if_bge.c revision 1.210 1 /* $NetBSD: if_bge.c,v 1.210 2013/03/07 04:42:09 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.210 2013/03/07 04:42:09 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_START 1
255 #define BGE_RESET_STOP 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void bge_sysctl_init(struct bge_softc *);
263 static int bge_sysctl_verify(SYSCTLFN_PROTO);
264
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x) if (bgedebug) printf x
267 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
269 int bgedebug = 0;
270 int bge_tso_debug = 0;
271 void bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277
278 #ifdef BGE_EVENT_COUNTERS
279 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
280 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
281 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
282 #else
283 #define BGE_EVCNT_INCR(ev) /* nothing */
284 #define BGE_EVCNT_ADD(ev, val) /* nothing */
285 #define BGE_EVCNT_UPD(ev, val) /* nothing */
286 #endif
287
288 static const struct bge_product {
289 pci_vendor_id_t bp_vendor;
290 pci_product_id_t bp_product;
291 const char *bp_name;
292 } bge_products[] = {
293 /*
294 * The BCM5700 documentation seems to indicate that the hardware
295 * still has the Alteon vendor ID burned into it, though it
296 * should always be overridden by the value in the EEPROM. We'll
297 * check for it anyway.
298 */
299 { PCI_VENDOR_ALTEON,
300 PCI_PRODUCT_ALTEON_BCM5700,
301 "Broadcom BCM5700 Gigabit Ethernet",
302 },
303 { PCI_VENDOR_ALTEON,
304 PCI_PRODUCT_ALTEON_BCM5701,
305 "Broadcom BCM5701 Gigabit Ethernet",
306 },
307 { PCI_VENDOR_ALTIMA,
308 PCI_PRODUCT_ALTIMA_AC1000,
309 "Altima AC1000 Gigabit Ethernet",
310 },
311 { PCI_VENDOR_ALTIMA,
312 PCI_PRODUCT_ALTIMA_AC1001,
313 "Altima AC1001 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTIMA,
316 PCI_PRODUCT_ALTIMA_AC1003,
317 "Altima AC1003 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC9100,
321 "Altima AC9100 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_APPLE,
324 PCI_PRODUCT_APPLE_BCM5701,
325 "APPLE BCM5701 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_BROADCOM,
328 PCI_PRODUCT_BROADCOM_BCM5700,
329 "Broadcom BCM5700 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_BROADCOM,
332 PCI_PRODUCT_BROADCOM_BCM5701,
333 "Broadcom BCM5701 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_BROADCOM,
336 PCI_PRODUCT_BROADCOM_BCM5702,
337 "Broadcom BCM5702 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5702X,
341 "Broadcom BCM5702X Gigabit Ethernet" },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5703,
344 "Broadcom BCM5703 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5703X,
348 "Broadcom BCM5703X Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
352 "Broadcom BCM5703 Gigabit Ethernet",
353 },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5704C,
356 "Broadcom BCM5704C Dual Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5704S,
360 "Broadcom BCM5704S Dual Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5705,
364 "Broadcom BCM5705 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5705F,
368 "Broadcom BCM5705F Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5705K,
372 "Broadcom BCM5705K Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705M,
376 "Broadcom BCM5705M Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
380 "Broadcom BCM5705M Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5714,
384 "Broadcom BCM5714 Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5714S,
388 "Broadcom BCM5714S Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5715,
392 "Broadcom BCM5715 Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5715S,
396 "Broadcom BCM5715S Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5717,
400 "Broadcom BCM5717 Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5718,
404 "Broadcom BCM5718 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5720,
408 "Broadcom BCM5720 Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5721,
412 "Broadcom BCM5721 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5722,
416 "Broadcom BCM5722 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5723,
420 "Broadcom BCM5723 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5724,
424 "Broadcom BCM5724 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5750,
428 "Broadcom BCM5750 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5750M,
432 "Broadcom BCM5750M Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5751,
436 "Broadcom BCM5751 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5751F,
440 "Broadcom BCM5751F Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751M,
444 "Broadcom BCM5751M Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5752,
448 "Broadcom BCM5752 Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5752M,
452 "Broadcom BCM5752M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5753,
456 "Broadcom BCM5753 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5753F,
460 "Broadcom BCM5753F Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753M,
464 "Broadcom BCM5753M Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5754,
468 "Broadcom BCM5754 Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5754M,
472 "Broadcom BCM5754M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5755,
476 "Broadcom BCM5755 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5755M,
480 "Broadcom BCM5755M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5756,
484 "Broadcom BCM5756 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5761,
488 "Broadcom BCM5761 Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5761E,
492 "Broadcom BCM5761E Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761S,
496 "Broadcom BCM5761S Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761SE,
500 "Broadcom BCM5761SE Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5764,
504 "Broadcom BCM5764 Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5780,
508 "Broadcom BCM5780 Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5780S,
512 "Broadcom BCM5780S Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5781,
516 "Broadcom BCM5781 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5782,
520 "Broadcom BCM5782 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5784M,
524 "BCM5784M NetLink 1000baseT Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5785F,
528 "BCM5785F NetLink 10/100 Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5785G,
532 "BCM5785G NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5786,
536 "Broadcom BCM5786 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5787,
540 "Broadcom BCM5787 Gigabit Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5787F,
544 "Broadcom BCM5787F 10/100 Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787M,
548 "Broadcom BCM5787M Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5788,
552 "Broadcom BCM5788 Gigabit Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5789,
556 "Broadcom BCM5789 Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5901,
560 "Broadcom BCM5901 Fast Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5901A2,
564 "Broadcom BCM5901A2 Fast Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5903M,
568 "Broadcom BCM5903M Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5906,
572 "Broadcom BCM5906 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5906M,
576 "Broadcom BCM5906M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM57760,
580 "Broadcom BCM57760 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM57761,
584 "Broadcom BCM57761 Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57762,
588 "Broadcom BCM57762 Gigabit Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57765,
592 "Broadcom BCM57765 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57780,
596 "Broadcom BCM57780 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57781,
600 "Broadcom BCM57781 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57785,
604 "Broadcom BCM57785 Fast Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57788,
608 "Broadcom BCM57788 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57790,
612 "Broadcom BCM57790 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57791,
616 "Broadcom BCM57791 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57795,
620 "Broadcom BCM57795 Fast Ethernet",
621 },
622 { PCI_VENDOR_SCHNEIDERKOCH,
623 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
624 "SysKonnect SK-9Dx1 Gigabit Ethernet",
625 },
626 { PCI_VENDOR_3COM,
627 PCI_PRODUCT_3COM_3C996,
628 "3Com 3c996 Gigabit Ethernet",
629 },
630 { PCI_VENDOR_FUJITSU4,
631 PCI_PRODUCT_FUJITSU4_PW008GE4,
632 "Fujitsu PW008GE4 Gigabit Ethernet",
633 },
634 { PCI_VENDOR_FUJITSU4,
635 PCI_PRODUCT_FUJITSU4_PW008GE5,
636 "Fujitsu PW008GE5 Gigabit Ethernet",
637 },
638 { PCI_VENDOR_FUJITSU4,
639 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
640 "Fujitsu Primepower 250/450 Gigabit Ethernet",
641 },
642 { 0,
643 0,
644 NULL },
645 };
646
647 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
648 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
649 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
650 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
651 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
652 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
653
654 static const struct bge_revision {
655 uint32_t br_chipid;
656 const char *br_name;
657 } bge_revisions[] = {
658 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
659 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
660 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
661 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
662 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
663 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
664 /* This is treated like a BCM5700 Bx */
665 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
666 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
667 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
668 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
669 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
670 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
671 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
672 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
673 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
674 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
675 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
676 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
677 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
678 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
679 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
680 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
681 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
682 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
683 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
684 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
685 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
686 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
687 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
688 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
689 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
690 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
691 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
692 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
693 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
694 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
695 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
696 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
697 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
698 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
699 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
700 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
701 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
702 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
703 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
704 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
705 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
706 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
707 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
708 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
709 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
710 /* 5754 and 5787 share the same ASIC ID */
711 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
712 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
713 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
714 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
715 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
716 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
717 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
718 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
719
720 { 0, NULL }
721 };
722
723 /*
724 * Some defaults for major revisions, so that newer steppings
725 * that we don't know about have a shot at working.
726 */
727 static const struct bge_revision bge_majorrevs[] = {
728 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
729 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
730 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
731 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
732 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
733 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
734 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
735 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
736 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
737 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
738 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
739 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
740 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
741 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
742 /* 5754 and 5787 share the same ASIC ID */
743 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
744 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
745 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
746 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
747 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
748 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
749
750 { 0, NULL }
751 };
752
753 static int bge_allow_asf = 1;
754
755 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
756 bge_probe, bge_attach, NULL, NULL);
757
758 static uint32_t
759 bge_readmem_ind(struct bge_softc *sc, int off)
760 {
761 pcireg_t val;
762
763 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
764 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
765 return val;
766 }
767
768 static void
769 bge_writemem_ind(struct bge_softc *sc, int off, int val)
770 {
771 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
772 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
773 }
774
775 /*
776 * PCI Express only
777 */
778 static void
779 bge_set_max_readrq(struct bge_softc *sc)
780 {
781 pcireg_t val;
782
783 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
784 + PCI_PCIE_DCSR);
785 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
786 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
787 aprint_verbose_dev(sc->bge_dev,
788 "adjust device control 0x%04x ", val);
789 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
790 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
791 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
792 + PCI_PCIE_DCSR, val);
793 aprint_verbose("-> 0x%04x\n", val);
794 }
795 }
796
797 #ifdef notdef
798 static uint32_t
799 bge_readreg_ind(struct bge_softc *sc, int off)
800 {
801 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
802 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
803 }
804 #endif
805
806 static void
807 bge_writereg_ind(struct bge_softc *sc, int off, int val)
808 {
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
811 }
812
813 static void
814 bge_writemem_direct(struct bge_softc *sc, int off, int val)
815 {
816 CSR_WRITE_4(sc, off, val);
817 }
818
819 static void
820 bge_writembx(struct bge_softc *sc, int off, int val)
821 {
822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
823 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
824
825 CSR_WRITE_4(sc, off, val);
826 }
827
828 static uint8_t
829 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
830 {
831 uint32_t access, byte = 0;
832 int i;
833
834 /* Lock. */
835 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
836 for (i = 0; i < 8000; i++) {
837 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
838 break;
839 DELAY(20);
840 }
841 if (i == 8000)
842 return 1;
843
844 /* Enable access. */
845 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
846 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
847
848 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
849 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
850 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
851 DELAY(10);
852 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
853 DELAY(10);
854 break;
855 }
856 }
857
858 if (i == BGE_TIMEOUT * 10) {
859 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
860 return 1;
861 }
862
863 /* Get result. */
864 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
865
866 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
867
868 /* Disable access. */
869 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
870
871 /* Unlock. */
872 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
873 CSR_READ_4(sc, BGE_NVRAM_SWARB);
874
875 return 0;
876 }
877
878 /*
879 * Read a sequence of bytes from NVRAM.
880 */
881 static int
882 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
883 {
884 int error = 0, i;
885 uint8_t byte = 0;
886
887 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
888 return 1;
889
890 for (i = 0; i < cnt; i++) {
891 error = bge_nvram_getbyte(sc, off + i, &byte);
892 if (error)
893 break;
894 *(dest + i) = byte;
895 }
896
897 return (error ? 1 : 0);
898 }
899
900 /*
901 * Read a byte of data stored in the EEPROM at address 'addr.' The
902 * BCM570x supports both the traditional bitbang interface and an
903 * auto access interface for reading the EEPROM. We use the auto
904 * access method.
905 */
906 static uint8_t
907 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
908 {
909 int i;
910 uint32_t byte = 0;
911
912 /*
913 * Enable use of auto EEPROM access so we can avoid
914 * having to use the bitbang method.
915 */
916 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
917
918 /* Reset the EEPROM, load the clock period. */
919 CSR_WRITE_4(sc, BGE_EE_ADDR,
920 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
921 DELAY(20);
922
923 /* Issue the read EEPROM command. */
924 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
925
926 /* Wait for completion */
927 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
928 DELAY(10);
929 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
930 break;
931 }
932
933 if (i == BGE_TIMEOUT * 10) {
934 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
935 return 1;
936 }
937
938 /* Get result. */
939 byte = CSR_READ_4(sc, BGE_EE_DATA);
940
941 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
942
943 return 0;
944 }
945
946 /*
947 * Read a sequence of bytes from the EEPROM.
948 */
949 static int
950 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
951 {
952 int error = 0, i;
953 uint8_t byte = 0;
954 char *dest = destv;
955
956 for (i = 0; i < cnt; i++) {
957 error = bge_eeprom_getbyte(sc, off + i, &byte);
958 if (error)
959 break;
960 *(dest + i) = byte;
961 }
962
963 return (error ? 1 : 0);
964 }
965
966 static int
967 bge_miibus_readreg(device_t dev, int phy, int reg)
968 {
969 struct bge_softc *sc = device_private(dev);
970 uint32_t val;
971 uint32_t autopoll;
972 int i;
973
974 /*
975 * Broadcom's own driver always assumes the internal
976 * PHY is at GMII address 1. On some chips, the PHY responds
977 * to accesses at all addresses, which could cause us to
978 * bogusly attach the PHY 32 times at probe type. Always
979 * restricting the lookup to address 1 is simpler than
980 * trying to figure out which chips revisions should be
981 * special-cased.
982 */
983 if (phy != 1)
984 return 0;
985
986 /* Reading with autopolling on may trigger PCI errors */
987 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
988 if (autopoll & BGE_MIMODE_AUTOPOLL) {
989 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
990 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
991 DELAY(40);
992 }
993
994 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
995 BGE_MIPHY(phy) | BGE_MIREG(reg));
996
997 for (i = 0; i < BGE_TIMEOUT; i++) {
998 val = CSR_READ_4(sc, BGE_MI_COMM);
999 if (!(val & BGE_MICOMM_BUSY))
1000 break;
1001 delay(10);
1002 }
1003
1004 if (i == BGE_TIMEOUT) {
1005 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1006 val = 0;
1007 goto done;
1008 }
1009
1010 val = CSR_READ_4(sc, BGE_MI_COMM);
1011
1012 done:
1013 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1014 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1015 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1016 DELAY(40);
1017 }
1018
1019 if (val & BGE_MICOMM_READFAIL)
1020 return 0;
1021
1022 return (val & 0xFFFF);
1023 }
1024
1025 static void
1026 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1027 {
1028 struct bge_softc *sc = device_private(dev);
1029 uint32_t autopoll;
1030 int i;
1031
1032 if (phy!=1) {
1033 return;
1034 }
1035
1036 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1037 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1038 return;
1039
1040 /* Reading with autopolling on may trigger PCI errors */
1041 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1042 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1043 delay(40);
1044 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1045 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1046 delay(10); /* 40 usec is supposed to be adequate */
1047 }
1048
1049 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1050 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1051
1052 for (i = 0; i < BGE_TIMEOUT; i++) {
1053 delay(10);
1054 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1055 delay(5);
1056 CSR_READ_4(sc, BGE_MI_COMM);
1057 break;
1058 }
1059 }
1060
1061 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1062 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1063 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1064 delay(40);
1065 }
1066
1067 if (i == BGE_TIMEOUT)
1068 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1069 }
1070
1071 static void
1072 bge_miibus_statchg(struct ifnet *ifp)
1073 {
1074 struct bge_softc *sc = ifp->if_softc;
1075 struct mii_data *mii = &sc->bge_mii;
1076
1077 /*
1078 * Get flow control negotiation result.
1079 */
1080 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1081 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1082 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1083 mii->mii_media_active &= ~IFM_ETH_FMASK;
1084 }
1085
1086 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1087 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1088 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1089 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1090 else
1091 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1092
1093 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1094 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1095 else
1096 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1097
1098 /*
1099 * 802.3x flow control
1100 */
1101 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1102 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1103 else
1104 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1105
1106 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1107 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1108 else
1109 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1110 }
1111
1112 /*
1113 * Update rx threshold levels to values in a particular slot
1114 * of the interrupt-mitigation table bge_rx_threshes.
1115 */
1116 static void
1117 bge_set_thresh(struct ifnet *ifp, int lvl)
1118 {
1119 struct bge_softc *sc = ifp->if_softc;
1120 int s;
1121
1122 /* For now, just save the new Rx-intr thresholds and record
1123 * that a threshold update is pending. Updating the hardware
1124 * registers here (even at splhigh()) is observed to
1125 * occasionaly cause glitches where Rx-interrupts are not
1126 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1127 */
1128 s = splnet();
1129 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1130 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1131 sc->bge_pending_rxintr_change = 1;
1132 splx(s);
1133 }
1134
1135
1136 /*
1137 * Update Rx thresholds of all bge devices
1138 */
1139 static void
1140 bge_update_all_threshes(int lvl)
1141 {
1142 struct ifnet *ifp;
1143 const char * const namebuf = "bge";
1144 int namelen;
1145
1146 if (lvl < 0)
1147 lvl = 0;
1148 else if (lvl >= NBGE_RX_THRESH)
1149 lvl = NBGE_RX_THRESH - 1;
1150
1151 namelen = strlen(namebuf);
1152 /*
1153 * Now search all the interfaces for this name/number
1154 */
1155 IFNET_FOREACH(ifp) {
1156 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1157 continue;
1158 /* We got a match: update if doing auto-threshold-tuning */
1159 if (bge_auto_thresh)
1160 bge_set_thresh(ifp, lvl);
1161 }
1162 }
1163
1164 /*
1165 * Handle events that have triggered interrupts.
1166 */
1167 static void
1168 bge_handle_events(struct bge_softc *sc)
1169 {
1170
1171 return;
1172 }
1173
1174 /*
1175 * Memory management for jumbo frames.
1176 */
1177
1178 static int
1179 bge_alloc_jumbo_mem(struct bge_softc *sc)
1180 {
1181 char *ptr, *kva;
1182 bus_dma_segment_t seg;
1183 int i, rseg, state, error;
1184 struct bge_jpool_entry *entry;
1185
1186 state = error = 0;
1187
1188 /* Grab a big chunk o' storage. */
1189 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1190 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1191 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1192 return ENOBUFS;
1193 }
1194
1195 state = 1;
1196 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1197 BUS_DMA_NOWAIT)) {
1198 aprint_error_dev(sc->bge_dev,
1199 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1200 error = ENOBUFS;
1201 goto out;
1202 }
1203
1204 state = 2;
1205 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1206 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1207 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1208 error = ENOBUFS;
1209 goto out;
1210 }
1211
1212 state = 3;
1213 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1214 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1215 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1216 error = ENOBUFS;
1217 goto out;
1218 }
1219
1220 state = 4;
1221 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1222 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1223
1224 SLIST_INIT(&sc->bge_jfree_listhead);
1225 SLIST_INIT(&sc->bge_jinuse_listhead);
1226
1227 /*
1228 * Now divide it up into 9K pieces and save the addresses
1229 * in an array.
1230 */
1231 ptr = sc->bge_cdata.bge_jumbo_buf;
1232 for (i = 0; i < BGE_JSLOTS; i++) {
1233 sc->bge_cdata.bge_jslots[i] = ptr;
1234 ptr += BGE_JLEN;
1235 entry = malloc(sizeof(struct bge_jpool_entry),
1236 M_DEVBUF, M_NOWAIT);
1237 if (entry == NULL) {
1238 aprint_error_dev(sc->bge_dev,
1239 "no memory for jumbo buffer queue!\n");
1240 error = ENOBUFS;
1241 goto out;
1242 }
1243 entry->slot = i;
1244 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1245 entry, jpool_entries);
1246 }
1247 out:
1248 if (error != 0) {
1249 switch (state) {
1250 case 4:
1251 bus_dmamap_unload(sc->bge_dmatag,
1252 sc->bge_cdata.bge_rx_jumbo_map);
1253 case 3:
1254 bus_dmamap_destroy(sc->bge_dmatag,
1255 sc->bge_cdata.bge_rx_jumbo_map);
1256 case 2:
1257 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1258 case 1:
1259 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1260 break;
1261 default:
1262 break;
1263 }
1264 }
1265
1266 return error;
1267 }
1268
1269 /*
1270 * Allocate a jumbo buffer.
1271 */
1272 static void *
1273 bge_jalloc(struct bge_softc *sc)
1274 {
1275 struct bge_jpool_entry *entry;
1276
1277 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1278
1279 if (entry == NULL) {
1280 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1281 return NULL;
1282 }
1283
1284 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1285 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1286 return (sc->bge_cdata.bge_jslots[entry->slot]);
1287 }
1288
1289 /*
1290 * Release a jumbo buffer.
1291 */
1292 static void
1293 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1294 {
1295 struct bge_jpool_entry *entry;
1296 struct bge_softc *sc;
1297 int i, s;
1298
1299 /* Extract the softc struct pointer. */
1300 sc = (struct bge_softc *)arg;
1301
1302 if (sc == NULL)
1303 panic("bge_jfree: can't find softc pointer!");
1304
1305 /* calculate the slot this buffer belongs to */
1306
1307 i = ((char *)buf
1308 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1309
1310 if ((i < 0) || (i >= BGE_JSLOTS))
1311 panic("bge_jfree: asked to free buffer that we don't manage!");
1312
1313 s = splvm();
1314 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1315 if (entry == NULL)
1316 panic("bge_jfree: buffer not in use!");
1317 entry->slot = i;
1318 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1319 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1320
1321 if (__predict_true(m != NULL))
1322 pool_cache_put(mb_cache, m);
1323 splx(s);
1324 }
1325
1326
1327 /*
1328 * Initialize a standard receive ring descriptor.
1329 */
1330 static int
1331 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1332 bus_dmamap_t dmamap)
1333 {
1334 struct mbuf *m_new = NULL;
1335 struct bge_rx_bd *r;
1336 int error;
1337
1338 if (dmamap == NULL) {
1339 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1340 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1341 if (error != 0)
1342 return error;
1343 }
1344
1345 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1346
1347 if (m == NULL) {
1348 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1349 if (m_new == NULL)
1350 return ENOBUFS;
1351
1352 MCLGET(m_new, M_DONTWAIT);
1353 if (!(m_new->m_flags & M_EXT)) {
1354 m_freem(m_new);
1355 return ENOBUFS;
1356 }
1357 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1358
1359 } else {
1360 m_new = m;
1361 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1362 m_new->m_data = m_new->m_ext.ext_buf;
1363 }
1364 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1365 m_adj(m_new, ETHER_ALIGN);
1366 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1367 BUS_DMA_READ|BUS_DMA_NOWAIT))
1368 return ENOBUFS;
1369 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1370 BUS_DMASYNC_PREREAD);
1371
1372 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1373 r = &sc->bge_rdata->bge_rx_std_ring[i];
1374 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1375 r->bge_flags = BGE_RXBDFLAG_END;
1376 r->bge_len = m_new->m_len;
1377 r->bge_idx = i;
1378
1379 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1380 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1381 i * sizeof (struct bge_rx_bd),
1382 sizeof (struct bge_rx_bd),
1383 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1384
1385 return 0;
1386 }
1387
1388 /*
1389 * Initialize a jumbo receive ring descriptor. This allocates
1390 * a jumbo buffer from the pool managed internally by the driver.
1391 */
1392 static int
1393 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1394 {
1395 struct mbuf *m_new = NULL;
1396 struct bge_rx_bd *r;
1397 void *buf = NULL;
1398
1399 if (m == NULL) {
1400
1401 /* Allocate the mbuf. */
1402 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1403 if (m_new == NULL)
1404 return ENOBUFS;
1405
1406 /* Allocate the jumbo buffer */
1407 buf = bge_jalloc(sc);
1408 if (buf == NULL) {
1409 m_freem(m_new);
1410 aprint_error_dev(sc->bge_dev,
1411 "jumbo allocation failed -- packet dropped!\n");
1412 return ENOBUFS;
1413 }
1414
1415 /* Attach the buffer to the mbuf. */
1416 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1417 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1418 bge_jfree, sc);
1419 m_new->m_flags |= M_EXT_RW;
1420 } else {
1421 m_new = m;
1422 buf = m_new->m_data = m_new->m_ext.ext_buf;
1423 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1424 }
1425 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1426 m_adj(m_new, ETHER_ALIGN);
1427 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1428 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1429 BUS_DMASYNC_PREREAD);
1430 /* Set up the descriptor. */
1431 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1432 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1433 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1434 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1435 r->bge_len = m_new->m_len;
1436 r->bge_idx = i;
1437
1438 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1439 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1440 i * sizeof (struct bge_rx_bd),
1441 sizeof (struct bge_rx_bd),
1442 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1443
1444 return 0;
1445 }
1446
1447 /*
1448 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1449 * that's 1MB or memory, which is a lot. For now, we fill only the first
1450 * 256 ring entries and hope that our CPU is fast enough to keep up with
1451 * the NIC.
1452 */
1453 static int
1454 bge_init_rx_ring_std(struct bge_softc *sc)
1455 {
1456 int i;
1457
1458 if (sc->bge_flags & BGE_RXRING_VALID)
1459 return 0;
1460
1461 for (i = 0; i < BGE_SSLOTS; i++) {
1462 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1463 return ENOBUFS;
1464 }
1465
1466 sc->bge_std = i - 1;
1467 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1468
1469 sc->bge_flags |= BGE_RXRING_VALID;
1470
1471 return 0;
1472 }
1473
1474 static void
1475 bge_free_rx_ring_std(struct bge_softc *sc)
1476 {
1477 int i;
1478
1479 if (!(sc->bge_flags & BGE_RXRING_VALID))
1480 return;
1481
1482 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1483 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1484 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1485 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1486 bus_dmamap_destroy(sc->bge_dmatag,
1487 sc->bge_cdata.bge_rx_std_map[i]);
1488 }
1489 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1490 sizeof(struct bge_rx_bd));
1491 }
1492
1493 sc->bge_flags &= ~BGE_RXRING_VALID;
1494 }
1495
1496 static int
1497 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1498 {
1499 int i;
1500 volatile struct bge_rcb *rcb;
1501
1502 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1503 return 0;
1504
1505 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1506 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1507 return ENOBUFS;
1508 }
1509
1510 sc->bge_jumbo = i - 1;
1511 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1512
1513 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1514 rcb->bge_maxlen_flags = 0;
1515 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1516
1517 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1518
1519 return 0;
1520 }
1521
1522 static void
1523 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1524 {
1525 int i;
1526
1527 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1528 return;
1529
1530 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1531 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1532 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1533 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1534 }
1535 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1536 sizeof(struct bge_rx_bd));
1537 }
1538
1539 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1540 }
1541
1542 static void
1543 bge_free_tx_ring(struct bge_softc *sc)
1544 {
1545 int i;
1546 struct txdmamap_pool_entry *dma;
1547
1548 if (!(sc->bge_flags & BGE_TXRING_VALID))
1549 return;
1550
1551 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1552 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1553 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1554 sc->bge_cdata.bge_tx_chain[i] = NULL;
1555 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1556 link);
1557 sc->txdma[i] = 0;
1558 }
1559 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1560 sizeof(struct bge_tx_bd));
1561 }
1562
1563 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1564 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1565 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1566 free(dma, M_DEVBUF);
1567 }
1568
1569 sc->bge_flags &= ~BGE_TXRING_VALID;
1570 }
1571
1572 static int
1573 bge_init_tx_ring(struct bge_softc *sc)
1574 {
1575 int i;
1576 bus_dmamap_t dmamap;
1577 struct txdmamap_pool_entry *dma;
1578
1579 if (sc->bge_flags & BGE_TXRING_VALID)
1580 return 0;
1581
1582 sc->bge_txcnt = 0;
1583 sc->bge_tx_saved_considx = 0;
1584
1585 /* Initialize transmit producer index for host-memory send ring. */
1586 sc->bge_tx_prodidx = 0;
1587 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1588 /* 5700 b2 errata */
1589 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1590 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1591
1592 /* NIC-memory send ring not used; initialize to zero. */
1593 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1594 /* 5700 b2 errata */
1595 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1596 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1597
1598 SLIST_INIT(&sc->txdma_list);
1599 for (i = 0; i < BGE_RSLOTS; i++) {
1600 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1601 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1602 &dmamap))
1603 return ENOBUFS;
1604 if (dmamap == NULL)
1605 panic("dmamap NULL in bge_init_tx_ring");
1606 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1607 if (dma == NULL) {
1608 aprint_error_dev(sc->bge_dev,
1609 "can't alloc txdmamap_pool_entry\n");
1610 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1611 return ENOMEM;
1612 }
1613 dma->dmamap = dmamap;
1614 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1615 }
1616
1617 sc->bge_flags |= BGE_TXRING_VALID;
1618
1619 return 0;
1620 }
1621
1622 static void
1623 bge_setmulti(struct bge_softc *sc)
1624 {
1625 struct ethercom *ac = &sc->ethercom;
1626 struct ifnet *ifp = &ac->ec_if;
1627 struct ether_multi *enm;
1628 struct ether_multistep step;
1629 uint32_t hashes[4] = { 0, 0, 0, 0 };
1630 uint32_t h;
1631 int i;
1632
1633 if (ifp->if_flags & IFF_PROMISC)
1634 goto allmulti;
1635
1636 /* Now program new ones. */
1637 ETHER_FIRST_MULTI(step, ac, enm);
1638 while (enm != NULL) {
1639 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1640 /*
1641 * We must listen to a range of multicast addresses.
1642 * For now, just accept all multicasts, rather than
1643 * trying to set only those filter bits needed to match
1644 * the range. (At this time, the only use of address
1645 * ranges is for IP multicast routing, for which the
1646 * range is big enough to require all bits set.)
1647 */
1648 goto allmulti;
1649 }
1650
1651 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1652
1653 /* Just want the 7 least-significant bits. */
1654 h &= 0x7f;
1655
1656 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1657 ETHER_NEXT_MULTI(step, enm);
1658 }
1659
1660 ifp->if_flags &= ~IFF_ALLMULTI;
1661 goto setit;
1662
1663 allmulti:
1664 ifp->if_flags |= IFF_ALLMULTI;
1665 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1666
1667 setit:
1668 for (i = 0; i < 4; i++)
1669 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1670 }
1671
1672 static void
1673 bge_sig_pre_reset(struct bge_softc *sc, int type)
1674 {
1675
1676 /*
1677 * Some chips don't like this so only do this if ASF is enabled
1678 */
1679 if (sc->bge_asf_mode)
1680 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1681
1682 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1683 switch (type) {
1684 case BGE_RESET_START:
1685 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1686 break;
1687 case BGE_RESET_STOP:
1688 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1689 break;
1690 }
1691 }
1692 }
1693
1694 static void
1695 bge_sig_post_reset(struct bge_softc *sc, int type)
1696 {
1697
1698 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1699 switch (type) {
1700 case BGE_RESET_START:
1701 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1702 /* START DONE */
1703 break;
1704 case BGE_RESET_STOP:
1705 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1706 break;
1707 }
1708 }
1709 }
1710
1711 static void
1712 bge_sig_legacy(struct bge_softc *sc, int type)
1713 {
1714
1715 if (sc->bge_asf_mode) {
1716 switch (type) {
1717 case BGE_RESET_START:
1718 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1719 break;
1720 case BGE_RESET_STOP:
1721 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1722 break;
1723 }
1724 }
1725 }
1726
1727 static void
1728 bge_stop_fw(struct bge_softc *sc)
1729 {
1730 int i;
1731
1732 if (sc->bge_asf_mode) {
1733 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1734 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1735 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1736
1737 for (i = 0; i < 100; i++) {
1738 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1739 break;
1740 DELAY(10);
1741 }
1742 }
1743 }
1744
1745 static int
1746 bge_poll_fw(struct bge_softc *sc)
1747 {
1748 uint32_t val;
1749 int i;
1750
1751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1752 for (i = 0; i < BGE_TIMEOUT; i++) {
1753 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1754 if (val & BGE_VCPU_STATUS_INIT_DONE)
1755 break;
1756 DELAY(100);
1757 }
1758 if (i >= BGE_TIMEOUT) {
1759 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1760 return -1;
1761 }
1762 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1763 /*
1764 * Poll the value location we just wrote until
1765 * we see the 1's complement of the magic number.
1766 * This indicates that the firmware initialization
1767 * is complete.
1768 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1769 */
1770 for (i = 0; i < BGE_TIMEOUT; i++) {
1771 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1772 if (val == ~BGE_MAGIC_NUMBER)
1773 break;
1774 DELAY(10);
1775 }
1776
1777 if (i >= BGE_TIMEOUT) {
1778 aprint_error_dev(sc->bge_dev,
1779 "firmware handshake timed out, val = %x\n", val);
1780 return -1;
1781 }
1782 }
1783
1784 return 0;
1785 }
1786
1787 /*
1788 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1789 * self-test results.
1790 */
1791 static int
1792 bge_chipinit(struct bge_softc *sc)
1793 {
1794 int i;
1795 uint32_t dma_rw_ctl;
1796
1797 /* Set endianness before we access any non-PCI registers. */
1798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1799 BGE_INIT);
1800
1801 /* Set power state to D0. */
1802 bge_setpowerstate(sc, 0);
1803
1804 /* Clear the MAC control register */
1805 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1806
1807 /*
1808 * Clear the MAC statistics block in the NIC's
1809 * internal memory.
1810 */
1811 for (i = BGE_STATS_BLOCK;
1812 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1813 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1814
1815 for (i = BGE_STATUS_BLOCK;
1816 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1817 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1818
1819 /* Set up the PCI DMA control register. */
1820 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1821 if (sc->bge_flags & BGE_PCIE) {
1822 /* Read watermark not used, 128 bytes for write. */
1823 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1824 device_xname(sc->bge_dev)));
1825 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1826 } else if (sc->bge_flags & BGE_PCIX) {
1827 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1828 device_xname(sc->bge_dev)));
1829 /* PCI-X bus */
1830 if (BGE_IS_5714_FAMILY(sc)) {
1831 /* 256 bytes for read and write. */
1832 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1833 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1834
1835 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1836 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1837 else
1838 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1839 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1840 /* 1536 bytes for read, 384 bytes for write. */
1841 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1842 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1843 } else {
1844 /* 384 bytes for read and write. */
1845 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1846 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1847 (0x0F);
1848 }
1849
1850 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1851 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1852 uint32_t tmp;
1853
1854 /* Set ONEDMA_ATONCE for hardware workaround. */
1855 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1856 BGE_PCI_CLKCTL) & 0x1f;
1857 if (tmp == 6 || tmp == 7)
1858 dma_rw_ctl |=
1859 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1860
1861 /* Set PCI-X DMA write workaround. */
1862 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1863 }
1864 } else {
1865 /* Conventional PCI bus: 256 bytes for read and write. */
1866 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1867 device_xname(sc->bge_dev)));
1868 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1869 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1870
1871 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1872 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1873 dma_rw_ctl |= 0x0F;
1874 }
1875
1876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1877 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1878 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1879 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1880
1881 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1882 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1883 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1884
1885 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1886 dma_rw_ctl);
1887
1888 /*
1889 * Set up general mode register.
1890 */
1891 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1892 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1893 BGE_MODECTL_TX_NO_PHDR_CSUM);
1894
1895 /*
1896 * BCM5701 B5 have a bug causing data corruption when using
1897 * 64-bit DMA reads, which can be terminated early and then
1898 * completed later as 32-bit accesses, in combination with
1899 * certain bridges.
1900 */
1901 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1902 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1903 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1904
1905 /*
1906 * Tell the firmware the driver is running
1907 */
1908 if (sc->bge_asf_mode & ASF_STACKUP)
1909 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1910
1911 /*
1912 * Disable memory write invalidate. Apparently it is not supported
1913 * properly by these devices.
1914 */
1915 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1916 PCI_COMMAND_INVALIDATE_ENABLE);
1917
1918 #ifdef __brokenalpha__
1919 /*
1920 * Must insure that we do not cross an 8K (bytes) boundary
1921 * for DMA reads. Our highest limit is 1K bytes. This is a
1922 * restriction on some ALPHA platforms with early revision
1923 * 21174 PCI chipsets, such as the AlphaPC 164lx
1924 */
1925 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1926 #endif
1927
1928 /* Set the timer prescaler (always 66MHz) */
1929 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1930
1931 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1932 DELAY(40); /* XXX */
1933
1934 /* Put PHY into ready state */
1935 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1936 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1937 DELAY(40);
1938 }
1939
1940 return 0;
1941 }
1942
1943 static int
1944 bge_blockinit(struct bge_softc *sc)
1945 {
1946 volatile struct bge_rcb *rcb;
1947 bus_size_t rcb_addr;
1948 int i;
1949 struct ifnet *ifp = &sc->ethercom.ec_if;
1950 bge_hostaddr taddr;
1951 uint32_t val;
1952
1953 /*
1954 * Initialize the memory window pointer register so that
1955 * we can access the first 32K of internal NIC RAM. This will
1956 * allow us to set up the TX send ring RCBs and the RX return
1957 * ring RCBs, plus other things which live in NIC memory.
1958 */
1959
1960 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1961
1962 /* Step 33: Configure mbuf memory pool */
1963 if (BGE_IS_5700_FAMILY(sc)) {
1964 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1965 BGE_BUFFPOOL_1);
1966
1967 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1969 else
1970 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1971
1972 /* Configure DMA resource pool */
1973 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1974 BGE_DMA_DESCRIPTORS);
1975 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1976 }
1977
1978 /* Step 35: Configure mbuf pool watermarks */
1979 #ifdef ORIG_WPAUL_VALUES
1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1981 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1982 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1983 #else
1984
1985 /* new broadcom docs strongly recommend these: */
1986 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1987 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
1988 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
1989 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1990 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1991 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1992 } else if (BGE_IS_5705_PLUS(sc)) {
1993 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1994
1995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1996 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1997 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1998 } else {
1999 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2000 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2001 }
2002 } else if (!BGE_IS_5705_PLUS(sc)) {
2003 if (ifp->if_mtu > ETHER_MAX_LEN) {
2004 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2005 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2006 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2007 } else {
2008 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2009 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2010 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2011 }
2012 } else {
2013 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2014 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2015 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2016 }
2017 #endif
2018
2019 /* Step 36: Configure DMA resource watermarks */
2020 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2021 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2022
2023 /* Step 38: Enable buffer manager */
2024 CSR_WRITE_4(sc, BGE_BMAN_MODE,
2025 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2026
2027 /* Step 39: Poll for buffer manager start indication */
2028 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2029 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2030 break;
2031 DELAY(10);
2032 }
2033
2034 if (i == BGE_TIMEOUT * 2) {
2035 aprint_error_dev(sc->bge_dev,
2036 "buffer manager failed to start\n");
2037 return ENXIO;
2038 }
2039
2040 /* Step 40: Enable flow-through queues */
2041 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2042 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2043
2044 /* Wait until queue initialization is complete */
2045 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2046 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2047 break;
2048 DELAY(10);
2049 }
2050
2051 if (i == BGE_TIMEOUT * 2) {
2052 aprint_error_dev(sc->bge_dev,
2053 "flow-through queue init failed\n");
2054 return ENXIO;
2055 }
2056
2057 /* Step 41: Initialize the standard RX ring control block */
2058 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2059 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2060 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2061 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2062 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2063 rcb->bge_maxlen_flags =
2064 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2065 else if (BGE_IS_5705_PLUS(sc))
2066 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2067 else
2068 rcb->bge_maxlen_flags =
2069 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2070 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2071 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2072 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2073 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2074 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2075
2076 /*
2077 * Step 42: Initialize the jumbo RX ring control block
2078 * We set the 'ring disabled' bit in the flags
2079 * field until we're actually ready to start
2080 * using this ring (i.e. once we set the MTU
2081 * high enough to require it).
2082 */
2083 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2084 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2085 BGE_HOSTADDR(rcb->bge_hostaddr,
2086 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2087 rcb->bge_maxlen_flags =
2088 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2089 BGE_RCB_FLAG_RING_DISABLED);
2090 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2091 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2092 rcb->bge_hostaddr.bge_addr_hi);
2093 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2094 rcb->bge_hostaddr.bge_addr_lo);
2095 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2096 rcb->bge_maxlen_flags);
2097 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2098
2099 /* Set up dummy disabled mini ring RCB */
2100 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2101 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2102 BGE_RCB_FLAG_RING_DISABLED);
2103 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2104 rcb->bge_maxlen_flags);
2105
2106 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2107 offsetof(struct bge_ring_data, bge_info),
2108 sizeof (struct bge_gib),
2109 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2110 }
2111
2112 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2113 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2114 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2115 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2116 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2117 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2118 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2119 }
2120 /*
2121 * Set the BD ring replenish thresholds. The recommended
2122 * values are 1/8th the number of descriptors allocated to
2123 * each ring.
2124 */
2125 i = BGE_STD_RX_RING_CNT / 8;
2126
2127 /*
2128 * Use a value of 8 for the following chips to workaround HW errata.
2129 * Some of these chips have been added based on empirical
2130 * evidence (they don't work unless this is done).
2131 */
2132 if (BGE_IS_5705_PLUS(sc))
2133 i = 8;
2134
2135 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2136 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2137
2138 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2139 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2140 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2141 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2142 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2143 }
2144
2145 /*
2146 * Disable all unused send rings by setting the 'ring disabled'
2147 * bit in the flags field of all the TX send ring control blocks.
2148 * These are located in NIC memory.
2149 */
2150 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2151 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2152 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2153 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2154 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2155 rcb_addr += sizeof(struct bge_rcb);
2156 }
2157
2158 /* Configure TX RCB 0 (we use only the first ring) */
2159 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2160 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2161 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2162 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2163 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2164 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2165 if (BGE_IS_5700_FAMILY(sc))
2166 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2167 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2168
2169 /* Disable all unused RX return rings */
2170 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2171 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2172 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2173 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2174 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2175 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2176 BGE_RCB_FLAG_RING_DISABLED));
2177 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2178 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2179 (i * (sizeof(uint64_t))), 0);
2180 rcb_addr += sizeof(struct bge_rcb);
2181 }
2182
2183 /* Initialize RX ring indexes */
2184 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2185 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2186 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2187
2188 /*
2189 * Set up RX return ring 0
2190 * Note that the NIC address for RX return rings is 0x00000000.
2191 * The return rings live entirely within the host, so the
2192 * nicaddr field in the RCB isn't used.
2193 */
2194 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2195 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2196 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2197 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2198 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2199 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2200 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2201
2202 /* Set random backoff seed for TX */
2203 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2204 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2205 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2206 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2207 BGE_TX_BACKOFF_SEED_MASK);
2208
2209 /* Set inter-packet gap */
2210 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2211
2212 /*
2213 * Specify which ring to use for packets that don't match
2214 * any RX rules.
2215 */
2216 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2217
2218 /*
2219 * Configure number of RX lists. One interrupt distribution
2220 * list, sixteen active lists, one bad frames class.
2221 */
2222 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2223
2224 /* Inialize RX list placement stats mask. */
2225 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2226 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2227
2228 /* Disable host coalescing until we get it set up */
2229 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2230
2231 /* Poll to make sure it's shut down. */
2232 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2233 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2234 break;
2235 DELAY(10);
2236 }
2237
2238 if (i == BGE_TIMEOUT * 2) {
2239 aprint_error_dev(sc->bge_dev,
2240 "host coalescing engine failed to idle\n");
2241 return ENXIO;
2242 }
2243
2244 /* Set up host coalescing defaults */
2245 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2246 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2247 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2248 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2249 if (BGE_IS_5700_FAMILY(sc)) {
2250 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2251 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2252 }
2253 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2254 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2255
2256 /* Set up address of statistics block */
2257 if (BGE_IS_5700_FAMILY(sc)) {
2258 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2259 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2260 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2261 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2262 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2263 }
2264
2265 /* Set up address of status block */
2266 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2267 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2268 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2269 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2270 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2271 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2272
2273 /* Turn on host coalescing state machine */
2274 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2275
2276 /* Turn on RX BD completion state machine and enable attentions */
2277 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2278 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2279
2280 /* Turn on RX list placement state machine */
2281 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2282
2283 /* Turn on RX list selector state machine. */
2284 if (BGE_IS_5700_FAMILY(sc))
2285 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2286
2287 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2288 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2289 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2290 BGE_MACMODE_FRMHDR_DMA_ENB;
2291
2292 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2293 val |= BGE_PORTMODE_TBI;
2294 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2295 val |= BGE_PORTMODE_GMII;
2296 else
2297 val |= BGE_PORTMODE_MII;
2298
2299 /* Turn on DMA, clear stats */
2300 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2301
2302 /* Set misc. local control, enable interrupts on attentions */
2303 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2304
2305 #ifdef notdef
2306 /* Assert GPIO pins for PHY reset */
2307 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2308 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2309 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2310 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2311 #endif
2312
2313 #if defined(not_quite_yet)
2314 /* Linux driver enables enable gpio pin #1 on 5700s */
2315 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2316 sc->bge_local_ctrl_reg |=
2317 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2318 }
2319 #endif
2320 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2321
2322 /* Turn on DMA completion state machine */
2323 if (BGE_IS_5700_FAMILY(sc))
2324 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2325
2326 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2327
2328 /* Enable host coalescing bug fix */
2329 if (BGE_IS_5755_PLUS(sc))
2330 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2331
2332 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2333 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2334
2335 /* Turn on write DMA state machine */
2336 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2337
2338 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2339 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2340 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2341 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2342 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2343 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2344 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2345
2346 if (sc->bge_flags & BGE_PCIE)
2347 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2348 if (sc->bge_flags & BGE_TSO)
2349 val |= BGE_RDMAMODE_TSO4_ENABLE;
2350
2351 /* Turn on read DMA state machine */
2352 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2353 delay(40);
2354
2355 /* Turn on RX data completion state machine */
2356 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2357
2358 /* Turn on RX BD initiator state machine */
2359 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2360
2361 /* Turn on RX data and RX BD initiator state machine */
2362 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2363
2364 /* Turn on Mbuf cluster free state machine */
2365 if (BGE_IS_5700_FAMILY(sc))
2366 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2367
2368 /* Turn on send BD completion state machine */
2369 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2370
2371 /* Turn on send data completion state machine */
2372 val = BGE_SDCMODE_ENABLE;
2373 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2374 val |= BGE_SDCMODE_CDELAY;
2375 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2376
2377 /* Turn on send data initiator state machine */
2378 if (sc->bge_flags & BGE_TSO) {
2379 /* XXX: magic value from Linux driver */
2380 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2381 } else
2382 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2383
2384 /* Turn on send BD initiator state machine */
2385 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2386
2387 /* Turn on send BD selector state machine */
2388 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2389
2390 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2391 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2392 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2393
2394 /* ack/clear link change events */
2395 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2396 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2397 BGE_MACSTAT_LINK_CHANGED);
2398 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2399
2400 /* Enable PHY auto polling (for MII/GMII only) */
2401 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2402 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2403 } else {
2404 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2405 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2406 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2407 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2408 BGE_EVTENB_MI_INTERRUPT);
2409 }
2410
2411 /*
2412 * Clear any pending link state attention.
2413 * Otherwise some link state change events may be lost until attention
2414 * is cleared by bge_intr() -> bge_link_upd() sequence.
2415 * It's not necessary on newer BCM chips - perhaps enabling link
2416 * state change attentions implies clearing pending attention.
2417 */
2418 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2419 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2420 BGE_MACSTAT_LINK_CHANGED);
2421
2422 /* Enable link state change attentions. */
2423 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2424
2425 return 0;
2426 }
2427
2428 static const struct bge_revision *
2429 bge_lookup_rev(uint32_t chipid)
2430 {
2431 const struct bge_revision *br;
2432
2433 for (br = bge_revisions; br->br_name != NULL; br++) {
2434 if (br->br_chipid == chipid)
2435 return br;
2436 }
2437
2438 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2439 if (br->br_chipid == BGE_ASICREV(chipid))
2440 return br;
2441 }
2442
2443 return NULL;
2444 }
2445
2446 static const struct bge_product *
2447 bge_lookup(const struct pci_attach_args *pa)
2448 {
2449 const struct bge_product *bp;
2450
2451 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2452 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2453 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2454 return bp;
2455 }
2456
2457 return NULL;
2458 }
2459
2460 static int
2461 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2462 {
2463 #ifdef NOTYET
2464 uint32_t pm_ctl = 0;
2465
2466 /* XXX FIXME: make sure indirect accesses enabled? */
2467 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2468 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2469 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2470
2471 /* clear the PME_assert bit and power state bits, enable PME */
2472 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2473 pm_ctl &= ~PCIM_PSTAT_DMASK;
2474 pm_ctl |= (1 << 8);
2475
2476 if (powerlevel == 0) {
2477 pm_ctl |= PCIM_PSTAT_D0;
2478 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2479 pm_ctl, 2);
2480 DELAY(10000);
2481 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2482 DELAY(10000);
2483
2484 #ifdef NOTYET
2485 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2486 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2487 #endif
2488 DELAY(40); DELAY(40); DELAY(40);
2489 DELAY(10000); /* above not quite adequate on 5700 */
2490 return 0;
2491 }
2492
2493
2494 /*
2495 * Entering ACPI power states D1-D3 is achieved by wiggling
2496 * GMII gpio pins. Example code assumes all hardware vendors
2497 * followed Broadcom's sample pcb layout. Until we verify that
2498 * for all supported OEM cards, states D1-D3 are unsupported.
2499 */
2500 aprint_error_dev(sc->bge_dev,
2501 "power state %d unimplemented; check GPIO pins\n",
2502 powerlevel);
2503 #endif
2504 return EOPNOTSUPP;
2505 }
2506
2507
2508 /*
2509 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2510 * against our list and return its name if we find a match. Note
2511 * that since the Broadcom controller contains VPD support, we
2512 * can get the device name string from the controller itself instead
2513 * of the compiled-in string. This is a little slow, but it guarantees
2514 * we'll always announce the right product name.
2515 */
2516 static int
2517 bge_probe(device_t parent, cfdata_t match, void *aux)
2518 {
2519 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2520
2521 if (bge_lookup(pa) != NULL)
2522 return 1;
2523
2524 return 0;
2525 }
2526
2527 static void
2528 bge_attach(device_t parent, device_t self, void *aux)
2529 {
2530 struct bge_softc *sc = device_private(self);
2531 struct pci_attach_args *pa = aux;
2532 prop_dictionary_t dict;
2533 const struct bge_product *bp;
2534 const struct bge_revision *br;
2535 pci_chipset_tag_t pc;
2536 pci_intr_handle_t ih;
2537 const char *intrstr = NULL;
2538 bus_dma_segment_t seg;
2539 int rseg;
2540 uint32_t hwcfg = 0;
2541 uint32_t command;
2542 struct ifnet *ifp;
2543 uint32_t misccfg;
2544 void * kva;
2545 u_char eaddr[ETHER_ADDR_LEN];
2546 pcireg_t memtype, subid;
2547 bus_addr_t memaddr;
2548 bus_size_t memsize;
2549 uint32_t pm_ctl;
2550 bool no_seeprom;
2551
2552 bp = bge_lookup(pa);
2553 KASSERT(bp != NULL);
2554
2555 sc->sc_pc = pa->pa_pc;
2556 sc->sc_pcitag = pa->pa_tag;
2557 sc->bge_dev = self;
2558
2559 pc = sc->sc_pc;
2560 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2561
2562 aprint_naive(": Ethernet controller\n");
2563 aprint_normal(": %s\n", bp->bp_name);
2564
2565 /*
2566 * Map control/status registers.
2567 */
2568 DPRINTFN(5, ("Map control/status regs\n"));
2569 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2570 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2571 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2572 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2573
2574 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2575 aprint_error_dev(sc->bge_dev,
2576 "failed to enable memory mapping!\n");
2577 return;
2578 }
2579
2580 DPRINTFN(5, ("pci_mem_find\n"));
2581 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2582 switch (memtype) {
2583 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2584 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2585 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2586 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2587 &memaddr, &memsize) == 0)
2588 break;
2589 default:
2590 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2591 return;
2592 }
2593
2594 DPRINTFN(5, ("pci_intr_map\n"));
2595 if (pci_intr_map(pa, &ih)) {
2596 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2597 return;
2598 }
2599
2600 DPRINTFN(5, ("pci_intr_string\n"));
2601 intrstr = pci_intr_string(pc, ih);
2602
2603 DPRINTFN(5, ("pci_intr_establish\n"));
2604 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2605
2606 if (sc->bge_intrhand == NULL) {
2607 aprint_error_dev(sc->bge_dev,
2608 "couldn't establish interrupt%s%s\n",
2609 intrstr ? " at " : "", intrstr ? intrstr : "");
2610 return;
2611 }
2612 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2613
2614 /*
2615 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2616 * can clobber the chip's PCI config-space power control registers,
2617 * leaving the card in D3 powersave state.
2618 * We do not have memory-mapped registers in this state,
2619 * so force device into D0 state before starting initialization.
2620 */
2621 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2622 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2623 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2624 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2625 DELAY(1000); /* 27 usec is allegedly sufficent */
2626
2627 /*
2628 * Save ASIC rev.
2629 */
2630 sc->bge_chipid =
2631 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2632 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2633
2634 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2635 switch (PCI_PRODUCT(pa->pa_id)) {
2636 case PCI_PRODUCT_BROADCOM_BCM5717:
2637 case PCI_PRODUCT_BROADCOM_BCM5718:
2638 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
2639 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2640 BGE_PCI_GEN2_PRODID_ASICREV);
2641 break;
2642 case PCI_PRODUCT_BROADCOM_BCM57761:
2643 case PCI_PRODUCT_BROADCOM_BCM57762:
2644 case PCI_PRODUCT_BROADCOM_BCM57765:
2645 case PCI_PRODUCT_BROADCOM_BCM57781:
2646 case PCI_PRODUCT_BROADCOM_BCM57785:
2647 case PCI_PRODUCT_BROADCOM_BCM57791:
2648 case PCI_PRODUCT_BROADCOM_BCM57795:
2649 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2650 BGE_PCI_GEN15_PRODID_ASICREV);
2651 break;
2652 default:
2653 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2654 BGE_PCI_PRODID_ASICREV);
2655 break;
2656 }
2657 }
2658
2659 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2660 &sc->bge_pciecap, NULL) != 0)
2661 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2662 /* PCIe */
2663 sc->bge_flags |= BGE_PCIE;
2664 bge_set_max_readrq(sc);
2665 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2666 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2667 /* PCI-X */
2668 sc->bge_flags |= BGE_PCIX;
2669 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2670 &sc->bge_pcixcap, NULL) == 0)
2671 aprint_error_dev(sc->bge_dev,
2672 "unable to find PCIX capability\n");
2673 }
2674
2675 /* chipid */
2676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2680 sc->bge_flags |= BGE_5700_FAMILY;
2681
2682 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2683 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2684 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2685 sc->bge_flags |= BGE_5714_FAMILY;
2686
2687 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2688 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2690 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2691 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2692 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2693 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2694 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2695 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2696 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2697 sc->bge_flags |= BGE_5755_PLUS;
2698
2699 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2700 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2701 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2702 BGE_IS_5755_PLUS(sc) ||
2703 BGE_IS_5714_FAMILY(sc))
2704 sc->bge_flags |= BGE_575X_PLUS;
2705
2706 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2707 BGE_IS_575X_PLUS(sc))
2708 sc->bge_flags |= BGE_5705_PLUS;
2709
2710 /*
2711 * When using the BCM5701 in PCI-X mode, data corruption has
2712 * been observed in the first few bytes of some received packets.
2713 * Aligning the packet buffer in memory eliminates the corruption.
2714 * Unfortunately, this misaligns the packet payloads. On platforms
2715 * which do not support unaligned accesses, we will realign the
2716 * payloads by copying the received packets.
2717 */
2718 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2719 sc->bge_flags & BGE_PCIX)
2720 sc->bge_flags |= BGE_RX_ALIGNBUG;
2721
2722 if (BGE_IS_5700_FAMILY(sc))
2723 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2724
2725 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2726 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2727 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2728 sc->bge_flags |= BGE_NO_3LED;
2729
2730 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2731 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2732
2733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2734 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2735 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2736 sc->bge_flags |= BGE_IS_5788;
2737
2738 /*
2739 * Some controllers seem to require a special firmware to use
2740 * TSO. But the firmware is not available to FreeBSD and Linux
2741 * claims that the TSO performed by the firmware is slower than
2742 * hardware based TSO. Moreover the firmware based TSO has one
2743 * known bug which can't handle TSO if ethernet header + IP/TCP
2744 * header is greater than 80 bytes. The workaround for the TSO
2745 * bug exist but it seems it's too expensive than not using
2746 * TSO at all. Some hardwares also have the TSO bug so limit
2747 * the TSO to the controllers that are not affected TSO issues
2748 * (e.g. 5755 or higher).
2749 */
2750 if (BGE_IS_5755_PLUS(sc)) {
2751 /*
2752 * BCM5754 and BCM5787 shares the same ASIC id so
2753 * explicit device id check is required.
2754 */
2755 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2756 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2757 sc->bge_flags |= BGE_TSO;
2758 }
2759
2760 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2761 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2762 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2763 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2764 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2765 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2766 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2767 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2768 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2769 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2770 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2771 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2772 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2773 sc->bge_flags |= BGE_10_100_ONLY;
2774
2775 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2776 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2777 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2778 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2779 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2780 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2781
2782 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2783 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2784 sc->bge_flags |= BGE_PHY_CRC_BUG;
2785 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2786 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2787 sc->bge_flags |= BGE_PHY_ADC_BUG;
2788 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2789 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2790
2791 if (BGE_IS_5705_PLUS(sc) &&
2792 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2793 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2794 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2795 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2796 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2797 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2798 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2799 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2800 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2801 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2802 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2803 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2804 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2805 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2806 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2807 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2808 sc->bge_flags |= BGE_PHY_BER_BUG;
2809 }
2810
2811 /*
2812 * SEEPROM check.
2813 * First check if firmware knows we do not have SEEPROM.
2814 */
2815 if (prop_dictionary_get_bool(device_properties(self),
2816 "without-seeprom", &no_seeprom) && no_seeprom)
2817 sc->bge_flags |= BGE_NO_EEPROM;
2818
2819 /* Now check the 'ROM failed' bit on the RX CPU */
2820 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2821 sc->bge_flags |= BGE_NO_EEPROM;
2822
2823 /* Try to reset the chip. */
2824 DPRINTFN(5, ("bge_reset\n"));
2825 bge_reset(sc);
2826
2827 sc->bge_asf_mode = 0;
2828 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2829 == BGE_MAGIC_NUMBER)) {
2830 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2831 & BGE_HWCFG_ASF) {
2832 sc->bge_asf_mode |= ASF_ENABLE;
2833 sc->bge_asf_mode |= ASF_STACKUP;
2834 if (BGE_IS_575X_PLUS(sc)) {
2835 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2836 }
2837 }
2838 }
2839
2840 /* Try to reset the chip again the nice way. */
2841 bge_stop_fw(sc);
2842 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2843 if (bge_reset(sc))
2844 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2845
2846 bge_sig_legacy(sc, BGE_RESET_STOP);
2847 bge_sig_post_reset(sc, BGE_RESET_STOP);
2848
2849 if (bge_chipinit(sc)) {
2850 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2851 bge_release_resources(sc);
2852 return;
2853 }
2854
2855 /*
2856 * Get station address from the EEPROM.
2857 */
2858 if (bge_get_eaddr(sc, eaddr)) {
2859 aprint_error_dev(sc->bge_dev,
2860 "failed to read station address\n");
2861 bge_release_resources(sc);
2862 return;
2863 }
2864
2865 br = bge_lookup_rev(sc->bge_chipid);
2866
2867 if (br == NULL) {
2868 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2869 sc->bge_chipid);
2870 } else {
2871 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2872 br->br_name, sc->bge_chipid);
2873 }
2874 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2875
2876 /* Allocate the general information block and ring buffers. */
2877 if (pci_dma64_available(pa))
2878 sc->bge_dmatag = pa->pa_dmat64;
2879 else
2880 sc->bge_dmatag = pa->pa_dmat;
2881 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2882 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2883 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2884 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2885 return;
2886 }
2887 DPRINTFN(5, ("bus_dmamem_map\n"));
2888 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2889 sizeof(struct bge_ring_data), &kva,
2890 BUS_DMA_NOWAIT)) {
2891 aprint_error_dev(sc->bge_dev,
2892 "can't map DMA buffers (%zu bytes)\n",
2893 sizeof(struct bge_ring_data));
2894 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2895 return;
2896 }
2897 DPRINTFN(5, ("bus_dmamem_create\n"));
2898 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2899 sizeof(struct bge_ring_data), 0,
2900 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2901 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2902 bus_dmamem_unmap(sc->bge_dmatag, kva,
2903 sizeof(struct bge_ring_data));
2904 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2905 return;
2906 }
2907 DPRINTFN(5, ("bus_dmamem_load\n"));
2908 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2909 sizeof(struct bge_ring_data), NULL,
2910 BUS_DMA_NOWAIT)) {
2911 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2912 bus_dmamem_unmap(sc->bge_dmatag, kva,
2913 sizeof(struct bge_ring_data));
2914 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2915 return;
2916 }
2917
2918 DPRINTFN(5, ("bzero\n"));
2919 sc->bge_rdata = (struct bge_ring_data *)kva;
2920
2921 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2922
2923 /* Try to allocate memory for jumbo buffers. */
2924 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2925 if (bge_alloc_jumbo_mem(sc)) {
2926 aprint_error_dev(sc->bge_dev,
2927 "jumbo buffer allocation failed\n");
2928 } else
2929 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2930 }
2931
2932 /* Set default tuneable values. */
2933 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2934 sc->bge_rx_coal_ticks = 150;
2935 sc->bge_rx_max_coal_bds = 64;
2936 #ifdef ORIG_WPAUL_VALUES
2937 sc->bge_tx_coal_ticks = 150;
2938 sc->bge_tx_max_coal_bds = 128;
2939 #else
2940 sc->bge_tx_coal_ticks = 300;
2941 sc->bge_tx_max_coal_bds = 400;
2942 #endif
2943 if (BGE_IS_5705_PLUS(sc)) {
2944 sc->bge_tx_coal_ticks = (12 * 5);
2945 sc->bge_tx_max_coal_bds = (12 * 5);
2946 aprint_verbose_dev(sc->bge_dev,
2947 "setting short Tx thresholds\n");
2948 }
2949
2950 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2951 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2952 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2953 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2954 else if (BGE_IS_5705_PLUS(sc))
2955 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2956 else
2957 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2958
2959 /* Set up ifnet structure */
2960 ifp = &sc->ethercom.ec_if;
2961 ifp->if_softc = sc;
2962 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2963 ifp->if_ioctl = bge_ioctl;
2964 ifp->if_stop = bge_stop;
2965 ifp->if_start = bge_start;
2966 ifp->if_init = bge_init;
2967 ifp->if_watchdog = bge_watchdog;
2968 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2969 IFQ_SET_READY(&ifp->if_snd);
2970 DPRINTFN(5, ("strcpy if_xname\n"));
2971 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2972
2973 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2974 sc->ethercom.ec_if.if_capabilities |=
2975 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2976 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2977 sc->ethercom.ec_if.if_capabilities |=
2978 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2979 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2980 #endif
2981 sc->ethercom.ec_capabilities |=
2982 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2983
2984 if (sc->bge_flags & BGE_TSO)
2985 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2986
2987 /*
2988 * Do MII setup.
2989 */
2990 DPRINTFN(5, ("mii setup\n"));
2991 sc->bge_mii.mii_ifp = ifp;
2992 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2993 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2994 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2995
2996 /*
2997 * Figure out what sort of media we have by checking the hardware
2998 * config word in the first 32k of NIC internal memory, or fall back to
2999 * the config word in the EEPROM. Note: on some BCM5700 cards,
3000 * this value appears to be unset. If that's the case, we have to rely
3001 * on identifying the NIC by its PCI subsystem ID, as we do below for
3002 * the SysKonnect SK-9D41.
3003 */
3004 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
3005 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3006 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3007 bge_read_eeprom(sc, (void *)&hwcfg,
3008 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3009 hwcfg = be32toh(hwcfg);
3010 }
3011 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3012 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3013 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3014 if (BGE_IS_5714_FAMILY(sc))
3015 sc->bge_flags |= BGE_PHY_FIBER_MII;
3016 else
3017 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3018 }
3019
3020 /* set phyflags and chipid before mii_attach() */
3021 dict = device_properties(self);
3022 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3023 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3024
3025 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3026 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3027 bge_ifmedia_sts);
3028 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3029 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3030 0, NULL);
3031 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3032 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3033 /* Pretend the user requested this setting */
3034 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3035 } else {
3036 /*
3037 * Do transceiver setup and tell the firmware the
3038 * driver is down so we can try to get access the
3039 * probe if ASF is running. Retry a couple of times
3040 * if we get a conflict with the ASF firmware accessing
3041 * the PHY.
3042 */
3043 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3044 bge_asf_driver_up(sc);
3045
3046 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3047 bge_ifmedia_sts);
3048 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3049 MII_PHY_ANY, MII_OFFSET_ANY,
3050 MIIF_FORCEANEG|MIIF_DOPAUSE);
3051
3052 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3053 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3054 ifmedia_add(&sc->bge_mii.mii_media,
3055 IFM_ETHER|IFM_MANUAL, 0, NULL);
3056 ifmedia_set(&sc->bge_mii.mii_media,
3057 IFM_ETHER|IFM_MANUAL);
3058 } else
3059 ifmedia_set(&sc->bge_mii.mii_media,
3060 IFM_ETHER|IFM_AUTO);
3061
3062 /*
3063 * Now tell the firmware we are going up after probing the PHY
3064 */
3065 if (sc->bge_asf_mode & ASF_STACKUP)
3066 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3067 }
3068
3069 /*
3070 * Call MI attach routine.
3071 */
3072 DPRINTFN(5, ("if_attach\n"));
3073 if_attach(ifp);
3074 DPRINTFN(5, ("ether_ifattach\n"));
3075 ether_ifattach(ifp, eaddr);
3076 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3077 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3078 RND_TYPE_NET, 0);
3079 #ifdef BGE_EVENT_COUNTERS
3080 /*
3081 * Attach event counters.
3082 */
3083 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3084 NULL, device_xname(sc->bge_dev), "intr");
3085 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3086 NULL, device_xname(sc->bge_dev), "tx_xoff");
3087 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3088 NULL, device_xname(sc->bge_dev), "tx_xon");
3089 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3090 NULL, device_xname(sc->bge_dev), "rx_xoff");
3091 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3092 NULL, device_xname(sc->bge_dev), "rx_xon");
3093 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3094 NULL, device_xname(sc->bge_dev), "rx_macctl");
3095 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3096 NULL, device_xname(sc->bge_dev), "xoffentered");
3097 #endif /* BGE_EVENT_COUNTERS */
3098 DPRINTFN(5, ("callout_init\n"));
3099 callout_init(&sc->bge_timeout, 0);
3100
3101 if (pmf_device_register(self, NULL, NULL))
3102 pmf_class_network_register(self, ifp);
3103 else
3104 aprint_error_dev(self, "couldn't establish power handler\n");
3105
3106 bge_sysctl_init(sc);
3107
3108 #ifdef BGE_DEBUG
3109 bge_debug_info(sc);
3110 #endif
3111 }
3112
3113 static void
3114 bge_release_resources(struct bge_softc *sc)
3115 {
3116 if (sc->bge_vpd_prodname != NULL)
3117 free(sc->bge_vpd_prodname, M_DEVBUF);
3118
3119 if (sc->bge_vpd_readonly != NULL)
3120 free(sc->bge_vpd_readonly, M_DEVBUF);
3121 }
3122
3123 static int
3124 bge_reset(struct bge_softc *sc)
3125 {
3126 uint32_t cachesize, command, pcistate, marbmode;
3127 #if 0
3128 uint32_t new_pcistate;
3129 #endif
3130 pcireg_t devctl, reg;
3131 int i, val;
3132 void (*write_op)(struct bge_softc *, int, int);
3133
3134 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
3135 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3136 if (sc->bge_flags & BGE_PCIE)
3137 write_op = bge_writemem_direct;
3138 else
3139 write_op = bge_writemem_ind;
3140 } else
3141 write_op = bge_writereg_ind;
3142
3143 /* Save some important PCI state. */
3144 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3145 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3146 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3147
3148 /* Step 5a: Enable memory arbiter. */
3149 marbmode = 0;
3150 if (BGE_IS_5714_FAMILY(sc))
3151 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3152 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3153
3154 /* Step 5b-5d: */
3155 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3156 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3157 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3158
3159 /* XXX ???: Disable fastboot on controllers that support it. */
3160 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3161 BGE_IS_5755_PLUS(sc))
3162 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3163
3164 /*
3165 * Step 6: Write the magic number to SRAM at offset 0xB50.
3166 * When firmware finishes its initialization it will
3167 * write ~BGE_MAGIC_NUMBER to the same location.
3168 */
3169 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3170
3171 /* Step 7: */
3172 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3173 /*
3174 * XXX: from FreeBSD/Linux; no documentation
3175 */
3176 if (sc->bge_flags & BGE_PCIE) {
3177 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3178 /* PCI Express 1.0 system */
3179 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3180 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3181 /*
3182 * Prevent PCI Express link training
3183 * during global reset.
3184 */
3185 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3186 val |= (1<<29);
3187 }
3188 }
3189
3190 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3191 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3192 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3193 i | BGE_VCPU_STATUS_DRV_RESET);
3194 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3195 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3196 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3197 }
3198
3199 /*
3200 * Set GPHY Power Down Override to leave GPHY
3201 * powered up in D0 uninitialized.
3202 */
3203 if (BGE_IS_5705_PLUS(sc))
3204 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3205
3206 /* XXX 5721, 5751 and 5752 */
3207 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3208 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3209
3210 /* Issue global reset */
3211 write_op(sc, BGE_MISC_CFG, val);
3212
3213 /* Step 8: wait for complete */
3214 if (sc->bge_flags & BGE_PCIE)
3215 delay(100*1000); /* too big */
3216 else
3217 delay(100);
3218
3219 /* From Linux: dummy read to flush PCI posted writes */
3220 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3221
3222 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3223 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3224 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3225 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3226 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3227 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3228 write_op(sc, BGE_MISC_CFG, (65 << 1));
3229
3230 /* Step 11: disable PCI-X Relaxed Ordering. */
3231 if (sc->bge_flags & BGE_PCIX) {
3232 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3233 + PCI_PCIX_CMD);
3234 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3235 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3236 }
3237
3238 if (sc->bge_flags & BGE_PCIE) {
3239 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3240 DELAY(500000);
3241 /* XXX: Magic Numbers */
3242 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3243 BGE_PCI_UNKNOWN0);
3244 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3245 BGE_PCI_UNKNOWN0,
3246 reg | (1 << 15));
3247 }
3248 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3249 sc->bge_pciecap + PCI_PCIE_DCSR);
3250 /* Clear enable no snoop and disable relaxed ordering. */
3251 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3252 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3253 /* Set PCIE max payload size to 128. */
3254 devctl &= ~(0x00e0);
3255 /* Clear device status register. Write 1b to clear */
3256 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3257 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3258 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3259 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3260 }
3261
3262 /* Step 12: Enable memory arbiter. */
3263 marbmode = 0;
3264 if (BGE_IS_5714_FAMILY(sc))
3265 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3266 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3267
3268 /* Step 17: Poll until the firmware initialization is complete */
3269 bge_poll_fw(sc);
3270
3271 /* XXX 5721, 5751 and 5752 */
3272 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3273 /* Step 19: */
3274 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3275 /* Step 20: */
3276 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3277 }
3278
3279 /*
3280 * Step 18: wirte mac mode
3281 * XXX Write 0x0c for 5703S and 5704S
3282 */
3283 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3284
3285
3286 /* Step 21: 5822 B0 errata */
3287 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3288 pcireg_t msidata;
3289
3290 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3291 BGE_PCI_MSI_DATA);
3292 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3293 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3294 msidata);
3295 }
3296
3297 /* Step 23: restore cache line size */
3298 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3299
3300 #if 0
3301 /*
3302 * XXX Wait for the value of the PCISTATE register to
3303 * return to its original pre-reset state. This is a
3304 * fairly good indicator of reset completion. If we don't
3305 * wait for the reset to fully complete, trying to read
3306 * from the device's non-PCI registers may yield garbage
3307 * results.
3308 */
3309 for (i = 0; i < BGE_TIMEOUT; i++) {
3310 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3311 BGE_PCI_PCISTATE);
3312 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3313 (pcistate & ~BGE_PCISTATE_RESERVED))
3314 break;
3315 DELAY(10);
3316 }
3317 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3318 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3319 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3320 }
3321 #endif
3322
3323 /* Step 28: Fix up byte swapping */
3324 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3325
3326 /* Tell the ASF firmware we are up */
3327 if (sc->bge_asf_mode & ASF_STACKUP)
3328 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3329
3330 /*
3331 * The 5704 in TBI mode apparently needs some special
3332 * adjustment to insure the SERDES drive level is set
3333 * to 1.2V.
3334 */
3335 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3336 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3337 uint32_t serdescfg;
3338
3339 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3340 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3341 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3342 }
3343
3344 if (sc->bge_flags & BGE_PCIE &&
3345 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3346 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3347 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3348 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
3349 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
3350 uint32_t v;
3351
3352 /* Enable PCI Express bug fix */
3353 v = CSR_READ_4(sc, 0x7c00);
3354 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3355 }
3356 DELAY(10000);
3357
3358 return 0;
3359 }
3360
3361 /*
3362 * Frame reception handling. This is called if there's a frame
3363 * on the receive return list.
3364 *
3365 * Note: we have to be able to handle two possibilities here:
3366 * 1) the frame is from the jumbo receive ring
3367 * 2) the frame is from the standard receive ring
3368 */
3369
3370 static void
3371 bge_rxeof(struct bge_softc *sc)
3372 {
3373 struct ifnet *ifp;
3374 uint16_t rx_prod, rx_cons;
3375 int stdcnt = 0, jumbocnt = 0;
3376 bus_dmamap_t dmamap;
3377 bus_addr_t offset, toff;
3378 bus_size_t tlen;
3379 int tosync;
3380
3381 rx_cons = sc->bge_rx_saved_considx;
3382 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3383
3384 /* Nothing to do */
3385 if (rx_cons == rx_prod)
3386 return;
3387
3388 ifp = &sc->ethercom.ec_if;
3389
3390 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3391 offsetof(struct bge_ring_data, bge_status_block),
3392 sizeof (struct bge_status_block),
3393 BUS_DMASYNC_POSTREAD);
3394
3395 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3396 tosync = rx_prod - rx_cons;
3397
3398 if (tosync != 0)
3399 rnd_add_uint32(&sc->rnd_source, tosync);
3400
3401 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3402
3403 if (tosync < 0) {
3404 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3405 sizeof (struct bge_rx_bd);
3406 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3407 toff, tlen, BUS_DMASYNC_POSTREAD);
3408 tosync = -tosync;
3409 }
3410
3411 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3412 offset, tosync * sizeof (struct bge_rx_bd),
3413 BUS_DMASYNC_POSTREAD);
3414
3415 while (rx_cons != rx_prod) {
3416 struct bge_rx_bd *cur_rx;
3417 uint32_t rxidx;
3418 struct mbuf *m = NULL;
3419
3420 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3421
3422 rxidx = cur_rx->bge_idx;
3423 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3424
3425 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3426 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3427 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3428 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3429 jumbocnt++;
3430 bus_dmamap_sync(sc->bge_dmatag,
3431 sc->bge_cdata.bge_rx_jumbo_map,
3432 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3433 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3434 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3435 ifp->if_ierrors++;
3436 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3437 continue;
3438 }
3439 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3440 NULL)== ENOBUFS) {
3441 ifp->if_ierrors++;
3442 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3443 continue;
3444 }
3445 } else {
3446 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3447 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3448
3449 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3450 stdcnt++;
3451 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3452 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3453 if (dmamap == NULL) {
3454 ifp->if_ierrors++;
3455 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3456 continue;
3457 }
3458 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3459 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3460 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3461 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3462 ifp->if_ierrors++;
3463 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3464 continue;
3465 }
3466 if (bge_newbuf_std(sc, sc->bge_std,
3467 NULL, dmamap) == ENOBUFS) {
3468 ifp->if_ierrors++;
3469 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3470 continue;
3471 }
3472 }
3473
3474 ifp->if_ipackets++;
3475 #ifndef __NO_STRICT_ALIGNMENT
3476 /*
3477 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3478 * the Rx buffer has the layer-2 header unaligned.
3479 * If our CPU requires alignment, re-align by copying.
3480 */
3481 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3482 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3483 cur_rx->bge_len);
3484 m->m_data += ETHER_ALIGN;
3485 }
3486 #endif
3487
3488 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3489 m->m_pkthdr.rcvif = ifp;
3490
3491 /*
3492 * Handle BPF listeners. Let the BPF user see the packet.
3493 */
3494 bpf_mtap(ifp, m);
3495
3496 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3497
3498 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3499 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3500 /*
3501 * Rx transport checksum-offload may also
3502 * have bugs with packets which, when transmitted,
3503 * were `runts' requiring padding.
3504 */
3505 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3506 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3507 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3508 m->m_pkthdr.csum_data =
3509 cur_rx->bge_tcp_udp_csum;
3510 m->m_pkthdr.csum_flags |=
3511 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3512 M_CSUM_DATA);
3513 }
3514
3515 /*
3516 * If we received a packet with a vlan tag, pass it
3517 * to vlan_input() instead of ether_input().
3518 */
3519 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3520 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3521 }
3522
3523 (*ifp->if_input)(ifp, m);
3524 }
3525
3526 sc->bge_rx_saved_considx = rx_cons;
3527 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3528 if (stdcnt)
3529 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3530 if (jumbocnt)
3531 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3532 }
3533
3534 static void
3535 bge_txeof(struct bge_softc *sc)
3536 {
3537 struct bge_tx_bd *cur_tx = NULL;
3538 struct ifnet *ifp;
3539 struct txdmamap_pool_entry *dma;
3540 bus_addr_t offset, toff;
3541 bus_size_t tlen;
3542 int tosync;
3543 struct mbuf *m;
3544
3545 ifp = &sc->ethercom.ec_if;
3546
3547 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3548 offsetof(struct bge_ring_data, bge_status_block),
3549 sizeof (struct bge_status_block),
3550 BUS_DMASYNC_POSTREAD);
3551
3552 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3553 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3554 sc->bge_tx_saved_considx;
3555
3556 if (tosync != 0)
3557 rnd_add_uint32(&sc->rnd_source, tosync);
3558
3559 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3560
3561 if (tosync < 0) {
3562 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3563 sizeof (struct bge_tx_bd);
3564 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3565 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3566 tosync = -tosync;
3567 }
3568
3569 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3570 offset, tosync * sizeof (struct bge_tx_bd),
3571 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3572
3573 /*
3574 * Go through our tx ring and free mbufs for those
3575 * frames that have been sent.
3576 */
3577 while (sc->bge_tx_saved_considx !=
3578 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3579 uint32_t idx = 0;
3580
3581 idx = sc->bge_tx_saved_considx;
3582 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3583 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3584 ifp->if_opackets++;
3585 m = sc->bge_cdata.bge_tx_chain[idx];
3586 if (m != NULL) {
3587 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3588 dma = sc->txdma[idx];
3589 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3590 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3591 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3592 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3593 sc->txdma[idx] = NULL;
3594
3595 m_freem(m);
3596 }
3597 sc->bge_txcnt--;
3598 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3599 ifp->if_timer = 0;
3600 }
3601
3602 if (cur_tx != NULL)
3603 ifp->if_flags &= ~IFF_OACTIVE;
3604 }
3605
3606 static int
3607 bge_intr(void *xsc)
3608 {
3609 struct bge_softc *sc;
3610 struct ifnet *ifp;
3611 uint32_t statusword;
3612
3613 sc = xsc;
3614 ifp = &sc->ethercom.ec_if;
3615
3616 /* It is possible for the interrupt to arrive before
3617 * the status block is updated prior to the interrupt.
3618 * Reading the PCI State register will confirm whether the
3619 * interrupt is ours and will flush the status block.
3620 */
3621
3622 /* read status word from status block */
3623 statusword = sc->bge_rdata->bge_status_block.bge_status;
3624
3625 if ((statusword & BGE_STATFLAG_UPDATED) ||
3626 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3627 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3628 /* Ack interrupt and stop others from occuring. */
3629 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3630
3631 BGE_EVCNT_INCR(sc->bge_ev_intr);
3632
3633 /* clear status word */
3634 sc->bge_rdata->bge_status_block.bge_status = 0;
3635
3636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3637 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3638 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3639 bge_link_upd(sc);
3640
3641 if (ifp->if_flags & IFF_RUNNING) {
3642 /* Check RX return ring producer/consumer */
3643 bge_rxeof(sc);
3644
3645 /* Check TX ring producer/consumer */
3646 bge_txeof(sc);
3647 }
3648
3649 if (sc->bge_pending_rxintr_change) {
3650 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3651 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3652 uint32_t junk;
3653
3654 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3655 DELAY(10);
3656 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3657
3658 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3659 DELAY(10);
3660 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3661
3662 sc->bge_pending_rxintr_change = 0;
3663 }
3664 bge_handle_events(sc);
3665
3666 /* Re-enable interrupts. */
3667 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3668
3669 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3670 bge_start(ifp);
3671
3672 return 1;
3673 } else
3674 return 0;
3675 }
3676
3677 static void
3678 bge_asf_driver_up(struct bge_softc *sc)
3679 {
3680 if (sc->bge_asf_mode & ASF_STACKUP) {
3681 /* Send ASF heartbeat aprox. every 2s */
3682 if (sc->bge_asf_count)
3683 sc->bge_asf_count --;
3684 else {
3685 sc->bge_asf_count = 2;
3686 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3687 BGE_FW_DRV_ALIVE);
3688 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3689 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3690 CSR_WRITE_4(sc, BGE_CPU_EVENT,
3691 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3692 }
3693 }
3694 }
3695
3696 static void
3697 bge_tick(void *xsc)
3698 {
3699 struct bge_softc *sc = xsc;
3700 struct mii_data *mii = &sc->bge_mii;
3701 int s;
3702
3703 s = splnet();
3704
3705 if (BGE_IS_5705_PLUS(sc))
3706 bge_stats_update_regs(sc);
3707 else
3708 bge_stats_update(sc);
3709
3710 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3711 /*
3712 * Since in TBI mode auto-polling can't be used we should poll
3713 * link status manually. Here we register pending link event
3714 * and trigger interrupt.
3715 */
3716 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3717 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3718 } else {
3719 /*
3720 * Do not touch PHY if we have link up. This could break
3721 * IPMI/ASF mode or produce extra input errors.
3722 * (extra input errors was reported for bcm5701 & bcm5704).
3723 */
3724 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3725 mii_tick(mii);
3726 }
3727
3728 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3729
3730 splx(s);
3731 }
3732
3733 static void
3734 bge_stats_update_regs(struct bge_softc *sc)
3735 {
3736 struct ifnet *ifp = &sc->ethercom.ec_if;
3737
3738 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3739 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3740
3741 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3742 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3743 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3744 }
3745
3746 static void
3747 bge_stats_update(struct bge_softc *sc)
3748 {
3749 struct ifnet *ifp = &sc->ethercom.ec_if;
3750 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3751
3752 #define READ_STAT(sc, stats, stat) \
3753 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3754
3755 ifp->if_collisions +=
3756 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3757 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3758 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3759 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3760 ifp->if_collisions;
3761
3762 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3763 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3764 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3765 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3766 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3767 READ_STAT(sc, stats,
3768 xoffPauseFramesReceived.bge_addr_lo));
3769 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3770 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3771 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3772 READ_STAT(sc, stats,
3773 macControlFramesReceived.bge_addr_lo));
3774 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3775 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3776
3777 #undef READ_STAT
3778
3779 #ifdef notdef
3780 ifp->if_collisions +=
3781 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3782 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3783 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3784 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3785 ifp->if_collisions;
3786 #endif
3787 }
3788
3789 /*
3790 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3791 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3792 * but when such padded frames employ the bge IP/TCP checksum offload,
3793 * the hardware checksum assist gives incorrect results (possibly
3794 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3795 * If we pad such runts with zeros, the onboard checksum comes out correct.
3796 */
3797 static inline int
3798 bge_cksum_pad(struct mbuf *pkt)
3799 {
3800 struct mbuf *last = NULL;
3801 int padlen;
3802
3803 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3804
3805 /* if there's only the packet-header and we can pad there, use it. */
3806 if (pkt->m_pkthdr.len == pkt->m_len &&
3807 M_TRAILINGSPACE(pkt) >= padlen) {
3808 last = pkt;
3809 } else {
3810 /*
3811 * Walk packet chain to find last mbuf. We will either
3812 * pad there, or append a new mbuf and pad it
3813 * (thus perhaps avoiding the bcm5700 dma-min bug).
3814 */
3815 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3816 continue; /* do nothing */
3817 }
3818
3819 /* `last' now points to last in chain. */
3820 if (M_TRAILINGSPACE(last) < padlen) {
3821 /* Allocate new empty mbuf, pad it. Compact later. */
3822 struct mbuf *n;
3823 MGET(n, M_DONTWAIT, MT_DATA);
3824 if (n == NULL)
3825 return ENOBUFS;
3826 n->m_len = 0;
3827 last->m_next = n;
3828 last = n;
3829 }
3830 }
3831
3832 KDASSERT(!M_READONLY(last));
3833 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3834
3835 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3836 memset(mtod(last, char *) + last->m_len, 0, padlen);
3837 last->m_len += padlen;
3838 pkt->m_pkthdr.len += padlen;
3839 return 0;
3840 }
3841
3842 /*
3843 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3844 */
3845 static inline int
3846 bge_compact_dma_runt(struct mbuf *pkt)
3847 {
3848 struct mbuf *m, *prev;
3849 int totlen, prevlen;
3850
3851 prev = NULL;
3852 totlen = 0;
3853 prevlen = -1;
3854
3855 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3856 int mlen = m->m_len;
3857 int shortfall = 8 - mlen ;
3858
3859 totlen += mlen;
3860 if (mlen == 0)
3861 continue;
3862 if (mlen >= 8)
3863 continue;
3864
3865 /* If we get here, mbuf data is too small for DMA engine.
3866 * Try to fix by shuffling data to prev or next in chain.
3867 * If that fails, do a compacting deep-copy of the whole chain.
3868 */
3869
3870 /* Internal frag. If fits in prev, copy it there. */
3871 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3872 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3873 prev->m_len += mlen;
3874 m->m_len = 0;
3875 /* XXX stitch chain */
3876 prev->m_next = m_free(m);
3877 m = prev;
3878 continue;
3879 }
3880 else if (m->m_next != NULL &&
3881 M_TRAILINGSPACE(m) >= shortfall &&
3882 m->m_next->m_len >= (8 + shortfall)) {
3883 /* m is writable and have enough data in next, pull up. */
3884
3885 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3886 shortfall);
3887 m->m_len += shortfall;
3888 m->m_next->m_len -= shortfall;
3889 m->m_next->m_data += shortfall;
3890 }
3891 else if (m->m_next == NULL || 1) {
3892 /* Got a runt at the very end of the packet.
3893 * borrow data from the tail of the preceding mbuf and
3894 * update its length in-place. (The original data is still
3895 * valid, so we can do this even if prev is not writable.)
3896 */
3897
3898 /* if we'd make prev a runt, just move all of its data. */
3899 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3900 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3901
3902 if ((prev->m_len - shortfall) < 8)
3903 shortfall = prev->m_len;
3904
3905 #ifdef notyet /* just do the safe slow thing for now */
3906 if (!M_READONLY(m)) {
3907 if (M_LEADINGSPACE(m) < shorfall) {
3908 void *m_dat;
3909 m_dat = (m->m_flags & M_PKTHDR) ?
3910 m->m_pktdat : m->dat;
3911 memmove(m_dat, mtod(m, void*), m->m_len);
3912 m->m_data = m_dat;
3913 }
3914 } else
3915 #endif /* just do the safe slow thing */
3916 {
3917 struct mbuf * n = NULL;
3918 int newprevlen = prev->m_len - shortfall;
3919
3920 MGET(n, M_NOWAIT, MT_DATA);
3921 if (n == NULL)
3922 return ENOBUFS;
3923 KASSERT(m->m_len + shortfall < MLEN
3924 /*,
3925 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3926
3927 /* first copy the data we're stealing from prev */
3928 memcpy(n->m_data, prev->m_data + newprevlen,
3929 shortfall);
3930
3931 /* update prev->m_len accordingly */
3932 prev->m_len -= shortfall;
3933
3934 /* copy data from runt m */
3935 memcpy(n->m_data + shortfall, m->m_data,
3936 m->m_len);
3937
3938 /* n holds what we stole from prev, plus m */
3939 n->m_len = shortfall + m->m_len;
3940
3941 /* stitch n into chain and free m */
3942 n->m_next = m->m_next;
3943 prev->m_next = n;
3944 /* KASSERT(m->m_next == NULL); */
3945 m->m_next = NULL;
3946 m_free(m);
3947 m = n; /* for continuing loop */
3948 }
3949 }
3950 prevlen = m->m_len;
3951 }
3952 return 0;
3953 }
3954
3955 /*
3956 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3957 * pointers to descriptors.
3958 */
3959 static int
3960 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3961 {
3962 struct bge_tx_bd *f = NULL;
3963 uint32_t frag, cur;
3964 uint16_t csum_flags = 0;
3965 uint16_t txbd_tso_flags = 0;
3966 struct txdmamap_pool_entry *dma;
3967 bus_dmamap_t dmamap;
3968 int i = 0;
3969 struct m_tag *mtag;
3970 int use_tso, maxsegsize, error;
3971
3972 cur = frag = *txidx;
3973
3974 if (m_head->m_pkthdr.csum_flags) {
3975 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3976 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3977 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3978 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3979 }
3980
3981 /*
3982 * If we were asked to do an outboard checksum, and the NIC
3983 * has the bug where it sometimes adds in the Ethernet padding,
3984 * explicitly pad with zeros so the cksum will be correct either way.
3985 * (For now, do this for all chip versions, until newer
3986 * are confirmed to not require the workaround.)
3987 */
3988 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3989 #ifdef notyet
3990 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3991 #endif
3992 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3993 goto check_dma_bug;
3994
3995 if (bge_cksum_pad(m_head) != 0)
3996 return ENOBUFS;
3997
3998 check_dma_bug:
3999 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4000 goto doit;
4001
4002 /*
4003 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4004 * less than eight bytes. If we encounter a teeny mbuf
4005 * at the end of a chain, we can pad. Otherwise, copy.
4006 */
4007 if (bge_compact_dma_runt(m_head) != 0)
4008 return ENOBUFS;
4009
4010 doit:
4011 dma = SLIST_FIRST(&sc->txdma_list);
4012 if (dma == NULL)
4013 return ENOBUFS;
4014 dmamap = dma->dmamap;
4015
4016 /*
4017 * Set up any necessary TSO state before we start packing...
4018 */
4019 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4020 if (!use_tso) {
4021 maxsegsize = 0;
4022 } else { /* TSO setup */
4023 unsigned mss;
4024 struct ether_header *eh;
4025 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4026 struct mbuf * m0 = m_head;
4027 struct ip *ip;
4028 struct tcphdr *th;
4029 int iphl, hlen;
4030
4031 /*
4032 * XXX It would be nice if the mbuf pkthdr had offset
4033 * fields for the protocol headers.
4034 */
4035
4036 eh = mtod(m0, struct ether_header *);
4037 switch (htons(eh->ether_type)) {
4038 case ETHERTYPE_IP:
4039 offset = ETHER_HDR_LEN;
4040 break;
4041
4042 case ETHERTYPE_VLAN:
4043 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4044 break;
4045
4046 default:
4047 /*
4048 * Don't support this protocol or encapsulation.
4049 */
4050 return ENOBUFS;
4051 }
4052
4053 /*
4054 * TCP/IP headers are in the first mbuf; we can do
4055 * this the easy way.
4056 */
4057 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4058 hlen = iphl + offset;
4059 if (__predict_false(m0->m_len <
4060 (hlen + sizeof(struct tcphdr)))) {
4061
4062 aprint_debug_dev(sc->bge_dev,
4063 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4064 "not handled yet\n",
4065 m0->m_len, hlen+ sizeof(struct tcphdr));
4066 #ifdef NOTYET
4067 /*
4068 * XXX jonathan (at) NetBSD.org: untested.
4069 * how to force this branch to be taken?
4070 */
4071 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4072
4073 m_copydata(m0, offset, sizeof(ip), &ip);
4074 m_copydata(m0, hlen, sizeof(th), &th);
4075
4076 ip.ip_len = 0;
4077
4078 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4079 sizeof(ip.ip_len), &ip.ip_len);
4080
4081 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4082 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4083
4084 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4085 sizeof(th.th_sum), &th.th_sum);
4086
4087 hlen += th.th_off << 2;
4088 iptcp_opt_words = hlen;
4089 #else
4090 /*
4091 * if_wm "hard" case not yet supported, can we not
4092 * mandate it out of existence?
4093 */
4094 (void) ip; (void)th; (void) ip_tcp_hlen;
4095
4096 return ENOBUFS;
4097 #endif
4098 } else {
4099 ip = (struct ip *) (mtod(m0, char *) + offset);
4100 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4101 ip_tcp_hlen = iphl + (th->th_off << 2);
4102
4103 /* Total IP/TCP options, in 32-bit words */
4104 iptcp_opt_words = (ip_tcp_hlen
4105 - sizeof(struct tcphdr)
4106 - sizeof(struct ip)) >> 2;
4107 }
4108 if (BGE_IS_575X_PLUS(sc)) {
4109 th->th_sum = 0;
4110 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4111 } else {
4112 /*
4113 * XXX jonathan (at) NetBSD.org: 5705 untested.
4114 * Requires TSO firmware patch for 5701/5703/5704.
4115 */
4116 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4117 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4118 }
4119
4120 mss = m_head->m_pkthdr.segsz;
4121 txbd_tso_flags |=
4122 BGE_TXBDFLAG_CPU_PRE_DMA |
4123 BGE_TXBDFLAG_CPU_POST_DMA;
4124
4125 /*
4126 * Our NIC TSO-assist assumes TSO has standard, optionless
4127 * IPv4 and TCP headers, which total 40 bytes. By default,
4128 * the NIC copies 40 bytes of IP/TCP header from the
4129 * supplied header into the IP/TCP header portion of
4130 * each post-TSO-segment. If the supplied packet has IP or
4131 * TCP options, we need to tell the NIC to copy those extra
4132 * bytes into each post-TSO header, in addition to the normal
4133 * 40-byte IP/TCP header (and to leave space accordingly).
4134 * Unfortunately, the driver encoding of option length
4135 * varies across different ASIC families.
4136 */
4137 tcp_seg_flags = 0;
4138 if (iptcp_opt_words) {
4139 if (BGE_IS_5705_PLUS(sc)) {
4140 tcp_seg_flags =
4141 iptcp_opt_words << 11;
4142 } else {
4143 txbd_tso_flags |=
4144 iptcp_opt_words << 12;
4145 }
4146 }
4147 maxsegsize = mss | tcp_seg_flags;
4148 ip->ip_len = htons(mss + ip_tcp_hlen);
4149
4150 } /* TSO setup */
4151
4152 /*
4153 * Start packing the mbufs in this chain into
4154 * the fragment pointers. Stop when we run out
4155 * of fragments or hit the end of the mbuf chain.
4156 */
4157 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4158 BUS_DMA_NOWAIT);
4159 if (error)
4160 return ENOBUFS;
4161 /*
4162 * Sanity check: avoid coming within 16 descriptors
4163 * of the end of the ring.
4164 */
4165 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4166 BGE_TSO_PRINTF(("%s: "
4167 " dmamap_load_mbuf too close to ring wrap\n",
4168 device_xname(sc->bge_dev)));
4169 goto fail_unload;
4170 }
4171
4172 mtag = sc->ethercom.ec_nvlans ?
4173 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4174
4175
4176 /* Iterate over dmap-map fragments. */
4177 for (i = 0; i < dmamap->dm_nsegs; i++) {
4178 f = &sc->bge_rdata->bge_tx_ring[frag];
4179 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4180 break;
4181
4182 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4183 f->bge_len = dmamap->dm_segs[i].ds_len;
4184
4185 /*
4186 * For 5751 and follow-ons, for TSO we must turn
4187 * off checksum-assist flag in the tx-descr, and
4188 * supply the ASIC-revision-specific encoding
4189 * of TSO flags and segsize.
4190 */
4191 if (use_tso) {
4192 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4193 f->bge_rsvd = maxsegsize;
4194 f->bge_flags = csum_flags | txbd_tso_flags;
4195 } else {
4196 f->bge_rsvd = 0;
4197 f->bge_flags =
4198 (csum_flags | txbd_tso_flags) & 0x0fff;
4199 }
4200 } else {
4201 f->bge_rsvd = 0;
4202 f->bge_flags = csum_flags;
4203 }
4204
4205 if (mtag != NULL) {
4206 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4207 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4208 } else {
4209 f->bge_vlan_tag = 0;
4210 }
4211 cur = frag;
4212 BGE_INC(frag, BGE_TX_RING_CNT);
4213 }
4214
4215 if (i < dmamap->dm_nsegs) {
4216 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4217 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4218 goto fail_unload;
4219 }
4220
4221 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4222 BUS_DMASYNC_PREWRITE);
4223
4224 if (frag == sc->bge_tx_saved_considx) {
4225 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4226 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4227
4228 goto fail_unload;
4229 }
4230
4231 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4232 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4233 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4234 sc->txdma[cur] = dma;
4235 sc->bge_txcnt += dmamap->dm_nsegs;
4236
4237 *txidx = frag;
4238
4239 return 0;
4240
4241 fail_unload:
4242 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4243
4244 return ENOBUFS;
4245 }
4246
4247 /*
4248 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4249 * to the mbuf data regions directly in the transmit descriptors.
4250 */
4251 static void
4252 bge_start(struct ifnet *ifp)
4253 {
4254 struct bge_softc *sc;
4255 struct mbuf *m_head = NULL;
4256 uint32_t prodidx;
4257 int pkts = 0;
4258
4259 sc = ifp->if_softc;
4260
4261 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4262 return;
4263
4264 prodidx = sc->bge_tx_prodidx;
4265
4266 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4267 IFQ_POLL(&ifp->if_snd, m_head);
4268 if (m_head == NULL)
4269 break;
4270
4271 #if 0
4272 /*
4273 * XXX
4274 * safety overkill. If this is a fragmented packet chain
4275 * with delayed TCP/UDP checksums, then only encapsulate
4276 * it if we have enough descriptors to handle the entire
4277 * chain at once.
4278 * (paranoia -- may not actually be needed)
4279 */
4280 if (m_head->m_flags & M_FIRSTFRAG &&
4281 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4282 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4283 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4284 ifp->if_flags |= IFF_OACTIVE;
4285 break;
4286 }
4287 }
4288 #endif
4289
4290 /*
4291 * Pack the data into the transmit ring. If we
4292 * don't have room, set the OACTIVE flag and wait
4293 * for the NIC to drain the ring.
4294 */
4295 if (bge_encap(sc, m_head, &prodidx)) {
4296 ifp->if_flags |= IFF_OACTIVE;
4297 break;
4298 }
4299
4300 /* now we are committed to transmit the packet */
4301 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4302 pkts++;
4303
4304 /*
4305 * If there's a BPF listener, bounce a copy of this frame
4306 * to him.
4307 */
4308 bpf_mtap(ifp, m_head);
4309 }
4310 if (pkts == 0)
4311 return;
4312
4313 /* Transmit */
4314 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4315 /* 5700 b2 errata */
4316 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4317 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4318
4319 sc->bge_tx_prodidx = prodidx;
4320
4321 /*
4322 * Set a timeout in case the chip goes out to lunch.
4323 */
4324 ifp->if_timer = 5;
4325 }
4326
4327 static int
4328 bge_init(struct ifnet *ifp)
4329 {
4330 struct bge_softc *sc = ifp->if_softc;
4331 const uint16_t *m;
4332 uint32_t mode;
4333 int s, error = 0;
4334
4335 s = splnet();
4336
4337 ifp = &sc->ethercom.ec_if;
4338
4339 /* Cancel pending I/O and flush buffers. */
4340 bge_stop(ifp, 0);
4341
4342 bge_stop_fw(sc);
4343 bge_sig_pre_reset(sc, BGE_RESET_START);
4344 bge_reset(sc);
4345 bge_sig_legacy(sc, BGE_RESET_START);
4346 bge_sig_post_reset(sc, BGE_RESET_START);
4347
4348 bge_chipinit(sc);
4349
4350 /*
4351 * Init the various state machines, ring
4352 * control blocks and firmware.
4353 */
4354 error = bge_blockinit(sc);
4355 if (error != 0) {
4356 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4357 error);
4358 splx(s);
4359 return error;
4360 }
4361
4362 ifp = &sc->ethercom.ec_if;
4363
4364 /* Specify MTU. */
4365 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4366 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4367
4368 /* Load our MAC address. */
4369 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4370 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4371 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4372
4373 /* Enable or disable promiscuous mode as needed. */
4374 if (ifp->if_flags & IFF_PROMISC)
4375 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4376 else
4377 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4378
4379 /* Program multicast filter. */
4380 bge_setmulti(sc);
4381
4382 /* Init RX ring. */
4383 bge_init_rx_ring_std(sc);
4384
4385 /*
4386 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4387 * memory to insure that the chip has in fact read the first
4388 * entry of the ring.
4389 */
4390 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4391 uint32_t v, i;
4392 for (i = 0; i < 10; i++) {
4393 DELAY(20);
4394 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4395 if (v == (MCLBYTES - ETHER_ALIGN))
4396 break;
4397 }
4398 if (i == 10)
4399 aprint_error_dev(sc->bge_dev,
4400 "5705 A0 chip failed to load RX ring\n");
4401 }
4402
4403 /* Init jumbo RX ring. */
4404 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4405 bge_init_rx_ring_jumbo(sc);
4406
4407 /* Init our RX return ring index */
4408 sc->bge_rx_saved_considx = 0;
4409
4410 /* Init TX ring. */
4411 bge_init_tx_ring(sc);
4412
4413 /* Enable TX MAC state machine lockup fix. */
4414 mode = CSR_READ_4(sc, BGE_TX_MODE);
4415 if (BGE_IS_5755_PLUS(sc) ||
4416 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4417 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4418
4419 /* Turn on transmitter */
4420 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4421 DELAY(100);
4422
4423 /* Turn on receiver */
4424 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4425 DELAY(10);
4426
4427 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4428
4429 /* Tell firmware we're alive. */
4430 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4431
4432 /* Enable host interrupts. */
4433 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4434 BGE_PCIMISCCTL_CLEAR_INTA);
4435 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4436 BGE_PCIMISCCTL_MASK_PCI_INTR);
4437 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4438
4439 if ((error = bge_ifmedia_upd(ifp)) != 0)
4440 goto out;
4441
4442 ifp->if_flags |= IFF_RUNNING;
4443 ifp->if_flags &= ~IFF_OACTIVE;
4444
4445 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4446
4447 out:
4448 sc->bge_if_flags = ifp->if_flags;
4449 splx(s);
4450
4451 return error;
4452 }
4453
4454 /*
4455 * Set media options.
4456 */
4457 static int
4458 bge_ifmedia_upd(struct ifnet *ifp)
4459 {
4460 struct bge_softc *sc = ifp->if_softc;
4461 struct mii_data *mii = &sc->bge_mii;
4462 struct ifmedia *ifm = &sc->bge_ifmedia;
4463 int rc;
4464
4465 /* If this is a 1000baseX NIC, enable the TBI port. */
4466 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4467 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4468 return EINVAL;
4469 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4470 case IFM_AUTO:
4471 /*
4472 * The BCM5704 ASIC appears to have a special
4473 * mechanism for programming the autoneg
4474 * advertisement registers in TBI mode.
4475 */
4476 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4477 uint32_t sgdig;
4478 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4479 if (sgdig & BGE_SGDIGSTS_DONE) {
4480 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4481 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4482 sgdig |= BGE_SGDIGCFG_AUTO |
4483 BGE_SGDIGCFG_PAUSE_CAP |
4484 BGE_SGDIGCFG_ASYM_PAUSE;
4485 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4486 sgdig | BGE_SGDIGCFG_SEND);
4487 DELAY(5);
4488 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4489 }
4490 }
4491 break;
4492 case IFM_1000_SX:
4493 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4494 BGE_CLRBIT(sc, BGE_MAC_MODE,
4495 BGE_MACMODE_HALF_DUPLEX);
4496 } else {
4497 BGE_SETBIT(sc, BGE_MAC_MODE,
4498 BGE_MACMODE_HALF_DUPLEX);
4499 }
4500 break;
4501 default:
4502 return EINVAL;
4503 }
4504 /* XXX 802.3x flow control for 1000BASE-SX */
4505 return 0;
4506 }
4507
4508 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4509 if ((rc = mii_mediachg(mii)) == ENXIO)
4510 return 0;
4511
4512 /*
4513 * Force an interrupt so that we will call bge_link_upd
4514 * if needed and clear any pending link state attention.
4515 * Without this we are not getting any further interrupts
4516 * for link state changes and thus will not UP the link and
4517 * not be able to send in bge_start. The only way to get
4518 * things working was to receive a packet and get a RX intr.
4519 */
4520 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4521 sc->bge_flags & BGE_IS_5788)
4522 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4523 else
4524 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4525
4526 return rc;
4527 }
4528
4529 /*
4530 * Report current media status.
4531 */
4532 static void
4533 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4534 {
4535 struct bge_softc *sc = ifp->if_softc;
4536 struct mii_data *mii = &sc->bge_mii;
4537
4538 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4539 ifmr->ifm_status = IFM_AVALID;
4540 ifmr->ifm_active = IFM_ETHER;
4541 if (CSR_READ_4(sc, BGE_MAC_STS) &
4542 BGE_MACSTAT_TBI_PCS_SYNCHED)
4543 ifmr->ifm_status |= IFM_ACTIVE;
4544 ifmr->ifm_active |= IFM_1000_SX;
4545 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4546 ifmr->ifm_active |= IFM_HDX;
4547 else
4548 ifmr->ifm_active |= IFM_FDX;
4549 return;
4550 }
4551
4552 mii_pollstat(mii);
4553 ifmr->ifm_status = mii->mii_media_status;
4554 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4555 sc->bge_flowflags;
4556 }
4557
4558 static int
4559 bge_ifflags_cb(struct ethercom *ec)
4560 {
4561 struct ifnet *ifp = &ec->ec_if;
4562 struct bge_softc *sc = ifp->if_softc;
4563 int change = ifp->if_flags ^ sc->bge_if_flags;
4564
4565 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4566 return ENETRESET;
4567 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4568 return 0;
4569
4570 if ((ifp->if_flags & IFF_PROMISC) == 0)
4571 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4572 else
4573 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4574
4575 bge_setmulti(sc);
4576
4577 sc->bge_if_flags = ifp->if_flags;
4578 return 0;
4579 }
4580
4581 static int
4582 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4583 {
4584 struct bge_softc *sc = ifp->if_softc;
4585 struct ifreq *ifr = (struct ifreq *) data;
4586 int s, error = 0;
4587 struct mii_data *mii;
4588
4589 s = splnet();
4590
4591 switch (command) {
4592 case SIOCSIFMEDIA:
4593 /* XXX Flow control is not supported for 1000BASE-SX */
4594 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4595 ifr->ifr_media &= ~IFM_ETH_FMASK;
4596 sc->bge_flowflags = 0;
4597 }
4598
4599 /* Flow control requires full-duplex mode. */
4600 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4601 (ifr->ifr_media & IFM_FDX) == 0) {
4602 ifr->ifr_media &= ~IFM_ETH_FMASK;
4603 }
4604 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4605 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4606 /* We can do both TXPAUSE and RXPAUSE. */
4607 ifr->ifr_media |=
4608 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4609 }
4610 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4611 }
4612 /* FALLTHROUGH */
4613 case SIOCGIFMEDIA:
4614 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4615 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4616 command);
4617 } else {
4618 mii = &sc->bge_mii;
4619 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4620 command);
4621 }
4622 break;
4623 default:
4624 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4625 break;
4626
4627 error = 0;
4628
4629 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4630 ;
4631 else if (ifp->if_flags & IFF_RUNNING)
4632 bge_setmulti(sc);
4633 break;
4634 }
4635
4636 splx(s);
4637
4638 return error;
4639 }
4640
4641 static void
4642 bge_watchdog(struct ifnet *ifp)
4643 {
4644 struct bge_softc *sc;
4645
4646 sc = ifp->if_softc;
4647
4648 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4649
4650 ifp->if_flags &= ~IFF_RUNNING;
4651 bge_init(ifp);
4652
4653 ifp->if_oerrors++;
4654 }
4655
4656 static void
4657 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4658 {
4659 int i;
4660
4661 BGE_CLRBIT(sc, reg, bit);
4662
4663 for (i = 0; i < 1000; i++) {
4664 if ((CSR_READ_4(sc, reg) & bit) == 0)
4665 return;
4666 delay(100);
4667 }
4668
4669 /*
4670 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4671 * on some environment (and once after boot?)
4672 */
4673 if (reg != BGE_SRS_MODE)
4674 aprint_error_dev(sc->bge_dev,
4675 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4676 (u_long)reg, bit);
4677 }
4678
4679 /*
4680 * Stop the adapter and free any mbufs allocated to the
4681 * RX and TX lists.
4682 */
4683 static void
4684 bge_stop(struct ifnet *ifp, int disable)
4685 {
4686 struct bge_softc *sc = ifp->if_softc;
4687
4688 callout_stop(&sc->bge_timeout);
4689
4690 /*
4691 * Tell firmware we're shutting down.
4692 */
4693 bge_stop_fw(sc);
4694 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4695
4696 /* Disable host interrupts. */
4697 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4698 BGE_PCIMISCCTL_MASK_PCI_INTR);
4699 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4700
4701 /*
4702 * Disable all of the receiver blocks.
4703 */
4704 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4705 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4706 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4707 if (BGE_IS_5700_FAMILY(sc))
4708 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4709 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4710 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4711 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4712
4713 /*
4714 * Disable all of the transmit blocks.
4715 */
4716 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4717 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4718 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4719 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4720 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4721 if (BGE_IS_5700_FAMILY(sc))
4722 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4723 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4724
4725 /*
4726 * Shut down all of the memory managers and related
4727 * state machines.
4728 */
4729 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4730 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4731 if (BGE_IS_5700_FAMILY(sc))
4732 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4733
4734 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4735 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4736
4737 if (BGE_IS_5700_FAMILY(sc)) {
4738 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4739 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4740 }
4741
4742 bge_reset(sc);
4743 bge_sig_legacy(sc, BGE_RESET_STOP);
4744 bge_sig_post_reset(sc, BGE_RESET_STOP);
4745
4746 /*
4747 * Keep the ASF firmware running if up.
4748 */
4749 if (sc->bge_asf_mode & ASF_STACKUP)
4750 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4751 else
4752 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4753
4754 /* Free the RX lists. */
4755 bge_free_rx_ring_std(sc);
4756
4757 /* Free jumbo RX list. */
4758 if (BGE_IS_JUMBO_CAPABLE(sc))
4759 bge_free_rx_ring_jumbo(sc);
4760
4761 /* Free TX buffers. */
4762 bge_free_tx_ring(sc);
4763
4764 /*
4765 * Isolate/power down the PHY.
4766 */
4767 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4768 mii_down(&sc->bge_mii);
4769
4770 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4771
4772 /* Clear MAC's link state (PHY may still have link UP). */
4773 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4774
4775 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4776 }
4777
4778 static void
4779 bge_link_upd(struct bge_softc *sc)
4780 {
4781 struct ifnet *ifp = &sc->ethercom.ec_if;
4782 struct mii_data *mii = &sc->bge_mii;
4783 uint32_t status;
4784 int link;
4785
4786 /* Clear 'pending link event' flag */
4787 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4788
4789 /*
4790 * Process link state changes.
4791 * Grrr. The link status word in the status block does
4792 * not work correctly on the BCM5700 rev AX and BX chips,
4793 * according to all available information. Hence, we have
4794 * to enable MII interrupts in order to properly obtain
4795 * async link changes. Unfortunately, this also means that
4796 * we have to read the MAC status register to detect link
4797 * changes, thereby adding an additional register access to
4798 * the interrupt handler.
4799 */
4800
4801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4802 status = CSR_READ_4(sc, BGE_MAC_STS);
4803 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4804 mii_pollstat(mii);
4805
4806 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4807 mii->mii_media_status & IFM_ACTIVE &&
4808 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4809 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4810 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4811 (!(mii->mii_media_status & IFM_ACTIVE) ||
4812 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4813 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4814
4815 /* Clear the interrupt */
4816 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4817 BGE_EVTENB_MI_INTERRUPT);
4818 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4819 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4820 BRGPHY_INTRS);
4821 }
4822 return;
4823 }
4824
4825 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4826 status = CSR_READ_4(sc, BGE_MAC_STS);
4827 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4828 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4829 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4830 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4831 BGE_CLRBIT(sc, BGE_MAC_MODE,
4832 BGE_MACMODE_TBI_SEND_CFGS);
4833 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4834 if_link_state_change(ifp, LINK_STATE_UP);
4835 }
4836 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4837 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4838 if_link_state_change(ifp, LINK_STATE_DOWN);
4839 }
4840 /*
4841 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4842 * This should not happen since mii callouts are locked now, but
4843 * we keep this check for debug.
4844 */
4845 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4846 /*
4847 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4848 * bit in status word always set. Workaround this bug by
4849 * reading PHY link status directly.
4850 */
4851 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4852 BGE_STS_LINK : 0;
4853
4854 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4855 mii_pollstat(mii);
4856
4857 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4858 mii->mii_media_status & IFM_ACTIVE &&
4859 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4860 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4861 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4862 (!(mii->mii_media_status & IFM_ACTIVE) ||
4863 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4864 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4865 }
4866 }
4867
4868 /* Clear the attention */
4869 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4870 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4871 BGE_MACSTAT_LINK_CHANGED);
4872 }
4873
4874 static int
4875 bge_sysctl_verify(SYSCTLFN_ARGS)
4876 {
4877 int error, t;
4878 struct sysctlnode node;
4879
4880 node = *rnode;
4881 t = *(int*)rnode->sysctl_data;
4882 node.sysctl_data = &t;
4883 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4884 if (error || newp == NULL)
4885 return error;
4886
4887 #if 0
4888 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4889 node.sysctl_num, rnode->sysctl_num));
4890 #endif
4891
4892 if (node.sysctl_num == bge_rxthresh_nodenum) {
4893 if (t < 0 || t >= NBGE_RX_THRESH)
4894 return EINVAL;
4895 bge_update_all_threshes(t);
4896 } else
4897 return EINVAL;
4898
4899 *(int*)rnode->sysctl_data = t;
4900
4901 return 0;
4902 }
4903
4904 /*
4905 * Set up sysctl(3) MIB, hw.bge.*.
4906 */
4907 static void
4908 bge_sysctl_init(struct bge_softc *sc)
4909 {
4910 int rc, bge_root_num;
4911 const struct sysctlnode *node;
4912
4913 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4914 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4915 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4916 goto out;
4917 }
4918
4919 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4920 0, CTLTYPE_NODE, "bge",
4921 SYSCTL_DESCR("BGE interface controls"),
4922 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4923 goto out;
4924 }
4925
4926 bge_root_num = node->sysctl_num;
4927
4928 /* BGE Rx interrupt mitigation level */
4929 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4930 CTLFLAG_READWRITE,
4931 CTLTYPE_INT, "rx_lvl",
4932 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4933 bge_sysctl_verify, 0,
4934 &bge_rx_thresh_lvl,
4935 0, CTL_HW, bge_root_num, CTL_CREATE,
4936 CTL_EOL)) != 0) {
4937 goto out;
4938 }
4939
4940 bge_rxthresh_nodenum = node->sysctl_num;
4941
4942 return;
4943
4944 out:
4945 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4946 }
4947
4948 #ifdef BGE_DEBUG
4949 void
4950 bge_debug_info(struct bge_softc *sc)
4951 {
4952
4953 printf("Hardware Flags:\n");
4954 if (BGE_IS_5755_PLUS(sc))
4955 printf(" - 5755 Plus\n");
4956 if (BGE_IS_575X_PLUS(sc))
4957 printf(" - 575X Plus\n");
4958 if (BGE_IS_5705_PLUS(sc))
4959 printf(" - 5705 Plus\n");
4960 if (BGE_IS_5714_FAMILY(sc))
4961 printf(" - 5714 Family\n");
4962 if (BGE_IS_5700_FAMILY(sc))
4963 printf(" - 5700 Family\n");
4964 if (sc->bge_flags & BGE_IS_5788)
4965 printf(" - 5788\n");
4966 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4967 printf(" - Supports Jumbo Frames\n");
4968 if (sc->bge_flags & BGE_NO_EEPROM)
4969 printf(" - No EEPROM\n");
4970 if (sc->bge_flags & BGE_PCIX)
4971 printf(" - PCI-X Bus\n");
4972 if (sc->bge_flags & BGE_PCIE)
4973 printf(" - PCI Express Bus\n");
4974 if (sc->bge_flags & BGE_NO_3LED)
4975 printf(" - No 3 LEDs\n");
4976 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4977 printf(" - RX Alignment Bug\n");
4978 if (sc->bge_flags & BGE_TSO)
4979 printf(" - TSO\n");
4980 }
4981 #endif /* BGE_DEBUG */
4982
4983 static int
4984 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4985 {
4986 prop_dictionary_t dict;
4987 prop_data_t ea;
4988
4989 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4990 return 1;
4991
4992 dict = device_properties(sc->bge_dev);
4993 ea = prop_dictionary_get(dict, "mac-address");
4994 if (ea != NULL) {
4995 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4996 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4997 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4998 return 0;
4999 }
5000
5001 return 1;
5002 }
5003
5004 static int
5005 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5006 {
5007 uint32_t mac_addr;
5008
5009 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5010 if ((mac_addr >> 16) == 0x484b) {
5011 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5012 ether_addr[1] = (uint8_t)mac_addr;
5013 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5014 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5015 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5016 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5017 ether_addr[5] = (uint8_t)mac_addr;
5018 return 0;
5019 }
5020 return 1;
5021 }
5022
5023 static int
5024 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5025 {
5026 int mac_offset = BGE_EE_MAC_OFFSET;
5027
5028 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5029 mac_offset = BGE_EE_MAC_OFFSET_5906;
5030
5031 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5032 ETHER_ADDR_LEN));
5033 }
5034
5035 static int
5036 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5037 {
5038
5039 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5040 return 1;
5041
5042 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5043 ETHER_ADDR_LEN));
5044 }
5045
5046 static int
5047 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5048 {
5049 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5050 /* NOTE: Order is critical */
5051 bge_get_eaddr_fw,
5052 bge_get_eaddr_mem,
5053 bge_get_eaddr_nvram,
5054 bge_get_eaddr_eeprom,
5055 NULL
5056 };
5057 const bge_eaddr_fcn_t *func;
5058
5059 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5060 if ((*func)(sc, eaddr) == 0)
5061 break;
5062 }
5063 return (*func == NULL ? ENXIO : 0);
5064 }
5065