Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.209
      1 /*	$NetBSD: if_bge.c,v 1.209 2013/03/07 03:53:35 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.209 2013/03/07 03:53:35 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writemem_direct(struct bge_softc *, int, int);
    247 static void bge_writereg_ind(struct bge_softc *, int, int);
    248 static void bge_set_max_readrq(struct bge_softc *);
    249 
    250 static int bge_miibus_readreg(device_t, int, int);
    251 static void bge_miibus_writereg(device_t, int, int, int);
    252 static void bge_miibus_statchg(struct ifnet *);
    253 
    254 #define	BGE_RESET_START 1
    255 #define	BGE_RESET_STOP  2
    256 static void bge_sig_post_reset(struct bge_softc *, int);
    257 static void bge_sig_legacy(struct bge_softc *, int);
    258 static void bge_sig_pre_reset(struct bge_softc *, int);
    259 static void bge_stop_fw(struct bge_softc *);
    260 static int bge_reset(struct bge_softc *);
    261 static void bge_link_upd(struct bge_softc *);
    262 static void bge_sysctl_init(struct bge_softc *);
    263 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    264 
    265 #ifdef BGE_DEBUG
    266 #define DPRINTF(x)	if (bgedebug) printf x
    267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    269 int	bgedebug = 0;
    270 int	bge_tso_debug = 0;
    271 void		bge_debug_info(struct bge_softc *);
    272 #else
    273 #define DPRINTF(x)
    274 #define DPRINTFN(n,x)
    275 #define BGE_TSO_PRINTF(x)
    276 #endif
    277 
    278 #ifdef BGE_EVENT_COUNTERS
    279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    282 #else
    283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    286 #endif
    287 
    288 static const struct bge_product {
    289 	pci_vendor_id_t		bp_vendor;
    290 	pci_product_id_t	bp_product;
    291 	const char		*bp_name;
    292 } bge_products[] = {
    293 	/*
    294 	 * The BCM5700 documentation seems to indicate that the hardware
    295 	 * still has the Alteon vendor ID burned into it, though it
    296 	 * should always be overridden by the value in the EEPROM.  We'll
    297 	 * check for it anyway.
    298 	 */
    299 	{ PCI_VENDOR_ALTEON,
    300 	  PCI_PRODUCT_ALTEON_BCM5700,
    301 	  "Broadcom BCM5700 Gigabit Ethernet",
    302 	  },
    303 	{ PCI_VENDOR_ALTEON,
    304 	  PCI_PRODUCT_ALTEON_BCM5701,
    305 	  "Broadcom BCM5701 Gigabit Ethernet",
    306 	  },
    307 	{ PCI_VENDOR_ALTIMA,
    308 	  PCI_PRODUCT_ALTIMA_AC1000,
    309 	  "Altima AC1000 Gigabit Ethernet",
    310 	  },
    311 	{ PCI_VENDOR_ALTIMA,
    312 	  PCI_PRODUCT_ALTIMA_AC1001,
    313 	  "Altima AC1001 Gigabit Ethernet",
    314 	   },
    315 	{ PCI_VENDOR_ALTIMA,
    316 	  PCI_PRODUCT_ALTIMA_AC1003,
    317 	  "Altima AC1003 Gigabit Ethernet",
    318 	   },
    319 	{ PCI_VENDOR_ALTIMA,
    320 	  PCI_PRODUCT_ALTIMA_AC9100,
    321 	  "Altima AC9100 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_APPLE,
    324 	  PCI_PRODUCT_APPLE_BCM5701,
    325 	  "APPLE BCM5701 Gigabit Ethernet",
    326 	  },
    327 	{ PCI_VENDOR_BROADCOM,
    328 	  PCI_PRODUCT_BROADCOM_BCM5700,
    329 	  "Broadcom BCM5700 Gigabit Ethernet",
    330 	  },
    331 	{ PCI_VENDOR_BROADCOM,
    332 	  PCI_PRODUCT_BROADCOM_BCM5701,
    333 	  "Broadcom BCM5701 Gigabit Ethernet",
    334 	  },
    335 	{ PCI_VENDOR_BROADCOM,
    336 	  PCI_PRODUCT_BROADCOM_BCM5702,
    337 	  "Broadcom BCM5702 Gigabit Ethernet",
    338 	  },
    339 	{ PCI_VENDOR_BROADCOM,
    340 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    341 	  "Broadcom BCM5702X Gigabit Ethernet" },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5703,
    344 	  "Broadcom BCM5703 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    348 	  "Broadcom BCM5703X Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    352 	  "Broadcom BCM5703 Gigabit Ethernet",
    353 	  },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    356 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    360 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5705,
    364 	  "Broadcom BCM5705 Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    368 	  "Broadcom BCM5705F Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    372 	  "Broadcom BCM5705K Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    376 	  "Broadcom BCM5705M Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    380 	  "Broadcom BCM5705M Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5714,
    384 	  "Broadcom BCM5714 Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    388 	  "Broadcom BCM5714S Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5715,
    392 	  "Broadcom BCM5715 Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    396 	  "Broadcom BCM5715S Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5717,
    400 	  "Broadcom BCM5717 Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5718,
    404 	  "Broadcom BCM5718 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5720,
    408 	  "Broadcom BCM5720 Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5721,
    412 	  "Broadcom BCM5721 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5722,
    416 	  "Broadcom BCM5722 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5723,
    420 	  "Broadcom BCM5723 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5724,
    424 	  "Broadcom BCM5724 Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5750,
    428 	  "Broadcom BCM5750 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    432 	  "Broadcom BCM5750M Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5751,
    436 	  "Broadcom BCM5751 Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    440 	  "Broadcom BCM5751F Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    444 	  "Broadcom BCM5751M Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5752,
    448 	  "Broadcom BCM5752 Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    452 	  "Broadcom BCM5752M Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5753,
    456 	  "Broadcom BCM5753 Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    460 	  "Broadcom BCM5753F Gigabit Ethernet",
    461 	  },
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    464 	  "Broadcom BCM5753M Gigabit Ethernet",
    465 	  },
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5754,
    468 	  "Broadcom BCM5754 Gigabit Ethernet",
    469 	},
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    472 	  "Broadcom BCM5754M Gigabit Ethernet",
    473 	},
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5755,
    476 	  "Broadcom BCM5755 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    480 	  "Broadcom BCM5755M Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5756,
    484 	  "Broadcom BCM5756 Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5761,
    488 	  "Broadcom BCM5761 Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    492 	  "Broadcom BCM5761E Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    496 	  "Broadcom BCM5761S Gigabit Ethernet",
    497 	},
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    500 	  "Broadcom BCM5761SE Gigabit Ethernet",
    501 	},
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5764,
    504 	  "Broadcom BCM5764 Gigabit Ethernet",
    505 	  },
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5780,
    508 	  "Broadcom BCM5780 Gigabit Ethernet",
    509 	  },
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    512 	  "Broadcom BCM5780S Gigabit Ethernet",
    513 	  },
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5781,
    516 	  "Broadcom BCM5781 Gigabit Ethernet",
    517 	  },
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5782,
    520 	  "Broadcom BCM5782 Gigabit Ethernet",
    521 	},
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    524 	  "BCM5784M NetLink 1000baseT Ethernet",
    525 	},
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    528 	  "BCM5785F NetLink 10/100 Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    532 	  "BCM5785G NetLink 1000baseT Ethernet",
    533 	},
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5786,
    536 	  "Broadcom BCM5786 Gigabit Ethernet",
    537 	},
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5787,
    540 	  "Broadcom BCM5787 Gigabit Ethernet",
    541 	},
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    544 	  "Broadcom BCM5787F 10/100 Ethernet",
    545 	},
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    548 	  "Broadcom BCM5787M Gigabit Ethernet",
    549 	},
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5788,
    552 	  "Broadcom BCM5788 Gigabit Ethernet",
    553 	  },
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5789,
    556 	  "Broadcom BCM5789 Gigabit Ethernet",
    557 	  },
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM5901,
    560 	  "Broadcom BCM5901 Fast Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    564 	  "Broadcom BCM5901A2 Fast Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    568 	  "Broadcom BCM5903M Fast Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM5906,
    572 	  "Broadcom BCM5906 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    576 	  "Broadcom BCM5906M Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM57760,
    580 	  "Broadcom BCM57760 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM57761,
    584 	  "Broadcom BCM57761 Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57762,
    588 	  "Broadcom BCM57762 Gigabit Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57765,
    592 	  "Broadcom BCM57765 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57780,
    596 	  "Broadcom BCM57780 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_BROADCOM,
    599 	  PCI_PRODUCT_BROADCOM_BCM57781,
    600 	  "Broadcom BCM57781 Fast Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_BROADCOM,
    603 	  PCI_PRODUCT_BROADCOM_BCM57785,
    604 	  "Broadcom BCM57785 Fast Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_BROADCOM,
    607 	  PCI_PRODUCT_BROADCOM_BCM57788,
    608 	  "Broadcom BCM57788 Fast Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_BROADCOM,
    611 	  PCI_PRODUCT_BROADCOM_BCM57790,
    612 	  "Broadcom BCM57790 Fast Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_BROADCOM,
    615 	  PCI_PRODUCT_BROADCOM_BCM57791,
    616 	  "Broadcom BCM57791 Fast Ethernet",
    617 	  },
    618 	{ PCI_VENDOR_BROADCOM,
    619 	  PCI_PRODUCT_BROADCOM_BCM57795,
    620 	  "Broadcom BCM57795 Fast Ethernet",
    621 	  },
    622 	{ PCI_VENDOR_SCHNEIDERKOCH,
    623 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    624 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    625 	  },
    626 	{ PCI_VENDOR_3COM,
    627 	  PCI_PRODUCT_3COM_3C996,
    628 	  "3Com 3c996 Gigabit Ethernet",
    629 	  },
    630 	{ PCI_VENDOR_FUJITSU4,
    631 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    632 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    633 	  },
    634 	{ PCI_VENDOR_FUJITSU4,
    635 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    636 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    637 	  },
    638 	{ PCI_VENDOR_FUJITSU4,
    639 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    640 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    641 	  },
    642 	{ 0,
    643 	  0,
    644 	  NULL },
    645 };
    646 
    647 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    648 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    649 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    650 #define BGE_IS_575X_PLUS(sc)	((sc)->bge_flags & BGE_575X_PLUS)
    651 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    652 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    653 
    654 static const struct bge_revision {
    655 	uint32_t		br_chipid;
    656 	const char		*br_name;
    657 } bge_revisions[] = {
    658 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    659 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    660 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    661 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    662 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    663 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    664 	/* This is treated like a BCM5700 Bx */
    665 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    666 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    667 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    668 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    669 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    670 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    671 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    672 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    673 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    674 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    675 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    676 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    677 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    678 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    679 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    680 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    681 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    682 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    683 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    684 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    685 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    686 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    687 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    688 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    689 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    690 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    691 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    692 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    693 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    694 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    695 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    696 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    697 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    698 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    699 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    700 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    701 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    702 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    703 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    704 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    705 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    706 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    707 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    708 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    709 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    710 	/* 5754 and 5787 share the same ASIC ID */
    711 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    712 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    713 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    714 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    715 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    716 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    717 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    718 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    719 
    720 	{ 0, NULL }
    721 };
    722 
    723 /*
    724  * Some defaults for major revisions, so that newer steppings
    725  * that we don't know about have a shot at working.
    726  */
    727 static const struct bge_revision bge_majorrevs[] = {
    728 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    729 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    730 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    731 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    732 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    733 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    734 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    735 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    736 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    737 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    738 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    739 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    740 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    741 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    742 	/* 5754 and 5787 share the same ASIC ID */
    743 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    744 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    745 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    746 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    747 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    748 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    749 
    750 	{ 0, NULL }
    751 };
    752 
    753 static int bge_allow_asf = 1;
    754 
    755 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    756     bge_probe, bge_attach, NULL, NULL);
    757 
    758 static uint32_t
    759 bge_readmem_ind(struct bge_softc *sc, int off)
    760 {
    761 	pcireg_t val;
    762 
    763 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    764 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    765 	return val;
    766 }
    767 
    768 static void
    769 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    770 {
    771 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    772 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    773 }
    774 
    775 /*
    776  * PCI Express only
    777  */
    778 static void
    779 bge_set_max_readrq(struct bge_softc *sc)
    780 {
    781 	pcireg_t val;
    782 
    783 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    784 	    + PCI_PCIE_DCSR);
    785 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    786 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    787 		aprint_verbose_dev(sc->bge_dev,
    788 		    "adjust device control 0x%04x ", val);
    789 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    790 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    791 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    792 		    + PCI_PCIE_DCSR, val);
    793 		aprint_verbose("-> 0x%04x\n", val);
    794 	}
    795 }
    796 
    797 #ifdef notdef
    798 static uint32_t
    799 bge_readreg_ind(struct bge_softc *sc, int off)
    800 {
    801 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    802 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    803 }
    804 #endif
    805 
    806 static void
    807 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    808 {
    809 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    811 }
    812 
    813 static void
    814 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    815 {
    816 	CSR_WRITE_4(sc, off, val);
    817 }
    818 
    819 static void
    820 bge_writembx(struct bge_softc *sc, int off, int val)
    821 {
    822 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    823 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    824 
    825 	CSR_WRITE_4(sc, off, val);
    826 }
    827 
    828 static uint8_t
    829 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    830 {
    831 	uint32_t access, byte = 0;
    832 	int i;
    833 
    834 	/* Lock. */
    835 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    836 	for (i = 0; i < 8000; i++) {
    837 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    838 			break;
    839 		DELAY(20);
    840 	}
    841 	if (i == 8000)
    842 		return 1;
    843 
    844 	/* Enable access. */
    845 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    846 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    847 
    848 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    849 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    850 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    851 		DELAY(10);
    852 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    853 			DELAY(10);
    854 			break;
    855 		}
    856 	}
    857 
    858 	if (i == BGE_TIMEOUT * 10) {
    859 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    860 		return 1;
    861 	}
    862 
    863 	/* Get result. */
    864 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    865 
    866 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    867 
    868 	/* Disable access. */
    869 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    870 
    871 	/* Unlock. */
    872 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    873 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
    874 
    875 	return 0;
    876 }
    877 
    878 /*
    879  * Read a sequence of bytes from NVRAM.
    880  */
    881 static int
    882 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    883 {
    884 	int error = 0, i;
    885 	uint8_t byte = 0;
    886 
    887 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    888 		return 1;
    889 
    890 	for (i = 0; i < cnt; i++) {
    891 		error = bge_nvram_getbyte(sc, off + i, &byte);
    892 		if (error)
    893 			break;
    894 		*(dest + i) = byte;
    895 	}
    896 
    897 	return (error ? 1 : 0);
    898 }
    899 
    900 /*
    901  * Read a byte of data stored in the EEPROM at address 'addr.' The
    902  * BCM570x supports both the traditional bitbang interface and an
    903  * auto access interface for reading the EEPROM. We use the auto
    904  * access method.
    905  */
    906 static uint8_t
    907 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    908 {
    909 	int i;
    910 	uint32_t byte = 0;
    911 
    912 	/*
    913 	 * Enable use of auto EEPROM access so we can avoid
    914 	 * having to use the bitbang method.
    915 	 */
    916 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    917 
    918 	/* Reset the EEPROM, load the clock period. */
    919 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    920 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    921 	DELAY(20);
    922 
    923 	/* Issue the read EEPROM command. */
    924 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    925 
    926 	/* Wait for completion */
    927 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    928 		DELAY(10);
    929 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    930 			break;
    931 	}
    932 
    933 	if (i == BGE_TIMEOUT * 10) {
    934 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    935 		return 1;
    936 	}
    937 
    938 	/* Get result. */
    939 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    940 
    941 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    942 
    943 	return 0;
    944 }
    945 
    946 /*
    947  * Read a sequence of bytes from the EEPROM.
    948  */
    949 static int
    950 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    951 {
    952 	int error = 0, i;
    953 	uint8_t byte = 0;
    954 	char *dest = destv;
    955 
    956 	for (i = 0; i < cnt; i++) {
    957 		error = bge_eeprom_getbyte(sc, off + i, &byte);
    958 		if (error)
    959 			break;
    960 		*(dest + i) = byte;
    961 	}
    962 
    963 	return (error ? 1 : 0);
    964 }
    965 
    966 static int
    967 bge_miibus_readreg(device_t dev, int phy, int reg)
    968 {
    969 	struct bge_softc *sc = device_private(dev);
    970 	uint32_t val;
    971 	uint32_t autopoll;
    972 	int i;
    973 
    974 	/*
    975 	 * Broadcom's own driver always assumes the internal
    976 	 * PHY is at GMII address 1. On some chips, the PHY responds
    977 	 * to accesses at all addresses, which could cause us to
    978 	 * bogusly attach the PHY 32 times at probe type. Always
    979 	 * restricting the lookup to address 1 is simpler than
    980 	 * trying to figure out which chips revisions should be
    981 	 * special-cased.
    982 	 */
    983 	if (phy != 1)
    984 		return 0;
    985 
    986 	/* Reading with autopolling on may trigger PCI errors */
    987 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    988 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
    989 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
    990 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
    991 		DELAY(40);
    992 	}
    993 
    994 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
    995 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
    996 
    997 	for (i = 0; i < BGE_TIMEOUT; i++) {
    998 		val = CSR_READ_4(sc, BGE_MI_COMM);
    999 		if (!(val & BGE_MICOMM_BUSY))
   1000 			break;
   1001 		delay(10);
   1002 	}
   1003 
   1004 	if (i == BGE_TIMEOUT) {
   1005 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1006 		val = 0;
   1007 		goto done;
   1008 	}
   1009 
   1010 	val = CSR_READ_4(sc, BGE_MI_COMM);
   1011 
   1012 done:
   1013 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1014 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1015 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1016 		DELAY(40);
   1017 	}
   1018 
   1019 	if (val & BGE_MICOMM_READFAIL)
   1020 		return 0;
   1021 
   1022 	return (val & 0xFFFF);
   1023 }
   1024 
   1025 static void
   1026 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1027 {
   1028 	struct bge_softc *sc = device_private(dev);
   1029 	uint32_t autopoll;
   1030 	int i;
   1031 
   1032 	if (phy!=1) {
   1033 		return;
   1034 	}
   1035 
   1036 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1037 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1038 		return;
   1039 
   1040 	/* Reading with autopolling on may trigger PCI errors */
   1041 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1042 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1043 		delay(40);
   1044 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1045 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1046 		delay(10); /* 40 usec is supposed to be adequate */
   1047 	}
   1048 
   1049 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1050 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1051 
   1052 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1053 		delay(10);
   1054 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1055 			delay(5);
   1056 			CSR_READ_4(sc, BGE_MI_COMM);
   1057 			break;
   1058 		}
   1059 	}
   1060 
   1061 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1062 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1063 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1064 		delay(40);
   1065 	}
   1066 
   1067 	if (i == BGE_TIMEOUT)
   1068 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1069 }
   1070 
   1071 static void
   1072 bge_miibus_statchg(struct ifnet *ifp)
   1073 {
   1074 	struct bge_softc *sc = ifp->if_softc;
   1075 	struct mii_data *mii = &sc->bge_mii;
   1076 
   1077 	/*
   1078 	 * Get flow control negotiation result.
   1079 	 */
   1080 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1081 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1082 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1083 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1084 	}
   1085 
   1086 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1087 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1088 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1089 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1090 	else
   1091 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1092 
   1093 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1094 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1095 	else
   1096 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1097 
   1098 	/*
   1099 	 * 802.3x flow control
   1100 	 */
   1101 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1102 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1103 	else
   1104 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1105 
   1106 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1107 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1108 	else
   1109 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1110 }
   1111 
   1112 /*
   1113  * Update rx threshold levels to values in a particular slot
   1114  * of the interrupt-mitigation table bge_rx_threshes.
   1115  */
   1116 static void
   1117 bge_set_thresh(struct ifnet *ifp, int lvl)
   1118 {
   1119 	struct bge_softc *sc = ifp->if_softc;
   1120 	int s;
   1121 
   1122 	/* For now, just save the new Rx-intr thresholds and record
   1123 	 * that a threshold update is pending.  Updating the hardware
   1124 	 * registers here (even at splhigh()) is observed to
   1125 	 * occasionaly cause glitches where Rx-interrupts are not
   1126 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1127 	 */
   1128 	s = splnet();
   1129 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1130 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1131 	sc->bge_pending_rxintr_change = 1;
   1132 	splx(s);
   1133 }
   1134 
   1135 
   1136 /*
   1137  * Update Rx thresholds of all bge devices
   1138  */
   1139 static void
   1140 bge_update_all_threshes(int lvl)
   1141 {
   1142 	struct ifnet *ifp;
   1143 	const char * const namebuf = "bge";
   1144 	int namelen;
   1145 
   1146 	if (lvl < 0)
   1147 		lvl = 0;
   1148 	else if (lvl >= NBGE_RX_THRESH)
   1149 		lvl = NBGE_RX_THRESH - 1;
   1150 
   1151 	namelen = strlen(namebuf);
   1152 	/*
   1153 	 * Now search all the interfaces for this name/number
   1154 	 */
   1155 	IFNET_FOREACH(ifp) {
   1156 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1157 		      continue;
   1158 		/* We got a match: update if doing auto-threshold-tuning */
   1159 		if (bge_auto_thresh)
   1160 			bge_set_thresh(ifp, lvl);
   1161 	}
   1162 }
   1163 
   1164 /*
   1165  * Handle events that have triggered interrupts.
   1166  */
   1167 static void
   1168 bge_handle_events(struct bge_softc *sc)
   1169 {
   1170 
   1171 	return;
   1172 }
   1173 
   1174 /*
   1175  * Memory management for jumbo frames.
   1176  */
   1177 
   1178 static int
   1179 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1180 {
   1181 	char *ptr, *kva;
   1182 	bus_dma_segment_t	seg;
   1183 	int		i, rseg, state, error;
   1184 	struct bge_jpool_entry   *entry;
   1185 
   1186 	state = error = 0;
   1187 
   1188 	/* Grab a big chunk o' storage. */
   1189 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1190 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1191 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1192 		return ENOBUFS;
   1193 	}
   1194 
   1195 	state = 1;
   1196 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1197 	    BUS_DMA_NOWAIT)) {
   1198 		aprint_error_dev(sc->bge_dev,
   1199 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1200 		error = ENOBUFS;
   1201 		goto out;
   1202 	}
   1203 
   1204 	state = 2;
   1205 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1206 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1207 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1208 		error = ENOBUFS;
   1209 		goto out;
   1210 	}
   1211 
   1212 	state = 3;
   1213 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1214 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1215 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1216 		error = ENOBUFS;
   1217 		goto out;
   1218 	}
   1219 
   1220 	state = 4;
   1221 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1222 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1223 
   1224 	SLIST_INIT(&sc->bge_jfree_listhead);
   1225 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1226 
   1227 	/*
   1228 	 * Now divide it up into 9K pieces and save the addresses
   1229 	 * in an array.
   1230 	 */
   1231 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1232 	for (i = 0; i < BGE_JSLOTS; i++) {
   1233 		sc->bge_cdata.bge_jslots[i] = ptr;
   1234 		ptr += BGE_JLEN;
   1235 		entry = malloc(sizeof(struct bge_jpool_entry),
   1236 		    M_DEVBUF, M_NOWAIT);
   1237 		if (entry == NULL) {
   1238 			aprint_error_dev(sc->bge_dev,
   1239 			    "no memory for jumbo buffer queue!\n");
   1240 			error = ENOBUFS;
   1241 			goto out;
   1242 		}
   1243 		entry->slot = i;
   1244 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1245 				 entry, jpool_entries);
   1246 	}
   1247 out:
   1248 	if (error != 0) {
   1249 		switch (state) {
   1250 		case 4:
   1251 			bus_dmamap_unload(sc->bge_dmatag,
   1252 			    sc->bge_cdata.bge_rx_jumbo_map);
   1253 		case 3:
   1254 			bus_dmamap_destroy(sc->bge_dmatag,
   1255 			    sc->bge_cdata.bge_rx_jumbo_map);
   1256 		case 2:
   1257 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1258 		case 1:
   1259 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1260 			break;
   1261 		default:
   1262 			break;
   1263 		}
   1264 	}
   1265 
   1266 	return error;
   1267 }
   1268 
   1269 /*
   1270  * Allocate a jumbo buffer.
   1271  */
   1272 static void *
   1273 bge_jalloc(struct bge_softc *sc)
   1274 {
   1275 	struct bge_jpool_entry   *entry;
   1276 
   1277 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1278 
   1279 	if (entry == NULL) {
   1280 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1281 		return NULL;
   1282 	}
   1283 
   1284 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1285 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1286 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1287 }
   1288 
   1289 /*
   1290  * Release a jumbo buffer.
   1291  */
   1292 static void
   1293 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1294 {
   1295 	struct bge_jpool_entry *entry;
   1296 	struct bge_softc *sc;
   1297 	int i, s;
   1298 
   1299 	/* Extract the softc struct pointer. */
   1300 	sc = (struct bge_softc *)arg;
   1301 
   1302 	if (sc == NULL)
   1303 		panic("bge_jfree: can't find softc pointer!");
   1304 
   1305 	/* calculate the slot this buffer belongs to */
   1306 
   1307 	i = ((char *)buf
   1308 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1309 
   1310 	if ((i < 0) || (i >= BGE_JSLOTS))
   1311 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1312 
   1313 	s = splvm();
   1314 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1315 	if (entry == NULL)
   1316 		panic("bge_jfree: buffer not in use!");
   1317 	entry->slot = i;
   1318 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1319 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1320 
   1321 	if (__predict_true(m != NULL))
   1322   		pool_cache_put(mb_cache, m);
   1323 	splx(s);
   1324 }
   1325 
   1326 
   1327 /*
   1328  * Initialize a standard receive ring descriptor.
   1329  */
   1330 static int
   1331 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1332     bus_dmamap_t dmamap)
   1333 {
   1334 	struct mbuf		*m_new = NULL;
   1335 	struct bge_rx_bd	*r;
   1336 	int			error;
   1337 
   1338 	if (dmamap == NULL) {
   1339 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1340 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1341 		if (error != 0)
   1342 			return error;
   1343 	}
   1344 
   1345 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1346 
   1347 	if (m == NULL) {
   1348 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1349 		if (m_new == NULL)
   1350 			return ENOBUFS;
   1351 
   1352 		MCLGET(m_new, M_DONTWAIT);
   1353 		if (!(m_new->m_flags & M_EXT)) {
   1354 			m_freem(m_new);
   1355 			return ENOBUFS;
   1356 		}
   1357 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1358 
   1359 	} else {
   1360 		m_new = m;
   1361 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1362 		m_new->m_data = m_new->m_ext.ext_buf;
   1363 	}
   1364 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1365 	    m_adj(m_new, ETHER_ALIGN);
   1366 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1367 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1368 		return ENOBUFS;
   1369 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1370 	    BUS_DMASYNC_PREREAD);
   1371 
   1372 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1373 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1374 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1375 	r->bge_flags = BGE_RXBDFLAG_END;
   1376 	r->bge_len = m_new->m_len;
   1377 	r->bge_idx = i;
   1378 
   1379 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1380 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1381 		i * sizeof (struct bge_rx_bd),
   1382 	    sizeof (struct bge_rx_bd),
   1383 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1384 
   1385 	return 0;
   1386 }
   1387 
   1388 /*
   1389  * Initialize a jumbo receive ring descriptor. This allocates
   1390  * a jumbo buffer from the pool managed internally by the driver.
   1391  */
   1392 static int
   1393 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1394 {
   1395 	struct mbuf *m_new = NULL;
   1396 	struct bge_rx_bd *r;
   1397 	void *buf = NULL;
   1398 
   1399 	if (m == NULL) {
   1400 
   1401 		/* Allocate the mbuf. */
   1402 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1403 		if (m_new == NULL)
   1404 			return ENOBUFS;
   1405 
   1406 		/* Allocate the jumbo buffer */
   1407 		buf = bge_jalloc(sc);
   1408 		if (buf == NULL) {
   1409 			m_freem(m_new);
   1410 			aprint_error_dev(sc->bge_dev,
   1411 			    "jumbo allocation failed -- packet dropped!\n");
   1412 			return ENOBUFS;
   1413 		}
   1414 
   1415 		/* Attach the buffer to the mbuf. */
   1416 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1417 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1418 		    bge_jfree, sc);
   1419 		m_new->m_flags |= M_EXT_RW;
   1420 	} else {
   1421 		m_new = m;
   1422 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1423 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1424 	}
   1425 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1426 	    m_adj(m_new, ETHER_ALIGN);
   1427 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1428 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1429 	    BUS_DMASYNC_PREREAD);
   1430 	/* Set up the descriptor. */
   1431 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1432 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1433 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1434 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1435 	r->bge_len = m_new->m_len;
   1436 	r->bge_idx = i;
   1437 
   1438 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1439 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1440 		i * sizeof (struct bge_rx_bd),
   1441 	    sizeof (struct bge_rx_bd),
   1442 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1443 
   1444 	return 0;
   1445 }
   1446 
   1447 /*
   1448  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1449  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1450  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1451  * the NIC.
   1452  */
   1453 static int
   1454 bge_init_rx_ring_std(struct bge_softc *sc)
   1455 {
   1456 	int i;
   1457 
   1458 	if (sc->bge_flags & BGE_RXRING_VALID)
   1459 		return 0;
   1460 
   1461 	for (i = 0; i < BGE_SSLOTS; i++) {
   1462 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1463 			return ENOBUFS;
   1464 	}
   1465 
   1466 	sc->bge_std = i - 1;
   1467 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1468 
   1469 	sc->bge_flags |= BGE_RXRING_VALID;
   1470 
   1471 	return 0;
   1472 }
   1473 
   1474 static void
   1475 bge_free_rx_ring_std(struct bge_softc *sc)
   1476 {
   1477 	int i;
   1478 
   1479 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1480 		return;
   1481 
   1482 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1483 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1484 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1485 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1486 			bus_dmamap_destroy(sc->bge_dmatag,
   1487 			    sc->bge_cdata.bge_rx_std_map[i]);
   1488 		}
   1489 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1490 		    sizeof(struct bge_rx_bd));
   1491 	}
   1492 
   1493 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1494 }
   1495 
   1496 static int
   1497 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1498 {
   1499 	int i;
   1500 	volatile struct bge_rcb *rcb;
   1501 
   1502 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1503 		return 0;
   1504 
   1505 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1506 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1507 			return ENOBUFS;
   1508 	}
   1509 
   1510 	sc->bge_jumbo = i - 1;
   1511 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1512 
   1513 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1514 	rcb->bge_maxlen_flags = 0;
   1515 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1516 
   1517 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1518 
   1519 	return 0;
   1520 }
   1521 
   1522 static void
   1523 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1524 {
   1525 	int i;
   1526 
   1527 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1528 		return;
   1529 
   1530 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1531 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1532 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1533 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1534 		}
   1535 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1536 		    sizeof(struct bge_rx_bd));
   1537 	}
   1538 
   1539 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1540 }
   1541 
   1542 static void
   1543 bge_free_tx_ring(struct bge_softc *sc)
   1544 {
   1545 	int i;
   1546 	struct txdmamap_pool_entry *dma;
   1547 
   1548 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1549 		return;
   1550 
   1551 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1552 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1553 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1554 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1555 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1556 					    link);
   1557 			sc->txdma[i] = 0;
   1558 		}
   1559 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1560 		    sizeof(struct bge_tx_bd));
   1561 	}
   1562 
   1563 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1564 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1565 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1566 		free(dma, M_DEVBUF);
   1567 	}
   1568 
   1569 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1570 }
   1571 
   1572 static int
   1573 bge_init_tx_ring(struct bge_softc *sc)
   1574 {
   1575 	int i;
   1576 	bus_dmamap_t dmamap;
   1577 	struct txdmamap_pool_entry *dma;
   1578 
   1579 	if (sc->bge_flags & BGE_TXRING_VALID)
   1580 		return 0;
   1581 
   1582 	sc->bge_txcnt = 0;
   1583 	sc->bge_tx_saved_considx = 0;
   1584 
   1585 	/* Initialize transmit producer index for host-memory send ring. */
   1586 	sc->bge_tx_prodidx = 0;
   1587 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1588 	/* 5700 b2 errata */
   1589 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1590 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1591 
   1592 	/* NIC-memory send ring not used; initialize to zero. */
   1593 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1594 	/* 5700 b2 errata */
   1595 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1596 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1597 
   1598 	SLIST_INIT(&sc->txdma_list);
   1599 	for (i = 0; i < BGE_RSLOTS; i++) {
   1600 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1601 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1602 		    &dmamap))
   1603 			return ENOBUFS;
   1604 		if (dmamap == NULL)
   1605 			panic("dmamap NULL in bge_init_tx_ring");
   1606 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1607 		if (dma == NULL) {
   1608 			aprint_error_dev(sc->bge_dev,
   1609 			    "can't alloc txdmamap_pool_entry\n");
   1610 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1611 			return ENOMEM;
   1612 		}
   1613 		dma->dmamap = dmamap;
   1614 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1615 	}
   1616 
   1617 	sc->bge_flags |= BGE_TXRING_VALID;
   1618 
   1619 	return 0;
   1620 }
   1621 
   1622 static void
   1623 bge_setmulti(struct bge_softc *sc)
   1624 {
   1625 	struct ethercom		*ac = &sc->ethercom;
   1626 	struct ifnet		*ifp = &ac->ec_if;
   1627 	struct ether_multi	*enm;
   1628 	struct ether_multistep  step;
   1629 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1630 	uint32_t		h;
   1631 	int			i;
   1632 
   1633 	if (ifp->if_flags & IFF_PROMISC)
   1634 		goto allmulti;
   1635 
   1636 	/* Now program new ones. */
   1637 	ETHER_FIRST_MULTI(step, ac, enm);
   1638 	while (enm != NULL) {
   1639 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1640 			/*
   1641 			 * We must listen to a range of multicast addresses.
   1642 			 * For now, just accept all multicasts, rather than
   1643 			 * trying to set only those filter bits needed to match
   1644 			 * the range.  (At this time, the only use of address
   1645 			 * ranges is for IP multicast routing, for which the
   1646 			 * range is big enough to require all bits set.)
   1647 			 */
   1648 			goto allmulti;
   1649 		}
   1650 
   1651 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1652 
   1653 		/* Just want the 7 least-significant bits. */
   1654 		h &= 0x7f;
   1655 
   1656 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1657 		ETHER_NEXT_MULTI(step, enm);
   1658 	}
   1659 
   1660 	ifp->if_flags &= ~IFF_ALLMULTI;
   1661 	goto setit;
   1662 
   1663  allmulti:
   1664 	ifp->if_flags |= IFF_ALLMULTI;
   1665 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1666 
   1667  setit:
   1668 	for (i = 0; i < 4; i++)
   1669 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1670 }
   1671 
   1672 static void
   1673 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1674 {
   1675 
   1676 	/*
   1677 	 * Some chips don't like this so only do this if ASF is enabled
   1678 	 */
   1679 	if (sc->bge_asf_mode)
   1680 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1681 
   1682 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1683 		switch (type) {
   1684 		case BGE_RESET_START:
   1685 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1686 			break;
   1687 		case BGE_RESET_STOP:
   1688 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1689 			break;
   1690 		}
   1691 	}
   1692 }
   1693 
   1694 static void
   1695 bge_sig_post_reset(struct bge_softc *sc, int type)
   1696 {
   1697 
   1698 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1699 		switch (type) {
   1700 		case BGE_RESET_START:
   1701 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1702 			/* START DONE */
   1703 			break;
   1704 		case BGE_RESET_STOP:
   1705 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1706 			break;
   1707 		}
   1708 	}
   1709 }
   1710 
   1711 static void
   1712 bge_sig_legacy(struct bge_softc *sc, int type)
   1713 {
   1714 
   1715 	if (sc->bge_asf_mode) {
   1716 		switch (type) {
   1717 		case BGE_RESET_START:
   1718 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1719 			break;
   1720 		case BGE_RESET_STOP:
   1721 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1722 			break;
   1723 		}
   1724 	}
   1725 }
   1726 
   1727 static void
   1728 bge_stop_fw(struct bge_softc *sc)
   1729 {
   1730 	int i;
   1731 
   1732 	if (sc->bge_asf_mode) {
   1733 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1734 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
   1735 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1736 
   1737 		for (i = 0; i < 100; i++) {
   1738 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1739 				break;
   1740 			DELAY(10);
   1741 		}
   1742 	}
   1743 }
   1744 
   1745 static int
   1746 bge_poll_fw(struct bge_softc *sc)
   1747 {
   1748 	uint32_t val;
   1749 	int i;
   1750 
   1751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1752 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1753 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1754 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1755 				break;
   1756 			DELAY(100);
   1757 		}
   1758 		if (i >= BGE_TIMEOUT) {
   1759 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1760 			return -1;
   1761 		}
   1762 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1763 		/*
   1764 		 * Poll the value location we just wrote until
   1765 		 * we see the 1's complement of the magic number.
   1766 		 * This indicates that the firmware initialization
   1767 		 * is complete.
   1768 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1769 		 */
   1770 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1771 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1772 			if (val == ~BGE_MAGIC_NUMBER)
   1773 				break;
   1774 			DELAY(10);
   1775 		}
   1776 
   1777 		if (i >= BGE_TIMEOUT) {
   1778 			aprint_error_dev(sc->bge_dev,
   1779 			    "firmware handshake timed out, val = %x\n", val);
   1780 			return -1;
   1781 		}
   1782 	}
   1783 
   1784 	return 0;
   1785 }
   1786 
   1787 /*
   1788  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1789  * self-test results.
   1790  */
   1791 static int
   1792 bge_chipinit(struct bge_softc *sc)
   1793 {
   1794 	int i;
   1795 	uint32_t dma_rw_ctl;
   1796 
   1797 	/* Set endianness before we access any non-PCI registers. */
   1798 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1799 	    BGE_INIT);
   1800 
   1801 	/* Set power state to D0. */
   1802 	bge_setpowerstate(sc, 0);
   1803 
   1804 	/* Clear the MAC control register */
   1805 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1806 
   1807 	/*
   1808 	 * Clear the MAC statistics block in the NIC's
   1809 	 * internal memory.
   1810 	 */
   1811 	for (i = BGE_STATS_BLOCK;
   1812 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1813 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1814 
   1815 	for (i = BGE_STATUS_BLOCK;
   1816 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1817 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1818 
   1819 	/* Set up the PCI DMA control register. */
   1820 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1821 	if (sc->bge_flags & BGE_PCIE) {
   1822 		/* Read watermark not used, 128 bytes for write. */
   1823 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1824 		    device_xname(sc->bge_dev)));
   1825 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1826 	} else if (sc->bge_flags & BGE_PCIX) {
   1827 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1828 		    device_xname(sc->bge_dev)));
   1829 		/* PCI-X bus */
   1830 		if (BGE_IS_5714_FAMILY(sc)) {
   1831 			/* 256 bytes for read and write. */
   1832 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   1833 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   1834 
   1835 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1836 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1837 			else
   1838 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1839 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1840 			/* 1536 bytes for read, 384 bytes for write. */
   1841 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1842 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1843 		} else {
   1844 			/* 384 bytes for read and write. */
   1845 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   1846 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   1847 			    (0x0F);
   1848 		}
   1849 
   1850 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1851 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1852 			uint32_t tmp;
   1853 
   1854 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1855 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   1856 			if (tmp == 6 || tmp == 7)
   1857 				dma_rw_ctl |=
   1858 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1859 
   1860 			/* Set PCI-X DMA write workaround. */
   1861 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1862 		}
   1863 	} else {
   1864 		/* Conventional PCI bus: 256 bytes for read and write. */
   1865 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1866 		    device_xname(sc->bge_dev)));
   1867 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1868 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   1869 
   1870 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1871 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1872 			dma_rw_ctl |= 0x0F;
   1873 	}
   1874 
   1875 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1876 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1877 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1878 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1879 
   1880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1881 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1882 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1883 
   1884 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1885 	    dma_rw_ctl);
   1886 
   1887 	/*
   1888 	 * Set up general mode register.
   1889 	 */
   1890 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1891 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1892 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1893 
   1894 	/*
   1895 	 * BCM5701 B5 have a bug causing data corruption when using
   1896 	 * 64-bit DMA reads, which can be terminated early and then
   1897 	 * completed later as 32-bit accesses, in combination with
   1898 	 * certain bridges.
   1899 	 */
   1900 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1901 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1902 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1903 
   1904 	/*
   1905 	 * Tell the firmware the driver is running
   1906 	 */
   1907 	if (sc->bge_asf_mode & ASF_STACKUP)
   1908 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1909 
   1910 	/*
   1911 	 * Disable memory write invalidate.  Apparently it is not supported
   1912 	 * properly by these devices.
   1913 	 */
   1914 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1915 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1916 
   1917 #ifdef __brokenalpha__
   1918 	/*
   1919 	 * Must insure that we do not cross an 8K (bytes) boundary
   1920 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1921 	 * restriction on some ALPHA platforms with early revision
   1922 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1923 	 */
   1924 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1925 #endif
   1926 
   1927 	/* Set the timer prescaler (always 66MHz) */
   1928 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1929 
   1930 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1931 		DELAY(40);	/* XXX */
   1932 
   1933 		/* Put PHY into ready state */
   1934 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1935 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
   1936 		DELAY(40);
   1937 	}
   1938 
   1939 	return 0;
   1940 }
   1941 
   1942 static int
   1943 bge_blockinit(struct bge_softc *sc)
   1944 {
   1945 	volatile struct bge_rcb	 *rcb;
   1946 	bus_size_t rcb_addr;
   1947 	int i;
   1948 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1949 	bge_hostaddr taddr;
   1950 	uint32_t val;
   1951 
   1952 	/*
   1953 	 * Initialize the memory window pointer register so that
   1954 	 * we can access the first 32K of internal NIC RAM. This will
   1955 	 * allow us to set up the TX send ring RCBs and the RX return
   1956 	 * ring RCBs, plus other things which live in NIC memory.
   1957 	 */
   1958 
   1959 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1960 
   1961 	/* Step 33: Configure mbuf memory pool */
   1962 	if (BGE_IS_5700_FAMILY(sc)) {
   1963 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1964 		    BGE_BUFFPOOL_1);
   1965 
   1966 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1967 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1968 		else
   1969 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1970 
   1971 		/* Configure DMA resource pool */
   1972 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1973 		    BGE_DMA_DESCRIPTORS);
   1974 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1975 	}
   1976 
   1977 	/* Step 35: Configure mbuf pool watermarks */
   1978 #ifdef ORIG_WPAUL_VALUES
   1979 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1980 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1981 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1982 #else
   1983 
   1984 	/* new broadcom docs strongly recommend these: */
   1985 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1986 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   1987 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   1988 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   1991 	} else if (BGE_IS_5705_PLUS(sc)) {
   1992 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1993 
   1994 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   1997 		} else {
   1998 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1999 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2000 		}
   2001 	} else if (!BGE_IS_5705_PLUS(sc)) {
   2002 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   2003 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2004 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2005 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2006 		} else {
   2007 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   2008 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   2009 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   2010 		}
   2011 	} else {
   2012 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2013 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2014 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2015 	}
   2016 #endif
   2017 
   2018 	/* Step 36: Configure DMA resource watermarks */
   2019 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2020 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2021 
   2022 	/* Step 38: Enable buffer manager */
   2023 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2024 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2025 
   2026 	/* Step 39: Poll for buffer manager start indication */
   2027 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2028 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2029 			break;
   2030 		DELAY(10);
   2031 	}
   2032 
   2033 	if (i == BGE_TIMEOUT * 2) {
   2034 		aprint_error_dev(sc->bge_dev,
   2035 		    "buffer manager failed to start\n");
   2036 		return ENXIO;
   2037 	}
   2038 
   2039 	/* Step 40: Enable flow-through queues */
   2040 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2041 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2042 
   2043 	/* Wait until queue initialization is complete */
   2044 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2045 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2046 			break;
   2047 		DELAY(10);
   2048 	}
   2049 
   2050 	if (i == BGE_TIMEOUT * 2) {
   2051 		aprint_error_dev(sc->bge_dev,
   2052 		    "flow-through queue init failed\n");
   2053 		return ENXIO;
   2054 	}
   2055 
   2056 	/* Step 41: Initialize the standard RX ring control block */
   2057 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2058 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2059 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2060 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2061 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2062 		rcb->bge_maxlen_flags =
   2063 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2064 	else if (BGE_IS_5705_PLUS(sc))
   2065 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2066 	else
   2067 		rcb->bge_maxlen_flags =
   2068 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2069 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2070 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2071 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2072 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2073 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2074 
   2075 	/*
   2076 	 * Step 42: Initialize the jumbo RX ring control block
   2077 	 * We set the 'ring disabled' bit in the flags
   2078 	 * field until we're actually ready to start
   2079 	 * using this ring (i.e. once we set the MTU
   2080 	 * high enough to require it).
   2081 	 */
   2082 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2083 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2084 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2085 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2086 		rcb->bge_maxlen_flags =
   2087 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2088 			BGE_RCB_FLAG_RING_DISABLED);
   2089 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2090 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2091 		    rcb->bge_hostaddr.bge_addr_hi);
   2092 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2093 		    rcb->bge_hostaddr.bge_addr_lo);
   2094 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2095 		    rcb->bge_maxlen_flags);
   2096 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2097 
   2098 		/* Set up dummy disabled mini ring RCB */
   2099 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2100 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2101 		    BGE_RCB_FLAG_RING_DISABLED);
   2102 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2103 		    rcb->bge_maxlen_flags);
   2104 
   2105 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2106 		    offsetof(struct bge_ring_data, bge_info),
   2107 		    sizeof (struct bge_gib),
   2108 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2109 	}
   2110 
   2111 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2112 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2113 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2114 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2115 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2116 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2117 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2118 	}
   2119 	/*
   2120 	 * Set the BD ring replenish thresholds. The recommended
   2121 	 * values are 1/8th the number of descriptors allocated to
   2122 	 * each ring.
   2123 	 */
   2124 	i = BGE_STD_RX_RING_CNT / 8;
   2125 
   2126 	/*
   2127 	 * Use a value of 8 for the following chips to workaround HW errata.
   2128 	 * Some of these chips have been added based on empirical
   2129 	 * evidence (they don't work unless this is done).
   2130 	 */
   2131 	if (BGE_IS_5705_PLUS(sc))
   2132 		i = 8;
   2133 
   2134 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2135 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2136 
   2137 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2138 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2139 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2140 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2141 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2142 	}
   2143 
   2144 	/*
   2145 	 * Disable all unused send rings by setting the 'ring disabled'
   2146 	 * bit in the flags field of all the TX send ring control blocks.
   2147 	 * These are located in NIC memory.
   2148 	 */
   2149 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2150 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2151 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2152 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2153 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2154 		rcb_addr += sizeof(struct bge_rcb);
   2155 	}
   2156 
   2157 	/* Configure TX RCB 0 (we use only the first ring) */
   2158 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2159 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2160 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2161 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2162 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2163 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2164 	if (BGE_IS_5700_FAMILY(sc))
   2165 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2166 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2167 
   2168 	/* Disable all unused RX return rings */
   2169 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2170 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2171 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2172 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2173 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2174 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2175 			BGE_RCB_FLAG_RING_DISABLED));
   2176 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2177 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2178 		    (i * (sizeof(uint64_t))), 0);
   2179 		rcb_addr += sizeof(struct bge_rcb);
   2180 	}
   2181 
   2182 	/* Initialize RX ring indexes */
   2183 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2184 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2185 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2186 
   2187 	/*
   2188 	 * Set up RX return ring 0
   2189 	 * Note that the NIC address for RX return rings is 0x00000000.
   2190 	 * The return rings live entirely within the host, so the
   2191 	 * nicaddr field in the RCB isn't used.
   2192 	 */
   2193 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2194 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2195 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2196 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2197 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2198 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2199 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2200 
   2201 	/* Set random backoff seed for TX */
   2202 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2203 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2204 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2205 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2206 	    BGE_TX_BACKOFF_SEED_MASK);
   2207 
   2208 	/* Set inter-packet gap */
   2209 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2210 
   2211 	/*
   2212 	 * Specify which ring to use for packets that don't match
   2213 	 * any RX rules.
   2214 	 */
   2215 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2216 
   2217 	/*
   2218 	 * Configure number of RX lists. One interrupt distribution
   2219 	 * list, sixteen active lists, one bad frames class.
   2220 	 */
   2221 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2222 
   2223 	/* Inialize RX list placement stats mask. */
   2224 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2225 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2226 
   2227 	/* Disable host coalescing until we get it set up */
   2228 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2229 
   2230 	/* Poll to make sure it's shut down. */
   2231 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2232 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2233 			break;
   2234 		DELAY(10);
   2235 	}
   2236 
   2237 	if (i == BGE_TIMEOUT * 2) {
   2238 		aprint_error_dev(sc->bge_dev,
   2239 		    "host coalescing engine failed to idle\n");
   2240 		return ENXIO;
   2241 	}
   2242 
   2243 	/* Set up host coalescing defaults */
   2244 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2245 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2246 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2247 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2248 	if (BGE_IS_5700_FAMILY(sc)) {
   2249 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2250 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2251 	}
   2252 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2253 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2254 
   2255 	/* Set up address of statistics block */
   2256 	if (BGE_IS_5700_FAMILY(sc)) {
   2257 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2258 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2259 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2260 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2261 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2262 	}
   2263 
   2264 	/* Set up address of status block */
   2265 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2266 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2267 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2268 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2269 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2270 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2271 
   2272 	/* Turn on host coalescing state machine */
   2273 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2274 
   2275 	/* Turn on RX BD completion state machine and enable attentions */
   2276 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2277 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2278 
   2279 	/* Turn on RX list placement state machine */
   2280 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2281 
   2282 	/* Turn on RX list selector state machine. */
   2283 	if (BGE_IS_5700_FAMILY(sc))
   2284 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2285 
   2286 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2287 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2288 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2289 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2290 
   2291 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2292 		val |= BGE_PORTMODE_TBI;
   2293 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2294 		val |= BGE_PORTMODE_GMII;
   2295 	else
   2296 		val |= BGE_PORTMODE_MII;
   2297 
   2298 	/* Turn on DMA, clear stats */
   2299 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
   2300 
   2301 	/* Set misc. local control, enable interrupts on attentions */
   2302 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2303 
   2304 #ifdef notdef
   2305 	/* Assert GPIO pins for PHY reset */
   2306 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2307 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2308 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2309 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2310 #endif
   2311 
   2312 #if defined(not_quite_yet)
   2313 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2314 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2315 		sc->bge_local_ctrl_reg |=
   2316 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2317 	}
   2318 #endif
   2319 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2320 
   2321 	/* Turn on DMA completion state machine */
   2322 	if (BGE_IS_5700_FAMILY(sc))
   2323 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2324 
   2325 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2326 
   2327 	/* Enable host coalescing bug fix */
   2328 	if (BGE_IS_5755_PLUS(sc))
   2329 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2330 
   2331 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2332 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2333 
   2334 	/* Turn on write DMA state machine */
   2335 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
   2336 
   2337 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2338 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2339 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2340 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2341 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2342 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2343 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2344 
   2345 	if (sc->bge_flags & BGE_PCIE)
   2346 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2347 	if (sc->bge_flags & BGE_TSO)
   2348 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2349 
   2350 	/* Turn on read DMA state machine */
   2351 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
   2352 	delay(40);
   2353 
   2354 	/* Turn on RX data completion state machine */
   2355 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2356 
   2357 	/* Turn on RX BD initiator state machine */
   2358 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2359 
   2360 	/* Turn on RX data and RX BD initiator state machine */
   2361 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2362 
   2363 	/* Turn on Mbuf cluster free state machine */
   2364 	if (BGE_IS_5700_FAMILY(sc))
   2365 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2366 
   2367 	/* Turn on send BD completion state machine */
   2368 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2369 
   2370 	/* Turn on send data completion state machine */
   2371 	val = BGE_SDCMODE_ENABLE;
   2372 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2373 		val |= BGE_SDCMODE_CDELAY;
   2374 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2375 
   2376 	/* Turn on send data initiator state machine */
   2377 	if (sc->bge_flags & BGE_TSO) {
   2378 		/* XXX: magic value from Linux driver */
   2379 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2380 	} else
   2381 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2382 
   2383 	/* Turn on send BD initiator state machine */
   2384 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2385 
   2386 	/* Turn on send BD selector state machine */
   2387 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2388 
   2389 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2390 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2391 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2392 
   2393 	/* ack/clear link change events */
   2394 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2395 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2396 	    BGE_MACSTAT_LINK_CHANGED);
   2397 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2398 
   2399 	/* Enable PHY auto polling (for MII/GMII only) */
   2400 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2401 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2402 	} else {
   2403 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2404 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2405 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2406 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2407 			    BGE_EVTENB_MI_INTERRUPT);
   2408 	}
   2409 
   2410 	/*
   2411 	 * Clear any pending link state attention.
   2412 	 * Otherwise some link state change events may be lost until attention
   2413 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2414 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2415 	 * state change attentions implies clearing pending attention.
   2416 	 */
   2417 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2418 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2419 	    BGE_MACSTAT_LINK_CHANGED);
   2420 
   2421 	/* Enable link state change attentions. */
   2422 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2423 
   2424 	return 0;
   2425 }
   2426 
   2427 static const struct bge_revision *
   2428 bge_lookup_rev(uint32_t chipid)
   2429 {
   2430 	const struct bge_revision *br;
   2431 
   2432 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2433 		if (br->br_chipid == chipid)
   2434 			return br;
   2435 	}
   2436 
   2437 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2438 		if (br->br_chipid == BGE_ASICREV(chipid))
   2439 			return br;
   2440 	}
   2441 
   2442 	return NULL;
   2443 }
   2444 
   2445 static const struct bge_product *
   2446 bge_lookup(const struct pci_attach_args *pa)
   2447 {
   2448 	const struct bge_product *bp;
   2449 
   2450 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2451 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2452 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2453 			return bp;
   2454 	}
   2455 
   2456 	return NULL;
   2457 }
   2458 
   2459 static int
   2460 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2461 {
   2462 #ifdef NOTYET
   2463 	uint32_t pm_ctl = 0;
   2464 
   2465 	/* XXX FIXME: make sure indirect accesses enabled? */
   2466 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2467 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2468 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2469 
   2470 	/* clear the PME_assert bit and power state bits, enable PME */
   2471 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2472 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2473 	pm_ctl |= (1 << 8);
   2474 
   2475 	if (powerlevel == 0) {
   2476 		pm_ctl |= PCIM_PSTAT_D0;
   2477 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2478 		    pm_ctl, 2);
   2479 		DELAY(10000);
   2480 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2481 		DELAY(10000);
   2482 
   2483 #ifdef NOTYET
   2484 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2485 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2486 #endif
   2487 		DELAY(40); DELAY(40); DELAY(40);
   2488 		DELAY(10000);	/* above not quite adequate on 5700 */
   2489 		return 0;
   2490 	}
   2491 
   2492 
   2493 	/*
   2494 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2495 	 * GMII gpio pins. Example code assumes all hardware vendors
   2496 	 * followed Broadcom's sample pcb layout. Until we verify that
   2497 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2498 	 */
   2499 	aprint_error_dev(sc->bge_dev,
   2500 	    "power state %d unimplemented; check GPIO pins\n",
   2501 	    powerlevel);
   2502 #endif
   2503 	return EOPNOTSUPP;
   2504 }
   2505 
   2506 
   2507 /*
   2508  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2509  * against our list and return its name if we find a match. Note
   2510  * that since the Broadcom controller contains VPD support, we
   2511  * can get the device name string from the controller itself instead
   2512  * of the compiled-in string. This is a little slow, but it guarantees
   2513  * we'll always announce the right product name.
   2514  */
   2515 static int
   2516 bge_probe(device_t parent, cfdata_t match, void *aux)
   2517 {
   2518 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2519 
   2520 	if (bge_lookup(pa) != NULL)
   2521 		return 1;
   2522 
   2523 	return 0;
   2524 }
   2525 
   2526 static void
   2527 bge_attach(device_t parent, device_t self, void *aux)
   2528 {
   2529 	struct bge_softc	*sc = device_private(self);
   2530 	struct pci_attach_args	*pa = aux;
   2531 	prop_dictionary_t dict;
   2532 	const struct bge_product *bp;
   2533 	const struct bge_revision *br;
   2534 	pci_chipset_tag_t	pc;
   2535 	pci_intr_handle_t	ih;
   2536 	const char		*intrstr = NULL;
   2537 	bus_dma_segment_t	seg;
   2538 	int			rseg;
   2539 	uint32_t		hwcfg = 0;
   2540 	uint32_t		command;
   2541 	struct ifnet		*ifp;
   2542 	uint32_t		misccfg;
   2543 	void *			kva;
   2544 	u_char			eaddr[ETHER_ADDR_LEN];
   2545 	pcireg_t		memtype, subid;
   2546 	bus_addr_t		memaddr;
   2547 	bus_size_t		memsize;
   2548 	uint32_t		pm_ctl;
   2549 	bool			no_seeprom;
   2550 
   2551 	bp = bge_lookup(pa);
   2552 	KASSERT(bp != NULL);
   2553 
   2554 	sc->sc_pc = pa->pa_pc;
   2555 	sc->sc_pcitag = pa->pa_tag;
   2556 	sc->bge_dev = self;
   2557 
   2558 	pc = sc->sc_pc;
   2559 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2560 
   2561 	aprint_naive(": Ethernet controller\n");
   2562 	aprint_normal(": %s\n", bp->bp_name);
   2563 
   2564 	/*
   2565 	 * Map control/status registers.
   2566 	 */
   2567 	DPRINTFN(5, ("Map control/status regs\n"));
   2568 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2569 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2570 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2571 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2572 
   2573 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2574 		aprint_error_dev(sc->bge_dev,
   2575 		    "failed to enable memory mapping!\n");
   2576 		return;
   2577 	}
   2578 
   2579 	DPRINTFN(5, ("pci_mem_find\n"));
   2580 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2581 	switch (memtype) {
   2582 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2583 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2584 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2585 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2586 		    &memaddr, &memsize) == 0)
   2587 			break;
   2588 	default:
   2589 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2590 		return;
   2591 	}
   2592 
   2593 	DPRINTFN(5, ("pci_intr_map\n"));
   2594 	if (pci_intr_map(pa, &ih)) {
   2595 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2596 		return;
   2597 	}
   2598 
   2599 	DPRINTFN(5, ("pci_intr_string\n"));
   2600 	intrstr = pci_intr_string(pc, ih);
   2601 
   2602 	DPRINTFN(5, ("pci_intr_establish\n"));
   2603 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2604 
   2605 	if (sc->bge_intrhand == NULL) {
   2606 		aprint_error_dev(sc->bge_dev,
   2607 		    "couldn't establish interrupt%s%s\n",
   2608 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2609 		return;
   2610 	}
   2611 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2612 
   2613 	/*
   2614 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2615 	 * can clobber the chip's PCI config-space power control registers,
   2616 	 * leaving the card in D3 powersave state.
   2617 	 * We do not have memory-mapped registers in this state,
   2618 	 * so force device into D0 state before starting initialization.
   2619 	 */
   2620 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2621 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2622 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2623 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2624 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2625 
   2626 	/*
   2627 	 * Save ASIC rev.
   2628 	 */
   2629 	sc->bge_chipid =
   2630 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2631 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2632 
   2633 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2634 		switch (PCI_PRODUCT(pa->pa_id)) {
   2635 		case PCI_PRODUCT_BROADCOM_BCM5717:
   2636 		case PCI_PRODUCT_BROADCOM_BCM5718:
   2637 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   2638 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2639 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2640 			break;
   2641 		case PCI_PRODUCT_BROADCOM_BCM57761:
   2642 		case PCI_PRODUCT_BROADCOM_BCM57762:
   2643 		case PCI_PRODUCT_BROADCOM_BCM57765:
   2644 		case PCI_PRODUCT_BROADCOM_BCM57781:
   2645 		case PCI_PRODUCT_BROADCOM_BCM57785:
   2646 		case PCI_PRODUCT_BROADCOM_BCM57791:
   2647 		case PCI_PRODUCT_BROADCOM_BCM57795:
   2648 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2649 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2650 			break;
   2651 		default:
   2652 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2653 			    BGE_PCI_PRODID_ASICREV);
   2654 			break;
   2655 		}
   2656 	}
   2657 
   2658 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2659 	        &sc->bge_pciecap, NULL) != 0)
   2660 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2661 		/* PCIe */
   2662 		sc->bge_flags |= BGE_PCIE;
   2663 		bge_set_max_readrq(sc);
   2664 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2665 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2666 		/* PCI-X */
   2667 		sc->bge_flags |= BGE_PCIX;
   2668 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2669 			&sc->bge_pcixcap, NULL) == 0)
   2670 			aprint_error_dev(sc->bge_dev,
   2671 			    "unable to find PCIX capability\n");
   2672 	}
   2673 
   2674 	/* chipid */
   2675 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2676 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2677 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2679 		sc->bge_flags |= BGE_5700_FAMILY;
   2680 
   2681 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2682 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2683 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2684 		sc->bge_flags |= BGE_5714_FAMILY;
   2685 
   2686 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2687 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2688 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2689 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2690 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2691 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2692 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2693 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2694 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   2695 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2696 		sc->bge_flags |= BGE_5755_PLUS;
   2697 
   2698 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2699 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2700 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2701 	    BGE_IS_5755_PLUS(sc) ||
   2702 	    BGE_IS_5714_FAMILY(sc))
   2703 		sc->bge_flags |= BGE_575X_PLUS;
   2704 
   2705 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2706 	    BGE_IS_575X_PLUS(sc))
   2707 		sc->bge_flags |= BGE_5705_PLUS;
   2708 
   2709 	/*
   2710 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2711 	 * been observed in the first few bytes of some received packets.
   2712 	 * Aligning the packet buffer in memory eliminates the corruption.
   2713 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2714 	 * which do not support unaligned accesses, we will realign the
   2715 	 * payloads by copying the received packets.
   2716 	 */
   2717 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2718 	    sc->bge_flags & BGE_PCIX)
   2719 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2720 
   2721 	if (BGE_IS_5700_FAMILY(sc))
   2722 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2723 
   2724 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2725 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2726 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2727 		sc->bge_flags |= BGE_NO_3LED;
   2728 
   2729 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2730 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2731 
   2732 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2733 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2734 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2735 		sc->bge_flags |= BGE_IS_5788;
   2736 
   2737 	/*
   2738 	 * Some controllers seem to require a special firmware to use
   2739 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2740 	 * claims that the TSO performed by the firmware is slower than
   2741 	 * hardware based TSO. Moreover the firmware based TSO has one
   2742 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2743 	 * header is greater than 80 bytes. The workaround for the TSO
   2744 	 * bug exist but it seems it's too expensive than not using
   2745 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2746 	 * the TSO to the controllers that are not affected TSO issues
   2747 	 * (e.g. 5755 or higher).
   2748 	 */
   2749 	if (BGE_IS_5755_PLUS(sc)) {
   2750 		/*
   2751 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2752 		 * explicit device id check is required.
   2753 		 */
   2754 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2755 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2756 			sc->bge_flags |= BGE_TSO;
   2757 	}
   2758 
   2759 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2760 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2761 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2762 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2763 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2764 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2765 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2766 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2767 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2768 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2769 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2770 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2771 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2772 		sc->bge_flags |= BGE_10_100_ONLY;
   2773 
   2774 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2775 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2776 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2777 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2778 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2779 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2780 
   2781 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2782 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2783 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2784 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2785 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2786 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2787 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2788 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2789 
   2790 	if (BGE_IS_5705_PLUS(sc) &&
   2791 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2792 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2793 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2794 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2795 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
   2796 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2797 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2798 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2799 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2800 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2801 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2802 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2803 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2804 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2805 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2806 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2807 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2808 	}
   2809 
   2810 	/*
   2811 	 * SEEPROM check.
   2812 	 * First check if firmware knows we do not have SEEPROM.
   2813 	 */
   2814 	if (prop_dictionary_get_bool(device_properties(self),
   2815 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2816 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2817 
   2818 	/* Now check the 'ROM failed' bit on the RX CPU */
   2819 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2820 		sc->bge_flags |= BGE_NO_EEPROM;
   2821 
   2822 	/* Try to reset the chip. */
   2823 	DPRINTFN(5, ("bge_reset\n"));
   2824 	bge_reset(sc);
   2825 
   2826 	sc->bge_asf_mode = 0;
   2827 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2828 	    == BGE_MAGIC_NUMBER)) {
   2829 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2830 		    & BGE_HWCFG_ASF) {
   2831 			sc->bge_asf_mode |= ASF_ENABLE;
   2832 			sc->bge_asf_mode |= ASF_STACKUP;
   2833 			if (BGE_IS_575X_PLUS(sc)) {
   2834 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2835 			}
   2836 		}
   2837 	}
   2838 
   2839 	/* Try to reset the chip again the nice way. */
   2840 	bge_stop_fw(sc);
   2841 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2842 	if (bge_reset(sc))
   2843 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2844 
   2845 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2846 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2847 
   2848 	if (bge_chipinit(sc)) {
   2849 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2850 		bge_release_resources(sc);
   2851 		return;
   2852 	}
   2853 
   2854 	/*
   2855 	 * Get station address from the EEPROM.
   2856 	 */
   2857 	if (bge_get_eaddr(sc, eaddr)) {
   2858 		aprint_error_dev(sc->bge_dev,
   2859 		    "failed to read station address\n");
   2860 		bge_release_resources(sc);
   2861 		return;
   2862 	}
   2863 
   2864 	br = bge_lookup_rev(sc->bge_chipid);
   2865 
   2866 	if (br == NULL) {
   2867 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2868 		    sc->bge_chipid);
   2869 	} else {
   2870 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2871 		    br->br_name, sc->bge_chipid);
   2872 	}
   2873 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2874 
   2875 	/* Allocate the general information block and ring buffers. */
   2876 	if (pci_dma64_available(pa))
   2877 		sc->bge_dmatag = pa->pa_dmat64;
   2878 	else
   2879 		sc->bge_dmatag = pa->pa_dmat;
   2880 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2881 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2882 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2883 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2884 		return;
   2885 	}
   2886 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2887 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2888 			   sizeof(struct bge_ring_data), &kva,
   2889 			   BUS_DMA_NOWAIT)) {
   2890 		aprint_error_dev(sc->bge_dev,
   2891 		    "can't map DMA buffers (%zu bytes)\n",
   2892 		    sizeof(struct bge_ring_data));
   2893 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2894 		return;
   2895 	}
   2896 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2897 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2898 	    sizeof(struct bge_ring_data), 0,
   2899 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2900 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2901 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2902 				 sizeof(struct bge_ring_data));
   2903 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2904 		return;
   2905 	}
   2906 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2907 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2908 			    sizeof(struct bge_ring_data), NULL,
   2909 			    BUS_DMA_NOWAIT)) {
   2910 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2911 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2912 				 sizeof(struct bge_ring_data));
   2913 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2914 		return;
   2915 	}
   2916 
   2917 	DPRINTFN(5, ("bzero\n"));
   2918 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2919 
   2920 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2921 
   2922 	/* Try to allocate memory for jumbo buffers. */
   2923 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2924 		if (bge_alloc_jumbo_mem(sc)) {
   2925 			aprint_error_dev(sc->bge_dev,
   2926 			    "jumbo buffer allocation failed\n");
   2927 		} else
   2928 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2929 	}
   2930 
   2931 	/* Set default tuneable values. */
   2932 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2933 	sc->bge_rx_coal_ticks = 150;
   2934 	sc->bge_rx_max_coal_bds = 64;
   2935 #ifdef ORIG_WPAUL_VALUES
   2936 	sc->bge_tx_coal_ticks = 150;
   2937 	sc->bge_tx_max_coal_bds = 128;
   2938 #else
   2939 	sc->bge_tx_coal_ticks = 300;
   2940 	sc->bge_tx_max_coal_bds = 400;
   2941 #endif
   2942 	if (BGE_IS_5705_PLUS(sc)) {
   2943 		sc->bge_tx_coal_ticks = (12 * 5);
   2944 		sc->bge_tx_max_coal_bds = (12 * 5);
   2945 			aprint_verbose_dev(sc->bge_dev,
   2946 			    "setting short Tx thresholds\n");
   2947 	}
   2948 
   2949 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2950 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2951 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2952 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2953 	else if (BGE_IS_5705_PLUS(sc))
   2954 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2955 	else
   2956 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2957 
   2958 	/* Set up ifnet structure */
   2959 	ifp = &sc->ethercom.ec_if;
   2960 	ifp->if_softc = sc;
   2961 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2962 	ifp->if_ioctl = bge_ioctl;
   2963 	ifp->if_stop = bge_stop;
   2964 	ifp->if_start = bge_start;
   2965 	ifp->if_init = bge_init;
   2966 	ifp->if_watchdog = bge_watchdog;
   2967 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2968 	IFQ_SET_READY(&ifp->if_snd);
   2969 	DPRINTFN(5, ("strcpy if_xname\n"));
   2970 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2971 
   2972 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2973 		sc->ethercom.ec_if.if_capabilities |=
   2974 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2975 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2976 		sc->ethercom.ec_if.if_capabilities |=
   2977 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2978 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2979 #endif
   2980 	sc->ethercom.ec_capabilities |=
   2981 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2982 
   2983 	if (sc->bge_flags & BGE_TSO)
   2984 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2985 
   2986 	/*
   2987 	 * Do MII setup.
   2988 	 */
   2989 	DPRINTFN(5, ("mii setup\n"));
   2990 	sc->bge_mii.mii_ifp = ifp;
   2991 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2992 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2993 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2994 
   2995 	/*
   2996 	 * Figure out what sort of media we have by checking the hardware
   2997 	 * config word in the first 32k of NIC internal memory, or fall back to
   2998 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   2999 	 * this value appears to be unset. If that's the case, we have to rely
   3000 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3001 	 * the SysKonnect SK-9D41.
   3002 	 */
   3003 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   3004 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   3005 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3006 		bge_read_eeprom(sc, (void *)&hwcfg,
   3007 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3008 		hwcfg = be32toh(hwcfg);
   3009 	}
   3010 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3011 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3012 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3013 		if (BGE_IS_5714_FAMILY(sc))
   3014 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3015 		else
   3016 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3017 	}
   3018 
   3019 	/* set phyflags and chipid before mii_attach() */
   3020 	dict = device_properties(self);
   3021 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3022 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3023 
   3024 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3025 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3026 		    bge_ifmedia_sts);
   3027 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3028 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3029 			    0, NULL);
   3030 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3031 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3032 		/* Pretend the user requested this setting */
   3033 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3034 	} else {
   3035 		/*
   3036 		 * Do transceiver setup and tell the firmware the
   3037 		 * driver is down so we can try to get access the
   3038 		 * probe if ASF is running.  Retry a couple of times
   3039 		 * if we get a conflict with the ASF firmware accessing
   3040 		 * the PHY.
   3041 		 */
   3042 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3043 		bge_asf_driver_up(sc);
   3044 
   3045 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3046 			     bge_ifmedia_sts);
   3047 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3048 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3049 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3050 
   3051 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3052 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3053 			ifmedia_add(&sc->bge_mii.mii_media,
   3054 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3055 			ifmedia_set(&sc->bge_mii.mii_media,
   3056 				    IFM_ETHER|IFM_MANUAL);
   3057 		} else
   3058 			ifmedia_set(&sc->bge_mii.mii_media,
   3059 				    IFM_ETHER|IFM_AUTO);
   3060 
   3061 		/*
   3062 		 * Now tell the firmware we are going up after probing the PHY
   3063 		 */
   3064 		if (sc->bge_asf_mode & ASF_STACKUP)
   3065 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3066 	}
   3067 
   3068 	/*
   3069 	 * Call MI attach routine.
   3070 	 */
   3071 	DPRINTFN(5, ("if_attach\n"));
   3072 	if_attach(ifp);
   3073 	DPRINTFN(5, ("ether_ifattach\n"));
   3074 	ether_ifattach(ifp, eaddr);
   3075 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3076 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3077 		RND_TYPE_NET, 0);
   3078 #ifdef BGE_EVENT_COUNTERS
   3079 	/*
   3080 	 * Attach event counters.
   3081 	 */
   3082 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3083 	    NULL, device_xname(sc->bge_dev), "intr");
   3084 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3085 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3086 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3087 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3088 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3089 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3090 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3091 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3092 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3093 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3094 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3095 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3096 #endif /* BGE_EVENT_COUNTERS */
   3097 	DPRINTFN(5, ("callout_init\n"));
   3098 	callout_init(&sc->bge_timeout, 0);
   3099 
   3100 	if (pmf_device_register(self, NULL, NULL))
   3101 		pmf_class_network_register(self, ifp);
   3102 	else
   3103 		aprint_error_dev(self, "couldn't establish power handler\n");
   3104 
   3105 	bge_sysctl_init(sc);
   3106 
   3107 #ifdef BGE_DEBUG
   3108 	bge_debug_info(sc);
   3109 #endif
   3110 }
   3111 
   3112 static void
   3113 bge_release_resources(struct bge_softc *sc)
   3114 {
   3115 	if (sc->bge_vpd_prodname != NULL)
   3116 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3117 
   3118 	if (sc->bge_vpd_readonly != NULL)
   3119 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3120 }
   3121 
   3122 static int
   3123 bge_reset(struct bge_softc *sc)
   3124 {
   3125 	uint32_t cachesize, command, pcistate, marbmode;
   3126 #if 0
   3127 	uint32_t new_pcistate;
   3128 #endif
   3129 	pcireg_t devctl, reg;
   3130 	int i, val;
   3131 	void (*write_op)(struct bge_softc *, int, int);
   3132 
   3133 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
   3134 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3135 	    	if (sc->bge_flags & BGE_PCIE)
   3136 			write_op = bge_writemem_direct;
   3137 		else
   3138 			write_op = bge_writemem_ind;
   3139 	} else
   3140 		write_op = bge_writereg_ind;
   3141 
   3142 	/* Save some important PCI state. */
   3143 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3144 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3145 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3146 
   3147 	/* Step 5a: Enable memory arbiter. */
   3148 	marbmode = 0;
   3149 	if (BGE_IS_5714_FAMILY(sc))
   3150 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3151 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3152 
   3153 	/* Step 5b-5d: */
   3154 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3155 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3156 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3157 
   3158 	/* XXX ???: Disable fastboot on controllers that support it. */
   3159 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3160 	    BGE_IS_5755_PLUS(sc))
   3161 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3162 
   3163 	/*
   3164 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3165 	 * When firmware finishes its initialization it will
   3166 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3167 	 */
   3168 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3169 
   3170 	/* Step 7: */
   3171 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3172 	/*
   3173 	 * XXX: from FreeBSD/Linux; no documentation
   3174 	 */
   3175 	if (sc->bge_flags & BGE_PCIE) {
   3176 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3177 			/* PCI Express 1.0 system */
   3178 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3179 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3180 			/*
   3181 			 * Prevent PCI Express link training
   3182 			 * during global reset.
   3183 			 */
   3184 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3185 			val |= (1<<29);
   3186 		}
   3187 	}
   3188 
   3189 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3190 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3191 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3192 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3193 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3194 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3195 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3196 	}
   3197 
   3198 	/*
   3199 	 * Set GPHY Power Down Override to leave GPHY
   3200 	 * powered up in D0 uninitialized.
   3201 	 */
   3202 	if (BGE_IS_5705_PLUS(sc))
   3203 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3204 
   3205 	/* XXX 5721, 5751 and 5752 */
   3206 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3207 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3208 
   3209 	/* Issue global reset */
   3210 	write_op(sc, BGE_MISC_CFG, val);
   3211 
   3212 	/* Step 8: wait for complete */
   3213 	if (sc->bge_flags & BGE_PCIE)
   3214 		delay(100*1000); /* too big */
   3215 	else
   3216 		delay(100);
   3217 
   3218 	/* From Linux: dummy read to flush PCI posted writes */
   3219 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3220 
   3221 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3222 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3223 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3224 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3225 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3226 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3227 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3228 
   3229 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3230 	if (sc->bge_flags & BGE_PCIX) {
   3231 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3232 		    + PCI_PCIX_CMD);
   3233 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3234 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3235 	}
   3236 
   3237 	if (sc->bge_flags & BGE_PCIE) {
   3238 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3239 			DELAY(500000);
   3240 			/* XXX: Magic Numbers */
   3241 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3242 			    BGE_PCI_UNKNOWN0);
   3243 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3244 			    BGE_PCI_UNKNOWN0,
   3245 			    reg | (1 << 15));
   3246 		}
   3247 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3248 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3249 		/* Clear enable no snoop and disable relaxed ordering. */
   3250 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   3251 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3252 		/* Set PCIE max payload size to 128. */
   3253 		devctl &= ~(0x00e0);
   3254 		/* Clear device status register. Write 1b to clear */
   3255 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3256 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3257 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3258 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3259 	}
   3260 
   3261 	/* Step 12: Enable memory arbiter. */
   3262 	marbmode = 0;
   3263 	if (BGE_IS_5714_FAMILY(sc))
   3264 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3265 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3266 
   3267 	/* Step 17: Poll until the firmware initialization is complete */
   3268 	bge_poll_fw(sc);
   3269 
   3270 	/* XXX 5721, 5751 and 5752 */
   3271 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3272 		/* Step 19: */
   3273 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3274 		/* Step 20: */
   3275 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3276 	}
   3277 
   3278 	/*
   3279 	 * Step 18: wirte mac mode
   3280 	 * XXX Write 0x0c for 5703S and 5704S
   3281 	 */
   3282 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   3283 
   3284 
   3285 	/* Step 21: 5822 B0 errata */
   3286 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3287 		pcireg_t msidata;
   3288 
   3289 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3290 		    BGE_PCI_MSI_DATA);
   3291 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3292 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3293 		    msidata);
   3294 	}
   3295 
   3296 	/* Step 23: restore cache line size */
   3297 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3298 
   3299 #if 0
   3300 	/*
   3301 	 * XXX Wait for the value of the PCISTATE register to
   3302 	 * return to its original pre-reset state. This is a
   3303 	 * fairly good indicator of reset completion. If we don't
   3304 	 * wait for the reset to fully complete, trying to read
   3305 	 * from the device's non-PCI registers may yield garbage
   3306 	 * results.
   3307 	 */
   3308 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3309 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3310 		    BGE_PCI_PCISTATE);
   3311 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3312 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3313 			break;
   3314 		DELAY(10);
   3315 	}
   3316 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3317 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3318 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3319 	}
   3320 #endif
   3321 
   3322 	/* Step 28: Fix up byte swapping */
   3323 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3324 
   3325 	/* Tell the ASF firmware we are up */
   3326 	if (sc->bge_asf_mode & ASF_STACKUP)
   3327 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3328 
   3329 	/*
   3330 	 * The 5704 in TBI mode apparently needs some special
   3331 	 * adjustment to insure the SERDES drive level is set
   3332 	 * to 1.2V.
   3333 	 */
   3334 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3335 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3336 		uint32_t serdescfg;
   3337 
   3338 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3339 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3340 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3341 	}
   3342 
   3343 	if (sc->bge_flags & BGE_PCIE &&
   3344 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3345 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3346 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3347 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   3348 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
   3349 		uint32_t v;
   3350 
   3351 		/* Enable PCI Express bug fix */
   3352 		v = CSR_READ_4(sc, 0x7c00);
   3353 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3354 	}
   3355 	DELAY(10000);
   3356 
   3357 	return 0;
   3358 }
   3359 
   3360 /*
   3361  * Frame reception handling. This is called if there's a frame
   3362  * on the receive return list.
   3363  *
   3364  * Note: we have to be able to handle two possibilities here:
   3365  * 1) the frame is from the jumbo receive ring
   3366  * 2) the frame is from the standard receive ring
   3367  */
   3368 
   3369 static void
   3370 bge_rxeof(struct bge_softc *sc)
   3371 {
   3372 	struct ifnet *ifp;
   3373 	uint16_t rx_prod, rx_cons;
   3374 	int stdcnt = 0, jumbocnt = 0;
   3375 	bus_dmamap_t dmamap;
   3376 	bus_addr_t offset, toff;
   3377 	bus_size_t tlen;
   3378 	int tosync;
   3379 
   3380 	rx_cons = sc->bge_rx_saved_considx;
   3381 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3382 
   3383 	/* Nothing to do */
   3384 	if (rx_cons == rx_prod)
   3385 		return;
   3386 
   3387 	ifp = &sc->ethercom.ec_if;
   3388 
   3389 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3390 	    offsetof(struct bge_ring_data, bge_status_block),
   3391 	    sizeof (struct bge_status_block),
   3392 	    BUS_DMASYNC_POSTREAD);
   3393 
   3394 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3395 	tosync = rx_prod - rx_cons;
   3396 
   3397 	if (tosync != 0)
   3398 		rnd_add_uint32(&sc->rnd_source, tosync);
   3399 
   3400 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3401 
   3402 	if (tosync < 0) {
   3403 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3404 		    sizeof (struct bge_rx_bd);
   3405 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3406 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3407 		tosync = -tosync;
   3408 	}
   3409 
   3410 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3411 	    offset, tosync * sizeof (struct bge_rx_bd),
   3412 	    BUS_DMASYNC_POSTREAD);
   3413 
   3414 	while (rx_cons != rx_prod) {
   3415 		struct bge_rx_bd	*cur_rx;
   3416 		uint32_t		rxidx;
   3417 		struct mbuf		*m = NULL;
   3418 
   3419 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3420 
   3421 		rxidx = cur_rx->bge_idx;
   3422 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3423 
   3424 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3425 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3426 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3427 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3428 			jumbocnt++;
   3429 			bus_dmamap_sync(sc->bge_dmatag,
   3430 			    sc->bge_cdata.bge_rx_jumbo_map,
   3431 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3432 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3433 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3434 				ifp->if_ierrors++;
   3435 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3436 				continue;
   3437 			}
   3438 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3439 					     NULL)== ENOBUFS) {
   3440 				ifp->if_ierrors++;
   3441 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3442 				continue;
   3443 			}
   3444 		} else {
   3445 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3446 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3447 
   3448 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3449 			stdcnt++;
   3450 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3451 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3452 			if (dmamap == NULL) {
   3453 				ifp->if_ierrors++;
   3454 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3455 				continue;
   3456 			}
   3457 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3458 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3459 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3460 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3461 				ifp->if_ierrors++;
   3462 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3463 				continue;
   3464 			}
   3465 			if (bge_newbuf_std(sc, sc->bge_std,
   3466 			    NULL, dmamap) == ENOBUFS) {
   3467 				ifp->if_ierrors++;
   3468 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3469 				continue;
   3470 			}
   3471 		}
   3472 
   3473 		ifp->if_ipackets++;
   3474 #ifndef __NO_STRICT_ALIGNMENT
   3475 		/*
   3476 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3477 		 * the Rx buffer has the layer-2 header unaligned.
   3478 		 * If our CPU requires alignment, re-align by copying.
   3479 		 */
   3480 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3481 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3482 				cur_rx->bge_len);
   3483 			m->m_data += ETHER_ALIGN;
   3484 		}
   3485 #endif
   3486 
   3487 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3488 		m->m_pkthdr.rcvif = ifp;
   3489 
   3490 		/*
   3491 		 * Handle BPF listeners. Let the BPF user see the packet.
   3492 		 */
   3493 		bpf_mtap(ifp, m);
   3494 
   3495 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3496 
   3497 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3498 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3499 		/*
   3500 		 * Rx transport checksum-offload may also
   3501 		 * have bugs with packets which, when transmitted,
   3502 		 * were `runts' requiring padding.
   3503 		 */
   3504 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3505 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3506 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3507 			m->m_pkthdr.csum_data =
   3508 			    cur_rx->bge_tcp_udp_csum;
   3509 			m->m_pkthdr.csum_flags |=
   3510 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3511 			     M_CSUM_DATA);
   3512 		}
   3513 
   3514 		/*
   3515 		 * If we received a packet with a vlan tag, pass it
   3516 		 * to vlan_input() instead of ether_input().
   3517 		 */
   3518 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3519 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3520 		}
   3521 
   3522 		(*ifp->if_input)(ifp, m);
   3523 	}
   3524 
   3525 	sc->bge_rx_saved_considx = rx_cons;
   3526 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3527 	if (stdcnt)
   3528 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3529 	if (jumbocnt)
   3530 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3531 }
   3532 
   3533 static void
   3534 bge_txeof(struct bge_softc *sc)
   3535 {
   3536 	struct bge_tx_bd *cur_tx = NULL;
   3537 	struct ifnet *ifp;
   3538 	struct txdmamap_pool_entry *dma;
   3539 	bus_addr_t offset, toff;
   3540 	bus_size_t tlen;
   3541 	int tosync;
   3542 	struct mbuf *m;
   3543 
   3544 	ifp = &sc->ethercom.ec_if;
   3545 
   3546 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3547 	    offsetof(struct bge_ring_data, bge_status_block),
   3548 	    sizeof (struct bge_status_block),
   3549 	    BUS_DMASYNC_POSTREAD);
   3550 
   3551 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3552 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3553 	    sc->bge_tx_saved_considx;
   3554 
   3555 	if (tosync != 0)
   3556 		rnd_add_uint32(&sc->rnd_source, tosync);
   3557 
   3558 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3559 
   3560 	if (tosync < 0) {
   3561 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3562 		    sizeof (struct bge_tx_bd);
   3563 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3564 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3565 		tosync = -tosync;
   3566 	}
   3567 
   3568 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3569 	    offset, tosync * sizeof (struct bge_tx_bd),
   3570 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3571 
   3572 	/*
   3573 	 * Go through our tx ring and free mbufs for those
   3574 	 * frames that have been sent.
   3575 	 */
   3576 	while (sc->bge_tx_saved_considx !=
   3577 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3578 		uint32_t		idx = 0;
   3579 
   3580 		idx = sc->bge_tx_saved_considx;
   3581 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3582 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3583 			ifp->if_opackets++;
   3584 		m = sc->bge_cdata.bge_tx_chain[idx];
   3585 		if (m != NULL) {
   3586 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3587 			dma = sc->txdma[idx];
   3588 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3589 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3590 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3591 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3592 			sc->txdma[idx] = NULL;
   3593 
   3594 			m_freem(m);
   3595 		}
   3596 		sc->bge_txcnt--;
   3597 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3598 		ifp->if_timer = 0;
   3599 	}
   3600 
   3601 	if (cur_tx != NULL)
   3602 		ifp->if_flags &= ~IFF_OACTIVE;
   3603 }
   3604 
   3605 static int
   3606 bge_intr(void *xsc)
   3607 {
   3608 	struct bge_softc *sc;
   3609 	struct ifnet *ifp;
   3610 	uint32_t statusword;
   3611 
   3612 	sc = xsc;
   3613 	ifp = &sc->ethercom.ec_if;
   3614 
   3615 	/* It is possible for the interrupt to arrive before
   3616 	 * the status block is updated prior to the interrupt.
   3617 	 * Reading the PCI State register will confirm whether the
   3618 	 * interrupt is ours and will flush the status block.
   3619 	 */
   3620 
   3621 	/* read status word from status block */
   3622 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3623 
   3624 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3625 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3626 		/* Ack interrupt and stop others from occuring. */
   3627 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   3628 
   3629 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3630 
   3631 		/* clear status word */
   3632 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3633 
   3634 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3635 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3636 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3637 			bge_link_upd(sc);
   3638 
   3639 		if (ifp->if_flags & IFF_RUNNING) {
   3640 			/* Check RX return ring producer/consumer */
   3641 			bge_rxeof(sc);
   3642 
   3643 			/* Check TX ring producer/consumer */
   3644 			bge_txeof(sc);
   3645 		}
   3646 
   3647 		if (sc->bge_pending_rxintr_change) {
   3648 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3649 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3650 			uint32_t junk;
   3651 
   3652 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3653 			DELAY(10);
   3654 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3655 
   3656 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3657 			DELAY(10);
   3658 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3659 
   3660 			sc->bge_pending_rxintr_change = 0;
   3661 		}
   3662 		bge_handle_events(sc);
   3663 
   3664 		/* Re-enable interrupts. */
   3665 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   3666 
   3667 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3668 			bge_start(ifp);
   3669 
   3670 		return 1;
   3671 	} else
   3672 		return 0;
   3673 }
   3674 
   3675 static void
   3676 bge_asf_driver_up(struct bge_softc *sc)
   3677 {
   3678 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3679 		/* Send ASF heartbeat aprox. every 2s */
   3680 		if (sc->bge_asf_count)
   3681 			sc->bge_asf_count --;
   3682 		else {
   3683 			sc->bge_asf_count = 2;
   3684 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3685 			    BGE_FW_DRV_ALIVE);
   3686 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3687 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3688 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
   3689 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3690 		}
   3691 	}
   3692 }
   3693 
   3694 static void
   3695 bge_tick(void *xsc)
   3696 {
   3697 	struct bge_softc *sc = xsc;
   3698 	struct mii_data *mii = &sc->bge_mii;
   3699 	int s;
   3700 
   3701 	s = splnet();
   3702 
   3703 	if (BGE_IS_5705_PLUS(sc))
   3704 		bge_stats_update_regs(sc);
   3705 	else
   3706 		bge_stats_update(sc);
   3707 
   3708 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3709 		/*
   3710 		 * Since in TBI mode auto-polling can't be used we should poll
   3711 		 * link status manually. Here we register pending link event
   3712 		 * and trigger interrupt.
   3713 		 */
   3714 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3715 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3716 	} else {
   3717 		/*
   3718 		 * Do not touch PHY if we have link up. This could break
   3719 		 * IPMI/ASF mode or produce extra input errors.
   3720 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3721 		 */
   3722 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3723 			mii_tick(mii);
   3724 	}
   3725 
   3726 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3727 
   3728 	splx(s);
   3729 }
   3730 
   3731 static void
   3732 bge_stats_update_regs(struct bge_softc *sc)
   3733 {
   3734 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3735 
   3736 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3737 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3738 
   3739 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3740 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3741 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3742 }
   3743 
   3744 static void
   3745 bge_stats_update(struct bge_softc *sc)
   3746 {
   3747 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3748 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3749 
   3750 #define READ_STAT(sc, stats, stat) \
   3751 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3752 
   3753 	ifp->if_collisions +=
   3754 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3755 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3756 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3757 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3758 	  ifp->if_collisions;
   3759 
   3760 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3761 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3762 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3763 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3764 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3765 		      READ_STAT(sc, stats,
   3766 		      		xoffPauseFramesReceived.bge_addr_lo));
   3767 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3768 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3769 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3770 		      READ_STAT(sc, stats,
   3771 		      		macControlFramesReceived.bge_addr_lo));
   3772 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3773 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3774 
   3775 #undef READ_STAT
   3776 
   3777 #ifdef notdef
   3778 	ifp->if_collisions +=
   3779 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3780 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3781 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3782 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3783 	   ifp->if_collisions;
   3784 #endif
   3785 }
   3786 
   3787 /*
   3788  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3789  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3790  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3791  * the hardware checksum assist gives incorrect results (possibly
   3792  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3793  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3794  */
   3795 static inline int
   3796 bge_cksum_pad(struct mbuf *pkt)
   3797 {
   3798 	struct mbuf *last = NULL;
   3799 	int padlen;
   3800 
   3801 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3802 
   3803 	/* if there's only the packet-header and we can pad there, use it. */
   3804 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3805 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3806 		last = pkt;
   3807 	} else {
   3808 		/*
   3809 		 * Walk packet chain to find last mbuf. We will either
   3810 		 * pad there, or append a new mbuf and pad it
   3811 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3812 		 */
   3813 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3814 	      	       continue; /* do nothing */
   3815 		}
   3816 
   3817 		/* `last' now points to last in chain. */
   3818 		if (M_TRAILINGSPACE(last) < padlen) {
   3819 			/* Allocate new empty mbuf, pad it. Compact later. */
   3820 			struct mbuf *n;
   3821 			MGET(n, M_DONTWAIT, MT_DATA);
   3822 			if (n == NULL)
   3823 				return ENOBUFS;
   3824 			n->m_len = 0;
   3825 			last->m_next = n;
   3826 			last = n;
   3827 		}
   3828 	}
   3829 
   3830 	KDASSERT(!M_READONLY(last));
   3831 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3832 
   3833 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3834 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3835 	last->m_len += padlen;
   3836 	pkt->m_pkthdr.len += padlen;
   3837 	return 0;
   3838 }
   3839 
   3840 /*
   3841  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3842  */
   3843 static inline int
   3844 bge_compact_dma_runt(struct mbuf *pkt)
   3845 {
   3846 	struct mbuf	*m, *prev;
   3847 	int 		totlen, prevlen;
   3848 
   3849 	prev = NULL;
   3850 	totlen = 0;
   3851 	prevlen = -1;
   3852 
   3853 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3854 		int mlen = m->m_len;
   3855 		int shortfall = 8 - mlen ;
   3856 
   3857 		totlen += mlen;
   3858 		if (mlen == 0)
   3859 			continue;
   3860 		if (mlen >= 8)
   3861 			continue;
   3862 
   3863 		/* If we get here, mbuf data is too small for DMA engine.
   3864 		 * Try to fix by shuffling data to prev or next in chain.
   3865 		 * If that fails, do a compacting deep-copy of the whole chain.
   3866 		 */
   3867 
   3868 		/* Internal frag. If fits in prev, copy it there. */
   3869 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3870 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3871 			prev->m_len += mlen;
   3872 			m->m_len = 0;
   3873 			/* XXX stitch chain */
   3874 			prev->m_next = m_free(m);
   3875 			m = prev;
   3876 			continue;
   3877 		}
   3878 		else if (m->m_next != NULL &&
   3879 			     M_TRAILINGSPACE(m) >= shortfall &&
   3880 			     m->m_next->m_len >= (8 + shortfall)) {
   3881 		    /* m is writable and have enough data in next, pull up. */
   3882 
   3883 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3884 			    shortfall);
   3885 			m->m_len += shortfall;
   3886 			m->m_next->m_len -= shortfall;
   3887 			m->m_next->m_data += shortfall;
   3888 		}
   3889 		else if (m->m_next == NULL || 1) {
   3890 		  	/* Got a runt at the very end of the packet.
   3891 			 * borrow data from the tail of the preceding mbuf and
   3892 			 * update its length in-place. (The original data is still
   3893 			 * valid, so we can do this even if prev is not writable.)
   3894 			 */
   3895 
   3896 			/* if we'd make prev a runt, just move all of its data. */
   3897 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3898 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3899 
   3900 			if ((prev->m_len - shortfall) < 8)
   3901 				shortfall = prev->m_len;
   3902 
   3903 #ifdef notyet	/* just do the safe slow thing for now */
   3904 			if (!M_READONLY(m)) {
   3905 				if (M_LEADINGSPACE(m) < shorfall) {
   3906 					void *m_dat;
   3907 					m_dat = (m->m_flags & M_PKTHDR) ?
   3908 					  m->m_pktdat : m->dat;
   3909 					memmove(m_dat, mtod(m, void*), m->m_len);
   3910 					m->m_data = m_dat;
   3911 				    }
   3912 			} else
   3913 #endif	/* just do the safe slow thing */
   3914 			{
   3915 				struct mbuf * n = NULL;
   3916 				int newprevlen = prev->m_len - shortfall;
   3917 
   3918 				MGET(n, M_NOWAIT, MT_DATA);
   3919 				if (n == NULL)
   3920 				   return ENOBUFS;
   3921 				KASSERT(m->m_len + shortfall < MLEN
   3922 					/*,
   3923 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3924 
   3925 				/* first copy the data we're stealing from prev */
   3926 				memcpy(n->m_data, prev->m_data + newprevlen,
   3927 				    shortfall);
   3928 
   3929 				/* update prev->m_len accordingly */
   3930 				prev->m_len -= shortfall;
   3931 
   3932 				/* copy data from runt m */
   3933 				memcpy(n->m_data + shortfall, m->m_data,
   3934 				    m->m_len);
   3935 
   3936 				/* n holds what we stole from prev, plus m */
   3937 				n->m_len = shortfall + m->m_len;
   3938 
   3939 				/* stitch n into chain and free m */
   3940 				n->m_next = m->m_next;
   3941 				prev->m_next = n;
   3942 				/* KASSERT(m->m_next == NULL); */
   3943 				m->m_next = NULL;
   3944 				m_free(m);
   3945 				m = n;	/* for continuing loop */
   3946 			}
   3947 		}
   3948 		prevlen = m->m_len;
   3949 	}
   3950 	return 0;
   3951 }
   3952 
   3953 /*
   3954  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   3955  * pointers to descriptors.
   3956  */
   3957 static int
   3958 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3959 {
   3960 	struct bge_tx_bd	*f = NULL;
   3961 	uint32_t		frag, cur;
   3962 	uint16_t		csum_flags = 0;
   3963 	uint16_t		txbd_tso_flags = 0;
   3964 	struct txdmamap_pool_entry *dma;
   3965 	bus_dmamap_t dmamap;
   3966 	int			i = 0;
   3967 	struct m_tag		*mtag;
   3968 	int			use_tso, maxsegsize, error;
   3969 
   3970 	cur = frag = *txidx;
   3971 
   3972 	if (m_head->m_pkthdr.csum_flags) {
   3973 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3974 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3975 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3976 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3977 	}
   3978 
   3979 	/*
   3980 	 * If we were asked to do an outboard checksum, and the NIC
   3981 	 * has the bug where it sometimes adds in the Ethernet padding,
   3982 	 * explicitly pad with zeros so the cksum will be correct either way.
   3983 	 * (For now, do this for all chip versions, until newer
   3984 	 * are confirmed to not require the workaround.)
   3985 	 */
   3986 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3987 #ifdef notyet
   3988 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3989 #endif
   3990 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3991 		goto check_dma_bug;
   3992 
   3993 	if (bge_cksum_pad(m_head) != 0)
   3994 	    return ENOBUFS;
   3995 
   3996 check_dma_bug:
   3997 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   3998 		goto doit;
   3999 
   4000 	/*
   4001 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4002 	 * less than eight bytes.  If we encounter a teeny mbuf
   4003 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4004 	 */
   4005 	if (bge_compact_dma_runt(m_head) != 0)
   4006 		return ENOBUFS;
   4007 
   4008 doit:
   4009 	dma = SLIST_FIRST(&sc->txdma_list);
   4010 	if (dma == NULL)
   4011 		return ENOBUFS;
   4012 	dmamap = dma->dmamap;
   4013 
   4014 	/*
   4015 	 * Set up any necessary TSO state before we start packing...
   4016 	 */
   4017 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4018 	if (!use_tso) {
   4019 		maxsegsize = 0;
   4020 	} else {	/* TSO setup */
   4021 		unsigned  mss;
   4022 		struct ether_header *eh;
   4023 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4024 		struct mbuf * m0 = m_head;
   4025 		struct ip *ip;
   4026 		struct tcphdr *th;
   4027 		int iphl, hlen;
   4028 
   4029 		/*
   4030 		 * XXX It would be nice if the mbuf pkthdr had offset
   4031 		 * fields for the protocol headers.
   4032 		 */
   4033 
   4034 		eh = mtod(m0, struct ether_header *);
   4035 		switch (htons(eh->ether_type)) {
   4036 		case ETHERTYPE_IP:
   4037 			offset = ETHER_HDR_LEN;
   4038 			break;
   4039 
   4040 		case ETHERTYPE_VLAN:
   4041 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4042 			break;
   4043 
   4044 		default:
   4045 			/*
   4046 			 * Don't support this protocol or encapsulation.
   4047 			 */
   4048 			return ENOBUFS;
   4049 		}
   4050 
   4051 		/*
   4052 		 * TCP/IP headers are in the first mbuf; we can do
   4053 		 * this the easy way.
   4054 		 */
   4055 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4056 		hlen = iphl + offset;
   4057 		if (__predict_false(m0->m_len <
   4058 				    (hlen + sizeof(struct tcphdr)))) {
   4059 
   4060 			aprint_debug_dev(sc->bge_dev,
   4061 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4062 			    "not handled yet\n",
   4063 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4064 #ifdef NOTYET
   4065 			/*
   4066 			 * XXX jonathan (at) NetBSD.org: untested.
   4067 			 * how to force  this branch to be taken?
   4068 			 */
   4069 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4070 
   4071 			m_copydata(m0, offset, sizeof(ip), &ip);
   4072 			m_copydata(m0, hlen, sizeof(th), &th);
   4073 
   4074 			ip.ip_len = 0;
   4075 
   4076 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4077 			    sizeof(ip.ip_len), &ip.ip_len);
   4078 
   4079 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4080 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4081 
   4082 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4083 			    sizeof(th.th_sum), &th.th_sum);
   4084 
   4085 			hlen += th.th_off << 2;
   4086 			iptcp_opt_words	= hlen;
   4087 #else
   4088 			/*
   4089 			 * if_wm "hard" case not yet supported, can we not
   4090 			 * mandate it out of existence?
   4091 			 */
   4092 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4093 
   4094 			return ENOBUFS;
   4095 #endif
   4096 		} else {
   4097 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4098 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4099 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4100 
   4101 			/* Total IP/TCP options, in 32-bit words */
   4102 			iptcp_opt_words = (ip_tcp_hlen
   4103 					   - sizeof(struct tcphdr)
   4104 					   - sizeof(struct ip)) >> 2;
   4105 		}
   4106 		if (BGE_IS_575X_PLUS(sc)) {
   4107 			th->th_sum = 0;
   4108 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4109 		} else {
   4110 			/*
   4111 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4112 			 * Requires TSO firmware patch for 5701/5703/5704.
   4113 			 */
   4114 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4115 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4116 		}
   4117 
   4118 		mss = m_head->m_pkthdr.segsz;
   4119 		txbd_tso_flags |=
   4120 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4121 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4122 
   4123 		/*
   4124 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4125 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4126 		 * the NIC copies 40 bytes of IP/TCP header from the
   4127 		 * supplied header into the IP/TCP header portion of
   4128 		 * each post-TSO-segment. If the supplied packet has IP or
   4129 		 * TCP options, we need to tell the NIC to copy those extra
   4130 		 * bytes into each  post-TSO header, in addition to the normal
   4131 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4132 		 * Unfortunately, the driver encoding of option length
   4133 		 * varies across different ASIC families.
   4134 		 */
   4135 		tcp_seg_flags = 0;
   4136 		if (iptcp_opt_words) {
   4137 			if (BGE_IS_5705_PLUS(sc)) {
   4138 				tcp_seg_flags =
   4139 					iptcp_opt_words << 11;
   4140 			} else {
   4141 				txbd_tso_flags |=
   4142 					iptcp_opt_words << 12;
   4143 			}
   4144 		}
   4145 		maxsegsize = mss | tcp_seg_flags;
   4146 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4147 
   4148 	}	/* TSO setup */
   4149 
   4150 	/*
   4151 	 * Start packing the mbufs in this chain into
   4152 	 * the fragment pointers. Stop when we run out
   4153 	 * of fragments or hit the end of the mbuf chain.
   4154 	 */
   4155 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4156 	    BUS_DMA_NOWAIT);
   4157 	if (error)
   4158 		return ENOBUFS;
   4159 	/*
   4160 	 * Sanity check: avoid coming within 16 descriptors
   4161 	 * of the end of the ring.
   4162 	 */
   4163 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4164 		BGE_TSO_PRINTF(("%s: "
   4165 		    " dmamap_load_mbuf too close to ring wrap\n",
   4166 		    device_xname(sc->bge_dev)));
   4167 		goto fail_unload;
   4168 	}
   4169 
   4170 	mtag = sc->ethercom.ec_nvlans ?
   4171 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4172 
   4173 
   4174 	/* Iterate over dmap-map fragments. */
   4175 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4176 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4177 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4178 			break;
   4179 
   4180 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4181 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4182 
   4183 		/*
   4184 		 * For 5751 and follow-ons, for TSO we must turn
   4185 		 * off checksum-assist flag in the tx-descr, and
   4186 		 * supply the ASIC-revision-specific encoding
   4187 		 * of TSO flags and segsize.
   4188 		 */
   4189 		if (use_tso) {
   4190 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   4191 				f->bge_rsvd = maxsegsize;
   4192 				f->bge_flags = csum_flags | txbd_tso_flags;
   4193 			} else {
   4194 				f->bge_rsvd = 0;
   4195 				f->bge_flags =
   4196 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4197 			}
   4198 		} else {
   4199 			f->bge_rsvd = 0;
   4200 			f->bge_flags = csum_flags;
   4201 		}
   4202 
   4203 		if (mtag != NULL) {
   4204 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4205 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4206 		} else {
   4207 			f->bge_vlan_tag = 0;
   4208 		}
   4209 		cur = frag;
   4210 		BGE_INC(frag, BGE_TX_RING_CNT);
   4211 	}
   4212 
   4213 	if (i < dmamap->dm_nsegs) {
   4214 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4215 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4216 		goto fail_unload;
   4217 	}
   4218 
   4219 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4220 	    BUS_DMASYNC_PREWRITE);
   4221 
   4222 	if (frag == sc->bge_tx_saved_considx) {
   4223 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4224 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4225 
   4226 		goto fail_unload;
   4227 	}
   4228 
   4229 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4230 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4231 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4232 	sc->txdma[cur] = dma;
   4233 	sc->bge_txcnt += dmamap->dm_nsegs;
   4234 
   4235 	*txidx = frag;
   4236 
   4237 	return 0;
   4238 
   4239 fail_unload:
   4240 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4241 
   4242 	return ENOBUFS;
   4243 }
   4244 
   4245 /*
   4246  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4247  * to the mbuf data regions directly in the transmit descriptors.
   4248  */
   4249 static void
   4250 bge_start(struct ifnet *ifp)
   4251 {
   4252 	struct bge_softc *sc;
   4253 	struct mbuf *m_head = NULL;
   4254 	uint32_t prodidx;
   4255 	int pkts = 0;
   4256 
   4257 	sc = ifp->if_softc;
   4258 
   4259 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4260 		return;
   4261 
   4262 	prodidx = sc->bge_tx_prodidx;
   4263 
   4264 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4265 		IFQ_POLL(&ifp->if_snd, m_head);
   4266 		if (m_head == NULL)
   4267 			break;
   4268 
   4269 #if 0
   4270 		/*
   4271 		 * XXX
   4272 		 * safety overkill.  If this is a fragmented packet chain
   4273 		 * with delayed TCP/UDP checksums, then only encapsulate
   4274 		 * it if we have enough descriptors to handle the entire
   4275 		 * chain at once.
   4276 		 * (paranoia -- may not actually be needed)
   4277 		 */
   4278 		if (m_head->m_flags & M_FIRSTFRAG &&
   4279 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4280 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4281 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4282 				ifp->if_flags |= IFF_OACTIVE;
   4283 				break;
   4284 			}
   4285 		}
   4286 #endif
   4287 
   4288 		/*
   4289 		 * Pack the data into the transmit ring. If we
   4290 		 * don't have room, set the OACTIVE flag and wait
   4291 		 * for the NIC to drain the ring.
   4292 		 */
   4293 		if (bge_encap(sc, m_head, &prodidx)) {
   4294 			ifp->if_flags |= IFF_OACTIVE;
   4295 			break;
   4296 		}
   4297 
   4298 		/* now we are committed to transmit the packet */
   4299 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4300 		pkts++;
   4301 
   4302 		/*
   4303 		 * If there's a BPF listener, bounce a copy of this frame
   4304 		 * to him.
   4305 		 */
   4306 		bpf_mtap(ifp, m_head);
   4307 	}
   4308 	if (pkts == 0)
   4309 		return;
   4310 
   4311 	/* Transmit */
   4312 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4313 	/* 5700 b2 errata */
   4314 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4315 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4316 
   4317 	sc->bge_tx_prodidx = prodidx;
   4318 
   4319 	/*
   4320 	 * Set a timeout in case the chip goes out to lunch.
   4321 	 */
   4322 	ifp->if_timer = 5;
   4323 }
   4324 
   4325 static int
   4326 bge_init(struct ifnet *ifp)
   4327 {
   4328 	struct bge_softc *sc = ifp->if_softc;
   4329 	const uint16_t *m;
   4330 	uint32_t mode;
   4331 	int s, error = 0;
   4332 
   4333 	s = splnet();
   4334 
   4335 	ifp = &sc->ethercom.ec_if;
   4336 
   4337 	/* Cancel pending I/O and flush buffers. */
   4338 	bge_stop(ifp, 0);
   4339 
   4340 	bge_stop_fw(sc);
   4341 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4342 	bge_reset(sc);
   4343 	bge_sig_legacy(sc, BGE_RESET_START);
   4344 	bge_sig_post_reset(sc, BGE_RESET_START);
   4345 
   4346 	bge_chipinit(sc);
   4347 
   4348 	/*
   4349 	 * Init the various state machines, ring
   4350 	 * control blocks and firmware.
   4351 	 */
   4352 	error = bge_blockinit(sc);
   4353 	if (error != 0) {
   4354 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4355 		    error);
   4356 		splx(s);
   4357 		return error;
   4358 	}
   4359 
   4360 	ifp = &sc->ethercom.ec_if;
   4361 
   4362 	/* Specify MTU. */
   4363 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4364 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4365 
   4366 	/* Load our MAC address. */
   4367 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4368 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4369 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4370 
   4371 	/* Enable or disable promiscuous mode as needed. */
   4372 	if (ifp->if_flags & IFF_PROMISC)
   4373 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4374 	else
   4375 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4376 
   4377 	/* Program multicast filter. */
   4378 	bge_setmulti(sc);
   4379 
   4380 	/* Init RX ring. */
   4381 	bge_init_rx_ring_std(sc);
   4382 
   4383 	/*
   4384 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4385 	 * memory to insure that the chip has in fact read the first
   4386 	 * entry of the ring.
   4387 	 */
   4388 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4389 		uint32_t		v, i;
   4390 		for (i = 0; i < 10; i++) {
   4391 			DELAY(20);
   4392 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4393 			if (v == (MCLBYTES - ETHER_ALIGN))
   4394 				break;
   4395 		}
   4396 		if (i == 10)
   4397 			aprint_error_dev(sc->bge_dev,
   4398 			    "5705 A0 chip failed to load RX ring\n");
   4399 	}
   4400 
   4401 	/* Init jumbo RX ring. */
   4402 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4403 		bge_init_rx_ring_jumbo(sc);
   4404 
   4405 	/* Init our RX return ring index */
   4406 	sc->bge_rx_saved_considx = 0;
   4407 
   4408 	/* Init TX ring. */
   4409 	bge_init_tx_ring(sc);
   4410 
   4411 	/* Enable TX MAC state machine lockup fix. */
   4412 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   4413 	if (BGE_IS_5755_PLUS(sc) ||
   4414 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4415 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   4416 
   4417 	/* Turn on transmitter */
   4418 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   4419 	DELAY(100);
   4420 
   4421 	/* Turn on receiver */
   4422 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4423 	DELAY(10);
   4424 
   4425 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4426 
   4427 	/* Tell firmware we're alive. */
   4428 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4429 
   4430 	/* Enable host interrupts. */
   4431 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   4432 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4433 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
   4434 
   4435 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4436 		goto out;
   4437 
   4438 	ifp->if_flags |= IFF_RUNNING;
   4439 	ifp->if_flags &= ~IFF_OACTIVE;
   4440 
   4441 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4442 
   4443 out:
   4444 	sc->bge_if_flags = ifp->if_flags;
   4445 	splx(s);
   4446 
   4447 	return error;
   4448 }
   4449 
   4450 /*
   4451  * Set media options.
   4452  */
   4453 static int
   4454 bge_ifmedia_upd(struct ifnet *ifp)
   4455 {
   4456 	struct bge_softc *sc = ifp->if_softc;
   4457 	struct mii_data *mii = &sc->bge_mii;
   4458 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4459 	int rc;
   4460 
   4461 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4462 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4463 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4464 			return EINVAL;
   4465 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4466 		case IFM_AUTO:
   4467 			/*
   4468 			 * The BCM5704 ASIC appears to have a special
   4469 			 * mechanism for programming the autoneg
   4470 			 * advertisement registers in TBI mode.
   4471 			 */
   4472 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4473 				uint32_t sgdig;
   4474 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4475 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4476 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4477 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4478 					sgdig |= BGE_SGDIGCFG_AUTO |
   4479 					    BGE_SGDIGCFG_PAUSE_CAP |
   4480 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4481 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
   4482 					    sgdig | BGE_SGDIGCFG_SEND);
   4483 					DELAY(5);
   4484 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
   4485 				}
   4486 			}
   4487 			break;
   4488 		case IFM_1000_SX:
   4489 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4490 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4491 				    BGE_MACMODE_HALF_DUPLEX);
   4492 			} else {
   4493 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4494 				    BGE_MACMODE_HALF_DUPLEX);
   4495 			}
   4496 			break;
   4497 		default:
   4498 			return EINVAL;
   4499 		}
   4500 		/* XXX 802.3x flow control for 1000BASE-SX */
   4501 		return 0;
   4502 	}
   4503 
   4504 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4505 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4506 		return 0;
   4507 
   4508 	/*
   4509 	 * Force an interrupt so that we will call bge_link_upd
   4510 	 * if needed and clear any pending link state attention.
   4511 	 * Without this we are not getting any further interrupts
   4512 	 * for link state changes and thus will not UP the link and
   4513 	 * not be able to send in bge_start. The only way to get
   4514 	 * things working was to receive a packet and get a RX intr.
   4515 	 */
   4516 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4517 	    sc->bge_flags & BGE_IS_5788)
   4518 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4519 	else
   4520 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4521 
   4522 	return rc;
   4523 }
   4524 
   4525 /*
   4526  * Report current media status.
   4527  */
   4528 static void
   4529 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4530 {
   4531 	struct bge_softc *sc = ifp->if_softc;
   4532 	struct mii_data *mii = &sc->bge_mii;
   4533 
   4534 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4535 		ifmr->ifm_status = IFM_AVALID;
   4536 		ifmr->ifm_active = IFM_ETHER;
   4537 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4538 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4539 			ifmr->ifm_status |= IFM_ACTIVE;
   4540 		ifmr->ifm_active |= IFM_1000_SX;
   4541 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4542 			ifmr->ifm_active |= IFM_HDX;
   4543 		else
   4544 			ifmr->ifm_active |= IFM_FDX;
   4545 		return;
   4546 	}
   4547 
   4548 	mii_pollstat(mii);
   4549 	ifmr->ifm_status = mii->mii_media_status;
   4550 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4551 	    sc->bge_flowflags;
   4552 }
   4553 
   4554 static int
   4555 bge_ifflags_cb(struct ethercom *ec)
   4556 {
   4557 	struct ifnet *ifp = &ec->ec_if;
   4558 	struct bge_softc *sc = ifp->if_softc;
   4559 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4560 
   4561 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4562 		return ENETRESET;
   4563 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4564 		return 0;
   4565 
   4566 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4567 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4568 	else
   4569 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4570 
   4571 	bge_setmulti(sc);
   4572 
   4573 	sc->bge_if_flags = ifp->if_flags;
   4574 	return 0;
   4575 }
   4576 
   4577 static int
   4578 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4579 {
   4580 	struct bge_softc *sc = ifp->if_softc;
   4581 	struct ifreq *ifr = (struct ifreq *) data;
   4582 	int s, error = 0;
   4583 	struct mii_data *mii;
   4584 
   4585 	s = splnet();
   4586 
   4587 	switch (command) {
   4588 	case SIOCSIFMEDIA:
   4589 		/* XXX Flow control is not supported for 1000BASE-SX */
   4590 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4591 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4592 			sc->bge_flowflags = 0;
   4593 		}
   4594 
   4595 		/* Flow control requires full-duplex mode. */
   4596 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4597 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4598 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4599 		}
   4600 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4601 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4602 				/* We can do both TXPAUSE and RXPAUSE. */
   4603 				ifr->ifr_media |=
   4604 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4605 			}
   4606 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4607 		}
   4608 		/* FALLTHROUGH */
   4609 	case SIOCGIFMEDIA:
   4610 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4611 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4612 			    command);
   4613 		} else {
   4614 			mii = &sc->bge_mii;
   4615 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4616 			    command);
   4617 		}
   4618 		break;
   4619 	default:
   4620 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4621 			break;
   4622 
   4623 		error = 0;
   4624 
   4625 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4626 			;
   4627 		else if (ifp->if_flags & IFF_RUNNING)
   4628 			bge_setmulti(sc);
   4629 		break;
   4630 	}
   4631 
   4632 	splx(s);
   4633 
   4634 	return error;
   4635 }
   4636 
   4637 static void
   4638 bge_watchdog(struct ifnet *ifp)
   4639 {
   4640 	struct bge_softc *sc;
   4641 
   4642 	sc = ifp->if_softc;
   4643 
   4644 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4645 
   4646 	ifp->if_flags &= ~IFF_RUNNING;
   4647 	bge_init(ifp);
   4648 
   4649 	ifp->if_oerrors++;
   4650 }
   4651 
   4652 static void
   4653 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4654 {
   4655 	int i;
   4656 
   4657 	BGE_CLRBIT(sc, reg, bit);
   4658 
   4659 	for (i = 0; i < 1000; i++) {
   4660 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4661 			return;
   4662 		delay(100);
   4663 	}
   4664 
   4665 	/*
   4666 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4667 	 * on some environment (and once after boot?)
   4668 	 */
   4669 	if (reg != BGE_SRS_MODE)
   4670 		aprint_error_dev(sc->bge_dev,
   4671 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4672 		    (u_long)reg, bit);
   4673 }
   4674 
   4675 /*
   4676  * Stop the adapter and free any mbufs allocated to the
   4677  * RX and TX lists.
   4678  */
   4679 static void
   4680 bge_stop(struct ifnet *ifp, int disable)
   4681 {
   4682 	struct bge_softc *sc = ifp->if_softc;
   4683 
   4684 	callout_stop(&sc->bge_timeout);
   4685 
   4686 	/*
   4687 	 * Tell firmware we're shutting down.
   4688 	 */
   4689 	bge_stop_fw(sc);
   4690 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4691 
   4692 	/* Disable host interrupts. */
   4693 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   4694 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
   4695 
   4696 	/*
   4697 	 * Disable all of the receiver blocks.
   4698 	 */
   4699 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4700 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4701 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4702 	if (BGE_IS_5700_FAMILY(sc))
   4703 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4704 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4705 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4706 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4707 
   4708 	/*
   4709 	 * Disable all of the transmit blocks.
   4710 	 */
   4711 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4712 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4713 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4714 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4715 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4716 	if (BGE_IS_5700_FAMILY(sc))
   4717 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4718 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4719 
   4720 	/*
   4721 	 * Shut down all of the memory managers and related
   4722 	 * state machines.
   4723 	 */
   4724 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4725 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4726 	if (BGE_IS_5700_FAMILY(sc))
   4727 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4728 
   4729 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4730 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4731 
   4732 	if (BGE_IS_5700_FAMILY(sc)) {
   4733 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4734 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4735 	}
   4736 
   4737 	bge_reset(sc);
   4738 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4739 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4740 
   4741 	/*
   4742 	 * Keep the ASF firmware running if up.
   4743 	 */
   4744 	if (sc->bge_asf_mode & ASF_STACKUP)
   4745 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4746 	else
   4747 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4748 
   4749 	/* Free the RX lists. */
   4750 	bge_free_rx_ring_std(sc);
   4751 
   4752 	/* Free jumbo RX list. */
   4753 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4754 		bge_free_rx_ring_jumbo(sc);
   4755 
   4756 	/* Free TX buffers. */
   4757 	bge_free_tx_ring(sc);
   4758 
   4759 	/*
   4760 	 * Isolate/power down the PHY.
   4761 	 */
   4762 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4763 		mii_down(&sc->bge_mii);
   4764 
   4765 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4766 
   4767 	/* Clear MAC's link state (PHY may still have link UP). */
   4768 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4769 
   4770 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4771 }
   4772 
   4773 static void
   4774 bge_link_upd(struct bge_softc *sc)
   4775 {
   4776 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4777 	struct mii_data *mii = &sc->bge_mii;
   4778 	uint32_t status;
   4779 	int link;
   4780 
   4781 	/* Clear 'pending link event' flag */
   4782 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4783 
   4784 	/*
   4785 	 * Process link state changes.
   4786 	 * Grrr. The link status word in the status block does
   4787 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4788 	 * according to all available information. Hence, we have
   4789 	 * to enable MII interrupts in order to properly obtain
   4790 	 * async link changes. Unfortunately, this also means that
   4791 	 * we have to read the MAC status register to detect link
   4792 	 * changes, thereby adding an additional register access to
   4793 	 * the interrupt handler.
   4794 	 */
   4795 
   4796 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4797 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4798 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4799 			mii_pollstat(mii);
   4800 
   4801 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4802 			    mii->mii_media_status & IFM_ACTIVE &&
   4803 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4804 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4805 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4806 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4807 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4808 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4809 
   4810 			/* Clear the interrupt */
   4811 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4812 			    BGE_EVTENB_MI_INTERRUPT);
   4813 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4814 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4815 			    BRGPHY_INTRS);
   4816 		}
   4817 		return;
   4818 	}
   4819 
   4820 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4821 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4822 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4823 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4824 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4825 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4826 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4827 					    BGE_MACMODE_TBI_SEND_CFGS);
   4828 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4829 				if_link_state_change(ifp, LINK_STATE_UP);
   4830 			}
   4831 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4832 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4833 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4834 		}
   4835 	/*
   4836 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4837 	 * This should not happen since mii callouts are locked now, but
   4838 	 * we keep this check for debug.
   4839 	 */
   4840 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4841 		/*
   4842 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4843 		 * bit in status word always set. Workaround this bug by
   4844 		 * reading PHY link status directly.
   4845 		 */
   4846 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4847 		    BGE_STS_LINK : 0;
   4848 
   4849 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4850 			mii_pollstat(mii);
   4851 
   4852 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4853 			    mii->mii_media_status & IFM_ACTIVE &&
   4854 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4855 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4856 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4857 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4858 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4859 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4860 		}
   4861 	}
   4862 
   4863 	/* Clear the attention */
   4864 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4865 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4866 	    BGE_MACSTAT_LINK_CHANGED);
   4867 }
   4868 
   4869 static int
   4870 bge_sysctl_verify(SYSCTLFN_ARGS)
   4871 {
   4872 	int error, t;
   4873 	struct sysctlnode node;
   4874 
   4875 	node = *rnode;
   4876 	t = *(int*)rnode->sysctl_data;
   4877 	node.sysctl_data = &t;
   4878 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4879 	if (error || newp == NULL)
   4880 		return error;
   4881 
   4882 #if 0
   4883 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4884 	    node.sysctl_num, rnode->sysctl_num));
   4885 #endif
   4886 
   4887 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4888 		if (t < 0 || t >= NBGE_RX_THRESH)
   4889 			return EINVAL;
   4890 		bge_update_all_threshes(t);
   4891 	} else
   4892 		return EINVAL;
   4893 
   4894 	*(int*)rnode->sysctl_data = t;
   4895 
   4896 	return 0;
   4897 }
   4898 
   4899 /*
   4900  * Set up sysctl(3) MIB, hw.bge.*.
   4901  */
   4902 static void
   4903 bge_sysctl_init(struct bge_softc *sc)
   4904 {
   4905 	int rc, bge_root_num;
   4906 	const struct sysctlnode *node;
   4907 
   4908 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4909 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4910 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4911 		goto out;
   4912 	}
   4913 
   4914 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4915 	    0, CTLTYPE_NODE, "bge",
   4916 	    SYSCTL_DESCR("BGE interface controls"),
   4917 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4918 		goto out;
   4919 	}
   4920 
   4921 	bge_root_num = node->sysctl_num;
   4922 
   4923 	/* BGE Rx interrupt mitigation level */
   4924 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4925 	    CTLFLAG_READWRITE,
   4926 	    CTLTYPE_INT, "rx_lvl",
   4927 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4928 	    bge_sysctl_verify, 0,
   4929 	    &bge_rx_thresh_lvl,
   4930 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4931 	    CTL_EOL)) != 0) {
   4932 		goto out;
   4933 	}
   4934 
   4935 	bge_rxthresh_nodenum = node->sysctl_num;
   4936 
   4937 	return;
   4938 
   4939 out:
   4940 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4941 }
   4942 
   4943 #ifdef BGE_DEBUG
   4944 void
   4945 bge_debug_info(struct bge_softc *sc)
   4946 {
   4947 
   4948 	printf("Hardware Flags:\n");
   4949 	if (BGE_IS_5755_PLUS(sc))
   4950 		printf(" - 5755 Plus\n");
   4951 	if (BGE_IS_575X_PLUS(sc))
   4952 		printf(" - 575X Plus\n");
   4953 	if (BGE_IS_5705_PLUS(sc))
   4954 		printf(" - 5705 Plus\n");
   4955 	if (BGE_IS_5714_FAMILY(sc))
   4956 		printf(" - 5714 Family\n");
   4957 	if (BGE_IS_5700_FAMILY(sc))
   4958 		printf(" - 5700 Family\n");
   4959 	if (sc->bge_flags & BGE_IS_5788)
   4960 		printf(" - 5788\n");
   4961 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4962 		printf(" - Supports Jumbo Frames\n");
   4963 	if (sc->bge_flags & BGE_NO_EEPROM)
   4964 		printf(" - No EEPROM\n");
   4965 	if (sc->bge_flags & BGE_PCIX)
   4966 		printf(" - PCI-X Bus\n");
   4967 	if (sc->bge_flags & BGE_PCIE)
   4968 		printf(" - PCI Express Bus\n");
   4969 	if (sc->bge_flags & BGE_NO_3LED)
   4970 		printf(" - No 3 LEDs\n");
   4971 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4972 		printf(" - RX Alignment Bug\n");
   4973 	if (sc->bge_flags & BGE_TSO)
   4974 		printf(" - TSO\n");
   4975 }
   4976 #endif /* BGE_DEBUG */
   4977 
   4978 static int
   4979 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   4980 {
   4981 	prop_dictionary_t dict;
   4982 	prop_data_t ea;
   4983 
   4984 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   4985 		return 1;
   4986 
   4987 	dict = device_properties(sc->bge_dev);
   4988 	ea = prop_dictionary_get(dict, "mac-address");
   4989 	if (ea != NULL) {
   4990 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   4991 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   4992 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   4993 		return 0;
   4994 	}
   4995 
   4996 	return 1;
   4997 }
   4998 
   4999 static int
   5000 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5001 {
   5002 	uint32_t mac_addr;
   5003 
   5004 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5005 	if ((mac_addr >> 16) == 0x484b) {
   5006 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5007 		ether_addr[1] = (uint8_t)mac_addr;
   5008 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5009 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5010 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5011 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5012 		ether_addr[5] = (uint8_t)mac_addr;
   5013 		return 0;
   5014 	}
   5015 	return 1;
   5016 }
   5017 
   5018 static int
   5019 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5020 {
   5021 	int mac_offset = BGE_EE_MAC_OFFSET;
   5022 
   5023 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5024 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5025 
   5026 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5027 	    ETHER_ADDR_LEN));
   5028 }
   5029 
   5030 static int
   5031 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5032 {
   5033 
   5034 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5035 		return 1;
   5036 
   5037 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5038 	   ETHER_ADDR_LEN));
   5039 }
   5040 
   5041 static int
   5042 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5043 {
   5044 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5045 		/* NOTE: Order is critical */
   5046 		bge_get_eaddr_fw,
   5047 		bge_get_eaddr_mem,
   5048 		bge_get_eaddr_nvram,
   5049 		bge_get_eaddr_eeprom,
   5050 		NULL
   5051 	};
   5052 	const bge_eaddr_fcn_t *func;
   5053 
   5054 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5055 		if ((*func)(sc, eaddr) == 0)
   5056 			break;
   5057 	}
   5058 	return (*func == NULL ? ENXIO : 0);
   5059 }
   5060