if_bge.c revision 1.207 1 /* $NetBSD: if_bge.c,v 1.207 2013/02/27 14:19:38 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.207 2013/02/27 14:19:38 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_START 1
255 #define BGE_RESET_STOP 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void bge_sysctl_init(struct bge_softc *);
263 static int bge_sysctl_verify(SYSCTLFN_PROTO);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC9100,
317 "Altima AC9100 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_BROADCOM,
320 PCI_PRODUCT_BROADCOM_BCM5700,
321 "Broadcom BCM5700 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_BROADCOM,
324 PCI_PRODUCT_BROADCOM_BCM5701,
325 "Broadcom BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5702,
329 "Broadcom BCM5702 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5702X,
333 "Broadcom BCM5702X Gigabit Ethernet" },
334 { PCI_VENDOR_BROADCOM,
335 PCI_PRODUCT_BROADCOM_BCM5703,
336 "Broadcom BCM5703 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5703X,
340 "Broadcom BCM5703X Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5704C,
348 "Broadcom BCM5704C Dual Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5704S,
352 "Broadcom BCM5704S Dual Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5705,
356 "Broadcom BCM5705 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5705F,
360 "Broadcom BCM5705F Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705K,
364 "Broadcom BCM5705K Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705M,
368 "Broadcom BCM5705M Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 "Broadcom BCM5705M Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5714,
376 "Broadcom BCM5714 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5714S,
380 "Broadcom BCM5714S Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5715,
384 "Broadcom BCM5715 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5715S,
388 "Broadcom BCM5715S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5717,
392 "Broadcom BCM5717 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5718,
396 "Broadcom BCM5718 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5720,
400 "Broadcom BCM5720 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5721,
404 "Broadcom BCM5721 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5722,
408 "Broadcom BCM5722 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5723,
412 "Broadcom BCM5723 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5724,
416 "Broadcom BCM5724 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5750,
420 "Broadcom BCM5750 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5750M,
424 "Broadcom BCM5750M Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5751,
428 "Broadcom BCM5751 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5751F,
432 "Broadcom BCM5751F Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751M,
436 "Broadcom BCM5751M Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5752,
440 "Broadcom BCM5752 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5752M,
444 "Broadcom BCM5752M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5753,
448 "Broadcom BCM5753 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5753F,
452 "Broadcom BCM5753F Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753M,
456 "Broadcom BCM5753M Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5754,
460 "Broadcom BCM5754 Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5754M,
464 "Broadcom BCM5754M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5755,
468 "Broadcom BCM5755 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5755M,
472 "Broadcom BCM5755M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5756,
476 "Broadcom BCM5756 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5761,
480 "Broadcom BCM5761 Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5761E,
484 "Broadcom BCM5761E Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761S,
488 "Broadcom BCM5761S Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761SE,
492 "Broadcom BCM5761SE Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5764,
496 "Broadcom BCM5764 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5780,
500 "Broadcom BCM5780 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5780S,
504 "Broadcom BCM5780S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5781,
508 "Broadcom BCM5781 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5782,
512 "Broadcom BCM5782 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5784M,
516 "BCM5784M NetLink 1000baseT Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5786,
520 "Broadcom BCM5786 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5787,
524 "Broadcom BCM5787 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5787M,
528 "Broadcom BCM5787M Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5788,
532 "Broadcom BCM5788 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5789,
536 "Broadcom BCM5789 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5901,
540 "Broadcom BCM5901 Fast Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5901A2,
544 "Broadcom BCM5901A2 Fast Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5903M,
548 "Broadcom BCM5903M Fast Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5906,
552 "Broadcom BCM5906 Fast Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5906M,
556 "Broadcom BCM5906M Fast Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM57760,
560 "Broadcom BCM57760 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM57761,
564 "Broadcom BCM57761 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM57762,
568 "Broadcom BCM57762 Gigabit Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM57765,
572 "Broadcom BCM57765 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM57780,
576 "Broadcom BCM57780 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57781,
580 "Broadcom BCM57781 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57785,
584 "Broadcom BCM57785 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57788,
588 "Broadcom BCM57788 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57790,
592 "Broadcom BCM57790 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57791,
596 "Broadcom BCM57791 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57795,
600 "Broadcom BCM57795 Fast Ethernet",
601 },
602 { PCI_VENDOR_SCHNEIDERKOCH,
603 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
604 "SysKonnect SK-9Dx1 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_3COM,
607 PCI_PRODUCT_3COM_3C996,
608 "3Com 3c996 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_FUJITSU4,
611 PCI_PRODUCT_FUJITSU4_PW008GE4,
612 "Fujitsu PW008GE4 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_FUJITSU4,
615 PCI_PRODUCT_FUJITSU4_PW008GE5,
616 "Fujitsu PW008GE5 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_FUJITSU4,
619 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
620 "Fujitsu Primepower 250/450 Gigabit Ethernet",
621 },
622 { 0,
623 0,
624 NULL },
625 };
626
627 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
628 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
629 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
630 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
631 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
632 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
633
634 static const struct bge_revision {
635 uint32_t br_chipid;
636 const char *br_name;
637 } bge_revisions[] = {
638 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
639 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
640 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
641 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
642 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
643 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
644 /* This is treated like a BCM5700 Bx */
645 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
646 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
647 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
648 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
649 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
650 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
651 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
652 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
653 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
654 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
655 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
656 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
657 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
658 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
659 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
660 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
661 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
662 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
663 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
664 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
665 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
666 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
667 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
668 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
669 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
670 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
671 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
672 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
673 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
674 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
675 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
676 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
677 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
678 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
679 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
680 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
681 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
682 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
683 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
684 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
685 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
686 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
687 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
688 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
689 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
690 /* 5754 and 5787 share the same ASIC ID */
691 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
692 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
693 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
694 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
695 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
696 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
697 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
698 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
699
700 { 0, NULL }
701 };
702
703 /*
704 * Some defaults for major revisions, so that newer steppings
705 * that we don't know about have a shot at working.
706 */
707 static const struct bge_revision bge_majorrevs[] = {
708 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
709 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
710 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
711 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
712 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
713 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
714 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
715 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
716 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
717 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
718 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
719 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
720 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
721 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
722 /* 5754 and 5787 share the same ASIC ID */
723 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
724 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
725 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
726 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
727 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
728 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
729
730 { 0, NULL }
731 };
732
733 static int bge_allow_asf = 1;
734
735 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
736 bge_probe, bge_attach, NULL, NULL);
737
738 static uint32_t
739 bge_readmem_ind(struct bge_softc *sc, int off)
740 {
741 pcireg_t val;
742
743 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
744 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
745 return val;
746 }
747
748 static void
749 bge_writemem_ind(struct bge_softc *sc, int off, int val)
750 {
751 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
752 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
753 }
754
755 /*
756 * PCI Express only
757 */
758 static void
759 bge_set_max_readrq(struct bge_softc *sc)
760 {
761 pcireg_t val;
762
763 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
764 + PCI_PCIE_DCSR);
765 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
766 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
767 aprint_verbose_dev(sc->bge_dev,
768 "adjust device control 0x%04x ", val);
769 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
770 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
771 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
772 + PCI_PCIE_DCSR, val);
773 aprint_verbose("-> 0x%04x\n", val);
774 }
775 }
776
777 #ifdef notdef
778 static uint32_t
779 bge_readreg_ind(struct bge_softc *sc, int off)
780 {
781 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
782 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
783 }
784 #endif
785
786 static void
787 bge_writereg_ind(struct bge_softc *sc, int off, int val)
788 {
789 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
790 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
791 }
792
793 static void
794 bge_writemem_direct(struct bge_softc *sc, int off, int val)
795 {
796 CSR_WRITE_4(sc, off, val);
797 }
798
799 static void
800 bge_writembx(struct bge_softc *sc, int off, int val)
801 {
802 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
803 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
804
805 CSR_WRITE_4(sc, off, val);
806 }
807
808 static uint8_t
809 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
810 {
811 uint32_t access, byte = 0;
812 int i;
813
814 /* Lock. */
815 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
816 for (i = 0; i < 8000; i++) {
817 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
818 break;
819 DELAY(20);
820 }
821 if (i == 8000)
822 return 1;
823
824 /* Enable access. */
825 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
826 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
827
828 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
829 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
830 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
831 DELAY(10);
832 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
833 DELAY(10);
834 break;
835 }
836 }
837
838 if (i == BGE_TIMEOUT * 10) {
839 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
840 return 1;
841 }
842
843 /* Get result. */
844 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
845
846 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
847
848 /* Disable access. */
849 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
850
851 /* Unlock. */
852 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
853 CSR_READ_4(sc, BGE_NVRAM_SWARB);
854
855 return 0;
856 }
857
858 /*
859 * Read a sequence of bytes from NVRAM.
860 */
861 static int
862 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
863 {
864 int error = 0, i;
865 uint8_t byte = 0;
866
867 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
868 return 1;
869
870 for (i = 0; i < cnt; i++) {
871 error = bge_nvram_getbyte(sc, off + i, &byte);
872 if (error)
873 break;
874 *(dest + i) = byte;
875 }
876
877 return (error ? 1 : 0);
878 }
879
880 /*
881 * Read a byte of data stored in the EEPROM at address 'addr.' The
882 * BCM570x supports both the traditional bitbang interface and an
883 * auto access interface for reading the EEPROM. We use the auto
884 * access method.
885 */
886 static uint8_t
887 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
888 {
889 int i;
890 uint32_t byte = 0;
891
892 /*
893 * Enable use of auto EEPROM access so we can avoid
894 * having to use the bitbang method.
895 */
896 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
897
898 /* Reset the EEPROM, load the clock period. */
899 CSR_WRITE_4(sc, BGE_EE_ADDR,
900 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
901 DELAY(20);
902
903 /* Issue the read EEPROM command. */
904 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
905
906 /* Wait for completion */
907 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
908 DELAY(10);
909 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
910 break;
911 }
912
913 if (i == BGE_TIMEOUT * 10) {
914 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
915 return 1;
916 }
917
918 /* Get result. */
919 byte = CSR_READ_4(sc, BGE_EE_DATA);
920
921 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
922
923 return 0;
924 }
925
926 /*
927 * Read a sequence of bytes from the EEPROM.
928 */
929 static int
930 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
931 {
932 int error = 0, i;
933 uint8_t byte = 0;
934 char *dest = destv;
935
936 for (i = 0; i < cnt; i++) {
937 error = bge_eeprom_getbyte(sc, off + i, &byte);
938 if (error)
939 break;
940 *(dest + i) = byte;
941 }
942
943 return (error ? 1 : 0);
944 }
945
946 static int
947 bge_miibus_readreg(device_t dev, int phy, int reg)
948 {
949 struct bge_softc *sc = device_private(dev);
950 uint32_t val;
951 uint32_t autopoll;
952 int i;
953
954 /*
955 * Broadcom's own driver always assumes the internal
956 * PHY is at GMII address 1. On some chips, the PHY responds
957 * to accesses at all addresses, which could cause us to
958 * bogusly attach the PHY 32 times at probe type. Always
959 * restricting the lookup to address 1 is simpler than
960 * trying to figure out which chips revisions should be
961 * special-cased.
962 */
963 if (phy != 1)
964 return 0;
965
966 /* Reading with autopolling on may trigger PCI errors */
967 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
968 if (autopoll & BGE_MIMODE_AUTOPOLL) {
969 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
970 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
971 DELAY(40);
972 }
973
974 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
975 BGE_MIPHY(phy) | BGE_MIREG(reg));
976
977 for (i = 0; i < BGE_TIMEOUT; i++) {
978 val = CSR_READ_4(sc, BGE_MI_COMM);
979 if (!(val & BGE_MICOMM_BUSY))
980 break;
981 delay(10);
982 }
983
984 if (i == BGE_TIMEOUT) {
985 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
986 val = 0;
987 goto done;
988 }
989
990 val = CSR_READ_4(sc, BGE_MI_COMM);
991
992 done:
993 if (autopoll & BGE_MIMODE_AUTOPOLL) {
994 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
995 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
996 DELAY(40);
997 }
998
999 if (val & BGE_MICOMM_READFAIL)
1000 return 0;
1001
1002 return (val & 0xFFFF);
1003 }
1004
1005 static void
1006 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1007 {
1008 struct bge_softc *sc = device_private(dev);
1009 uint32_t autopoll;
1010 int i;
1011
1012 if (phy!=1) {
1013 return;
1014 }
1015
1016 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1017 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1018 return;
1019 }
1020
1021 /* Reading with autopolling on may trigger PCI errors */
1022 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1023 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1024 delay(40);
1025 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1026 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1027 delay(10); /* 40 usec is supposed to be adequate */
1028 }
1029
1030 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1031 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1032
1033 for (i = 0; i < BGE_TIMEOUT; i++) {
1034 delay(10);
1035 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1036 delay(5);
1037 CSR_READ_4(sc, BGE_MI_COMM);
1038 break;
1039 }
1040 }
1041
1042 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1043 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1044 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1045 delay(40);
1046 }
1047
1048 if (i == BGE_TIMEOUT)
1049 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1050 }
1051
1052 static void
1053 bge_miibus_statchg(struct ifnet *ifp)
1054 {
1055 struct bge_softc *sc = ifp->if_softc;
1056 struct mii_data *mii = &sc->bge_mii;
1057
1058 /*
1059 * Get flow control negotiation result.
1060 */
1061 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1062 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1063 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1064 mii->mii_media_active &= ~IFM_ETH_FMASK;
1065 }
1066
1067 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1068 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1069 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1070 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1071 else
1072 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1073
1074 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1075 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1076 else
1077 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1078
1079 /*
1080 * 802.3x flow control
1081 */
1082 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1083 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1084 else
1085 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1086
1087 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1088 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1089 else
1090 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1091 }
1092
1093 /*
1094 * Update rx threshold levels to values in a particular slot
1095 * of the interrupt-mitigation table bge_rx_threshes.
1096 */
1097 static void
1098 bge_set_thresh(struct ifnet *ifp, int lvl)
1099 {
1100 struct bge_softc *sc = ifp->if_softc;
1101 int s;
1102
1103 /* For now, just save the new Rx-intr thresholds and record
1104 * that a threshold update is pending. Updating the hardware
1105 * registers here (even at splhigh()) is observed to
1106 * occasionaly cause glitches where Rx-interrupts are not
1107 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1108 */
1109 s = splnet();
1110 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1111 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1112 sc->bge_pending_rxintr_change = 1;
1113 splx(s);
1114
1115 return;
1116 }
1117
1118
1119 /*
1120 * Update Rx thresholds of all bge devices
1121 */
1122 static void
1123 bge_update_all_threshes(int lvl)
1124 {
1125 struct ifnet *ifp;
1126 const char * const namebuf = "bge";
1127 int namelen;
1128
1129 if (lvl < 0)
1130 lvl = 0;
1131 else if (lvl >= NBGE_RX_THRESH)
1132 lvl = NBGE_RX_THRESH - 1;
1133
1134 namelen = strlen(namebuf);
1135 /*
1136 * Now search all the interfaces for this name/number
1137 */
1138 IFNET_FOREACH(ifp) {
1139 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1140 continue;
1141 /* We got a match: update if doing auto-threshold-tuning */
1142 if (bge_auto_thresh)
1143 bge_set_thresh(ifp, lvl);
1144 }
1145 }
1146
1147 /*
1148 * Handle events that have triggered interrupts.
1149 */
1150 static void
1151 bge_handle_events(struct bge_softc *sc)
1152 {
1153
1154 return;
1155 }
1156
1157 /*
1158 * Memory management for jumbo frames.
1159 */
1160
1161 static int
1162 bge_alloc_jumbo_mem(struct bge_softc *sc)
1163 {
1164 char *ptr, *kva;
1165 bus_dma_segment_t seg;
1166 int i, rseg, state, error;
1167 struct bge_jpool_entry *entry;
1168
1169 state = error = 0;
1170
1171 /* Grab a big chunk o' storage. */
1172 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1173 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1174 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1175 return ENOBUFS;
1176 }
1177
1178 state = 1;
1179 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1180 BUS_DMA_NOWAIT)) {
1181 aprint_error_dev(sc->bge_dev,
1182 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1183 error = ENOBUFS;
1184 goto out;
1185 }
1186
1187 state = 2;
1188 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1189 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1190 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1191 error = ENOBUFS;
1192 goto out;
1193 }
1194
1195 state = 3;
1196 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1197 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1198 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1199 error = ENOBUFS;
1200 goto out;
1201 }
1202
1203 state = 4;
1204 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1205 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1206
1207 SLIST_INIT(&sc->bge_jfree_listhead);
1208 SLIST_INIT(&sc->bge_jinuse_listhead);
1209
1210 /*
1211 * Now divide it up into 9K pieces and save the addresses
1212 * in an array.
1213 */
1214 ptr = sc->bge_cdata.bge_jumbo_buf;
1215 for (i = 0; i < BGE_JSLOTS; i++) {
1216 sc->bge_cdata.bge_jslots[i] = ptr;
1217 ptr += BGE_JLEN;
1218 entry = malloc(sizeof(struct bge_jpool_entry),
1219 M_DEVBUF, M_NOWAIT);
1220 if (entry == NULL) {
1221 aprint_error_dev(sc->bge_dev,
1222 "no memory for jumbo buffer queue!\n");
1223 error = ENOBUFS;
1224 goto out;
1225 }
1226 entry->slot = i;
1227 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1228 entry, jpool_entries);
1229 }
1230 out:
1231 if (error != 0) {
1232 switch (state) {
1233 case 4:
1234 bus_dmamap_unload(sc->bge_dmatag,
1235 sc->bge_cdata.bge_rx_jumbo_map);
1236 case 3:
1237 bus_dmamap_destroy(sc->bge_dmatag,
1238 sc->bge_cdata.bge_rx_jumbo_map);
1239 case 2:
1240 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1241 case 1:
1242 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1243 break;
1244 default:
1245 break;
1246 }
1247 }
1248
1249 return error;
1250 }
1251
1252 /*
1253 * Allocate a jumbo buffer.
1254 */
1255 static void *
1256 bge_jalloc(struct bge_softc *sc)
1257 {
1258 struct bge_jpool_entry *entry;
1259
1260 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1261
1262 if (entry == NULL) {
1263 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1264 return NULL;
1265 }
1266
1267 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1268 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1269 return (sc->bge_cdata.bge_jslots[entry->slot]);
1270 }
1271
1272 /*
1273 * Release a jumbo buffer.
1274 */
1275 static void
1276 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1277 {
1278 struct bge_jpool_entry *entry;
1279 struct bge_softc *sc;
1280 int i, s;
1281
1282 /* Extract the softc struct pointer. */
1283 sc = (struct bge_softc *)arg;
1284
1285 if (sc == NULL)
1286 panic("bge_jfree: can't find softc pointer!");
1287
1288 /* calculate the slot this buffer belongs to */
1289
1290 i = ((char *)buf
1291 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1292
1293 if ((i < 0) || (i >= BGE_JSLOTS))
1294 panic("bge_jfree: asked to free buffer that we don't manage!");
1295
1296 s = splvm();
1297 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1298 if (entry == NULL)
1299 panic("bge_jfree: buffer not in use!");
1300 entry->slot = i;
1301 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1302 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1303
1304 if (__predict_true(m != NULL))
1305 pool_cache_put(mb_cache, m);
1306 splx(s);
1307 }
1308
1309
1310 /*
1311 * Initialize a standard receive ring descriptor.
1312 */
1313 static int
1314 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1315 bus_dmamap_t dmamap)
1316 {
1317 struct mbuf *m_new = NULL;
1318 struct bge_rx_bd *r;
1319 int error;
1320
1321 if (dmamap == NULL) {
1322 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1323 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1324 if (error != 0)
1325 return error;
1326 }
1327
1328 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1329
1330 if (m == NULL) {
1331 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1332 if (m_new == NULL)
1333 return ENOBUFS;
1334
1335 MCLGET(m_new, M_DONTWAIT);
1336 if (!(m_new->m_flags & M_EXT)) {
1337 m_freem(m_new);
1338 return ENOBUFS;
1339 }
1340 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1341
1342 } else {
1343 m_new = m;
1344 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1345 m_new->m_data = m_new->m_ext.ext_buf;
1346 }
1347 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1348 m_adj(m_new, ETHER_ALIGN);
1349 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1350 BUS_DMA_READ|BUS_DMA_NOWAIT))
1351 return ENOBUFS;
1352 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1353 BUS_DMASYNC_PREREAD);
1354
1355 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1356 r = &sc->bge_rdata->bge_rx_std_ring[i];
1357 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1358 r->bge_flags = BGE_RXBDFLAG_END;
1359 r->bge_len = m_new->m_len;
1360 r->bge_idx = i;
1361
1362 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1363 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1364 i * sizeof (struct bge_rx_bd),
1365 sizeof (struct bge_rx_bd),
1366 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * Initialize a jumbo receive ring descriptor. This allocates
1373 * a jumbo buffer from the pool managed internally by the driver.
1374 */
1375 static int
1376 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1377 {
1378 struct mbuf *m_new = NULL;
1379 struct bge_rx_bd *r;
1380 void *buf = NULL;
1381
1382 if (m == NULL) {
1383
1384 /* Allocate the mbuf. */
1385 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1386 if (m_new == NULL)
1387 return ENOBUFS;
1388
1389 /* Allocate the jumbo buffer */
1390 buf = bge_jalloc(sc);
1391 if (buf == NULL) {
1392 m_freem(m_new);
1393 aprint_error_dev(sc->bge_dev,
1394 "jumbo allocation failed -- packet dropped!\n");
1395 return ENOBUFS;
1396 }
1397
1398 /* Attach the buffer to the mbuf. */
1399 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1400 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1401 bge_jfree, sc);
1402 m_new->m_flags |= M_EXT_RW;
1403 } else {
1404 m_new = m;
1405 buf = m_new->m_data = m_new->m_ext.ext_buf;
1406 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1407 }
1408 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1409 m_adj(m_new, ETHER_ALIGN);
1410 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1411 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1412 BUS_DMASYNC_PREREAD);
1413 /* Set up the descriptor. */
1414 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1415 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1416 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1417 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1418 r->bge_len = m_new->m_len;
1419 r->bge_idx = i;
1420
1421 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1422 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1423 i * sizeof (struct bge_rx_bd),
1424 sizeof (struct bge_rx_bd),
1425 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1426
1427 return 0;
1428 }
1429
1430 /*
1431 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1432 * that's 1MB or memory, which is a lot. For now, we fill only the first
1433 * 256 ring entries and hope that our CPU is fast enough to keep up with
1434 * the NIC.
1435 */
1436 static int
1437 bge_init_rx_ring_std(struct bge_softc *sc)
1438 {
1439 int i;
1440
1441 if (sc->bge_flags & BGE_RXRING_VALID)
1442 return 0;
1443
1444 for (i = 0; i < BGE_SSLOTS; i++) {
1445 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1446 return ENOBUFS;
1447 }
1448
1449 sc->bge_std = i - 1;
1450 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1451
1452 sc->bge_flags |= BGE_RXRING_VALID;
1453
1454 return 0;
1455 }
1456
1457 static void
1458 bge_free_rx_ring_std(struct bge_softc *sc)
1459 {
1460 int i;
1461
1462 if (!(sc->bge_flags & BGE_RXRING_VALID))
1463 return;
1464
1465 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1466 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1467 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1468 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1469 bus_dmamap_destroy(sc->bge_dmatag,
1470 sc->bge_cdata.bge_rx_std_map[i]);
1471 }
1472 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1473 sizeof(struct bge_rx_bd));
1474 }
1475
1476 sc->bge_flags &= ~BGE_RXRING_VALID;
1477 }
1478
1479 static int
1480 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1481 {
1482 int i;
1483 volatile struct bge_rcb *rcb;
1484
1485 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1486 return 0;
1487
1488 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1489 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1490 return ENOBUFS;
1491 }
1492
1493 sc->bge_jumbo = i - 1;
1494 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1495
1496 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1497 rcb->bge_maxlen_flags = 0;
1498 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1499
1500 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1501
1502 return 0;
1503 }
1504
1505 static void
1506 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1507 {
1508 int i;
1509
1510 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1511 return;
1512
1513 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1514 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1515 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1516 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1517 }
1518 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1519 sizeof(struct bge_rx_bd));
1520 }
1521
1522 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1523 }
1524
1525 static void
1526 bge_free_tx_ring(struct bge_softc *sc)
1527 {
1528 int i;
1529 struct txdmamap_pool_entry *dma;
1530
1531 if (!(sc->bge_flags & BGE_TXRING_VALID))
1532 return;
1533
1534 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1535 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1536 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1537 sc->bge_cdata.bge_tx_chain[i] = NULL;
1538 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1539 link);
1540 sc->txdma[i] = 0;
1541 }
1542 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1543 sizeof(struct bge_tx_bd));
1544 }
1545
1546 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1547 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1548 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1549 free(dma, M_DEVBUF);
1550 }
1551
1552 sc->bge_flags &= ~BGE_TXRING_VALID;
1553 }
1554
1555 static int
1556 bge_init_tx_ring(struct bge_softc *sc)
1557 {
1558 int i;
1559 bus_dmamap_t dmamap;
1560 struct txdmamap_pool_entry *dma;
1561
1562 if (sc->bge_flags & BGE_TXRING_VALID)
1563 return 0;
1564
1565 sc->bge_txcnt = 0;
1566 sc->bge_tx_saved_considx = 0;
1567
1568 /* Initialize transmit producer index for host-memory send ring. */
1569 sc->bge_tx_prodidx = 0;
1570 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1571 /* 5700 b2 errata */
1572 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1573 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1574
1575 /* NIC-memory send ring not used; initialize to zero. */
1576 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1577 /* 5700 b2 errata */
1578 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1579 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1580
1581 SLIST_INIT(&sc->txdma_list);
1582 for (i = 0; i < BGE_RSLOTS; i++) {
1583 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1584 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1585 &dmamap))
1586 return ENOBUFS;
1587 if (dmamap == NULL)
1588 panic("dmamap NULL in bge_init_tx_ring");
1589 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1590 if (dma == NULL) {
1591 aprint_error_dev(sc->bge_dev,
1592 "can't alloc txdmamap_pool_entry\n");
1593 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1594 return ENOMEM;
1595 }
1596 dma->dmamap = dmamap;
1597 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1598 }
1599
1600 sc->bge_flags |= BGE_TXRING_VALID;
1601
1602 return 0;
1603 }
1604
1605 static void
1606 bge_setmulti(struct bge_softc *sc)
1607 {
1608 struct ethercom *ac = &sc->ethercom;
1609 struct ifnet *ifp = &ac->ec_if;
1610 struct ether_multi *enm;
1611 struct ether_multistep step;
1612 uint32_t hashes[4] = { 0, 0, 0, 0 };
1613 uint32_t h;
1614 int i;
1615
1616 if (ifp->if_flags & IFF_PROMISC)
1617 goto allmulti;
1618
1619 /* Now program new ones. */
1620 ETHER_FIRST_MULTI(step, ac, enm);
1621 while (enm != NULL) {
1622 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1623 /*
1624 * We must listen to a range of multicast addresses.
1625 * For now, just accept all multicasts, rather than
1626 * trying to set only those filter bits needed to match
1627 * the range. (At this time, the only use of address
1628 * ranges is for IP multicast routing, for which the
1629 * range is big enough to require all bits set.)
1630 */
1631 goto allmulti;
1632 }
1633
1634 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1635
1636 /* Just want the 7 least-significant bits. */
1637 h &= 0x7f;
1638
1639 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1640 ETHER_NEXT_MULTI(step, enm);
1641 }
1642
1643 ifp->if_flags &= ~IFF_ALLMULTI;
1644 goto setit;
1645
1646 allmulti:
1647 ifp->if_flags |= IFF_ALLMULTI;
1648 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1649
1650 setit:
1651 for (i = 0; i < 4; i++)
1652 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1653 }
1654
1655 static void
1656 bge_sig_pre_reset(struct bge_softc *sc, int type)
1657 {
1658 /*
1659 * Some chips don't like this so only do this if ASF is enabled
1660 */
1661 if (sc->bge_asf_mode)
1662 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1663
1664 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1665 switch (type) {
1666 case BGE_RESET_START:
1667 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1668 break;
1669 case BGE_RESET_STOP:
1670 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1671 break;
1672 }
1673 }
1674 }
1675
1676 static void
1677 bge_sig_post_reset(struct bge_softc *sc, int type)
1678 {
1679
1680 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1681 switch (type) {
1682 case BGE_RESET_START:
1683 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1684 /* START DONE */
1685 break;
1686 case BGE_RESET_STOP:
1687 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1688 break;
1689 }
1690 }
1691 }
1692
1693 static void
1694 bge_sig_legacy(struct bge_softc *sc, int type)
1695 {
1696
1697 if (sc->bge_asf_mode) {
1698 switch (type) {
1699 case BGE_RESET_START:
1700 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1701 break;
1702 case BGE_RESET_STOP:
1703 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1704 break;
1705 }
1706 }
1707 }
1708
1709 static void
1710 bge_stop_fw(struct bge_softc *sc)
1711 {
1712 int i;
1713
1714 if (sc->bge_asf_mode) {
1715 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1716 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1717 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1718
1719 for (i = 0; i < 100; i++) {
1720 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1721 break;
1722 DELAY(10);
1723 }
1724 }
1725 }
1726
1727 static int
1728 bge_poll_fw(struct bge_softc *sc)
1729 {
1730 uint32_t val;
1731 int i;
1732
1733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1734 for (i = 0; i < BGE_TIMEOUT; i++) {
1735 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1736 if (val & BGE_VCPU_STATUS_INIT_DONE)
1737 break;
1738 DELAY(100);
1739 }
1740 if (i >= BGE_TIMEOUT) {
1741 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1742 return -1;
1743 }
1744 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1745 /*
1746 * Poll the value location we just wrote until
1747 * we see the 1's complement of the magic number.
1748 * This indicates that the firmware initialization
1749 * is complete.
1750 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1751 */
1752 for (i = 0; i < BGE_TIMEOUT; i++) {
1753 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1754 if (val == ~BGE_MAGIC_NUMBER)
1755 break;
1756 DELAY(10);
1757 }
1758
1759 if (i >= BGE_TIMEOUT) {
1760 aprint_error_dev(sc->bge_dev,
1761 "firmware handshake timed out, val = %x\n", val);
1762 return -1;
1763 }
1764 }
1765
1766 return 0;
1767 }
1768
1769 /*
1770 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1771 * self-test results.
1772 */
1773 static int
1774 bge_chipinit(struct bge_softc *sc)
1775 {
1776 int i;
1777 uint32_t dma_rw_ctl;
1778
1779 /* Set endianness before we access any non-PCI registers. */
1780 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1781 BGE_INIT);
1782
1783 /* Set power state to D0. */
1784 bge_setpowerstate(sc, 0);
1785
1786 /* Clear the MAC control register */
1787 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1788
1789 /*
1790 * Clear the MAC statistics block in the NIC's
1791 * internal memory.
1792 */
1793 for (i = BGE_STATS_BLOCK;
1794 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1795 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1796
1797 for (i = BGE_STATUS_BLOCK;
1798 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1799 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1800
1801 /* Set up the PCI DMA control register. */
1802 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1803 if (sc->bge_flags & BGE_PCIE) {
1804 /* Read watermark not used, 128 bytes for write. */
1805 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1806 device_xname(sc->bge_dev)));
1807 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1808 } else if (sc->bge_flags & BGE_PCIX) {
1809 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1810 device_xname(sc->bge_dev)));
1811 /* PCI-X bus */
1812 if (BGE_IS_5714_FAMILY(sc)) {
1813 /* 256 bytes for read and write. */
1814 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1815 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1816
1817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1818 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1819 else
1820 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1821 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1822 /* 1536 bytes for read, 384 bytes for write. */
1823 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1824 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1825 } else {
1826 /* 384 bytes for read and write. */
1827 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1828 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1829 (0x0F);
1830 }
1831
1832 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1833 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1834 uint32_t tmp;
1835
1836 /* Set ONEDMA_ATONCE for hardware workaround. */
1837 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1838 if (tmp == 6 || tmp == 7)
1839 dma_rw_ctl |=
1840 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1841
1842 /* Set PCI-X DMA write workaround. */
1843 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1844 }
1845 } else {
1846 /* Conventional PCI bus: 256 bytes for read and write. */
1847 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1848 device_xname(sc->bge_dev)));
1849 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1850 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1851
1852 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1853 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1854 dma_rw_ctl |= 0x0F;
1855 }
1856
1857 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1858 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1859 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1860 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1861
1862 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1863 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1864 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1865
1866 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1867 dma_rw_ctl);
1868
1869 /*
1870 * Set up general mode register.
1871 */
1872 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1873 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1874 BGE_MODECTL_TX_NO_PHDR_CSUM);
1875
1876 /*
1877 * BCM5701 B5 have a bug causing data corruption when using
1878 * 64-bit DMA reads, which can be terminated early and then
1879 * completed later as 32-bit accesses, in combination with
1880 * certain bridges.
1881 */
1882 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1883 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1884 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1885
1886 /*
1887 * Tell the firmware the driver is running
1888 */
1889 if (sc->bge_asf_mode & ASF_STACKUP)
1890 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1891
1892 /*
1893 * Disable memory write invalidate. Apparently it is not supported
1894 * properly by these devices.
1895 */
1896 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1897 PCI_COMMAND_INVALIDATE_ENABLE);
1898
1899 #ifdef __brokenalpha__
1900 /*
1901 * Must insure that we do not cross an 8K (bytes) boundary
1902 * for DMA reads. Our highest limit is 1K bytes. This is a
1903 * restriction on some ALPHA platforms with early revision
1904 * 21174 PCI chipsets, such as the AlphaPC 164lx
1905 */
1906 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1907 #endif
1908
1909 /* Set the timer prescaler (always 66MHz) */
1910 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1911
1912 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1913 DELAY(40); /* XXX */
1914
1915 /* Put PHY into ready state */
1916 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1917 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1918 DELAY(40);
1919 }
1920
1921 return 0;
1922 }
1923
1924 static int
1925 bge_blockinit(struct bge_softc *sc)
1926 {
1927 volatile struct bge_rcb *rcb;
1928 bus_size_t rcb_addr;
1929 int i;
1930 struct ifnet *ifp = &sc->ethercom.ec_if;
1931 bge_hostaddr taddr;
1932 uint32_t val;
1933
1934 /*
1935 * Initialize the memory window pointer register so that
1936 * we can access the first 32K of internal NIC RAM. This will
1937 * allow us to set up the TX send ring RCBs and the RX return
1938 * ring RCBs, plus other things which live in NIC memory.
1939 */
1940
1941 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1942
1943 /* Step 33: Configure mbuf memory pool */
1944 if (BGE_IS_5700_FAMILY(sc)) {
1945 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1946 BGE_BUFFPOOL_1);
1947
1948 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1949 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1950 else
1951 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1952
1953 /* Configure DMA resource pool */
1954 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1955 BGE_DMA_DESCRIPTORS);
1956 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1957 }
1958
1959 /* Step 35: Configure mbuf pool watermarks */
1960 #ifdef ORIG_WPAUL_VALUES
1961 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1962 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1963 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1964 #else
1965
1966 /* new broadcom docs strongly recommend these: */
1967 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1968 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
1969 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
1970 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1973 } else if (BGE_IS_5705_PLUS(sc)) {
1974 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1975
1976 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1977 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1978 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1979 } else {
1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1981 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1982 }
1983 } else if (!BGE_IS_5705_PLUS(sc)) {
1984 if (ifp->if_mtu > ETHER_MAX_LEN) {
1985 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1986 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1987 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1988 } else {
1989 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1990 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1991 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1992 }
1993 } else {
1994 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1995 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1996 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1997 }
1998 #endif
1999
2000 /* Step 36: Configure DMA resource watermarks */
2001 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2002 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2003
2004 /* Step 38: Enable buffer manager */
2005 CSR_WRITE_4(sc, BGE_BMAN_MODE,
2006 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2007
2008 /* Step 39: Poll for buffer manager start indication */
2009 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2010 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2011 break;
2012 DELAY(10);
2013 }
2014
2015 if (i == BGE_TIMEOUT * 2) {
2016 aprint_error_dev(sc->bge_dev,
2017 "buffer manager failed to start\n");
2018 return ENXIO;
2019 }
2020
2021 /* Step 40: Enable flow-through queues */
2022 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2023 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2024
2025 /* Wait until queue initialization is complete */
2026 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2027 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2028 break;
2029 DELAY(10);
2030 }
2031
2032 if (i == BGE_TIMEOUT * 2) {
2033 aprint_error_dev(sc->bge_dev,
2034 "flow-through queue init failed\n");
2035 return ENXIO;
2036 }
2037
2038 /* Step 41: Initialize the standard RX ring control block */
2039 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2040 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2042 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2044 rcb->bge_maxlen_flags =
2045 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2046 else if (BGE_IS_5705_PLUS(sc))
2047 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2048 else
2049 rcb->bge_maxlen_flags =
2050 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2051 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2052 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2053 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2054 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2055 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2056
2057 /*
2058 * Step 42: Initialize the jumbo RX ring control block
2059 * We set the 'ring disabled' bit in the flags
2060 * field until we're actually ready to start
2061 * using this ring (i.e. once we set the MTU
2062 * high enough to require it).
2063 */
2064 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2065 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2066 BGE_HOSTADDR(rcb->bge_hostaddr,
2067 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2068 rcb->bge_maxlen_flags =
2069 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2070 BGE_RCB_FLAG_RING_DISABLED);
2071 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2072 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2073 rcb->bge_hostaddr.bge_addr_hi);
2074 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2075 rcb->bge_hostaddr.bge_addr_lo);
2076 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2077 rcb->bge_maxlen_flags);
2078 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2079
2080 /* Set up dummy disabled mini ring RCB */
2081 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2082 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2083 BGE_RCB_FLAG_RING_DISABLED);
2084 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2085 rcb->bge_maxlen_flags);
2086
2087 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2088 offsetof(struct bge_ring_data, bge_info),
2089 sizeof (struct bge_gib),
2090 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2091 }
2092
2093 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2094 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2095 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2096 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2097 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2098 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2099 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2100 }
2101 /*
2102 * Set the BD ring replenish thresholds. The recommended
2103 * values are 1/8th the number of descriptors allocated to
2104 * each ring.
2105 */
2106 i = BGE_STD_RX_RING_CNT / 8;
2107
2108 /*
2109 * Use a value of 8 for the following chips to workaround HW errata.
2110 * Some of these chips have been added based on empirical
2111 * evidence (they don't work unless this is done).
2112 */
2113 if (BGE_IS_5705_PLUS(sc))
2114 i = 8;
2115
2116 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2117 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2118
2119 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2120 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2121 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2122 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2123 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2124 }
2125
2126 /*
2127 * Disable all unused send rings by setting the 'ring disabled'
2128 * bit in the flags field of all the TX send ring control blocks.
2129 * These are located in NIC memory.
2130 */
2131 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2132 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2133 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2134 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2135 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2136 rcb_addr += sizeof(struct bge_rcb);
2137 }
2138
2139 /* Configure TX RCB 0 (we use only the first ring) */
2140 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2141 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2142 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2143 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2144 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2145 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2146 if (BGE_IS_5700_FAMILY(sc))
2147 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2148 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2149
2150 /* Disable all unused RX return rings */
2151 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2152 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2153 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2154 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2155 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2156 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2157 BGE_RCB_FLAG_RING_DISABLED));
2158 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2159 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2160 (i * (sizeof(uint64_t))), 0);
2161 rcb_addr += sizeof(struct bge_rcb);
2162 }
2163
2164 /* Initialize RX ring indexes */
2165 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2166 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2167 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2168
2169 /*
2170 * Set up RX return ring 0
2171 * Note that the NIC address for RX return rings is 0x00000000.
2172 * The return rings live entirely within the host, so the
2173 * nicaddr field in the RCB isn't used.
2174 */
2175 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2176 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2177 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2178 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2179 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2180 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2181 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2182
2183 /* Set random backoff seed for TX */
2184 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2185 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2186 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2187 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2188 BGE_TX_BACKOFF_SEED_MASK);
2189
2190 /* Set inter-packet gap */
2191 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2192
2193 /*
2194 * Specify which ring to use for packets that don't match
2195 * any RX rules.
2196 */
2197 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2198
2199 /*
2200 * Configure number of RX lists. One interrupt distribution
2201 * list, sixteen active lists, one bad frames class.
2202 */
2203 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2204
2205 /* Inialize RX list placement stats mask. */
2206 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2207 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2208
2209 /* Disable host coalescing until we get it set up */
2210 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2211
2212 /* Poll to make sure it's shut down. */
2213 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2214 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2215 break;
2216 DELAY(10);
2217 }
2218
2219 if (i == BGE_TIMEOUT * 2) {
2220 aprint_error_dev(sc->bge_dev,
2221 "host coalescing engine failed to idle\n");
2222 return ENXIO;
2223 }
2224
2225 /* Set up host coalescing defaults */
2226 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2227 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2228 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2229 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2230 if (BGE_IS_5700_FAMILY(sc)) {
2231 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2232 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2233 }
2234 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2235 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2236
2237 /* Set up address of statistics block */
2238 if (BGE_IS_5700_FAMILY(sc)) {
2239 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2240 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2241 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2242 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2243 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2244 }
2245
2246 /* Set up address of status block */
2247 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2248 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2249 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2250 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2251 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2252 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2253
2254 /* Turn on host coalescing state machine */
2255 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2256
2257 /* Turn on RX BD completion state machine and enable attentions */
2258 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2259 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2260
2261 /* Turn on RX list placement state machine */
2262 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2263
2264 /* Turn on RX list selector state machine. */
2265 if (BGE_IS_5700_FAMILY(sc))
2266 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2267
2268 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2269 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2270 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2271 BGE_MACMODE_FRMHDR_DMA_ENB;
2272
2273 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2274 val |= BGE_PORTMODE_TBI;
2275 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2276 val |= BGE_PORTMODE_GMII;
2277 else
2278 val |= BGE_PORTMODE_MII;
2279
2280 /* Turn on DMA, clear stats */
2281 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2282
2283 /* Set misc. local control, enable interrupts on attentions */
2284 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2285
2286 #ifdef notdef
2287 /* Assert GPIO pins for PHY reset */
2288 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2289 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2291 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2292 #endif
2293
2294 #if defined(not_quite_yet)
2295 /* Linux driver enables enable gpio pin #1 on 5700s */
2296 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2297 sc->bge_local_ctrl_reg |=
2298 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2299 }
2300 #endif
2301 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2302
2303 /* Turn on DMA completion state machine */
2304 if (BGE_IS_5700_FAMILY(sc))
2305 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2306
2307 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2308
2309 /* Enable host coalescing bug fix; see Linux tg3.c */
2310 if (BGE_IS_5755_PLUS(sc))
2311 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2312
2313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2314 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2315
2316 /* Turn on write DMA state machine */
2317 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2318
2319 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2320 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2321 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2322 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2323 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2324 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2325 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2326
2327 if (sc->bge_flags & BGE_PCIE)
2328 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2329 if (sc->bge_flags & BGE_TSO)
2330 val |= BGE_RDMAMODE_TSO4_ENABLE;
2331
2332 /* Turn on read DMA state machine */
2333 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2334 delay(40);
2335
2336 /* Turn on RX data completion state machine */
2337 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2338
2339 /* Turn on RX BD initiator state machine */
2340 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2341
2342 /* Turn on RX data and RX BD initiator state machine */
2343 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2344
2345 /* Turn on Mbuf cluster free state machine */
2346 if (BGE_IS_5700_FAMILY(sc))
2347 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2348
2349 /* Turn on send BD completion state machine */
2350 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2351
2352 /* Turn on send data completion state machine */
2353 val = BGE_SDCMODE_ENABLE;
2354 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2355 val |= BGE_SDCMODE_CDELAY;
2356 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2357
2358 /* Turn on send data initiator state machine */
2359 if (sc->bge_flags & BGE_TSO) {
2360 /* XXX: magic value from Linux driver */
2361 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2362 } else
2363 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2364
2365 /* Turn on send BD initiator state machine */
2366 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2367
2368 /* Turn on send BD selector state machine */
2369 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2370
2371 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2372 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2373 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2374
2375 /* ack/clear link change events */
2376 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2377 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2378 BGE_MACSTAT_LINK_CHANGED);
2379 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2380
2381 /* Enable PHY auto polling (for MII/GMII only) */
2382 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2383 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2384 } else {
2385 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2386 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2387 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2388 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2389 BGE_EVTENB_MI_INTERRUPT);
2390 }
2391
2392 /*
2393 * Clear any pending link state attention.
2394 * Otherwise some link state change events may be lost until attention
2395 * is cleared by bge_intr() -> bge_link_upd() sequence.
2396 * It's not necessary on newer BCM chips - perhaps enabling link
2397 * state change attentions implies clearing pending attention.
2398 */
2399 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2400 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2401 BGE_MACSTAT_LINK_CHANGED);
2402
2403 /* Enable link state change attentions. */
2404 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2405
2406 return 0;
2407 }
2408
2409 static const struct bge_revision *
2410 bge_lookup_rev(uint32_t chipid)
2411 {
2412 const struct bge_revision *br;
2413
2414 for (br = bge_revisions; br->br_name != NULL; br++) {
2415 if (br->br_chipid == chipid)
2416 return br;
2417 }
2418
2419 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2420 if (br->br_chipid == BGE_ASICREV(chipid))
2421 return br;
2422 }
2423
2424 return NULL;
2425 }
2426
2427 static const struct bge_product *
2428 bge_lookup(const struct pci_attach_args *pa)
2429 {
2430 const struct bge_product *bp;
2431
2432 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2433 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2434 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2435 return bp;
2436 }
2437
2438 return NULL;
2439 }
2440
2441 static int
2442 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2443 {
2444 #ifdef NOTYET
2445 uint32_t pm_ctl = 0;
2446
2447 /* XXX FIXME: make sure indirect accesses enabled? */
2448 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2449 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2450 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2451
2452 /* clear the PME_assert bit and power state bits, enable PME */
2453 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2454 pm_ctl &= ~PCIM_PSTAT_DMASK;
2455 pm_ctl |= (1 << 8);
2456
2457 if (powerlevel == 0) {
2458 pm_ctl |= PCIM_PSTAT_D0;
2459 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2460 pm_ctl, 2);
2461 DELAY(10000);
2462 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2463 DELAY(10000);
2464
2465 #ifdef NOTYET
2466 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2467 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2468 #endif
2469 DELAY(40); DELAY(40); DELAY(40);
2470 DELAY(10000); /* above not quite adequate on 5700 */
2471 return 0;
2472 }
2473
2474
2475 /*
2476 * Entering ACPI power states D1-D3 is achieved by wiggling
2477 * GMII gpio pins. Example code assumes all hardware vendors
2478 * followed Broadcom's sample pcb layout. Until we verify that
2479 * for all supported OEM cards, states D1-D3 are unsupported.
2480 */
2481 aprint_error_dev(sc->bge_dev,
2482 "power state %d unimplemented; check GPIO pins\n",
2483 powerlevel);
2484 #endif
2485 return EOPNOTSUPP;
2486 }
2487
2488
2489 /*
2490 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2491 * against our list and return its name if we find a match. Note
2492 * that since the Broadcom controller contains VPD support, we
2493 * can get the device name string from the controller itself instead
2494 * of the compiled-in string. This is a little slow, but it guarantees
2495 * we'll always announce the right product name.
2496 */
2497 static int
2498 bge_probe(device_t parent, cfdata_t match, void *aux)
2499 {
2500 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2501
2502 if (bge_lookup(pa) != NULL)
2503 return 1;
2504
2505 return 0;
2506 }
2507
2508 static void
2509 bge_attach(device_t parent, device_t self, void *aux)
2510 {
2511 struct bge_softc *sc = device_private(self);
2512 struct pci_attach_args *pa = aux;
2513 prop_dictionary_t dict;
2514 const struct bge_product *bp;
2515 const struct bge_revision *br;
2516 pci_chipset_tag_t pc;
2517 pci_intr_handle_t ih;
2518 const char *intrstr = NULL;
2519 bus_dma_segment_t seg;
2520 int rseg;
2521 uint32_t hwcfg = 0;
2522 uint32_t command;
2523 struct ifnet *ifp;
2524 uint32_t misccfg;
2525 void * kva;
2526 u_char eaddr[ETHER_ADDR_LEN];
2527 pcireg_t memtype, subid;
2528 bus_addr_t memaddr;
2529 bus_size_t memsize;
2530 uint32_t pm_ctl;
2531 bool no_seeprom;
2532
2533 bp = bge_lookup(pa);
2534 KASSERT(bp != NULL);
2535
2536 sc->sc_pc = pa->pa_pc;
2537 sc->sc_pcitag = pa->pa_tag;
2538 sc->bge_dev = self;
2539
2540 pc = sc->sc_pc;
2541 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2542
2543 aprint_naive(": Ethernet controller\n");
2544 aprint_normal(": %s\n", bp->bp_name);
2545
2546 /*
2547 * Map control/status registers.
2548 */
2549 DPRINTFN(5, ("Map control/status regs\n"));
2550 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2551 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2552 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2553 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2554
2555 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2556 aprint_error_dev(sc->bge_dev,
2557 "failed to enable memory mapping!\n");
2558 return;
2559 }
2560
2561 DPRINTFN(5, ("pci_mem_find\n"));
2562 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2563 switch (memtype) {
2564 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2565 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2566 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2567 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2568 &memaddr, &memsize) == 0)
2569 break;
2570 default:
2571 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2572 return;
2573 }
2574
2575 DPRINTFN(5, ("pci_intr_map\n"));
2576 if (pci_intr_map(pa, &ih)) {
2577 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2578 return;
2579 }
2580
2581 DPRINTFN(5, ("pci_intr_string\n"));
2582 intrstr = pci_intr_string(pc, ih);
2583
2584 DPRINTFN(5, ("pci_intr_establish\n"));
2585 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2586
2587 if (sc->bge_intrhand == NULL) {
2588 aprint_error_dev(sc->bge_dev,
2589 "couldn't establish interrupt%s%s\n",
2590 intrstr ? " at " : "", intrstr ? intrstr : "");
2591 return;
2592 }
2593 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2594
2595 /*
2596 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2597 * can clobber the chip's PCI config-space power control registers,
2598 * leaving the card in D3 powersave state.
2599 * We do not have memory-mapped registers in this state,
2600 * so force device into D0 state before starting initialization.
2601 */
2602 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2603 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2604 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2605 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2606 DELAY(1000); /* 27 usec is allegedly sufficent */
2607
2608 /*
2609 * Save ASIC rev.
2610 */
2611 sc->bge_chipid =
2612 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2613 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2614
2615 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2616 switch (PCI_PRODUCT(pa->pa_id)) {
2617 case PCI_PRODUCT_BROADCOM_BCM5717:
2618 case PCI_PRODUCT_BROADCOM_BCM5718:
2619 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
2620 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2621 BGE_PCI_GEN2_PRODID_ASICREV);
2622 break;
2623 case PCI_PRODUCT_BROADCOM_BCM57761:
2624 case PCI_PRODUCT_BROADCOM_BCM57762:
2625 case PCI_PRODUCT_BROADCOM_BCM57765:
2626 case PCI_PRODUCT_BROADCOM_BCM57781:
2627 case PCI_PRODUCT_BROADCOM_BCM57785:
2628 case PCI_PRODUCT_BROADCOM_BCM57791:
2629 case PCI_PRODUCT_BROADCOM_BCM57795:
2630 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2631 BGE_PCI_GEN15_PRODID_ASICREV);
2632 break;
2633 default:
2634 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2635 BGE_PCI_PRODID_ASICREV);
2636 break;
2637 }
2638 }
2639
2640 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2641 &sc->bge_pciecap, NULL) != 0)
2642 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2643 /* PCIe */
2644 sc->bge_flags |= BGE_PCIE;
2645 bge_set_max_readrq(sc);
2646 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2647 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2648 /* PCI-X */
2649 sc->bge_flags |= BGE_PCIX;
2650 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2651 &sc->bge_pcixcap, NULL) == 0)
2652 aprint_error_dev(sc->bge_dev,
2653 "unable to find PCIX capability\n");
2654 }
2655
2656 /* chipid */
2657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2658 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2659 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2660 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2661 sc->bge_flags |= BGE_5700_FAMILY;
2662
2663 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2664 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2665 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2666 sc->bge_flags |= BGE_5714_FAMILY;
2667
2668 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2669 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2670 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2671 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2672 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2674 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2676 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2678 sc->bge_flags |= BGE_5755_PLUS;
2679
2680 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2681 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2682 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2683 BGE_IS_5755_PLUS(sc) ||
2684 BGE_IS_5714_FAMILY(sc))
2685 sc->bge_flags |= BGE_575X_PLUS;
2686
2687 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2688 BGE_IS_575X_PLUS(sc))
2689 sc->bge_flags |= BGE_5705_PLUS;
2690
2691 /*
2692 * When using the BCM5701 in PCI-X mode, data corruption has
2693 * been observed in the first few bytes of some received packets.
2694 * Aligning the packet buffer in memory eliminates the corruption.
2695 * Unfortunately, this misaligns the packet payloads. On platforms
2696 * which do not support unaligned accesses, we will realign the
2697 * payloads by copying the received packets.
2698 */
2699 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2700 sc->bge_flags & BGE_PCIX)
2701 sc->bge_flags |= BGE_RX_ALIGNBUG;
2702
2703 if (BGE_IS_5700_FAMILY(sc))
2704 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2705
2706 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2707 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2708 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2709 sc->bge_flags |= BGE_NO_3LED;
2710
2711 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2712 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2713
2714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2715 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2716 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2717 sc->bge_flags |= BGE_IS_5788;
2718
2719 /*
2720 * Some controllers seem to require a special firmware to use
2721 * TSO. But the firmware is not available to FreeBSD and Linux
2722 * claims that the TSO performed by the firmware is slower than
2723 * hardware based TSO. Moreover the firmware based TSO has one
2724 * known bug which can't handle TSO if ethernet header + IP/TCP
2725 * header is greater than 80 bytes. The workaround for the TSO
2726 * bug exist but it seems it's too expensive than not using
2727 * TSO at all. Some hardwares also have the TSO bug so limit
2728 * the TSO to the controllers that are not affected TSO issues
2729 * (e.g. 5755 or higher).
2730 */
2731 if (BGE_IS_5755_PLUS(sc)) {
2732 /*
2733 * BCM5754 and BCM5787 shares the same ASIC id so
2734 * explicit device id check is required.
2735 */
2736 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2737 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2738 sc->bge_flags |= BGE_TSO;
2739 }
2740
2741 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2742 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2743 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2744 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2745 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2746 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2747 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2748 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2749 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2750 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2751 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2752 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2753 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2754 sc->bge_flags |= BGE_10_100_ONLY;
2755
2756 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2757 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2758 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2759 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2760 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2761 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2762
2763 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2764 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2765 sc->bge_flags |= BGE_PHY_CRC_BUG;
2766 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2767 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2768 sc->bge_flags |= BGE_PHY_ADC_BUG;
2769 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2770 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2771
2772 if (BGE_IS_5705_PLUS(sc) &&
2773 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2774 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2775 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2776 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2777 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2778 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2779 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2780 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2781 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2782 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2783 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2784 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2785 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2786 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2787 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2788 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2789 sc->bge_flags |= BGE_PHY_BER_BUG;
2790 }
2791
2792 /*
2793 * SEEPROM check.
2794 * First check if firmware knows we do not have SEEPROM.
2795 */
2796 if (prop_dictionary_get_bool(device_properties(self),
2797 "without-seeprom", &no_seeprom) && no_seeprom)
2798 sc->bge_flags |= BGE_NO_EEPROM;
2799
2800 /* Now check the 'ROM failed' bit on the RX CPU */
2801 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2802 sc->bge_flags |= BGE_NO_EEPROM;
2803
2804 /* Try to reset the chip. */
2805 DPRINTFN(5, ("bge_reset\n"));
2806 bge_reset(sc);
2807
2808 sc->bge_asf_mode = 0;
2809 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2810 == BGE_MAGIC_NUMBER)) {
2811 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2812 & BGE_HWCFG_ASF) {
2813 sc->bge_asf_mode |= ASF_ENABLE;
2814 sc->bge_asf_mode |= ASF_STACKUP;
2815 if (BGE_IS_575X_PLUS(sc)) {
2816 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2817 }
2818 }
2819 }
2820
2821 /* Try to reset the chip again the nice way. */
2822 bge_stop_fw(sc);
2823 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2824 if (bge_reset(sc))
2825 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2826
2827 bge_sig_legacy(sc, BGE_RESET_STOP);
2828 bge_sig_post_reset(sc, BGE_RESET_STOP);
2829
2830 if (bge_chipinit(sc)) {
2831 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2832 bge_release_resources(sc);
2833 return;
2834 }
2835
2836 /*
2837 * Get station address from the EEPROM.
2838 */
2839 if (bge_get_eaddr(sc, eaddr)) {
2840 aprint_error_dev(sc->bge_dev,
2841 "failed to read station address\n");
2842 bge_release_resources(sc);
2843 return;
2844 }
2845
2846 br = bge_lookup_rev(sc->bge_chipid);
2847
2848 if (br == NULL) {
2849 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2850 sc->bge_chipid);
2851 } else {
2852 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2853 br->br_name, sc->bge_chipid);
2854 }
2855 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2856
2857 /* Allocate the general information block and ring buffers. */
2858 if (pci_dma64_available(pa))
2859 sc->bge_dmatag = pa->pa_dmat64;
2860 else
2861 sc->bge_dmatag = pa->pa_dmat;
2862 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2863 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2864 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2865 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2866 return;
2867 }
2868 DPRINTFN(5, ("bus_dmamem_map\n"));
2869 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2870 sizeof(struct bge_ring_data), &kva,
2871 BUS_DMA_NOWAIT)) {
2872 aprint_error_dev(sc->bge_dev,
2873 "can't map DMA buffers (%zu bytes)\n",
2874 sizeof(struct bge_ring_data));
2875 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2876 return;
2877 }
2878 DPRINTFN(5, ("bus_dmamem_create\n"));
2879 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2880 sizeof(struct bge_ring_data), 0,
2881 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2882 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2883 bus_dmamem_unmap(sc->bge_dmatag, kva,
2884 sizeof(struct bge_ring_data));
2885 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2886 return;
2887 }
2888 DPRINTFN(5, ("bus_dmamem_load\n"));
2889 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2890 sizeof(struct bge_ring_data), NULL,
2891 BUS_DMA_NOWAIT)) {
2892 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2893 bus_dmamem_unmap(sc->bge_dmatag, kva,
2894 sizeof(struct bge_ring_data));
2895 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2896 return;
2897 }
2898
2899 DPRINTFN(5, ("bzero\n"));
2900 sc->bge_rdata = (struct bge_ring_data *)kva;
2901
2902 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2903
2904 /* Try to allocate memory for jumbo buffers. */
2905 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2906 if (bge_alloc_jumbo_mem(sc)) {
2907 aprint_error_dev(sc->bge_dev,
2908 "jumbo buffer allocation failed\n");
2909 } else
2910 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2911 }
2912
2913 /* Set default tuneable values. */
2914 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2915 sc->bge_rx_coal_ticks = 150;
2916 sc->bge_rx_max_coal_bds = 64;
2917 #ifdef ORIG_WPAUL_VALUES
2918 sc->bge_tx_coal_ticks = 150;
2919 sc->bge_tx_max_coal_bds = 128;
2920 #else
2921 sc->bge_tx_coal_ticks = 300;
2922 sc->bge_tx_max_coal_bds = 400;
2923 #endif
2924 if (BGE_IS_5705_PLUS(sc)) {
2925 sc->bge_tx_coal_ticks = (12 * 5);
2926 sc->bge_tx_max_coal_bds = (12 * 5);
2927 aprint_verbose_dev(sc->bge_dev,
2928 "setting short Tx thresholds\n");
2929 }
2930
2931 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2932 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2933 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2934 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2935 else if (BGE_IS_5705_PLUS(sc))
2936 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2937 else
2938 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2939
2940 /* Set up ifnet structure */
2941 ifp = &sc->ethercom.ec_if;
2942 ifp->if_softc = sc;
2943 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2944 ifp->if_ioctl = bge_ioctl;
2945 ifp->if_stop = bge_stop;
2946 ifp->if_start = bge_start;
2947 ifp->if_init = bge_init;
2948 ifp->if_watchdog = bge_watchdog;
2949 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2950 IFQ_SET_READY(&ifp->if_snd);
2951 DPRINTFN(5, ("strcpy if_xname\n"));
2952 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2953
2954 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2955 sc->ethercom.ec_if.if_capabilities |=
2956 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2957 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2958 sc->ethercom.ec_if.if_capabilities |=
2959 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2960 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2961 #endif
2962 sc->ethercom.ec_capabilities |=
2963 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2964
2965 if (sc->bge_flags & BGE_TSO)
2966 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2967
2968 /*
2969 * Do MII setup.
2970 */
2971 DPRINTFN(5, ("mii setup\n"));
2972 sc->bge_mii.mii_ifp = ifp;
2973 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2974 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2975 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2976
2977 /*
2978 * Figure out what sort of media we have by checking the hardware
2979 * config word in the first 32k of NIC internal memory, or fall back to
2980 * the config word in the EEPROM. Note: on some BCM5700 cards,
2981 * this value appears to be unset. If that's the case, we have to rely
2982 * on identifying the NIC by its PCI subsystem ID, as we do below for
2983 * the SysKonnect SK-9D41.
2984 */
2985 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2986 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2987 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2988 bge_read_eeprom(sc, (void *)&hwcfg,
2989 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2990 hwcfg = be32toh(hwcfg);
2991 }
2992 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2993 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2994 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2995 if (BGE_IS_5714_FAMILY(sc))
2996 sc->bge_flags |= BGE_PHY_FIBER_MII;
2997 else
2998 sc->bge_flags |= BGE_PHY_FIBER_TBI;
2999 }
3000
3001 /* set phyflags and chipid before mii_attach() */
3002 dict = device_properties(self);
3003 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3004 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3005
3006 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3007 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3008 bge_ifmedia_sts);
3009 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3010 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3011 0, NULL);
3012 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3013 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3014 /* Pretend the user requested this setting */
3015 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3016 } else {
3017 /*
3018 * Do transceiver setup and tell the firmware the
3019 * driver is down so we can try to get access the
3020 * probe if ASF is running. Retry a couple of times
3021 * if we get a conflict with the ASF firmware accessing
3022 * the PHY.
3023 */
3024 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3025 bge_asf_driver_up(sc);
3026
3027 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3028 bge_ifmedia_sts);
3029 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3030 MII_PHY_ANY, MII_OFFSET_ANY,
3031 MIIF_FORCEANEG|MIIF_DOPAUSE);
3032
3033 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3034 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3035 ifmedia_add(&sc->bge_mii.mii_media,
3036 IFM_ETHER|IFM_MANUAL, 0, NULL);
3037 ifmedia_set(&sc->bge_mii.mii_media,
3038 IFM_ETHER|IFM_MANUAL);
3039 } else
3040 ifmedia_set(&sc->bge_mii.mii_media,
3041 IFM_ETHER|IFM_AUTO);
3042
3043 /*
3044 * Now tell the firmware we are going up after probing the PHY
3045 */
3046 if (sc->bge_asf_mode & ASF_STACKUP)
3047 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3048 }
3049
3050 /*
3051 * Call MI attach routine.
3052 */
3053 DPRINTFN(5, ("if_attach\n"));
3054 if_attach(ifp);
3055 DPRINTFN(5, ("ether_ifattach\n"));
3056 ether_ifattach(ifp, eaddr);
3057 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3058 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3059 RND_TYPE_NET, 0);
3060 #ifdef BGE_EVENT_COUNTERS
3061 /*
3062 * Attach event counters.
3063 */
3064 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3065 NULL, device_xname(sc->bge_dev), "intr");
3066 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3067 NULL, device_xname(sc->bge_dev), "tx_xoff");
3068 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3069 NULL, device_xname(sc->bge_dev), "tx_xon");
3070 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3071 NULL, device_xname(sc->bge_dev), "rx_xoff");
3072 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3073 NULL, device_xname(sc->bge_dev), "rx_xon");
3074 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3075 NULL, device_xname(sc->bge_dev), "rx_macctl");
3076 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3077 NULL, device_xname(sc->bge_dev), "xoffentered");
3078 #endif /* BGE_EVENT_COUNTERS */
3079 DPRINTFN(5, ("callout_init\n"));
3080 callout_init(&sc->bge_timeout, 0);
3081
3082 if (pmf_device_register(self, NULL, NULL))
3083 pmf_class_network_register(self, ifp);
3084 else
3085 aprint_error_dev(self, "couldn't establish power handler\n");
3086
3087 bge_sysctl_init(sc);
3088
3089 #ifdef BGE_DEBUG
3090 bge_debug_info(sc);
3091 #endif
3092 }
3093
3094 static void
3095 bge_release_resources(struct bge_softc *sc)
3096 {
3097 if (sc->bge_vpd_prodname != NULL)
3098 free(sc->bge_vpd_prodname, M_DEVBUF);
3099
3100 if (sc->bge_vpd_readonly != NULL)
3101 free(sc->bge_vpd_readonly, M_DEVBUF);
3102 }
3103
3104 static int
3105 bge_reset(struct bge_softc *sc)
3106 {
3107 uint32_t cachesize, command, pcistate, marbmode;
3108 #if 0
3109 uint32_t new_pcistate;
3110 #endif
3111 pcireg_t devctl, reg;
3112 int i, val;
3113 void (*write_op)(struct bge_softc *, int, int);
3114
3115 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
3116 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3117 if (sc->bge_flags & BGE_PCIE)
3118 write_op = bge_writemem_direct;
3119 else
3120 write_op = bge_writemem_ind;
3121 } else
3122 write_op = bge_writereg_ind;
3123
3124 /* Save some important PCI state. */
3125 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3126 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3127 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3128
3129 /* Step 5a: Enable memory arbiter. */
3130 marbmode = 0;
3131 if (BGE_IS_5714_FAMILY(sc))
3132 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3133 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3134
3135 /* Step 5b-5d: */
3136 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3137 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3138 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3139
3140 /* XXX ???: Disable fastboot on controllers that support it. */
3141 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3142 BGE_IS_5755_PLUS(sc))
3143 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3144
3145 /*
3146 * Step 6: Write the magic number to SRAM at offset 0xB50.
3147 * When firmware finishes its initialization it will
3148 * write ~BGE_MAGIC_NUMBER to the same location.
3149 */
3150 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3151
3152 /* Step 7: */
3153 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3154 /*
3155 * XXX: from FreeBSD/Linux; no documentation
3156 */
3157 if (sc->bge_flags & BGE_PCIE) {
3158 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3159 /* PCI Express 1.0 system */
3160 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3161 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3162 /*
3163 * Prevent PCI Express link training
3164 * during global reset.
3165 */
3166 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3167 val |= (1<<29);
3168 }
3169 }
3170
3171 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3172 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3173 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3174 i | BGE_VCPU_STATUS_DRV_RESET);
3175 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3176 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3177 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3178 }
3179
3180 /*
3181 * Set GPHY Power Down Override to leave GPHY
3182 * powered up in D0 uninitialized.
3183 */
3184 if (BGE_IS_5705_PLUS(sc))
3185 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3186
3187 /* XXX 5721, 5751 and 5752 */
3188 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3189 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3190
3191 /* Issue global reset */
3192 write_op(sc, BGE_MISC_CFG, val);
3193
3194 /* Step 8: wait for complete */
3195 if (sc->bge_flags & BGE_PCIE)
3196 delay(100*1000); /* too big */
3197 else
3198 delay(100);
3199
3200 /* From Linux: dummy read to flush PCI posted writes */
3201 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3202
3203 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3204 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3205 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3206 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3207 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3208 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3209 write_op(sc, BGE_MISC_CFG, (65 << 1));
3210
3211 /* Step 11: disable PCI-X Relaxed Ordering. */
3212 if (sc->bge_flags & BGE_PCIX) {
3213 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3214 + PCI_PCIX_CMD);
3215 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3216 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3217 }
3218
3219 if (sc->bge_flags & BGE_PCIE) {
3220 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3221 DELAY(500000);
3222 /* XXX: Magic Numbers */
3223 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3224 BGE_PCI_UNKNOWN0);
3225 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3226 BGE_PCI_UNKNOWN0,
3227 reg | (1 << 15));
3228 }
3229 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3230 sc->bge_pciecap + PCI_PCIE_DCSR);
3231 /* Clear enable no snoop and disable relaxed ordering. */
3232 devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3233 /* Set PCIE max payload size to 128. */
3234 devctl &= ~(0x00e0);
3235 /* Clear device status register. Write 1b to clear */
3236 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3237 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3238 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3239 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3240 }
3241
3242 /* Step 12: Enable memory arbiter. */
3243 marbmode = 0;
3244 if (BGE_IS_5714_FAMILY(sc))
3245 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3246 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3247
3248 /* Step 17: Poll until the firmware initialization is complete */
3249 bge_poll_fw(sc);
3250
3251 /* XXX 5721, 5751 and 5752 */
3252 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3253 /* Step 19: */
3254 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3255 /* Step 20: */
3256 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3257 }
3258
3259 /*
3260 * Step 18: wirte mac mode
3261 * XXX Write 0x0c for 5703S and 5704S
3262 */
3263 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3264
3265
3266 /* Step 21: 5822 B0 errata */
3267 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3268 pcireg_t msidata;
3269
3270 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3271 BGE_PCI_MSI_DATA);
3272 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3273 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3274 msidata);
3275 }
3276
3277 /* Step 23: restore cache line size */
3278 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3279
3280 #if 0
3281 /*
3282 * XXX Wait for the value of the PCISTATE register to
3283 * return to its original pre-reset state. This is a
3284 * fairly good indicator of reset completion. If we don't
3285 * wait for the reset to fully complete, trying to read
3286 * from the device's non-PCI registers may yield garbage
3287 * results.
3288 */
3289 for (i = 0; i < BGE_TIMEOUT; i++) {
3290 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3291 BGE_PCI_PCISTATE);
3292 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3293 (pcistate & ~BGE_PCISTATE_RESERVED))
3294 break;
3295 DELAY(10);
3296 }
3297 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3298 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3299 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3300 }
3301 #endif
3302
3303 /* Step 28: Fix up byte swapping */
3304 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3305
3306 /* Tell the ASF firmware we are up */
3307 if (sc->bge_asf_mode & ASF_STACKUP)
3308 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3309
3310 /*
3311 * The 5704 in TBI mode apparently needs some special
3312 * adjustment to insure the SERDES drive level is set
3313 * to 1.2V.
3314 */
3315 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3316 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3317 uint32_t serdescfg;
3318
3319 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3320 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3321 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3322 }
3323
3324 if (sc->bge_flags & BGE_PCIE &&
3325 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3326 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3327 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3328 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
3329 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
3330 uint32_t v;
3331
3332 /* Enable PCI Express bug fix */
3333 v = CSR_READ_4(sc, 0x7c00);
3334 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3335 }
3336 DELAY(10000);
3337
3338 return 0;
3339 }
3340
3341 /*
3342 * Frame reception handling. This is called if there's a frame
3343 * on the receive return list.
3344 *
3345 * Note: we have to be able to handle two possibilities here:
3346 * 1) the frame is from the jumbo receive ring
3347 * 2) the frame is from the standard receive ring
3348 */
3349
3350 static void
3351 bge_rxeof(struct bge_softc *sc)
3352 {
3353 struct ifnet *ifp;
3354 uint16_t rx_prod, rx_cons;
3355 int stdcnt = 0, jumbocnt = 0;
3356 bus_dmamap_t dmamap;
3357 bus_addr_t offset, toff;
3358 bus_size_t tlen;
3359 int tosync;
3360
3361 rx_cons = sc->bge_rx_saved_considx;
3362 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3363
3364 /* Nothing to do */
3365 if (rx_cons == rx_prod)
3366 return;
3367
3368 ifp = &sc->ethercom.ec_if;
3369
3370 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3371 offsetof(struct bge_ring_data, bge_status_block),
3372 sizeof (struct bge_status_block),
3373 BUS_DMASYNC_POSTREAD);
3374
3375 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3376 tosync = rx_prod - rx_cons;
3377
3378 if (tosync != 0)
3379 rnd_add_uint32(&sc->rnd_source, tosync);
3380
3381 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3382
3383 if (tosync < 0) {
3384 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3385 sizeof (struct bge_rx_bd);
3386 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3387 toff, tlen, BUS_DMASYNC_POSTREAD);
3388 tosync = -tosync;
3389 }
3390
3391 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3392 offset, tosync * sizeof (struct bge_rx_bd),
3393 BUS_DMASYNC_POSTREAD);
3394
3395 while (rx_cons != rx_prod) {
3396 struct bge_rx_bd *cur_rx;
3397 uint32_t rxidx;
3398 struct mbuf *m = NULL;
3399
3400 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3401
3402 rxidx = cur_rx->bge_idx;
3403 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3404
3405 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3406 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3407 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3408 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3409 jumbocnt++;
3410 bus_dmamap_sync(sc->bge_dmatag,
3411 sc->bge_cdata.bge_rx_jumbo_map,
3412 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3413 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3414 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3415 ifp->if_ierrors++;
3416 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3417 continue;
3418 }
3419 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3420 NULL)== ENOBUFS) {
3421 ifp->if_ierrors++;
3422 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3423 continue;
3424 }
3425 } else {
3426 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3427 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3428
3429 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3430 stdcnt++;
3431 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3432 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3433 if (dmamap == NULL) {
3434 ifp->if_ierrors++;
3435 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3436 continue;
3437 }
3438 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3439 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3440 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3441 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3442 ifp->if_ierrors++;
3443 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3444 continue;
3445 }
3446 if (bge_newbuf_std(sc, sc->bge_std,
3447 NULL, dmamap) == ENOBUFS) {
3448 ifp->if_ierrors++;
3449 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3450 continue;
3451 }
3452 }
3453
3454 ifp->if_ipackets++;
3455 #ifndef __NO_STRICT_ALIGNMENT
3456 /*
3457 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3458 * the Rx buffer has the layer-2 header unaligned.
3459 * If our CPU requires alignment, re-align by copying.
3460 */
3461 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3462 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3463 cur_rx->bge_len);
3464 m->m_data += ETHER_ALIGN;
3465 }
3466 #endif
3467
3468 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3469 m->m_pkthdr.rcvif = ifp;
3470
3471 /*
3472 * Handle BPF listeners. Let the BPF user see the packet.
3473 */
3474 bpf_mtap(ifp, m);
3475
3476 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3477
3478 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3479 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3480 /*
3481 * Rx transport checksum-offload may also
3482 * have bugs with packets which, when transmitted,
3483 * were `runts' requiring padding.
3484 */
3485 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3486 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3487 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3488 m->m_pkthdr.csum_data =
3489 cur_rx->bge_tcp_udp_csum;
3490 m->m_pkthdr.csum_flags |=
3491 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3492 M_CSUM_DATA);
3493 }
3494
3495 /*
3496 * If we received a packet with a vlan tag, pass it
3497 * to vlan_input() instead of ether_input().
3498 */
3499 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3500 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3501 }
3502
3503 (*ifp->if_input)(ifp, m);
3504 }
3505
3506 sc->bge_rx_saved_considx = rx_cons;
3507 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3508 if (stdcnt)
3509 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3510 if (jumbocnt)
3511 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3512 }
3513
3514 static void
3515 bge_txeof(struct bge_softc *sc)
3516 {
3517 struct bge_tx_bd *cur_tx = NULL;
3518 struct ifnet *ifp;
3519 struct txdmamap_pool_entry *dma;
3520 bus_addr_t offset, toff;
3521 bus_size_t tlen;
3522 int tosync;
3523 struct mbuf *m;
3524
3525 ifp = &sc->ethercom.ec_if;
3526
3527 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3528 offsetof(struct bge_ring_data, bge_status_block),
3529 sizeof (struct bge_status_block),
3530 BUS_DMASYNC_POSTREAD);
3531
3532 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3533 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3534 sc->bge_tx_saved_considx;
3535
3536 if (tosync != 0)
3537 rnd_add_uint32(&sc->rnd_source, tosync);
3538
3539 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3540
3541 if (tosync < 0) {
3542 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3543 sizeof (struct bge_tx_bd);
3544 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3545 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3546 tosync = -tosync;
3547 }
3548
3549 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3550 offset, tosync * sizeof (struct bge_tx_bd),
3551 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3552
3553 /*
3554 * Go through our tx ring and free mbufs for those
3555 * frames that have been sent.
3556 */
3557 while (sc->bge_tx_saved_considx !=
3558 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3559 uint32_t idx = 0;
3560
3561 idx = sc->bge_tx_saved_considx;
3562 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3563 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3564 ifp->if_opackets++;
3565 m = sc->bge_cdata.bge_tx_chain[idx];
3566 if (m != NULL) {
3567 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3568 dma = sc->txdma[idx];
3569 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3570 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3571 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3572 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3573 sc->txdma[idx] = NULL;
3574
3575 m_freem(m);
3576 }
3577 sc->bge_txcnt--;
3578 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3579 ifp->if_timer = 0;
3580 }
3581
3582 if (cur_tx != NULL)
3583 ifp->if_flags &= ~IFF_OACTIVE;
3584 }
3585
3586 static int
3587 bge_intr(void *xsc)
3588 {
3589 struct bge_softc *sc;
3590 struct ifnet *ifp;
3591 uint32_t statusword;
3592
3593 sc = xsc;
3594 ifp = &sc->ethercom.ec_if;
3595
3596 /* It is possible for the interrupt to arrive before
3597 * the status block is updated prior to the interrupt.
3598 * Reading the PCI State register will confirm whether the
3599 * interrupt is ours and will flush the status block.
3600 */
3601
3602 /* read status word from status block */
3603 statusword = sc->bge_rdata->bge_status_block.bge_status;
3604
3605 if ((statusword & BGE_STATFLAG_UPDATED) ||
3606 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3607 /* Ack interrupt and stop others from occuring. */
3608 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3609
3610 BGE_EVCNT_INCR(sc->bge_ev_intr);
3611
3612 /* clear status word */
3613 sc->bge_rdata->bge_status_block.bge_status = 0;
3614
3615 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3616 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3617 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3618 bge_link_upd(sc);
3619
3620 if (ifp->if_flags & IFF_RUNNING) {
3621 /* Check RX return ring producer/consumer */
3622 bge_rxeof(sc);
3623
3624 /* Check TX ring producer/consumer */
3625 bge_txeof(sc);
3626 }
3627
3628 if (sc->bge_pending_rxintr_change) {
3629 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3630 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3631 uint32_t junk;
3632
3633 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3634 DELAY(10);
3635 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3636
3637 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3638 DELAY(10);
3639 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3640
3641 sc->bge_pending_rxintr_change = 0;
3642 }
3643 bge_handle_events(sc);
3644
3645 /* Re-enable interrupts. */
3646 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3647
3648 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3649 bge_start(ifp);
3650
3651 return 1;
3652 } else
3653 return 0;
3654 }
3655
3656 static void
3657 bge_asf_driver_up(struct bge_softc *sc)
3658 {
3659 if (sc->bge_asf_mode & ASF_STACKUP) {
3660 /* Send ASF heartbeat aprox. every 2s */
3661 if (sc->bge_asf_count)
3662 sc->bge_asf_count --;
3663 else {
3664 sc->bge_asf_count = 2;
3665 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3666 BGE_FW_DRV_ALIVE);
3667 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3668 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3669 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3670 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3671 }
3672 }
3673 }
3674
3675 static void
3676 bge_tick(void *xsc)
3677 {
3678 struct bge_softc *sc = xsc;
3679 struct mii_data *mii = &sc->bge_mii;
3680 int s;
3681
3682 s = splnet();
3683
3684 if (BGE_IS_5705_PLUS(sc))
3685 bge_stats_update_regs(sc);
3686 else
3687 bge_stats_update(sc);
3688
3689 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3690 /*
3691 * Since in TBI mode auto-polling can't be used we should poll
3692 * link status manually. Here we register pending link event
3693 * and trigger interrupt.
3694 */
3695 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3696 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3697 } else {
3698 /*
3699 * Do not touch PHY if we have link up. This could break
3700 * IPMI/ASF mode or produce extra input errors.
3701 * (extra input errors was reported for bcm5701 & bcm5704).
3702 */
3703 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3704 mii_tick(mii);
3705 }
3706
3707 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3708
3709 splx(s);
3710 }
3711
3712 static void
3713 bge_stats_update_regs(struct bge_softc *sc)
3714 {
3715 struct ifnet *ifp = &sc->ethercom.ec_if;
3716
3717 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3718 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3719
3720 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3721 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3722 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3723 }
3724
3725 static void
3726 bge_stats_update(struct bge_softc *sc)
3727 {
3728 struct ifnet *ifp = &sc->ethercom.ec_if;
3729 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3730
3731 #define READ_STAT(sc, stats, stat) \
3732 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3733
3734 ifp->if_collisions +=
3735 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3736 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3737 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3738 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3739 ifp->if_collisions;
3740
3741 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3742 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3743 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3744 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3745 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3746 READ_STAT(sc, stats,
3747 xoffPauseFramesReceived.bge_addr_lo));
3748 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3749 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3750 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3751 READ_STAT(sc, stats,
3752 macControlFramesReceived.bge_addr_lo));
3753 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3754 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3755
3756 #undef READ_STAT
3757
3758 #ifdef notdef
3759 ifp->if_collisions +=
3760 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3761 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3762 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3763 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3764 ifp->if_collisions;
3765 #endif
3766 }
3767
3768 /*
3769 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3770 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3771 * but when such padded frames employ the bge IP/TCP checksum offload,
3772 * the hardware checksum assist gives incorrect results (possibly
3773 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3774 * If we pad such runts with zeros, the onboard checksum comes out correct.
3775 */
3776 static inline int
3777 bge_cksum_pad(struct mbuf *pkt)
3778 {
3779 struct mbuf *last = NULL;
3780 int padlen;
3781
3782 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3783
3784 /* if there's only the packet-header and we can pad there, use it. */
3785 if (pkt->m_pkthdr.len == pkt->m_len &&
3786 M_TRAILINGSPACE(pkt) >= padlen) {
3787 last = pkt;
3788 } else {
3789 /*
3790 * Walk packet chain to find last mbuf. We will either
3791 * pad there, or append a new mbuf and pad it
3792 * (thus perhaps avoiding the bcm5700 dma-min bug).
3793 */
3794 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3795 continue; /* do nothing */
3796 }
3797
3798 /* `last' now points to last in chain. */
3799 if (M_TRAILINGSPACE(last) < padlen) {
3800 /* Allocate new empty mbuf, pad it. Compact later. */
3801 struct mbuf *n;
3802 MGET(n, M_DONTWAIT, MT_DATA);
3803 if (n == NULL)
3804 return ENOBUFS;
3805 n->m_len = 0;
3806 last->m_next = n;
3807 last = n;
3808 }
3809 }
3810
3811 KDASSERT(!M_READONLY(last));
3812 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3813
3814 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3815 memset(mtod(last, char *) + last->m_len, 0, padlen);
3816 last->m_len += padlen;
3817 pkt->m_pkthdr.len += padlen;
3818 return 0;
3819 }
3820
3821 /*
3822 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3823 */
3824 static inline int
3825 bge_compact_dma_runt(struct mbuf *pkt)
3826 {
3827 struct mbuf *m, *prev;
3828 int totlen, prevlen;
3829
3830 prev = NULL;
3831 totlen = 0;
3832 prevlen = -1;
3833
3834 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3835 int mlen = m->m_len;
3836 int shortfall = 8 - mlen ;
3837
3838 totlen += mlen;
3839 if (mlen == 0)
3840 continue;
3841 if (mlen >= 8)
3842 continue;
3843
3844 /* If we get here, mbuf data is too small for DMA engine.
3845 * Try to fix by shuffling data to prev or next in chain.
3846 * If that fails, do a compacting deep-copy of the whole chain.
3847 */
3848
3849 /* Internal frag. If fits in prev, copy it there. */
3850 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3851 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3852 prev->m_len += mlen;
3853 m->m_len = 0;
3854 /* XXX stitch chain */
3855 prev->m_next = m_free(m);
3856 m = prev;
3857 continue;
3858 }
3859 else if (m->m_next != NULL &&
3860 M_TRAILINGSPACE(m) >= shortfall &&
3861 m->m_next->m_len >= (8 + shortfall)) {
3862 /* m is writable and have enough data in next, pull up. */
3863
3864 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3865 shortfall);
3866 m->m_len += shortfall;
3867 m->m_next->m_len -= shortfall;
3868 m->m_next->m_data += shortfall;
3869 }
3870 else if (m->m_next == NULL || 1) {
3871 /* Got a runt at the very end of the packet.
3872 * borrow data from the tail of the preceding mbuf and
3873 * update its length in-place. (The original data is still
3874 * valid, so we can do this even if prev is not writable.)
3875 */
3876
3877 /* if we'd make prev a runt, just move all of its data. */
3878 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3879 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3880
3881 if ((prev->m_len - shortfall) < 8)
3882 shortfall = prev->m_len;
3883
3884 #ifdef notyet /* just do the safe slow thing for now */
3885 if (!M_READONLY(m)) {
3886 if (M_LEADINGSPACE(m) < shorfall) {
3887 void *m_dat;
3888 m_dat = (m->m_flags & M_PKTHDR) ?
3889 m->m_pktdat : m->dat;
3890 memmove(m_dat, mtod(m, void*), m->m_len);
3891 m->m_data = m_dat;
3892 }
3893 } else
3894 #endif /* just do the safe slow thing */
3895 {
3896 struct mbuf * n = NULL;
3897 int newprevlen = prev->m_len - shortfall;
3898
3899 MGET(n, M_NOWAIT, MT_DATA);
3900 if (n == NULL)
3901 return ENOBUFS;
3902 KASSERT(m->m_len + shortfall < MLEN
3903 /*,
3904 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3905
3906 /* first copy the data we're stealing from prev */
3907 memcpy(n->m_data, prev->m_data + newprevlen,
3908 shortfall);
3909
3910 /* update prev->m_len accordingly */
3911 prev->m_len -= shortfall;
3912
3913 /* copy data from runt m */
3914 memcpy(n->m_data + shortfall, m->m_data,
3915 m->m_len);
3916
3917 /* n holds what we stole from prev, plus m */
3918 n->m_len = shortfall + m->m_len;
3919
3920 /* stitch n into chain and free m */
3921 n->m_next = m->m_next;
3922 prev->m_next = n;
3923 /* KASSERT(m->m_next == NULL); */
3924 m->m_next = NULL;
3925 m_free(m);
3926 m = n; /* for continuing loop */
3927 }
3928 }
3929 prevlen = m->m_len;
3930 }
3931 return 0;
3932 }
3933
3934 /*
3935 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3936 * pointers to descriptors.
3937 */
3938 static int
3939 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3940 {
3941 struct bge_tx_bd *f = NULL;
3942 uint32_t frag, cur;
3943 uint16_t csum_flags = 0;
3944 uint16_t txbd_tso_flags = 0;
3945 struct txdmamap_pool_entry *dma;
3946 bus_dmamap_t dmamap;
3947 int i = 0;
3948 struct m_tag *mtag;
3949 int use_tso, maxsegsize, error;
3950
3951 cur = frag = *txidx;
3952
3953 if (m_head->m_pkthdr.csum_flags) {
3954 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3955 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3956 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3957 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3958 }
3959
3960 /*
3961 * If we were asked to do an outboard checksum, and the NIC
3962 * has the bug where it sometimes adds in the Ethernet padding,
3963 * explicitly pad with zeros so the cksum will be correct either way.
3964 * (For now, do this for all chip versions, until newer
3965 * are confirmed to not require the workaround.)
3966 */
3967 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3968 #ifdef notyet
3969 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3970 #endif
3971 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3972 goto check_dma_bug;
3973
3974 if (bge_cksum_pad(m_head) != 0)
3975 return ENOBUFS;
3976
3977 check_dma_bug:
3978 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3979 goto doit;
3980
3981 /*
3982 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3983 * less than eight bytes. If we encounter a teeny mbuf
3984 * at the end of a chain, we can pad. Otherwise, copy.
3985 */
3986 if (bge_compact_dma_runt(m_head) != 0)
3987 return ENOBUFS;
3988
3989 doit:
3990 dma = SLIST_FIRST(&sc->txdma_list);
3991 if (dma == NULL)
3992 return ENOBUFS;
3993 dmamap = dma->dmamap;
3994
3995 /*
3996 * Set up any necessary TSO state before we start packing...
3997 */
3998 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3999 if (!use_tso) {
4000 maxsegsize = 0;
4001 } else { /* TSO setup */
4002 unsigned mss;
4003 struct ether_header *eh;
4004 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4005 struct mbuf * m0 = m_head;
4006 struct ip *ip;
4007 struct tcphdr *th;
4008 int iphl, hlen;
4009
4010 /*
4011 * XXX It would be nice if the mbuf pkthdr had offset
4012 * fields for the protocol headers.
4013 */
4014
4015 eh = mtod(m0, struct ether_header *);
4016 switch (htons(eh->ether_type)) {
4017 case ETHERTYPE_IP:
4018 offset = ETHER_HDR_LEN;
4019 break;
4020
4021 case ETHERTYPE_VLAN:
4022 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4023 break;
4024
4025 default:
4026 /*
4027 * Don't support this protocol or encapsulation.
4028 */
4029 return ENOBUFS;
4030 }
4031
4032 /*
4033 * TCP/IP headers are in the first mbuf; we can do
4034 * this the easy way.
4035 */
4036 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4037 hlen = iphl + offset;
4038 if (__predict_false(m0->m_len <
4039 (hlen + sizeof(struct tcphdr)))) {
4040
4041 aprint_debug_dev(sc->bge_dev,
4042 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4043 "not handled yet\n",
4044 m0->m_len, hlen+ sizeof(struct tcphdr));
4045 #ifdef NOTYET
4046 /*
4047 * XXX jonathan (at) NetBSD.org: untested.
4048 * how to force this branch to be taken?
4049 */
4050 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4051
4052 m_copydata(m0, offset, sizeof(ip), &ip);
4053 m_copydata(m0, hlen, sizeof(th), &th);
4054
4055 ip.ip_len = 0;
4056
4057 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4058 sizeof(ip.ip_len), &ip.ip_len);
4059
4060 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4061 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4062
4063 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4064 sizeof(th.th_sum), &th.th_sum);
4065
4066 hlen += th.th_off << 2;
4067 iptcp_opt_words = hlen;
4068 #else
4069 /*
4070 * if_wm "hard" case not yet supported, can we not
4071 * mandate it out of existence?
4072 */
4073 (void) ip; (void)th; (void) ip_tcp_hlen;
4074
4075 return ENOBUFS;
4076 #endif
4077 } else {
4078 ip = (struct ip *) (mtod(m0, char *) + offset);
4079 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4080 ip_tcp_hlen = iphl + (th->th_off << 2);
4081
4082 /* Total IP/TCP options, in 32-bit words */
4083 iptcp_opt_words = (ip_tcp_hlen
4084 - sizeof(struct tcphdr)
4085 - sizeof(struct ip)) >> 2;
4086 }
4087 if (BGE_IS_575X_PLUS(sc)) {
4088 th->th_sum = 0;
4089 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4090 } else {
4091 /*
4092 * XXX jonathan (at) NetBSD.org: 5705 untested.
4093 * Requires TSO firmware patch for 5701/5703/5704.
4094 */
4095 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4096 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4097 }
4098
4099 mss = m_head->m_pkthdr.segsz;
4100 txbd_tso_flags |=
4101 BGE_TXBDFLAG_CPU_PRE_DMA |
4102 BGE_TXBDFLAG_CPU_POST_DMA;
4103
4104 /*
4105 * Our NIC TSO-assist assumes TSO has standard, optionless
4106 * IPv4 and TCP headers, which total 40 bytes. By default,
4107 * the NIC copies 40 bytes of IP/TCP header from the
4108 * supplied header into the IP/TCP header portion of
4109 * each post-TSO-segment. If the supplied packet has IP or
4110 * TCP options, we need to tell the NIC to copy those extra
4111 * bytes into each post-TSO header, in addition to the normal
4112 * 40-byte IP/TCP header (and to leave space accordingly).
4113 * Unfortunately, the driver encoding of option length
4114 * varies across different ASIC families.
4115 */
4116 tcp_seg_flags = 0;
4117 if (iptcp_opt_words) {
4118 if (BGE_IS_5705_PLUS(sc)) {
4119 tcp_seg_flags =
4120 iptcp_opt_words << 11;
4121 } else {
4122 txbd_tso_flags |=
4123 iptcp_opt_words << 12;
4124 }
4125 }
4126 maxsegsize = mss | tcp_seg_flags;
4127 ip->ip_len = htons(mss + ip_tcp_hlen);
4128
4129 } /* TSO setup */
4130
4131 /*
4132 * Start packing the mbufs in this chain into
4133 * the fragment pointers. Stop when we run out
4134 * of fragments or hit the end of the mbuf chain.
4135 */
4136 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4137 BUS_DMA_NOWAIT);
4138 if (error)
4139 return ENOBUFS;
4140 /*
4141 * Sanity check: avoid coming within 16 descriptors
4142 * of the end of the ring.
4143 */
4144 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4145 BGE_TSO_PRINTF(("%s: "
4146 " dmamap_load_mbuf too close to ring wrap\n",
4147 device_xname(sc->bge_dev)));
4148 goto fail_unload;
4149 }
4150
4151 mtag = sc->ethercom.ec_nvlans ?
4152 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4153
4154
4155 /* Iterate over dmap-map fragments. */
4156 for (i = 0; i < dmamap->dm_nsegs; i++) {
4157 f = &sc->bge_rdata->bge_tx_ring[frag];
4158 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4159 break;
4160
4161 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4162 f->bge_len = dmamap->dm_segs[i].ds_len;
4163
4164 /*
4165 * For 5751 and follow-ons, for TSO we must turn
4166 * off checksum-assist flag in the tx-descr, and
4167 * supply the ASIC-revision-specific encoding
4168 * of TSO flags and segsize.
4169 */
4170 if (use_tso) {
4171 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4172 f->bge_rsvd = maxsegsize;
4173 f->bge_flags = csum_flags | txbd_tso_flags;
4174 } else {
4175 f->bge_rsvd = 0;
4176 f->bge_flags =
4177 (csum_flags | txbd_tso_flags) & 0x0fff;
4178 }
4179 } else {
4180 f->bge_rsvd = 0;
4181 f->bge_flags = csum_flags;
4182 }
4183
4184 if (mtag != NULL) {
4185 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4186 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4187 } else {
4188 f->bge_vlan_tag = 0;
4189 }
4190 cur = frag;
4191 BGE_INC(frag, BGE_TX_RING_CNT);
4192 }
4193
4194 if (i < dmamap->dm_nsegs) {
4195 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4196 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4197 goto fail_unload;
4198 }
4199
4200 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4201 BUS_DMASYNC_PREWRITE);
4202
4203 if (frag == sc->bge_tx_saved_considx) {
4204 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4205 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4206
4207 goto fail_unload;
4208 }
4209
4210 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4211 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4212 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4213 sc->txdma[cur] = dma;
4214 sc->bge_txcnt += dmamap->dm_nsegs;
4215
4216 *txidx = frag;
4217
4218 return 0;
4219
4220 fail_unload:
4221 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4222
4223 return ENOBUFS;
4224 }
4225
4226 /*
4227 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4228 * to the mbuf data regions directly in the transmit descriptors.
4229 */
4230 static void
4231 bge_start(struct ifnet *ifp)
4232 {
4233 struct bge_softc *sc;
4234 struct mbuf *m_head = NULL;
4235 uint32_t prodidx;
4236 int pkts = 0;
4237
4238 sc = ifp->if_softc;
4239
4240 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4241 return;
4242
4243 prodidx = sc->bge_tx_prodidx;
4244
4245 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4246 IFQ_POLL(&ifp->if_snd, m_head);
4247 if (m_head == NULL)
4248 break;
4249
4250 #if 0
4251 /*
4252 * XXX
4253 * safety overkill. If this is a fragmented packet chain
4254 * with delayed TCP/UDP checksums, then only encapsulate
4255 * it if we have enough descriptors to handle the entire
4256 * chain at once.
4257 * (paranoia -- may not actually be needed)
4258 */
4259 if (m_head->m_flags & M_FIRSTFRAG &&
4260 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4261 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4262 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4263 ifp->if_flags |= IFF_OACTIVE;
4264 break;
4265 }
4266 }
4267 #endif
4268
4269 /*
4270 * Pack the data into the transmit ring. If we
4271 * don't have room, set the OACTIVE flag and wait
4272 * for the NIC to drain the ring.
4273 */
4274 if (bge_encap(sc, m_head, &prodidx)) {
4275 ifp->if_flags |= IFF_OACTIVE;
4276 break;
4277 }
4278
4279 /* now we are committed to transmit the packet */
4280 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4281 pkts++;
4282
4283 /*
4284 * If there's a BPF listener, bounce a copy of this frame
4285 * to him.
4286 */
4287 bpf_mtap(ifp, m_head);
4288 }
4289 if (pkts == 0)
4290 return;
4291
4292 /* Transmit */
4293 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4294 /* 5700 b2 errata */
4295 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4296 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4297
4298 sc->bge_tx_prodidx = prodidx;
4299
4300 /*
4301 * Set a timeout in case the chip goes out to lunch.
4302 */
4303 ifp->if_timer = 5;
4304 }
4305
4306 static int
4307 bge_init(struct ifnet *ifp)
4308 {
4309 struct bge_softc *sc = ifp->if_softc;
4310 const uint16_t *m;
4311 uint32_t mode;
4312 int s, error = 0;
4313
4314 s = splnet();
4315
4316 ifp = &sc->ethercom.ec_if;
4317
4318 /* Cancel pending I/O and flush buffers. */
4319 bge_stop(ifp, 0);
4320
4321 bge_stop_fw(sc);
4322 bge_sig_pre_reset(sc, BGE_RESET_START);
4323 bge_reset(sc);
4324 bge_sig_legacy(sc, BGE_RESET_START);
4325 bge_sig_post_reset(sc, BGE_RESET_START);
4326
4327 bge_chipinit(sc);
4328
4329 /*
4330 * Init the various state machines, ring
4331 * control blocks and firmware.
4332 */
4333 error = bge_blockinit(sc);
4334 if (error != 0) {
4335 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4336 error);
4337 splx(s);
4338 return error;
4339 }
4340
4341 ifp = &sc->ethercom.ec_if;
4342
4343 /* Specify MTU. */
4344 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4345 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4346
4347 /* Load our MAC address. */
4348 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4349 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4350 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4351
4352 /* Enable or disable promiscuous mode as needed. */
4353 if (ifp->if_flags & IFF_PROMISC)
4354 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4355 else
4356 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4357
4358 /* Program multicast filter. */
4359 bge_setmulti(sc);
4360
4361 /* Init RX ring. */
4362 bge_init_rx_ring_std(sc);
4363
4364 /*
4365 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4366 * memory to insure that the chip has in fact read the first
4367 * entry of the ring.
4368 */
4369 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4370 uint32_t v, i;
4371 for (i = 0; i < 10; i++) {
4372 DELAY(20);
4373 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4374 if (v == (MCLBYTES - ETHER_ALIGN))
4375 break;
4376 }
4377 if (i == 10)
4378 aprint_error_dev(sc->bge_dev,
4379 "5705 A0 chip failed to load RX ring\n");
4380 }
4381
4382 /* Init jumbo RX ring. */
4383 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4384 bge_init_rx_ring_jumbo(sc);
4385
4386 /* Init our RX return ring index */
4387 sc->bge_rx_saved_considx = 0;
4388
4389 /* Init TX ring. */
4390 bge_init_tx_ring(sc);
4391
4392 /* Enable TX MAC state machine lockup fix. */
4393 mode = CSR_READ_4(sc, BGE_TX_MODE);
4394 if (BGE_IS_5755_PLUS(sc) ||
4395 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4396 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4397
4398 /* Turn on transmitter */
4399 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4400 DELAY(100);
4401
4402 /* Turn on receiver */
4403 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4404 DELAY(10);
4405
4406 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4407
4408 /* Tell firmware we're alive. */
4409 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4410
4411 /* Enable host interrupts. */
4412 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4413 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4414 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4415
4416 if ((error = bge_ifmedia_upd(ifp)) != 0)
4417 goto out;
4418
4419 ifp->if_flags |= IFF_RUNNING;
4420 ifp->if_flags &= ~IFF_OACTIVE;
4421
4422 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4423
4424 out:
4425 sc->bge_if_flags = ifp->if_flags;
4426 splx(s);
4427
4428 return error;
4429 }
4430
4431 /*
4432 * Set media options.
4433 */
4434 static int
4435 bge_ifmedia_upd(struct ifnet *ifp)
4436 {
4437 struct bge_softc *sc = ifp->if_softc;
4438 struct mii_data *mii = &sc->bge_mii;
4439 struct ifmedia *ifm = &sc->bge_ifmedia;
4440 int rc;
4441
4442 /* If this is a 1000baseX NIC, enable the TBI port. */
4443 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4444 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4445 return EINVAL;
4446 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4447 case IFM_AUTO:
4448 /*
4449 * The BCM5704 ASIC appears to have a special
4450 * mechanism for programming the autoneg
4451 * advertisement registers in TBI mode.
4452 */
4453 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4454 uint32_t sgdig;
4455 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4456 if (sgdig & BGE_SGDIGSTS_DONE) {
4457 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4458 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4459 sgdig |= BGE_SGDIGCFG_AUTO |
4460 BGE_SGDIGCFG_PAUSE_CAP |
4461 BGE_SGDIGCFG_ASYM_PAUSE;
4462 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4463 sgdig | BGE_SGDIGCFG_SEND);
4464 DELAY(5);
4465 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4466 }
4467 }
4468 break;
4469 case IFM_1000_SX:
4470 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4471 BGE_CLRBIT(sc, BGE_MAC_MODE,
4472 BGE_MACMODE_HALF_DUPLEX);
4473 } else {
4474 BGE_SETBIT(sc, BGE_MAC_MODE,
4475 BGE_MACMODE_HALF_DUPLEX);
4476 }
4477 break;
4478 default:
4479 return EINVAL;
4480 }
4481 /* XXX 802.3x flow control for 1000BASE-SX */
4482 return 0;
4483 }
4484
4485 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4486 if ((rc = mii_mediachg(mii)) == ENXIO)
4487 return 0;
4488
4489 /*
4490 * Force an interrupt so that we will call bge_link_upd
4491 * if needed and clear any pending link state attention.
4492 * Without this we are not getting any further interrupts
4493 * for link state changes and thus will not UP the link and
4494 * not be able to send in bge_start. The only way to get
4495 * things working was to receive a packet and get a RX intr.
4496 */
4497 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4498 sc->bge_flags & BGE_IS_5788)
4499 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4500 else
4501 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4502
4503 return rc;
4504 }
4505
4506 /*
4507 * Report current media status.
4508 */
4509 static void
4510 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4511 {
4512 struct bge_softc *sc = ifp->if_softc;
4513 struct mii_data *mii = &sc->bge_mii;
4514
4515 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4516 ifmr->ifm_status = IFM_AVALID;
4517 ifmr->ifm_active = IFM_ETHER;
4518 if (CSR_READ_4(sc, BGE_MAC_STS) &
4519 BGE_MACSTAT_TBI_PCS_SYNCHED)
4520 ifmr->ifm_status |= IFM_ACTIVE;
4521 ifmr->ifm_active |= IFM_1000_SX;
4522 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4523 ifmr->ifm_active |= IFM_HDX;
4524 else
4525 ifmr->ifm_active |= IFM_FDX;
4526 return;
4527 }
4528
4529 mii_pollstat(mii);
4530 ifmr->ifm_status = mii->mii_media_status;
4531 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4532 sc->bge_flowflags;
4533 }
4534
4535 static int
4536 bge_ifflags_cb(struct ethercom *ec)
4537 {
4538 struct ifnet *ifp = &ec->ec_if;
4539 struct bge_softc *sc = ifp->if_softc;
4540 int change = ifp->if_flags ^ sc->bge_if_flags;
4541
4542 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4543 return ENETRESET;
4544 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4545 return 0;
4546
4547 if ((ifp->if_flags & IFF_PROMISC) == 0)
4548 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4549 else
4550 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4551
4552 bge_setmulti(sc);
4553
4554 sc->bge_if_flags = ifp->if_flags;
4555 return 0;
4556 }
4557
4558 static int
4559 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4560 {
4561 struct bge_softc *sc = ifp->if_softc;
4562 struct ifreq *ifr = (struct ifreq *) data;
4563 int s, error = 0;
4564 struct mii_data *mii;
4565
4566 s = splnet();
4567
4568 switch (command) {
4569 case SIOCSIFMEDIA:
4570 /* XXX Flow control is not supported for 1000BASE-SX */
4571 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4572 ifr->ifr_media &= ~IFM_ETH_FMASK;
4573 sc->bge_flowflags = 0;
4574 }
4575
4576 /* Flow control requires full-duplex mode. */
4577 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4578 (ifr->ifr_media & IFM_FDX) == 0) {
4579 ifr->ifr_media &= ~IFM_ETH_FMASK;
4580 }
4581 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4582 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4583 /* We can do both TXPAUSE and RXPAUSE. */
4584 ifr->ifr_media |=
4585 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4586 }
4587 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4588 }
4589 /* FALLTHROUGH */
4590 case SIOCGIFMEDIA:
4591 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4592 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4593 command);
4594 } else {
4595 mii = &sc->bge_mii;
4596 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4597 command);
4598 }
4599 break;
4600 default:
4601 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4602 break;
4603
4604 error = 0;
4605
4606 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4607 ;
4608 else if (ifp->if_flags & IFF_RUNNING)
4609 bge_setmulti(sc);
4610 break;
4611 }
4612
4613 splx(s);
4614
4615 return error;
4616 }
4617
4618 static void
4619 bge_watchdog(struct ifnet *ifp)
4620 {
4621 struct bge_softc *sc;
4622
4623 sc = ifp->if_softc;
4624
4625 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4626
4627 ifp->if_flags &= ~IFF_RUNNING;
4628 bge_init(ifp);
4629
4630 ifp->if_oerrors++;
4631 }
4632
4633 static void
4634 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4635 {
4636 int i;
4637
4638 BGE_CLRBIT(sc, reg, bit);
4639
4640 for (i = 0; i < 1000; i++) {
4641 if ((CSR_READ_4(sc, reg) & bit) == 0)
4642 return;
4643 delay(100);
4644 }
4645
4646 /*
4647 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4648 * on some environment (and once after boot?)
4649 */
4650 if (reg != BGE_SRS_MODE)
4651 aprint_error_dev(sc->bge_dev,
4652 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4653 (u_long)reg, bit);
4654 }
4655
4656 /*
4657 * Stop the adapter and free any mbufs allocated to the
4658 * RX and TX lists.
4659 */
4660 static void
4661 bge_stop(struct ifnet *ifp, int disable)
4662 {
4663 struct bge_softc *sc = ifp->if_softc;
4664
4665 callout_stop(&sc->bge_timeout);
4666
4667 /*
4668 * Tell firmware we're shutting down.
4669 */
4670 bge_stop_fw(sc);
4671 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4672
4673 /* Disable host interrupts. */
4674 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4675 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4676
4677 /*
4678 * Disable all of the receiver blocks
4679 */
4680 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4681 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4682 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4683 if (BGE_IS_5700_FAMILY(sc))
4684 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4685 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4686 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4687 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4688
4689 /*
4690 * Disable all of the transmit blocks
4691 */
4692 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4693 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4694 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4695 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4696 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4697 if (BGE_IS_5700_FAMILY(sc))
4698 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4699 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4700
4701 /*
4702 * Shut down all of the memory managers and related
4703 * state machines.
4704 */
4705 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4706 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4707 if (BGE_IS_5700_FAMILY(sc))
4708 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4709
4710 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4711 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4712
4713 if (BGE_IS_5700_FAMILY(sc)) {
4714 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4715 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4716 }
4717
4718 bge_reset(sc);
4719 bge_sig_legacy(sc, BGE_RESET_STOP);
4720 bge_sig_post_reset(sc, BGE_RESET_STOP);
4721
4722 /*
4723 * Keep the ASF firmware running if up.
4724 */
4725 if (sc->bge_asf_mode & ASF_STACKUP)
4726 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4727 else
4728 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4729
4730 /* Free the RX lists. */
4731 bge_free_rx_ring_std(sc);
4732
4733 /* Free jumbo RX list. */
4734 if (BGE_IS_JUMBO_CAPABLE(sc))
4735 bge_free_rx_ring_jumbo(sc);
4736
4737 /* Free TX buffers. */
4738 bge_free_tx_ring(sc);
4739
4740 /*
4741 * Isolate/power down the PHY.
4742 */
4743 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4744 mii_down(&sc->bge_mii);
4745
4746 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4747
4748 /* Clear MAC's link state (PHY may still have link UP). */
4749 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4750
4751 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4752 }
4753
4754 static void
4755 bge_link_upd(struct bge_softc *sc)
4756 {
4757 struct ifnet *ifp = &sc->ethercom.ec_if;
4758 struct mii_data *mii = &sc->bge_mii;
4759 uint32_t status;
4760 int link;
4761
4762 /* Clear 'pending link event' flag */
4763 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4764
4765 /*
4766 * Process link state changes.
4767 * Grrr. The link status word in the status block does
4768 * not work correctly on the BCM5700 rev AX and BX chips,
4769 * according to all available information. Hence, we have
4770 * to enable MII interrupts in order to properly obtain
4771 * async link changes. Unfortunately, this also means that
4772 * we have to read the MAC status register to detect link
4773 * changes, thereby adding an additional register access to
4774 * the interrupt handler.
4775 */
4776
4777 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4778 status = CSR_READ_4(sc, BGE_MAC_STS);
4779 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4780 mii_pollstat(mii);
4781
4782 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4783 mii->mii_media_status & IFM_ACTIVE &&
4784 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4785 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4786 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4787 (!(mii->mii_media_status & IFM_ACTIVE) ||
4788 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4789 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4790
4791 /* Clear the interrupt */
4792 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4793 BGE_EVTENB_MI_INTERRUPT);
4794 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4795 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4796 BRGPHY_INTRS);
4797 }
4798 return;
4799 }
4800
4801 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4802 status = CSR_READ_4(sc, BGE_MAC_STS);
4803 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4804 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4805 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4806 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4807 BGE_CLRBIT(sc, BGE_MAC_MODE,
4808 BGE_MACMODE_TBI_SEND_CFGS);
4809 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4810 if_link_state_change(ifp, LINK_STATE_UP);
4811 }
4812 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4813 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4814 if_link_state_change(ifp, LINK_STATE_DOWN);
4815 }
4816 /*
4817 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4818 * This should not happen since mii callouts are locked now, but
4819 * we keep this check for debug.
4820 */
4821 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4822 /*
4823 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4824 * bit in status word always set. Workaround this bug by
4825 * reading PHY link status directly.
4826 */
4827 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4828 BGE_STS_LINK : 0;
4829
4830 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4831 mii_pollstat(mii);
4832
4833 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4834 mii->mii_media_status & IFM_ACTIVE &&
4835 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4836 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4837 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4838 (!(mii->mii_media_status & IFM_ACTIVE) ||
4839 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4840 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4841 }
4842 }
4843
4844 /* Clear the attention */
4845 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4846 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4847 BGE_MACSTAT_LINK_CHANGED);
4848 }
4849
4850 static int
4851 bge_sysctl_verify(SYSCTLFN_ARGS)
4852 {
4853 int error, t;
4854 struct sysctlnode node;
4855
4856 node = *rnode;
4857 t = *(int*)rnode->sysctl_data;
4858 node.sysctl_data = &t;
4859 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4860 if (error || newp == NULL)
4861 return error;
4862
4863 #if 0
4864 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4865 node.sysctl_num, rnode->sysctl_num));
4866 #endif
4867
4868 if (node.sysctl_num == bge_rxthresh_nodenum) {
4869 if (t < 0 || t >= NBGE_RX_THRESH)
4870 return EINVAL;
4871 bge_update_all_threshes(t);
4872 } else
4873 return EINVAL;
4874
4875 *(int*)rnode->sysctl_data = t;
4876
4877 return 0;
4878 }
4879
4880 /*
4881 * Set up sysctl(3) MIB, hw.bge.*.
4882 */
4883 static void
4884 bge_sysctl_init(struct bge_softc *sc)
4885 {
4886 int rc, bge_root_num;
4887 const struct sysctlnode *node;
4888
4889 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4890 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4891 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4892 goto out;
4893 }
4894
4895 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4896 0, CTLTYPE_NODE, "bge",
4897 SYSCTL_DESCR("BGE interface controls"),
4898 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4899 goto out;
4900 }
4901
4902 bge_root_num = node->sysctl_num;
4903
4904 /* BGE Rx interrupt mitigation level */
4905 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4906 CTLFLAG_READWRITE,
4907 CTLTYPE_INT, "rx_lvl",
4908 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4909 bge_sysctl_verify, 0,
4910 &bge_rx_thresh_lvl,
4911 0, CTL_HW, bge_root_num, CTL_CREATE,
4912 CTL_EOL)) != 0) {
4913 goto out;
4914 }
4915
4916 bge_rxthresh_nodenum = node->sysctl_num;
4917
4918 return;
4919
4920 out:
4921 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4922 }
4923
4924 #ifdef BGE_DEBUG
4925 void
4926 bge_debug_info(struct bge_softc *sc)
4927 {
4928
4929 printf("Hardware Flags:\n");
4930 if (BGE_IS_5755_PLUS(sc))
4931 printf(" - 5755 Plus\n");
4932 if (BGE_IS_575X_PLUS(sc))
4933 printf(" - 575X Plus\n");
4934 if (BGE_IS_5705_PLUS(sc))
4935 printf(" - 5705 Plus\n");
4936 if (BGE_IS_5714_FAMILY(sc))
4937 printf(" - 5714 Family\n");
4938 if (BGE_IS_5700_FAMILY(sc))
4939 printf(" - 5700 Family\n");
4940 if (sc->bge_flags & BGE_IS_5788)
4941 printf(" - 5788\n");
4942 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4943 printf(" - Supports Jumbo Frames\n");
4944 if (sc->bge_flags & BGE_NO_EEPROM)
4945 printf(" - No EEPROM\n");
4946 if (sc->bge_flags & BGE_PCIX)
4947 printf(" - PCI-X Bus\n");
4948 if (sc->bge_flags & BGE_PCIE)
4949 printf(" - PCI Express Bus\n");
4950 if (sc->bge_flags & BGE_NO_3LED)
4951 printf(" - No 3 LEDs\n");
4952 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4953 printf(" - RX Alignment Bug\n");
4954 if (sc->bge_flags & BGE_TSO)
4955 printf(" - TSO\n");
4956 }
4957 #endif /* BGE_DEBUG */
4958
4959 static int
4960 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4961 {
4962 prop_dictionary_t dict;
4963 prop_data_t ea;
4964
4965 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4966 return 1;
4967
4968 dict = device_properties(sc->bge_dev);
4969 ea = prop_dictionary_get(dict, "mac-address");
4970 if (ea != NULL) {
4971 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4972 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4973 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4974 return 0;
4975 }
4976
4977 return 1;
4978 }
4979
4980 static int
4981 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4982 {
4983 uint32_t mac_addr;
4984
4985 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
4986 if ((mac_addr >> 16) == 0x484b) {
4987 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4988 ether_addr[1] = (uint8_t)mac_addr;
4989 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
4990 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4991 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4992 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4993 ether_addr[5] = (uint8_t)mac_addr;
4994 return 0;
4995 }
4996 return 1;
4997 }
4998
4999 static int
5000 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5001 {
5002 int mac_offset = BGE_EE_MAC_OFFSET;
5003
5004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5005 mac_offset = BGE_EE_MAC_OFFSET_5906;
5006
5007 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5008 ETHER_ADDR_LEN));
5009 }
5010
5011 static int
5012 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5013 {
5014
5015 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5016 return 1;
5017
5018 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5019 ETHER_ADDR_LEN));
5020 }
5021
5022 static int
5023 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5024 {
5025 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5026 /* NOTE: Order is critical */
5027 bge_get_eaddr_fw,
5028 bge_get_eaddr_mem,
5029 bge_get_eaddr_nvram,
5030 bge_get_eaddr_eeprom,
5031 NULL
5032 };
5033 const bge_eaddr_fcn_t *func;
5034
5035 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5036 if ((*func)(sc, eaddr) == 0)
5037 break;
5038 }
5039 return (*func == NULL ? ENXIO : 0);
5040 }
5041