 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4157 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4158 			break;
   4159 
   4160 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4161 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4162 
   4163 		/*
   4164 		 * For 5751 and follow-ons, for TSO we must turn
   4165 		 * off checksum-assist flag in the tx-descr, and
   4166 		 * supply the ASIC-revision-specific encoding
   4167 		 * of TSO flags and segsize.
   4168 		 */
   4169 		if (use_tso) {
   4170 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4171 				f->bge_rsvd = maxsegsize;
   4172 				f->bge_flags = csum_flags | txbd_tso_flags;
   4173 			} else {
   4174 				f->bge_rsvd = 0;
   4175 				f->bge_flags =
   4176 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4177 			}
   4178 		} else {
   4179 			f->bge_rsvd = 0;
   4180 			f->bge_flags = csum_flags;
   4181 		}
   4182 
   4183 		if (mtag != NULL) {
   4184 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4185 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4186 		} else {
   4187 			f->bge_vlan_tag = 0;
   4188 		}
   4189 		cur = frag;
   4190 		BGE_INC(frag, BGE_TX_RING_CNT);
   4191 	}
   4192 
   4193 	if (i < dmamap->dm_nsegs) {
   4194 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4195 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4196 		goto fail_unload;
   4197 	}
   4198 
   4199 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4200 	    BUS_DMASYNC_PREWRITE);
   4201 
   4202 	if (frag == sc->bge_tx_saved_considx) {
   4203 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4204 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4205 
   4206 		goto fail_unload;
   4207 	}
   4208 
   4209 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4210 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4211 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4212 	sc->txdma[cur] = dma;
   4213 	sc->bge_txcnt += dmamap->dm_nsegs;
   4214 
   4215 	*txidx = frag;
   4216 
   4217 	return 0;
   4218 
   4219 fail_unload:
   4220 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4221 
   4222 	return ENOBUFS;
   4223 }
   4224 
   4225 /*
   4226  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4227  * to the mbuf data regions directly in the transmit descriptors.
   4228  */
   4229 static void
   4230 bge_start(struct ifnet *ifp)
   4231 {
   4232 	struct bge_softc *sc;
   4233 	struct mbuf *m_head = NULL;
   4234 	uint32_t prodidx;
   4235 	int pkts = 0;
   4236 
   4237 	sc = ifp->if_softc;
   4238 
   4239 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4240 		return;
   4241 
   4242 	prodidx = sc->bge_tx_prodidx;
   4243 
   4244 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4245 		IFQ_POLL(&ifp->if_snd, m_head);
   4246 		if (m_head == NULL)
   4247 			break;
   4248 
   4249 #if 0
   4250 		/*
   4251 		 * XXX
   4252 		 * safety overkill.  If this is a fragmented packet chain
   4253 		 * with delayed TCP/UDP checksums, then only encapsulate
   4254 		 * it if we have enough descriptors to handle the entire
   4255 		 * chain at once.
   4256 		 * (paranoia -- may not actually be needed)
   4257 		 */
   4258 		if (m_head->m_flags & M_FIRSTFRAG &&
   4259 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4260 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4261 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4262 				ifp->if_flags |= IFF_OACTIVE;
   4263 				break;
   4264 			}
   4265 		}
   4266 #endif
   4267 
   4268 		/*
   4269 		 * Pack the data into the transmit ring. If we
   4270 		 * don't have room, set the OACTIVE flag and wait
   4271 		 * for the NIC to drain the ring.
   4272 		 */
   4273 		if (bge_encap(sc, m_head, &prodidx)) {
   4274 			ifp->if_flags |= IFF_OACTIVE;
   4275 			break;
   4276 		}
   4277 
   4278 		/* now we are committed to transmit the packet */
   4279 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4280 		pkts++;
   4281 
   4282 		/*
   4283 		 * If there's a BPF listener, bounce a copy of this frame
   4284 		 * to him.
   4285 		 */
   4286 		bpf_mtap(ifp, m_head);
   4287 	}
   4288 	if (pkts == 0)
   4289 		return;
   4290 
   4291 	/* Transmit */
   4292 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4293 	/* 5700 b2 errata */
   4294 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4295 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4296 
   4297 	sc->bge_tx_prodidx = prodidx;
   4298 
   4299 	/*
   4300 	 * Set a timeout in case the chip goes out to lunch.
   4301 	 */
   4302 	ifp->if_timer = 5;
   4303 }
   4304 
   4305 static int
   4306 bge_init(struct ifnet *ifp)
   4307 {
   4308 	struct bge_softc *sc = ifp->if_softc;
   4309 	const uint16_t *m;
   4310 	int s, error = 0;
   4311 
   4312 	s = splnet();
   4313 
   4314 	ifp = &sc->ethercom.ec_if;
   4315 
   4316 	/* Cancel pending I/O and flush buffers. */
   4317 	bge_stop(ifp, 0);
   4318 
   4319 	bge_stop_fw(sc);
   4320 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4321 	bge_reset(sc);
   4322 	bge_sig_legacy(sc, BGE_RESET_START);
   4323 	bge_sig_post_reset(sc, BGE_RESET_START);
   4324 
   4325 	bge_chipinit(sc);
   4326 
   4327 	/*
   4328 	 * Init the various state machines, ring
   4329 	 * control blocks and firmware.
   4330 	 */
   4331 	error = bge_blockinit(sc);
   4332 	if (error != 0) {
   4333 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4334 		    error);
   4335 		splx(s);
   4336 		return error;
   4337 	}
   4338 
   4339 	ifp = &sc->ethercom.ec_if;
   4340 
   4341 	/* Specify MTU. */
   4342 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4343 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4344 
   4345 	/* Load our MAC address. */
   4346 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4347 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4348 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4349 
   4350 	/* Enable or disable promiscuous mode as needed. */
   4351 	if (ifp->if_flags & IFF_PROMISC)
   4352 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4353 	else
   4354 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4355 
   4356 	/* Program multicast filter. */
   4357 	bge_setmulti(sc);
   4358 
   4359 	/* Init RX ring. */
   4360 	bge_init_rx_ring_std(sc);
   4361 
   4362 	/*
   4363 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4364 	 * memory to insure that the chip has in fact read the first
   4365 	 * entry of the ring.
   4366 	 */
   4367 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4368 		uint32_t		v, i;
   4369 		for (i = 0; i < 10; i++) {
   4370 			DELAY(20);
   4371 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4372 			if (v == (MCLBYTES - ETHER_ALIGN))
   4373 				break;
   4374 		}
   4375 		if (i == 10)
   4376 			aprint_error_dev(sc->bge_dev,
   4377 			    "5705 A0 chip failed to load RX ring\n");
   4378 	}
   4379 
   4380 	/* Init jumbo RX ring. */
   4381 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4382 		bge_init_rx_ring_jumbo(sc);
   4383 
   4384 	/* Init our RX return ring index */
   4385 	sc->bge_rx_saved_considx = 0;
   4386 
   4387 	/* Init TX ring. */
   4388 	bge_init_tx_ring(sc);
   4389 
   4390 	/* Turn on transmitter */
   4391 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   4392 
   4393 	/* Turn on receiver */
   4394 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4395 
   4396 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4397 
   4398 	/* Tell firmware we're alive. */
   4399 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4400 
   4401 	/* Enable host interrupts. */
   4402 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4403 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4404 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4405 
   4406 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4407 		goto out;
   4408 
   4409 	ifp->if_flags |= IFF_RUNNING;
   4410 	ifp->if_flags &= ~IFF_OACTIVE;
   4411 
   4412 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4413 
   4414 out:
   4415 	sc->bge_if_flags = ifp->if_flags;
   4416 	splx(s);
   4417 
   4418 	return error;
   4419 }
   4420 
   4421 /*
   4422  * Set media options.
   4423  */
   4424 static int
   4425 bge_ifmedia_upd(struct ifnet *ifp)
   4426 {
   4427 	struct bge_softc *sc = ifp->if_softc;
   4428 	struct mii_data *mii = &sc->bge_mii;
   4429 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4430 	int rc;
   4431 
   4432 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4433 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4434 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4435 			return EINVAL;
   4436 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4437 		case IFM_AUTO:
   4438 			/*
   4439 			 * The BCM5704 ASIC appears to have a special
   4440 			 * mechanism for programming the autoneg
   4441 			 * advertisement registers in TBI mode.
   4442 			 */
   4443 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4444 				uint32_t sgdig;
   4445 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4446 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4447 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4448 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4449 					sgdig |= BGE_SGDIGCFG_AUTO |
   4450 					    BGE_SGDIGCFG_PAUSE_CAP |
   4451 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4452 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4453 					    sgdig | BGE_SGDIGCFG_SEND);
   4454 					DELAY(5);
   4455 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4456 				}
   4457 			}
   4458 			break;
   4459 		case IFM_1000_SX:
   4460 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4461 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4462 				    BGE_MACMODE_HALF_DUPLEX);
   4463 			} else {
   4464 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4465 				    BGE_MACMODE_HALF_DUPLEX);
   4466 			}
   4467 			break;
   4468 		default:
   4469 			return EINVAL;
   4470 		}
   4471 		/* XXX 802.3x flow control for 1000BASE-SX */
   4472 		return 0;
   4473 	}
   4474 
   4475 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4476 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4477 		return 0;
   4478 
   4479 	/*
   4480 	 * Force an interrupt so that we will call bge_link_upd
   4481 	 * if needed and clear any pending link state attention.
   4482 	 * Without this we are not getting any further interrupts
   4483 	 * for link state changes and thus will not UP the link and
   4484 	 * not be able to send in bge_start. The only way to get
   4485 	 * things working was to receive a packet and get a RX intr.
   4486 	 */
   4487 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4488 	    sc->bge_flags & BGE_IS_5788)
   4489 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4490 	else
   4491 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4492 
   4493 	return rc;
   4494 }
   4495 
   4496 /*
   4497  * Report current media status.
   4498  */
   4499 static void
   4500 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4501 {
   4502 	struct bge_softc *sc = ifp->if_softc;
   4503 	struct mii_data *mii = &sc->bge_mii;
   4504 
   4505 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4506 		ifmr->ifm_status = IFM_AVALID;
   4507 		ifmr->ifm_active = IFM_ETHER;
   4508 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4509 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4510 			ifmr->ifm_status |= IFM_ACTIVE;
   4511 		ifmr->ifm_active |= IFM_1000_SX;
   4512 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4513 			ifmr->ifm_active |= IFM_HDX;
   4514 		else
   4515 			ifmr->ifm_active |= IFM_FDX;
   4516 		return;
   4517 	}
   4518 
   4519 	mii_pollstat(mii);
   4520 	ifmr->ifm_status = mii->mii_media_status;
   4521 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4522 	    sc->bge_flowflags;
   4523 }
   4524 
   4525 static int
   4526 bge_ifflags_cb(struct ethercom *ec)
   4527 {
   4528 	struct ifnet *ifp = &ec->ec_if;
   4529 	struct bge_softc *sc = ifp->if_softc;
   4530 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4531 
   4532 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4533 		return ENETRESET;
   4534 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4535 		return 0;
   4536 
   4537 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4538 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4539 	else
   4540 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4541 
   4542 	bge_setmulti(sc);
   4543 
   4544 	sc->bge_if_flags = ifp->if_flags;
   4545 	return 0;
   4546 }
   4547 
   4548 static int
   4549 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4550 {
   4551 	struct bge_softc *sc = ifp->if_softc;
   4552 	struct ifreq *ifr = (struct ifreq *) data;
   4553 	int s, error = 0;
   4554 	struct mii_data *mii;
   4555 
   4556 	s = splnet();
   4557 
   4558 	switch (command) {
   4559 	case SIOCSIFMEDIA:
   4560 		/* XXX Flow control is not supported for 1000BASE-SX */
   4561 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4562 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4563 			sc->bge_flowflags = 0;
   4564 		}
   4565 
   4566 		/* Flow control requires full-duplex mode. */
   4567 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4568 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4569 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4570 		}
   4571 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4572 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4573 				/* We can do both TXPAUSE and RXPAUSE. */
   4574 				ifr->ifr_media |=
   4575 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4576 			}
   4577 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4578 		}
   4579 		/* FALLTHROUGH */
   4580 	case SIOCGIFMEDIA:
   4581 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4582 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4583 			    command);
   4584 		} else {
   4585 			mii = &sc->bge_mii;
   4586 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4587 			    command);
   4588 		}
   4589 		break;
   4590 	default:
   4591 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4592 			break;
   4593 
   4594 		error = 0;
   4595 
   4596 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4597 			;
   4598 		else if (ifp->if_flags & IFF_RUNNING)
   4599 			bge_setmulti(sc);
   4600 		break;
   4601 	}
   4602 
   4603 	splx(s);
   4604 
   4605 	return error;
   4606 }
   4607 
   4608 static void
   4609 bge_watchdog(struct ifnet *ifp)
   4610 {
   4611 	struct bge_softc *sc;
   4612 
   4613 	sc = ifp->if_softc;
   4614 
   4615 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4616 
   4617 	ifp->if_flags &= ~IFF_RUNNING;
   4618 	bge_init(ifp);
   4619 
   4620 	ifp->if_oerrors++;
   4621 }
   4622 
   4623 static void
   4624 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4625 {
   4626 	int i;
   4627 
   4628 	BGE_CLRBIT(sc, reg, bit);
   4629 
   4630 	for (i = 0; i < 1000; i++) {
   4631 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4632 			return;
   4633 		delay(100);
   4634 	}
   4635 
   4636 	/*
   4637 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4638 	 * on some environment (and once after boot?)
   4639 	 */
   4640 	if (reg != BGE_SRS_MODE)
   4641 		aprint_error_dev(sc->bge_dev,
   4642 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4643 		    (u_long)reg, bit);
   4644 }
   4645 
   4646 /*
   4647  * Stop the adapter and free any mbufs allocated to the
   4648  * RX and TX lists.
   4649  */
   4650 static void
   4651 bge_stop(struct ifnet *ifp, int disable)
   4652 {
   4653 	struct bge_softc *sc = ifp->if_softc;
   4654 
   4655 	callout_stop(&sc->bge_timeout);
   4656 
   4657 	/*
   4658 	 * Tell firmware we're shutting down.
   4659 	 */
   4660 	bge_stop_fw(sc);
   4661 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4662 
   4663 	/* Disable host interrupts. */
   4664 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4665 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4666 
   4667 	/*
   4668 	 * Disable all of the receiver blocks
   4669 	 */
   4670 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4671 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4672 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4673 	if (BGE_IS_5700_FAMILY(sc))
   4674 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4675 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4676 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4677 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4678 
   4679 	/*
   4680 	 * Disable all of the transmit blocks
   4681 	 */
   4682 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4683 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4684 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4685 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4686 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4687 	if (BGE_IS_5700_FAMILY(sc))
   4688 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4689 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4690 
   4691 	/*
   4692 	 * Shut down all of the memory managers and related
   4693 	 * state machines.
   4694 	 */
   4695 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4696 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4697 	if (BGE_IS_5700_FAMILY(sc))
   4698 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4699 
   4700 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4701 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4702 
   4703 	if (BGE_IS_5700_FAMILY(sc)) {
   4704 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4705 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4706 	}
   4707 
   4708 	bge_reset(sc);
   4709 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4710 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4711 
   4712 	/*
   4713 	 * Keep the ASF firmware running if up.
   4714 	 */
   4715 	if (sc->bge_asf_mode & ASF_STACKUP)
   4716 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4717 	else
   4718 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4719 
   4720 	/* Free the RX lists. */
   4721 	bge_free_rx_ring_std(sc);
   4722 
   4723 	/* Free jumbo RX list. */
   4724 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4725 		bge_free_rx_ring_jumbo(sc);
   4726 
   4727 	/* Free TX buffers. */
   4728 	bge_free_tx_ring(sc);
   4729 
   4730 	/*
   4731 	 * Isolate/power down the PHY.
   4732 	 */
   4733 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4734 		mii_down(&sc->bge_mii);
   4735 
   4736 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4737 
   4738 	/* Clear MAC's link state (PHY may still have link UP). */
   4739 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4740 
   4741 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4742 }
   4743 
   4744 static void
   4745 bge_link_upd(struct bge_softc *sc)
   4746 {
   4747 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4748 	struct mii_data *mii = &sc->bge_mii;
   4749 	uint32_t status;
   4750 	int link;
   4751 
   4752 	/* Clear 'pending link event' flag */
   4753 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4754 
   4755 	/*
   4756 	 * Process link state changes.
   4757 	 * Grrr. The link status word in the status block does
   4758 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4759 	 * according to all available information. Hence, we have
   4760 	 * to enable MII interrupts in order to properly obtain
   4761 	 * async link changes. Unfortunately, this also means that
   4762 	 * we have to read the MAC status register to detect link
   4763 	 * changes, thereby adding an additional register access to
   4764 	 * the interrupt handler.
   4765 	 */
   4766 
   4767 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4768 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4769 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4770 			mii_pollstat(mii);
   4771 
   4772 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4773 			    mii->mii_media_status & IFM_ACTIVE &&
   4774 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4775 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4776 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4777 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4778 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4779 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4780 
   4781 			/* Clear the interrupt */
   4782 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4783 			    BGE_EVTENB_MI_INTERRUPT);
   4784 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4785 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4786 			    BRGPHY_INTRS);
   4787 		}
   4788 		return;
   4789 	}
   4790 
   4791 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4792 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4793 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4794 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4795 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4796 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4797 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4798 					    BGE_MACMODE_TBI_SEND_CFGS);
   4799 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4800 				if_link_state_change(ifp, LINK_STATE_UP);
   4801 			}
   4802 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4803 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4804 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4805 		}
   4806 	/*
   4807 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4808 	 * This should not happen since mii callouts are locked now, but
   4809 	 * we keep this check for debug.
   4810 	 */
   4811 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4812 		/*
   4813 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4814 		 * bit in status word always set. Workaround this bug by
   4815 		 * reading PHY link status directly.
   4816 		 */
   4817 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4818 		    BGE_STS_LINK : 0;
   4819 
   4820 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4821 			mii_pollstat(mii);
   4822 
   4823 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4824 			    mii->mii_media_status & IFM_ACTIVE &&
   4825 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4826 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4827 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4828 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4829 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4830 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4831 		}
   4832 	}
   4833 
   4834 	/* Clear the attention */
   4835 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4836 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4837 	    BGE_MACSTAT_LINK_CHANGED);
   4838 }
   4839 
   4840 static int
   4841 sysctl_bge_verify(SYSCTLFN_ARGS)
   4842 {
   4843 	int error, t;
   4844 	struct sysctlnode node;
   4845 
   4846 	node = *rnode;
   4847 	t = *(int*)rnode->sysctl_data;
   4848 	node.sysctl_data = &t;
   4849 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4850 	if (error || newp == NULL)
   4851 		return error;
   4852 
   4853 #if 0
   4854 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4855 	    node.sysctl_num, rnode->sysctl_num));
   4856 #endif
   4857 
   4858 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4859 		if (t < 0 || t >= NBGE_RX_THRESH)
   4860 			return EINVAL;
   4861 		bge_update_all_threshes(t);
   4862 	} else
   4863 		return EINVAL;
   4864 
   4865 	*(int*)rnode->sysctl_data = t;
   4866 
   4867 	return 0;
   4868 }
   4869 
   4870 /*
   4871  * Set up sysctl(3) MIB, hw.bge.*.
   4872  */
   4873 static void
   4874 sysctl_bge_init(struct bge_softc *sc)
   4875 {
   4876 	int rc, bge_root_num;
   4877 	const struct sysctlnode *node;
   4878 
   4879 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4880 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4881 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4882 		goto out;
   4883 	}
   4884 
   4885 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4886 	    0, CTLTYPE_NODE, "bge",
   4887 	    SYSCTL_DESCR("BGE interface controls"),
   4888 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4889 		goto out;
   4890 	}
   4891 
   4892 	bge_root_num = node->sysctl_num;
   4893 
   4894 	/* BGE Rx interrupt mitigation level */
   4895 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4896 	    CTLFLAG_READWRITE,
   4897 	    CTLTYPE_INT, "rx_lvl",
   4898 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4899 	    sysctl_bge_verify, 0,
   4900 	    &bge_rx_thresh_lvl,
   4901 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4902 	    CTL_EOL)) != 0) {
   4903 		goto out;
   4904 	}
   4905 
   4906 	bge_rxthresh_nodenum = node->sysctl_num;
   4907 
   4908 	return;
   4909 
   4910 out:
   4911 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4912 }
   4913 
   4914 #ifdef BGE_DEBUG
   4915 void
   4916 bge_debug_info(struct bge_softc *sc)
   4917 {
   4918 
   4919 	printf("Hardware Flags:\n");
   4920 	if (BGE_IS_5755_PLUS(sc))
   4921 		printf(" - 5755 Plus\n");
   4922 	if (BGE_IS_5750_OR_BEYOND(sc))
   4923 		printf(" - 5750 Plus\n");
   4924 	if (BGE_IS_5705_PLUS(sc))
   4925 		printf(" - 5705 Plus\n");
   4926 	if (BGE_IS_5714_FAMILY(sc))
   4927 		printf(" - 5714 Family\n");
   4928 	if (BGE_IS_5700_FAMILY(sc))
   4929 		printf(" - 5700 Family\n");
   4930 	if (sc->bge_flags & BGE_IS_5788)
   4931 		printf(" - 5788\n");
   4932 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4933 		printf(" - Supports Jumbo Frames\n");
   4934 	if (sc->bge_flags & BGE_NO_EEPROM)
   4935 		printf(" - No EEPROM\n");
   4936 	if (sc->bge_flags & BGE_PCIX)
   4937 		printf(" - PCI-X Bus\n");
   4938 	if (sc->bge_flags & BGE_PCIE)
   4939 		printf(" - PCI Express Bus\n");
   4940 	if (sc->bge_flags & BGE_NO_3LED)
   4941 		printf(" - No 3 LEDs\n");
   4942 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4943 		printf(" - RX Alignment Bug\n");
   4944 	if (sc->bge_flags & BGE_TSO)
   4945 		printf(" - TSO\n");
   4946 }
   4947 #endif /* BGE_DEBUG */
   4948 
   4949 static int
   4950 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4951 {
   4952 	prop_dictionary_t dict;
   4953 	prop_data_t ea;
   4954 
   4955 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4956 		return 1;
   4957 
   4958 	dict = device_properties(sc->bge_dev);
   4959 	ea = prop_dictionary_get(dict, "mac-address");
   4960 	if (ea != NULL) {
   4961 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4962 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4963 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4964 		return 0;
   4965 	}
   4966 
   4967 	return 1;
   4968 }
   4969 
   4970 static int
   4971 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4972 {
   4973 	uint32_t mac_addr;
   4974 
   4975 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   4976 	if ((mac_addr >> 16) == 0x484b) {
   4977 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4978 		ether_addr[1] = (uint8_t)mac_addr;
   4979 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   4980 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4981 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   4982 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   4983 		ether_addr[5] = (uint8_t)mac_addr;
   4984 		return 0;
   4985 	}
   4986 	return 1;
   4987 }
   4988 
   4989 static int
   4990 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   4991 {
   4992 	int mac_offset = BGE_EE_MAC_OFFSET;
   4993 
   4994 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4995 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   4996 
   4997 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   4998 	    ETHER_ADDR_LEN));
   4999 }
   5000 
   5001 static int
   5002 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5003 {
   5004 
   5005 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5006 		return 1;
   5007 
   5008 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5009 	   ETHER_ADDR_LEN));
   5010 }
   5011 
   5012 static int
   5013 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5014 {
   5015 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5016 		/* NOTE: Order is critical */
   5017 		bge_get_eaddr_fw,
   5018 		bge_get_eaddr_mem,
   5019 		bge_get_eaddr_nvram,
   5020 		bge_get_eaddr_eeprom,
   5021 		NULL
   5022 	};
   5023 	const bge_eaddr_fcn_t *func;
   5024 
   5025 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5026 		if ((*func)(sc, eaddr) == 0)
   5027 			break;
   5028 	}
   5029 	return (*func == NULL ? ENXIO : 0);
   5030 }
   5031