if_bge.c revision 1.21 1 /* $NetBSD: if_bge.c,v 1.21 2002/09/30 20:37:25 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 *
46 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
47 * Senior Engineer, Wind River Systems
48 */
49
50 /*
51 * The Broadcom BCM5700 is based on technology originally developed by
52 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
53 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
54 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
55 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
56 * frames, highly configurable RX filtering, and 16 RX and TX queues
57 * (which, along with RX filter rules, can be used for QOS applications).
58 * Other features, such as TCP segmentation, may be available as part
59 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
60 * firmware images can be stored in hardware and need not be compiled
61 * into the driver.
62 *
63 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
64 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
65 *
66 * The BCM5701 is a single-chip solution incorporating both the BCM5700
67 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
68 * does not support external SSRAM.
69 *
70 * Broadcom also produces a variation of the BCM5700 under the "Altima"
71 * brand name, which is functionally similar but lacks PCI-X support.
72 *
73 * Without external SSRAM, you can only have at most 4 TX rings,
74 * and the use of the mini RX ring is disabled. This seems to imply
75 * that these features are simply not available on the BCM5701. As a
76 * result, this driver does not implement any support for the mini RX
77 * ring.
78 */
79
80 #include "bpfilter.h"
81 #include "vlan.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/device.h>
91 #include <sys/socket.h>
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97
98 #ifdef INET
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/in_var.h>
102 #include <netinet/ip.h>
103 #endif
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #include <dev/mii/miidevs.h>
116 #include <dev/mii/brgphyreg.h>
117
118 #include <dev/pci/if_bgereg.h>
119
120 #include <uvm/uvm_extern.h>
121
122 int bge_probe(struct device *, struct cfdata *, void *);
123 void bge_attach(struct device *, struct device *, void *);
124 void bge_release_resources(struct bge_softc *);
125 void bge_txeof(struct bge_softc *);
126 void bge_rxeof(struct bge_softc *);
127
128 void bge_tick(void *);
129 void bge_stats_update(struct bge_softc *);
130 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
131
132 int bge_intr(void *);
133 void bge_start(struct ifnet *);
134 int bge_ioctl(struct ifnet *, u_long, caddr_t);
135 int bge_init(struct ifnet *);
136 void bge_stop(struct bge_softc *);
137 void bge_watchdog(struct ifnet *);
138 void bge_shutdown(void *);
139 int bge_ifmedia_upd(struct ifnet *);
140 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
141
142 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
143 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
144
145 void bge_setmulti(struct bge_softc *);
146
147 void bge_handle_events(struct bge_softc *);
148 int bge_alloc_jumbo_mem(struct bge_softc *);
149 void bge_free_jumbo_mem(struct bge_softc *);
150 void *bge_jalloc(struct bge_softc *);
151 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
152 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
153 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
154 int bge_init_rx_ring_std(struct bge_softc *);
155 void bge_free_rx_ring_std(struct bge_softc *);
156 int bge_init_rx_ring_jumbo(struct bge_softc *);
157 void bge_free_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_tx_ring(struct bge_softc *);
159 int bge_init_tx_ring(struct bge_softc *);
160
161 int bge_chipinit(struct bge_softc *);
162 int bge_blockinit(struct bge_softc *);
163
164 #ifdef notdef
165 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
166 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
167 void bge_vpd_read(struct bge_softc *);
168 #endif
169
170 u_int32_t bge_readmem_ind(struct bge_softc *, int);
171 void bge_writemem_ind(struct bge_softc *, int, int);
172 #ifdef notdef
173 u_int32_t bge_readreg_ind(struct bge_softc *, int);
174 #endif
175 void bge_writereg_ind(struct bge_softc *, int, int);
176
177 int bge_miibus_readreg(struct device *, int, int);
178 void bge_miibus_writereg(struct device *, int, int, int);
179 void bge_miibus_statchg(struct device *);
180
181 void bge_reset(struct bge_softc *);
182
183 void bge_dump_status(struct bge_softc *);
184 void bge_dump_rxbd(struct bge_rx_bd *);
185
186 #define BGE_DEBUG
187 #ifdef BGE_DEBUG
188 #define DPRINTF(x) if (bgedebug) printf x
189 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
190 int bgedebug = 0;
191 #else
192 #define DPRINTF(x)
193 #define DPRINTFN(n,x)
194 #endif
195
196 /* Various chip quirks. */
197 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
198 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
199
200 CFATTACH_DECL(bge, sizeof(struct bge_softc),
201 bge_probe, bge_attach, NULL, NULL)
202
203 u_int32_t
204 bge_readmem_ind(sc, off)
205 struct bge_softc *sc;
206 int off;
207 {
208 struct pci_attach_args *pa = &(sc->bge_pa);
209 pcireg_t val;
210
211 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
212 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
213 return val;
214 }
215
216 void
217 bge_writemem_ind(sc, off, val)
218 struct bge_softc *sc;
219 int off, val;
220 {
221 struct pci_attach_args *pa = &(sc->bge_pa);
222
223 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
224 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
225 }
226
227 #ifdef notdef
228 u_int32_t
229 bge_readreg_ind(sc, off)
230 struct bge_softc *sc;
231 int off;
232 {
233 struct pci_attach_args *pa = &(sc->bge_pa);
234
235 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
236 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
237 }
238 #endif
239
240 void
241 bge_writereg_ind(sc, off, val)
242 struct bge_softc *sc;
243 int off, val;
244 {
245 struct pci_attach_args *pa = &(sc->bge_pa);
246
247 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
248 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
249 }
250
251 #ifdef notdef
252 u_int8_t
253 bge_vpd_readbyte(sc, addr)
254 struct bge_softc *sc;
255 int addr;
256 {
257 int i;
258 u_int32_t val;
259 struct pci_attach_args *pa = &(sc->bge_pa);
260
261 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
262 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
263 DELAY(10);
264 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
265 BGE_VPD_FLAG)
266 break;
267 }
268
269 if (i == BGE_TIMEOUT) {
270 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
271 return(0);
272 }
273
274 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
275
276 return((val >> ((addr % 4) * 8)) & 0xFF);
277 }
278
279 void
280 bge_vpd_read_res(sc, res, addr)
281 struct bge_softc *sc;
282 struct vpd_res *res;
283 int addr;
284 {
285 int i;
286 u_int8_t *ptr;
287
288 ptr = (u_int8_t *)res;
289 for (i = 0; i < sizeof(struct vpd_res); i++)
290 ptr[i] = bge_vpd_readbyte(sc, i + addr);
291 }
292
293 void
294 bge_vpd_read(sc)
295 struct bge_softc *sc;
296 {
297 int pos = 0, i;
298 struct vpd_res res;
299
300 if (sc->bge_vpd_prodname != NULL)
301 free(sc->bge_vpd_prodname, M_DEVBUF);
302 if (sc->bge_vpd_readonly != NULL)
303 free(sc->bge_vpd_readonly, M_DEVBUF);
304 sc->bge_vpd_prodname = NULL;
305 sc->bge_vpd_readonly = NULL;
306
307 bge_vpd_read_res(sc, &res, pos);
308
309 if (res.vr_id != VPD_RES_ID) {
310 printf("%s: bad VPD resource id: expected %x got %x\n",
311 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
312 return;
313 }
314
315 pos += sizeof(res);
316 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
317 if (sc->bge_vpd_prodname == NULL)
318 panic("bge_vpd_read");
319 for (i = 0; i < res.vr_len; i++)
320 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
321 sc->bge_vpd_prodname[i] = '\0';
322 pos += i;
323
324 bge_vpd_read_res(sc, &res, pos);
325
326 if (res.vr_id != VPD_RES_READ) {
327 printf("%s: bad VPD resource id: expected %x got %x\n",
328 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
329 return;
330 }
331
332 pos += sizeof(res);
333 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
334 if (sc->bge_vpd_readonly == NULL)
335 panic("bge_vpd_read");
336 for (i = 0; i < res.vr_len + 1; i++)
337 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
338 }
339 #endif
340
341 /*
342 * Read a byte of data stored in the EEPROM at address 'addr.' The
343 * BCM570x supports both the traditional bitbang interface and an
344 * auto access interface for reading the EEPROM. We use the auto
345 * access method.
346 */
347 u_int8_t
348 bge_eeprom_getbyte(sc, addr, dest)
349 struct bge_softc *sc;
350 int addr;
351 u_int8_t *dest;
352 {
353 int i;
354 u_int32_t byte = 0;
355
356 /*
357 * Enable use of auto EEPROM access so we can avoid
358 * having to use the bitbang method.
359 */
360 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
361
362 /* Reset the EEPROM, load the clock period. */
363 CSR_WRITE_4(sc, BGE_EE_ADDR,
364 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
365 DELAY(20);
366
367 /* Issue the read EEPROM command. */
368 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
369
370 /* Wait for completion */
371 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
372 DELAY(10);
373 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
374 break;
375 }
376
377 if (i == BGE_TIMEOUT) {
378 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
379 return(0);
380 }
381
382 /* Get result. */
383 byte = CSR_READ_4(sc, BGE_EE_DATA);
384
385 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
386
387 return(0);
388 }
389
390 /*
391 * Read a sequence of bytes from the EEPROM.
392 */
393 int
394 bge_read_eeprom(sc, dest, off, cnt)
395 struct bge_softc *sc;
396 caddr_t dest;
397 int off;
398 int cnt;
399 {
400 int err = 0, i;
401 u_int8_t byte = 0;
402
403 for (i = 0; i < cnt; i++) {
404 err = bge_eeprom_getbyte(sc, off + i, &byte);
405 if (err)
406 break;
407 *(dest + i) = byte;
408 }
409
410 return(err ? 1 : 0);
411 }
412
413 int
414 bge_miibus_readreg(dev, phy, reg)
415 struct device *dev;
416 int phy, reg;
417 {
418 struct bge_softc *sc = (struct bge_softc *)dev;
419 struct ifnet *ifp;
420 u_int32_t val;
421 int i;
422
423 ifp = &sc->ethercom.ec_if;
424
425 if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
426 return(0);
427
428 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
429 BGE_MIPHY(phy)|BGE_MIREG(reg));
430
431 for (i = 0; i < BGE_TIMEOUT; i++) {
432 val = CSR_READ_4(sc, BGE_MI_COMM);
433 if (!(val & BGE_MICOMM_BUSY))
434 break;
435 delay(10);
436 }
437
438 if (i == BGE_TIMEOUT) {
439 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
440 return(0);
441 }
442
443 val = CSR_READ_4(sc, BGE_MI_COMM);
444
445 if (val & BGE_MICOMM_READFAIL)
446 return(0);
447
448 return(val & 0xFFFF);
449 }
450
451 void
452 bge_miibus_writereg(dev, phy, reg, val)
453 struct device *dev;
454 int phy, reg, val;
455 {
456 struct bge_softc *sc = (struct bge_softc *)dev;
457 int i;
458
459 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
460 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
461
462 for (i = 0; i < BGE_TIMEOUT; i++) {
463 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
464 break;
465 delay(10);
466 }
467
468 if (i == BGE_TIMEOUT) {
469 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 }
471 }
472
473 void
474 bge_miibus_statchg(dev)
475 struct device *dev;
476 {
477 struct bge_softc *sc = (struct bge_softc *)dev;
478 struct mii_data *mii = &sc->bge_mii;
479
480 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
481 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
482 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
483 } else {
484 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
485 }
486
487 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
488 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
489 } else {
490 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
491 }
492 }
493
494 /*
495 * Handle events that have triggered interrupts.
496 */
497 void
498 bge_handle_events(sc)
499 struct bge_softc *sc;
500 {
501
502 return;
503 }
504
505 /*
506 * Memory management for jumbo frames.
507 */
508
509 int
510 bge_alloc_jumbo_mem(sc)
511 struct bge_softc *sc;
512 {
513 caddr_t ptr, kva;
514 bus_dma_segment_t seg;
515 int i, rseg, state, error;
516 struct bge_jpool_entry *entry;
517
518 state = error = 0;
519
520 /* Grab a big chunk o' storage. */
521 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
522 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
523 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
524 return ENOBUFS;
525 }
526
527 state = 1;
528 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
529 BUS_DMA_NOWAIT)) {
530 printf("%s: can't map dma buffers (%d bytes)\n",
531 sc->bge_dev.dv_xname, (int)BGE_JMEM);
532 error = ENOBUFS;
533 goto out;
534 }
535
536 state = 2;
537 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
538 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
539 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
540 error = ENOBUFS;
541 goto out;
542 }
543
544 state = 3;
545 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
546 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
547 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
548 error = ENOBUFS;
549 goto out;
550 }
551
552 state = 4;
553 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
554 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
555
556 SLIST_INIT(&sc->bge_jfree_listhead);
557 SLIST_INIT(&sc->bge_jinuse_listhead);
558
559 /*
560 * Now divide it up into 9K pieces and save the addresses
561 * in an array.
562 */
563 ptr = sc->bge_cdata.bge_jumbo_buf;
564 for (i = 0; i < BGE_JSLOTS; i++) {
565 sc->bge_cdata.bge_jslots[i] = ptr;
566 ptr += BGE_JLEN;
567 entry = malloc(sizeof(struct bge_jpool_entry),
568 M_DEVBUF, M_NOWAIT);
569 if (entry == NULL) {
570 printf("%s: no memory for jumbo buffer queue!\n",
571 sc->bge_dev.dv_xname);
572 error = ENOBUFS;
573 goto out;
574 }
575 entry->slot = i;
576 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
577 entry, jpool_entries);
578 }
579 out:
580 if (error != 0) {
581 switch (state) {
582 case 4:
583 bus_dmamap_unload(sc->bge_dmatag,
584 sc->bge_cdata.bge_rx_jumbo_map);
585 case 3:
586 bus_dmamap_destroy(sc->bge_dmatag,
587 sc->bge_cdata.bge_rx_jumbo_map);
588 case 2:
589 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
590 case 1:
591 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
592 break;
593 default:
594 break;
595 }
596 }
597
598 return error;
599 }
600
601 /*
602 * Allocate a jumbo buffer.
603 */
604 void *
605 bge_jalloc(sc)
606 struct bge_softc *sc;
607 {
608 struct bge_jpool_entry *entry;
609
610 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
611
612 if (entry == NULL) {
613 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
614 return(NULL);
615 }
616
617 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
618 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
619 return(sc->bge_cdata.bge_jslots[entry->slot]);
620 }
621
622 /*
623 * Release a jumbo buffer.
624 */
625 void
626 bge_jfree(m, buf, size, arg)
627 struct mbuf *m;
628 caddr_t buf;
629 u_int size;
630 void *arg;
631 {
632 struct bge_jpool_entry *entry;
633 struct bge_softc *sc;
634 int i, s;
635
636 /* Extract the softc struct pointer. */
637 sc = (struct bge_softc *)arg;
638
639 if (sc == NULL)
640 panic("bge_jfree: can't find softc pointer!");
641
642 /* calculate the slot this buffer belongs to */
643
644 i = ((caddr_t)buf
645 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
646
647 if ((i < 0) || (i >= BGE_JSLOTS))
648 panic("bge_jfree: asked to free buffer that we don't manage!");
649
650 s = splvm();
651 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
652 if (entry == NULL)
653 panic("bge_jfree: buffer not in use!");
654 entry->slot = i;
655 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
656 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
657
658 if (__predict_true(m != NULL))
659 pool_cache_put(&mbpool_cache, m);
660 splx(s);
661 }
662
663
664 /*
665 * Intialize a standard receive ring descriptor.
666 */
667 int
668 bge_newbuf_std(sc, i, m, dmamap)
669 struct bge_softc *sc;
670 int i;
671 struct mbuf *m;
672 bus_dmamap_t dmamap;
673 {
674 struct mbuf *m_new = NULL;
675 struct bge_rx_bd *r;
676 int error;
677
678 if (dmamap == NULL) {
679 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
680 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
681 if (error != 0)
682 return error;
683 }
684
685 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
686
687 if (m == NULL) {
688 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
689 if (m_new == NULL) {
690 return(ENOBUFS);
691 }
692
693 MCLGET(m_new, M_DONTWAIT);
694 if (!(m_new->m_flags & M_EXT)) {
695 m_freem(m_new);
696 return(ENOBUFS);
697 }
698 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
699 m_adj(m_new, ETHER_ALIGN);
700
701 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
702 BUS_DMA_READ|BUS_DMA_NOWAIT))
703 return(ENOBUFS);
704 } else {
705 m_new = m;
706 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
707 m_new->m_data = m_new->m_ext.ext_buf;
708 m_adj(m_new, ETHER_ALIGN);
709 }
710
711 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
712 r = &sc->bge_rdata->bge_rx_std_ring[i];
713 bge_set_hostaddr(&r->bge_addr,
714 dmamap->dm_segs[0].ds_addr);
715 r->bge_flags = BGE_RXBDFLAG_END;
716 r->bge_len = m_new->m_len;
717 r->bge_idx = i;
718
719 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
720 offsetof(struct bge_ring_data, bge_rx_std_ring) +
721 i * sizeof (struct bge_rx_bd),
722 sizeof (struct bge_rx_bd),
723 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
724
725 return(0);
726 }
727
728 /*
729 * Initialize a jumbo receive ring descriptor. This allocates
730 * a jumbo buffer from the pool managed internally by the driver.
731 */
732 int
733 bge_newbuf_jumbo(sc, i, m)
734 struct bge_softc *sc;
735 int i;
736 struct mbuf *m;
737 {
738 struct mbuf *m_new = NULL;
739 struct bge_rx_bd *r;
740
741 if (m == NULL) {
742 caddr_t *buf = NULL;
743
744 /* Allocate the mbuf. */
745 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
746 if (m_new == NULL) {
747 return(ENOBUFS);
748 }
749
750 /* Allocate the jumbo buffer */
751 buf = bge_jalloc(sc);
752 if (buf == NULL) {
753 m_freem(m_new);
754 printf("%s: jumbo allocation failed "
755 "-- packet dropped!\n", sc->bge_dev.dv_xname);
756 return(ENOBUFS);
757 }
758
759 /* Attach the buffer to the mbuf. */
760 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
761 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
762 bge_jfree, sc);
763 } else {
764 m_new = m;
765 m_new->m_data = m_new->m_ext.ext_buf;
766 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
767 }
768
769 m_adj(m_new, ETHER_ALIGN);
770 /* Set up the descriptor. */
771 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
772 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
773 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
774 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
775 r->bge_len = m_new->m_len;
776 r->bge_idx = i;
777
778 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
779 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
780 i * sizeof (struct bge_rx_bd),
781 sizeof (struct bge_rx_bd),
782 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
783
784 return(0);
785 }
786
787 /*
788 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
789 * that's 1MB or memory, which is a lot. For now, we fill only the first
790 * 256 ring entries and hope that our CPU is fast enough to keep up with
791 * the NIC.
792 */
793 int
794 bge_init_rx_ring_std(sc)
795 struct bge_softc *sc;
796 {
797 int i;
798
799 if (sc->bge_flags & BGE_RXRING_VALID)
800 return 0;
801
802 for (i = 0; i < BGE_SSLOTS; i++) {
803 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
804 return(ENOBUFS);
805 }
806
807 sc->bge_std = i - 1;
808 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
809
810 sc->bge_flags |= BGE_RXRING_VALID;
811
812 return(0);
813 }
814
815 void
816 bge_free_rx_ring_std(sc)
817 struct bge_softc *sc;
818 {
819 int i;
820
821 if (!(sc->bge_flags & BGE_RXRING_VALID))
822 return;
823
824 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
825 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
826 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
827 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
828 bus_dmamap_destroy(sc->bge_dmatag,
829 sc->bge_cdata.bge_rx_std_map[i]);
830 }
831 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
832 sizeof(struct bge_rx_bd));
833 }
834
835 sc->bge_flags &= ~BGE_RXRING_VALID;
836 }
837
838 int
839 bge_init_rx_ring_jumbo(sc)
840 struct bge_softc *sc;
841 {
842 int i;
843 struct bge_rcb *rcb;
844 struct bge_rcb_opaque *rcbo;
845
846 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
847 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
848 return(ENOBUFS);
849 };
850
851 sc->bge_jumbo = i - 1;
852
853 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
854 rcbo = (struct bge_rcb_opaque *)rcb;
855 rcb->bge_flags = 0;
856 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
857
858 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
859
860 return(0);
861 }
862
863 void
864 bge_free_rx_ring_jumbo(sc)
865 struct bge_softc *sc;
866 {
867 int i;
868
869 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
870 return;
871
872 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
873 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
874 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
875 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
876 }
877 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
878 sizeof(struct bge_rx_bd));
879 }
880
881 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
882 }
883
884 void
885 bge_free_tx_ring(sc)
886 struct bge_softc *sc;
887 {
888 int i, freed;
889 struct txdmamap_pool_entry *dma;
890
891 if (!(sc->bge_flags & BGE_TXRING_VALID))
892 return;
893
894 freed = 0;
895
896 for (i = 0; i < BGE_TX_RING_CNT; i++) {
897 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
898 freed++;
899 m_freem(sc->bge_cdata.bge_tx_chain[i]);
900 sc->bge_cdata.bge_tx_chain[i] = NULL;
901 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
902 link);
903 sc->txdma[i] = 0;
904 }
905 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
906 sizeof(struct bge_tx_bd));
907 }
908
909 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
910 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
911 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
912 free(dma, M_DEVBUF);
913 }
914
915 sc->bge_flags &= ~BGE_TXRING_VALID;
916 }
917
918 int
919 bge_init_tx_ring(sc)
920 struct bge_softc *sc;
921 {
922 int i;
923 bus_dmamap_t dmamap;
924 struct txdmamap_pool_entry *dma;
925
926 if (sc->bge_flags & BGE_TXRING_VALID)
927 return 0;
928
929 sc->bge_txcnt = 0;
930 sc->bge_tx_saved_considx = 0;
931 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
932 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
933
934 SLIST_INIT(&sc->txdma_list);
935 for (i = 0; i < BGE_RSLOTS; i++) {
936 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
937 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
938 &dmamap))
939 return(ENOBUFS);
940 if (dmamap == NULL)
941 panic("dmamap NULL in bge_init_tx_ring");
942 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
943 if (dma == NULL) {
944 printf("%s: can't alloc txdmamap_pool_entry\n",
945 sc->bge_dev.dv_xname);
946 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
947 return (ENOMEM);
948 }
949 dma->dmamap = dmamap;
950 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
951 }
952
953 sc->bge_flags |= BGE_TXRING_VALID;
954
955 return(0);
956 }
957
958 void
959 bge_setmulti(sc)
960 struct bge_softc *sc;
961 {
962 struct ethercom *ac = &sc->ethercom;
963 struct ifnet *ifp = &ac->ec_if;
964 struct ether_multi *enm;
965 struct ether_multistep step;
966 u_int32_t hashes[4] = { 0, 0, 0, 0 };
967 u_int32_t h;
968 int i;
969
970 if (ifp->if_flags & IFF_PROMISC)
971 goto allmulti;
972
973 /* Now program new ones. */
974 ETHER_FIRST_MULTI(step, ac, enm);
975 while (enm != NULL) {
976 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
977 /*
978 * We must listen to a range of multicast addresses.
979 * For now, just accept all multicasts, rather than
980 * trying to set only those filter bits needed to match
981 * the range. (At this time, the only use of address
982 * ranges is for IP multicast routing, for which the
983 * range is big enough to require all bits set.)
984 */
985 goto allmulti;
986 }
987
988 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
989
990 /* Just want the 7 least-significant bits. */
991 h &= 0x7f;
992
993 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
994 ETHER_NEXT_MULTI(step, enm);
995 }
996
997 ifp->if_flags &= ~IFF_ALLMULTI;
998 goto setit;
999
1000 allmulti:
1001 ifp->if_flags |= IFF_ALLMULTI;
1002 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1003
1004 setit:
1005 for (i = 0; i < 4; i++)
1006 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1007 }
1008
1009 int bge_swapbits[] = {
1010 0,
1011 BGE_MODECTL_BYTESWAP_DATA,
1012 BGE_MODECTL_WORDSWAP_DATA,
1013 BGE_MODECTL_BYTESWAP_NONFRAME,
1014 BGE_MODECTL_WORDSWAP_NONFRAME,
1015
1016 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1017 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1018 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1019
1020 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1021 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1022
1023 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1024
1025 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1026 BGE_MODECTL_BYTESWAP_NONFRAME,
1027 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1028 BGE_MODECTL_WORDSWAP_NONFRAME,
1029 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1030 BGE_MODECTL_WORDSWAP_NONFRAME,
1031 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1032 BGE_MODECTL_WORDSWAP_NONFRAME,
1033
1034 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1035 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1036 };
1037
1038 int bge_swapindex = 0;
1039
1040 /*
1041 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1042 * self-test results.
1043 */
1044 int
1045 bge_chipinit(sc)
1046 struct bge_softc *sc;
1047 {
1048 u_int32_t cachesize;
1049 int i;
1050 struct pci_attach_args *pa = &(sc->bge_pa);
1051
1052
1053 /* Set endianness before we access any non-PCI registers. */
1054 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1055 BGE_INIT);
1056
1057 /*
1058 * Check the 'ROM failed' bit on the RX CPU to see if
1059 * self-tests passed.
1060 */
1061 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1062 printf("%s: RX CPU self-diagnostics failed!\n",
1063 sc->bge_dev.dv_xname);
1064 return(ENODEV);
1065 }
1066
1067 /* Clear the MAC control register */
1068 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1069
1070 /*
1071 * Clear the MAC statistics block in the NIC's
1072 * internal memory.
1073 */
1074 for (i = BGE_STATS_BLOCK;
1075 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1076 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1077
1078 for (i = BGE_STATUS_BLOCK;
1079 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1080 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1081
1082 /* Set up the PCI DMA control register. */
1083 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1084 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1085
1086 /*
1087 * Set up general mode register.
1088 */
1089 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1090 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1091 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1092 BGE_MODECTL_RX_NO_PHDR_CSUM);
1093
1094 /* Get cache line size. */
1095 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1096
1097 /*
1098 * Avoid violating PCI spec on certain chip revs.
1099 */
1100 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1101 PCIM_CMD_MWIEN) {
1102 switch(cachesize) {
1103 case 1:
1104 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1105 BGE_PCI_WRITE_BNDRY_16BYTES);
1106 break;
1107 case 2:
1108 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1109 BGE_PCI_WRITE_BNDRY_32BYTES);
1110 break;
1111 case 4:
1112 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1113 BGE_PCI_WRITE_BNDRY_64BYTES);
1114 break;
1115 case 8:
1116 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1117 BGE_PCI_WRITE_BNDRY_128BYTES);
1118 break;
1119 case 16:
1120 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1121 BGE_PCI_WRITE_BNDRY_256BYTES);
1122 break;
1123 case 32:
1124 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1125 BGE_PCI_WRITE_BNDRY_512BYTES);
1126 break;
1127 case 64:
1128 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1129 BGE_PCI_WRITE_BNDRY_1024BYTES);
1130 break;
1131 default:
1132 /* Disable PCI memory write and invalidate. */
1133 #if 0
1134 if (bootverbose)
1135 printf("%s: cache line size %d not "
1136 "supported; disabling PCI MWI\n",
1137 sc->bge_dev.dv_xname, cachesize);
1138 #endif
1139 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1140 PCIM_CMD_MWIEN);
1141 break;
1142 }
1143 }
1144
1145 #ifdef __brokenalpha__
1146 /*
1147 * Must insure that we do not cross an 8K (bytes) boundary
1148 * for DMA reads. Our highest limit is 1K bytes. This is a
1149 * restriction on some ALPHA platforms with early revision
1150 * 21174 PCI chipsets, such as the AlphaPC 164lx
1151 */
1152 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1153 #endif
1154
1155 /* Set the timer prescaler (always 66Mhz) */
1156 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1157
1158 return(0);
1159 }
1160
1161 int
1162 bge_blockinit(sc)
1163 struct bge_softc *sc;
1164 {
1165 struct bge_rcb *rcb;
1166 struct bge_rcb_opaque *rcbo;
1167 bus_size_t rcb_addr;
1168 int i;
1169 struct ifnet *ifp = &sc->ethercom.ec_if;
1170 bge_hostaddr taddr;
1171
1172 /*
1173 * Initialize the memory window pointer register so that
1174 * we can access the first 32K of internal NIC RAM. This will
1175 * allow us to set up the TX send ring RCBs and the RX return
1176 * ring RCBs, plus other things which live in NIC memory.
1177 */
1178
1179 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1180 BGE_PCI_MEMWIN_BASEADDR, 0);
1181
1182 /* Configure mbuf memory pool */
1183 if (sc->bge_extram) {
1184 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1185 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1186 } else {
1187 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1188 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1189 }
1190
1191 /* Configure DMA resource pool */
1192 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1193 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1194
1195 /* Configure mbuf pool watermarks */
1196 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1197 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1198 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1199
1200 /* Configure DMA resource watermarks */
1201 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1202 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1203
1204 /* Enable buffer manager */
1205 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1206 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1207
1208 /* Poll for buffer manager start indication */
1209 for (i = 0; i < BGE_TIMEOUT; i++) {
1210 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1211 break;
1212 DELAY(10);
1213 }
1214
1215 if (i == BGE_TIMEOUT) {
1216 printf("%s: buffer manager failed to start\n",
1217 sc->bge_dev.dv_xname);
1218 return(ENXIO);
1219 }
1220
1221 /* Enable flow-through queues */
1222 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1223 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1224
1225 /* Wait until queue initialization is complete */
1226 for (i = 0; i < BGE_TIMEOUT; i++) {
1227 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1228 break;
1229 DELAY(10);
1230 }
1231
1232 if (i == BGE_TIMEOUT) {
1233 printf("%s: flow-through queue init failed\n",
1234 sc->bge_dev.dv_xname);
1235 return(ENXIO);
1236 }
1237
1238 /* Initialize the standard RX ring control block */
1239 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1240 bge_set_hostaddr(&rcb->bge_hostaddr,
1241 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1242 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1243 if (sc->bge_extram)
1244 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1245 else
1246 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1247 rcb->bge_flags = 0;
1248 rcbo = (struct bge_rcb_opaque *)rcb;
1249 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1250 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1251 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1252 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1253
1254 /*
1255 * Initialize the jumbo RX ring control block
1256 * We set the 'ring disabled' bit in the flags
1257 * field until we're actually ready to start
1258 * using this ring (i.e. once we set the MTU
1259 * high enough to require it).
1260 */
1261 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1262 bge_set_hostaddr(&rcb->bge_hostaddr,
1263 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1264 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1265 if (sc->bge_extram)
1266 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1267 else
1268 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1269 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1270
1271 rcbo = (struct bge_rcb_opaque *)rcb;
1272 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1273 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1274 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1275 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1276
1277 /* Set up dummy disabled mini ring RCB */
1278 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1279 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1280 rcbo = (struct bge_rcb_opaque *)rcb;
1281 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1282
1283 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1284 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1285 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1286
1287 /*
1288 * Set the BD ring replentish thresholds. The recommended
1289 * values are 1/8th the number of descriptors allocated to
1290 * each ring.
1291 */
1292 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1293 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1294
1295 /*
1296 * Disable all unused send rings by setting the 'ring disabled'
1297 * bit in the flags field of all the TX send ring control blocks.
1298 * These are located in NIC memory.
1299 */
1300 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1301 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1302 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1303 BGE_RCB_FLAG_RING_DISABLED);
1304 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1305 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1306 rcb_addr += sizeof(struct bge_rcb);
1307 }
1308
1309 /* Configure TX RCB 0 (we use only the first ring) */
1310 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1311 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1312 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1313 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1314 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1315 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1316 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1317 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1318
1319 /* Disable all unused RX return rings */
1320 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1321 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1322 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1323 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1324 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1325 BGE_RCB_FLAG_RING_DISABLED);
1326 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1327 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1328 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1329 (i * (sizeof(u_int64_t))), 0);
1330 rcb_addr += sizeof(struct bge_rcb);
1331 }
1332
1333 /* Initialize RX ring indexes */
1334 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1335 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1336 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1337
1338 /*
1339 * Set up RX return ring 0
1340 * Note that the NIC address for RX return rings is 0x00000000.
1341 * The return rings live entirely within the host, so the
1342 * nicaddr field in the RCB isn't used.
1343 */
1344 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1345 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1346 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1347 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1348 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1349 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1350 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1351
1352 /* Set random backoff seed for TX */
1353 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1354 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1355 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1356 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1357 BGE_TX_BACKOFF_SEED_MASK);
1358
1359 /* Set inter-packet gap */
1360 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1361
1362 /*
1363 * Specify which ring to use for packets that don't match
1364 * any RX rules.
1365 */
1366 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1367
1368 /*
1369 * Configure number of RX lists. One interrupt distribution
1370 * list, sixteen active lists, one bad frames class.
1371 */
1372 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1373
1374 /* Inialize RX list placement stats mask. */
1375 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1376 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1377
1378 /* Disable host coalescing until we get it set up */
1379 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1380
1381 /* Poll to make sure it's shut down. */
1382 for (i = 0; i < BGE_TIMEOUT; i++) {
1383 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1384 break;
1385 DELAY(10);
1386 }
1387
1388 if (i == BGE_TIMEOUT) {
1389 printf("%s: host coalescing engine failed to idle\n",
1390 sc->bge_dev.dv_xname);
1391 return(ENXIO);
1392 }
1393
1394 /* Set up host coalescing defaults */
1395 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1396 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1397 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1398 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1399 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1400 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1401 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1402 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1403 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1404
1405 /* Set up address of statistics block */
1406 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1407 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1408 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1409 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1410
1411 /* Set up address of status block */
1412 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1413 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1414 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1415 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1416 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1417 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1418
1419 /* Turn on host coalescing state machine */
1420 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1421
1422 /* Turn on RX BD completion state machine and enable attentions */
1423 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1424 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1425
1426 /* Turn on RX list placement state machine */
1427 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1428
1429 /* Turn on RX list selector state machine. */
1430 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1431
1432 /* Turn on DMA, clear stats */
1433 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1434 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1435 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1436 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1437 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1438
1439 /* Set misc. local control, enable interrupts on attentions */
1440 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1441
1442 #ifdef notdef
1443 /* Assert GPIO pins for PHY reset */
1444 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1445 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1446 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1447 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1448 #endif
1449
1450 /* Turn on DMA completion state machine */
1451 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1452
1453 /* Turn on write DMA state machine */
1454 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1455 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1456
1457 /* Turn on read DMA state machine */
1458 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1459 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1460
1461 /* Turn on RX data completion state machine */
1462 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1463
1464 /* Turn on RX BD initiator state machine */
1465 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1466
1467 /* Turn on RX data and RX BD initiator state machine */
1468 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1469
1470 /* Turn on Mbuf cluster free state machine */
1471 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1472
1473 /* Turn on send BD completion state machine */
1474 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1475
1476 /* Turn on send data completion state machine */
1477 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1478
1479 /* Turn on send data initiator state machine */
1480 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1481
1482 /* Turn on send BD initiator state machine */
1483 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1484
1485 /* Turn on send BD selector state machine */
1486 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1487
1488 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1489 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1490 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1491
1492 /* init LED register */
1493 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1494
1495 /* ack/clear link change events */
1496 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1497 BGE_MACSTAT_CFG_CHANGED);
1498 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1499
1500 /* Enable PHY auto polling (for MII/GMII only) */
1501 if (sc->bge_tbi) {
1502 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1503 } else {
1504 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1505 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1506 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1507 BGE_EVTENB_MI_INTERRUPT);
1508 }
1509
1510 /* Enable link state change attentions. */
1511 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1512
1513 return(0);
1514 }
1515
1516 static const struct bge_revision {
1517 uint32_t br_asicrev;
1518 uint32_t br_quirks;
1519 const char *br_name;
1520 } bge_revisions[] = {
1521 { BGE_ASICREV_BCM5700_A0,
1522 BGE_QUIRK_LINK_STATE_BROKEN,
1523 "BCM5700 A0" },
1524
1525 { BGE_ASICREV_BCM5700_A1,
1526 BGE_QUIRK_LINK_STATE_BROKEN,
1527 "BCM5700 A1" },
1528
1529 { BGE_ASICREV_BCM5700_B0,
1530 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN,
1531 "BCM5700 B0" },
1532
1533 { BGE_ASICREV_BCM5700_B1,
1534 BGE_QUIRK_LINK_STATE_BROKEN,
1535 "BCM5700 B1" },
1536
1537 { BGE_ASICREV_BCM5700_B2,
1538 BGE_QUIRK_LINK_STATE_BROKEN,
1539 "BCM5700 B2" },
1540
1541 /* This is treated like a BCM5700 Bx */
1542 { BGE_ASICREV_BCM5700_ALTIMA,
1543 BGE_QUIRK_LINK_STATE_BROKEN,
1544 "BCM5700 Altima" },
1545
1546 { BGE_ASICREV_BCM5700_C0,
1547 0,
1548 "BCM5700 C0" },
1549
1550 { BGE_ASICREV_BCM5701_A0,
1551 0,
1552 "BCM5701 A0" },
1553
1554 { BGE_ASICREV_BCM5701_B0,
1555 0,
1556 "BCM5701 B0" },
1557
1558 { BGE_ASICREV_BCM5701_B2,
1559 0,
1560 "BCM5701 B2" },
1561
1562 { BGE_ASICREV_BCM5701_B5,
1563 0,
1564 "BCM5701 B5" },
1565
1566 { BGE_ASICREV_BCM5703_A0,
1567 0,
1568 "BCM5703 A0" },
1569
1570 { BGE_ASICREV_BCM5703_A1,
1571 0,
1572 "BCM5703 A1" },
1573
1574 { BGE_ASICREV_BCM5703_A2,
1575 0,
1576 "BCM5703 A2" },
1577
1578 { 0, 0, NULL }
1579 };
1580
1581 static const struct bge_revision *
1582 bge_lookup_rev(uint32_t asicrev)
1583 {
1584 const struct bge_revision *br;
1585
1586 for (br = bge_revisions; br->br_name != NULL; br++) {
1587 if (br->br_asicrev == asicrev)
1588 return (br);
1589 }
1590
1591 return (NULL);
1592 }
1593
1594 static const struct bge_product {
1595 pci_vendor_id_t bp_vendor;
1596 pci_product_id_t bp_product;
1597 const char *bp_name;
1598 } bge_products[] = {
1599 /*
1600 * The BCM5700 documentation seems to indicate that the hardware
1601 * still has the Alteon vendor ID burned into it, though it
1602 * should always be overridden by the value in the EEPROM. We'll
1603 * check for it anyway.
1604 */
1605 { PCI_VENDOR_ALTEON,
1606 PCI_PRODUCT_ALTEON_BCM5700,
1607 "Broadcom BCM5700 Gigabit Ethernet" },
1608 { PCI_VENDOR_ALTEON,
1609 PCI_PRODUCT_ALTEON_BCM5701,
1610 "Broadcom BCM5701 Gigabit Ethernet" },
1611
1612 { PCI_VENDOR_ALTIMA,
1613 PCI_PRODUCT_ALTIMA_AC1000,
1614 "Altima AC1000 Gigabit Ethernet" },
1615 { PCI_VENDOR_ALTIMA,
1616 PCI_PRODUCT_ALTIMA_AC1001,
1617 "Altima AC1001 Gigabit Ethernet" },
1618 { PCI_VENDOR_ALTIMA,
1619 PCI_PRODUCT_ALTIMA_AC9100,
1620 "Altima AC9100 Gigabit Ethernet" },
1621
1622 { PCI_VENDOR_BROADCOM,
1623 PCI_PRODUCT_BROADCOM_BCM5700,
1624 "Broadcom BCM5700 Gigabit Ethernet" },
1625 { PCI_VENDOR_BROADCOM,
1626 PCI_PRODUCT_BROADCOM_BCM5701,
1627 "Broadcom BCM5700 Gigabit Ethernet" },
1628
1629 { PCI_VENDOR_SCHNEIDERKOCH,
1630 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1631 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1632
1633 { PCI_VENDOR_3COM,
1634 PCI_PRODUCT_3COM_3C996,
1635 "3Com 3c996 Gigabit Ethernet" },
1636
1637 { 0,
1638 0,
1639 NULL },
1640 };
1641
1642 static const struct bge_product *
1643 bge_lookup(const struct pci_attach_args *pa)
1644 {
1645 const struct bge_product *bp;
1646
1647 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1648 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1649 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1650 return (bp);
1651 }
1652
1653 return (NULL);
1654 }
1655
1656 /*
1657 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1658 * against our list and return its name if we find a match. Note
1659 * that since the Broadcom controller contains VPD support, we
1660 * can get the device name string from the controller itself instead
1661 * of the compiled-in string. This is a little slow, but it guarantees
1662 * we'll always announce the right product name.
1663 */
1664 int
1665 bge_probe(parent, match, aux)
1666 struct device *parent;
1667 struct cfdata *match;
1668 void *aux;
1669 {
1670 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1671
1672 if (bge_lookup(pa) != NULL)
1673 return (1);
1674
1675 return (0);
1676 }
1677
1678 void
1679 bge_attach(parent, self, aux)
1680 struct device *parent, *self;
1681 void *aux;
1682 {
1683 struct bge_softc *sc = (struct bge_softc *)self;
1684 struct pci_attach_args *pa = aux;
1685 const struct bge_product *bp;
1686 const struct bge_revision *br;
1687 pci_chipset_tag_t pc = pa->pa_pc;
1688 pci_intr_handle_t ih;
1689 const char *intrstr = NULL;
1690 bus_dma_segment_t seg;
1691 int rseg;
1692 u_int32_t hwcfg = 0;
1693 u_int32_t command;
1694 struct ifnet *ifp;
1695 int unit;
1696 caddr_t kva;
1697 u_char eaddr[ETHER_ADDR_LEN];
1698 pcireg_t memtype;
1699 bus_addr_t memaddr;
1700 bus_size_t memsize;
1701
1702 bp = bge_lookup(pa);
1703 KASSERT(bp != NULL);
1704
1705 sc->bge_pa = *pa;
1706
1707 printf(": %s\n", bp->bp_name);
1708
1709 /*
1710 * Map control/status registers.
1711 */
1712 DPRINTFN(5, ("Map control/status regs\n"));
1713 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1714 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1715 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1716 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1717
1718 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1719 printf("%s: failed to enable memory mapping!\n",
1720 sc->bge_dev.dv_xname);
1721 return;
1722 }
1723
1724 DPRINTFN(5, ("pci_mem_find\n"));
1725 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1726 switch (memtype) {
1727 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1728 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1729 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1730 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1731 &memaddr, &memsize) == 0)
1732 break;
1733 default:
1734 printf("%s: can't find mem space\n",
1735 sc->bge_dev.dv_xname);
1736 return;
1737 }
1738
1739 DPRINTFN(5, ("pci_intr_map\n"));
1740 if (pci_intr_map(pa, &ih)) {
1741 printf("%s: couldn't map interrupt\n",
1742 sc->bge_dev.dv_xname);
1743 return;
1744 }
1745
1746 DPRINTFN(5, ("pci_intr_string\n"));
1747 intrstr = pci_intr_string(pc, ih);
1748
1749 DPRINTFN(5, ("pci_intr_establish\n"));
1750 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1751
1752 if (sc->bge_intrhand == NULL) {
1753 printf("%s: couldn't establish interrupt",
1754 sc->bge_dev.dv_xname);
1755 if (intrstr != NULL)
1756 printf(" at %s", intrstr);
1757 printf("\n");
1758 return;
1759 }
1760 printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1761
1762 /* Try to reset the chip. */
1763 DPRINTFN(5, ("bge_reset\n"));
1764 bge_reset(sc);
1765
1766 if (bge_chipinit(sc)) {
1767 printf("%s: chip initializatino failed\n",
1768 sc->bge_dev.dv_xname);
1769 bge_release_resources(sc);
1770 return;
1771 }
1772
1773 /*
1774 * Get station address from the EEPROM.
1775 */
1776 if (bge_read_eeprom(sc, (caddr_t)eaddr,
1777 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1778 printf("bge%d: failed to read station address\n", unit);
1779 bge_release_resources(sc);
1780 return;
1781 }
1782
1783 /*
1784 * Save ASIC rev. Look up any quirks associated with this
1785 * ASIC.
1786 */
1787 sc->bge_asicrev =
1788 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1789 BGE_PCIMISCCTL_ASICREV;
1790 br = bge_lookup_rev(sc->bge_asicrev);
1791
1792 printf("%s: ", sc->bge_dev.dv_xname);
1793 if (br == NULL) {
1794 printf("unknown ASIC 0x%08x", sc->bge_asicrev);
1795 sc->bge_quirks = 0;
1796 } else {
1797 printf("ASIC %s", br->br_name);
1798 sc->bge_quirks = br->br_quirks;
1799 }
1800 printf(", Ethernet address %s\n", ether_sprintf(eaddr));
1801
1802 /* Allocate the general information block and ring buffers. */
1803 sc->bge_dmatag = pa->pa_dmat;
1804 DPRINTFN(5, ("bus_dmamem_alloc\n"));
1805 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1806 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1807 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1808 return;
1809 }
1810 DPRINTFN(5, ("bus_dmamem_map\n"));
1811 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1812 sizeof(struct bge_ring_data), &kva,
1813 BUS_DMA_NOWAIT)) {
1814 printf("%s: can't map dma buffers (%d bytes)\n",
1815 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1816 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1817 return;
1818 }
1819 DPRINTFN(5, ("bus_dmamem_create\n"));
1820 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1821 sizeof(struct bge_ring_data), 0,
1822 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1823 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1824 bus_dmamem_unmap(sc->bge_dmatag, kva,
1825 sizeof(struct bge_ring_data));
1826 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1827 return;
1828 }
1829 DPRINTFN(5, ("bus_dmamem_load\n"));
1830 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1831 sizeof(struct bge_ring_data), NULL,
1832 BUS_DMA_NOWAIT)) {
1833 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1834 bus_dmamem_unmap(sc->bge_dmatag, kva,
1835 sizeof(struct bge_ring_data));
1836 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1837 return;
1838 }
1839
1840 DPRINTFN(5, ("bzero\n"));
1841 sc->bge_rdata = (struct bge_ring_data *)kva;
1842
1843 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
1844
1845 /* Try to allocate memory for jumbo buffers. */
1846 if (bge_alloc_jumbo_mem(sc)) {
1847 printf("%s: jumbo buffer allocation failed\n",
1848 sc->bge_dev.dv_xname);
1849 } else
1850 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1851
1852 /* Set default tuneable values. */
1853 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1854 sc->bge_rx_coal_ticks = 150;
1855 sc->bge_tx_coal_ticks = 150;
1856 sc->bge_rx_max_coal_bds = 64;
1857 sc->bge_tx_max_coal_bds = 128;
1858
1859 /* Set up ifnet structure */
1860 ifp = &sc->ethercom.ec_if;
1861 ifp->if_softc = sc;
1862 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1863 ifp->if_ioctl = bge_ioctl;
1864 ifp->if_start = bge_start;
1865 ifp->if_init = bge_init;
1866 ifp->if_watchdog = bge_watchdog;
1867 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1868 IFQ_SET_READY(&ifp->if_snd);
1869 DPRINTFN(5, ("bcopy\n"));
1870 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1871
1872 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
1873 sc->ethercom.ec_if.if_capabilities |=
1874 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1875 sc->ethercom.ec_capabilities |=
1876 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1877
1878 /*
1879 * Do MII setup.
1880 */
1881 DPRINTFN(5, ("mii setup\n"));
1882 sc->bge_mii.mii_ifp = ifp;
1883 sc->bge_mii.mii_readreg = bge_miibus_readreg;
1884 sc->bge_mii.mii_writereg = bge_miibus_writereg;
1885 sc->bge_mii.mii_statchg = bge_miibus_statchg;
1886
1887 /*
1888 * Figure out what sort of media we have by checking the
1889 * hardware config word in the EEPROM. Note: on some BCM5700
1890 * cards, this value appears to be unset. If that's the
1891 * case, we have to rely on identifying the NIC by its PCI
1892 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1893 */
1894 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1895 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1896 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1897 sc->bge_tbi = 1;
1898
1899 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1900 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1901 SK_SUBSYSID_9D41)
1902 sc->bge_tbi = 1;
1903
1904 if (sc->bge_tbi) {
1905 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1906 bge_ifmedia_sts);
1907 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1908 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1909 0, NULL);
1910 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1911 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1912 } else {
1913 /*
1914 * Do transceiver setup.
1915 */
1916 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1917 bge_ifmedia_sts);
1918 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1919 MII_PHY_ANY, MII_OFFSET_ANY, 0);
1920
1921 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1922 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1923 ifmedia_add(&sc->bge_mii.mii_media,
1924 IFM_ETHER|IFM_MANUAL, 0, NULL);
1925 ifmedia_set(&sc->bge_mii.mii_media,
1926 IFM_ETHER|IFM_MANUAL);
1927 } else
1928 ifmedia_set(&sc->bge_mii.mii_media,
1929 IFM_ETHER|IFM_AUTO);
1930 }
1931
1932 /*
1933 * Call MI attach routine.
1934 */
1935 DPRINTFN(5, ("if_attach\n"));
1936 if_attach(ifp);
1937 DPRINTFN(5, ("ether_ifattach\n"));
1938 ether_ifattach(ifp, eaddr);
1939 DPRINTFN(5, ("callout_init\n"));
1940 callout_init(&sc->bge_timeout);
1941 }
1942
1943 void
1944 bge_release_resources(sc)
1945 struct bge_softc *sc;
1946 {
1947 if (sc->bge_vpd_prodname != NULL)
1948 free(sc->bge_vpd_prodname, M_DEVBUF);
1949
1950 if (sc->bge_vpd_readonly != NULL)
1951 free(sc->bge_vpd_readonly, M_DEVBUF);
1952 }
1953
1954 void
1955 bge_reset(sc)
1956 struct bge_softc *sc;
1957 {
1958 struct pci_attach_args *pa = &sc->bge_pa;
1959 u_int32_t cachesize, command, pcistate;
1960 int i, val = 0;
1961
1962 /* Save some important PCI state. */
1963 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1964 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1965 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1966
1967 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1968 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1969 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1970
1971 /* Issue global reset */
1972 bge_writereg_ind(sc, BGE_MISC_CFG,
1973 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1974
1975 DELAY(1000);
1976
1977 /* Reset some of the PCI state that got zapped by reset */
1978 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1979 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1980 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1981 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1982 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1983 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1984
1985 /* Enable memory arbiter. */
1986 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1987
1988 /*
1989 * Prevent PXE restart: write a magic number to the
1990 * general communications memory at 0xB50.
1991 */
1992 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1993
1994 /*
1995 * Poll the value location we just wrote until
1996 * we see the 1's complement of the magic number.
1997 * This indicates that the firmware initialization
1998 * is complete.
1999 */
2000 for (i = 0; i < 750; i++) {
2001 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2002 if (val == ~BGE_MAGIC_NUMBER)
2003 break;
2004 DELAY(1000);
2005 }
2006
2007 if (i == 750) {
2008 printf("%s: firmware handshake timed out, val = %x\n",
2009 sc->bge_dev.dv_xname, val);
2010 return;
2011 }
2012
2013 /*
2014 * XXX Wait for the value of the PCISTATE register to
2015 * return to its original pre-reset state. This is a
2016 * fairly good indicator of reset completion. If we don't
2017 * wait for the reset to fully complete, trying to read
2018 * from the device's non-PCI registers may yield garbage
2019 * results.
2020 */
2021 for (i = 0; i < BGE_TIMEOUT; i++) {
2022 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2023 pcistate)
2024 break;
2025 DELAY(10);
2026 }
2027
2028 /* Enable memory arbiter. */
2029 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2030
2031 /* Fix up byte swapping */
2032 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2033
2034 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2035
2036 DELAY(10000);
2037 }
2038
2039 /*
2040 * Frame reception handling. This is called if there's a frame
2041 * on the receive return list.
2042 *
2043 * Note: we have to be able to handle two possibilities here:
2044 * 1) the frame is from the jumbo recieve ring
2045 * 2) the frame is from the standard receive ring
2046 */
2047
2048 void
2049 bge_rxeof(sc)
2050 struct bge_softc *sc;
2051 {
2052 struct ifnet *ifp;
2053 int stdcnt = 0, jumbocnt = 0;
2054 int have_tag = 0;
2055 u_int16_t vlan_tag = 0;
2056 bus_dmamap_t dmamap;
2057 bus_addr_t offset, toff;
2058 bus_size_t tlen;
2059 int tosync;
2060
2061 ifp = &sc->ethercom.ec_if;
2062
2063 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2064 offsetof(struct bge_ring_data, bge_status_block),
2065 sizeof (struct bge_status_block),
2066 BUS_DMASYNC_POSTREAD);
2067
2068 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2069 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2070 sc->bge_rx_saved_considx;
2071
2072 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2073
2074 if (tosync < 0) {
2075 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2076 sizeof (struct bge_rx_bd);
2077 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2078 toff, tlen, BUS_DMASYNC_POSTREAD);
2079 tosync = -tosync;
2080 }
2081
2082 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2083 offset, tosync * sizeof (struct bge_rx_bd),
2084 BUS_DMASYNC_POSTREAD);
2085
2086 while(sc->bge_rx_saved_considx !=
2087 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2088 struct bge_rx_bd *cur_rx;
2089 u_int32_t rxidx;
2090 struct mbuf *m = NULL;
2091
2092 cur_rx = &sc->bge_rdata->
2093 bge_rx_return_ring[sc->bge_rx_saved_considx];
2094
2095 rxidx = cur_rx->bge_idx;
2096 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2097
2098 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2099 have_tag = 1;
2100 vlan_tag = cur_rx->bge_vlan_tag;
2101 }
2102
2103 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2104 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2105 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2106 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2107 jumbocnt++;
2108 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2109 ifp->if_ierrors++;
2110 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2111 continue;
2112 }
2113 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2114 NULL)== ENOBUFS) {
2115 ifp->if_ierrors++;
2116 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2117 continue;
2118 }
2119 } else {
2120 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2121 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2122 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2123 stdcnt++;
2124 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2125 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2126 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2127 ifp->if_ierrors++;
2128 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2129 continue;
2130 }
2131 if (bge_newbuf_std(sc, sc->bge_std,
2132 NULL, dmamap) == ENOBUFS) {
2133 ifp->if_ierrors++;
2134 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2135 continue;
2136 }
2137 }
2138
2139 ifp->if_ipackets++;
2140 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2141 m->m_pkthdr.rcvif = ifp;
2142
2143 #if NBPFILTER > 0
2144 /*
2145 * Handle BPF listeners. Let the BPF user see the packet.
2146 */
2147 if (ifp->if_bpf)
2148 bpf_mtap(ifp->if_bpf, m);
2149 #endif
2150
2151 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2152 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2153 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2154 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2155 #if 0 /* XXX appears to be broken */
2156 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2157 m->m_pkthdr.csum_data =
2158 cur_rx->bge_tcp_udp_csum;
2159 m->m_pkthdr.csum_flags |=
2160 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2161 }
2162 #endif
2163 }
2164
2165 /*
2166 * If we received a packet with a vlan tag, pass it
2167 * to vlan_input() instead of ether_input().
2168 */
2169 if (have_tag) {
2170 struct mbuf *n;
2171
2172 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2173 if (n != NULL) {
2174 *mtod(n, int *) = vlan_tag;
2175 n->m_len = sizeof(int);
2176 have_tag = vlan_tag = 0;
2177 } else {
2178 printf("%s: no mbuf for tag\n", ifp->if_xname);
2179 m_freem(m);
2180 have_tag = vlan_tag = 0;
2181 continue;
2182 }
2183 }
2184 (*ifp->if_input)(ifp, m);
2185 }
2186
2187 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2188 if (stdcnt)
2189 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2190 if (jumbocnt)
2191 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2192 }
2193
2194 void
2195 bge_txeof(sc)
2196 struct bge_softc *sc;
2197 {
2198 struct bge_tx_bd *cur_tx = NULL;
2199 struct ifnet *ifp;
2200 struct txdmamap_pool_entry *dma;
2201 bus_addr_t offset, toff;
2202 bus_size_t tlen;
2203 int tosync;
2204 struct mbuf *m;
2205
2206 ifp = &sc->ethercom.ec_if;
2207
2208 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2209 offsetof(struct bge_ring_data, bge_status_block),
2210 sizeof (struct bge_status_block),
2211 BUS_DMASYNC_POSTREAD);
2212
2213 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2214 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2215 sc->bge_tx_saved_considx;
2216
2217 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2218
2219 if (tosync < 0) {
2220 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2221 sizeof (struct bge_tx_bd);
2222 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2223 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2224 tosync = -tosync;
2225 }
2226
2227 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2228 offset, tosync * sizeof (struct bge_tx_bd),
2229 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2230
2231 /*
2232 * Go through our tx ring and free mbufs for those
2233 * frames that have been sent.
2234 */
2235 while (sc->bge_tx_saved_considx !=
2236 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2237 u_int32_t idx = 0;
2238
2239 idx = sc->bge_tx_saved_considx;
2240 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2241 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2242 ifp->if_opackets++;
2243 m = sc->bge_cdata.bge_tx_chain[idx];
2244 if (m != NULL) {
2245 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2246 dma = sc->txdma[idx];
2247 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2248 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2249 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2250 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2251 sc->txdma[idx] = NULL;
2252
2253 m_freem(m);
2254 }
2255 sc->bge_txcnt--;
2256 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2257 ifp->if_timer = 0;
2258 }
2259
2260 if (cur_tx != NULL)
2261 ifp->if_flags &= ~IFF_OACTIVE;
2262 }
2263
2264 int
2265 bge_intr(xsc)
2266 void *xsc;
2267 {
2268 struct bge_softc *sc;
2269 struct ifnet *ifp;
2270
2271 sc = xsc;
2272 ifp = &sc->ethercom.ec_if;
2273
2274 #ifdef notdef
2275 /* Avoid this for now -- checking this register is expensive. */
2276 /* Make sure this is really our interrupt. */
2277 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2278 return (0);
2279 #endif
2280 /* Ack interrupt and stop others from occuring. */
2281 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2282
2283 /*
2284 * Process link state changes.
2285 * Grrr. The link status word in the status block does
2286 * not work correctly on the BCM5700 rev AX and BX chips,
2287 * according to all avaibable information. Hence, we have
2288 * to enable MII interrupts in order to properly obtain
2289 * async link changes. Unfortunately, this also means that
2290 * we have to read the MAC status register to detect link
2291 * changes, thereby adding an additional register access to
2292 * the interrupt handler.
2293 */
2294
2295 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2296 u_int32_t status;
2297
2298 status = CSR_READ_4(sc, BGE_MAC_STS);
2299 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2300 sc->bge_link = 0;
2301 callout_stop(&sc->bge_timeout);
2302 bge_tick(sc);
2303 /* Clear the interrupt */
2304 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2305 BGE_EVTENB_MI_INTERRUPT);
2306 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2307 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2308 BRGPHY_INTRS);
2309 }
2310 } else {
2311 if (sc->bge_rdata->bge_status_block.bge_status &
2312 BGE_STATFLAG_LINKSTATE_CHANGED) {
2313 sc->bge_link = 0;
2314 callout_stop(&sc->bge_timeout);
2315 bge_tick(sc);
2316 /* Clear the interrupt */
2317 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2318 BGE_MACSTAT_CFG_CHANGED);
2319 }
2320 }
2321
2322 if (ifp->if_flags & IFF_RUNNING) {
2323 /* Check RX return ring producer/consumer */
2324 bge_rxeof(sc);
2325
2326 /* Check TX ring producer/consumer */
2327 bge_txeof(sc);
2328 }
2329
2330 bge_handle_events(sc);
2331
2332 /* Re-enable interrupts. */
2333 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2334
2335 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2336 bge_start(ifp);
2337
2338 return (1);
2339 }
2340
2341 void
2342 bge_tick(xsc)
2343 void *xsc;
2344 {
2345 struct bge_softc *sc = xsc;
2346 struct mii_data *mii = &sc->bge_mii;
2347 struct ifmedia *ifm = NULL;
2348 struct ifnet *ifp = &sc->ethercom.ec_if;
2349 int s;
2350
2351 s = splnet();
2352
2353 bge_stats_update(sc);
2354 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2355 if (sc->bge_link) {
2356 splx(s);
2357 return;
2358 }
2359
2360 if (sc->bge_tbi) {
2361 ifm = &sc->bge_ifmedia;
2362 if (CSR_READ_4(sc, BGE_MAC_STS) &
2363 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2364 sc->bge_link++;
2365 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2366 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2367 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2368 bge_start(ifp);
2369 }
2370 splx(s);
2371 return;
2372 }
2373
2374 mii_tick(mii);
2375
2376 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2377 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2378 sc->bge_link++;
2379 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2380 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2381 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2382 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2383 bge_start(ifp);
2384 }
2385
2386 splx(s);
2387 }
2388
2389 void
2390 bge_stats_update(sc)
2391 struct bge_softc *sc;
2392 {
2393 struct ifnet *ifp = &sc->ethercom.ec_if;
2394 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2395
2396 #define READ_STAT(sc, stats, stat) \
2397 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2398
2399 ifp->if_collisions +=
2400 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2401 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2402 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2403 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2404 ifp->if_collisions;
2405
2406 #undef READ_STAT
2407
2408 #ifdef notdef
2409 ifp->if_collisions +=
2410 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2411 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2412 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2413 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2414 ifp->if_collisions;
2415 #endif
2416 }
2417
2418 /*
2419 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2420 * pointers to descriptors.
2421 */
2422 int
2423 bge_encap(sc, m_head, txidx)
2424 struct bge_softc *sc;
2425 struct mbuf *m_head;
2426 u_int32_t *txidx;
2427 {
2428 struct bge_tx_bd *f = NULL;
2429 u_int32_t frag, cur, cnt = 0;
2430 u_int16_t csum_flags = 0;
2431 struct txdmamap_pool_entry *dma;
2432 bus_dmamap_t dmamap;
2433 int i = 0;
2434 struct mbuf *n;
2435
2436 cur = frag = *txidx;
2437
2438 if (m_head->m_pkthdr.csum_flags) {
2439 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2440 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2441 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2442 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2443 }
2444
2445 dma = SLIST_FIRST(&sc->txdma_list);
2446 if (dma == NULL)
2447 return ENOBUFS;
2448 dmamap = dma->dmamap;
2449
2450 /*
2451 * Start packing the mbufs in this chain into
2452 * the fragment pointers. Stop when we run out
2453 * of fragments or hit the end of the mbuf chain.
2454 */
2455 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2456 BUS_DMA_NOWAIT))
2457 return(ENOBUFS);
2458
2459 n = sc->ethercom.ec_nvlans ?
2460 m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2461
2462 for (i = 0; i < dmamap->dm_nsegs; i++) {
2463 f = &sc->bge_rdata->bge_tx_ring[frag];
2464 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2465 break;
2466 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2467 f->bge_len = dmamap->dm_segs[i].ds_len;
2468 f->bge_flags = csum_flags;
2469
2470 if (n != NULL) {
2471 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2472 f->bge_vlan_tag = *mtod(n, int *);
2473 } else {
2474 f->bge_vlan_tag = 0;
2475 }
2476 /*
2477 * Sanity check: avoid coming within 16 descriptors
2478 * of the end of the ring.
2479 */
2480 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2481 return(ENOBUFS);
2482 cur = frag;
2483 BGE_INC(frag, BGE_TX_RING_CNT);
2484 cnt++;
2485 }
2486
2487 if (i < dmamap->dm_nsegs)
2488 return ENOBUFS;
2489
2490 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2491 BUS_DMASYNC_PREWRITE);
2492
2493 if (frag == sc->bge_tx_saved_considx)
2494 return(ENOBUFS);
2495
2496 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2497 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2498 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2499 sc->txdma[cur] = dma;
2500 sc->bge_txcnt += cnt;
2501
2502 *txidx = frag;
2503
2504 return(0);
2505 }
2506
2507 /*
2508 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2509 * to the mbuf data regions directly in the transmit descriptors.
2510 */
2511 void
2512 bge_start(ifp)
2513 struct ifnet *ifp;
2514 {
2515 struct bge_softc *sc;
2516 struct mbuf *m_head = NULL;
2517 u_int32_t prodidx = 0;
2518 int pkts = 0;
2519
2520 sc = ifp->if_softc;
2521
2522 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2523 return;
2524
2525 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2526
2527 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2528 IFQ_POLL(&ifp->if_snd, m_head);
2529 if (m_head == NULL)
2530 break;
2531
2532 #if 0
2533 /*
2534 * XXX
2535 * safety overkill. If this is a fragmented packet chain
2536 * with delayed TCP/UDP checksums, then only encapsulate
2537 * it if we have enough descriptors to handle the entire
2538 * chain at once.
2539 * (paranoia -- may not actually be needed)
2540 */
2541 if (m_head->m_flags & M_FIRSTFRAG &&
2542 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2543 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2544 m_head->m_pkthdr.csum_data + 16) {
2545 ifp->if_flags |= IFF_OACTIVE;
2546 break;
2547 }
2548 }
2549 #endif
2550
2551 /*
2552 * Pack the data into the transmit ring. If we
2553 * don't have room, set the OACTIVE flag and wait
2554 * for the NIC to drain the ring.
2555 */
2556 if (bge_encap(sc, m_head, &prodidx)) {
2557 ifp->if_flags |= IFF_OACTIVE;
2558 break;
2559 }
2560
2561 /* now we are committed to transmit the packet */
2562 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2563 pkts++;
2564
2565 #if NBPFILTER > 0
2566 /*
2567 * If there's a BPF listener, bounce a copy of this frame
2568 * to him.
2569 */
2570 if (ifp->if_bpf)
2571 bpf_mtap(ifp->if_bpf, m_head);
2572 #endif
2573 }
2574 if (pkts == 0)
2575 return;
2576
2577 /* Transmit */
2578 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2579
2580 /*
2581 * Set a timeout in case the chip goes out to lunch.
2582 */
2583 ifp->if_timer = 5;
2584 }
2585
2586 int
2587 bge_init(ifp)
2588 struct ifnet *ifp;
2589 {
2590 struct bge_softc *sc = ifp->if_softc;
2591 u_int16_t *m;
2592 int s, error;
2593
2594 s = splnet();
2595
2596 ifp = &sc->ethercom.ec_if;
2597
2598 /* Cancel pending I/O and flush buffers. */
2599 bge_stop(sc);
2600 bge_reset(sc);
2601 bge_chipinit(sc);
2602
2603 /*
2604 * Init the various state machines, ring
2605 * control blocks and firmware.
2606 */
2607 error = bge_blockinit(sc);
2608 if (error != 0) {
2609 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2610 error);
2611 splx(s);
2612 return error;
2613 }
2614
2615 ifp = &sc->ethercom.ec_if;
2616
2617 /* Specify MTU. */
2618 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2619 ETHER_HDR_LEN + ETHER_CRC_LEN);
2620
2621 /* Load our MAC address. */
2622 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2623 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2624 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2625
2626 /* Enable or disable promiscuous mode as needed. */
2627 if (ifp->if_flags & IFF_PROMISC) {
2628 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2629 } else {
2630 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2631 }
2632
2633 /* Program multicast filter. */
2634 bge_setmulti(sc);
2635
2636 /* Init RX ring. */
2637 bge_init_rx_ring_std(sc);
2638
2639 /* Init jumbo RX ring. */
2640 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2641 bge_init_rx_ring_jumbo(sc);
2642
2643 /* Init our RX return ring index */
2644 sc->bge_rx_saved_considx = 0;
2645
2646 /* Init TX ring. */
2647 bge_init_tx_ring(sc);
2648
2649 /* Turn on transmitter */
2650 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2651
2652 /* Turn on receiver */
2653 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2654
2655 /* Tell firmware we're alive. */
2656 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2657
2658 /* Enable host interrupts. */
2659 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2660 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2661 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2662
2663 bge_ifmedia_upd(ifp);
2664
2665 ifp->if_flags |= IFF_RUNNING;
2666 ifp->if_flags &= ~IFF_OACTIVE;
2667
2668 splx(s);
2669
2670 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2671
2672 return 0;
2673 }
2674
2675 /*
2676 * Set media options.
2677 */
2678 int
2679 bge_ifmedia_upd(ifp)
2680 struct ifnet *ifp;
2681 {
2682 struct bge_softc *sc = ifp->if_softc;
2683 struct mii_data *mii = &sc->bge_mii;
2684 struct ifmedia *ifm = &sc->bge_ifmedia;
2685
2686 /* If this is a 1000baseX NIC, enable the TBI port. */
2687 if (sc->bge_tbi) {
2688 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2689 return(EINVAL);
2690 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2691 case IFM_AUTO:
2692 break;
2693 case IFM_1000_SX:
2694 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2695 BGE_CLRBIT(sc, BGE_MAC_MODE,
2696 BGE_MACMODE_HALF_DUPLEX);
2697 } else {
2698 BGE_SETBIT(sc, BGE_MAC_MODE,
2699 BGE_MACMODE_HALF_DUPLEX);
2700 }
2701 break;
2702 default:
2703 return(EINVAL);
2704 }
2705 return(0);
2706 }
2707
2708 sc->bge_link = 0;
2709 mii_mediachg(mii);
2710
2711 return(0);
2712 }
2713
2714 /*
2715 * Report current media status.
2716 */
2717 void
2718 bge_ifmedia_sts(ifp, ifmr)
2719 struct ifnet *ifp;
2720 struct ifmediareq *ifmr;
2721 {
2722 struct bge_softc *sc = ifp->if_softc;
2723 struct mii_data *mii = &sc->bge_mii;
2724
2725 if (sc->bge_tbi) {
2726 ifmr->ifm_status = IFM_AVALID;
2727 ifmr->ifm_active = IFM_ETHER;
2728 if (CSR_READ_4(sc, BGE_MAC_STS) &
2729 BGE_MACSTAT_TBI_PCS_SYNCHED)
2730 ifmr->ifm_status |= IFM_ACTIVE;
2731 ifmr->ifm_active |= IFM_1000_SX;
2732 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2733 ifmr->ifm_active |= IFM_HDX;
2734 else
2735 ifmr->ifm_active |= IFM_FDX;
2736 return;
2737 }
2738
2739 mii_pollstat(mii);
2740 ifmr->ifm_active = mii->mii_media_active;
2741 ifmr->ifm_status = mii->mii_media_status;
2742 }
2743
2744 int
2745 bge_ioctl(ifp, command, data)
2746 struct ifnet *ifp;
2747 u_long command;
2748 caddr_t data;
2749 {
2750 struct bge_softc *sc = ifp->if_softc;
2751 struct ifreq *ifr = (struct ifreq *) data;
2752 int s, error = 0;
2753 struct mii_data *mii;
2754
2755 s = splnet();
2756
2757 switch(command) {
2758 case SIOCSIFFLAGS:
2759 if (ifp->if_flags & IFF_UP) {
2760 /*
2761 * If only the state of the PROMISC flag changed,
2762 * then just use the 'set promisc mode' command
2763 * instead of reinitializing the entire NIC. Doing
2764 * a full re-init means reloading the firmware and
2765 * waiting for it to start up, which may take a
2766 * second or two.
2767 */
2768 if (ifp->if_flags & IFF_RUNNING &&
2769 ifp->if_flags & IFF_PROMISC &&
2770 !(sc->bge_if_flags & IFF_PROMISC)) {
2771 BGE_SETBIT(sc, BGE_RX_MODE,
2772 BGE_RXMODE_RX_PROMISC);
2773 } else if (ifp->if_flags & IFF_RUNNING &&
2774 !(ifp->if_flags & IFF_PROMISC) &&
2775 sc->bge_if_flags & IFF_PROMISC) {
2776 BGE_CLRBIT(sc, BGE_RX_MODE,
2777 BGE_RXMODE_RX_PROMISC);
2778 } else
2779 bge_init(ifp);
2780 } else {
2781 if (ifp->if_flags & IFF_RUNNING) {
2782 bge_stop(sc);
2783 }
2784 }
2785 sc->bge_if_flags = ifp->if_flags;
2786 error = 0;
2787 break;
2788 case SIOCSIFMEDIA:
2789 case SIOCGIFMEDIA:
2790 if (sc->bge_tbi) {
2791 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2792 command);
2793 } else {
2794 mii = &sc->bge_mii;
2795 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2796 command);
2797 }
2798 error = 0;
2799 break;
2800 default:
2801 error = ether_ioctl(ifp, command, data);
2802 if (error == ENETRESET) {
2803 bge_setmulti(sc);
2804 error = 0;
2805 }
2806 break;
2807 }
2808
2809 splx(s);
2810
2811 return(error);
2812 }
2813
2814 void
2815 bge_watchdog(ifp)
2816 struct ifnet *ifp;
2817 {
2818 struct bge_softc *sc;
2819
2820 sc = ifp->if_softc;
2821
2822 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2823
2824 ifp->if_flags &= ~IFF_RUNNING;
2825 bge_init(ifp);
2826
2827 ifp->if_oerrors++;
2828 }
2829
2830 static void
2831 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
2832 {
2833 int i;
2834
2835 BGE_CLRBIT(sc, reg, bit);
2836
2837 for (i = 0; i < BGE_TIMEOUT; i++) {
2838 if ((CSR_READ_4(sc, reg) & bit) == 0)
2839 return;
2840 delay(100);
2841 }
2842
2843 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
2844 sc->bge_dev.dv_xname, (u_long) reg, bit);
2845 }
2846
2847 /*
2848 * Stop the adapter and free any mbufs allocated to the
2849 * RX and TX lists.
2850 */
2851 void
2852 bge_stop(sc)
2853 struct bge_softc *sc;
2854 {
2855 struct ifnet *ifp = &sc->ethercom.ec_if;
2856
2857 callout_stop(&sc->bge_timeout);
2858
2859 /*
2860 * Disable all of the receiver blocks
2861 */
2862 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2863 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2864 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2865 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2866 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2867 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2868 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2869
2870 /*
2871 * Disable all of the transmit blocks
2872 */
2873 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2874 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2875 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2876 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2877 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2878 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2879 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2880
2881 /*
2882 * Shut down all of the memory managers and related
2883 * state machines.
2884 */
2885 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2886 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2887 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2888
2889 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2890 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2891
2892 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2893 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2894
2895 /* Disable host interrupts. */
2896 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2897 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2898
2899 /*
2900 * Tell firmware we're shutting down.
2901 */
2902 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2903
2904 /* Free the RX lists. */
2905 bge_free_rx_ring_std(sc);
2906
2907 /* Free jumbo RX list. */
2908 bge_free_rx_ring_jumbo(sc);
2909
2910 /* Free TX buffers. */
2911 bge_free_tx_ring(sc);
2912
2913 /*
2914 * Isolate/power down the PHY.
2915 */
2916 if (!sc->bge_tbi)
2917 mii_down(&sc->bge_mii);
2918
2919 sc->bge_link = 0;
2920
2921 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2922
2923 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2924 }
2925
2926 /*
2927 * Stop all chip I/O so that the kernel's probe routines don't
2928 * get confused by errant DMAs when rebooting.
2929 */
2930 void
2931 bge_shutdown(xsc)
2932 void *xsc;
2933 {
2934 struct bge_softc *sc = (struct bge_softc *)xsc;
2935
2936 bge_stop(sc);
2937 bge_reset(sc);
2938 }
2939