Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.21
      1 /*	$NetBSD: if_bge.c,v 1.21 2002/09/30 20:37:25 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *
     46  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     47  * Senior Engineer, Wind River Systems
     48  */
     49 
     50 /*
     51  * The Broadcom BCM5700 is based on technology originally developed by
     52  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     53  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     54  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     55  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     56  * frames, highly configurable RX filtering, and 16 RX and TX queues
     57  * (which, along with RX filter rules, can be used for QOS applications).
     58  * Other features, such as TCP segmentation, may be available as part
     59  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     60  * firmware images can be stored in hardware and need not be compiled
     61  * into the driver.
     62  *
     63  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     64  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
     65  *
     66  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     67  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
     68  * does not support external SSRAM.
     69  *
     70  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     71  * brand name, which is functionally similar but lacks PCI-X support.
     72  *
     73  * Without external SSRAM, you can only have at most 4 TX rings,
     74  * and the use of the mini RX ring is disabled. This seems to imply
     75  * that these features are simply not available on the BCM5701. As a
     76  * result, this driver does not implement any support for the mini RX
     77  * ring.
     78  */
     79 
     80 #include "bpfilter.h"
     81 #include "vlan.h"
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/callout.h>
     86 #include <sys/sockio.h>
     87 #include <sys/mbuf.h>
     88 #include <sys/malloc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/device.h>
     91 #include <sys/socket.h>
     92 
     93 #include <net/if.h>
     94 #include <net/if_dl.h>
     95 #include <net/if_media.h>
     96 #include <net/if_ether.h>
     97 
     98 #ifdef INET
     99 #include <netinet/in.h>
    100 #include <netinet/in_systm.h>
    101 #include <netinet/in_var.h>
    102 #include <netinet/ip.h>
    103 #endif
    104 
    105 #if NBPFILTER > 0
    106 #include <net/bpf.h>
    107 #endif
    108 
    109 #include <dev/pci/pcireg.h>
    110 #include <dev/pci/pcivar.h>
    111 #include <dev/pci/pcidevs.h>
    112 
    113 #include <dev/mii/mii.h>
    114 #include <dev/mii/miivar.h>
    115 #include <dev/mii/miidevs.h>
    116 #include <dev/mii/brgphyreg.h>
    117 
    118 #include <dev/pci/if_bgereg.h>
    119 
    120 #include <uvm/uvm_extern.h>
    121 
    122 int bge_probe(struct device *, struct cfdata *, void *);
    123 void bge_attach(struct device *, struct device *, void *);
    124 void bge_release_resources(struct bge_softc *);
    125 void bge_txeof(struct bge_softc *);
    126 void bge_rxeof(struct bge_softc *);
    127 
    128 void bge_tick(void *);
    129 void bge_stats_update(struct bge_softc *);
    130 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    131 
    132 int bge_intr(void *);
    133 void bge_start(struct ifnet *);
    134 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    135 int bge_init(struct ifnet *);
    136 void bge_stop(struct bge_softc *);
    137 void bge_watchdog(struct ifnet *);
    138 void bge_shutdown(void *);
    139 int bge_ifmedia_upd(struct ifnet *);
    140 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    141 
    142 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    143 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    144 
    145 void bge_setmulti(struct bge_softc *);
    146 
    147 void bge_handle_events(struct bge_softc *);
    148 int bge_alloc_jumbo_mem(struct bge_softc *);
    149 void bge_free_jumbo_mem(struct bge_softc *);
    150 void *bge_jalloc(struct bge_softc *);
    151 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
    152 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    153 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    154 int bge_init_rx_ring_std(struct bge_softc *);
    155 void bge_free_rx_ring_std(struct bge_softc *);
    156 int bge_init_rx_ring_jumbo(struct bge_softc *);
    157 void bge_free_rx_ring_jumbo(struct bge_softc *);
    158 void bge_free_tx_ring(struct bge_softc *);
    159 int bge_init_tx_ring(struct bge_softc *);
    160 
    161 int bge_chipinit(struct bge_softc *);
    162 int bge_blockinit(struct bge_softc *);
    163 
    164 #ifdef notdef
    165 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    166 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    167 void bge_vpd_read(struct bge_softc *);
    168 #endif
    169 
    170 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    171 void bge_writemem_ind(struct bge_softc *, int, int);
    172 #ifdef notdef
    173 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    174 #endif
    175 void bge_writereg_ind(struct bge_softc *, int, int);
    176 
    177 int bge_miibus_readreg(struct device *, int, int);
    178 void bge_miibus_writereg(struct device *, int, int, int);
    179 void bge_miibus_statchg(struct device *);
    180 
    181 void bge_reset(struct bge_softc *);
    182 
    183 void bge_dump_status(struct bge_softc *);
    184 void bge_dump_rxbd(struct bge_rx_bd *);
    185 
    186 #define BGE_DEBUG
    187 #ifdef BGE_DEBUG
    188 #define DPRINTF(x)	if (bgedebug) printf x
    189 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    190 int	bgedebug = 0;
    191 #else
    192 #define DPRINTF(x)
    193 #define DPRINTFN(n,x)
    194 #endif
    195 
    196 /* Various chip quirks. */
    197 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    198 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    199 
    200 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    201     bge_probe, bge_attach, NULL, NULL)
    202 
    203 u_int32_t
    204 bge_readmem_ind(sc, off)
    205 	struct bge_softc *sc;
    206 	int off;
    207 {
    208 	struct pci_attach_args	*pa = &(sc->bge_pa);
    209 	pcireg_t val;
    210 
    211 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    212 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    213 	return val;
    214 }
    215 
    216 void
    217 bge_writemem_ind(sc, off, val)
    218 	struct bge_softc *sc;
    219 	int off, val;
    220 {
    221 	struct pci_attach_args	*pa = &(sc->bge_pa);
    222 
    223 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    224 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    225 }
    226 
    227 #ifdef notdef
    228 u_int32_t
    229 bge_readreg_ind(sc, off)
    230 	struct bge_softc *sc;
    231 	int off;
    232 {
    233 	struct pci_attach_args	*pa = &(sc->bge_pa);
    234 
    235 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    236 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    237 }
    238 #endif
    239 
    240 void
    241 bge_writereg_ind(sc, off, val)
    242 	struct bge_softc *sc;
    243 	int off, val;
    244 {
    245 	struct pci_attach_args	*pa = &(sc->bge_pa);
    246 
    247 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    248 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    249 }
    250 
    251 #ifdef notdef
    252 u_int8_t
    253 bge_vpd_readbyte(sc, addr)
    254 	struct bge_softc *sc;
    255 	int addr;
    256 {
    257 	int i;
    258 	u_int32_t val;
    259 	struct pci_attach_args	*pa = &(sc->bge_pa);
    260 
    261 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    262 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    263 		DELAY(10);
    264 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    265 		    BGE_VPD_FLAG)
    266 			break;
    267 	}
    268 
    269 	if (i == BGE_TIMEOUT) {
    270 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    271 		return(0);
    272 	}
    273 
    274 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    275 
    276 	return((val >> ((addr % 4) * 8)) & 0xFF);
    277 }
    278 
    279 void
    280 bge_vpd_read_res(sc, res, addr)
    281 	struct bge_softc *sc;
    282 	struct vpd_res *res;
    283 	int addr;
    284 {
    285 	int i;
    286 	u_int8_t *ptr;
    287 
    288 	ptr = (u_int8_t *)res;
    289 	for (i = 0; i < sizeof(struct vpd_res); i++)
    290 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    291 }
    292 
    293 void
    294 bge_vpd_read(sc)
    295 	struct bge_softc *sc;
    296 {
    297 	int pos = 0, i;
    298 	struct vpd_res res;
    299 
    300 	if (sc->bge_vpd_prodname != NULL)
    301 		free(sc->bge_vpd_prodname, M_DEVBUF);
    302 	if (sc->bge_vpd_readonly != NULL)
    303 		free(sc->bge_vpd_readonly, M_DEVBUF);
    304 	sc->bge_vpd_prodname = NULL;
    305 	sc->bge_vpd_readonly = NULL;
    306 
    307 	bge_vpd_read_res(sc, &res, pos);
    308 
    309 	if (res.vr_id != VPD_RES_ID) {
    310 		printf("%s: bad VPD resource id: expected %x got %x\n",
    311 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    312 		return;
    313 	}
    314 
    315 	pos += sizeof(res);
    316 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    317 	if (sc->bge_vpd_prodname == NULL)
    318 		panic("bge_vpd_read");
    319 	for (i = 0; i < res.vr_len; i++)
    320 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    321 	sc->bge_vpd_prodname[i] = '\0';
    322 	pos += i;
    323 
    324 	bge_vpd_read_res(sc, &res, pos);
    325 
    326 	if (res.vr_id != VPD_RES_READ) {
    327 		printf("%s: bad VPD resource id: expected %x got %x\n",
    328 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    329 		return;
    330 	}
    331 
    332 	pos += sizeof(res);
    333 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    334 	if (sc->bge_vpd_readonly == NULL)
    335 		panic("bge_vpd_read");
    336 	for (i = 0; i < res.vr_len + 1; i++)
    337 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    338 }
    339 #endif
    340 
    341 /*
    342  * Read a byte of data stored in the EEPROM at address 'addr.' The
    343  * BCM570x supports both the traditional bitbang interface and an
    344  * auto access interface for reading the EEPROM. We use the auto
    345  * access method.
    346  */
    347 u_int8_t
    348 bge_eeprom_getbyte(sc, addr, dest)
    349 	struct bge_softc *sc;
    350 	int addr;
    351 	u_int8_t *dest;
    352 {
    353 	int i;
    354 	u_int32_t byte = 0;
    355 
    356 	/*
    357 	 * Enable use of auto EEPROM access so we can avoid
    358 	 * having to use the bitbang method.
    359 	 */
    360 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    361 
    362 	/* Reset the EEPROM, load the clock period. */
    363 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    364 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    365 	DELAY(20);
    366 
    367 	/* Issue the read EEPROM command. */
    368 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    369 
    370 	/* Wait for completion */
    371 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    372 		DELAY(10);
    373 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    374 			break;
    375 	}
    376 
    377 	if (i == BGE_TIMEOUT) {
    378 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    379 		return(0);
    380 	}
    381 
    382 	/* Get result. */
    383 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    384 
    385 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    386 
    387 	return(0);
    388 }
    389 
    390 /*
    391  * Read a sequence of bytes from the EEPROM.
    392  */
    393 int
    394 bge_read_eeprom(sc, dest, off, cnt)
    395 	struct bge_softc *sc;
    396 	caddr_t dest;
    397 	int off;
    398 	int cnt;
    399 {
    400 	int err = 0, i;
    401 	u_int8_t byte = 0;
    402 
    403 	for (i = 0; i < cnt; i++) {
    404 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    405 		if (err)
    406 			break;
    407 		*(dest + i) = byte;
    408 	}
    409 
    410 	return(err ? 1 : 0);
    411 }
    412 
    413 int
    414 bge_miibus_readreg(dev, phy, reg)
    415 	struct device *dev;
    416 	int phy, reg;
    417 {
    418 	struct bge_softc *sc = (struct bge_softc *)dev;
    419 	struct ifnet *ifp;
    420 	u_int32_t val;
    421 	int i;
    422 
    423 	ifp = &sc->ethercom.ec_if;
    424 
    425 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
    426 		return(0);
    427 
    428 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    429 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    430 
    431 	for (i = 0; i < BGE_TIMEOUT; i++) {
    432 		val = CSR_READ_4(sc, BGE_MI_COMM);
    433 		if (!(val & BGE_MICOMM_BUSY))
    434 			break;
    435 		delay(10);
    436 	}
    437 
    438 	if (i == BGE_TIMEOUT) {
    439 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    440 		return(0);
    441 	}
    442 
    443 	val = CSR_READ_4(sc, BGE_MI_COMM);
    444 
    445 	if (val & BGE_MICOMM_READFAIL)
    446 		return(0);
    447 
    448 	return(val & 0xFFFF);
    449 }
    450 
    451 void
    452 bge_miibus_writereg(dev, phy, reg, val)
    453 	struct device *dev;
    454 	int phy, reg, val;
    455 {
    456 	struct bge_softc *sc = (struct bge_softc *)dev;
    457 	int i;
    458 
    459 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    460 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    461 
    462 	for (i = 0; i < BGE_TIMEOUT; i++) {
    463 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    464 			break;
    465 		delay(10);
    466 	}
    467 
    468 	if (i == BGE_TIMEOUT) {
    469 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    470 	}
    471 }
    472 
    473 void
    474 bge_miibus_statchg(dev)
    475 	struct device *dev;
    476 {
    477 	struct bge_softc *sc = (struct bge_softc *)dev;
    478 	struct mii_data *mii = &sc->bge_mii;
    479 
    480 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    481 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    482 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    483 	} else {
    484 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    485 	}
    486 
    487 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    488 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    489 	} else {
    490 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    491 	}
    492 }
    493 
    494 /*
    495  * Handle events that have triggered interrupts.
    496  */
    497 void
    498 bge_handle_events(sc)
    499 	struct bge_softc		*sc;
    500 {
    501 
    502 	return;
    503 }
    504 
    505 /*
    506  * Memory management for jumbo frames.
    507  */
    508 
    509 int
    510 bge_alloc_jumbo_mem(sc)
    511 	struct bge_softc		*sc;
    512 {
    513 	caddr_t			ptr, kva;
    514 	bus_dma_segment_t	seg;
    515 	int		i, rseg, state, error;
    516 	struct bge_jpool_entry   *entry;
    517 
    518 	state = error = 0;
    519 
    520 	/* Grab a big chunk o' storage. */
    521 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    522 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    523 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    524 		return ENOBUFS;
    525 	}
    526 
    527 	state = 1;
    528 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    529 	    BUS_DMA_NOWAIT)) {
    530 		printf("%s: can't map dma buffers (%d bytes)\n",
    531 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    532 		error = ENOBUFS;
    533 		goto out;
    534 	}
    535 
    536 	state = 2;
    537 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    538 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    539 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
    540 		error = ENOBUFS;
    541 		goto out;
    542 	}
    543 
    544 	state = 3;
    545 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    546 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    547 		printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
    548 		error = ENOBUFS;
    549 		goto out;
    550 	}
    551 
    552 	state = 4;
    553 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    554 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    555 
    556 	SLIST_INIT(&sc->bge_jfree_listhead);
    557 	SLIST_INIT(&sc->bge_jinuse_listhead);
    558 
    559 	/*
    560 	 * Now divide it up into 9K pieces and save the addresses
    561 	 * in an array.
    562 	 */
    563 	ptr = sc->bge_cdata.bge_jumbo_buf;
    564 	for (i = 0; i < BGE_JSLOTS; i++) {
    565 		sc->bge_cdata.bge_jslots[i] = ptr;
    566 		ptr += BGE_JLEN;
    567 		entry = malloc(sizeof(struct bge_jpool_entry),
    568 		    M_DEVBUF, M_NOWAIT);
    569 		if (entry == NULL) {
    570 			printf("%s: no memory for jumbo buffer queue!\n",
    571 			    sc->bge_dev.dv_xname);
    572 			error = ENOBUFS;
    573 			goto out;
    574 		}
    575 		entry->slot = i;
    576 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    577 				 entry, jpool_entries);
    578 	}
    579 out:
    580 	if (error != 0) {
    581 		switch (state) {
    582 		case 4:
    583 			bus_dmamap_unload(sc->bge_dmatag,
    584 			    sc->bge_cdata.bge_rx_jumbo_map);
    585 		case 3:
    586 			bus_dmamap_destroy(sc->bge_dmatag,
    587 			    sc->bge_cdata.bge_rx_jumbo_map);
    588 		case 2:
    589 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    590 		case 1:
    591 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    592 			break;
    593 		default:
    594 			break;
    595 		}
    596 	}
    597 
    598 	return error;
    599 }
    600 
    601 /*
    602  * Allocate a jumbo buffer.
    603  */
    604 void *
    605 bge_jalloc(sc)
    606 	struct bge_softc		*sc;
    607 {
    608 	struct bge_jpool_entry   *entry;
    609 
    610 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    611 
    612 	if (entry == NULL) {
    613 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    614 		return(NULL);
    615 	}
    616 
    617 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    618 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    619 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    620 }
    621 
    622 /*
    623  * Release a jumbo buffer.
    624  */
    625 void
    626 bge_jfree(m, buf, size, arg)
    627 	struct mbuf	*m;
    628 	caddr_t		buf;
    629 	u_int		size;
    630 	void		*arg;
    631 {
    632 	struct bge_jpool_entry *entry;
    633 	struct bge_softc *sc;
    634 	int i, s;
    635 
    636 	/* Extract the softc struct pointer. */
    637 	sc = (struct bge_softc *)arg;
    638 
    639 	if (sc == NULL)
    640 		panic("bge_jfree: can't find softc pointer!");
    641 
    642 	/* calculate the slot this buffer belongs to */
    643 
    644 	i = ((caddr_t)buf
    645 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    646 
    647 	if ((i < 0) || (i >= BGE_JSLOTS))
    648 		panic("bge_jfree: asked to free buffer that we don't manage!");
    649 
    650 	s = splvm();
    651 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    652 	if (entry == NULL)
    653 		panic("bge_jfree: buffer not in use!");
    654 	entry->slot = i;
    655 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    656 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    657 
    658 	if (__predict_true(m != NULL))
    659   		pool_cache_put(&mbpool_cache, m);
    660 	splx(s);
    661 }
    662 
    663 
    664 /*
    665  * Intialize a standard receive ring descriptor.
    666  */
    667 int
    668 bge_newbuf_std(sc, i, m, dmamap)
    669 	struct bge_softc	*sc;
    670 	int			i;
    671 	struct mbuf		*m;
    672 	bus_dmamap_t dmamap;
    673 {
    674 	struct mbuf		*m_new = NULL;
    675 	struct bge_rx_bd	*r;
    676 	int			error;
    677 
    678 	if (dmamap == NULL) {
    679 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    680 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    681 		if (error != 0)
    682 			return error;
    683 	}
    684 
    685 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    686 
    687 	if (m == NULL) {
    688 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    689 		if (m_new == NULL) {
    690 			return(ENOBUFS);
    691 		}
    692 
    693 		MCLGET(m_new, M_DONTWAIT);
    694 		if (!(m_new->m_flags & M_EXT)) {
    695 			m_freem(m_new);
    696 			return(ENOBUFS);
    697 		}
    698 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    699 		m_adj(m_new, ETHER_ALIGN);
    700 
    701 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    702 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    703 			return(ENOBUFS);
    704 	} else {
    705 		m_new = m;
    706 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    707 		m_new->m_data = m_new->m_ext.ext_buf;
    708 		m_adj(m_new, ETHER_ALIGN);
    709 	}
    710 
    711 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    712 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    713 	bge_set_hostaddr(&r->bge_addr,
    714 	    dmamap->dm_segs[0].ds_addr);
    715 	r->bge_flags = BGE_RXBDFLAG_END;
    716 	r->bge_len = m_new->m_len;
    717 	r->bge_idx = i;
    718 
    719 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    720 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    721 		i * sizeof (struct bge_rx_bd),
    722 	    sizeof (struct bge_rx_bd),
    723 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    724 
    725 	return(0);
    726 }
    727 
    728 /*
    729  * Initialize a jumbo receive ring descriptor. This allocates
    730  * a jumbo buffer from the pool managed internally by the driver.
    731  */
    732 int
    733 bge_newbuf_jumbo(sc, i, m)
    734 	struct bge_softc *sc;
    735 	int i;
    736 	struct mbuf *m;
    737 {
    738 	struct mbuf *m_new = NULL;
    739 	struct bge_rx_bd *r;
    740 
    741 	if (m == NULL) {
    742 		caddr_t			*buf = NULL;
    743 
    744 		/* Allocate the mbuf. */
    745 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    746 		if (m_new == NULL) {
    747 			return(ENOBUFS);
    748 		}
    749 
    750 		/* Allocate the jumbo buffer */
    751 		buf = bge_jalloc(sc);
    752 		if (buf == NULL) {
    753 			m_freem(m_new);
    754 			printf("%s: jumbo allocation failed "
    755 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    756 			return(ENOBUFS);
    757 		}
    758 
    759 		/* Attach the buffer to the mbuf. */
    760 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    761 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    762 		    bge_jfree, sc);
    763 	} else {
    764 		m_new = m;
    765 		m_new->m_data = m_new->m_ext.ext_buf;
    766 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    767 	}
    768 
    769 	m_adj(m_new, ETHER_ALIGN);
    770 	/* Set up the descriptor. */
    771 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    772 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    773 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    774 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    775 	r->bge_len = m_new->m_len;
    776 	r->bge_idx = i;
    777 
    778 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    779 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    780 		i * sizeof (struct bge_rx_bd),
    781 	    sizeof (struct bge_rx_bd),
    782 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    783 
    784 	return(0);
    785 }
    786 
    787 /*
    788  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    789  * that's 1MB or memory, which is a lot. For now, we fill only the first
    790  * 256 ring entries and hope that our CPU is fast enough to keep up with
    791  * the NIC.
    792  */
    793 int
    794 bge_init_rx_ring_std(sc)
    795 	struct bge_softc *sc;
    796 {
    797 	int i;
    798 
    799 	if (sc->bge_flags & BGE_RXRING_VALID)
    800 		return 0;
    801 
    802 	for (i = 0; i < BGE_SSLOTS; i++) {
    803 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    804 			return(ENOBUFS);
    805 	}
    806 
    807 	sc->bge_std = i - 1;
    808 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    809 
    810 	sc->bge_flags |= BGE_RXRING_VALID;
    811 
    812 	return(0);
    813 }
    814 
    815 void
    816 bge_free_rx_ring_std(sc)
    817 	struct bge_softc *sc;
    818 {
    819 	int i;
    820 
    821 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    822 		return;
    823 
    824 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    825 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    826 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    827 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    828 			bus_dmamap_destroy(sc->bge_dmatag,
    829 			    sc->bge_cdata.bge_rx_std_map[i]);
    830 		}
    831 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    832 		    sizeof(struct bge_rx_bd));
    833 	}
    834 
    835 	sc->bge_flags &= ~BGE_RXRING_VALID;
    836 }
    837 
    838 int
    839 bge_init_rx_ring_jumbo(sc)
    840 	struct bge_softc *sc;
    841 {
    842 	int i;
    843 	struct bge_rcb *rcb;
    844 	struct bge_rcb_opaque *rcbo;
    845 
    846 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    847 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    848 			return(ENOBUFS);
    849 	};
    850 
    851 	sc->bge_jumbo = i - 1;
    852 
    853 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    854 	rcbo = (struct bge_rcb_opaque *)rcb;
    855 	rcb->bge_flags = 0;
    856 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
    857 
    858 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    859 
    860 	return(0);
    861 }
    862 
    863 void
    864 bge_free_rx_ring_jumbo(sc)
    865 	struct bge_softc *sc;
    866 {
    867 	int i;
    868 
    869 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    870 		return;
    871 
    872 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    873 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    874 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    875 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    876 		}
    877 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    878 		    sizeof(struct bge_rx_bd));
    879 	}
    880 
    881 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    882 }
    883 
    884 void
    885 bge_free_tx_ring(sc)
    886 	struct bge_softc *sc;
    887 {
    888 	int i, freed;
    889 	struct txdmamap_pool_entry *dma;
    890 
    891 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    892 		return;
    893 
    894 	freed = 0;
    895 
    896 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    897 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    898 			freed++;
    899 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    900 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    901 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    902 					    link);
    903 			sc->txdma[i] = 0;
    904 		}
    905 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    906 		    sizeof(struct bge_tx_bd));
    907 	}
    908 
    909 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    910 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    911 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    912 		free(dma, M_DEVBUF);
    913 	}
    914 
    915 	sc->bge_flags &= ~BGE_TXRING_VALID;
    916 }
    917 
    918 int
    919 bge_init_tx_ring(sc)
    920 	struct bge_softc *sc;
    921 {
    922 	int i;
    923 	bus_dmamap_t dmamap;
    924 	struct txdmamap_pool_entry *dma;
    925 
    926 	if (sc->bge_flags & BGE_TXRING_VALID)
    927 		return 0;
    928 
    929 	sc->bge_txcnt = 0;
    930 	sc->bge_tx_saved_considx = 0;
    931 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    932 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    933 
    934 	SLIST_INIT(&sc->txdma_list);
    935 	for (i = 0; i < BGE_RSLOTS; i++) {
    936 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    937 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    938 		    &dmamap))
    939 			return(ENOBUFS);
    940 		if (dmamap == NULL)
    941 			panic("dmamap NULL in bge_init_tx_ring");
    942 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
    943 		if (dma == NULL) {
    944 			printf("%s: can't alloc txdmamap_pool_entry\n",
    945 			    sc->bge_dev.dv_xname);
    946 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
    947 			return (ENOMEM);
    948 		}
    949 		dma->dmamap = dmamap;
    950 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
    951 	}
    952 
    953 	sc->bge_flags |= BGE_TXRING_VALID;
    954 
    955 	return(0);
    956 }
    957 
    958 void
    959 bge_setmulti(sc)
    960 	struct bge_softc *sc;
    961 {
    962 	struct ethercom		*ac = &sc->ethercom;
    963 	struct ifnet		*ifp = &ac->ec_if;
    964 	struct ether_multi	*enm;
    965 	struct ether_multistep  step;
    966 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
    967 	u_int32_t		h;
    968 	int			i;
    969 
    970 	if (ifp->if_flags & IFF_PROMISC)
    971 		goto allmulti;
    972 
    973 	/* Now program new ones. */
    974 	ETHER_FIRST_MULTI(step, ac, enm);
    975 	while (enm != NULL) {
    976 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    977 			/*
    978 			 * We must listen to a range of multicast addresses.
    979 			 * For now, just accept all multicasts, rather than
    980 			 * trying to set only those filter bits needed to match
    981 			 * the range.  (At this time, the only use of address
    982 			 * ranges is for IP multicast routing, for which the
    983 			 * range is big enough to require all bits set.)
    984 			 */
    985 			goto allmulti;
    986 		}
    987 
    988 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
    989 
    990 		/* Just want the 7 least-significant bits. */
    991 		h &= 0x7f;
    992 
    993 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
    994 		ETHER_NEXT_MULTI(step, enm);
    995 	}
    996 
    997 	ifp->if_flags &= ~IFF_ALLMULTI;
    998 	goto setit;
    999 
   1000  allmulti:
   1001 	ifp->if_flags |= IFF_ALLMULTI;
   1002 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1003 
   1004  setit:
   1005 	for (i = 0; i < 4; i++)
   1006 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1007 }
   1008 
   1009 int bge_swapbits[] = {
   1010 	0,
   1011 	BGE_MODECTL_BYTESWAP_DATA,
   1012 	BGE_MODECTL_WORDSWAP_DATA,
   1013 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1014 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1015 
   1016 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1017 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1018 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1019 
   1020 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1021 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1022 
   1023 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1024 
   1025 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1026 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1027 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1028 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1029 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1030 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1031 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1032 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1033 
   1034 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1035 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1036 };
   1037 
   1038 int bge_swapindex = 0;
   1039 
   1040 /*
   1041  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1042  * self-test results.
   1043  */
   1044 int
   1045 bge_chipinit(sc)
   1046 	struct bge_softc *sc;
   1047 {
   1048 	u_int32_t		cachesize;
   1049 	int			i;
   1050 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1051 
   1052 
   1053 	/* Set endianness before we access any non-PCI registers. */
   1054 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1055 	    BGE_INIT);
   1056 
   1057 	/*
   1058 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1059 	 * self-tests passed.
   1060 	 */
   1061 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1062 		printf("%s: RX CPU self-diagnostics failed!\n",
   1063 		    sc->bge_dev.dv_xname);
   1064 		return(ENODEV);
   1065 	}
   1066 
   1067 	/* Clear the MAC control register */
   1068 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1069 
   1070 	/*
   1071 	 * Clear the MAC statistics block in the NIC's
   1072 	 * internal memory.
   1073 	 */
   1074 	for (i = BGE_STATS_BLOCK;
   1075 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1076 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1077 
   1078 	for (i = BGE_STATUS_BLOCK;
   1079 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1080 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1081 
   1082 	/* Set up the PCI DMA control register. */
   1083 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1084 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
   1085 
   1086 	/*
   1087 	 * Set up general mode register.
   1088 	 */
   1089 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1090 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1091 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
   1092 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
   1093 
   1094 	/* Get cache line size. */
   1095 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1096 
   1097 	/*
   1098 	 * Avoid violating PCI spec on certain chip revs.
   1099 	 */
   1100 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1101 	    PCIM_CMD_MWIEN) {
   1102 		switch(cachesize) {
   1103 		case 1:
   1104 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1105 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1106 			break;
   1107 		case 2:
   1108 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1109 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1110 			break;
   1111 		case 4:
   1112 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1113 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1114 			break;
   1115 		case 8:
   1116 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1117 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1118 			break;
   1119 		case 16:
   1120 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1121 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1122 			break;
   1123 		case 32:
   1124 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1125 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1126 			break;
   1127 		case 64:
   1128 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1129 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1130 			break;
   1131 		default:
   1132 		/* Disable PCI memory write and invalidate. */
   1133 #if 0
   1134 			if (bootverbose)
   1135 				printf("%s: cache line size %d not "
   1136 				    "supported; disabling PCI MWI\n",
   1137 				    sc->bge_dev.dv_xname, cachesize);
   1138 #endif
   1139 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1140 			    PCIM_CMD_MWIEN);
   1141 			break;
   1142 		}
   1143 	}
   1144 
   1145 #ifdef __brokenalpha__
   1146 	/*
   1147 	 * Must insure that we do not cross an 8K (bytes) boundary
   1148 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1149 	 * restriction on some ALPHA platforms with early revision
   1150 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1151 	 */
   1152 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1153 #endif
   1154 
   1155 	/* Set the timer prescaler (always 66Mhz) */
   1156 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1157 
   1158 	return(0);
   1159 }
   1160 
   1161 int
   1162 bge_blockinit(sc)
   1163 	struct bge_softc *sc;
   1164 {
   1165 	struct bge_rcb		*rcb;
   1166 	struct bge_rcb_opaque	*rcbo;
   1167 	bus_size_t		rcb_addr;
   1168 	int			i;
   1169 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1170 	bge_hostaddr		taddr;
   1171 
   1172 	/*
   1173 	 * Initialize the memory window pointer register so that
   1174 	 * we can access the first 32K of internal NIC RAM. This will
   1175 	 * allow us to set up the TX send ring RCBs and the RX return
   1176 	 * ring RCBs, plus other things which live in NIC memory.
   1177 	 */
   1178 
   1179 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1180 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1181 
   1182 	/* Configure mbuf memory pool */
   1183 	if (sc->bge_extram) {
   1184 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
   1185 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1186 	} else {
   1187 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   1188 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1189 	}
   1190 
   1191 	/* Configure DMA resource pool */
   1192 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
   1193 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1194 
   1195 	/* Configure mbuf pool watermarks */
   1196 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1197 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1198 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1199 
   1200 	/* Configure DMA resource watermarks */
   1201 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1202 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1203 
   1204 	/* Enable buffer manager */
   1205 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1206 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1207 
   1208 	/* Poll for buffer manager start indication */
   1209 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1210 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1211 			break;
   1212 		DELAY(10);
   1213 	}
   1214 
   1215 	if (i == BGE_TIMEOUT) {
   1216 		printf("%s: buffer manager failed to start\n",
   1217 		    sc->bge_dev.dv_xname);
   1218 		return(ENXIO);
   1219 	}
   1220 
   1221 	/* Enable flow-through queues */
   1222 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1223 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1224 
   1225 	/* Wait until queue initialization is complete */
   1226 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1227 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1228 			break;
   1229 		DELAY(10);
   1230 	}
   1231 
   1232 	if (i == BGE_TIMEOUT) {
   1233 		printf("%s: flow-through queue init failed\n",
   1234 		    sc->bge_dev.dv_xname);
   1235 		return(ENXIO);
   1236 	}
   1237 
   1238 	/* Initialize the standard RX ring control block */
   1239 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1240 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1241 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1242 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1243 	if (sc->bge_extram)
   1244 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1245 	else
   1246 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1247 	rcb->bge_flags = 0;
   1248 	rcbo = (struct bge_rcb_opaque *)rcb;
   1249 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
   1250 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
   1251 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1252 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
   1253 
   1254 	/*
   1255 	 * Initialize the jumbo RX ring control block
   1256 	 * We set the 'ring disabled' bit in the flags
   1257 	 * field until we're actually ready to start
   1258 	 * using this ring (i.e. once we set the MTU
   1259 	 * high enough to require it).
   1260 	 */
   1261 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1262 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1263 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1264 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
   1265 	if (sc->bge_extram)
   1266 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1267 	else
   1268 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1269 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1270 
   1271 	rcbo = (struct bge_rcb_opaque *)rcb;
   1272 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
   1273 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
   1274 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1275 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
   1276 
   1277 	/* Set up dummy disabled mini ring RCB */
   1278 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1279 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
   1280 	rcbo = (struct bge_rcb_opaque *)rcb;
   1281 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
   1282 
   1283 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1284 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
   1285 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1286 
   1287 	/*
   1288 	 * Set the BD ring replentish thresholds. The recommended
   1289 	 * values are 1/8th the number of descriptors allocated to
   1290 	 * each ring.
   1291 	 */
   1292 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1293 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1294 
   1295 	/*
   1296 	 * Disable all unused send rings by setting the 'ring disabled'
   1297 	 * bit in the flags field of all the TX send ring control blocks.
   1298 	 * These are located in NIC memory.
   1299 	 */
   1300 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1301 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1302 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1303 			    BGE_RCB_FLAG_RING_DISABLED);
   1304 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
   1305 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1306 		rcb_addr += sizeof(struct bge_rcb);
   1307 	}
   1308 
   1309 	/* Configure TX RCB 0 (we use only the first ring) */
   1310 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1311 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1312 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1313 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1314 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1315 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1316 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
   1317 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1318 
   1319 	/* Disable all unused RX return rings */
   1320 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1321 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1322 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1323 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1324 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
   1325 			    BGE_RCB_FLAG_RING_DISABLED);
   1326 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1327 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1328 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1329 		    (i * (sizeof(u_int64_t))), 0);
   1330 		rcb_addr += sizeof(struct bge_rcb);
   1331 	}
   1332 
   1333 	/* Initialize RX ring indexes */
   1334 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1335 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1336 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1337 
   1338 	/*
   1339 	 * Set up RX return ring 0
   1340 	 * Note that the NIC address for RX return rings is 0x00000000.
   1341 	 * The return rings live entirely within the host, so the
   1342 	 * nicaddr field in the RCB isn't used.
   1343 	 */
   1344 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1345 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1346 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1347 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1348 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1349 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
   1350 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
   1351 
   1352 	/* Set random backoff seed for TX */
   1353 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1354 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1355 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1356 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1357 	    BGE_TX_BACKOFF_SEED_MASK);
   1358 
   1359 	/* Set inter-packet gap */
   1360 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1361 
   1362 	/*
   1363 	 * Specify which ring to use for packets that don't match
   1364 	 * any RX rules.
   1365 	 */
   1366 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1367 
   1368 	/*
   1369 	 * Configure number of RX lists. One interrupt distribution
   1370 	 * list, sixteen active lists, one bad frames class.
   1371 	 */
   1372 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1373 
   1374 	/* Inialize RX list placement stats mask. */
   1375 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1376 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1377 
   1378 	/* Disable host coalescing until we get it set up */
   1379 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1380 
   1381 	/* Poll to make sure it's shut down. */
   1382 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1383 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1384 			break;
   1385 		DELAY(10);
   1386 	}
   1387 
   1388 	if (i == BGE_TIMEOUT) {
   1389 		printf("%s: host coalescing engine failed to idle\n",
   1390 		    sc->bge_dev.dv_xname);
   1391 		return(ENXIO);
   1392 	}
   1393 
   1394 	/* Set up host coalescing defaults */
   1395 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1396 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1397 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1398 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1399 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1400 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1401 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1402 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1403 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1404 
   1405 	/* Set up address of statistics block */
   1406 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1407 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1408 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1409 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1410 
   1411 	/* Set up address of status block */
   1412 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1413 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1414 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1415 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1416 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1417 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1418 
   1419 	/* Turn on host coalescing state machine */
   1420 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1421 
   1422 	/* Turn on RX BD completion state machine and enable attentions */
   1423 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1424 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1425 
   1426 	/* Turn on RX list placement state machine */
   1427 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1428 
   1429 	/* Turn on RX list selector state machine. */
   1430 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1431 
   1432 	/* Turn on DMA, clear stats */
   1433 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1434 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1435 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1436 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1437 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1438 
   1439 	/* Set misc. local control, enable interrupts on attentions */
   1440 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   1441 
   1442 #ifdef notdef
   1443 	/* Assert GPIO pins for PHY reset */
   1444 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1445 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1446 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1447 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1448 #endif
   1449 
   1450 	/* Turn on DMA completion state machine */
   1451 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1452 
   1453 	/* Turn on write DMA state machine */
   1454 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1455 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1456 
   1457 	/* Turn on read DMA state machine */
   1458 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1459 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1460 
   1461 	/* Turn on RX data completion state machine */
   1462 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1463 
   1464 	/* Turn on RX BD initiator state machine */
   1465 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1466 
   1467 	/* Turn on RX data and RX BD initiator state machine */
   1468 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1469 
   1470 	/* Turn on Mbuf cluster free state machine */
   1471 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1472 
   1473 	/* Turn on send BD completion state machine */
   1474 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1475 
   1476 	/* Turn on send data completion state machine */
   1477 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1478 
   1479 	/* Turn on send data initiator state machine */
   1480 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1481 
   1482 	/* Turn on send BD initiator state machine */
   1483 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1484 
   1485 	/* Turn on send BD selector state machine */
   1486 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1487 
   1488 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1489 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1490 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1491 
   1492 	/* init LED register */
   1493 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
   1494 
   1495 	/* ack/clear link change events */
   1496 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1497 	    BGE_MACSTAT_CFG_CHANGED);
   1498 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1499 
   1500 	/* Enable PHY auto polling (for MII/GMII only) */
   1501 	if (sc->bge_tbi) {
   1502 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1503  	} else {
   1504 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1505 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1506 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1507 			    BGE_EVTENB_MI_INTERRUPT);
   1508 	}
   1509 
   1510 	/* Enable link state change attentions. */
   1511 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1512 
   1513 	return(0);
   1514 }
   1515 
   1516 static const struct bge_revision {
   1517 	uint32_t		br_asicrev;
   1518 	uint32_t		br_quirks;
   1519 	const char		*br_name;
   1520 } bge_revisions[] = {
   1521 	{ BGE_ASICREV_BCM5700_A0,
   1522 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1523 	  "BCM5700 A0" },
   1524 
   1525 	{ BGE_ASICREV_BCM5700_A1,
   1526 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1527 	  "BCM5700 A1" },
   1528 
   1529 	{ BGE_ASICREV_BCM5700_B0,
   1530 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN,
   1531 	  "BCM5700 B0" },
   1532 
   1533 	{ BGE_ASICREV_BCM5700_B1,
   1534 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1535 	  "BCM5700 B1" },
   1536 
   1537 	{ BGE_ASICREV_BCM5700_B2,
   1538 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1539 	  "BCM5700 B2" },
   1540 
   1541 	/* This is treated like a BCM5700 Bx */
   1542 	{ BGE_ASICREV_BCM5700_ALTIMA,
   1543 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1544 	  "BCM5700 Altima" },
   1545 
   1546 	{ BGE_ASICREV_BCM5700_C0,
   1547 	  0,
   1548 	  "BCM5700 C0" },
   1549 
   1550 	{ BGE_ASICREV_BCM5701_A0,
   1551 	  0,
   1552 	  "BCM5701 A0" },
   1553 
   1554 	{ BGE_ASICREV_BCM5701_B0,
   1555 	  0,
   1556 	  "BCM5701 B0" },
   1557 
   1558 	{ BGE_ASICREV_BCM5701_B2,
   1559 	  0,
   1560 	  "BCM5701 B2" },
   1561 
   1562 	{ BGE_ASICREV_BCM5701_B5,
   1563 	  0,
   1564 	  "BCM5701 B5" },
   1565 
   1566 	{ BGE_ASICREV_BCM5703_A0,
   1567 	  0,
   1568 	  "BCM5703 A0" },
   1569 
   1570 	{ BGE_ASICREV_BCM5703_A1,
   1571 	  0,
   1572 	  "BCM5703 A1" },
   1573 
   1574 	{ BGE_ASICREV_BCM5703_A2,
   1575 	  0,
   1576 	  "BCM5703 A2" },
   1577 
   1578 	{ 0, 0, NULL }
   1579 };
   1580 
   1581 static const struct bge_revision *
   1582 bge_lookup_rev(uint32_t asicrev)
   1583 {
   1584 	const struct bge_revision *br;
   1585 
   1586 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1587 		if (br->br_asicrev == asicrev)
   1588 			return (br);
   1589 	}
   1590 
   1591 	return (NULL);
   1592 }
   1593 
   1594 static const struct bge_product {
   1595 	pci_vendor_id_t		bp_vendor;
   1596 	pci_product_id_t	bp_product;
   1597 	const char		*bp_name;
   1598 } bge_products[] = {
   1599 	/*
   1600 	 * The BCM5700 documentation seems to indicate that the hardware
   1601 	 * still has the Alteon vendor ID burned into it, though it
   1602 	 * should always be overridden by the value in the EEPROM.  We'll
   1603 	 * check for it anyway.
   1604 	 */
   1605 	{ PCI_VENDOR_ALTEON,
   1606 	  PCI_PRODUCT_ALTEON_BCM5700,
   1607 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1608 	{ PCI_VENDOR_ALTEON,
   1609 	  PCI_PRODUCT_ALTEON_BCM5701,
   1610 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1611 
   1612 	{ PCI_VENDOR_ALTIMA,
   1613 	  PCI_PRODUCT_ALTIMA_AC1000,
   1614 	  "Altima AC1000 Gigabit Ethernet" },
   1615 	{ PCI_VENDOR_ALTIMA,
   1616 	  PCI_PRODUCT_ALTIMA_AC1001,
   1617 	  "Altima AC1001 Gigabit Ethernet" },
   1618 	{ PCI_VENDOR_ALTIMA,
   1619 	  PCI_PRODUCT_ALTIMA_AC9100,
   1620 	  "Altima AC9100 Gigabit Ethernet" },
   1621 
   1622 	{ PCI_VENDOR_BROADCOM,
   1623 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1624 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1625 	{ PCI_VENDOR_BROADCOM,
   1626 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1627 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1628 
   1629 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1630 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1631 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
   1632 
   1633 	{ PCI_VENDOR_3COM,
   1634 	  PCI_PRODUCT_3COM_3C996,
   1635 	  "3Com 3c996 Gigabit Ethernet" },
   1636 
   1637 	{ 0,
   1638 	  0,
   1639 	  NULL },
   1640 };
   1641 
   1642 static const struct bge_product *
   1643 bge_lookup(const struct pci_attach_args *pa)
   1644 {
   1645 	const struct bge_product *bp;
   1646 
   1647 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1648 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1649 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1650 			return (bp);
   1651 	}
   1652 
   1653 	return (NULL);
   1654 }
   1655 
   1656 /*
   1657  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   1658  * against our list and return its name if we find a match. Note
   1659  * that since the Broadcom controller contains VPD support, we
   1660  * can get the device name string from the controller itself instead
   1661  * of the compiled-in string. This is a little slow, but it guarantees
   1662  * we'll always announce the right product name.
   1663  */
   1664 int
   1665 bge_probe(parent, match, aux)
   1666 	struct device *parent;
   1667 	struct cfdata *match;
   1668 	void *aux;
   1669 {
   1670 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1671 
   1672 	if (bge_lookup(pa) != NULL)
   1673 		return (1);
   1674 
   1675 	return (0);
   1676 }
   1677 
   1678 void
   1679 bge_attach(parent, self, aux)
   1680 	struct device *parent, *self;
   1681 	void *aux;
   1682 {
   1683 	struct bge_softc	*sc = (struct bge_softc *)self;
   1684 	struct pci_attach_args	*pa = aux;
   1685 	const struct bge_product *bp;
   1686 	const struct bge_revision *br;
   1687 	pci_chipset_tag_t	pc = pa->pa_pc;
   1688 	pci_intr_handle_t	ih;
   1689 	const char		*intrstr = NULL;
   1690 	bus_dma_segment_t	seg;
   1691 	int			rseg;
   1692 	u_int32_t		hwcfg = 0;
   1693 	u_int32_t		command;
   1694 	struct ifnet		*ifp;
   1695 	int			unit;
   1696 	caddr_t			kva;
   1697 	u_char			eaddr[ETHER_ADDR_LEN];
   1698 	pcireg_t		memtype;
   1699 	bus_addr_t		memaddr;
   1700 	bus_size_t		memsize;
   1701 
   1702 	bp = bge_lookup(pa);
   1703 	KASSERT(bp != NULL);
   1704 
   1705 	sc->bge_pa = *pa;
   1706 
   1707 	printf(": %s\n", bp->bp_name);
   1708 
   1709 	/*
   1710 	 * Map control/status registers.
   1711 	 */
   1712 	DPRINTFN(5, ("Map control/status regs\n"));
   1713 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1714 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   1715 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1716 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1717 
   1718 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1719 		printf("%s: failed to enable memory mapping!\n",
   1720 		    sc->bge_dev.dv_xname);
   1721 		return;
   1722 	}
   1723 
   1724 	DPRINTFN(5, ("pci_mem_find\n"));
   1725 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   1726  	switch (memtype) {
   1727         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1728         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1729 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   1730                     memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   1731 		    &memaddr, &memsize) == 0)
   1732 			break;
   1733 	default:
   1734 		printf("%s: can't find mem space\n",
   1735 		    sc->bge_dev.dv_xname);
   1736 		return;
   1737 	}
   1738 
   1739 	DPRINTFN(5, ("pci_intr_map\n"));
   1740 	if (pci_intr_map(pa, &ih)) {
   1741 		printf("%s: couldn't map interrupt\n",
   1742 		    sc->bge_dev.dv_xname);
   1743 		return;
   1744 	}
   1745 
   1746 	DPRINTFN(5, ("pci_intr_string\n"));
   1747 	intrstr = pci_intr_string(pc, ih);
   1748 
   1749 	DPRINTFN(5, ("pci_intr_establish\n"));
   1750 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   1751 
   1752 	if (sc->bge_intrhand == NULL) {
   1753 		printf("%s: couldn't establish interrupt",
   1754 		    sc->bge_dev.dv_xname);
   1755 		if (intrstr != NULL)
   1756 			printf(" at %s", intrstr);
   1757 		printf("\n");
   1758 		return;
   1759 	}
   1760 	printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
   1761 
   1762 	/* Try to reset the chip. */
   1763 	DPRINTFN(5, ("bge_reset\n"));
   1764 	bge_reset(sc);
   1765 
   1766 	if (bge_chipinit(sc)) {
   1767 		printf("%s: chip initializatino failed\n",
   1768 		    sc->bge_dev.dv_xname);
   1769 		bge_release_resources(sc);
   1770 		return;
   1771 	}
   1772 
   1773 	/*
   1774 	 * Get station address from the EEPROM.
   1775 	 */
   1776 	if (bge_read_eeprom(sc, (caddr_t)eaddr,
   1777 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1778 		printf("bge%d: failed to read station address\n", unit);
   1779 		bge_release_resources(sc);
   1780 		return;
   1781 	}
   1782 
   1783 	/*
   1784 	 * Save ASIC rev.  Look up any quirks associated with this
   1785 	 * ASIC.
   1786 	 */
   1787 	sc->bge_asicrev =
   1788 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   1789 	    BGE_PCIMISCCTL_ASICREV;
   1790 	br = bge_lookup_rev(sc->bge_asicrev);
   1791 
   1792 	printf("%s: ", sc->bge_dev.dv_xname);
   1793 	if (br == NULL) {
   1794 		printf("unknown ASIC 0x%08x", sc->bge_asicrev);
   1795 		sc->bge_quirks = 0;
   1796 	} else {
   1797 		printf("ASIC %s", br->br_name);
   1798 		sc->bge_quirks = br->br_quirks;
   1799 	}
   1800 	printf(", Ethernet address %s\n", ether_sprintf(eaddr));
   1801 
   1802 	/* Allocate the general information block and ring buffers. */
   1803 	sc->bge_dmatag = pa->pa_dmat;
   1804 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   1805 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   1806 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1807 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
   1808 		return;
   1809 	}
   1810 	DPRINTFN(5, ("bus_dmamem_map\n"));
   1811 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   1812 			   sizeof(struct bge_ring_data), &kva,
   1813 			   BUS_DMA_NOWAIT)) {
   1814 		printf("%s: can't map dma buffers (%d bytes)\n",
   1815 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   1816 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1817 		return;
   1818 	}
   1819 	DPRINTFN(5, ("bus_dmamem_create\n"));
   1820 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   1821 	    sizeof(struct bge_ring_data), 0,
   1822 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   1823 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
   1824 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   1825 				 sizeof(struct bge_ring_data));
   1826 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1827 		return;
   1828 	}
   1829 	DPRINTFN(5, ("bus_dmamem_load\n"));
   1830 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   1831 			    sizeof(struct bge_ring_data), NULL,
   1832 			    BUS_DMA_NOWAIT)) {
   1833 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   1834 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   1835 				 sizeof(struct bge_ring_data));
   1836 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1837 		return;
   1838 	}
   1839 
   1840 	DPRINTFN(5, ("bzero\n"));
   1841 	sc->bge_rdata = (struct bge_ring_data *)kva;
   1842 
   1843 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   1844 
   1845 	/* Try to allocate memory for jumbo buffers. */
   1846 	if (bge_alloc_jumbo_mem(sc)) {
   1847 		printf("%s: jumbo buffer allocation failed\n",
   1848 		    sc->bge_dev.dv_xname);
   1849 	} else
   1850 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   1851 
   1852 	/* Set default tuneable values. */
   1853 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   1854 	sc->bge_rx_coal_ticks = 150;
   1855 	sc->bge_tx_coal_ticks = 150;
   1856 	sc->bge_rx_max_coal_bds = 64;
   1857 	sc->bge_tx_max_coal_bds = 128;
   1858 
   1859 	/* Set up ifnet structure */
   1860 	ifp = &sc->ethercom.ec_if;
   1861 	ifp->if_softc = sc;
   1862 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1863 	ifp->if_ioctl = bge_ioctl;
   1864 	ifp->if_start = bge_start;
   1865 	ifp->if_init = bge_init;
   1866 	ifp->if_watchdog = bge_watchdog;
   1867 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
   1868 	IFQ_SET_READY(&ifp->if_snd);
   1869 	DPRINTFN(5, ("bcopy\n"));
   1870 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   1871 
   1872 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   1873 		sc->ethercom.ec_if.if_capabilities |=
   1874 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   1875 	sc->ethercom.ec_capabilities |=
   1876 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   1877 
   1878 	/*
   1879 	 * Do MII setup.
   1880 	 */
   1881 	DPRINTFN(5, ("mii setup\n"));
   1882 	sc->bge_mii.mii_ifp = ifp;
   1883 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   1884 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   1885 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   1886 
   1887 	/*
   1888 	 * Figure out what sort of media we have by checking the
   1889 	 * hardware config word in the EEPROM. Note: on some BCM5700
   1890 	 * cards, this value appears to be unset. If that's the
   1891 	 * case, we have to rely on identifying the NIC by its PCI
   1892 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   1893 	 */
   1894 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
   1895 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   1896 	if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   1897 		sc->bge_tbi = 1;
   1898 
   1899 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   1900 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   1901 	    SK_SUBSYSID_9D41)
   1902 		sc->bge_tbi = 1;
   1903 
   1904 	if (sc->bge_tbi) {
   1905 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   1906 		    bge_ifmedia_sts);
   1907 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1908 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   1909 			    0, NULL);
   1910 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1911 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   1912 	} else {
   1913 		/*
   1914 		 * Do transceiver setup.
   1915 		 */
   1916 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   1917 			     bge_ifmedia_sts);
   1918 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   1919 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
   1920 
   1921 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   1922 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   1923 			ifmedia_add(&sc->bge_mii.mii_media,
   1924 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   1925 			ifmedia_set(&sc->bge_mii.mii_media,
   1926 				    IFM_ETHER|IFM_MANUAL);
   1927 		} else
   1928 			ifmedia_set(&sc->bge_mii.mii_media,
   1929 				    IFM_ETHER|IFM_AUTO);
   1930 	}
   1931 
   1932 	/*
   1933 	 * Call MI attach routine.
   1934 	 */
   1935 	DPRINTFN(5, ("if_attach\n"));
   1936 	if_attach(ifp);
   1937 	DPRINTFN(5, ("ether_ifattach\n"));
   1938 	ether_ifattach(ifp, eaddr);
   1939 	DPRINTFN(5, ("callout_init\n"));
   1940 	callout_init(&sc->bge_timeout);
   1941 }
   1942 
   1943 void
   1944 bge_release_resources(sc)
   1945 	struct bge_softc *sc;
   1946 {
   1947 	if (sc->bge_vpd_prodname != NULL)
   1948 		free(sc->bge_vpd_prodname, M_DEVBUF);
   1949 
   1950 	if (sc->bge_vpd_readonly != NULL)
   1951 		free(sc->bge_vpd_readonly, M_DEVBUF);
   1952 }
   1953 
   1954 void
   1955 bge_reset(sc)
   1956 	struct bge_softc *sc;
   1957 {
   1958 	struct pci_attach_args *pa = &sc->bge_pa;
   1959 	u_int32_t cachesize, command, pcistate;
   1960 	int i, val = 0;
   1961 
   1962 	/* Save some important PCI state. */
   1963 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1964 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   1965 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   1966 
   1967 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1968 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   1969 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   1970 
   1971 	/* Issue global reset */
   1972 	bge_writereg_ind(sc, BGE_MISC_CFG,
   1973 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   1974 
   1975 	DELAY(1000);
   1976 
   1977 	/* Reset some of the PCI state that got zapped by reset */
   1978 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1979 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   1980 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   1981 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   1982 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   1983 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   1984 
   1985 	/* Enable memory arbiter. */
   1986 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   1987 
   1988 	/*
   1989 	 * Prevent PXE restart: write a magic number to the
   1990 	 * general communications memory at 0xB50.
   1991 	 */
   1992 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1993 
   1994 	/*
   1995 	 * Poll the value location we just wrote until
   1996 	 * we see the 1's complement of the magic number.
   1997 	 * This indicates that the firmware initialization
   1998 	 * is complete.
   1999 	 */
   2000 	for (i = 0; i < 750; i++) {
   2001 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2002 		if (val == ~BGE_MAGIC_NUMBER)
   2003 			break;
   2004 		DELAY(1000);
   2005 	}
   2006 
   2007 	if (i == 750) {
   2008 		printf("%s: firmware handshake timed out, val = %x\n",
   2009 		    sc->bge_dev.dv_xname, val);
   2010 		return;
   2011 	}
   2012 
   2013 	/*
   2014 	 * XXX Wait for the value of the PCISTATE register to
   2015 	 * return to its original pre-reset state. This is a
   2016 	 * fairly good indicator of reset completion. If we don't
   2017 	 * wait for the reset to fully complete, trying to read
   2018 	 * from the device's non-PCI registers may yield garbage
   2019 	 * results.
   2020 	 */
   2021 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2022 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2023 		    pcistate)
   2024 			break;
   2025 		DELAY(10);
   2026 	}
   2027 
   2028 	/* Enable memory arbiter. */
   2029 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2030 
   2031 	/* Fix up byte swapping */
   2032 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2033 
   2034 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2035 
   2036 	DELAY(10000);
   2037 }
   2038 
   2039 /*
   2040  * Frame reception handling. This is called if there's a frame
   2041  * on the receive return list.
   2042  *
   2043  * Note: we have to be able to handle two possibilities here:
   2044  * 1) the frame is from the jumbo recieve ring
   2045  * 2) the frame is from the standard receive ring
   2046  */
   2047 
   2048 void
   2049 bge_rxeof(sc)
   2050 	struct bge_softc *sc;
   2051 {
   2052 	struct ifnet *ifp;
   2053 	int stdcnt = 0, jumbocnt = 0;
   2054 	int have_tag = 0;
   2055 	u_int16_t vlan_tag = 0;
   2056 	bus_dmamap_t dmamap;
   2057 	bus_addr_t offset, toff;
   2058 	bus_size_t tlen;
   2059 	int tosync;
   2060 
   2061 	ifp = &sc->ethercom.ec_if;
   2062 
   2063 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2064 	    offsetof(struct bge_ring_data, bge_status_block),
   2065 	    sizeof (struct bge_status_block),
   2066 	    BUS_DMASYNC_POSTREAD);
   2067 
   2068 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2069 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2070 	    sc->bge_rx_saved_considx;
   2071 
   2072 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2073 
   2074 	if (tosync < 0) {
   2075 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
   2076 		    sizeof (struct bge_rx_bd);
   2077 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2078 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2079 		tosync = -tosync;
   2080 	}
   2081 
   2082 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2083 	    offset, tosync * sizeof (struct bge_rx_bd),
   2084 	    BUS_DMASYNC_POSTREAD);
   2085 
   2086 	while(sc->bge_rx_saved_considx !=
   2087 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2088 		struct bge_rx_bd	*cur_rx;
   2089 		u_int32_t		rxidx;
   2090 		struct mbuf		*m = NULL;
   2091 
   2092 		cur_rx = &sc->bge_rdata->
   2093 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2094 
   2095 		rxidx = cur_rx->bge_idx;
   2096 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
   2097 
   2098 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2099 			have_tag = 1;
   2100 			vlan_tag = cur_rx->bge_vlan_tag;
   2101 		}
   2102 
   2103 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2104 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2105 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2106 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2107 			jumbocnt++;
   2108 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2109 				ifp->if_ierrors++;
   2110 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2111 				continue;
   2112 			}
   2113 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2114 					     NULL)== ENOBUFS) {
   2115 				ifp->if_ierrors++;
   2116 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2117 				continue;
   2118 			}
   2119 		} else {
   2120 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2121 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2122 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2123 			stdcnt++;
   2124 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2125 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2126 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2127 				ifp->if_ierrors++;
   2128 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2129 				continue;
   2130 			}
   2131 			if (bge_newbuf_std(sc, sc->bge_std,
   2132 			    NULL, dmamap) == ENOBUFS) {
   2133 				ifp->if_ierrors++;
   2134 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2135 				continue;
   2136 			}
   2137 		}
   2138 
   2139 		ifp->if_ipackets++;
   2140 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
   2141 		m->m_pkthdr.rcvif = ifp;
   2142 
   2143 #if NBPFILTER > 0
   2144 		/*
   2145 		 * Handle BPF listeners. Let the BPF user see the packet.
   2146 		 */
   2147 		if (ifp->if_bpf)
   2148 			bpf_mtap(ifp->if_bpf, m);
   2149 #endif
   2150 
   2151 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
   2152 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2153 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2154 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2155 #if 0	/* XXX appears to be broken */
   2156 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   2157 				m->m_pkthdr.csum_data =
   2158 				    cur_rx->bge_tcp_udp_csum;
   2159 				m->m_pkthdr.csum_flags |=
   2160 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
   2161 			}
   2162 #endif
   2163 		}
   2164 
   2165 		/*
   2166 		 * If we received a packet with a vlan tag, pass it
   2167 		 * to vlan_input() instead of ether_input().
   2168 		 */
   2169 		if (have_tag) {
   2170 			struct mbuf *n;
   2171 
   2172 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   2173 			if (n != NULL) {
   2174 				*mtod(n, int *) = vlan_tag;
   2175 				n->m_len = sizeof(int);
   2176 				have_tag = vlan_tag = 0;
   2177 			} else {
   2178 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2179 				m_freem(m);
   2180 				have_tag = vlan_tag = 0;
   2181 				continue;
   2182 			}
   2183 		}
   2184 		(*ifp->if_input)(ifp, m);
   2185 	}
   2186 
   2187 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2188 	if (stdcnt)
   2189 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2190 	if (jumbocnt)
   2191 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2192 }
   2193 
   2194 void
   2195 bge_txeof(sc)
   2196 	struct bge_softc *sc;
   2197 {
   2198 	struct bge_tx_bd *cur_tx = NULL;
   2199 	struct ifnet *ifp;
   2200 	struct txdmamap_pool_entry *dma;
   2201 	bus_addr_t offset, toff;
   2202 	bus_size_t tlen;
   2203 	int tosync;
   2204 	struct mbuf *m;
   2205 
   2206 	ifp = &sc->ethercom.ec_if;
   2207 
   2208 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2209 	    offsetof(struct bge_ring_data, bge_status_block),
   2210 	    sizeof (struct bge_status_block),
   2211 	    BUS_DMASYNC_POSTREAD);
   2212 
   2213 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2214 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2215 	    sc->bge_tx_saved_considx;
   2216 
   2217 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2218 
   2219 	if (tosync < 0) {
   2220 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2221 		    sizeof (struct bge_tx_bd);
   2222 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2223 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2224 		tosync = -tosync;
   2225 	}
   2226 
   2227 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2228 	    offset, tosync * sizeof (struct bge_tx_bd),
   2229 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2230 
   2231 	/*
   2232 	 * Go through our tx ring and free mbufs for those
   2233 	 * frames that have been sent.
   2234 	 */
   2235 	while (sc->bge_tx_saved_considx !=
   2236 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2237 		u_int32_t		idx = 0;
   2238 
   2239 		idx = sc->bge_tx_saved_considx;
   2240 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2241 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2242 			ifp->if_opackets++;
   2243 		m = sc->bge_cdata.bge_tx_chain[idx];
   2244 		if (m != NULL) {
   2245 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2246 			dma = sc->txdma[idx];
   2247 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2248 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2249 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2250 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2251 			sc->txdma[idx] = NULL;
   2252 
   2253 			m_freem(m);
   2254 		}
   2255 		sc->bge_txcnt--;
   2256 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2257 		ifp->if_timer = 0;
   2258 	}
   2259 
   2260 	if (cur_tx != NULL)
   2261 		ifp->if_flags &= ~IFF_OACTIVE;
   2262 }
   2263 
   2264 int
   2265 bge_intr(xsc)
   2266 	void *xsc;
   2267 {
   2268 	struct bge_softc *sc;
   2269 	struct ifnet *ifp;
   2270 
   2271 	sc = xsc;
   2272 	ifp = &sc->ethercom.ec_if;
   2273 
   2274 #ifdef notdef
   2275 	/* Avoid this for now -- checking this register is expensive. */
   2276 	/* Make sure this is really our interrupt. */
   2277 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2278 		return (0);
   2279 #endif
   2280 	/* Ack interrupt and stop others from occuring. */
   2281 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2282 
   2283 	/*
   2284 	 * Process link state changes.
   2285 	 * Grrr. The link status word in the status block does
   2286 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2287 	 * according to all avaibable information. Hence, we have
   2288 	 * to enable MII interrupts in order to properly obtain
   2289 	 * async link changes. Unfortunately, this also means that
   2290 	 * we have to read the MAC status register to detect link
   2291 	 * changes, thereby adding an additional register access to
   2292 	 * the interrupt handler.
   2293 	 */
   2294 
   2295 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2296 		u_int32_t		status;
   2297 
   2298 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2299 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2300 			sc->bge_link = 0;
   2301 			callout_stop(&sc->bge_timeout);
   2302 			bge_tick(sc);
   2303 			/* Clear the interrupt */
   2304 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2305 			    BGE_EVTENB_MI_INTERRUPT);
   2306 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2307 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2308 			    BRGPHY_INTRS);
   2309 		}
   2310 	} else {
   2311 		if (sc->bge_rdata->bge_status_block.bge_status &
   2312 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2313 			sc->bge_link = 0;
   2314 			callout_stop(&sc->bge_timeout);
   2315 			bge_tick(sc);
   2316 			/* Clear the interrupt */
   2317 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2318 			    BGE_MACSTAT_CFG_CHANGED);
   2319 		}
   2320 	}
   2321 
   2322 	if (ifp->if_flags & IFF_RUNNING) {
   2323 		/* Check RX return ring producer/consumer */
   2324 		bge_rxeof(sc);
   2325 
   2326 		/* Check TX ring producer/consumer */
   2327 		bge_txeof(sc);
   2328 	}
   2329 
   2330 	bge_handle_events(sc);
   2331 
   2332 	/* Re-enable interrupts. */
   2333 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2334 
   2335 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2336 		bge_start(ifp);
   2337 
   2338 	return (1);
   2339 }
   2340 
   2341 void
   2342 bge_tick(xsc)
   2343 	void *xsc;
   2344 {
   2345 	struct bge_softc *sc = xsc;
   2346 	struct mii_data *mii = &sc->bge_mii;
   2347 	struct ifmedia *ifm = NULL;
   2348 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2349 	int s;
   2350 
   2351 	s = splnet();
   2352 
   2353 	bge_stats_update(sc);
   2354 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2355 	if (sc->bge_link) {
   2356 		splx(s);
   2357 		return;
   2358 	}
   2359 
   2360 	if (sc->bge_tbi) {
   2361 		ifm = &sc->bge_ifmedia;
   2362 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2363 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2364 			sc->bge_link++;
   2365 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2366 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2367 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2368 				bge_start(ifp);
   2369 		}
   2370 		splx(s);
   2371 		return;
   2372 	}
   2373 
   2374 	mii_tick(mii);
   2375 
   2376 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2377 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2378 		sc->bge_link++;
   2379 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   2380 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   2381 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2382 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2383 			bge_start(ifp);
   2384 	}
   2385 
   2386 	splx(s);
   2387 }
   2388 
   2389 void
   2390 bge_stats_update(sc)
   2391 	struct bge_softc *sc;
   2392 {
   2393 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2394 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2395 
   2396 #define READ_STAT(sc, stats, stat) \
   2397 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2398 
   2399 	ifp->if_collisions +=
   2400 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2401 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2402 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2403 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2404 	  ifp->if_collisions;
   2405 
   2406 #undef READ_STAT
   2407 
   2408 #ifdef notdef
   2409 	ifp->if_collisions +=
   2410 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2411 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2412 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2413 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2414 	   ifp->if_collisions;
   2415 #endif
   2416 }
   2417 
   2418 /*
   2419  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2420  * pointers to descriptors.
   2421  */
   2422 int
   2423 bge_encap(sc, m_head, txidx)
   2424 	struct bge_softc *sc;
   2425 	struct mbuf *m_head;
   2426 	u_int32_t *txidx;
   2427 {
   2428 	struct bge_tx_bd	*f = NULL;
   2429 	u_int32_t		frag, cur, cnt = 0;
   2430 	u_int16_t		csum_flags = 0;
   2431 	struct txdmamap_pool_entry *dma;
   2432 	bus_dmamap_t dmamap;
   2433 	int			i = 0;
   2434 	struct mbuf		*n;
   2435 
   2436 	cur = frag = *txidx;
   2437 
   2438 	if (m_head->m_pkthdr.csum_flags) {
   2439 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   2440 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   2441 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2442 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   2443 	}
   2444 
   2445 	dma = SLIST_FIRST(&sc->txdma_list);
   2446 	if (dma == NULL)
   2447 		return ENOBUFS;
   2448 	dmamap = dma->dmamap;
   2449 
   2450 	/*
   2451 	 * Start packing the mbufs in this chain into
   2452 	 * the fragment pointers. Stop when we run out
   2453 	 * of fragments or hit the end of the mbuf chain.
   2454 	 */
   2455 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   2456 	    BUS_DMA_NOWAIT))
   2457 		return(ENOBUFS);
   2458 
   2459 	n = sc->ethercom.ec_nvlans ?
   2460 	    m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
   2461 
   2462 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2463 		f = &sc->bge_rdata->bge_tx_ring[frag];
   2464 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   2465 			break;
   2466 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   2467 		f->bge_len = dmamap->dm_segs[i].ds_len;
   2468 		f->bge_flags = csum_flags;
   2469 
   2470 		if (n != NULL) {
   2471 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   2472 			f->bge_vlan_tag = *mtod(n, int *);
   2473 		} else {
   2474 			f->bge_vlan_tag = 0;
   2475 		}
   2476 		/*
   2477 		 * Sanity check: avoid coming within 16 descriptors
   2478 		 * of the end of the ring.
   2479 		 */
   2480 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   2481 			return(ENOBUFS);
   2482 		cur = frag;
   2483 		BGE_INC(frag, BGE_TX_RING_CNT);
   2484 		cnt++;
   2485 	}
   2486 
   2487 	if (i < dmamap->dm_nsegs)
   2488 		return ENOBUFS;
   2489 
   2490 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   2491 	    BUS_DMASYNC_PREWRITE);
   2492 
   2493 	if (frag == sc->bge_tx_saved_considx)
   2494 		return(ENOBUFS);
   2495 
   2496 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   2497 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   2498 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   2499 	sc->txdma[cur] = dma;
   2500 	sc->bge_txcnt += cnt;
   2501 
   2502 	*txidx = frag;
   2503 
   2504 	return(0);
   2505 }
   2506 
   2507 /*
   2508  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2509  * to the mbuf data regions directly in the transmit descriptors.
   2510  */
   2511 void
   2512 bge_start(ifp)
   2513 	struct ifnet *ifp;
   2514 {
   2515 	struct bge_softc *sc;
   2516 	struct mbuf *m_head = NULL;
   2517 	u_int32_t prodidx = 0;
   2518 	int pkts = 0;
   2519 
   2520 	sc = ifp->if_softc;
   2521 
   2522 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   2523 		return;
   2524 
   2525 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   2526 
   2527 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   2528 		IFQ_POLL(&ifp->if_snd, m_head);
   2529 		if (m_head == NULL)
   2530 			break;
   2531 
   2532 #if 0
   2533 		/*
   2534 		 * XXX
   2535 		 * safety overkill.  If this is a fragmented packet chain
   2536 		 * with delayed TCP/UDP checksums, then only encapsulate
   2537 		 * it if we have enough descriptors to handle the entire
   2538 		 * chain at once.
   2539 		 * (paranoia -- may not actually be needed)
   2540 		 */
   2541 		if (m_head->m_flags & M_FIRSTFRAG &&
   2542 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   2543 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   2544 			    m_head->m_pkthdr.csum_data + 16) {
   2545 				ifp->if_flags |= IFF_OACTIVE;
   2546 				break;
   2547 			}
   2548 		}
   2549 #endif
   2550 
   2551 		/*
   2552 		 * Pack the data into the transmit ring. If we
   2553 		 * don't have room, set the OACTIVE flag and wait
   2554 		 * for the NIC to drain the ring.
   2555 		 */
   2556 		if (bge_encap(sc, m_head, &prodidx)) {
   2557 			ifp->if_flags |= IFF_OACTIVE;
   2558 			break;
   2559 		}
   2560 
   2561 		/* now we are committed to transmit the packet */
   2562 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2563 		pkts++;
   2564 
   2565 #if NBPFILTER > 0
   2566 		/*
   2567 		 * If there's a BPF listener, bounce a copy of this frame
   2568 		 * to him.
   2569 		 */
   2570 		if (ifp->if_bpf)
   2571 			bpf_mtap(ifp->if_bpf, m_head);
   2572 #endif
   2573 	}
   2574 	if (pkts == 0)
   2575 		return;
   2576 
   2577 	/* Transmit */
   2578 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2579 
   2580 	/*
   2581 	 * Set a timeout in case the chip goes out to lunch.
   2582 	 */
   2583 	ifp->if_timer = 5;
   2584 }
   2585 
   2586 int
   2587 bge_init(ifp)
   2588 	struct ifnet *ifp;
   2589 {
   2590 	struct bge_softc *sc = ifp->if_softc;
   2591 	u_int16_t *m;
   2592 	int s, error;
   2593 
   2594 	s = splnet();
   2595 
   2596 	ifp = &sc->ethercom.ec_if;
   2597 
   2598 	/* Cancel pending I/O and flush buffers. */
   2599 	bge_stop(sc);
   2600 	bge_reset(sc);
   2601 	bge_chipinit(sc);
   2602 
   2603 	/*
   2604 	 * Init the various state machines, ring
   2605 	 * control blocks and firmware.
   2606 	 */
   2607 	error = bge_blockinit(sc);
   2608 	if (error != 0) {
   2609 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   2610 		    error);
   2611 		splx(s);
   2612 		return error;
   2613 	}
   2614 
   2615 	ifp = &sc->ethercom.ec_if;
   2616 
   2617 	/* Specify MTU. */
   2618 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   2619 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2620 
   2621 	/* Load our MAC address. */
   2622 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   2623 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   2624 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   2625 
   2626 	/* Enable or disable promiscuous mode as needed. */
   2627 	if (ifp->if_flags & IFF_PROMISC) {
   2628 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2629 	} else {
   2630 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2631 	}
   2632 
   2633 	/* Program multicast filter. */
   2634 	bge_setmulti(sc);
   2635 
   2636 	/* Init RX ring. */
   2637 	bge_init_rx_ring_std(sc);
   2638 
   2639 	/* Init jumbo RX ring. */
   2640 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2641 		bge_init_rx_ring_jumbo(sc);
   2642 
   2643 	/* Init our RX return ring index */
   2644 	sc->bge_rx_saved_considx = 0;
   2645 
   2646 	/* Init TX ring. */
   2647 	bge_init_tx_ring(sc);
   2648 
   2649 	/* Turn on transmitter */
   2650 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   2651 
   2652 	/* Turn on receiver */
   2653 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2654 
   2655 	/* Tell firmware we're alive. */
   2656 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2657 
   2658 	/* Enable host interrupts. */
   2659 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   2660 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2661 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2662 
   2663 	bge_ifmedia_upd(ifp);
   2664 
   2665 	ifp->if_flags |= IFF_RUNNING;
   2666 	ifp->if_flags &= ~IFF_OACTIVE;
   2667 
   2668 	splx(s);
   2669 
   2670 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2671 
   2672 	return 0;
   2673 }
   2674 
   2675 /*
   2676  * Set media options.
   2677  */
   2678 int
   2679 bge_ifmedia_upd(ifp)
   2680 	struct ifnet *ifp;
   2681 {
   2682 	struct bge_softc *sc = ifp->if_softc;
   2683 	struct mii_data *mii = &sc->bge_mii;
   2684 	struct ifmedia *ifm = &sc->bge_ifmedia;
   2685 
   2686 	/* If this is a 1000baseX NIC, enable the TBI port. */
   2687 	if (sc->bge_tbi) {
   2688 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2689 			return(EINVAL);
   2690 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2691 		case IFM_AUTO:
   2692 			break;
   2693 		case IFM_1000_SX:
   2694 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2695 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   2696 				    BGE_MACMODE_HALF_DUPLEX);
   2697 			} else {
   2698 				BGE_SETBIT(sc, BGE_MAC_MODE,
   2699 				    BGE_MACMODE_HALF_DUPLEX);
   2700 			}
   2701 			break;
   2702 		default:
   2703 			return(EINVAL);
   2704 		}
   2705 		return(0);
   2706 	}
   2707 
   2708 	sc->bge_link = 0;
   2709 	mii_mediachg(mii);
   2710 
   2711 	return(0);
   2712 }
   2713 
   2714 /*
   2715  * Report current media status.
   2716  */
   2717 void
   2718 bge_ifmedia_sts(ifp, ifmr)
   2719 	struct ifnet *ifp;
   2720 	struct ifmediareq *ifmr;
   2721 {
   2722 	struct bge_softc *sc = ifp->if_softc;
   2723 	struct mii_data *mii = &sc->bge_mii;
   2724 
   2725 	if (sc->bge_tbi) {
   2726 		ifmr->ifm_status = IFM_AVALID;
   2727 		ifmr->ifm_active = IFM_ETHER;
   2728 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2729 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   2730 			ifmr->ifm_status |= IFM_ACTIVE;
   2731 		ifmr->ifm_active |= IFM_1000_SX;
   2732 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   2733 			ifmr->ifm_active |= IFM_HDX;
   2734 		else
   2735 			ifmr->ifm_active |= IFM_FDX;
   2736 		return;
   2737 	}
   2738 
   2739 	mii_pollstat(mii);
   2740 	ifmr->ifm_active = mii->mii_media_active;
   2741 	ifmr->ifm_status = mii->mii_media_status;
   2742 }
   2743 
   2744 int
   2745 bge_ioctl(ifp, command, data)
   2746 	struct ifnet *ifp;
   2747 	u_long command;
   2748 	caddr_t data;
   2749 {
   2750 	struct bge_softc *sc = ifp->if_softc;
   2751 	struct ifreq *ifr = (struct ifreq *) data;
   2752 	int s, error = 0;
   2753 	struct mii_data *mii;
   2754 
   2755 	s = splnet();
   2756 
   2757 	switch(command) {
   2758 	case SIOCSIFFLAGS:
   2759 		if (ifp->if_flags & IFF_UP) {
   2760 			/*
   2761 			 * If only the state of the PROMISC flag changed,
   2762 			 * then just use the 'set promisc mode' command
   2763 			 * instead of reinitializing the entire NIC. Doing
   2764 			 * a full re-init means reloading the firmware and
   2765 			 * waiting for it to start up, which may take a
   2766 			 * second or two.
   2767 			 */
   2768 			if (ifp->if_flags & IFF_RUNNING &&
   2769 			    ifp->if_flags & IFF_PROMISC &&
   2770 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   2771 				BGE_SETBIT(sc, BGE_RX_MODE,
   2772 				    BGE_RXMODE_RX_PROMISC);
   2773 			} else if (ifp->if_flags & IFF_RUNNING &&
   2774 			    !(ifp->if_flags & IFF_PROMISC) &&
   2775 			    sc->bge_if_flags & IFF_PROMISC) {
   2776 				BGE_CLRBIT(sc, BGE_RX_MODE,
   2777 				    BGE_RXMODE_RX_PROMISC);
   2778 			} else
   2779 				bge_init(ifp);
   2780 		} else {
   2781 			if (ifp->if_flags & IFF_RUNNING) {
   2782 				bge_stop(sc);
   2783 			}
   2784 		}
   2785 		sc->bge_if_flags = ifp->if_flags;
   2786 		error = 0;
   2787 		break;
   2788 	case SIOCSIFMEDIA:
   2789 	case SIOCGIFMEDIA:
   2790 		if (sc->bge_tbi) {
   2791 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   2792 			    command);
   2793 		} else {
   2794 			mii = &sc->bge_mii;
   2795 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   2796 			    command);
   2797 		}
   2798 		error = 0;
   2799 		break;
   2800 	default:
   2801 		error = ether_ioctl(ifp, command, data);
   2802 		if (error == ENETRESET) {
   2803 			bge_setmulti(sc);
   2804 			error = 0;
   2805 		}
   2806 		break;
   2807 	}
   2808 
   2809 	splx(s);
   2810 
   2811 	return(error);
   2812 }
   2813 
   2814 void
   2815 bge_watchdog(ifp)
   2816 	struct ifnet *ifp;
   2817 {
   2818 	struct bge_softc *sc;
   2819 
   2820 	sc = ifp->if_softc;
   2821 
   2822 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   2823 
   2824 	ifp->if_flags &= ~IFF_RUNNING;
   2825 	bge_init(ifp);
   2826 
   2827 	ifp->if_oerrors++;
   2828 }
   2829 
   2830 static void
   2831 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   2832 {
   2833 	int i;
   2834 
   2835 	BGE_CLRBIT(sc, reg, bit);
   2836 
   2837 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2838 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   2839 			return;
   2840 		delay(100);
   2841 	}
   2842 
   2843 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   2844 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   2845 }
   2846 
   2847 /*
   2848  * Stop the adapter and free any mbufs allocated to the
   2849  * RX and TX lists.
   2850  */
   2851 void
   2852 bge_stop(sc)
   2853 	struct bge_softc *sc;
   2854 {
   2855 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2856 
   2857 	callout_stop(&sc->bge_timeout);
   2858 
   2859 	/*
   2860 	 * Disable all of the receiver blocks
   2861 	 */
   2862 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2863 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2864 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2865 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2866 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   2867 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2868 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   2869 
   2870 	/*
   2871 	 * Disable all of the transmit blocks
   2872 	 */
   2873 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2874 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2875 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2876 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   2877 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   2878 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2879 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2880 
   2881 	/*
   2882 	 * Shut down all of the memory managers and related
   2883 	 * state machines.
   2884 	 */
   2885 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2886 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   2887 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2888 
   2889 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2890 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2891 
   2892 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   2893 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2894 
   2895 	/* Disable host interrupts. */
   2896 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2897 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2898 
   2899 	/*
   2900 	 * Tell firmware we're shutting down.
   2901 	 */
   2902 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2903 
   2904 	/* Free the RX lists. */
   2905 	bge_free_rx_ring_std(sc);
   2906 
   2907 	/* Free jumbo RX list. */
   2908 	bge_free_rx_ring_jumbo(sc);
   2909 
   2910 	/* Free TX buffers. */
   2911 	bge_free_tx_ring(sc);
   2912 
   2913 	/*
   2914 	 * Isolate/power down the PHY.
   2915 	 */
   2916 	if (!sc->bge_tbi)
   2917 		mii_down(&sc->bge_mii);
   2918 
   2919 	sc->bge_link = 0;
   2920 
   2921 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   2922 
   2923 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2924 }
   2925 
   2926 /*
   2927  * Stop all chip I/O so that the kernel's probe routines don't
   2928  * get confused by errant DMAs when rebooting.
   2929  */
   2930 void
   2931 bge_shutdown(xsc)
   2932 	void *xsc;
   2933 {
   2934 	struct bge_softc *sc = (struct bge_softc *)xsc;
   2935 
   2936 	bge_stop(sc);
   2937 	bge_reset(sc);
   2938 }
   2939