Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.206
      1 /*	$NetBSD: if_bge.c,v 1.206 2013/02/26 11:06:23 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.206 2013/02/26 11:06:23 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writemem_direct(struct bge_softc *, int, int);
    247 static void bge_writereg_ind(struct bge_softc *, int, int);
    248 static void bge_set_max_readrq(struct bge_softc *);
    249 
    250 static int bge_miibus_readreg(device_t, int, int);
    251 static void bge_miibus_writereg(device_t, int, int, int);
    252 static void bge_miibus_statchg(struct ifnet *);
    253 
    254 #define	BGE_RESET_START 1
    255 #define	BGE_RESET_STOP  2
    256 static void bge_sig_post_reset(struct bge_softc *, int);
    257 static void bge_sig_legacy(struct bge_softc *, int);
    258 static void bge_sig_pre_reset(struct bge_softc *, int);
    259 static void bge_stop_fw(struct bge_softc *);
    260 static int bge_reset(struct bge_softc *);
    261 static void bge_link_upd(struct bge_softc *);
    262 static void sysctl_bge_init(struct bge_softc *);
    263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC9100,
    317 	  "Altima AC9100 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_BROADCOM,
    320 	  PCI_PRODUCT_BROADCOM_BCM5700,
    321 	  "Broadcom BCM5700 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_BROADCOM,
    324 	  PCI_PRODUCT_BROADCOM_BCM5701,
    325 	  "Broadcom BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5702,
    329 	  "Broadcom BCM5702 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    333 	  "Broadcom BCM5702X Gigabit Ethernet" },
    334 	{ PCI_VENDOR_BROADCOM,
    335 	  PCI_PRODUCT_BROADCOM_BCM5703,
    336 	  "Broadcom BCM5703 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    340 	  "Broadcom BCM5703X Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    353 	  },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5705,
    356 	  "Broadcom BCM5705 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    360 	  "Broadcom BCM5705F Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    364 	  "Broadcom BCM5705K Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    368 	  "Broadcom BCM5705M Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    372 	  "Broadcom BCM5705M Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5714,
    376 	  "Broadcom BCM5714 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    380 	  "Broadcom BCM5714S Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5715,
    384 	  "Broadcom BCM5715 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    388 	  "Broadcom BCM5715S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5717,
    392 	  "Broadcom BCM5717 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5718,
    396 	  "Broadcom BCM5718 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5720,
    400 	  "Broadcom BCM5720 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5721,
    404 	  "Broadcom BCM5721 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5722,
    408 	  "Broadcom BCM5722 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5723,
    412 	  "Broadcom BCM5723 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5724,
    416 	  "Broadcom BCM5724 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5750,
    420 	  "Broadcom BCM5750 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    424 	  "Broadcom BCM5750M Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5751,
    428 	  "Broadcom BCM5751 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    432 	  "Broadcom BCM5751F Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    436 	  "Broadcom BCM5751M Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5752,
    440 	  "Broadcom BCM5752 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    444 	  "Broadcom BCM5752M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5753,
    448 	  "Broadcom BCM5753 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    452 	  "Broadcom BCM5753F Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    456 	  "Broadcom BCM5753M Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5754,
    460 	  "Broadcom BCM5754 Gigabit Ethernet",
    461 	},
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    464 	  "Broadcom BCM5754M Gigabit Ethernet",
    465 	},
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5755,
    468 	  "Broadcom BCM5755 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    472 	  "Broadcom BCM5755M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5756,
    476 	  "Broadcom BCM5756 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5761,
    480 	  "Broadcom BCM5761 Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    484 	  "Broadcom BCM5761E Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    488 	  "Broadcom BCM5761S Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    492 	  "Broadcom BCM5761SE Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5764,
    496 	  "Broadcom BCM5764 Gigabit Ethernet",
    497 	  },
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5780,
    500 	  "Broadcom BCM5780 Gigabit Ethernet",
    501 	  },
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    504 	  "Broadcom BCM5780S Gigabit Ethernet",
    505 	  },
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5781,
    508 	  "Broadcom BCM5781 Gigabit Ethernet",
    509 	  },
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5782,
    512 	  "Broadcom BCM5782 Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    516 	  "BCM5784M NetLink 1000baseT Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5786,
    520 	  "Broadcom BCM5786 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5787,
    524 	  "Broadcom BCM5787 Gigabit Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    528 	  "Broadcom BCM5787M Gigabit Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5788,
    532 	  "Broadcom BCM5788 Gigabit Ethernet",
    533 	  },
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5789,
    536 	  "Broadcom BCM5789 Gigabit Ethernet",
    537 	  },
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5901,
    540 	  "Broadcom BCM5901 Fast Ethernet",
    541 	  },
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    544 	  "Broadcom BCM5901A2 Fast Ethernet",
    545 	  },
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    548 	  "Broadcom BCM5903M Fast Ethernet",
    549 	  },
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5906,
    552 	  "Broadcom BCM5906 Fast Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    556 	  "Broadcom BCM5906M Fast Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM57760,
    560 	  "Broadcom BCM57760 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM57761,
    564 	  "Broadcom BCM57761 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM57762,
    568 	  "Broadcom BCM57762 Gigabit Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM57765,
    572 	  "Broadcom BCM57765 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM57780,
    576 	  "Broadcom BCM57780 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57781,
    580 	  "Broadcom BCM57781 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57785,
    584 	  "Broadcom BCM57785 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57788,
    588 	  "Broadcom BCM57788 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57790,
    592 	  "Broadcom BCM57790 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57791,
    596 	  "Broadcom BCM57791 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_BROADCOM,
    599 	  PCI_PRODUCT_BROADCOM_BCM57795,
    600 	  "Broadcom BCM57795 Fast Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_SCHNEIDERKOCH,
    603 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    604 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_3COM,
    607 	  PCI_PRODUCT_3COM_3C996,
    608 	  "3Com 3c996 Gigabit Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_FUJITSU4,
    611 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    612 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_FUJITSU4,
    615 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    616 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    617 	  },
    618 	{ PCI_VENDOR_FUJITSU4,
    619 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    620 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    621 	  },
    622 	{ 0,
    623 	  0,
    624 	  NULL },
    625 };
    626 
    627 /*
    628  * XXX: how to handle variants based on 5750 and derivatives:
    629  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
    630  * in general behave like a 5705, except with additional quirks.
    631  * This driver's current handling of the 5721 is wrong;
    632  * how we map ASIC revision to "quirks" needs more thought.
    633  * (defined here until the thought is done).
    634  */
    635 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    636 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    637 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    638 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
    639 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    640 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    641 
    642 static const struct bge_revision {
    643 	uint32_t		br_chipid;
    644 	const char		*br_name;
    645 } bge_revisions[] = {
    646 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    647 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    648 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    649 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    650 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    651 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    652 	/* This is treated like a BCM5700 Bx */
    653 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    654 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    655 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    656 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    657 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    658 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    659 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    660 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    661 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    662 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    663 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    664 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    665 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    666 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    667 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    668 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    669 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    670 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    671 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    672 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    673 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    674 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    675 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    676 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    677 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    678 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    679 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    680 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    681 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    682 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    683 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    684 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    685 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    686 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    687 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    688 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    689 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    690 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    691 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    692 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    693 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    694 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    695 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    696 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    697 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    698 	/* 5754 and 5787 share the same ASIC ID */
    699 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    700 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    701 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    702 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    703 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    704 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    705 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    706 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    707 
    708 	{ 0, NULL }
    709 };
    710 
    711 /*
    712  * Some defaults for major revisions, so that newer steppings
    713  * that we don't know about have a shot at working.
    714  */
    715 static const struct bge_revision bge_majorrevs[] = {
    716 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    717 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    718 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    719 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    720 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    721 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    722 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    723 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    724 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    725 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    726 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    727 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    728 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    729 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    730 	/* 5754 and 5787 share the same ASIC ID */
    731 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    732 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    733 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    734 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    735 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    736 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    737 
    738 	{ 0, NULL }
    739 };
    740 
    741 static int bge_allow_asf = 1;
    742 
    743 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    744     bge_probe, bge_attach, NULL, NULL);
    745 
    746 static uint32_t
    747 bge_readmem_ind(struct bge_softc *sc, int off)
    748 {
    749 	pcireg_t val;
    750 
    751 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    752 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    753 	return val;
    754 }
    755 
    756 static void
    757 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    758 {
    759 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    760 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    761 }
    762 
    763 /*
    764  * PCI Express only
    765  */
    766 static void
    767 bge_set_max_readrq(struct bge_softc *sc)
    768 {
    769 	pcireg_t val;
    770 
    771 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    772 	    + PCI_PCIE_DCSR);
    773 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    774 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    775 		aprint_verbose_dev(sc->bge_dev,
    776 		    "adjust device control 0x%04x ", val);
    777 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    778 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    779 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    780 		    + PCI_PCIE_DCSR, val);
    781 		aprint_verbose("-> 0x%04x\n", val);
    782 	}
    783 }
    784 
    785 #ifdef notdef
    786 static uint32_t
    787 bge_readreg_ind(struct bge_softc *sc, int off)
    788 {
    789 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    790 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    791 }
    792 #endif
    793 
    794 static void
    795 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    796 {
    797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    798 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    799 }
    800 
    801 static void
    802 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    803 {
    804 	CSR_WRITE_4(sc, off, val);
    805 }
    806 
    807 static void
    808 bge_writembx(struct bge_softc *sc, int off, int val)
    809 {
    810 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    811 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    812 
    813 	CSR_WRITE_4(sc, off, val);
    814 }
    815 
    816 static uint8_t
    817 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    818 {
    819 	uint32_t access, byte = 0;
    820 	int i;
    821 
    822 	/* Lock. */
    823 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    824 	for (i = 0; i < 8000; i++) {
    825 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    826 			break;
    827 		DELAY(20);
    828 	}
    829 	if (i == 8000)
    830 		return 1;
    831 
    832 	/* Enable access. */
    833 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    834 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    835 
    836 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    837 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    838 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    839 		DELAY(10);
    840 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    841 			DELAY(10);
    842 			break;
    843 		}
    844 	}
    845 
    846 	if (i == BGE_TIMEOUT * 10) {
    847 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    848 		return 1;
    849 	}
    850 
    851 	/* Get result. */
    852 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    853 
    854 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    855 
    856 	/* Disable access. */
    857 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    858 
    859 	/* Unlock. */
    860 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    861 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    862 
    863 	return 0;
    864 }
    865 
    866 /*
    867  * Read a sequence of bytes from NVRAM.
    868  */
    869 static int
    870 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    871 {
    872 	int error = 0, i;
    873 	uint8_t byte = 0;
    874 
    875 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    876 		return 1;
    877 
    878 	for (i = 0; i < cnt; i++) {
    879 		error = bge_nvram_getbyte(sc, off + i, &byte);
    880 		if (error)
    881 			break;
    882 		*(dest + i) = byte;
    883 	}
    884 
    885 	return (error ? 1 : 0);
    886 }
    887 
    888 /*
    889  * Read a byte of data stored in the EEPROM at address 'addr.' The
    890  * BCM570x supports both the traditional bitbang interface and an
    891  * auto access interface for reading the EEPROM. We use the auto
    892  * access method.
    893  */
    894 static uint8_t
    895 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    896 {
    897 	int i;
    898 	uint32_t byte = 0;
    899 
    900 	/*
    901 	 * Enable use of auto EEPROM access so we can avoid
    902 	 * having to use the bitbang method.
    903 	 */
    904 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    905 
    906 	/* Reset the EEPROM, load the clock period. */
    907 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    908 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    909 	DELAY(20);
    910 
    911 	/* Issue the read EEPROM command. */
    912 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    913 
    914 	/* Wait for completion */
    915 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    916 		DELAY(10);
    917 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    918 			break;
    919 	}
    920 
    921 	if (i == BGE_TIMEOUT * 10) {
    922 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    923 		return 1;
    924 	}
    925 
    926 	/* Get result. */
    927 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    928 
    929 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    930 
    931 	return 0;
    932 }
    933 
    934 /*
    935  * Read a sequence of bytes from the EEPROM.
    936  */
    937 static int
    938 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    939 {
    940 	int error = 0, i;
    941 	uint8_t byte = 0;
    942 	char *dest = destv;
    943 
    944 	for (i = 0; i < cnt; i++) {
    945 		error = bge_eeprom_getbyte(sc, off + i, &byte);
    946 		if (error)
    947 			break;
    948 		*(dest + i) = byte;
    949 	}
    950 
    951 	return (error ? 1 : 0);
    952 }
    953 
    954 static int
    955 bge_miibus_readreg(device_t dev, int phy, int reg)
    956 {
    957 	struct bge_softc *sc = device_private(dev);
    958 	uint32_t val;
    959 	uint32_t autopoll;
    960 	int i;
    961 
    962 	/*
    963 	 * Broadcom's own driver always assumes the internal
    964 	 * PHY is at GMII address 1. On some chips, the PHY responds
    965 	 * to accesses at all addresses, which could cause us to
    966 	 * bogusly attach the PHY 32 times at probe type. Always
    967 	 * restricting the lookup to address 1 is simpler than
    968 	 * trying to figure out which chips revisions should be
    969 	 * special-cased.
    970 	 */
    971 	if (phy != 1)
    972 		return 0;
    973 
    974 	/* Reading with autopolling on may trigger PCI errors */
    975 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    976 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    977 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    978 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    979 		DELAY(40);
    980 	}
    981 
    982 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    983 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    984 
    985 	for (i = 0; i < BGE_TIMEOUT; i++) {
    986 		val = CSR_READ_4(sc, BGE_MI_COMM);
    987 		if (!(val & BGE_MICOMM_BUSY))
    988 			break;
    989 		delay(10);
    990 	}
    991 
    992 	if (i == BGE_TIMEOUT) {
    993 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
    994 		val = 0;
    995 		goto done;
    996 	}
    997 
    998 	val = CSR_READ_4(sc, BGE_MI_COMM);
    999 
   1000 done:
   1001 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1002 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1003 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1004 		DELAY(40);
   1005 	}
   1006 
   1007 	if (val & BGE_MICOMM_READFAIL)
   1008 		return 0;
   1009 
   1010 	return (val & 0xFFFF);
   1011 }
   1012 
   1013 static void
   1014 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1015 {
   1016 	struct bge_softc *sc = device_private(dev);
   1017 	uint32_t autopoll;
   1018 	int i;
   1019 
   1020 	if (phy!=1) {
   1021 		return;
   1022 	}
   1023 
   1024 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1025 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
   1026 		return;
   1027 	}
   1028 
   1029 	/* Reading with autopolling on may trigger PCI errors */
   1030 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1031 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1032 		delay(40);
   1033 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1034 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1035 		delay(10); /* 40 usec is supposed to be adequate */
   1036 	}
   1037 
   1038 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1039 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1040 
   1041 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1042 		delay(10);
   1043 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1044 			delay(5);
   1045 			CSR_READ_4(sc, BGE_MI_COMM);
   1046 			break;
   1047 		}
   1048 	}
   1049 
   1050 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1051 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1052 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1053 		delay(40);
   1054 	}
   1055 
   1056 	if (i == BGE_TIMEOUT)
   1057 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1058 }
   1059 
   1060 static void
   1061 bge_miibus_statchg(struct ifnet *ifp)
   1062 {
   1063 	struct bge_softc *sc = ifp->if_softc;
   1064 	struct mii_data *mii = &sc->bge_mii;
   1065 
   1066 	/*
   1067 	 * Get flow control negotiation result.
   1068 	 */
   1069 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1070 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1071 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1072 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1073 	}
   1074 
   1075 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1076 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1077 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1078 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1079 	else
   1080 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1081 
   1082 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1083 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1084 	else
   1085 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1086 
   1087 	/*
   1088 	 * 802.3x flow control
   1089 	 */
   1090 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1091 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1092 	else
   1093 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1094 
   1095 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1096 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1097 	else
   1098 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1099 }
   1100 
   1101 /*
   1102  * Update rx threshold levels to values in a particular slot
   1103  * of the interrupt-mitigation table bge_rx_threshes.
   1104  */
   1105 static void
   1106 bge_set_thresh(struct ifnet *ifp, int lvl)
   1107 {
   1108 	struct bge_softc *sc = ifp->if_softc;
   1109 	int s;
   1110 
   1111 	/* For now, just save the new Rx-intr thresholds and record
   1112 	 * that a threshold update is pending.  Updating the hardware
   1113 	 * registers here (even at splhigh()) is observed to
   1114 	 * occasionaly cause glitches where Rx-interrupts are not
   1115 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1116 	 */
   1117 	s = splnet();
   1118 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1119 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1120 	sc->bge_pending_rxintr_change = 1;
   1121 	splx(s);
   1122 
   1123 	 return;
   1124 }
   1125 
   1126 
   1127 /*
   1128  * Update Rx thresholds of all bge devices
   1129  */
   1130 static void
   1131 bge_update_all_threshes(int lvl)
   1132 {
   1133 	struct ifnet *ifp;
   1134 	const char * const namebuf = "bge";
   1135 	int namelen;
   1136 
   1137 	if (lvl < 0)
   1138 		lvl = 0;
   1139 	else if (lvl >= NBGE_RX_THRESH)
   1140 		lvl = NBGE_RX_THRESH - 1;
   1141 
   1142 	namelen = strlen(namebuf);
   1143 	/*
   1144 	 * Now search all the interfaces for this name/number
   1145 	 */
   1146 	IFNET_FOREACH(ifp) {
   1147 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1148 		      continue;
   1149 		/* We got a match: update if doing auto-threshold-tuning */
   1150 		if (bge_auto_thresh)
   1151 			bge_set_thresh(ifp, lvl);
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * Handle events that have triggered interrupts.
   1157  */
   1158 static void
   1159 bge_handle_events(struct bge_softc *sc)
   1160 {
   1161 
   1162 	return;
   1163 }
   1164 
   1165 /*
   1166  * Memory management for jumbo frames.
   1167  */
   1168 
   1169 static int
   1170 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1171 {
   1172 	char *ptr, *kva;
   1173 	bus_dma_segment_t	seg;
   1174 	int		i, rseg, state, error;
   1175 	struct bge_jpool_entry   *entry;
   1176 
   1177 	state = error = 0;
   1178 
   1179 	/* Grab a big chunk o' storage. */
   1180 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1181 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1182 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1183 		return ENOBUFS;
   1184 	}
   1185 
   1186 	state = 1;
   1187 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1188 	    BUS_DMA_NOWAIT)) {
   1189 		aprint_error_dev(sc->bge_dev,
   1190 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1191 		error = ENOBUFS;
   1192 		goto out;
   1193 	}
   1194 
   1195 	state = 2;
   1196 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1197 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1198 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1199 		error = ENOBUFS;
   1200 		goto out;
   1201 	}
   1202 
   1203 	state = 3;
   1204 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1205 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1206 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1207 		error = ENOBUFS;
   1208 		goto out;
   1209 	}
   1210 
   1211 	state = 4;
   1212 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1213 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1214 
   1215 	SLIST_INIT(&sc->bge_jfree_listhead);
   1216 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1217 
   1218 	/*
   1219 	 * Now divide it up into 9K pieces and save the addresses
   1220 	 * in an array.
   1221 	 */
   1222 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1223 	for (i = 0; i < BGE_JSLOTS; i++) {
   1224 		sc->bge_cdata.bge_jslots[i] = ptr;
   1225 		ptr += BGE_JLEN;
   1226 		entry = malloc(sizeof(struct bge_jpool_entry),
   1227 		    M_DEVBUF, M_NOWAIT);
   1228 		if (entry == NULL) {
   1229 			aprint_error_dev(sc->bge_dev,
   1230 			    "no memory for jumbo buffer queue!\n");
   1231 			error = ENOBUFS;
   1232 			goto out;
   1233 		}
   1234 		entry->slot = i;
   1235 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1236 				 entry, jpool_entries);
   1237 	}
   1238 out:
   1239 	if (error != 0) {
   1240 		switch (state) {
   1241 		case 4:
   1242 			bus_dmamap_unload(sc->bge_dmatag,
   1243 			    sc->bge_cdata.bge_rx_jumbo_map);
   1244 		case 3:
   1245 			bus_dmamap_destroy(sc->bge_dmatag,
   1246 			    sc->bge_cdata.bge_rx_jumbo_map);
   1247 		case 2:
   1248 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1249 		case 1:
   1250 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1251 			break;
   1252 		default:
   1253 			break;
   1254 		}
   1255 	}
   1256 
   1257 	return error;
   1258 }
   1259 
   1260 /*
   1261  * Allocate a jumbo buffer.
   1262  */
   1263 static void *
   1264 bge_jalloc(struct bge_softc *sc)
   1265 {
   1266 	struct bge_jpool_entry   *entry;
   1267 
   1268 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1269 
   1270 	if (entry == NULL) {
   1271 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1272 		return NULL;
   1273 	}
   1274 
   1275 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1276 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1277 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1278 }
   1279 
   1280 /*
   1281  * Release a jumbo buffer.
   1282  */
   1283 static void
   1284 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1285 {
   1286 	struct bge_jpool_entry *entry;
   1287 	struct bge_softc *sc;
   1288 	int i, s;
   1289 
   1290 	/* Extract the softc struct pointer. */
   1291 	sc = (struct bge_softc *)arg;
   1292 
   1293 	if (sc == NULL)
   1294 		panic("bge_jfree: can't find softc pointer!");
   1295 
   1296 	/* calculate the slot this buffer belongs to */
   1297 
   1298 	i = ((char *)buf
   1299 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1300 
   1301 	if ((i < 0) || (i >= BGE_JSLOTS))
   1302 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1303 
   1304 	s = splvm();
   1305 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1306 	if (entry == NULL)
   1307 		panic("bge_jfree: buffer not in use!");
   1308 	entry->slot = i;
   1309 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1310 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1311 
   1312 	if (__predict_true(m != NULL))
   1313   		pool_cache_put(mb_cache, m);
   1314 	splx(s);
   1315 }
   1316 
   1317 
   1318 /*
   1319  * Initialize a standard receive ring descriptor.
   1320  */
   1321 static int
   1322 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1323     bus_dmamap_t dmamap)
   1324 {
   1325 	struct mbuf		*m_new = NULL;
   1326 	struct bge_rx_bd	*r;
   1327 	int			error;
   1328 
   1329 	if (dmamap == NULL) {
   1330 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1331 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1332 		if (error != 0)
   1333 			return error;
   1334 	}
   1335 
   1336 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1337 
   1338 	if (m == NULL) {
   1339 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1340 		if (m_new == NULL)
   1341 			return ENOBUFS;
   1342 
   1343 		MCLGET(m_new, M_DONTWAIT);
   1344 		if (!(m_new->m_flags & M_EXT)) {
   1345 			m_freem(m_new);
   1346 			return ENOBUFS;
   1347 		}
   1348 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1349 
   1350 	} else {
   1351 		m_new = m;
   1352 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1353 		m_new->m_data = m_new->m_ext.ext_buf;
   1354 	}
   1355 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1356 	    m_adj(m_new, ETHER_ALIGN);
   1357 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1358 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1359 		return ENOBUFS;
   1360 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1361 	    BUS_DMASYNC_PREREAD);
   1362 
   1363 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1364 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1365 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1366 	r->bge_flags = BGE_RXBDFLAG_END;
   1367 	r->bge_len = m_new->m_len;
   1368 	r->bge_idx = i;
   1369 
   1370 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1371 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1372 		i * sizeof (struct bge_rx_bd),
   1373 	    sizeof (struct bge_rx_bd),
   1374 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1375 
   1376 	return 0;
   1377 }
   1378 
   1379 /*
   1380  * Initialize a jumbo receive ring descriptor. This allocates
   1381  * a jumbo buffer from the pool managed internally by the driver.
   1382  */
   1383 static int
   1384 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1385 {
   1386 	struct mbuf *m_new = NULL;
   1387 	struct bge_rx_bd *r;
   1388 	void *buf = NULL;
   1389 
   1390 	if (m == NULL) {
   1391 
   1392 		/* Allocate the mbuf. */
   1393 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1394 		if (m_new == NULL)
   1395 			return ENOBUFS;
   1396 
   1397 		/* Allocate the jumbo buffer */
   1398 		buf = bge_jalloc(sc);
   1399 		if (buf == NULL) {
   1400 			m_freem(m_new);
   1401 			aprint_error_dev(sc->bge_dev,
   1402 			    "jumbo allocation failed -- packet dropped!\n");
   1403 			return ENOBUFS;
   1404 		}
   1405 
   1406 		/* Attach the buffer to the mbuf. */
   1407 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1408 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1409 		    bge_jfree, sc);
   1410 		m_new->m_flags |= M_EXT_RW;
   1411 	} else {
   1412 		m_new = m;
   1413 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1414 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1415 	}
   1416 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1417 	    m_adj(m_new, ETHER_ALIGN);
   1418 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1419 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1420 	    BUS_DMASYNC_PREREAD);
   1421 	/* Set up the descriptor. */
   1422 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1423 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1424 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1425 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1426 	r->bge_len = m_new->m_len;
   1427 	r->bge_idx = i;
   1428 
   1429 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1430 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1431 		i * sizeof (struct bge_rx_bd),
   1432 	    sizeof (struct bge_rx_bd),
   1433 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1434 
   1435 	return 0;
   1436 }
   1437 
   1438 /*
   1439  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1440  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1441  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1442  * the NIC.
   1443  */
   1444 static int
   1445 bge_init_rx_ring_std(struct bge_softc *sc)
   1446 {
   1447 	int i;
   1448 
   1449 	if (sc->bge_flags & BGE_RXRING_VALID)
   1450 		return 0;
   1451 
   1452 	for (i = 0; i < BGE_SSLOTS; i++) {
   1453 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1454 			return ENOBUFS;
   1455 	}
   1456 
   1457 	sc->bge_std = i - 1;
   1458 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1459 
   1460 	sc->bge_flags |= BGE_RXRING_VALID;
   1461 
   1462 	return 0;
   1463 }
   1464 
   1465 static void
   1466 bge_free_rx_ring_std(struct bge_softc *sc)
   1467 {
   1468 	int i;
   1469 
   1470 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1471 		return;
   1472 
   1473 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1474 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1475 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1476 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1477 			bus_dmamap_destroy(sc->bge_dmatag,
   1478 			    sc->bge_cdata.bge_rx_std_map[i]);
   1479 		}
   1480 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1481 		    sizeof(struct bge_rx_bd));
   1482 	}
   1483 
   1484 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1485 }
   1486 
   1487 static int
   1488 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1489 {
   1490 	int i;
   1491 	volatile struct bge_rcb *rcb;
   1492 
   1493 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1494 		return 0;
   1495 
   1496 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1497 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1498 			return ENOBUFS;
   1499 	}
   1500 
   1501 	sc->bge_jumbo = i - 1;
   1502 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1503 
   1504 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1505 	rcb->bge_maxlen_flags = 0;
   1506 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1507 
   1508 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1509 
   1510 	return 0;
   1511 }
   1512 
   1513 static void
   1514 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1515 {
   1516 	int i;
   1517 
   1518 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1519 		return;
   1520 
   1521 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1522 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1523 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1524 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1525 		}
   1526 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1527 		    sizeof(struct bge_rx_bd));
   1528 	}
   1529 
   1530 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1531 }
   1532 
   1533 static void
   1534 bge_free_tx_ring(struct bge_softc *sc)
   1535 {
   1536 	int i;
   1537 	struct txdmamap_pool_entry *dma;
   1538 
   1539 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1540 		return;
   1541 
   1542 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1543 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1544 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1545 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1546 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1547 					    link);
   1548 			sc->txdma[i] = 0;
   1549 		}
   1550 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1551 		    sizeof(struct bge_tx_bd));
   1552 	}
   1553 
   1554 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1555 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1556 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1557 		free(dma, M_DEVBUF);
   1558 	}
   1559 
   1560 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1561 }
   1562 
   1563 static int
   1564 bge_init_tx_ring(struct bge_softc *sc)
   1565 {
   1566 	int i;
   1567 	bus_dmamap_t dmamap;
   1568 	struct txdmamap_pool_entry *dma;
   1569 
   1570 	if (sc->bge_flags & BGE_TXRING_VALID)
   1571 		return 0;
   1572 
   1573 	sc->bge_txcnt = 0;
   1574 	sc->bge_tx_saved_considx = 0;
   1575 
   1576 	/* Initialize transmit producer index for host-memory send ring. */
   1577 	sc->bge_tx_prodidx = 0;
   1578 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1579 	/* 5700 b2 errata */
   1580 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1581 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1582 
   1583 	/* NIC-memory send ring not used; initialize to zero. */
   1584 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1585 	/* 5700 b2 errata */
   1586 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1587 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1588 
   1589 	SLIST_INIT(&sc->txdma_list);
   1590 	for (i = 0; i < BGE_RSLOTS; i++) {
   1591 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1592 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1593 		    &dmamap))
   1594 			return ENOBUFS;
   1595 		if (dmamap == NULL)
   1596 			panic("dmamap NULL in bge_init_tx_ring");
   1597 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1598 		if (dma == NULL) {
   1599 			aprint_error_dev(sc->bge_dev,
   1600 			    "can't alloc txdmamap_pool_entry\n");
   1601 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1602 			return ENOMEM;
   1603 		}
   1604 		dma->dmamap = dmamap;
   1605 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1606 	}
   1607 
   1608 	sc->bge_flags |= BGE_TXRING_VALID;
   1609 
   1610 	return 0;
   1611 }
   1612 
   1613 static void
   1614 bge_setmulti(struct bge_softc *sc)
   1615 {
   1616 	struct ethercom		*ac = &sc->ethercom;
   1617 	struct ifnet		*ifp = &ac->ec_if;
   1618 	struct ether_multi	*enm;
   1619 	struct ether_multistep  step;
   1620 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1621 	uint32_t		h;
   1622 	int			i;
   1623 
   1624 	if (ifp->if_flags & IFF_PROMISC)
   1625 		goto allmulti;
   1626 
   1627 	/* Now program new ones. */
   1628 	ETHER_FIRST_MULTI(step, ac, enm);
   1629 	while (enm != NULL) {
   1630 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1631 			/*
   1632 			 * We must listen to a range of multicast addresses.
   1633 			 * For now, just accept all multicasts, rather than
   1634 			 * trying to set only those filter bits needed to match
   1635 			 * the range.  (At this time, the only use of address
   1636 			 * ranges is for IP multicast routing, for which the
   1637 			 * range is big enough to require all bits set.)
   1638 			 */
   1639 			goto allmulti;
   1640 		}
   1641 
   1642 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1643 
   1644 		/* Just want the 7 least-significant bits. */
   1645 		h &= 0x7f;
   1646 
   1647 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1648 		ETHER_NEXT_MULTI(step, enm);
   1649 	}
   1650 
   1651 	ifp->if_flags &= ~IFF_ALLMULTI;
   1652 	goto setit;
   1653 
   1654  allmulti:
   1655 	ifp->if_flags |= IFF_ALLMULTI;
   1656 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1657 
   1658  setit:
   1659 	for (i = 0; i < 4; i++)
   1660 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1661 }
   1662 
   1663 static void
   1664 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1665 {
   1666 	/*
   1667 	 * Some chips don't like this so only do this if ASF is enabled
   1668 	 */
   1669 	if (sc->bge_asf_mode)
   1670 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1671 
   1672 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1673 		switch (type) {
   1674 		case BGE_RESET_START:
   1675 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1676 			break;
   1677 		case BGE_RESET_STOP:
   1678 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1679 			break;
   1680 		}
   1681 	}
   1682 }
   1683 
   1684 static void
   1685 bge_sig_post_reset(struct bge_softc *sc, int type)
   1686 {
   1687 
   1688 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1689 		switch (type) {
   1690 		case BGE_RESET_START:
   1691 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1692 			/* START DONE */
   1693 			break;
   1694 		case BGE_RESET_STOP:
   1695 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1696 			break;
   1697 		}
   1698 	}
   1699 }
   1700 
   1701 static void
   1702 bge_sig_legacy(struct bge_softc *sc, int type)
   1703 {
   1704 
   1705 	if (sc->bge_asf_mode) {
   1706 		switch (type) {
   1707 		case BGE_RESET_START:
   1708 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1709 			break;
   1710 		case BGE_RESET_STOP:
   1711 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1712 			break;
   1713 		}
   1714 	}
   1715 }
   1716 
   1717 static void
   1718 bge_stop_fw(struct bge_softc *sc)
   1719 {
   1720 	int i;
   1721 
   1722 	if (sc->bge_asf_mode) {
   1723 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1724 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1725 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1726 
   1727 		for (i = 0; i < 100; i++) {
   1728 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1729 				break;
   1730 			DELAY(10);
   1731 		}
   1732 	}
   1733 }
   1734 
   1735 static int
   1736 bge_poll_fw(struct bge_softc *sc)
   1737 {
   1738 	uint32_t val;
   1739 	int i;
   1740 
   1741 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1742 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1743 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1744 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1745 				break;
   1746 			DELAY(100);
   1747 		}
   1748 		if (i >= BGE_TIMEOUT) {
   1749 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1750 			return -1;
   1751 		}
   1752 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1753 		/*
   1754 		 * Poll the value location we just wrote until
   1755 		 * we see the 1's complement of the magic number.
   1756 		 * This indicates that the firmware initialization
   1757 		 * is complete.
   1758 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1759 		 */
   1760 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1761 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1762 			if (val == ~BGE_MAGIC_NUMBER)
   1763 				break;
   1764 			DELAY(10);
   1765 		}
   1766 
   1767 		if (i >= BGE_TIMEOUT) {
   1768 			aprint_error_dev(sc->bge_dev,
   1769 			    "firmware handshake timed out, val = %x\n", val);
   1770 			return -1;
   1771 		}
   1772 	}
   1773 
   1774 	return 0;
   1775 }
   1776 
   1777 /*
   1778  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1779  * self-test results.
   1780  */
   1781 static int
   1782 bge_chipinit(struct bge_softc *sc)
   1783 {
   1784 	int i;
   1785 	uint32_t dma_rw_ctl;
   1786 
   1787 	/* Set endianness before we access any non-PCI registers. */
   1788 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1789 	    BGE_INIT);
   1790 
   1791 	/* Set power state to D0. */
   1792 	bge_setpowerstate(sc, 0);
   1793 
   1794 	/* Clear the MAC control register */
   1795 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1796 
   1797 	/*
   1798 	 * Clear the MAC statistics block in the NIC's
   1799 	 * internal memory.
   1800 	 */
   1801 	for (i = BGE_STATS_BLOCK;
   1802 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1803 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1804 
   1805 	for (i = BGE_STATUS_BLOCK;
   1806 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1807 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1808 
   1809 	/* Set up the PCI DMA control register. */
   1810 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1811 	if (sc->bge_flags & BGE_PCIE) {
   1812 		/* Read watermark not used, 128 bytes for write. */
   1813 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1814 		    device_xname(sc->bge_dev)));
   1815 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1816 	} else if (sc->bge_flags & BGE_PCIX) {
   1817 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1818 		    device_xname(sc->bge_dev)));
   1819 		/* PCI-X bus */
   1820 		if (BGE_IS_5714_FAMILY(sc)) {
   1821 			/* 256 bytes for read and write. */
   1822 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   1823 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   1824 
   1825 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1826 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1827 			else
   1828 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1829 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1830 			/* 1536 bytes for read, 384 bytes for write. */
   1831 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1832 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1833 		} else {
   1834 			/* 384 bytes for read and write. */
   1835 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   1836 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   1837 			    (0x0F);
   1838 		}
   1839 
   1840 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1841 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1842 			uint32_t tmp;
   1843 
   1844 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1845 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1846 			if (tmp == 6 || tmp == 7)
   1847 				dma_rw_ctl |=
   1848 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1849 
   1850 			/* Set PCI-X DMA write workaround. */
   1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1852 		}
   1853 	} else {
   1854 		/* Conventional PCI bus: 256 bytes for read and write. */
   1855 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1856 		    device_xname(sc->bge_dev)));
   1857 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1858 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   1859 
   1860 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1861 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1862 			dma_rw_ctl |= 0x0F;
   1863 	}
   1864 
   1865 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1866 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1867 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1868 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1869 
   1870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1871 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1872 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1873 
   1874 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1875 	    dma_rw_ctl);
   1876 
   1877 	/*
   1878 	 * Set up general mode register.
   1879 	 */
   1880 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1881 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1882 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1883 
   1884 	/*
   1885 	 * BCM5701 B5 have a bug causing data corruption when using
   1886 	 * 64-bit DMA reads, which can be terminated early and then
   1887 	 * completed later as 32-bit accesses, in combination with
   1888 	 * certain bridges.
   1889 	 */
   1890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1891 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1892 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1893 
   1894 	/*
   1895 	 * Tell the firmware the driver is running
   1896 	 */
   1897 	if (sc->bge_asf_mode & ASF_STACKUP)
   1898 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1899 
   1900 	/*
   1901 	 * Disable memory write invalidate.  Apparently it is not supported
   1902 	 * properly by these devices.
   1903 	 */
   1904 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1905 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1906 
   1907 #ifdef __brokenalpha__
   1908 	/*
   1909 	 * Must insure that we do not cross an 8K (bytes) boundary
   1910 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1911 	 * restriction on some ALPHA platforms with early revision
   1912 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1913 	 */
   1914 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1915 #endif
   1916 
   1917 	/* Set the timer prescaler (always 66MHz) */
   1918 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1919 
   1920 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1921 		DELAY(40);	/* XXX */
   1922 
   1923 		/* Put PHY into ready state */
   1924 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1925 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1926 		DELAY(40);
   1927 	}
   1928 
   1929 	return 0;
   1930 }
   1931 
   1932 static int
   1933 bge_blockinit(struct bge_softc *sc)
   1934 {
   1935 	volatile struct bge_rcb	 *rcb;
   1936 	bus_size_t rcb_addr;
   1937 	int i;
   1938 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1939 	bge_hostaddr taddr;
   1940 	uint32_t val;
   1941 
   1942 	/*
   1943 	 * Initialize the memory window pointer register so that
   1944 	 * we can access the first 32K of internal NIC RAM. This will
   1945 	 * allow us to set up the TX send ring RCBs and the RX return
   1946 	 * ring RCBs, plus other things which live in NIC memory.
   1947 	 */
   1948 
   1949 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1950 
   1951 	/* Step 33: Configure mbuf memory pool */
   1952 	if (BGE_IS_5700_FAMILY(sc)) {
   1953 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1954 		    BGE_BUFFPOOL_1);
   1955 
   1956 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1957 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1958 		else
   1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1960 
   1961 		/* Configure DMA resource pool */
   1962 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1963 		    BGE_DMA_DESCRIPTORS);
   1964 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1965 	}
   1966 
   1967 	/* Step 35: Configure mbuf pool watermarks */
   1968 #ifdef ORIG_WPAUL_VALUES
   1969 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1970 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1971 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1972 #else
   1973 
   1974 	/* new broadcom docs strongly recommend these: */
   1975 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1976 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   1977 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   1978 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1979 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   1981 	} else if (BGE_IS_5705_PLUS(sc)) {
   1982 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1983 
   1984 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1985 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1986 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1987 		} else {
   1988 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1989 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1990 		}
   1991 	} else if (!BGE_IS_5705_PLUS(sc)) {
   1992 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1993 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1994 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1996 		} else {
   1997 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1998 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1999 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   2000 		}
   2001 	} else {
   2002 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2003 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2005 	}
   2006 #endif
   2007 
   2008 	/* Step 36: Configure DMA resource watermarks */
   2009 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2010 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2011 
   2012 	/* Step 38: Enable buffer manager */
   2013 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2014 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2015 
   2016 	/* Step 39: Poll for buffer manager start indication */
   2017 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2018 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2019 			break;
   2020 		DELAY(10);
   2021 	}
   2022 
   2023 	if (i == BGE_TIMEOUT * 2) {
   2024 		aprint_error_dev(sc->bge_dev,
   2025 		    "buffer manager failed to start\n");
   2026 		return ENXIO;
   2027 	}
   2028 
   2029 	/* Step 40: Enable flow-through queues */
   2030 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2031 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2032 
   2033 	/* Wait until queue initialization is complete */
   2034 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2035 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2036 			break;
   2037 		DELAY(10);
   2038 	}
   2039 
   2040 	if (i == BGE_TIMEOUT * 2) {
   2041 		aprint_error_dev(sc->bge_dev,
   2042 		    "flow-through queue init failed\n");
   2043 		return ENXIO;
   2044 	}
   2045 
   2046 	/* Step 41: Initialize the standard RX ring control block */
   2047 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2048 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2049 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2050 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2051 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2052 		rcb->bge_maxlen_flags =
   2053 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2054 	else if (BGE_IS_5705_PLUS(sc))
   2055 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2056 	else
   2057 		rcb->bge_maxlen_flags =
   2058 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2059 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2060 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2061 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2062 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2063 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2064 
   2065 	/*
   2066 	 * Step 42: Initialize the jumbo RX ring control block
   2067 	 * We set the 'ring disabled' bit in the flags
   2068 	 * field until we're actually ready to start
   2069 	 * using this ring (i.e. once we set the MTU
   2070 	 * high enough to require it).
   2071 	 */
   2072 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2073 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2074 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2075 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2076 		rcb->bge_maxlen_flags =
   2077 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2078 			BGE_RCB_FLAG_RING_DISABLED);
   2079 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2080 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2081 		    rcb->bge_hostaddr.bge_addr_hi);
   2082 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2083 		    rcb->bge_hostaddr.bge_addr_lo);
   2084 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2085 		    rcb->bge_maxlen_flags);
   2086 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2087 
   2088 		/* Set up dummy disabled mini ring RCB */
   2089 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2090 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2091 		    BGE_RCB_FLAG_RING_DISABLED);
   2092 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2093 		    rcb->bge_maxlen_flags);
   2094 
   2095 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2096 		    offsetof(struct bge_ring_data, bge_info),
   2097 		    sizeof (struct bge_gib),
   2098 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2099 	}
   2100 
   2101 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2102 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2103 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2104 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2105 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2106 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2107 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2108 	}
   2109 	/*
   2110 	 * Set the BD ring replenish thresholds. The recommended
   2111 	 * values are 1/8th the number of descriptors allocated to
   2112 	 * each ring.
   2113 	 */
   2114 	i = BGE_STD_RX_RING_CNT / 8;
   2115 
   2116 	/*
   2117 	 * Use a value of 8 for the following chips to workaround HW errata.
   2118 	 * Some of these chips have been added based on empirical
   2119 	 * evidence (they don't work unless this is done).
   2120 	 */
   2121 	if (BGE_IS_5705_PLUS(sc))
   2122 		i = 8;
   2123 
   2124 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2125 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2126 
   2127 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2128 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2129 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2130 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2131 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2132 	}
   2133 
   2134 	/*
   2135 	 * Disable all unused send rings by setting the 'ring disabled'
   2136 	 * bit in the flags field of all the TX send ring control blocks.
   2137 	 * These are located in NIC memory.
   2138 	 */
   2139 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2140 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2141 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2142 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2143 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2144 		rcb_addr += sizeof(struct bge_rcb);
   2145 	}
   2146 
   2147 	/* Configure TX RCB 0 (we use only the first ring) */
   2148 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2149 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2150 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2151 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2152 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2153 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2154 	if (BGE_IS_5700_FAMILY(sc))
   2155 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2156 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2157 
   2158 	/* Disable all unused RX return rings */
   2159 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2160 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2161 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2162 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2163 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2164 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2165 			BGE_RCB_FLAG_RING_DISABLED));
   2166 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2167 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2168 		    (i * (sizeof(uint64_t))), 0);
   2169 		rcb_addr += sizeof(struct bge_rcb);
   2170 	}
   2171 
   2172 	/* Initialize RX ring indexes */
   2173 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2174 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2175 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2176 
   2177 	/*
   2178 	 * Set up RX return ring 0
   2179 	 * Note that the NIC address for RX return rings is 0x00000000.
   2180 	 * The return rings live entirely within the host, so the
   2181 	 * nicaddr field in the RCB isn't used.
   2182 	 */
   2183 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2184 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2185 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2186 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2187 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2188 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2189 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2190 
   2191 	/* Set random backoff seed for TX */
   2192 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2193 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2194 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2195 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2196 	    BGE_TX_BACKOFF_SEED_MASK);
   2197 
   2198 	/* Set inter-packet gap */
   2199 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2200 
   2201 	/*
   2202 	 * Specify which ring to use for packets that don't match
   2203 	 * any RX rules.
   2204 	 */
   2205 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2206 
   2207 	/*
   2208 	 * Configure number of RX lists. One interrupt distribution
   2209 	 * list, sixteen active lists, one bad frames class.
   2210 	 */
   2211 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2212 
   2213 	/* Inialize RX list placement stats mask. */
   2214 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2215 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2216 
   2217 	/* Disable host coalescing until we get it set up */
   2218 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2219 
   2220 	/* Poll to make sure it's shut down. */
   2221 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2222 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2223 			break;
   2224 		DELAY(10);
   2225 	}
   2226 
   2227 	if (i == BGE_TIMEOUT * 2) {
   2228 		aprint_error_dev(sc->bge_dev,
   2229 		    "host coalescing engine failed to idle\n");
   2230 		return ENXIO;
   2231 	}
   2232 
   2233 	/* Set up host coalescing defaults */
   2234 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2235 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2236 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2237 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2238 	if (BGE_IS_5700_FAMILY(sc)) {
   2239 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2240 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2241 	}
   2242 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2243 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2244 
   2245 	/* Set up address of statistics block */
   2246 	if (BGE_IS_5700_FAMILY(sc)) {
   2247 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2248 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2249 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2250 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2251 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2252 	}
   2253 
   2254 	/* Set up address of status block */
   2255 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2256 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2257 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2258 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2259 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2260 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2261 
   2262 	/* Turn on host coalescing state machine */
   2263 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2264 
   2265 	/* Turn on RX BD completion state machine and enable attentions */
   2266 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2267 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2268 
   2269 	/* Turn on RX list placement state machine */
   2270 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2271 
   2272 	/* Turn on RX list selector state machine. */
   2273 	if (BGE_IS_5700_FAMILY(sc))
   2274 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2275 
   2276 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2277 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2278 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2279 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2280 
   2281 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2282 		val |= BGE_PORTMODE_TBI;
   2283 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2284 		val |= BGE_PORTMODE_GMII;
   2285 	else
   2286 		val |= BGE_PORTMODE_MII;
   2287 
   2288 	/* Turn on DMA, clear stats */
   2289 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2290 
   2291 	/* Set misc. local control, enable interrupts on attentions */
   2292 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2293 
   2294 #ifdef notdef
   2295 	/* Assert GPIO pins for PHY reset */
   2296 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2297 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2298 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2299 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2300 #endif
   2301 
   2302 #if defined(not_quite_yet)
   2303 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2304 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2305 		sc->bge_local_ctrl_reg |=
   2306 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2307 	}
   2308 #endif
   2309 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2310 
   2311 	/* Turn on DMA completion state machine */
   2312 	if (BGE_IS_5700_FAMILY(sc))
   2313 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2314 
   2315 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2316 
   2317 	/* Enable host coalescing bug fix; see Linux tg3.c */
   2318 	if (BGE_IS_5755_PLUS(sc))
   2319 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2320 
   2321 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2322 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2323 
   2324 	/* Turn on write DMA state machine */
   2325 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
   2326 
   2327 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2328 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2329 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2330 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2331 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2332 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2333 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2334 
   2335 	if (sc->bge_flags & BGE_PCIE)
   2336 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2337 	if (sc->bge_flags & BGE_TSO)
   2338 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2339 
   2340 	/* Turn on read DMA state machine */
   2341 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
   2342 	delay(40);
   2343 
   2344 	/* Turn on RX data completion state machine */
   2345 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2346 
   2347 	/* Turn on RX BD initiator state machine */
   2348 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2349 
   2350 	/* Turn on RX data and RX BD initiator state machine */
   2351 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2352 
   2353 	/* Turn on Mbuf cluster free state machine */
   2354 	if (BGE_IS_5700_FAMILY(sc))
   2355 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2356 
   2357 	/* Turn on send BD completion state machine */
   2358 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2359 
   2360 	/* Turn on send data completion state machine */
   2361 	val = BGE_SDCMODE_ENABLE;
   2362 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2363 		val |= BGE_SDCMODE_CDELAY;
   2364 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2365 
   2366 	/* Turn on send data initiator state machine */
   2367 	if (sc->bge_flags & BGE_TSO) {
   2368 		/* XXX: magic value from Linux driver */
   2369 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2370 	} else
   2371 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2372 
   2373 	/* Turn on send BD initiator state machine */
   2374 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2375 
   2376 	/* Turn on send BD selector state machine */
   2377 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2378 
   2379 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2380 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2381 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2382 
   2383 	/* ack/clear link change events */
   2384 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2385 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2386 	    BGE_MACSTAT_LINK_CHANGED);
   2387 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2388 
   2389 	/* Enable PHY auto polling (for MII/GMII only) */
   2390 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2391 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2392 	} else {
   2393 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2394 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2395 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2396 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2397 			    BGE_EVTENB_MI_INTERRUPT);
   2398 	}
   2399 
   2400 	/*
   2401 	 * Clear any pending link state attention.
   2402 	 * Otherwise some link state change events may be lost until attention
   2403 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2404 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2405 	 * state change attentions implies clearing pending attention.
   2406 	 */
   2407 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2408 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2409 	    BGE_MACSTAT_LINK_CHANGED);
   2410 
   2411 	/* Enable link state change attentions. */
   2412 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2413 
   2414 	return 0;
   2415 }
   2416 
   2417 static const struct bge_revision *
   2418 bge_lookup_rev(uint32_t chipid)
   2419 {
   2420 	const struct bge_revision *br;
   2421 
   2422 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2423 		if (br->br_chipid == chipid)
   2424 			return br;
   2425 	}
   2426 
   2427 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2428 		if (br->br_chipid == BGE_ASICREV(chipid))
   2429 			return br;
   2430 	}
   2431 
   2432 	return NULL;
   2433 }
   2434 
   2435 static const struct bge_product *
   2436 bge_lookup(const struct pci_attach_args *pa)
   2437 {
   2438 	const struct bge_product *bp;
   2439 
   2440 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2441 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2442 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2443 			return bp;
   2444 	}
   2445 
   2446 	return NULL;
   2447 }
   2448 
   2449 static int
   2450 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2451 {
   2452 #ifdef NOTYET
   2453 	uint32_t pm_ctl = 0;
   2454 
   2455 	/* XXX FIXME: make sure indirect accesses enabled? */
   2456 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2457 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2458 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2459 
   2460 	/* clear the PME_assert bit and power state bits, enable PME */
   2461 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2462 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2463 	pm_ctl |= (1 << 8);
   2464 
   2465 	if (powerlevel == 0) {
   2466 		pm_ctl |= PCIM_PSTAT_D0;
   2467 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2468 		    pm_ctl, 2);
   2469 		DELAY(10000);
   2470 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2471 		DELAY(10000);
   2472 
   2473 #ifdef NOTYET
   2474 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2475 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2476 #endif
   2477 		DELAY(40); DELAY(40); DELAY(40);
   2478 		DELAY(10000);	/* above not quite adequate on 5700 */
   2479 		return 0;
   2480 	}
   2481 
   2482 
   2483 	/*
   2484 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2485 	 * GMII gpio pins. Example code assumes all hardware vendors
   2486 	 * followed Broadcom's sample pcb layout. Until we verify that
   2487 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2488 	 */
   2489 	aprint_error_dev(sc->bge_dev,
   2490 	    "power state %d unimplemented; check GPIO pins\n",
   2491 	    powerlevel);
   2492 #endif
   2493 	return EOPNOTSUPP;
   2494 }
   2495 
   2496 
   2497 /*
   2498  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2499  * against our list and return its name if we find a match. Note
   2500  * that since the Broadcom controller contains VPD support, we
   2501  * can get the device name string from the controller itself instead
   2502  * of the compiled-in string. This is a little slow, but it guarantees
   2503  * we'll always announce the right product name.
   2504  */
   2505 static int
   2506 bge_probe(device_t parent, cfdata_t match, void *aux)
   2507 {
   2508 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2509 
   2510 	if (bge_lookup(pa) != NULL)
   2511 		return 1;
   2512 
   2513 	return 0;
   2514 }
   2515 
   2516 static void
   2517 bge_attach(device_t parent, device_t self, void *aux)
   2518 {
   2519 	struct bge_softc	*sc = device_private(self);
   2520 	struct pci_attach_args	*pa = aux;
   2521 	prop_dictionary_t dict;
   2522 	const struct bge_product *bp;
   2523 	const struct bge_revision *br;
   2524 	pci_chipset_tag_t	pc;
   2525 	pci_intr_handle_t	ih;
   2526 	const char		*intrstr = NULL;
   2527 	bus_dma_segment_t	seg;
   2528 	int			rseg;
   2529 	uint32_t		hwcfg = 0;
   2530 	uint32_t		command;
   2531 	struct ifnet		*ifp;
   2532 	uint32_t		misccfg;
   2533 	void *			kva;
   2534 	u_char			eaddr[ETHER_ADDR_LEN];
   2535 	pcireg_t		memtype, subid;
   2536 	bus_addr_t		memaddr;
   2537 	bus_size_t		memsize;
   2538 	uint32_t		pm_ctl;
   2539 	bool			no_seeprom;
   2540 
   2541 	bp = bge_lookup(pa);
   2542 	KASSERT(bp != NULL);
   2543 
   2544 	sc->sc_pc = pa->pa_pc;
   2545 	sc->sc_pcitag = pa->pa_tag;
   2546 	sc->bge_dev = self;
   2547 
   2548 	pc = sc->sc_pc;
   2549 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2550 
   2551 	aprint_naive(": Ethernet controller\n");
   2552 	aprint_normal(": %s\n", bp->bp_name);
   2553 
   2554 	/*
   2555 	 * Map control/status registers.
   2556 	 */
   2557 	DPRINTFN(5, ("Map control/status regs\n"));
   2558 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2559 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2560 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2561 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2562 
   2563 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2564 		aprint_error_dev(sc->bge_dev,
   2565 		    "failed to enable memory mapping!\n");
   2566 		return;
   2567 	}
   2568 
   2569 	DPRINTFN(5, ("pci_mem_find\n"));
   2570 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2571 	switch (memtype) {
   2572 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2573 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2574 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2575 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2576 		    &memaddr, &memsize) == 0)
   2577 			break;
   2578 	default:
   2579 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2580 		return;
   2581 	}
   2582 
   2583 	DPRINTFN(5, ("pci_intr_map\n"));
   2584 	if (pci_intr_map(pa, &ih)) {
   2585 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2586 		return;
   2587 	}
   2588 
   2589 	DPRINTFN(5, ("pci_intr_string\n"));
   2590 	intrstr = pci_intr_string(pc, ih);
   2591 
   2592 	DPRINTFN(5, ("pci_intr_establish\n"));
   2593 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2594 
   2595 	if (sc->bge_intrhand == NULL) {
   2596 		aprint_error_dev(sc->bge_dev,
   2597 		    "couldn't establish interrupt%s%s\n",
   2598 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2599 		return;
   2600 	}
   2601 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2602 
   2603 	/*
   2604 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2605 	 * can clobber the chip's PCI config-space power control registers,
   2606 	 * leaving the card in D3 powersave state.
   2607 	 * We do not have memory-mapped registers in this state,
   2608 	 * so force device into D0 state before starting initialization.
   2609 	 */
   2610 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2611 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2612 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2613 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2614 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2615 
   2616 	/*
   2617 	 * Save ASIC rev.
   2618 	 */
   2619 	sc->bge_chipid =
   2620 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2621 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2622 
   2623 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2624 		switch (PCI_PRODUCT(pa->pa_id)) {
   2625 		case PCI_PRODUCT_BROADCOM_BCM5717:
   2626 		case PCI_PRODUCT_BROADCOM_BCM5718:
   2627 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   2628 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2629 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2630 			break;
   2631 		case PCI_PRODUCT_BROADCOM_BCM57761:
   2632 		case PCI_PRODUCT_BROADCOM_BCM57762:
   2633 		case PCI_PRODUCT_BROADCOM_BCM57765:
   2634 		case PCI_PRODUCT_BROADCOM_BCM57781:
   2635 		case PCI_PRODUCT_BROADCOM_BCM57785:
   2636 		case PCI_PRODUCT_BROADCOM_BCM57791:
   2637 		case PCI_PRODUCT_BROADCOM_BCM57795:
   2638 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2639 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2640 			break;
   2641 		default:
   2642 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2643 			    BGE_PCI_PRODID_ASICREV);
   2644 			break;
   2645 		}
   2646 	}
   2647 
   2648 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2649 	        &sc->bge_pciecap, NULL) != 0)
   2650 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2651 		/* PCIe */
   2652 		sc->bge_flags |= BGE_PCIE;
   2653 		bge_set_max_readrq(sc);
   2654 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2655 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2656 		/* PCI-X */
   2657 		sc->bge_flags |= BGE_PCIX;
   2658 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2659 			&sc->bge_pcixcap, NULL) == 0)
   2660 			aprint_error_dev(sc->bge_dev,
   2661 			    "unable to find PCIX capability\n");
   2662 	}
   2663 
   2664 	/* chipid */
   2665 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2666 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2667 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2668 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2669 		sc->bge_flags |= BGE_5700_FAMILY;
   2670 
   2671 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2672 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2673 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2674 		sc->bge_flags |= BGE_5714_FAMILY;
   2675 
   2676 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2677 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2679 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2680 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2681 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2682 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2683 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2684 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   2685 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2686 		sc->bge_flags |= BGE_5755_PLUS;
   2687 
   2688 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2689 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2690 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2691 	    BGE_IS_5755_PLUS(sc) ||
   2692 	    BGE_IS_5714_FAMILY(sc))
   2693 		sc->bge_flags |= BGE_5750_PLUS;
   2694 
   2695 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2696 	    BGE_IS_5750_OR_BEYOND(sc))
   2697 		sc->bge_flags |= BGE_5705_PLUS;
   2698 
   2699 	/*
   2700 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2701 	 * been observed in the first few bytes of some received packets.
   2702 	 * Aligning the packet buffer in memory eliminates the corruption.
   2703 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2704 	 * which do not support unaligned accesses, we will realign the
   2705 	 * payloads by copying the received packets.
   2706 	 */
   2707 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2708 	    sc->bge_flags & BGE_PCIX)
   2709 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2710 
   2711 	if (BGE_IS_5700_FAMILY(sc))
   2712 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2713 
   2714 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2715 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2716 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2717 		sc->bge_flags |= BGE_NO_3LED;
   2718 
   2719 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2720 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2721 
   2722 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2723 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2724 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2725 		sc->bge_flags |= BGE_IS_5788;
   2726 
   2727 	/*
   2728 	 * Some controllers seem to require a special firmware to use
   2729 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2730 	 * claims that the TSO performed by the firmware is slower than
   2731 	 * hardware based TSO. Moreover the firmware based TSO has one
   2732 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2733 	 * header is greater than 80 bytes. The workaround for the TSO
   2734 	 * bug exist but it seems it's too expensive than not using
   2735 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2736 	 * the TSO to the controllers that are not affected TSO issues
   2737 	 * (e.g. 5755 or higher).
   2738 	 */
   2739 	if (BGE_IS_5755_PLUS(sc)) {
   2740 		/*
   2741 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2742 		 * explicit device id check is required.
   2743 		 */
   2744 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2745 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2746 			sc->bge_flags |= BGE_TSO;
   2747 	}
   2748 
   2749 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2750 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2751 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2752 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2753 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2754 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2755 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2756 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2757 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2758 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2759 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2760 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2761 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2762 		sc->bge_flags |= BGE_10_100_ONLY;
   2763 
   2764 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2765 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2766 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2767 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2768 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2769 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2770 
   2771 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2772 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2773 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2774 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2775 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2776 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2777 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2778 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2779 
   2780 	if (BGE_IS_5705_PLUS(sc) &&
   2781 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2782 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2783 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2784 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2785 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
   2786 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2787 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2788 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2789 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2790 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2791 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2792 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2793 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2794 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2795 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2796 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2797 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2798 	}
   2799 
   2800 	/*
   2801 	 * SEEPROM check.
   2802 	 * First check if firmware knows we do not have SEEPROM.
   2803 	 */
   2804 	if (prop_dictionary_get_bool(device_properties(self),
   2805 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2806 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2807 
   2808 	/* Now check the 'ROM failed' bit on the RX CPU */
   2809 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2810 		sc->bge_flags |= BGE_NO_EEPROM;
   2811 
   2812 	/* Try to reset the chip. */
   2813 	DPRINTFN(5, ("bge_reset\n"));
   2814 	bge_reset(sc);
   2815 
   2816 	sc->bge_asf_mode = 0;
   2817 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2818 	    == BGE_MAGIC_NUMBER)) {
   2819 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2820 		    & BGE_HWCFG_ASF) {
   2821 			sc->bge_asf_mode |= ASF_ENABLE;
   2822 			sc->bge_asf_mode |= ASF_STACKUP;
   2823 			if (BGE_IS_5750_OR_BEYOND(sc)) {
   2824 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2825 			}
   2826 		}
   2827 	}
   2828 
   2829 	/* Try to reset the chip again the nice way. */
   2830 	bge_stop_fw(sc);
   2831 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2832 	if (bge_reset(sc))
   2833 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2834 
   2835 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2836 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2837 
   2838 	if (bge_chipinit(sc)) {
   2839 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2840 		bge_release_resources(sc);
   2841 		return;
   2842 	}
   2843 
   2844 	/*
   2845 	 * Get station address from the EEPROM.
   2846 	 */
   2847 	if (bge_get_eaddr(sc, eaddr)) {
   2848 		aprint_error_dev(sc->bge_dev,
   2849 		    "failed to read station address\n");
   2850 		bge_release_resources(sc);
   2851 		return;
   2852 	}
   2853 
   2854 	br = bge_lookup_rev(sc->bge_chipid);
   2855 
   2856 	if (br == NULL) {
   2857 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2858 		    sc->bge_chipid);
   2859 	} else {
   2860 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2861 		    br->br_name, sc->bge_chipid);
   2862 	}
   2863 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2864 
   2865 	/* Allocate the general information block and ring buffers. */
   2866 	if (pci_dma64_available(pa))
   2867 		sc->bge_dmatag = pa->pa_dmat64;
   2868 	else
   2869 		sc->bge_dmatag = pa->pa_dmat;
   2870 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2871 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2872 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2873 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2874 		return;
   2875 	}
   2876 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2877 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2878 			   sizeof(struct bge_ring_data), &kva,
   2879 			   BUS_DMA_NOWAIT)) {
   2880 		aprint_error_dev(sc->bge_dev,
   2881 		    "can't map DMA buffers (%zu bytes)\n",
   2882 		    sizeof(struct bge_ring_data));
   2883 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2884 		return;
   2885 	}
   2886 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2887 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2888 	    sizeof(struct bge_ring_data), 0,
   2889 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2890 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2891 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2892 				 sizeof(struct bge_ring_data));
   2893 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2894 		return;
   2895 	}
   2896 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2897 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2898 			    sizeof(struct bge_ring_data), NULL,
   2899 			    BUS_DMA_NOWAIT)) {
   2900 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2901 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2902 				 sizeof(struct bge_ring_data));
   2903 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2904 		return;
   2905 	}
   2906 
   2907 	DPRINTFN(5, ("bzero\n"));
   2908 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2909 
   2910 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2911 
   2912 	/* Try to allocate memory for jumbo buffers. */
   2913 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2914 		if (bge_alloc_jumbo_mem(sc)) {
   2915 			aprint_error_dev(sc->bge_dev,
   2916 			    "jumbo buffer allocation failed\n");
   2917 		} else
   2918 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2919 	}
   2920 
   2921 	/* Set default tuneable values. */
   2922 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2923 	sc->bge_rx_coal_ticks = 150;
   2924 	sc->bge_rx_max_coal_bds = 64;
   2925 #ifdef ORIG_WPAUL_VALUES
   2926 	sc->bge_tx_coal_ticks = 150;
   2927 	sc->bge_tx_max_coal_bds = 128;
   2928 #else
   2929 	sc->bge_tx_coal_ticks = 300;
   2930 	sc->bge_tx_max_coal_bds = 400;
   2931 #endif
   2932 	if (BGE_IS_5705_PLUS(sc)) {
   2933 		sc->bge_tx_coal_ticks = (12 * 5);
   2934 		sc->bge_tx_max_coal_bds = (12 * 5);
   2935 			aprint_verbose_dev(sc->bge_dev,
   2936 			    "setting short Tx thresholds\n");
   2937 	}
   2938 
   2939 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2940 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2941 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2942 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2943 	else if (BGE_IS_5705_PLUS(sc))
   2944 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2945 	else
   2946 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2947 
   2948 	/* Set up ifnet structure */
   2949 	ifp = &sc->ethercom.ec_if;
   2950 	ifp->if_softc = sc;
   2951 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2952 	ifp->if_ioctl = bge_ioctl;
   2953 	ifp->if_stop = bge_stop;
   2954 	ifp->if_start = bge_start;
   2955 	ifp->if_init = bge_init;
   2956 	ifp->if_watchdog = bge_watchdog;
   2957 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2958 	IFQ_SET_READY(&ifp->if_snd);
   2959 	DPRINTFN(5, ("strcpy if_xname\n"));
   2960 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2961 
   2962 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2963 		sc->ethercom.ec_if.if_capabilities |=
   2964 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2965 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2966 		sc->ethercom.ec_if.if_capabilities |=
   2967 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2968 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2969 #endif
   2970 	sc->ethercom.ec_capabilities |=
   2971 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2972 
   2973 	if (sc->bge_flags & BGE_TSO)
   2974 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2975 
   2976 	/*
   2977 	 * Do MII setup.
   2978 	 */
   2979 	DPRINTFN(5, ("mii setup\n"));
   2980 	sc->bge_mii.mii_ifp = ifp;
   2981 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2982 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2983 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2984 
   2985 	/*
   2986 	 * Figure out what sort of media we have by checking the hardware
   2987 	 * config word in the first 32k of NIC internal memory, or fall back to
   2988 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   2989 	 * this value appears to be unset. If that's the case, we have to rely
   2990 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   2991 	 * the SysKonnect SK-9D41.
   2992 	 */
   2993 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2994 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2995 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   2996 		bge_read_eeprom(sc, (void *)&hwcfg,
   2997 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2998 		hwcfg = be32toh(hwcfg);
   2999 	}
   3000 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3001 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3002 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3003 		if (BGE_IS_5714_FAMILY(sc))
   3004 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3005 		else
   3006 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3007 	}
   3008 
   3009 	/* set phyflags and chipid before mii_attach() */
   3010 	dict = device_properties(self);
   3011 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3012 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3013 
   3014 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3015 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3016 		    bge_ifmedia_sts);
   3017 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3018 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3019 			    0, NULL);
   3020 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3021 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3022 		/* Pretend the user requested this setting */
   3023 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3024 	} else {
   3025 		/*
   3026 		 * Do transceiver setup and tell the firmware the
   3027 		 * driver is down so we can try to get access the
   3028 		 * probe if ASF is running.  Retry a couple of times
   3029 		 * if we get a conflict with the ASF firmware accessing
   3030 		 * the PHY.
   3031 		 */
   3032 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3033 		bge_asf_driver_up(sc);
   3034 
   3035 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3036 			     bge_ifmedia_sts);
   3037 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3038 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3039 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3040 
   3041 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3042 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3043 			ifmedia_add(&sc->bge_mii.mii_media,
   3044 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3045 			ifmedia_set(&sc->bge_mii.mii_media,
   3046 				    IFM_ETHER|IFM_MANUAL);
   3047 		} else
   3048 			ifmedia_set(&sc->bge_mii.mii_media,
   3049 				    IFM_ETHER|IFM_AUTO);
   3050 
   3051 		/*
   3052 		 * Now tell the firmware we are going up after probing the PHY
   3053 		 */
   3054 		if (sc->bge_asf_mode & ASF_STACKUP)
   3055 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3056 	}
   3057 
   3058 	/*
   3059 	 * Call MI attach routine.
   3060 	 */
   3061 	DPRINTFN(5, ("if_attach\n"));
   3062 	if_attach(ifp);
   3063 	DPRINTFN(5, ("ether_ifattach\n"));
   3064 	ether_ifattach(ifp, eaddr);
   3065 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3066 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3067 		RND_TYPE_NET, 0);
   3068 #ifdef BGE_EVENT_COUNTERS
   3069 	/*
   3070 	 * Attach event counters.
   3071 	 */
   3072 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3073 	    NULL, device_xname(sc->bge_dev), "intr");
   3074 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3075 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3076 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3077 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3078 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3079 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3080 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3081 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3082 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3083 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3084 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3085 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3086 #endif /* BGE_EVENT_COUNTERS */
   3087 	DPRINTFN(5, ("callout_init\n"));
   3088 	callout_init(&sc->bge_timeout, 0);
   3089 
   3090 	if (pmf_device_register(self, NULL, NULL))
   3091 		pmf_class_network_register(self, ifp);
   3092 	else
   3093 		aprint_error_dev(self, "couldn't establish power handler\n");
   3094 
   3095 	sysctl_bge_init(sc);
   3096 
   3097 #ifdef BGE_DEBUG
   3098 	bge_debug_info(sc);
   3099 #endif
   3100 }
   3101 
   3102 static void
   3103 bge_release_resources(struct bge_softc *sc)
   3104 {
   3105 	if (sc->bge_vpd_prodname != NULL)
   3106 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3107 
   3108 	if (sc->bge_vpd_readonly != NULL)
   3109 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3110 }
   3111 
   3112 static int
   3113 bge_reset(struct bge_softc *sc)
   3114 {
   3115 	uint32_t cachesize, command, pcistate, marbmode;
   3116 #if 0
   3117 	uint32_t new_pcistate;
   3118 #endif
   3119 	pcireg_t devctl, reg;
   3120 	int i, val;
   3121 	void (*write_op)(struct bge_softc *, int, int);
   3122 
   3123 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
   3124 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3125 	    	if (sc->bge_flags & BGE_PCIE)
   3126 			write_op = bge_writemem_direct;
   3127 		else
   3128 			write_op = bge_writemem_ind;
   3129 	} else
   3130 		write_op = bge_writereg_ind;
   3131 
   3132 	/* Save some important PCI state. */
   3133 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3134 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3135 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3136 
   3137 	/* Step 5a: Enable memory arbiter. */
   3138 	marbmode = 0;
   3139 	if (BGE_IS_5714_FAMILY(sc))
   3140 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3141 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3142 
   3143 	/* Step 5b-5d: */
   3144 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3145 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3146 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3147 
   3148 	/* XXX ???: Disable fastboot on controllers that support it. */
   3149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3150 	    BGE_IS_5755_PLUS(sc))
   3151 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3152 
   3153 	/*
   3154 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3155 	 * When firmware finishes its initialization it will
   3156 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3157 	 */
   3158 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3159 
   3160 	/* Step 7: */
   3161 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3162 	/*
   3163 	 * XXX: from FreeBSD/Linux; no documentation
   3164 	 */
   3165 	if (sc->bge_flags & BGE_PCIE) {
   3166 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3167 			/* PCI Express 1.0 system */
   3168 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3169 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3170 			/*
   3171 			 * Prevent PCI Express link training
   3172 			 * during global reset.
   3173 			 */
   3174 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3175 			val |= (1<<29);
   3176 		}
   3177 	}
   3178 
   3179 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3180 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3181 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3182 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3183 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3184 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3185 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3186 	}
   3187 
   3188 	/*
   3189 	 * Set GPHY Power Down Override to leave GPHY
   3190 	 * powered up in D0 uninitialized.
   3191 	 */
   3192 	if (BGE_IS_5705_PLUS(sc))
   3193 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3194 
   3195 	/* XXX 5721, 5751 and 5752 */
   3196 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3197 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3198 
   3199 	/* Issue global reset */
   3200 	write_op(sc, BGE_MISC_CFG, val);
   3201 
   3202 	/* Step 8: wait for complete */
   3203 	if (sc->bge_flags & BGE_PCIE)
   3204 		delay(100*1000); /* too big */
   3205 	else
   3206 		delay(100);
   3207 
   3208 	/* From Linux: dummy read to flush PCI posted writes */
   3209 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3210 
   3211 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3212 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3213 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3214 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3215 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3216 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3217 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3218 
   3219 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3220 	if (sc->bge_flags & BGE_PCIX) {
   3221 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3222 		    + PCI_PCIX_CMD);
   3223 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3224 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3225 	}
   3226 
   3227 	if (sc->bge_flags & BGE_PCIE) {
   3228 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3229 			DELAY(500000);
   3230 			/* XXX: Magic Numbers */
   3231 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3232 			    BGE_PCI_UNKNOWN0);
   3233 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3234 			    BGE_PCI_UNKNOWN0,
   3235 			    reg | (1 << 15));
   3236 		}
   3237 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3238 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3239 		/* Clear enable no snoop and disable relaxed ordering. */
   3240 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3241 		/* Set PCIE max payload size to 128. */
   3242 		devctl &= ~(0x00e0);
   3243 		/* Clear device status register. Write 1b to clear */
   3244 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3245 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3246 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3247 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3248 	}
   3249 
   3250 	/* Step 12: Enable memory arbiter. */
   3251 	marbmode = 0;
   3252 	if (BGE_IS_5714_FAMILY(sc))
   3253 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3254 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3255 
   3256 	/* Step 17: Poll until the firmware initialization is complete */
   3257 	bge_poll_fw(sc);
   3258 
   3259 	/* XXX 5721, 5751 and 5752 */
   3260 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3261 		/* Step 19: */
   3262 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3263 		/* Step 20: */
   3264 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3265 	}
   3266 
   3267 	/*
   3268 	 * Step 18: wirte mac mode
   3269 	 * XXX Write 0x0c for 5703S and 5704S
   3270 	 */
   3271 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3272 
   3273 
   3274 	/* Step 21: 5822 B0 errata */
   3275 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3276 		pcireg_t msidata;
   3277 
   3278 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3279 		    BGE_PCI_MSI_DATA);
   3280 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3281 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3282 		    msidata);
   3283 	}
   3284 
   3285 	/* Step 23: restore cache line size */
   3286 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3287 
   3288 #if 0
   3289 	/*
   3290 	 * XXX Wait for the value of the PCISTATE register to
   3291 	 * return to its original pre-reset state. This is a
   3292 	 * fairly good indicator of reset completion. If we don't
   3293 	 * wait for the reset to fully complete, trying to read
   3294 	 * from the device's non-PCI registers may yield garbage
   3295 	 * results.
   3296 	 */
   3297 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3298 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3299 		    BGE_PCI_PCISTATE);
   3300 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3301 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3302 			break;
   3303 		DELAY(10);
   3304 	}
   3305 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3306 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3307 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3308 	}
   3309 #endif
   3310 
   3311 	/* Step 28: Fix up byte swapping */
   3312 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3313 
   3314 	/* Tell the ASF firmware we are up */
   3315 	if (sc->bge_asf_mode & ASF_STACKUP)
   3316 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3317 
   3318 	/*
   3319 	 * The 5704 in TBI mode apparently needs some special
   3320 	 * adjustment to insure the SERDES drive level is set
   3321 	 * to 1.2V.
   3322 	 */
   3323 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3324 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3325 		uint32_t serdescfg;
   3326 
   3327 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3328 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3329 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3330 	}
   3331 
   3332 	if (sc->bge_flags & BGE_PCIE &&
   3333 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3334 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3335 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3336 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   3337 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
   3338 		uint32_t v;
   3339 
   3340 		/* Enable PCI Express bug fix */
   3341 		v = CSR_READ_4(sc, 0x7c00);
   3342 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3343 	}
   3344 	DELAY(10000);
   3345 
   3346 	return 0;
   3347 }
   3348 
   3349 /*
   3350  * Frame reception handling. This is called if there's a frame
   3351  * on the receive return list.
   3352  *
   3353  * Note: we have to be able to handle two possibilities here:
   3354  * 1) the frame is from the jumbo receive ring
   3355  * 2) the frame is from the standard receive ring
   3356  */
   3357 
   3358 static void
   3359 bge_rxeof(struct bge_softc *sc)
   3360 {
   3361 	struct ifnet *ifp;
   3362 	uint16_t rx_prod, rx_cons;
   3363 	int stdcnt = 0, jumbocnt = 0;
   3364 	bus_dmamap_t dmamap;
   3365 	bus_addr_t offset, toff;
   3366 	bus_size_t tlen;
   3367 	int tosync;
   3368 
   3369 	rx_cons = sc->bge_rx_saved_considx;
   3370 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3371 
   3372 	/* Nothing to do */
   3373 	if (rx_cons == rx_prod)
   3374 		return;
   3375 
   3376 	ifp = &sc->ethercom.ec_if;
   3377 
   3378 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3379 	    offsetof(struct bge_ring_data, bge_status_block),
   3380 	    sizeof (struct bge_status_block),
   3381 	    BUS_DMASYNC_POSTREAD);
   3382 
   3383 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3384 	tosync = rx_prod - rx_cons;
   3385 
   3386 	if (tosync != 0)
   3387 		rnd_add_uint32(&sc->rnd_source, tosync);
   3388 
   3389 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3390 
   3391 	if (tosync < 0) {
   3392 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3393 		    sizeof (struct bge_rx_bd);
   3394 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3395 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3396 		tosync = -tosync;
   3397 	}
   3398 
   3399 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3400 	    offset, tosync * sizeof (struct bge_rx_bd),
   3401 	    BUS_DMASYNC_POSTREAD);
   3402 
   3403 	while (rx_cons != rx_prod) {
   3404 		struct bge_rx_bd	*cur_rx;
   3405 		uint32_t		rxidx;
   3406 		struct mbuf		*m = NULL;
   3407 
   3408 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3409 
   3410 		rxidx = cur_rx->bge_idx;
   3411 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3412 
   3413 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3414 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3415 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3416 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3417 			jumbocnt++;
   3418 			bus_dmamap_sync(sc->bge_dmatag,
   3419 			    sc->bge_cdata.bge_rx_jumbo_map,
   3420 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3421 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3422 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3423 				ifp->if_ierrors++;
   3424 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3425 				continue;
   3426 			}
   3427 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3428 					     NULL)== ENOBUFS) {
   3429 				ifp->if_ierrors++;
   3430 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3431 				continue;
   3432 			}
   3433 		} else {
   3434 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3435 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3436 
   3437 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3438 			stdcnt++;
   3439 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3440 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3441 			if (dmamap == NULL) {
   3442 				ifp->if_ierrors++;
   3443 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3444 				continue;
   3445 			}
   3446 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3447 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3448 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3449 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3450 				ifp->if_ierrors++;
   3451 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3452 				continue;
   3453 			}
   3454 			if (bge_newbuf_std(sc, sc->bge_std,
   3455 			    NULL, dmamap) == ENOBUFS) {
   3456 				ifp->if_ierrors++;
   3457 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3458 				continue;
   3459 			}
   3460 		}
   3461 
   3462 		ifp->if_ipackets++;
   3463 #ifndef __NO_STRICT_ALIGNMENT
   3464 		/*
   3465 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3466 		 * the Rx buffer has the layer-2 header unaligned.
   3467 		 * If our CPU requires alignment, re-align by copying.
   3468 		 */
   3469 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3470 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3471 				cur_rx->bge_len);
   3472 			m->m_data += ETHER_ALIGN;
   3473 		}
   3474 #endif
   3475 
   3476 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3477 		m->m_pkthdr.rcvif = ifp;
   3478 
   3479 		/*
   3480 		 * Handle BPF listeners. Let the BPF user see the packet.
   3481 		 */
   3482 		bpf_mtap(ifp, m);
   3483 
   3484 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3485 
   3486 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3487 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3488 		/*
   3489 		 * Rx transport checksum-offload may also
   3490 		 * have bugs with packets which, when transmitted,
   3491 		 * were `runts' requiring padding.
   3492 		 */
   3493 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3494 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3495 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3496 			m->m_pkthdr.csum_data =
   3497 			    cur_rx->bge_tcp_udp_csum;
   3498 			m->m_pkthdr.csum_flags |=
   3499 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3500 			     M_CSUM_DATA);
   3501 		}
   3502 
   3503 		/*
   3504 		 * If we received a packet with a vlan tag, pass it
   3505 		 * to vlan_input() instead of ether_input().
   3506 		 */
   3507 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3508 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3509 		}
   3510 
   3511 		(*ifp->if_input)(ifp, m);
   3512 	}
   3513 
   3514 	sc->bge_rx_saved_considx = rx_cons;
   3515 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3516 	if (stdcnt)
   3517 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3518 	if (jumbocnt)
   3519 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3520 }
   3521 
   3522 static void
   3523 bge_txeof(struct bge_softc *sc)
   3524 {
   3525 	struct bge_tx_bd *cur_tx = NULL;
   3526 	struct ifnet *ifp;
   3527 	struct txdmamap_pool_entry *dma;
   3528 	bus_addr_t offset, toff;
   3529 	bus_size_t tlen;
   3530 	int tosync;
   3531 	struct mbuf *m;
   3532 
   3533 	ifp = &sc->ethercom.ec_if;
   3534 
   3535 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3536 	    offsetof(struct bge_ring_data, bge_status_block),
   3537 	    sizeof (struct bge_status_block),
   3538 	    BUS_DMASYNC_POSTREAD);
   3539 
   3540 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3541 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3542 	    sc->bge_tx_saved_considx;
   3543 
   3544 	if (tosync != 0)
   3545 		rnd_add_uint32(&sc->rnd_source, tosync);
   3546 
   3547 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3548 
   3549 	if (tosync < 0) {
   3550 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3551 		    sizeof (struct bge_tx_bd);
   3552 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3553 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3554 		tosync = -tosync;
   3555 	}
   3556 
   3557 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3558 	    offset, tosync * sizeof (struct bge_tx_bd),
   3559 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3560 
   3561 	/*
   3562 	 * Go through our tx ring and free mbufs for those
   3563 	 * frames that have been sent.
   3564 	 */
   3565 	while (sc->bge_tx_saved_considx !=
   3566 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3567 		uint32_t		idx = 0;
   3568 
   3569 		idx = sc->bge_tx_saved_considx;
   3570 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3571 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3572 			ifp->if_opackets++;
   3573 		m = sc->bge_cdata.bge_tx_chain[idx];
   3574 		if (m != NULL) {
   3575 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3576 			dma = sc->txdma[idx];
   3577 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3578 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3579 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3580 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3581 			sc->txdma[idx] = NULL;
   3582 
   3583 			m_freem(m);
   3584 		}
   3585 		sc->bge_txcnt--;
   3586 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3587 		ifp->if_timer = 0;
   3588 	}
   3589 
   3590 	if (cur_tx != NULL)
   3591 		ifp->if_flags &= ~IFF_OACTIVE;
   3592 }
   3593 
   3594 static int
   3595 bge_intr(void *xsc)
   3596 {
   3597 	struct bge_softc *sc;
   3598 	struct ifnet *ifp;
   3599 	uint32_t statusword;
   3600 
   3601 	sc = xsc;
   3602 	ifp = &sc->ethercom.ec_if;
   3603 
   3604 	/* It is possible for the interrupt to arrive before
   3605 	 * the status block is updated prior to the interrupt.
   3606 	 * Reading the PCI State register will confirm whether the
   3607 	 * interrupt is ours and will flush the status block.
   3608 	 */
   3609 
   3610 	/* read status word from status block */
   3611 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3612 
   3613 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3614 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3615 		/* Ack interrupt and stop others from occuring. */
   3616 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3617 
   3618 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3619 
   3620 		/* clear status word */
   3621 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3622 
   3623 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3624 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3625 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3626 			bge_link_upd(sc);
   3627 
   3628 		if (ifp->if_flags & IFF_RUNNING) {
   3629 			/* Check RX return ring producer/consumer */
   3630 			bge_rxeof(sc);
   3631 
   3632 			/* Check TX ring producer/consumer */
   3633 			bge_txeof(sc);
   3634 		}
   3635 
   3636 		if (sc->bge_pending_rxintr_change) {
   3637 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3638 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3639 			uint32_t junk;
   3640 
   3641 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3642 			DELAY(10);
   3643 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3644 
   3645 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3646 			DELAY(10);
   3647 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3648 
   3649 			sc->bge_pending_rxintr_change = 0;
   3650 		}
   3651 		bge_handle_events(sc);
   3652 
   3653 		/* Re-enable interrupts. */
   3654 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3655 
   3656 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3657 			bge_start(ifp);
   3658 
   3659 		return 1;
   3660 	} else
   3661 		return 0;
   3662 }
   3663 
   3664 static void
   3665 bge_asf_driver_up(struct bge_softc *sc)
   3666 {
   3667 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3668 		/* Send ASF heartbeat aprox. every 2s */
   3669 		if (sc->bge_asf_count)
   3670 			sc->bge_asf_count --;
   3671 		else {
   3672 			sc->bge_asf_count = 2;
   3673 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3674 			    BGE_FW_DRV_ALIVE);
   3675 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3676 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3677 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3678 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3679 		}
   3680 	}
   3681 }
   3682 
   3683 static void
   3684 bge_tick(void *xsc)
   3685 {
   3686 	struct bge_softc *sc = xsc;
   3687 	struct mii_data *mii = &sc->bge_mii;
   3688 	int s;
   3689 
   3690 	s = splnet();
   3691 
   3692 	if (BGE_IS_5705_PLUS(sc))
   3693 		bge_stats_update_regs(sc);
   3694 	else
   3695 		bge_stats_update(sc);
   3696 
   3697 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3698 		/*
   3699 		 * Since in TBI mode auto-polling can't be used we should poll
   3700 		 * link status manually. Here we register pending link event
   3701 		 * and trigger interrupt.
   3702 		 */
   3703 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3704 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3705 	} else {
   3706 		/*
   3707 		 * Do not touch PHY if we have link up. This could break
   3708 		 * IPMI/ASF mode or produce extra input errors.
   3709 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3710 		 */
   3711 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3712 			mii_tick(mii);
   3713 	}
   3714 
   3715 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3716 
   3717 	splx(s);
   3718 }
   3719 
   3720 static void
   3721 bge_stats_update_regs(struct bge_softc *sc)
   3722 {
   3723 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3724 
   3725 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3726 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3727 
   3728 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3729 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3730 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3731 }
   3732 
   3733 static void
   3734 bge_stats_update(struct bge_softc *sc)
   3735 {
   3736 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3737 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3738 
   3739 #define READ_STAT(sc, stats, stat) \
   3740 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3741 
   3742 	ifp->if_collisions +=
   3743 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3744 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3745 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3746 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3747 	  ifp->if_collisions;
   3748 
   3749 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3750 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3751 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3752 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3753 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3754 		      READ_STAT(sc, stats,
   3755 		      		xoffPauseFramesReceived.bge_addr_lo));
   3756 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3757 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3758 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3759 		      READ_STAT(sc, stats,
   3760 		      		macControlFramesReceived.bge_addr_lo));
   3761 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3762 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3763 
   3764 #undef READ_STAT
   3765 
   3766 #ifdef notdef
   3767 	ifp->if_collisions +=
   3768 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3769 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3770 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3771 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3772 	   ifp->if_collisions;
   3773 #endif
   3774 }
   3775 
   3776 /*
   3777  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3778  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3779  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3780  * the hardware checksum assist gives incorrect results (possibly
   3781  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3782  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3783  */
   3784 static inline int
   3785 bge_cksum_pad(struct mbuf *pkt)
   3786 {
   3787 	struct mbuf *last = NULL;
   3788 	int padlen;
   3789 
   3790 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3791 
   3792 	/* if there's only the packet-header and we can pad there, use it. */
   3793 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3794 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3795 		last = pkt;
   3796 	} else {
   3797 		/*
   3798 		 * Walk packet chain to find last mbuf. We will either
   3799 		 * pad there, or append a new mbuf and pad it
   3800 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3801 		 */
   3802 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3803 	      	       continue; /* do nothing */
   3804 		}
   3805 
   3806 		/* `last' now points to last in chain. */
   3807 		if (M_TRAILINGSPACE(last) < padlen) {
   3808 			/* Allocate new empty mbuf, pad it. Compact later. */
   3809 			struct mbuf *n;
   3810 			MGET(n, M_DONTWAIT, MT_DATA);
   3811 			if (n == NULL)
   3812 				return ENOBUFS;
   3813 			n->m_len = 0;
   3814 			last->m_next = n;
   3815 			last = n;
   3816 		}
   3817 	}
   3818 
   3819 	KDASSERT(!M_READONLY(last));
   3820 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3821 
   3822 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3823 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3824 	last->m_len += padlen;
   3825 	pkt->m_pkthdr.len += padlen;
   3826 	return 0;
   3827 }
   3828 
   3829 /*
   3830  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3831  */
   3832 static inline int
   3833 bge_compact_dma_runt(struct mbuf *pkt)
   3834 {
   3835 	struct mbuf	*m, *prev;
   3836 	int 		totlen, prevlen;
   3837 
   3838 	prev = NULL;
   3839 	totlen = 0;
   3840 	prevlen = -1;
   3841 
   3842 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3843 		int mlen = m->m_len;
   3844 		int shortfall = 8 - mlen ;
   3845 
   3846 		totlen += mlen;
   3847 		if (mlen == 0)
   3848 			continue;
   3849 		if (mlen >= 8)
   3850 			continue;
   3851 
   3852 		/* If we get here, mbuf data is too small for DMA engine.
   3853 		 * Try to fix by shuffling data to prev or next in chain.
   3854 		 * If that fails, do a compacting deep-copy of the whole chain.
   3855 		 */
   3856 
   3857 		/* Internal frag. If fits in prev, copy it there. */
   3858 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3859 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3860 			prev->m_len += mlen;
   3861 			m->m_len = 0;
   3862 			/* XXX stitch chain */
   3863 			prev->m_next = m_free(m);
   3864 			m = prev;
   3865 			continue;
   3866 		}
   3867 		else if (m->m_next != NULL &&
   3868 			     M_TRAILINGSPACE(m) >= shortfall &&
   3869 			     m->m_next->m_len >= (8 + shortfall)) {
   3870 		    /* m is writable and have enough data in next, pull up. */
   3871 
   3872 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3873 			    shortfall);
   3874 			m->m_len += shortfall;
   3875 			m->m_next->m_len -= shortfall;
   3876 			m->m_next->m_data += shortfall;
   3877 		}
   3878 		else if (m->m_next == NULL || 1) {
   3879 		  	/* Got a runt at the very end of the packet.
   3880 			 * borrow data from the tail of the preceding mbuf and
   3881 			 * update its length in-place. (The original data is still
   3882 			 * valid, so we can do this even if prev is not writable.)
   3883 			 */
   3884 
   3885 			/* if we'd make prev a runt, just move all of its data. */
   3886 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3887 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3888 
   3889 			if ((prev->m_len - shortfall) < 8)
   3890 				shortfall = prev->m_len;
   3891 
   3892 #ifdef notyet	/* just do the safe slow thing for now */
   3893 			if (!M_READONLY(m)) {
   3894 				if (M_LEADINGSPACE(m) < shorfall) {
   3895 					void *m_dat;
   3896 					m_dat = (m->m_flags & M_PKTHDR) ?
   3897 					  m->m_pktdat : m->dat;
   3898 					memmove(m_dat, mtod(m, void*), m->m_len);
   3899 					m->m_data = m_dat;
   3900 				    }
   3901 			} else
   3902 #endif	/* just do the safe slow thing */
   3903 			{
   3904 				struct mbuf * n = NULL;
   3905 				int newprevlen = prev->m_len - shortfall;
   3906 
   3907 				MGET(n, M_NOWAIT, MT_DATA);
   3908 				if (n == NULL)
   3909 				   return ENOBUFS;
   3910 				KASSERT(m->m_len + shortfall < MLEN
   3911 					/*,
   3912 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3913 
   3914 				/* first copy the data we're stealing from prev */
   3915 				memcpy(n->m_data, prev->m_data + newprevlen,
   3916 				    shortfall);
   3917 
   3918 				/* update prev->m_len accordingly */
   3919 				prev->m_len -= shortfall;
   3920 
   3921 				/* copy data from runt m */
   3922 				memcpy(n->m_data + shortfall, m->m_data,
   3923 				    m->m_len);
   3924 
   3925 				/* n holds what we stole from prev, plus m */
   3926 				n->m_len = shortfall + m->m_len;
   3927 
   3928 				/* stitch n into chain and free m */
   3929 				n->m_next = m->m_next;
   3930 				prev->m_next = n;
   3931 				/* KASSERT(m->m_next == NULL); */
   3932 				m->m_next = NULL;
   3933 				m_free(m);
   3934 				m = n;	/* for continuing loop */
   3935 			}
   3936 		}
   3937 		prevlen = m->m_len;
   3938 	}
   3939 	return 0;
   3940 }
   3941 
   3942 /*
   3943  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3944  * pointers to descriptors.
   3945  */
   3946 static int
   3947 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3948 {
   3949 	struct bge_tx_bd	*f = NULL;
   3950 	uint32_t		frag, cur;
   3951 	uint16_t		csum_flags = 0;
   3952 	uint16_t		txbd_tso_flags = 0;
   3953 	struct txdmamap_pool_entry *dma;
   3954 	bus_dmamap_t dmamap;
   3955 	int			i = 0;
   3956 	struct m_tag		*mtag;
   3957 	int			use_tso, maxsegsize, error;
   3958 
   3959 	cur = frag = *txidx;
   3960 
   3961 	if (m_head->m_pkthdr.csum_flags) {
   3962 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3963 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3964 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3965 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3966 	}
   3967 
   3968 	/*
   3969 	 * If we were asked to do an outboard checksum, and the NIC
   3970 	 * has the bug where it sometimes adds in the Ethernet padding,
   3971 	 * explicitly pad with zeros so the cksum will be correct either way.
   3972 	 * (For now, do this for all chip versions, until newer
   3973 	 * are confirmed to not require the workaround.)
   3974 	 */
   3975 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3976 #ifdef notyet
   3977 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3978 #endif
   3979 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3980 		goto check_dma_bug;
   3981 
   3982 	if (bge_cksum_pad(m_head) != 0)
   3983 	    return ENOBUFS;
   3984 
   3985 check_dma_bug:
   3986 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3987 		goto doit;
   3988 
   3989 	/*
   3990 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3991 	 * less than eight bytes.  If we encounter a teeny mbuf
   3992 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3993 	 */
   3994 	if (bge_compact_dma_runt(m_head) != 0)
   3995 		return ENOBUFS;
   3996 
   3997 doit:
   3998 	dma = SLIST_FIRST(&sc->txdma_list);
   3999 	if (dma == NULL)
   4000 		return ENOBUFS;
   4001 	dmamap = dma->dmamap;
   4002 
   4003 	/*
   4004 	 * Set up any necessary TSO state before we start packing...
   4005 	 */
   4006 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4007 	if (!use_tso) {
   4008 		maxsegsize = 0;
   4009 	} else {	/* TSO setup */
   4010 		unsigned  mss;
   4011 		struct ether_header *eh;
   4012 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4013 		struct mbuf * m0 = m_head;
   4014 		struct ip *ip;
   4015 		struct tcphdr *th;
   4016 		int iphl, hlen;
   4017 
   4018 		/*
   4019 		 * XXX It would be nice if the mbuf pkthdr had offset
   4020 		 * fields for the protocol headers.
   4021 		 */
   4022 
   4023 		eh = mtod(m0, struct ether_header *);
   4024 		switch (htons(eh->ether_type)) {
   4025 		case ETHERTYPE_IP:
   4026 			offset = ETHER_HDR_LEN;
   4027 			break;
   4028 
   4029 		case ETHERTYPE_VLAN:
   4030 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4031 			break;
   4032 
   4033 		default:
   4034 			/*
   4035 			 * Don't support this protocol or encapsulation.
   4036 			 */
   4037 			return ENOBUFS;
   4038 		}
   4039 
   4040 		/*
   4041 		 * TCP/IP headers are in the first mbuf; we can do
   4042 		 * this the easy way.
   4043 		 */
   4044 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4045 		hlen = iphl + offset;
   4046 		if (__predict_false(m0->m_len <
   4047 				    (hlen + sizeof(struct tcphdr)))) {
   4048 
   4049 			aprint_debug_dev(sc->bge_dev,
   4050 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4051 			    "not handled yet\n",
   4052 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4053 #ifdef NOTYET
   4054 			/*
   4055 			 * XXX jonathan (at) NetBSD.org: untested.
   4056 			 * how to force  this branch to be taken?
   4057 			 */
   4058 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4059 
   4060 			m_copydata(m0, offset, sizeof(ip), &ip);
   4061 			m_copydata(m0, hlen, sizeof(th), &th);
   4062 
   4063 			ip.ip_len = 0;
   4064 
   4065 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4066 			    sizeof(ip.ip_len), &ip.ip_len);
   4067 
   4068 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4069 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4070 
   4071 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4072 			    sizeof(th.th_sum), &th.th_sum);
   4073 
   4074 			hlen += th.th_off << 2;
   4075 			iptcp_opt_words	= hlen;
   4076 #else
   4077 			/*
   4078 			 * if_wm "hard" case not yet supported, can we not
   4079 			 * mandate it out of existence?
   4080 			 */
   4081 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4082 
   4083 			return ENOBUFS;
   4084 #endif
   4085 		} else {
   4086 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4087 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4088 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4089 
   4090 			/* Total IP/TCP options, in 32-bit words */
   4091 			iptcp_opt_words = (ip_tcp_hlen
   4092 					   - sizeof(struct tcphdr)
   4093 					   - sizeof(struct ip)) >> 2;
   4094 		}
   4095 		if (BGE_IS_5750_OR_BEYOND(sc)) {
   4096 			th->th_sum = 0;
   4097 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4098 		} else {
   4099 			/*
   4100 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4101 			 * Requires TSO firmware patch for 5701/5703/5704.
   4102 			 */
   4103 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4104 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4105 		}
   4106 
   4107 		mss = m_head->m_pkthdr.segsz;
   4108 		txbd_tso_flags |=
   4109 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4110 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4111 
   4112 		/*
   4113 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4114 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4115 		 * the NIC copies 40 bytes of IP/TCP header from the
   4116 		 * supplied header into the IP/TCP header portion of
   4117 		 * each post-TSO-segment. If the supplied packet has IP or
   4118 		 * TCP options, we need to tell the NIC to copy those extra
   4119 		 * bytes into each  post-TSO header, in addition to the normal
   4120 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4121 		 * Unfortunately, the driver encoding of option length
   4122 		 * varies across different ASIC families.
   4123 		 */
   4124 		tcp_seg_flags = 0;
   4125 		if (iptcp_opt_words) {
   4126 			if (BGE_IS_5705_PLUS(sc)) {
   4127 				tcp_seg_flags =
   4128 					iptcp_opt_words << 11;
   4129 			} else {
   4130 				txbd_tso_flags |=
   4131 					iptcp_opt_words << 12;
   4132 			}
   4133 		}
   4134 		maxsegsize = mss | tcp_seg_flags;
   4135 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4136 
   4137 	}	/* TSO setup */
   4138 
   4139 	/*
   4140 	 * Start packing the mbufs in this chain into
   4141 	 * the fragment pointers. Stop when we run out
   4142 	 * of fragments or hit the end of the mbuf chain.
   4143 	 */
   4144 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4145 	    BUS_DMA_NOWAIT);
   4146 	if (error)
   4147 		return ENOBUFS;
   4148 	/*
   4149 	 * Sanity check: avoid coming within 16 descriptors
   4150 	 * of the end of the ring.
   4151 	 */
   4152 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4153 		BGE_TSO_PRINTF(("%s: "
   4154 		    " dmamap_load_mbuf too close to ring wrap\n",
   4155 		    device_xname(sc->bge_dev)));
   4156 		goto fail_unload;
   4157 	}
   4158 
   4159 	mtag = sc->ethercom.ec_nvlans ?
   4160 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4161 
   4162 
   4163 	/* Iterate over dmap-map fragments. */
   4164 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4165 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4166 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4167 			break;
   4168 
   4169 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4170 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4171 
   4172 		/*
   4173 		 * For 5751 and follow-ons, for TSO we must turn
   4174 		 * off checksum-assist flag in the tx-descr, and
   4175 		 * supply the ASIC-revision-specific encoding
   4176 		 * of TSO flags and segsize.
   4177 		 */
   4178 		if (use_tso) {
   4179 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
   4180 				f->bge_rsvd = maxsegsize;
   4181 				f->bge_flags = csum_flags | txbd_tso_flags;
   4182 			} else {
   4183 				f->bge_rsvd = 0;
   4184 				f->bge_flags =
   4185 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4186 			}
   4187 		} else {
   4188 			f->bge_rsvd = 0;
   4189 			f->bge_flags = csum_flags;
   4190 		}
   4191 
   4192 		if (mtag != NULL) {
   4193 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4194 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4195 		} else {
   4196 			f->bge_vlan_tag = 0;
   4197 		}
   4198 		cur = frag;
   4199 		BGE_INC(frag, BGE_TX_RING_CNT);
   4200 	}
   4201 
   4202 	if (i < dmamap->dm_nsegs) {
   4203 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4204 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4205 		goto fail_unload;
   4206 	}
   4207 
   4208 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4209 	    BUS_DMASYNC_PREWRITE);
   4210 
   4211 	if (frag == sc->bge_tx_saved_considx) {
   4212 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4213 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4214 
   4215 		goto fail_unload;
   4216 	}
   4217 
   4218 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4219 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4220 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4221 	sc->txdma[cur] = dma;
   4222 	sc->bge_txcnt += dmamap->dm_nsegs;
   4223 
   4224 	*txidx = frag;
   4225 
   4226 	return 0;
   4227 
   4228 fail_unload:
   4229 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4230 
   4231 	return ENOBUFS;
   4232 }
   4233 
   4234 /*
   4235  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4236  * to the mbuf data regions directly in the transmit descriptors.
   4237  */
   4238 static void
   4239 bge_start(struct ifnet *ifp)
   4240 {
   4241 	struct bge_softc *sc;
   4242 	struct mbuf *m_head = NULL;
   4243 	uint32_t prodidx;
   4244 	int pkts = 0;
   4245 
   4246 	sc = ifp->if_softc;
   4247 
   4248 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4249 		return;
   4250 
   4251 	prodidx = sc->bge_tx_prodidx;
   4252 
   4253 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4254 		IFQ_POLL(&ifp->if_snd, m_head);
   4255 		if (m_head == NULL)
   4256 			break;
   4257 
   4258 #if 0
   4259 		/*
   4260 		 * XXX
   4261 		 * safety overkill.  If this is a fragmented packet chain
   4262 		 * with delayed TCP/UDP checksums, then only encapsulate
   4263 		 * it if we have enough descriptors to handle the entire
   4264 		 * chain at once.
   4265 		 * (paranoia -- may not actually be needed)
   4266 		 */
   4267 		if (m_head->m_flags & M_FIRSTFRAG &&
   4268 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4269 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4270 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4271 				ifp->if_flags |= IFF_OACTIVE;
   4272 				break;
   4273 			}
   4274 		}
   4275 #endif
   4276 
   4277 		/*
   4278 		 * Pack the data into the transmit ring. If we
   4279 		 * don't have room, set the OACTIVE flag and wait
   4280 		 * for the NIC to drain the ring.
   4281 		 */
   4282 		if (bge_encap(sc, m_head, &prodidx)) {
   4283 			ifp->if_flags |= IFF_OACTIVE;
   4284 			break;
   4285 		}
   4286 
   4287 		/* now we are committed to transmit the packet */
   4288 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4289 		pkts++;
   4290 
   4291 		/*
   4292 		 * If there's a BPF listener, bounce a copy of this frame
   4293 		 * to him.
   4294 		 */
   4295 		bpf_mtap(ifp, m_head);
   4296 	}
   4297 	if (pkts == 0)
   4298 		return;
   4299 
   4300 	/* Transmit */
   4301 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4302 	/* 5700 b2 errata */
   4303 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4304 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4305 
   4306 	sc->bge_tx_prodidx = prodidx;
   4307 
   4308 	/*
   4309 	 * Set a timeout in case the chip goes out to lunch.
   4310 	 */
   4311 	ifp->if_timer = 5;
   4312 }
   4313 
   4314 static int
   4315 bge_init(struct ifnet *ifp)
   4316 {
   4317 	struct bge_softc *sc = ifp->if_softc;
   4318 	const uint16_t *m;
   4319 	uint32_t mode;
   4320 	int s, error = 0;
   4321 
   4322 	s = splnet();
   4323 
   4324 	ifp = &sc->ethercom.ec_if;
   4325 
   4326 	/* Cancel pending I/O and flush buffers. */
   4327 	bge_stop(ifp, 0);
   4328 
   4329 	bge_stop_fw(sc);
   4330 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4331 	bge_reset(sc);
   4332 	bge_sig_legacy(sc, BGE_RESET_START);
   4333 	bge_sig_post_reset(sc, BGE_RESET_START);
   4334 
   4335 	bge_chipinit(sc);
   4336 
   4337 	/*
   4338 	 * Init the various state machines, ring
   4339 	 * control blocks and firmware.
   4340 	 */
   4341 	error = bge_blockinit(sc);
   4342 	if (error != 0) {
   4343 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4344 		    error);
   4345 		splx(s);
   4346 		return error;
   4347 	}
   4348 
   4349 	ifp = &sc->ethercom.ec_if;
   4350 
   4351 	/* Specify MTU. */
   4352 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4353 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4354 
   4355 	/* Load our MAC address. */
   4356 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4357 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4358 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4359 
   4360 	/* Enable or disable promiscuous mode as needed. */
   4361 	if (ifp->if_flags & IFF_PROMISC)
   4362 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4363 	else
   4364 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4365 
   4366 	/* Program multicast filter. */
   4367 	bge_setmulti(sc);
   4368 
   4369 	/* Init RX ring. */
   4370 	bge_init_rx_ring_std(sc);
   4371 
   4372 	/*
   4373 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4374 	 * memory to insure that the chip has in fact read the first
   4375 	 * entry of the ring.
   4376 	 */
   4377 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4378 		uint32_t		v, i;
   4379 		for (i = 0; i < 10; i++) {
   4380 			DELAY(20);
   4381 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4382 			if (v == (MCLBYTES - ETHER_ALIGN))
   4383 				break;
   4384 		}
   4385 		if (i == 10)
   4386 			aprint_error_dev(sc->bge_dev,
   4387 			    "5705 A0 chip failed to load RX ring\n");
   4388 	}
   4389 
   4390 	/* Init jumbo RX ring. */
   4391 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4392 		bge_init_rx_ring_jumbo(sc);
   4393 
   4394 	/* Init our RX return ring index */
   4395 	sc->bge_rx_saved_considx = 0;
   4396 
   4397 	/* Init TX ring. */
   4398 	bge_init_tx_ring(sc);
   4399 
   4400 	/* Enable TX MAC state machine lockup fix. */
   4401 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   4402 	if (BGE_IS_5755_PLUS(sc) ||
   4403 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4404 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   4405 
   4406 	/* Turn on transmitter */
   4407 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   4408 	DELAY(100);
   4409 
   4410 	/* Turn on receiver */
   4411 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4412 	DELAY(10);
   4413 
   4414 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4415 
   4416 	/* Tell firmware we're alive. */
   4417 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4418 
   4419 	/* Enable host interrupts. */
   4420 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4421 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4422 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4423 
   4424 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4425 		goto out;
   4426 
   4427 	ifp->if_flags |= IFF_RUNNING;
   4428 	ifp->if_flags &= ~IFF_OACTIVE;
   4429 
   4430 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4431 
   4432 out:
   4433 	sc->bge_if_flags = ifp->if_flags;
   4434 	splx(s);
   4435 
   4436 	return error;
   4437 }
   4438 
   4439 /*
   4440  * Set media options.
   4441  */
   4442 static int
   4443 bge_ifmedia_upd(struct ifnet *ifp)
   4444 {
   4445 	struct bge_softc *sc = ifp->if_softc;
   4446 	struct mii_data *mii = &sc->bge_mii;
   4447 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4448 	int rc;
   4449 
   4450 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4451 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4452 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4453 			return EINVAL;
   4454 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4455 		case IFM_AUTO:
   4456 			/*
   4457 			 * The BCM5704 ASIC appears to have a special
   4458 			 * mechanism for programming the autoneg
   4459 			 * advertisement registers in TBI mode.
   4460 			 */
   4461 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4462 				uint32_t sgdig;
   4463 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4464 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4465 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4466 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4467 					sgdig |= BGE_SGDIGCFG_AUTO |
   4468 					    BGE_SGDIGCFG_PAUSE_CAP |
   4469 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4470 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4471 					    sgdig | BGE_SGDIGCFG_SEND);
   4472 					DELAY(5);
   4473 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4474 				}
   4475 			}
   4476 			break;
   4477 		case IFM_1000_SX:
   4478 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4479 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4480 				    BGE_MACMODE_HALF_DUPLEX);
   4481 			} else {
   4482 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4483 				    BGE_MACMODE_HALF_DUPLEX);
   4484 			}
   4485 			break;
   4486 		default:
   4487 			return EINVAL;
   4488 		}
   4489 		/* XXX 802.3x flow control for 1000BASE-SX */
   4490 		return 0;
   4491 	}
   4492 
   4493 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4494 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4495 		return 0;
   4496 
   4497 	/*
   4498 	 * Force an interrupt so that we will call bge_link_upd
   4499 	 * if needed and clear any pending link state attention.
   4500 	 * Without this we are not getting any further interrupts
   4501 	 * for link state changes and thus will not UP the link and
   4502 	 * not be able to send in bge_start. The only way to get
   4503 	 * things working was to receive a packet and get a RX intr.
   4504 	 */
   4505 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4506 	    sc->bge_flags & BGE_IS_5788)
   4507 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4508 	else
   4509 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4510 
   4511 	return rc;
   4512 }
   4513 
   4514 /*
   4515  * Report current media status.
   4516  */
   4517 static void
   4518 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4519 {
   4520 	struct bge_softc *sc = ifp->if_softc;
   4521 	struct mii_data *mii = &sc->bge_mii;
   4522 
   4523 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4524 		ifmr->ifm_status = IFM_AVALID;
   4525 		ifmr->ifm_active = IFM_ETHER;
   4526 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4527 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4528 			ifmr->ifm_status |= IFM_ACTIVE;
   4529 		ifmr->ifm_active |= IFM_1000_SX;
   4530 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4531 			ifmr->ifm_active |= IFM_HDX;
   4532 		else
   4533 			ifmr->ifm_active |= IFM_FDX;
   4534 		return;
   4535 	}
   4536 
   4537 	mii_pollstat(mii);
   4538 	ifmr->ifm_status = mii->mii_media_status;
   4539 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4540 	    sc->bge_flowflags;
   4541 }
   4542 
   4543 static int
   4544 bge_ifflags_cb(struct ethercom *ec)
   4545 {
   4546 	struct ifnet *ifp = &ec->ec_if;
   4547 	struct bge_softc *sc = ifp->if_softc;
   4548 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4549 
   4550 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4551 		return ENETRESET;
   4552 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4553 		return 0;
   4554 
   4555 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4556 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4557 	else
   4558 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4559 
   4560 	bge_setmulti(sc);
   4561 
   4562 	sc->bge_if_flags = ifp->if_flags;
   4563 	return 0;
   4564 }
   4565 
   4566 static int
   4567 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4568 {
   4569 	struct bge_softc *sc = ifp->if_softc;
   4570 	struct ifreq *ifr = (struct ifreq *) data;
   4571 	int s, error = 0;
   4572 	struct mii_data *mii;
   4573 
   4574 	s = splnet();
   4575 
   4576 	switch (command) {
   4577 	case SIOCSIFMEDIA:
   4578 		/* XXX Flow control is not supported for 1000BASE-SX */
   4579 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4580 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4581 			sc->bge_flowflags = 0;
   4582 		}
   4583 
   4584 		/* Flow control requires full-duplex mode. */
   4585 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4586 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4587 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4588 		}
   4589 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4590 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4591 				/* We can do both TXPAUSE and RXPAUSE. */
   4592 				ifr->ifr_media |=
   4593 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4594 			}
   4595 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4596 		}
   4597 		/* FALLTHROUGH */
   4598 	case SIOCGIFMEDIA:
   4599 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4600 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4601 			    command);
   4602 		} else {
   4603 			mii = &sc->bge_mii;
   4604 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4605 			    command);
   4606 		}
   4607 		break;
   4608 	default:
   4609 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4610 			break;
   4611 
   4612 		error = 0;
   4613 
   4614 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4615 			;
   4616 		else if (ifp->if_flags & IFF_RUNNING)
   4617 			bge_setmulti(sc);
   4618 		break;
   4619 	}
   4620 
   4621 	splx(s);
   4622 
   4623 	return error;
   4624 }
   4625 
   4626 static void
   4627 bge_watchdog(struct ifnet *ifp)
   4628 {
   4629 	struct bge_softc *sc;
   4630 
   4631 	sc = ifp->if_softc;
   4632 
   4633 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4634 
   4635 	ifp->if_flags &= ~IFF_RUNNING;
   4636 	bge_init(ifp);
   4637 
   4638 	ifp->if_oerrors++;
   4639 }
   4640 
   4641 static void
   4642 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4643 {
   4644 	int i;
   4645 
   4646 	BGE_CLRBIT(sc, reg, bit);
   4647 
   4648 	for (i = 0; i < 1000; i++) {
   4649 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4650 			return;
   4651 		delay(100);
   4652 	}
   4653 
   4654 	/*
   4655 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4656 	 * on some environment (and once after boot?)
   4657 	 */
   4658 	if (reg != BGE_SRS_MODE)
   4659 		aprint_error_dev(sc->bge_dev,
   4660 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4661 		    (u_long)reg, bit);
   4662 }
   4663 
   4664 /*
   4665  * Stop the adapter and free any mbufs allocated to the
   4666  * RX and TX lists.
   4667  */
   4668 static void
   4669 bge_stop(struct ifnet *ifp, int disable)
   4670 {
   4671 	struct bge_softc *sc = ifp->if_softc;
   4672 
   4673 	callout_stop(&sc->bge_timeout);
   4674 
   4675 	/*
   4676 	 * Tell firmware we're shutting down.
   4677 	 */
   4678 	bge_stop_fw(sc);
   4679 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4680 
   4681 	/* Disable host interrupts. */
   4682 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4683 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4684 
   4685 	/*
   4686 	 * Disable all of the receiver blocks
   4687 	 */
   4688 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4689 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4690 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4691 	if (BGE_IS_5700_FAMILY(sc))
   4692 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4693 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4694 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4695 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4696 
   4697 	/*
   4698 	 * Disable all of the transmit blocks
   4699 	 */
   4700 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4701 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4702 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4703 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4704 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4705 	if (BGE_IS_5700_FAMILY(sc))
   4706 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4707 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4708 
   4709 	/*
   4710 	 * Shut down all of the memory managers and related
   4711 	 * state machines.
   4712 	 */
   4713 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4714 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4715 	if (BGE_IS_5700_FAMILY(sc))
   4716 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4717 
   4718 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4719 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4720 
   4721 	if (BGE_IS_5700_FAMILY(sc)) {
   4722 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4723 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4724 	}
   4725 
   4726 	bge_reset(sc);
   4727 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4728 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4729 
   4730 	/*
   4731 	 * Keep the ASF firmware running if up.
   4732 	 */
   4733 	if (sc->bge_asf_mode & ASF_STACKUP)
   4734 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4735 	else
   4736 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4737 
   4738 	/* Free the RX lists. */
   4739 	bge_free_rx_ring_std(sc);
   4740 
   4741 	/* Free jumbo RX list. */
   4742 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4743 		bge_free_rx_ring_jumbo(sc);
   4744 
   4745 	/* Free TX buffers. */
   4746 	bge_free_tx_ring(sc);
   4747 
   4748 	/*
   4749 	 * Isolate/power down the PHY.
   4750 	 */
   4751 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4752 		mii_down(&sc->bge_mii);
   4753 
   4754 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4755 
   4756 	/* Clear MAC's link state (PHY may still have link UP). */
   4757 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4758 
   4759 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4760 }
   4761 
   4762 static void
   4763 bge_link_upd(struct bge_softc *sc)
   4764 {
   4765 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4766 	struct mii_data *mii = &sc->bge_mii;
   4767 	uint32_t status;
   4768 	int link;
   4769 
   4770 	/* Clear 'pending link event' flag */
   4771 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4772 
   4773 	/*
   4774 	 * Process link state changes.
   4775 	 * Grrr. The link status word in the status block does
   4776 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4777 	 * according to all available information. Hence, we have
   4778 	 * to enable MII interrupts in order to properly obtain
   4779 	 * async link changes. Unfortunately, this also means that
   4780 	 * we have to read the MAC status register to detect link
   4781 	 * changes, thereby adding an additional register access to
   4782 	 * the interrupt handler.
   4783 	 */
   4784 
   4785 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4786 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4787 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4788 			mii_pollstat(mii);
   4789 
   4790 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4791 			    mii->mii_media_status & IFM_ACTIVE &&
   4792 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4793 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4794 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4795 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4796 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4797 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4798 
   4799 			/* Clear the interrupt */
   4800 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4801 			    BGE_EVTENB_MI_INTERRUPT);
   4802 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4803 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4804 			    BRGPHY_INTRS);
   4805 		}
   4806 		return;
   4807 	}
   4808 
   4809 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4810 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4811 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4812 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4813 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4814 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4815 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4816 					    BGE_MACMODE_TBI_SEND_CFGS);
   4817 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4818 				if_link_state_change(ifp, LINK_STATE_UP);
   4819 			}
   4820 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4821 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4822 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4823 		}
   4824 	/*
   4825 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4826 	 * This should not happen since mii callouts are locked now, but
   4827 	 * we keep this check for debug.
   4828 	 */
   4829 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4830 		/*
   4831 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4832 		 * bit in status word always set. Workaround this bug by
   4833 		 * reading PHY link status directly.
   4834 		 */
   4835 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4836 		    BGE_STS_LINK : 0;
   4837 
   4838 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4839 			mii_pollstat(mii);
   4840 
   4841 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4842 			    mii->mii_media_status & IFM_ACTIVE &&
   4843 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4844 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4845 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4846 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4847 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4848 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4849 		}
   4850 	}
   4851 
   4852 	/* Clear the attention */
   4853 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4854 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4855 	    BGE_MACSTAT_LINK_CHANGED);
   4856 }
   4857 
   4858 static int
   4859 sysctl_bge_verify(SYSCTLFN_ARGS)
   4860 {
   4861 	int error, t;
   4862 	struct sysctlnode node;
   4863 
   4864 	node = *rnode;
   4865 	t = *(int*)rnode->sysctl_data;
   4866 	node.sysctl_data = &t;
   4867 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4868 	if (error || newp == NULL)
   4869 		return error;
   4870 
   4871 #if 0
   4872 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4873 	    node.sysctl_num, rnode->sysctl_num));
   4874 #endif
   4875 
   4876 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4877 		if (t < 0 || t >= NBGE_RX_THRESH)
   4878 			return EINVAL;
   4879 		bge_update_all_threshes(t);
   4880 	} else
   4881 		return EINVAL;
   4882 
   4883 	*(int*)rnode->sysctl_data = t;
   4884 
   4885 	return 0;
   4886 }
   4887 
   4888 /*
   4889  * Set up sysctl(3) MIB, hw.bge.*.
   4890  */
   4891 static void
   4892 sysctl_bge_init(struct bge_softc *sc)
   4893 {
   4894 	int rc, bge_root_num;
   4895 	const struct sysctlnode *node;
   4896 
   4897 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4898 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4899 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4900 		goto out;
   4901 	}
   4902 
   4903 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4904 	    0, CTLTYPE_NODE, "bge",
   4905 	    SYSCTL_DESCR("BGE interface controls"),
   4906 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4907 		goto out;
   4908 	}
   4909 
   4910 	bge_root_num = node->sysctl_num;
   4911 
   4912 	/* BGE Rx interrupt mitigation level */
   4913 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4914 	    CTLFLAG_READWRITE,
   4915 	    CTLTYPE_INT, "rx_lvl",
   4916 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4917 	    sysctl_bge_verify, 0,
   4918 	    &bge_rx_thresh_lvl,
   4919 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4920 	    CTL_EOL)) != 0) {
   4921 		goto out;
   4922 	}
   4923 
   4924 	bge_rxthresh_nodenum = node->sysctl_num;
   4925 
   4926 	return;
   4927 
   4928 out:
   4929 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4930 }
   4931 
   4932 #ifdef BGE_DEBUG
   4933 void
   4934 bge_debug_info(struct bge_softc *sc)
   4935 {
   4936 
   4937 	printf("Hardware Flags:\n");
   4938 	if (BGE_IS_5755_PLUS(sc))
   4939 		printf(" - 5755 Plus\n");
   4940 	if (BGE_IS_5750_OR_BEYOND(sc))
   4941 		printf(" - 5750 Plus\n");
   4942 	if (BGE_IS_5705_PLUS(sc))
   4943 		printf(" - 5705 Plus\n");
   4944 	if (BGE_IS_5714_FAMILY(sc))
   4945 		printf(" - 5714 Family\n");
   4946 	if (BGE_IS_5700_FAMILY(sc))
   4947 		printf(" - 5700 Family\n");
   4948 	if (sc->bge_flags & BGE_IS_5788)
   4949 		printf(" - 5788\n");
   4950 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4951 		printf(" - Supports Jumbo Frames\n");
   4952 	if (sc->bge_flags & BGE_NO_EEPROM)
   4953 		printf(" - No EEPROM\n");
   4954 	if (sc->bge_flags & BGE_PCIX)
   4955 		printf(" - PCI-X Bus\n");
   4956 	if (sc->bge_flags & BGE_PCIE)
   4957 		printf(" - PCI Express Bus\n");
   4958 	if (sc->bge_flags & BGE_NO_3LED)
   4959 		printf(" - No 3 LEDs\n");
   4960 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4961 		printf(" - RX Alignment Bug\n");
   4962 	if (sc->bge_flags & BGE_TSO)
   4963 		printf(" - TSO\n");
   4964 }
   4965 #endif /* BGE_DEBUG */
   4966 
   4967 static int
   4968 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4969 {
   4970 	prop_dictionary_t dict;
   4971 	prop_data_t ea;
   4972 
   4973 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4974 		return 1;
   4975 
   4976 	dict = device_properties(sc->bge_dev);
   4977 	ea = prop_dictionary_get(dict, "mac-address");
   4978 	if (ea != NULL) {
   4979 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4980 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4981 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4982 		return 0;
   4983 	}
   4984 
   4985 	return 1;
   4986 }
   4987 
   4988 static int
   4989 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   4990 {
   4991 	uint32_t mac_addr;
   4992 
   4993 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   4994 	if ((mac_addr >> 16) == 0x484b) {
   4995 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   4996 		ether_addr[1] = (uint8_t)mac_addr;
   4997 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   4998 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   4999 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5000 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5001 		ether_addr[5] = (uint8_t)mac_addr;
   5002 		return 0;
   5003 	}
   5004 	return 1;
   5005 }
   5006 
   5007 static int
   5008 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5009 {
   5010 	int mac_offset = BGE_EE_MAC_OFFSET;
   5011 
   5012 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5013 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5014 
   5015 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5016 	    ETHER_ADDR_LEN));
   5017 }
   5018 
   5019 static int
   5020 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5021 {
   5022 
   5023 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5024 		return 1;
   5025 
   5026 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5027 	   ETHER_ADDR_LEN));
   5028 }
   5029 
   5030 static int
   5031 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5032 {
   5033 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5034 		/* NOTE: Order is critical */
   5035 		bge_get_eaddr_fw,
   5036 		bge_get_eaddr_mem,
   5037 		bge_get_eaddr_nvram,
   5038 		bge_get_eaddr_eeprom,
   5039 		NULL
   5040 	};
   5041 	const bge_eaddr_fcn_t *func;
   5042 
   5043 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5044 		if ((*func)(sc, eaddr) == 0)
   5045 			break;
   5046 	}
   5047 	return (*func == NULL ? ENXIO : 0);
   5048 }
   5049