Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.213
      1 /*	$NetBSD: if_bge.c,v 1.213 2013/03/07 10:57:01 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.213 2013/03/07 10:57:01 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writembx_flush(struct bge_softc *, int, int);
    247 static void bge_writemem_direct(struct bge_softc *, int, int);
    248 static void bge_writereg_ind(struct bge_softc *, int, int);
    249 static void bge_set_max_readrq(struct bge_softc *);
    250 
    251 static int bge_miibus_readreg(device_t, int, int);
    252 static void bge_miibus_writereg(device_t, int, int, int);
    253 static void bge_miibus_statchg(struct ifnet *);
    254 
    255 #define	BGE_RESET_START 1
    256 #define	BGE_RESET_STOP  2
    257 static void bge_sig_post_reset(struct bge_softc *, int);
    258 static void bge_sig_legacy(struct bge_softc *, int);
    259 static void bge_sig_pre_reset(struct bge_softc *, int);
    260 static void bge_stop_fw(struct bge_softc *);
    261 static int bge_reset(struct bge_softc *);
    262 static void bge_link_upd(struct bge_softc *);
    263 static void bge_sysctl_init(struct bge_softc *);
    264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    265 
    266 #ifdef BGE_DEBUG
    267 #define DPRINTF(x)	if (bgedebug) printf x
    268 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    269 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    270 int	bgedebug = 0;
    271 int	bge_tso_debug = 0;
    272 void		bge_debug_info(struct bge_softc *);
    273 #else
    274 #define DPRINTF(x)
    275 #define DPRINTFN(n,x)
    276 #define BGE_TSO_PRINTF(x)
    277 #endif
    278 
    279 #ifdef BGE_EVENT_COUNTERS
    280 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    281 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    282 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    283 #else
    284 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    285 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    286 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    287 #endif
    288 
    289 static const struct bge_product {
    290 	pci_vendor_id_t		bp_vendor;
    291 	pci_product_id_t	bp_product;
    292 	const char		*bp_name;
    293 } bge_products[] = {
    294 	/*
    295 	 * The BCM5700 documentation seems to indicate that the hardware
    296 	 * still has the Alteon vendor ID burned into it, though it
    297 	 * should always be overridden by the value in the EEPROM.  We'll
    298 	 * check for it anyway.
    299 	 */
    300 	{ PCI_VENDOR_ALTEON,
    301 	  PCI_PRODUCT_ALTEON_BCM5700,
    302 	  "Broadcom BCM5700 Gigabit Ethernet",
    303 	  },
    304 	{ PCI_VENDOR_ALTEON,
    305 	  PCI_PRODUCT_ALTEON_BCM5701,
    306 	  "Broadcom BCM5701 Gigabit Ethernet",
    307 	  },
    308 	{ PCI_VENDOR_ALTIMA,
    309 	  PCI_PRODUCT_ALTIMA_AC1000,
    310 	  "Altima AC1000 Gigabit Ethernet",
    311 	  },
    312 	{ PCI_VENDOR_ALTIMA,
    313 	  PCI_PRODUCT_ALTIMA_AC1001,
    314 	  "Altima AC1001 Gigabit Ethernet",
    315 	   },
    316 	{ PCI_VENDOR_ALTIMA,
    317 	  PCI_PRODUCT_ALTIMA_AC1003,
    318 	  "Altima AC1003 Gigabit Ethernet",
    319 	   },
    320 	{ PCI_VENDOR_ALTIMA,
    321 	  PCI_PRODUCT_ALTIMA_AC9100,
    322 	  "Altima AC9100 Gigabit Ethernet",
    323 	  },
    324 	{ PCI_VENDOR_APPLE,
    325 	  PCI_PRODUCT_APPLE_BCM5701,
    326 	  "APPLE BCM5701 Gigabit Ethernet",
    327 	  },
    328 	{ PCI_VENDOR_BROADCOM,
    329 	  PCI_PRODUCT_BROADCOM_BCM5700,
    330 	  "Broadcom BCM5700 Gigabit Ethernet",
    331 	  },
    332 	{ PCI_VENDOR_BROADCOM,
    333 	  PCI_PRODUCT_BROADCOM_BCM5701,
    334 	  "Broadcom BCM5701 Gigabit Ethernet",
    335 	  },
    336 	{ PCI_VENDOR_BROADCOM,
    337 	  PCI_PRODUCT_BROADCOM_BCM5702,
    338 	  "Broadcom BCM5702 Gigabit Ethernet",
    339 	  },
    340 	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    342 	  "Broadcom BCM5702X Gigabit Ethernet" },
    343 	{ PCI_VENDOR_BROADCOM,
    344 	  PCI_PRODUCT_BROADCOM_BCM5703,
    345 	  "Broadcom BCM5703 Gigabit Ethernet",
    346 	  },
    347 	{ PCI_VENDOR_BROADCOM,
    348 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    349 	  "Broadcom BCM5703X Gigabit Ethernet",
    350 	  },
    351 	{ PCI_VENDOR_BROADCOM,
    352 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    353 	  "Broadcom BCM5703 Gigabit Ethernet",
    354 	  },
    355 	{ PCI_VENDOR_BROADCOM,
    356 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    357 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    358 	  },
    359 	{ PCI_VENDOR_BROADCOM,
    360 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    361 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    362 	  },
    363 	{ PCI_VENDOR_BROADCOM,
    364 	  PCI_PRODUCT_BROADCOM_BCM5705,
    365 	  "Broadcom BCM5705 Gigabit Ethernet",
    366 	  },
    367 	{ PCI_VENDOR_BROADCOM,
    368 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    369 	  "Broadcom BCM5705F Gigabit Ethernet",
    370 	  },
    371 	{ PCI_VENDOR_BROADCOM,
    372 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    373 	  "Broadcom BCM5705K Gigabit Ethernet",
    374 	  },
    375 	{ PCI_VENDOR_BROADCOM,
    376 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    377 	  "Broadcom BCM5705M Gigabit Ethernet",
    378 	  },
    379 	{ PCI_VENDOR_BROADCOM,
    380 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    381 	  "Broadcom BCM5705M Gigabit Ethernet",
    382 	  },
    383 	{ PCI_VENDOR_BROADCOM,
    384 	  PCI_PRODUCT_BROADCOM_BCM5714,
    385 	  "Broadcom BCM5714 Gigabit Ethernet",
    386 	  },
    387 	{ PCI_VENDOR_BROADCOM,
    388 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    389 	  "Broadcom BCM5714S Gigabit Ethernet",
    390 	  },
    391 	{ PCI_VENDOR_BROADCOM,
    392 	  PCI_PRODUCT_BROADCOM_BCM5715,
    393 	  "Broadcom BCM5715 Gigabit Ethernet",
    394 	  },
    395 	{ PCI_VENDOR_BROADCOM,
    396 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    397 	  "Broadcom BCM5715S Gigabit Ethernet",
    398 	  },
    399 	{ PCI_VENDOR_BROADCOM,
    400 	  PCI_PRODUCT_BROADCOM_BCM5717,
    401 	  "Broadcom BCM5717 Gigabit Ethernet",
    402 	  },
    403 	{ PCI_VENDOR_BROADCOM,
    404 	  PCI_PRODUCT_BROADCOM_BCM5718,
    405 	  "Broadcom BCM5718 Gigabit Ethernet",
    406 	  },
    407 #if 0
    408 	{ PCI_VENDOR_BROADCOM,
    409 	  PCI_PRODUCT_BROADCOM_BCM5720,
    410 	  "Broadcom BCM5720 Gigabit Ethernet",
    411 	  },
    412 #endif
    413 	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5721,
    415 	  "Broadcom BCM5721 Gigabit Ethernet",
    416 	  },
    417 	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5722,
    419 	  "Broadcom BCM5722 Gigabit Ethernet",
    420 	  },
    421 	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5723,
    423 	  "Broadcom BCM5723 Gigabit Ethernet",
    424 	  },
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5724,
    427 	  "Broadcom BCM5724 Gigabit Ethernet",
    428 	  },
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5750,
    431 	  "Broadcom BCM5750 Gigabit Ethernet",
    432 	  },
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    435 	  "Broadcom BCM5750M Gigabit Ethernet",
    436 	  },
    437 	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5751,
    439 	  "Broadcom BCM5751 Gigabit Ethernet",
    440 	  },
    441 	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    443 	  "Broadcom BCM5751F Gigabit Ethernet",
    444 	  },
    445 	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    447 	  "Broadcom BCM5751M Gigabit Ethernet",
    448 	  },
    449 	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5752,
    451 	  "Broadcom BCM5752 Gigabit Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_BROADCOM,
    454 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    455 	  "Broadcom BCM5752M Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_BROADCOM,
    458 	  PCI_PRODUCT_BROADCOM_BCM5753,
    459 	  "Broadcom BCM5753 Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    463 	  "Broadcom BCM5753F Gigabit Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    467 	  "Broadcom BCM5753M Gigabit Ethernet",
    468 	  },
    469 	{ PCI_VENDOR_BROADCOM,
    470 	  PCI_PRODUCT_BROADCOM_BCM5754,
    471 	  "Broadcom BCM5754 Gigabit Ethernet",
    472 	},
    473 	{ PCI_VENDOR_BROADCOM,
    474 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    475 	  "Broadcom BCM5754M Gigabit Ethernet",
    476 	},
    477 	{ PCI_VENDOR_BROADCOM,
    478 	  PCI_PRODUCT_BROADCOM_BCM5755,
    479 	  "Broadcom BCM5755 Gigabit Ethernet",
    480 	},
    481 	{ PCI_VENDOR_BROADCOM,
    482 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    483 	  "Broadcom BCM5755M Gigabit Ethernet",
    484 	},
    485 	{ PCI_VENDOR_BROADCOM,
    486 	  PCI_PRODUCT_BROADCOM_BCM5756,
    487 	  "Broadcom BCM5756 Gigabit Ethernet",
    488 	},
    489 	{ PCI_VENDOR_BROADCOM,
    490 	  PCI_PRODUCT_BROADCOM_BCM5761,
    491 	  "Broadcom BCM5761 Gigabit Ethernet",
    492 	},
    493 	{ PCI_VENDOR_BROADCOM,
    494 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    495 	  "Broadcom BCM5761E Gigabit Ethernet",
    496 	},
    497 	{ PCI_VENDOR_BROADCOM,
    498 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    499 	  "Broadcom BCM5761S Gigabit Ethernet",
    500 	},
    501 	{ PCI_VENDOR_BROADCOM,
    502 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    503 	  "Broadcom BCM5761SE Gigabit Ethernet",
    504 	},
    505 	{ PCI_VENDOR_BROADCOM,
    506 	  PCI_PRODUCT_BROADCOM_BCM5764,
    507 	  "Broadcom BCM5764 Gigabit Ethernet",
    508 	  },
    509 	{ PCI_VENDOR_BROADCOM,
    510 	  PCI_PRODUCT_BROADCOM_BCM5780,
    511 	  "Broadcom BCM5780 Gigabit Ethernet",
    512 	  },
    513 	{ PCI_VENDOR_BROADCOM,
    514 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    515 	  "Broadcom BCM5780S Gigabit Ethernet",
    516 	  },
    517 	{ PCI_VENDOR_BROADCOM,
    518 	  PCI_PRODUCT_BROADCOM_BCM5781,
    519 	  "Broadcom BCM5781 Gigabit Ethernet",
    520 	  },
    521 	{ PCI_VENDOR_BROADCOM,
    522 	  PCI_PRODUCT_BROADCOM_BCM5782,
    523 	  "Broadcom BCM5782 Gigabit Ethernet",
    524 	},
    525 	{ PCI_VENDOR_BROADCOM,
    526 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    527 	  "BCM5784M NetLink 1000baseT Ethernet",
    528 	},
    529 	{ PCI_VENDOR_BROADCOM,
    530 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    531 	  "BCM5785F NetLink 10/100 Ethernet",
    532 	},
    533 	{ PCI_VENDOR_BROADCOM,
    534 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    535 	  "BCM5785G NetLink 1000baseT Ethernet",
    536 	},
    537 	{ PCI_VENDOR_BROADCOM,
    538 	  PCI_PRODUCT_BROADCOM_BCM5786,
    539 	  "Broadcom BCM5786 Gigabit Ethernet",
    540 	},
    541 	{ PCI_VENDOR_BROADCOM,
    542 	  PCI_PRODUCT_BROADCOM_BCM5787,
    543 	  "Broadcom BCM5787 Gigabit Ethernet",
    544 	},
    545 	{ PCI_VENDOR_BROADCOM,
    546 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    547 	  "Broadcom BCM5787F 10/100 Ethernet",
    548 	},
    549 	{ PCI_VENDOR_BROADCOM,
    550 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    551 	  "Broadcom BCM5787M Gigabit Ethernet",
    552 	},
    553 	{ PCI_VENDOR_BROADCOM,
    554 	  PCI_PRODUCT_BROADCOM_BCM5788,
    555 	  "Broadcom BCM5788 Gigabit Ethernet",
    556 	  },
    557 	{ PCI_VENDOR_BROADCOM,
    558 	  PCI_PRODUCT_BROADCOM_BCM5789,
    559 	  "Broadcom BCM5789 Gigabit Ethernet",
    560 	  },
    561 	{ PCI_VENDOR_BROADCOM,
    562 	  PCI_PRODUCT_BROADCOM_BCM5901,
    563 	  "Broadcom BCM5901 Fast Ethernet",
    564 	  },
    565 	{ PCI_VENDOR_BROADCOM,
    566 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    567 	  "Broadcom BCM5901A2 Fast Ethernet",
    568 	  },
    569 	{ PCI_VENDOR_BROADCOM,
    570 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    571 	  "Broadcom BCM5903M Fast Ethernet",
    572 	  },
    573 	{ PCI_VENDOR_BROADCOM,
    574 	  PCI_PRODUCT_BROADCOM_BCM5906,
    575 	  "Broadcom BCM5906 Fast Ethernet",
    576 	  },
    577 	{ PCI_VENDOR_BROADCOM,
    578 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    579 	  "Broadcom BCM5906M Fast Ethernet",
    580 	  },
    581 	{ PCI_VENDOR_BROADCOM,
    582 	  PCI_PRODUCT_BROADCOM_BCM57760,
    583 	  "Broadcom BCM57760 Fast Ethernet",
    584 	  },
    585 	{ PCI_VENDOR_BROADCOM,
    586 	  PCI_PRODUCT_BROADCOM_BCM57761,
    587 	  "Broadcom BCM57761 Fast Ethernet",
    588 	  },
    589 	{ PCI_VENDOR_BROADCOM,
    590 	  PCI_PRODUCT_BROADCOM_BCM57762,
    591 	  "Broadcom BCM57762 Gigabit Ethernet",
    592 	  },
    593 	{ PCI_VENDOR_BROADCOM,
    594 	  PCI_PRODUCT_BROADCOM_BCM57765,
    595 	  "Broadcom BCM57765 Fast Ethernet",
    596 	  },
    597 	{ PCI_VENDOR_BROADCOM,
    598 	  PCI_PRODUCT_BROADCOM_BCM57780,
    599 	  "Broadcom BCM57780 Fast Ethernet",
    600 	  },
    601 	{ PCI_VENDOR_BROADCOM,
    602 	  PCI_PRODUCT_BROADCOM_BCM57781,
    603 	  "Broadcom BCM57781 Fast Ethernet",
    604 	  },
    605 	{ PCI_VENDOR_BROADCOM,
    606 	  PCI_PRODUCT_BROADCOM_BCM57785,
    607 	  "Broadcom BCM57785 Fast Ethernet",
    608 	  },
    609 	{ PCI_VENDOR_BROADCOM,
    610 	  PCI_PRODUCT_BROADCOM_BCM57788,
    611 	  "Broadcom BCM57788 Fast Ethernet",
    612 	  },
    613 	{ PCI_VENDOR_BROADCOM,
    614 	  PCI_PRODUCT_BROADCOM_BCM57790,
    615 	  "Broadcom BCM57790 Fast Ethernet",
    616 	  },
    617 	{ PCI_VENDOR_BROADCOM,
    618 	  PCI_PRODUCT_BROADCOM_BCM57791,
    619 	  "Broadcom BCM57791 Fast Ethernet",
    620 	  },
    621 	{ PCI_VENDOR_BROADCOM,
    622 	  PCI_PRODUCT_BROADCOM_BCM57795,
    623 	  "Broadcom BCM57795 Fast Ethernet",
    624 	  },
    625 	{ PCI_VENDOR_SCHNEIDERKOCH,
    626 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    627 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    628 	  },
    629 	{ PCI_VENDOR_3COM,
    630 	  PCI_PRODUCT_3COM_3C996,
    631 	  "3Com 3c996 Gigabit Ethernet",
    632 	  },
    633 	{ PCI_VENDOR_FUJITSU4,
    634 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    635 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    636 	  },
    637 	{ PCI_VENDOR_FUJITSU4,
    638 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    639 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    640 	  },
    641 	{ PCI_VENDOR_FUJITSU4,
    642 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    643 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    644 	  },
    645 	{ 0,
    646 	  0,
    647 	  NULL },
    648 };
    649 
    650 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    651 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    652 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    653 #define BGE_IS_575X_PLUS(sc)	((sc)->bge_flags & BGE_575X_PLUS)
    654 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    655 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    656 
    657 static const struct bge_revision {
    658 	uint32_t		br_chipid;
    659 	const char		*br_name;
    660 } bge_revisions[] = {
    661 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    662 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    663 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    664 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    665 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    666 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    667 	/* This is treated like a BCM5700 Bx */
    668 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    669 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    670 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    671 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    672 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    673 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    674 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    675 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    676 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    677 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    678 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    679 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    680 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    681 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    682 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    683 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    684 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    685 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    686 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    687 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    688 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    689 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    690 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    691 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    692 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    693 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    694 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    695 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    696 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    697 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    698 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    699 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    700 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    701 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    702 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    703 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    704 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    705 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    706 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    707 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    708 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    709 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    710 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    711 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    712 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    713 	/* 5754 and 5787 share the same ASIC ID */
    714 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    715 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    716 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    717 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    718 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    719 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    720 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    721 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    722 
    723 	{ 0, NULL }
    724 };
    725 
    726 /*
    727  * Some defaults for major revisions, so that newer steppings
    728  * that we don't know about have a shot at working.
    729  */
    730 static const struct bge_revision bge_majorrevs[] = {
    731 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    732 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    733 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    734 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    735 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    736 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    737 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    738 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    739 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    740 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    741 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    742 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    743 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    744 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    745 	/* 5754 and 5787 share the same ASIC ID */
    746 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    747 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    748 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    749 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    750 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    751 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    752 
    753 	{ 0, NULL }
    754 };
    755 
    756 static int bge_allow_asf = 1;
    757 
    758 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    759     bge_probe, bge_attach, NULL, NULL);
    760 
    761 static uint32_t
    762 bge_readmem_ind(struct bge_softc *sc, int off)
    763 {
    764 	pcireg_t val;
    765 
    766 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    767 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    768 	return val;
    769 }
    770 
    771 static void
    772 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    773 {
    774 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    775 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    776 }
    777 
    778 /*
    779  * PCI Express only
    780  */
    781 static void
    782 bge_set_max_readrq(struct bge_softc *sc)
    783 {
    784 	pcireg_t val;
    785 
    786 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    787 	    + PCI_PCIE_DCSR);
    788 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    789 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    790 		aprint_verbose_dev(sc->bge_dev,
    791 		    "adjust device control 0x%04x ", val);
    792 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    793 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    794 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    795 		    + PCI_PCIE_DCSR, val);
    796 		aprint_verbose("-> 0x%04x\n", val);
    797 	}
    798 }
    799 
    800 #ifdef notdef
    801 static uint32_t
    802 bge_readreg_ind(struct bge_softc *sc, int off)
    803 {
    804 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    805 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    806 }
    807 #endif
    808 
    809 static void
    810 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    811 {
    812 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    813 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    814 }
    815 
    816 static void
    817 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    818 {
    819 	CSR_WRITE_4(sc, off, val);
    820 }
    821 
    822 static void
    823 bge_writembx(struct bge_softc *sc, int off, int val)
    824 {
    825 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    826 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    827 
    828 	CSR_WRITE_4(sc, off, val);
    829 }
    830 
    831 static void
    832 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    833 {
    834 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    835 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    836 
    837 	CSR_WRITE_4_FLUSH(sc, off, val);
    838 }
    839 
    840 static uint8_t
    841 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    842 {
    843 	uint32_t access, byte = 0;
    844 	int i;
    845 
    846 	/* Lock. */
    847 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    848 	for (i = 0; i < 8000; i++) {
    849 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    850 			break;
    851 		DELAY(20);
    852 	}
    853 	if (i == 8000)
    854 		return 1;
    855 
    856 	/* Enable access. */
    857 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    858 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    859 
    860 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    861 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    862 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    863 		DELAY(10);
    864 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    865 			DELAY(10);
    866 			break;
    867 		}
    868 	}
    869 
    870 	if (i == BGE_TIMEOUT * 10) {
    871 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    872 		return 1;
    873 	}
    874 
    875 	/* Get result. */
    876 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    877 
    878 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    879 
    880 	/* Disable access. */
    881 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    882 
    883 	/* Unlock. */
    884 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    885 
    886 	return 0;
    887 }
    888 
    889 /*
    890  * Read a sequence of bytes from NVRAM.
    891  */
    892 static int
    893 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    894 {
    895 	int error = 0, i;
    896 	uint8_t byte = 0;
    897 
    898 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    899 		return 1;
    900 
    901 	for (i = 0; i < cnt; i++) {
    902 		error = bge_nvram_getbyte(sc, off + i, &byte);
    903 		if (error)
    904 			break;
    905 		*(dest + i) = byte;
    906 	}
    907 
    908 	return (error ? 1 : 0);
    909 }
    910 
    911 /*
    912  * Read a byte of data stored in the EEPROM at address 'addr.' The
    913  * BCM570x supports both the traditional bitbang interface and an
    914  * auto access interface for reading the EEPROM. We use the auto
    915  * access method.
    916  */
    917 static uint8_t
    918 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    919 {
    920 	int i;
    921 	uint32_t byte = 0;
    922 
    923 	/*
    924 	 * Enable use of auto EEPROM access so we can avoid
    925 	 * having to use the bitbang method.
    926 	 */
    927 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    928 
    929 	/* Reset the EEPROM, load the clock period. */
    930 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    931 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    932 	DELAY(20);
    933 
    934 	/* Issue the read EEPROM command. */
    935 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    936 
    937 	/* Wait for completion */
    938 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    939 		DELAY(10);
    940 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    941 			break;
    942 	}
    943 
    944 	if (i == BGE_TIMEOUT * 10) {
    945 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    946 		return 1;
    947 	}
    948 
    949 	/* Get result. */
    950 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    951 
    952 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    953 
    954 	return 0;
    955 }
    956 
    957 /*
    958  * Read a sequence of bytes from the EEPROM.
    959  */
    960 static int
    961 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    962 {
    963 	int error = 0, i;
    964 	uint8_t byte = 0;
    965 	char *dest = destv;
    966 
    967 	for (i = 0; i < cnt; i++) {
    968 		error = bge_eeprom_getbyte(sc, off + i, &byte);
    969 		if (error)
    970 			break;
    971 		*(dest + i) = byte;
    972 	}
    973 
    974 	return (error ? 1 : 0);
    975 }
    976 
    977 static int
    978 bge_miibus_readreg(device_t dev, int phy, int reg)
    979 {
    980 	struct bge_softc *sc = device_private(dev);
    981 	uint32_t val;
    982 	uint32_t autopoll;
    983 	int i;
    984 
    985 	/*
    986 	 * Broadcom's own driver always assumes the internal
    987 	 * PHY is at GMII address 1. On some chips, the PHY responds
    988 	 * to accesses at all addresses, which could cause us to
    989 	 * bogusly attach the PHY 32 times at probe type. Always
    990 	 * restricting the lookup to address 1 is simpler than
    991 	 * trying to figure out which chips revisions should be
    992 	 * special-cased.
    993 	 */
    994 	if (phy != 1)
    995 		return 0;
    996 
    997 	/* Reading with autopolling on may trigger PCI errors */
    998 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    999 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1000 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1001 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1002 		DELAY(40);
   1003 	}
   1004 
   1005 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1006 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1007 
   1008 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1009 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1010 		if (!(val & BGE_MICOMM_BUSY))
   1011 			break;
   1012 		delay(10);
   1013 	}
   1014 
   1015 	if (i == BGE_TIMEOUT) {
   1016 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1017 		val = 0;
   1018 		goto done;
   1019 	}
   1020 
   1021 	val = CSR_READ_4(sc, BGE_MI_COMM);
   1022 
   1023 done:
   1024 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1025 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1026 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1027 		DELAY(40);
   1028 	}
   1029 
   1030 	if (val & BGE_MICOMM_READFAIL)
   1031 		return 0;
   1032 
   1033 	return (val & 0xFFFF);
   1034 }
   1035 
   1036 static void
   1037 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1038 {
   1039 	struct bge_softc *sc = device_private(dev);
   1040 	uint32_t autopoll;
   1041 	int i;
   1042 
   1043 	if (phy!=1) {
   1044 		return;
   1045 	}
   1046 
   1047 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1048 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1049 		return;
   1050 
   1051 	/* Reading with autopolling on may trigger PCI errors */
   1052 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1053 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1054 		delay(40);
   1055 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1056 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1057 		delay(10); /* 40 usec is supposed to be adequate */
   1058 	}
   1059 
   1060 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1061 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1062 
   1063 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1064 		delay(10);
   1065 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1066 			delay(5);
   1067 			CSR_READ_4(sc, BGE_MI_COMM);
   1068 			break;
   1069 		}
   1070 	}
   1071 
   1072 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1073 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1074 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1075 		delay(40);
   1076 	}
   1077 
   1078 	if (i == BGE_TIMEOUT)
   1079 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1080 }
   1081 
   1082 static void
   1083 bge_miibus_statchg(struct ifnet *ifp)
   1084 {
   1085 	struct bge_softc *sc = ifp->if_softc;
   1086 	struct mii_data *mii = &sc->bge_mii;
   1087 
   1088 	/*
   1089 	 * Get flow control negotiation result.
   1090 	 */
   1091 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1092 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1093 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1094 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1095 	}
   1096 
   1097 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1098 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1099 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1100 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1101 	else
   1102 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1103 
   1104 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1105 		BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1106 	else
   1107 		BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1108 	DELAY(40);
   1109 
   1110 	/*
   1111 	 * 802.3x flow control
   1112 	 */
   1113 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1114 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1115 	else
   1116 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1117 
   1118 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1119 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1120 	else
   1121 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1122 }
   1123 
   1124 /*
   1125  * Update rx threshold levels to values in a particular slot
   1126  * of the interrupt-mitigation table bge_rx_threshes.
   1127  */
   1128 static void
   1129 bge_set_thresh(struct ifnet *ifp, int lvl)
   1130 {
   1131 	struct bge_softc *sc = ifp->if_softc;
   1132 	int s;
   1133 
   1134 	/* For now, just save the new Rx-intr thresholds and record
   1135 	 * that a threshold update is pending.  Updating the hardware
   1136 	 * registers here (even at splhigh()) is observed to
   1137 	 * occasionaly cause glitches where Rx-interrupts are not
   1138 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1139 	 */
   1140 	s = splnet();
   1141 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1142 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1143 	sc->bge_pending_rxintr_change = 1;
   1144 	splx(s);
   1145 }
   1146 
   1147 
   1148 /*
   1149  * Update Rx thresholds of all bge devices
   1150  */
   1151 static void
   1152 bge_update_all_threshes(int lvl)
   1153 {
   1154 	struct ifnet *ifp;
   1155 	const char * const namebuf = "bge";
   1156 	int namelen;
   1157 
   1158 	if (lvl < 0)
   1159 		lvl = 0;
   1160 	else if (lvl >= NBGE_RX_THRESH)
   1161 		lvl = NBGE_RX_THRESH - 1;
   1162 
   1163 	namelen = strlen(namebuf);
   1164 	/*
   1165 	 * Now search all the interfaces for this name/number
   1166 	 */
   1167 	IFNET_FOREACH(ifp) {
   1168 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1169 		      continue;
   1170 		/* We got a match: update if doing auto-threshold-tuning */
   1171 		if (bge_auto_thresh)
   1172 			bge_set_thresh(ifp, lvl);
   1173 	}
   1174 }
   1175 
   1176 /*
   1177  * Handle events that have triggered interrupts.
   1178  */
   1179 static void
   1180 bge_handle_events(struct bge_softc *sc)
   1181 {
   1182 
   1183 	return;
   1184 }
   1185 
   1186 /*
   1187  * Memory management for jumbo frames.
   1188  */
   1189 
   1190 static int
   1191 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1192 {
   1193 	char *ptr, *kva;
   1194 	bus_dma_segment_t	seg;
   1195 	int		i, rseg, state, error;
   1196 	struct bge_jpool_entry   *entry;
   1197 
   1198 	state = error = 0;
   1199 
   1200 	/* Grab a big chunk o' storage. */
   1201 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1202 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1203 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1204 		return ENOBUFS;
   1205 	}
   1206 
   1207 	state = 1;
   1208 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1209 	    BUS_DMA_NOWAIT)) {
   1210 		aprint_error_dev(sc->bge_dev,
   1211 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1212 		error = ENOBUFS;
   1213 		goto out;
   1214 	}
   1215 
   1216 	state = 2;
   1217 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1218 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1219 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1220 		error = ENOBUFS;
   1221 		goto out;
   1222 	}
   1223 
   1224 	state = 3;
   1225 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1226 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1227 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1228 		error = ENOBUFS;
   1229 		goto out;
   1230 	}
   1231 
   1232 	state = 4;
   1233 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1234 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1235 
   1236 	SLIST_INIT(&sc->bge_jfree_listhead);
   1237 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1238 
   1239 	/*
   1240 	 * Now divide it up into 9K pieces and save the addresses
   1241 	 * in an array.
   1242 	 */
   1243 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1244 	for (i = 0; i < BGE_JSLOTS; i++) {
   1245 		sc->bge_cdata.bge_jslots[i] = ptr;
   1246 		ptr += BGE_JLEN;
   1247 		entry = malloc(sizeof(struct bge_jpool_entry),
   1248 		    M_DEVBUF, M_NOWAIT);
   1249 		if (entry == NULL) {
   1250 			aprint_error_dev(sc->bge_dev,
   1251 			    "no memory for jumbo buffer queue!\n");
   1252 			error = ENOBUFS;
   1253 			goto out;
   1254 		}
   1255 		entry->slot = i;
   1256 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1257 				 entry, jpool_entries);
   1258 	}
   1259 out:
   1260 	if (error != 0) {
   1261 		switch (state) {
   1262 		case 4:
   1263 			bus_dmamap_unload(sc->bge_dmatag,
   1264 			    sc->bge_cdata.bge_rx_jumbo_map);
   1265 		case 3:
   1266 			bus_dmamap_destroy(sc->bge_dmatag,
   1267 			    sc->bge_cdata.bge_rx_jumbo_map);
   1268 		case 2:
   1269 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1270 		case 1:
   1271 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1272 			break;
   1273 		default:
   1274 			break;
   1275 		}
   1276 	}
   1277 
   1278 	return error;
   1279 }
   1280 
   1281 /*
   1282  * Allocate a jumbo buffer.
   1283  */
   1284 static void *
   1285 bge_jalloc(struct bge_softc *sc)
   1286 {
   1287 	struct bge_jpool_entry   *entry;
   1288 
   1289 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1290 
   1291 	if (entry == NULL) {
   1292 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1293 		return NULL;
   1294 	}
   1295 
   1296 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1297 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1298 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1299 }
   1300 
   1301 /*
   1302  * Release a jumbo buffer.
   1303  */
   1304 static void
   1305 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1306 {
   1307 	struct bge_jpool_entry *entry;
   1308 	struct bge_softc *sc;
   1309 	int i, s;
   1310 
   1311 	/* Extract the softc struct pointer. */
   1312 	sc = (struct bge_softc *)arg;
   1313 
   1314 	if (sc == NULL)
   1315 		panic("bge_jfree: can't find softc pointer!");
   1316 
   1317 	/* calculate the slot this buffer belongs to */
   1318 
   1319 	i = ((char *)buf
   1320 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1321 
   1322 	if ((i < 0) || (i >= BGE_JSLOTS))
   1323 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1324 
   1325 	s = splvm();
   1326 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1327 	if (entry == NULL)
   1328 		panic("bge_jfree: buffer not in use!");
   1329 	entry->slot = i;
   1330 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1331 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1332 
   1333 	if (__predict_true(m != NULL))
   1334   		pool_cache_put(mb_cache, m);
   1335 	splx(s);
   1336 }
   1337 
   1338 
   1339 /*
   1340  * Initialize a standard receive ring descriptor.
   1341  */
   1342 static int
   1343 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1344     bus_dmamap_t dmamap)
   1345 {
   1346 	struct mbuf		*m_new = NULL;
   1347 	struct bge_rx_bd	*r;
   1348 	int			error;
   1349 
   1350 	if (dmamap == NULL) {
   1351 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1352 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1353 		if (error != 0)
   1354 			return error;
   1355 	}
   1356 
   1357 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1358 
   1359 	if (m == NULL) {
   1360 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1361 		if (m_new == NULL)
   1362 			return ENOBUFS;
   1363 
   1364 		MCLGET(m_new, M_DONTWAIT);
   1365 		if (!(m_new->m_flags & M_EXT)) {
   1366 			m_freem(m_new);
   1367 			return ENOBUFS;
   1368 		}
   1369 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1370 
   1371 	} else {
   1372 		m_new = m;
   1373 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1374 		m_new->m_data = m_new->m_ext.ext_buf;
   1375 	}
   1376 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1377 	    m_adj(m_new, ETHER_ALIGN);
   1378 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1379 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1380 		return ENOBUFS;
   1381 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1382 	    BUS_DMASYNC_PREREAD);
   1383 
   1384 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1385 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1386 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1387 	r->bge_flags = BGE_RXBDFLAG_END;
   1388 	r->bge_len = m_new->m_len;
   1389 	r->bge_idx = i;
   1390 
   1391 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1392 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1393 		i * sizeof (struct bge_rx_bd),
   1394 	    sizeof (struct bge_rx_bd),
   1395 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1396 
   1397 	return 0;
   1398 }
   1399 
   1400 /*
   1401  * Initialize a jumbo receive ring descriptor. This allocates
   1402  * a jumbo buffer from the pool managed internally by the driver.
   1403  */
   1404 static int
   1405 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1406 {
   1407 	struct mbuf *m_new = NULL;
   1408 	struct bge_rx_bd *r;
   1409 	void *buf = NULL;
   1410 
   1411 	if (m == NULL) {
   1412 
   1413 		/* Allocate the mbuf. */
   1414 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1415 		if (m_new == NULL)
   1416 			return ENOBUFS;
   1417 
   1418 		/* Allocate the jumbo buffer */
   1419 		buf = bge_jalloc(sc);
   1420 		if (buf == NULL) {
   1421 			m_freem(m_new);
   1422 			aprint_error_dev(sc->bge_dev,
   1423 			    "jumbo allocation failed -- packet dropped!\n");
   1424 			return ENOBUFS;
   1425 		}
   1426 
   1427 		/* Attach the buffer to the mbuf. */
   1428 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1429 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1430 		    bge_jfree, sc);
   1431 		m_new->m_flags |= M_EXT_RW;
   1432 	} else {
   1433 		m_new = m;
   1434 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1435 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1436 	}
   1437 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1438 	    m_adj(m_new, ETHER_ALIGN);
   1439 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1440 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1441 	    BUS_DMASYNC_PREREAD);
   1442 	/* Set up the descriptor. */
   1443 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1444 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1445 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1446 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1447 	r->bge_len = m_new->m_len;
   1448 	r->bge_idx = i;
   1449 
   1450 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1451 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1452 		i * sizeof (struct bge_rx_bd),
   1453 	    sizeof (struct bge_rx_bd),
   1454 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1455 
   1456 	return 0;
   1457 }
   1458 
   1459 /*
   1460  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1461  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1462  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1463  * the NIC.
   1464  */
   1465 static int
   1466 bge_init_rx_ring_std(struct bge_softc *sc)
   1467 {
   1468 	int i;
   1469 
   1470 	if (sc->bge_flags & BGE_RXRING_VALID)
   1471 		return 0;
   1472 
   1473 	for (i = 0; i < BGE_SSLOTS; i++) {
   1474 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1475 			return ENOBUFS;
   1476 	}
   1477 
   1478 	sc->bge_std = i - 1;
   1479 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1480 
   1481 	sc->bge_flags |= BGE_RXRING_VALID;
   1482 
   1483 	return 0;
   1484 }
   1485 
   1486 static void
   1487 bge_free_rx_ring_std(struct bge_softc *sc)
   1488 {
   1489 	int i;
   1490 
   1491 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1492 		return;
   1493 
   1494 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1495 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1496 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1497 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1498 			bus_dmamap_destroy(sc->bge_dmatag,
   1499 			    sc->bge_cdata.bge_rx_std_map[i]);
   1500 		}
   1501 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1502 		    sizeof(struct bge_rx_bd));
   1503 	}
   1504 
   1505 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1506 }
   1507 
   1508 static int
   1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1510 {
   1511 	int i;
   1512 	volatile struct bge_rcb *rcb;
   1513 
   1514 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1515 		return 0;
   1516 
   1517 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1518 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1519 			return ENOBUFS;
   1520 	}
   1521 
   1522 	sc->bge_jumbo = i - 1;
   1523 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1524 
   1525 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1526 	rcb->bge_maxlen_flags = 0;
   1527 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1528 
   1529 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1530 
   1531 	return 0;
   1532 }
   1533 
   1534 static void
   1535 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1536 {
   1537 	int i;
   1538 
   1539 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1540 		return;
   1541 
   1542 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1543 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1544 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1545 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1546 		}
   1547 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1548 		    sizeof(struct bge_rx_bd));
   1549 	}
   1550 
   1551 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1552 }
   1553 
   1554 static void
   1555 bge_free_tx_ring(struct bge_softc *sc)
   1556 {
   1557 	int i;
   1558 	struct txdmamap_pool_entry *dma;
   1559 
   1560 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1561 		return;
   1562 
   1563 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1564 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1565 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1566 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1567 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1568 					    link);
   1569 			sc->txdma[i] = 0;
   1570 		}
   1571 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1572 		    sizeof(struct bge_tx_bd));
   1573 	}
   1574 
   1575 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1576 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1577 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1578 		free(dma, M_DEVBUF);
   1579 	}
   1580 
   1581 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1582 }
   1583 
   1584 static int
   1585 bge_init_tx_ring(struct bge_softc *sc)
   1586 {
   1587 	int i;
   1588 	bus_dmamap_t dmamap;
   1589 	struct txdmamap_pool_entry *dma;
   1590 
   1591 	if (sc->bge_flags & BGE_TXRING_VALID)
   1592 		return 0;
   1593 
   1594 	sc->bge_txcnt = 0;
   1595 	sc->bge_tx_saved_considx = 0;
   1596 
   1597 	/* Initialize transmit producer index for host-memory send ring. */
   1598 	sc->bge_tx_prodidx = 0;
   1599 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1600 	/* 5700 b2 errata */
   1601 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1602 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1603 
   1604 	/* NIC-memory send ring not used; initialize to zero. */
   1605 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1606 	/* 5700 b2 errata */
   1607 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1608 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1609 
   1610 	SLIST_INIT(&sc->txdma_list);
   1611 	for (i = 0; i < BGE_RSLOTS; i++) {
   1612 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1613 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1614 		    &dmamap))
   1615 			return ENOBUFS;
   1616 		if (dmamap == NULL)
   1617 			panic("dmamap NULL in bge_init_tx_ring");
   1618 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1619 		if (dma == NULL) {
   1620 			aprint_error_dev(sc->bge_dev,
   1621 			    "can't alloc txdmamap_pool_entry\n");
   1622 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1623 			return ENOMEM;
   1624 		}
   1625 		dma->dmamap = dmamap;
   1626 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1627 	}
   1628 
   1629 	sc->bge_flags |= BGE_TXRING_VALID;
   1630 
   1631 	return 0;
   1632 }
   1633 
   1634 static void
   1635 bge_setmulti(struct bge_softc *sc)
   1636 {
   1637 	struct ethercom		*ac = &sc->ethercom;
   1638 	struct ifnet		*ifp = &ac->ec_if;
   1639 	struct ether_multi	*enm;
   1640 	struct ether_multistep  step;
   1641 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1642 	uint32_t		h;
   1643 	int			i;
   1644 
   1645 	if (ifp->if_flags & IFF_PROMISC)
   1646 		goto allmulti;
   1647 
   1648 	/* Now program new ones. */
   1649 	ETHER_FIRST_MULTI(step, ac, enm);
   1650 	while (enm != NULL) {
   1651 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1652 			/*
   1653 			 * We must listen to a range of multicast addresses.
   1654 			 * For now, just accept all multicasts, rather than
   1655 			 * trying to set only those filter bits needed to match
   1656 			 * the range.  (At this time, the only use of address
   1657 			 * ranges is for IP multicast routing, for which the
   1658 			 * range is big enough to require all bits set.)
   1659 			 */
   1660 			goto allmulti;
   1661 		}
   1662 
   1663 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1664 
   1665 		/* Just want the 7 least-significant bits. */
   1666 		h &= 0x7f;
   1667 
   1668 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1669 		ETHER_NEXT_MULTI(step, enm);
   1670 	}
   1671 
   1672 	ifp->if_flags &= ~IFF_ALLMULTI;
   1673 	goto setit;
   1674 
   1675  allmulti:
   1676 	ifp->if_flags |= IFF_ALLMULTI;
   1677 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1678 
   1679  setit:
   1680 	for (i = 0; i < 4; i++)
   1681 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1682 }
   1683 
   1684 static void
   1685 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1686 {
   1687 
   1688 	/*
   1689 	 * Some chips don't like this so only do this if ASF is enabled
   1690 	 */
   1691 	if (sc->bge_asf_mode)
   1692 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1693 
   1694 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1695 		switch (type) {
   1696 		case BGE_RESET_START:
   1697 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1698 			break;
   1699 		case BGE_RESET_STOP:
   1700 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1701 			break;
   1702 		}
   1703 	}
   1704 }
   1705 
   1706 static void
   1707 bge_sig_post_reset(struct bge_softc *sc, int type)
   1708 {
   1709 
   1710 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1711 		switch (type) {
   1712 		case BGE_RESET_START:
   1713 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1714 			/* START DONE */
   1715 			break;
   1716 		case BGE_RESET_STOP:
   1717 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1718 			break;
   1719 		}
   1720 	}
   1721 }
   1722 
   1723 static void
   1724 bge_sig_legacy(struct bge_softc *sc, int type)
   1725 {
   1726 
   1727 	if (sc->bge_asf_mode) {
   1728 		switch (type) {
   1729 		case BGE_RESET_START:
   1730 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1731 			break;
   1732 		case BGE_RESET_STOP:
   1733 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1734 			break;
   1735 		}
   1736 	}
   1737 }
   1738 
   1739 static void
   1740 bge_stop_fw(struct bge_softc *sc)
   1741 {
   1742 	int i;
   1743 
   1744 	if (sc->bge_asf_mode) {
   1745 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1746 		CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
   1747 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1748 
   1749 		for (i = 0; i < 100; i++) {
   1750 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1751 				break;
   1752 			DELAY(10);
   1753 		}
   1754 	}
   1755 }
   1756 
   1757 static int
   1758 bge_poll_fw(struct bge_softc *sc)
   1759 {
   1760 	uint32_t val;
   1761 	int i;
   1762 
   1763 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1764 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1765 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1766 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1767 				break;
   1768 			DELAY(100);
   1769 		}
   1770 		if (i >= BGE_TIMEOUT) {
   1771 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1772 			return -1;
   1773 		}
   1774 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1775 		/*
   1776 		 * Poll the value location we just wrote until
   1777 		 * we see the 1's complement of the magic number.
   1778 		 * This indicates that the firmware initialization
   1779 		 * is complete.
   1780 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1781 		 */
   1782 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1783 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1784 			if (val == ~BGE_MAGIC_NUMBER)
   1785 				break;
   1786 			DELAY(10);
   1787 		}
   1788 
   1789 		if (i >= BGE_TIMEOUT) {
   1790 			aprint_error_dev(sc->bge_dev,
   1791 			    "firmware handshake timed out, val = %x\n", val);
   1792 			return -1;
   1793 		}
   1794 	}
   1795 
   1796 	return 0;
   1797 }
   1798 
   1799 /*
   1800  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1801  * self-test results.
   1802  */
   1803 static int
   1804 bge_chipinit(struct bge_softc *sc)
   1805 {
   1806 	int i;
   1807 	uint32_t dma_rw_ctl;
   1808 
   1809 	/* Set endianness before we access any non-PCI registers. */
   1810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1811 	    BGE_INIT);
   1812 
   1813 	/* Set power state to D0. */
   1814 	bge_setpowerstate(sc, 0);
   1815 
   1816 	/* Clear the MAC control register */
   1817 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1818 
   1819 	/*
   1820 	 * Clear the MAC statistics block in the NIC's
   1821 	 * internal memory.
   1822 	 */
   1823 	for (i = BGE_STATS_BLOCK;
   1824 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1825 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1826 
   1827 	for (i = BGE_STATUS_BLOCK;
   1828 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1829 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1830 
   1831 	/* Set up the PCI DMA control register. */
   1832 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1833 	if (sc->bge_flags & BGE_PCIE) {
   1834 		/* Read watermark not used, 128 bytes for write. */
   1835 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1836 		    device_xname(sc->bge_dev)));
   1837 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1838 	} else if (sc->bge_flags & BGE_PCIX) {
   1839 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1840 		    device_xname(sc->bge_dev)));
   1841 		/* PCI-X bus */
   1842 		if (BGE_IS_5714_FAMILY(sc)) {
   1843 			/* 256 bytes for read and write. */
   1844 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   1845 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   1846 
   1847 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1848 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1849 			else
   1850 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1851 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1852 			/* 1536 bytes for read, 384 bytes for write. */
   1853 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1854 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1855 		} else {
   1856 			/* 384 bytes for read and write. */
   1857 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   1858 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   1859 			    (0x0F);
   1860 		}
   1861 
   1862 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1863 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1864 			uint32_t tmp;
   1865 
   1866 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1867 			tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1868 			    BGE_PCI_CLKCTL) & 0x1f;
   1869 			if (tmp == 6 || tmp == 7)
   1870 				dma_rw_ctl |=
   1871 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1872 
   1873 			/* Set PCI-X DMA write workaround. */
   1874 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1875 		}
   1876 	} else {
   1877 		/* Conventional PCI bus: 256 bytes for read and write. */
   1878 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1879 		    device_xname(sc->bge_dev)));
   1880 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1881 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   1882 
   1883 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1884 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1885 			dma_rw_ctl |= 0x0F;
   1886 	}
   1887 
   1888 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1889 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1890 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1891 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1892 
   1893 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1894 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1895 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1896 
   1897 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1898 	    dma_rw_ctl);
   1899 
   1900 	/*
   1901 	 * Set up general mode register.
   1902 	 */
   1903 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1904 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1905 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1906 
   1907 	/*
   1908 	 * BCM5701 B5 have a bug causing data corruption when using
   1909 	 * 64-bit DMA reads, which can be terminated early and then
   1910 	 * completed later as 32-bit accesses, in combination with
   1911 	 * certain bridges.
   1912 	 */
   1913 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   1914 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   1915 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   1916 
   1917 	/*
   1918 	 * Tell the firmware the driver is running
   1919 	 */
   1920 	if (sc->bge_asf_mode & ASF_STACKUP)
   1921 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   1922 
   1923 	/*
   1924 	 * Disable memory write invalidate.  Apparently it is not supported
   1925 	 * properly by these devices.
   1926 	 */
   1927 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   1928 		   PCI_COMMAND_INVALIDATE_ENABLE);
   1929 
   1930 #ifdef __brokenalpha__
   1931 	/*
   1932 	 * Must insure that we do not cross an 8K (bytes) boundary
   1933 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1934 	 * restriction on some ALPHA platforms with early revision
   1935 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1936 	 */
   1937 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1938 #endif
   1939 
   1940 	/* Set the timer prescaler (always 66MHz) */
   1941 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1942 
   1943 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1944 		DELAY(40);	/* XXX */
   1945 
   1946 		/* Put PHY into ready state */
   1947 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   1948 		DELAY(40);
   1949 	}
   1950 
   1951 	return 0;
   1952 }
   1953 
   1954 static int
   1955 bge_blockinit(struct bge_softc *sc)
   1956 {
   1957 	volatile struct bge_rcb	 *rcb;
   1958 	bus_size_t rcb_addr;
   1959 	int i;
   1960 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1961 	bge_hostaddr taddr;
   1962 	uint32_t val;
   1963 
   1964 	/*
   1965 	 * Initialize the memory window pointer register so that
   1966 	 * we can access the first 32K of internal NIC RAM. This will
   1967 	 * allow us to set up the TX send ring RCBs and the RX return
   1968 	 * ring RCBs, plus other things which live in NIC memory.
   1969 	 */
   1970 
   1971 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   1972 
   1973 	/* Step 33: Configure mbuf memory pool */
   1974 	if (BGE_IS_5700_FAMILY(sc)) {
   1975 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1976 		    BGE_BUFFPOOL_1);
   1977 
   1978 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1979 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1980 		else
   1981 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1982 
   1983 		/* Configure DMA resource pool */
   1984 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1985 		    BGE_DMA_DESCRIPTORS);
   1986 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1987 	}
   1988 
   1989 	/* Step 35: Configure mbuf pool watermarks */
   1990 #ifdef ORIG_WPAUL_VALUES
   1991 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1992 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1993 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1994 #else
   1995 
   1996 	/* new broadcom docs strongly recommend these: */
   1997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   1998 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   1999 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2000 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2001 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2002 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2003 	} else if (BGE_IS_5705_PLUS(sc)) {
   2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2005 
   2006 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2007 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2008 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2009 		} else {
   2010 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2011 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2012 		}
   2013 	} else if (!BGE_IS_5705_PLUS(sc)) {
   2014 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   2015 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2016 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2017 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2018 		} else {
   2019 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   2020 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   2021 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   2022 		}
   2023 	} else {
   2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2026 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2027 	}
   2028 #endif
   2029 
   2030 	/* Step 36: Configure DMA resource watermarks */
   2031 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2032 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2033 
   2034 	/* Step 38: Enable buffer manager */
   2035 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2036 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2037 
   2038 	/* Step 39: Poll for buffer manager start indication */
   2039 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2040 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2041 			break;
   2042 		DELAY(10);
   2043 	}
   2044 
   2045 	if (i == BGE_TIMEOUT * 2) {
   2046 		aprint_error_dev(sc->bge_dev,
   2047 		    "buffer manager failed to start\n");
   2048 		return ENXIO;
   2049 	}
   2050 
   2051 	/* Step 40: Enable flow-through queues */
   2052 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2053 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2054 
   2055 	/* Wait until queue initialization is complete */
   2056 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2057 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2058 			break;
   2059 		DELAY(10);
   2060 	}
   2061 
   2062 	if (i == BGE_TIMEOUT * 2) {
   2063 		aprint_error_dev(sc->bge_dev,
   2064 		    "flow-through queue init failed\n");
   2065 		return ENXIO;
   2066 	}
   2067 
   2068 	/* Step 41: Initialize the standard RX ring control block */
   2069 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2070 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2071 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2072 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2073 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2074 		rcb->bge_maxlen_flags =
   2075 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2076 	else if (BGE_IS_5705_PLUS(sc))
   2077 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2078 	else
   2079 		rcb->bge_maxlen_flags =
   2080 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2081 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2082 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2083 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2084 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2085 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2086 
   2087 	/*
   2088 	 * Step 42: Initialize the jumbo RX ring control block
   2089 	 * We set the 'ring disabled' bit in the flags
   2090 	 * field until we're actually ready to start
   2091 	 * using this ring (i.e. once we set the MTU
   2092 	 * high enough to require it).
   2093 	 */
   2094 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2095 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2096 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2097 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2098 		rcb->bge_maxlen_flags =
   2099 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2100 			BGE_RCB_FLAG_RING_DISABLED);
   2101 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2102 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2103 		    rcb->bge_hostaddr.bge_addr_hi);
   2104 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2105 		    rcb->bge_hostaddr.bge_addr_lo);
   2106 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2107 		    rcb->bge_maxlen_flags);
   2108 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2109 
   2110 		/* Set up dummy disabled mini ring RCB */
   2111 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2112 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2113 		    BGE_RCB_FLAG_RING_DISABLED);
   2114 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2115 		    rcb->bge_maxlen_flags);
   2116 
   2117 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2118 		    offsetof(struct bge_ring_data, bge_info),
   2119 		    sizeof (struct bge_gib),
   2120 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2121 	}
   2122 
   2123 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2124 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2125 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2126 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2127 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2128 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2129 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2130 	}
   2131 	/*
   2132 	 * Set the BD ring replenish thresholds. The recommended
   2133 	 * values are 1/8th the number of descriptors allocated to
   2134 	 * each ring.
   2135 	 */
   2136 	i = BGE_STD_RX_RING_CNT / 8;
   2137 
   2138 	/*
   2139 	 * Use a value of 8 for the following chips to workaround HW errata.
   2140 	 * Some of these chips have been added based on empirical
   2141 	 * evidence (they don't work unless this is done).
   2142 	 */
   2143 	if (BGE_IS_5705_PLUS(sc))
   2144 		i = 8;
   2145 
   2146 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2147 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2148 
   2149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2150 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2151 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2152 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2153 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2154 	}
   2155 
   2156 	/*
   2157 	 * Disable all unused send rings by setting the 'ring disabled'
   2158 	 * bit in the flags field of all the TX send ring control blocks.
   2159 	 * These are located in NIC memory.
   2160 	 */
   2161 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2162 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2163 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2164 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2165 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2166 		rcb_addr += sizeof(struct bge_rcb);
   2167 	}
   2168 
   2169 	/* Configure TX RCB 0 (we use only the first ring) */
   2170 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2171 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2172 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2173 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2174 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2175 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2176 	if (BGE_IS_5700_FAMILY(sc))
   2177 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2178 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2179 
   2180 	/* Disable all unused RX return rings */
   2181 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2182 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2183 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2184 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2185 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2186 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2187 			BGE_RCB_FLAG_RING_DISABLED));
   2188 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2189 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2190 		    (i * (sizeof(uint64_t))), 0);
   2191 		rcb_addr += sizeof(struct bge_rcb);
   2192 	}
   2193 
   2194 	/* Initialize RX ring indexes */
   2195 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2196 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2197 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2198 
   2199 	/*
   2200 	 * Set up RX return ring 0
   2201 	 * Note that the NIC address for RX return rings is 0x00000000.
   2202 	 * The return rings live entirely within the host, so the
   2203 	 * nicaddr field in the RCB isn't used.
   2204 	 */
   2205 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2206 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2207 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2208 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2209 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2210 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2211 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2212 
   2213 	/* Set random backoff seed for TX */
   2214 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2215 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2216 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2217 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2218 	    BGE_TX_BACKOFF_SEED_MASK);
   2219 
   2220 	/* Set inter-packet gap */
   2221 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2222 
   2223 	/*
   2224 	 * Specify which ring to use for packets that don't match
   2225 	 * any RX rules.
   2226 	 */
   2227 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2228 
   2229 	/*
   2230 	 * Configure number of RX lists. One interrupt distribution
   2231 	 * list, sixteen active lists, one bad frames class.
   2232 	 */
   2233 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2234 
   2235 	/* Inialize RX list placement stats mask. */
   2236 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2237 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2238 
   2239 	/* Disable host coalescing until we get it set up */
   2240 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2241 
   2242 	/* Poll to make sure it's shut down. */
   2243 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2244 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2245 			break;
   2246 		DELAY(10);
   2247 	}
   2248 
   2249 	if (i == BGE_TIMEOUT * 2) {
   2250 		aprint_error_dev(sc->bge_dev,
   2251 		    "host coalescing engine failed to idle\n");
   2252 		return ENXIO;
   2253 	}
   2254 
   2255 	/* Set up host coalescing defaults */
   2256 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2257 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2258 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2259 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2260 	if (BGE_IS_5700_FAMILY(sc)) {
   2261 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2262 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2263 	}
   2264 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2265 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2266 
   2267 	/* Set up address of statistics block */
   2268 	if (BGE_IS_5700_FAMILY(sc)) {
   2269 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2270 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2271 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2272 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2273 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2274 	}
   2275 
   2276 	/* Set up address of status block */
   2277 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2278 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2279 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2280 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2281 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2282 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2283 
   2284 	/* Turn on host coalescing state machine */
   2285 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2286 
   2287 	/* Turn on RX BD completion state machine and enable attentions */
   2288 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2289 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2290 
   2291 	/* Turn on RX list placement state machine */
   2292 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2293 
   2294 	/* Turn on RX list selector state machine. */
   2295 	if (BGE_IS_5700_FAMILY(sc))
   2296 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2297 
   2298 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2299 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2300 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2301 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2302 
   2303 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2304 		val |= BGE_PORTMODE_TBI;
   2305 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2306 		val |= BGE_PORTMODE_GMII;
   2307 	else
   2308 		val |= BGE_PORTMODE_MII;
   2309 
   2310 	/* Turn on DMA, clear stats */
   2311 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2312 	DELAY(40);
   2313 
   2314 	/* Set misc. local control, enable interrupts on attentions */
   2315 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2316 
   2317 #ifdef notdef
   2318 	/* Assert GPIO pins for PHY reset */
   2319 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2320 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2321 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2322 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2323 #endif
   2324 
   2325 #if defined(not_quite_yet)
   2326 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2327 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2328 		sc->bge_local_ctrl_reg |=
   2329 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2330 	}
   2331 #endif
   2332 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2333 
   2334 	/* Turn on DMA completion state machine */
   2335 	if (BGE_IS_5700_FAMILY(sc))
   2336 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2337 
   2338 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2339 
   2340 	/* Enable host coalescing bug fix */
   2341 	if (BGE_IS_5755_PLUS(sc))
   2342 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2343 
   2344 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2345 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2346 
   2347 	/* Turn on write DMA state machine */
   2348 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2349 	DELAY(40);
   2350 
   2351 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2352 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2353 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2354 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2355 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2356 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2357 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2358 
   2359 	if (sc->bge_flags & BGE_PCIE)
   2360 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2361 	if (sc->bge_flags & BGE_TSO)
   2362 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2363 
   2364 	/* Turn on read DMA state machine */
   2365 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2366 	delay(40);
   2367 
   2368 	/* Turn on RX data completion state machine */
   2369 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2370 
   2371 	/* Turn on RX BD initiator state machine */
   2372 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2373 
   2374 	/* Turn on RX data and RX BD initiator state machine */
   2375 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2376 
   2377 	/* Turn on Mbuf cluster free state machine */
   2378 	if (BGE_IS_5700_FAMILY(sc))
   2379 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2380 
   2381 	/* Turn on send BD completion state machine */
   2382 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2383 
   2384 	/* Turn on send data completion state machine */
   2385 	val = BGE_SDCMODE_ENABLE;
   2386 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2387 		val |= BGE_SDCMODE_CDELAY;
   2388 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2389 
   2390 	/* Turn on send data initiator state machine */
   2391 	if (sc->bge_flags & BGE_TSO) {
   2392 		/* XXX: magic value from Linux driver */
   2393 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2394 	} else
   2395 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2396 
   2397 	/* Turn on send BD initiator state machine */
   2398 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2399 
   2400 	/* Turn on send BD selector state machine */
   2401 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2402 
   2403 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2404 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2405 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2406 
   2407 	/* ack/clear link change events */
   2408 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2409 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2410 	    BGE_MACSTAT_LINK_CHANGED);
   2411 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2412 
   2413 	/* Enable PHY auto polling (for MII/GMII only) */
   2414 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2415 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2416 	} else {
   2417 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2418 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2419 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2420 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2421 			    BGE_EVTENB_MI_INTERRUPT);
   2422 	}
   2423 
   2424 	/*
   2425 	 * Clear any pending link state attention.
   2426 	 * Otherwise some link state change events may be lost until attention
   2427 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2428 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2429 	 * state change attentions implies clearing pending attention.
   2430 	 */
   2431 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2432 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2433 	    BGE_MACSTAT_LINK_CHANGED);
   2434 
   2435 	/* Enable link state change attentions. */
   2436 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2437 
   2438 	return 0;
   2439 }
   2440 
   2441 static const struct bge_revision *
   2442 bge_lookup_rev(uint32_t chipid)
   2443 {
   2444 	const struct bge_revision *br;
   2445 
   2446 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2447 		if (br->br_chipid == chipid)
   2448 			return br;
   2449 	}
   2450 
   2451 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2452 		if (br->br_chipid == BGE_ASICREV(chipid))
   2453 			return br;
   2454 	}
   2455 
   2456 	return NULL;
   2457 }
   2458 
   2459 static const struct bge_product *
   2460 bge_lookup(const struct pci_attach_args *pa)
   2461 {
   2462 	const struct bge_product *bp;
   2463 
   2464 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2465 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2466 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2467 			return bp;
   2468 	}
   2469 
   2470 	return NULL;
   2471 }
   2472 
   2473 static int
   2474 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2475 {
   2476 #ifdef NOTYET
   2477 	uint32_t pm_ctl = 0;
   2478 
   2479 	/* XXX FIXME: make sure indirect accesses enabled? */
   2480 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2481 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2482 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2483 
   2484 	/* clear the PME_assert bit and power state bits, enable PME */
   2485 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2486 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2487 	pm_ctl |= (1 << 8);
   2488 
   2489 	if (powerlevel == 0) {
   2490 		pm_ctl |= PCIM_PSTAT_D0;
   2491 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2492 		    pm_ctl, 2);
   2493 		DELAY(10000);
   2494 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2495 		DELAY(10000);
   2496 
   2497 #ifdef NOTYET
   2498 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2499 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2500 #endif
   2501 		DELAY(40); DELAY(40); DELAY(40);
   2502 		DELAY(10000);	/* above not quite adequate on 5700 */
   2503 		return 0;
   2504 	}
   2505 
   2506 
   2507 	/*
   2508 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2509 	 * GMII gpio pins. Example code assumes all hardware vendors
   2510 	 * followed Broadcom's sample pcb layout. Until we verify that
   2511 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2512 	 */
   2513 	aprint_error_dev(sc->bge_dev,
   2514 	    "power state %d unimplemented; check GPIO pins\n",
   2515 	    powerlevel);
   2516 #endif
   2517 	return EOPNOTSUPP;
   2518 }
   2519 
   2520 
   2521 /*
   2522  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2523  * against our list and return its name if we find a match. Note
   2524  * that since the Broadcom controller contains VPD support, we
   2525  * can get the device name string from the controller itself instead
   2526  * of the compiled-in string. This is a little slow, but it guarantees
   2527  * we'll always announce the right product name.
   2528  */
   2529 static int
   2530 bge_probe(device_t parent, cfdata_t match, void *aux)
   2531 {
   2532 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2533 
   2534 	if (bge_lookup(pa) != NULL)
   2535 		return 1;
   2536 
   2537 	return 0;
   2538 }
   2539 
   2540 static void
   2541 bge_attach(device_t parent, device_t self, void *aux)
   2542 {
   2543 	struct bge_softc	*sc = device_private(self);
   2544 	struct pci_attach_args	*pa = aux;
   2545 	prop_dictionary_t dict;
   2546 	const struct bge_product *bp;
   2547 	const struct bge_revision *br;
   2548 	pci_chipset_tag_t	pc;
   2549 	pci_intr_handle_t	ih;
   2550 	const char		*intrstr = NULL;
   2551 	bus_dma_segment_t	seg;
   2552 	int			rseg;
   2553 	uint32_t		hwcfg = 0;
   2554 	uint32_t		command;
   2555 	struct ifnet		*ifp;
   2556 	uint32_t		misccfg;
   2557 	void *			kva;
   2558 	u_char			eaddr[ETHER_ADDR_LEN];
   2559 	pcireg_t		memtype, subid;
   2560 	bus_addr_t		memaddr;
   2561 	bus_size_t		memsize;
   2562 	uint32_t		pm_ctl;
   2563 	bool			no_seeprom;
   2564 
   2565 	bp = bge_lookup(pa);
   2566 	KASSERT(bp != NULL);
   2567 
   2568 	sc->sc_pc = pa->pa_pc;
   2569 	sc->sc_pcitag = pa->pa_tag;
   2570 	sc->bge_dev = self;
   2571 
   2572 	pc = sc->sc_pc;
   2573 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2574 
   2575 	aprint_naive(": Ethernet controller\n");
   2576 	aprint_normal(": %s\n", bp->bp_name);
   2577 
   2578 	/*
   2579 	 * Map control/status registers.
   2580 	 */
   2581 	DPRINTFN(5, ("Map control/status regs\n"));
   2582 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2583 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2584 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2585 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2586 
   2587 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2588 		aprint_error_dev(sc->bge_dev,
   2589 		    "failed to enable memory mapping!\n");
   2590 		return;
   2591 	}
   2592 
   2593 	DPRINTFN(5, ("pci_mem_find\n"));
   2594 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2595 	switch (memtype) {
   2596 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2597 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2598 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2599 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2600 		    &memaddr, &memsize) == 0)
   2601 			break;
   2602 	default:
   2603 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2604 		return;
   2605 	}
   2606 
   2607 	DPRINTFN(5, ("pci_intr_map\n"));
   2608 	if (pci_intr_map(pa, &ih)) {
   2609 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2610 		return;
   2611 	}
   2612 
   2613 	DPRINTFN(5, ("pci_intr_string\n"));
   2614 	intrstr = pci_intr_string(pc, ih);
   2615 
   2616 	DPRINTFN(5, ("pci_intr_establish\n"));
   2617 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2618 
   2619 	if (sc->bge_intrhand == NULL) {
   2620 		aprint_error_dev(sc->bge_dev,
   2621 		    "couldn't establish interrupt%s%s\n",
   2622 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2623 		return;
   2624 	}
   2625 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2626 
   2627 	/*
   2628 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2629 	 * can clobber the chip's PCI config-space power control registers,
   2630 	 * leaving the card in D3 powersave state.
   2631 	 * We do not have memory-mapped registers in this state,
   2632 	 * so force device into D0 state before starting initialization.
   2633 	 */
   2634 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2635 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2636 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2637 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2638 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2639 
   2640 	/*
   2641 	 * Save ASIC rev.
   2642 	 */
   2643 	sc->bge_chipid =
   2644 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2645 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2646 
   2647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2648 		switch (PCI_PRODUCT(pa->pa_id)) {
   2649 		case PCI_PRODUCT_BROADCOM_BCM5717:
   2650 		case PCI_PRODUCT_BROADCOM_BCM5718:
   2651 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   2652 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2653 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2654 			break;
   2655 		case PCI_PRODUCT_BROADCOM_BCM57761:
   2656 		case PCI_PRODUCT_BROADCOM_BCM57762:
   2657 		case PCI_PRODUCT_BROADCOM_BCM57765:
   2658 		case PCI_PRODUCT_BROADCOM_BCM57781:
   2659 		case PCI_PRODUCT_BROADCOM_BCM57785:
   2660 		case PCI_PRODUCT_BROADCOM_BCM57791:
   2661 		case PCI_PRODUCT_BROADCOM_BCM57795:
   2662 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2663 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2664 			break;
   2665 		default:
   2666 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2667 			    BGE_PCI_PRODID_ASICREV);
   2668 			break;
   2669 		}
   2670 	}
   2671 
   2672 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2673 	        &sc->bge_pciecap, NULL) != 0)
   2674 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2675 		/* PCIe */
   2676 		sc->bge_flags |= BGE_PCIE;
   2677 		bge_set_max_readrq(sc);
   2678 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2679 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2680 		/* PCI-X */
   2681 		sc->bge_flags |= BGE_PCIX;
   2682 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2683 			&sc->bge_pcixcap, NULL) == 0)
   2684 			aprint_error_dev(sc->bge_dev,
   2685 			    "unable to find PCIX capability\n");
   2686 	}
   2687 
   2688 	/* chipid */
   2689 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2690 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2691 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2692 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2693 		sc->bge_flags |= BGE_5700_FAMILY;
   2694 
   2695 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2696 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2697 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2698 		sc->bge_flags |= BGE_5714_FAMILY;
   2699 
   2700 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2701 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2702 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2703 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2704 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2705 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2706 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2707 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2708 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   2709 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2710 		sc->bge_flags |= BGE_5755_PLUS;
   2711 
   2712 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2713 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2714 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2715 	    BGE_IS_5755_PLUS(sc) ||
   2716 	    BGE_IS_5714_FAMILY(sc))
   2717 		sc->bge_flags |= BGE_575X_PLUS;
   2718 
   2719 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2720 	    BGE_IS_575X_PLUS(sc))
   2721 		sc->bge_flags |= BGE_5705_PLUS;
   2722 
   2723 	/*
   2724 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2725 	 * been observed in the first few bytes of some received packets.
   2726 	 * Aligning the packet buffer in memory eliminates the corruption.
   2727 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2728 	 * which do not support unaligned accesses, we will realign the
   2729 	 * payloads by copying the received packets.
   2730 	 */
   2731 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2732 	    sc->bge_flags & BGE_PCIX)
   2733 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2734 
   2735 	if (BGE_IS_5700_FAMILY(sc))
   2736 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2737 
   2738 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2739 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2740 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2741 		sc->bge_flags |= BGE_NO_3LED;
   2742 
   2743 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2744 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2745 
   2746 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2747 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2748 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2749 		sc->bge_flags |= BGE_IS_5788;
   2750 
   2751 	/*
   2752 	 * Some controllers seem to require a special firmware to use
   2753 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2754 	 * claims that the TSO performed by the firmware is slower than
   2755 	 * hardware based TSO. Moreover the firmware based TSO has one
   2756 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2757 	 * header is greater than 80 bytes. The workaround for the TSO
   2758 	 * bug exist but it seems it's too expensive than not using
   2759 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2760 	 * the TSO to the controllers that are not affected TSO issues
   2761 	 * (e.g. 5755 or higher).
   2762 	 */
   2763 	if (BGE_IS_5755_PLUS(sc)) {
   2764 		/*
   2765 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2766 		 * explicit device id check is required.
   2767 		 */
   2768 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2769 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2770 			sc->bge_flags |= BGE_TSO;
   2771 	}
   2772 
   2773 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2774 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2775 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2776 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2777 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2778 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2779 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2780 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2781 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2782 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2783 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2784 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2785 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2786 		sc->bge_flags |= BGE_10_100_ONLY;
   2787 
   2788 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2789 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2790 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2791 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2792 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2793 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2794 
   2795 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2796 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2797 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2798 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2799 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2800 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2801 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2802 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2803 
   2804 	if (BGE_IS_5705_PLUS(sc) &&
   2805 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2806 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2807 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2808 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2809 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
   2810 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2811 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2812 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2813 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2814 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2815 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2816 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2817 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2818 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2819 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2820 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2821 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2822 	}
   2823 
   2824 	/*
   2825 	 * SEEPROM check.
   2826 	 * First check if firmware knows we do not have SEEPROM.
   2827 	 */
   2828 	if (prop_dictionary_get_bool(device_properties(self),
   2829 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2830 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2831 
   2832 	/* Now check the 'ROM failed' bit on the RX CPU */
   2833 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2834 		sc->bge_flags |= BGE_NO_EEPROM;
   2835 
   2836 	/* Try to reset the chip. */
   2837 	DPRINTFN(5, ("bge_reset\n"));
   2838 	bge_reset(sc);
   2839 
   2840 	sc->bge_asf_mode = 0;
   2841 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2842 	    == BGE_MAGIC_NUMBER)) {
   2843 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2844 		    & BGE_HWCFG_ASF) {
   2845 			sc->bge_asf_mode |= ASF_ENABLE;
   2846 			sc->bge_asf_mode |= ASF_STACKUP;
   2847 			if (BGE_IS_575X_PLUS(sc)) {
   2848 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2849 			}
   2850 		}
   2851 	}
   2852 
   2853 	/* Try to reset the chip again the nice way. */
   2854 	bge_stop_fw(sc);
   2855 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2856 	if (bge_reset(sc))
   2857 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2858 
   2859 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2860 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2861 
   2862 	if (bge_chipinit(sc)) {
   2863 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2864 		bge_release_resources(sc);
   2865 		return;
   2866 	}
   2867 
   2868 	/*
   2869 	 * Get station address from the EEPROM.
   2870 	 */
   2871 	if (bge_get_eaddr(sc, eaddr)) {
   2872 		aprint_error_dev(sc->bge_dev,
   2873 		    "failed to read station address\n");
   2874 		bge_release_resources(sc);
   2875 		return;
   2876 	}
   2877 
   2878 	br = bge_lookup_rev(sc->bge_chipid);
   2879 
   2880 	if (br == NULL) {
   2881 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2882 		    sc->bge_chipid);
   2883 	} else {
   2884 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2885 		    br->br_name, sc->bge_chipid);
   2886 	}
   2887 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2888 
   2889 	/* Allocate the general information block and ring buffers. */
   2890 	if (pci_dma64_available(pa))
   2891 		sc->bge_dmatag = pa->pa_dmat64;
   2892 	else
   2893 		sc->bge_dmatag = pa->pa_dmat;
   2894 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2895 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2896 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2897 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   2898 		return;
   2899 	}
   2900 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2901 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2902 			   sizeof(struct bge_ring_data), &kva,
   2903 			   BUS_DMA_NOWAIT)) {
   2904 		aprint_error_dev(sc->bge_dev,
   2905 		    "can't map DMA buffers (%zu bytes)\n",
   2906 		    sizeof(struct bge_ring_data));
   2907 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2908 		return;
   2909 	}
   2910 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2911 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2912 	    sizeof(struct bge_ring_data), 0,
   2913 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2914 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   2915 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2916 				 sizeof(struct bge_ring_data));
   2917 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2918 		return;
   2919 	}
   2920 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2921 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2922 			    sizeof(struct bge_ring_data), NULL,
   2923 			    BUS_DMA_NOWAIT)) {
   2924 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2925 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2926 				 sizeof(struct bge_ring_data));
   2927 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2928 		return;
   2929 	}
   2930 
   2931 	DPRINTFN(5, ("bzero\n"));
   2932 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2933 
   2934 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2935 
   2936 	/* Try to allocate memory for jumbo buffers. */
   2937 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2938 		if (bge_alloc_jumbo_mem(sc)) {
   2939 			aprint_error_dev(sc->bge_dev,
   2940 			    "jumbo buffer allocation failed\n");
   2941 		} else
   2942 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2943 	}
   2944 
   2945 	/* Set default tuneable values. */
   2946 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2947 	sc->bge_rx_coal_ticks = 150;
   2948 	sc->bge_rx_max_coal_bds = 64;
   2949 #ifdef ORIG_WPAUL_VALUES
   2950 	sc->bge_tx_coal_ticks = 150;
   2951 	sc->bge_tx_max_coal_bds = 128;
   2952 #else
   2953 	sc->bge_tx_coal_ticks = 300;
   2954 	sc->bge_tx_max_coal_bds = 400;
   2955 #endif
   2956 	if (BGE_IS_5705_PLUS(sc)) {
   2957 		sc->bge_tx_coal_ticks = (12 * 5);
   2958 		sc->bge_tx_max_coal_bds = (12 * 5);
   2959 			aprint_verbose_dev(sc->bge_dev,
   2960 			    "setting short Tx thresholds\n");
   2961 	}
   2962 
   2963 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2964 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2965 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2966 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2967 	else if (BGE_IS_5705_PLUS(sc))
   2968 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   2969 	else
   2970 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   2971 
   2972 	/* Set up ifnet structure */
   2973 	ifp = &sc->ethercom.ec_if;
   2974 	ifp->if_softc = sc;
   2975 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2976 	ifp->if_ioctl = bge_ioctl;
   2977 	ifp->if_stop = bge_stop;
   2978 	ifp->if_start = bge_start;
   2979 	ifp->if_init = bge_init;
   2980 	ifp->if_watchdog = bge_watchdog;
   2981 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2982 	IFQ_SET_READY(&ifp->if_snd);
   2983 	DPRINTFN(5, ("strcpy if_xname\n"));
   2984 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   2985 
   2986 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   2987 		sc->ethercom.ec_if.if_capabilities |=
   2988 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   2989 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   2990 		sc->ethercom.ec_if.if_capabilities |=
   2991 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2992 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2993 #endif
   2994 	sc->ethercom.ec_capabilities |=
   2995 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2996 
   2997 	if (sc->bge_flags & BGE_TSO)
   2998 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   2999 
   3000 	/*
   3001 	 * Do MII setup.
   3002 	 */
   3003 	DPRINTFN(5, ("mii setup\n"));
   3004 	sc->bge_mii.mii_ifp = ifp;
   3005 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3006 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3007 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3008 
   3009 	/*
   3010 	 * Figure out what sort of media we have by checking the hardware
   3011 	 * config word in the first 32k of NIC internal memory, or fall back to
   3012 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   3013 	 * this value appears to be unset. If that's the case, we have to rely
   3014 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3015 	 * the SysKonnect SK-9D41.
   3016 	 */
   3017 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   3018 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   3019 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3020 		bge_read_eeprom(sc, (void *)&hwcfg,
   3021 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3022 		hwcfg = be32toh(hwcfg);
   3023 	}
   3024 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3025 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3026 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3027 		if (BGE_IS_5714_FAMILY(sc))
   3028 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3029 		else
   3030 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3031 	}
   3032 
   3033 	/* set phyflags and chipid before mii_attach() */
   3034 	dict = device_properties(self);
   3035 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3036 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3037 
   3038 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3039 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3040 		    bge_ifmedia_sts);
   3041 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3042 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3043 			    0, NULL);
   3044 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3045 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3046 		/* Pretend the user requested this setting */
   3047 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3048 	} else {
   3049 		/*
   3050 		 * Do transceiver setup and tell the firmware the
   3051 		 * driver is down so we can try to get access the
   3052 		 * probe if ASF is running.  Retry a couple of times
   3053 		 * if we get a conflict with the ASF firmware accessing
   3054 		 * the PHY.
   3055 		 */
   3056 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3057 		bge_asf_driver_up(sc);
   3058 
   3059 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3060 			     bge_ifmedia_sts);
   3061 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3062 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3063 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3064 
   3065 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3066 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3067 			ifmedia_add(&sc->bge_mii.mii_media,
   3068 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3069 			ifmedia_set(&sc->bge_mii.mii_media,
   3070 				    IFM_ETHER|IFM_MANUAL);
   3071 		} else
   3072 			ifmedia_set(&sc->bge_mii.mii_media,
   3073 				    IFM_ETHER|IFM_AUTO);
   3074 
   3075 		/*
   3076 		 * Now tell the firmware we are going up after probing the PHY
   3077 		 */
   3078 		if (sc->bge_asf_mode & ASF_STACKUP)
   3079 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3080 	}
   3081 
   3082 	/*
   3083 	 * Call MI attach routine.
   3084 	 */
   3085 	DPRINTFN(5, ("if_attach\n"));
   3086 	if_attach(ifp);
   3087 	DPRINTFN(5, ("ether_ifattach\n"));
   3088 	ether_ifattach(ifp, eaddr);
   3089 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3090 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3091 		RND_TYPE_NET, 0);
   3092 #ifdef BGE_EVENT_COUNTERS
   3093 	/*
   3094 	 * Attach event counters.
   3095 	 */
   3096 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3097 	    NULL, device_xname(sc->bge_dev), "intr");
   3098 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3099 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3100 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3101 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3102 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3103 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3104 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3105 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3106 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3107 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3108 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3109 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3110 #endif /* BGE_EVENT_COUNTERS */
   3111 	DPRINTFN(5, ("callout_init\n"));
   3112 	callout_init(&sc->bge_timeout, 0);
   3113 
   3114 	if (pmf_device_register(self, NULL, NULL))
   3115 		pmf_class_network_register(self, ifp);
   3116 	else
   3117 		aprint_error_dev(self, "couldn't establish power handler\n");
   3118 
   3119 	bge_sysctl_init(sc);
   3120 
   3121 #ifdef BGE_DEBUG
   3122 	bge_debug_info(sc);
   3123 #endif
   3124 }
   3125 
   3126 static void
   3127 bge_release_resources(struct bge_softc *sc)
   3128 {
   3129 	if (sc->bge_vpd_prodname != NULL)
   3130 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3131 
   3132 	if (sc->bge_vpd_readonly != NULL)
   3133 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3134 }
   3135 
   3136 static int
   3137 bge_reset(struct bge_softc *sc)
   3138 {
   3139 	uint32_t cachesize, command, pcistate, marbmode;
   3140 #if 0
   3141 	uint32_t new_pcistate;
   3142 #endif
   3143 	pcireg_t devctl, reg;
   3144 	int i, val;
   3145 	void (*write_op)(struct bge_softc *, int, int);
   3146 
   3147 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
   3148 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3149 	    	if (sc->bge_flags & BGE_PCIE)
   3150 			write_op = bge_writemem_direct;
   3151 		else
   3152 			write_op = bge_writemem_ind;
   3153 	} else
   3154 		write_op = bge_writereg_ind;
   3155 
   3156 	/* Save some important PCI state. */
   3157 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3158 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3159 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3160 
   3161 	/* Step 5a: Enable memory arbiter. */
   3162 	marbmode = 0;
   3163 	if (BGE_IS_5714_FAMILY(sc))
   3164 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3165 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3166 
   3167 	/* Step 5b-5d: */
   3168 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3169 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3170 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3171 
   3172 	/* XXX ???: Disable fastboot on controllers that support it. */
   3173 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3174 	    BGE_IS_5755_PLUS(sc))
   3175 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3176 
   3177 	/*
   3178 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3179 	 * When firmware finishes its initialization it will
   3180 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3181 	 */
   3182 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3183 
   3184 	/* Step 7: */
   3185 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3186 	/*
   3187 	 * XXX: from FreeBSD/Linux; no documentation
   3188 	 */
   3189 	if (sc->bge_flags & BGE_PCIE) {
   3190 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   3191 			/* PCI Express 1.0 system */
   3192 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   3193 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3194 			/*
   3195 			 * Prevent PCI Express link training
   3196 			 * during global reset.
   3197 			 */
   3198 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3199 			val |= (1<<29);
   3200 		}
   3201 	}
   3202 
   3203 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3204 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3205 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3206 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3207 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3208 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3209 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3210 	}
   3211 
   3212 	/*
   3213 	 * Set GPHY Power Down Override to leave GPHY
   3214 	 * powered up in D0 uninitialized.
   3215 	 */
   3216 	if (BGE_IS_5705_PLUS(sc))
   3217 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3218 
   3219 	/* XXX 5721, 5751 and 5752 */
   3220 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3221 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3222 
   3223 	/* Issue global reset */
   3224 	write_op(sc, BGE_MISC_CFG, val);
   3225 
   3226 	/* Step 8: wait for complete */
   3227 	if (sc->bge_flags & BGE_PCIE)
   3228 		delay(100*1000); /* too big */
   3229 	else
   3230 		delay(100);
   3231 
   3232 	/* From Linux: dummy read to flush PCI posted writes */
   3233 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3234 
   3235 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3236 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3237 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3238 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3239 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3240 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3241 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3242 
   3243 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3244 	if (sc->bge_flags & BGE_PCIX) {
   3245 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3246 		    + PCI_PCIX_CMD);
   3247 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3248 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3249 	}
   3250 
   3251 	if (sc->bge_flags & BGE_PCIE) {
   3252 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3253 			DELAY(500000);
   3254 			/* XXX: Magic Numbers */
   3255 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3256 			    BGE_PCI_UNKNOWN0);
   3257 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3258 			    BGE_PCI_UNKNOWN0,
   3259 			    reg | (1 << 15));
   3260 		}
   3261 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3262 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3263 		/* Clear enable no snoop and disable relaxed ordering. */
   3264 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   3265 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3266 		/* Set PCIE max payload size to 128. */
   3267 		devctl &= ~(0x00e0);
   3268 		/* Clear device status register. Write 1b to clear */
   3269 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3270 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3271 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3272 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3273 	}
   3274 
   3275 	/* Step 12: Enable memory arbiter. */
   3276 	marbmode = 0;
   3277 	if (BGE_IS_5714_FAMILY(sc))
   3278 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3279 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3280 
   3281 	/* Step 17: Poll until the firmware initialization is complete */
   3282 	bge_poll_fw(sc);
   3283 
   3284 	/* XXX 5721, 5751 and 5752 */
   3285 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3286 		/* Step 19: */
   3287 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3288 		/* Step 20: */
   3289 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3290 	}
   3291 
   3292 	/*
   3293 	 * Step 18: wirte mac mode
   3294 	 * XXX Write 0x0c for 5703S and 5704S
   3295 	 */
   3296 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, 0);
   3297 	DELAY(40);
   3298 
   3299 
   3300 	/* Step 21: 5822 B0 errata */
   3301 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3302 		pcireg_t msidata;
   3303 
   3304 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3305 		    BGE_PCI_MSI_DATA);
   3306 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3307 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3308 		    msidata);
   3309 	}
   3310 
   3311 	/* Step 23: restore cache line size */
   3312 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3313 
   3314 #if 0
   3315 	/*
   3316 	 * XXX Wait for the value of the PCISTATE register to
   3317 	 * return to its original pre-reset state. This is a
   3318 	 * fairly good indicator of reset completion. If we don't
   3319 	 * wait for the reset to fully complete, trying to read
   3320 	 * from the device's non-PCI registers may yield garbage
   3321 	 * results.
   3322 	 */
   3323 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3324 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3325 		    BGE_PCI_PCISTATE);
   3326 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3327 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3328 			break;
   3329 		DELAY(10);
   3330 	}
   3331 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3332 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3333 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3334 	}
   3335 #endif
   3336 
   3337 	/* Step 28: Fix up byte swapping */
   3338 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3339 
   3340 	/* Tell the ASF firmware we are up */
   3341 	if (sc->bge_asf_mode & ASF_STACKUP)
   3342 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3343 
   3344 	/*
   3345 	 * The 5704 in TBI mode apparently needs some special
   3346 	 * adjustment to insure the SERDES drive level is set
   3347 	 * to 1.2V.
   3348 	 */
   3349 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3350 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3351 		uint32_t serdescfg;
   3352 
   3353 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3354 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3355 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3356 	}
   3357 
   3358 	if (sc->bge_flags & BGE_PCIE &&
   3359 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3360 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   3361 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3362 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   3363 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
   3364 		uint32_t v;
   3365 
   3366 		/* Enable PCI Express bug fix */
   3367 		v = CSR_READ_4(sc, 0x7c00);
   3368 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3369 	}
   3370 	DELAY(10000);
   3371 
   3372 	return 0;
   3373 }
   3374 
   3375 /*
   3376  * Frame reception handling. This is called if there's a frame
   3377  * on the receive return list.
   3378  *
   3379  * Note: we have to be able to handle two possibilities here:
   3380  * 1) the frame is from the jumbo receive ring
   3381  * 2) the frame is from the standard receive ring
   3382  */
   3383 
   3384 static void
   3385 bge_rxeof(struct bge_softc *sc)
   3386 {
   3387 	struct ifnet *ifp;
   3388 	uint16_t rx_prod, rx_cons;
   3389 	int stdcnt = 0, jumbocnt = 0;
   3390 	bus_dmamap_t dmamap;
   3391 	bus_addr_t offset, toff;
   3392 	bus_size_t tlen;
   3393 	int tosync;
   3394 
   3395 	rx_cons = sc->bge_rx_saved_considx;
   3396 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3397 
   3398 	/* Nothing to do */
   3399 	if (rx_cons == rx_prod)
   3400 		return;
   3401 
   3402 	ifp = &sc->ethercom.ec_if;
   3403 
   3404 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3405 	    offsetof(struct bge_ring_data, bge_status_block),
   3406 	    sizeof (struct bge_status_block),
   3407 	    BUS_DMASYNC_POSTREAD);
   3408 
   3409 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3410 	tosync = rx_prod - rx_cons;
   3411 
   3412 	if (tosync != 0)
   3413 		rnd_add_uint32(&sc->rnd_source, tosync);
   3414 
   3415 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3416 
   3417 	if (tosync < 0) {
   3418 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3419 		    sizeof (struct bge_rx_bd);
   3420 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3421 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3422 		tosync = -tosync;
   3423 	}
   3424 
   3425 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3426 	    offset, tosync * sizeof (struct bge_rx_bd),
   3427 	    BUS_DMASYNC_POSTREAD);
   3428 
   3429 	while (rx_cons != rx_prod) {
   3430 		struct bge_rx_bd	*cur_rx;
   3431 		uint32_t		rxidx;
   3432 		struct mbuf		*m = NULL;
   3433 
   3434 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3435 
   3436 		rxidx = cur_rx->bge_idx;
   3437 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3438 
   3439 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3440 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3441 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3442 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3443 			jumbocnt++;
   3444 			bus_dmamap_sync(sc->bge_dmatag,
   3445 			    sc->bge_cdata.bge_rx_jumbo_map,
   3446 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3447 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3448 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3449 				ifp->if_ierrors++;
   3450 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3451 				continue;
   3452 			}
   3453 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3454 					     NULL)== ENOBUFS) {
   3455 				ifp->if_ierrors++;
   3456 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3457 				continue;
   3458 			}
   3459 		} else {
   3460 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3461 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3462 
   3463 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3464 			stdcnt++;
   3465 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3466 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3467 			if (dmamap == NULL) {
   3468 				ifp->if_ierrors++;
   3469 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3470 				continue;
   3471 			}
   3472 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3473 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3474 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3475 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3476 				ifp->if_ierrors++;
   3477 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3478 				continue;
   3479 			}
   3480 			if (bge_newbuf_std(sc, sc->bge_std,
   3481 			    NULL, dmamap) == ENOBUFS) {
   3482 				ifp->if_ierrors++;
   3483 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3484 				continue;
   3485 			}
   3486 		}
   3487 
   3488 		ifp->if_ipackets++;
   3489 #ifndef __NO_STRICT_ALIGNMENT
   3490 		/*
   3491 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3492 		 * the Rx buffer has the layer-2 header unaligned.
   3493 		 * If our CPU requires alignment, re-align by copying.
   3494 		 */
   3495 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3496 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3497 				cur_rx->bge_len);
   3498 			m->m_data += ETHER_ALIGN;
   3499 		}
   3500 #endif
   3501 
   3502 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3503 		m->m_pkthdr.rcvif = ifp;
   3504 
   3505 		/*
   3506 		 * Handle BPF listeners. Let the BPF user see the packet.
   3507 		 */
   3508 		bpf_mtap(ifp, m);
   3509 
   3510 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3511 
   3512 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3513 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3514 		/*
   3515 		 * Rx transport checksum-offload may also
   3516 		 * have bugs with packets which, when transmitted,
   3517 		 * were `runts' requiring padding.
   3518 		 */
   3519 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3520 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3521 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3522 			m->m_pkthdr.csum_data =
   3523 			    cur_rx->bge_tcp_udp_csum;
   3524 			m->m_pkthdr.csum_flags |=
   3525 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3526 			     M_CSUM_DATA);
   3527 		}
   3528 
   3529 		/*
   3530 		 * If we received a packet with a vlan tag, pass it
   3531 		 * to vlan_input() instead of ether_input().
   3532 		 */
   3533 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3534 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3535 		}
   3536 
   3537 		(*ifp->if_input)(ifp, m);
   3538 	}
   3539 
   3540 	sc->bge_rx_saved_considx = rx_cons;
   3541 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3542 	if (stdcnt)
   3543 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3544 	if (jumbocnt)
   3545 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3546 }
   3547 
   3548 static void
   3549 bge_txeof(struct bge_softc *sc)
   3550 {
   3551 	struct bge_tx_bd *cur_tx = NULL;
   3552 	struct ifnet *ifp;
   3553 	struct txdmamap_pool_entry *dma;
   3554 	bus_addr_t offset, toff;
   3555 	bus_size_t tlen;
   3556 	int tosync;
   3557 	struct mbuf *m;
   3558 
   3559 	ifp = &sc->ethercom.ec_if;
   3560 
   3561 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3562 	    offsetof(struct bge_ring_data, bge_status_block),
   3563 	    sizeof (struct bge_status_block),
   3564 	    BUS_DMASYNC_POSTREAD);
   3565 
   3566 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3567 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3568 	    sc->bge_tx_saved_considx;
   3569 
   3570 	if (tosync != 0)
   3571 		rnd_add_uint32(&sc->rnd_source, tosync);
   3572 
   3573 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3574 
   3575 	if (tosync < 0) {
   3576 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3577 		    sizeof (struct bge_tx_bd);
   3578 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3579 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3580 		tosync = -tosync;
   3581 	}
   3582 
   3583 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3584 	    offset, tosync * sizeof (struct bge_tx_bd),
   3585 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3586 
   3587 	/*
   3588 	 * Go through our tx ring and free mbufs for those
   3589 	 * frames that have been sent.
   3590 	 */
   3591 	while (sc->bge_tx_saved_considx !=
   3592 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3593 		uint32_t		idx = 0;
   3594 
   3595 		idx = sc->bge_tx_saved_considx;
   3596 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3597 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3598 			ifp->if_opackets++;
   3599 		m = sc->bge_cdata.bge_tx_chain[idx];
   3600 		if (m != NULL) {
   3601 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3602 			dma = sc->txdma[idx];
   3603 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3604 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3605 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3606 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3607 			sc->txdma[idx] = NULL;
   3608 
   3609 			m_freem(m);
   3610 		}
   3611 		sc->bge_txcnt--;
   3612 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3613 		ifp->if_timer = 0;
   3614 	}
   3615 
   3616 	if (cur_tx != NULL)
   3617 		ifp->if_flags &= ~IFF_OACTIVE;
   3618 }
   3619 
   3620 static int
   3621 bge_intr(void *xsc)
   3622 {
   3623 	struct bge_softc *sc;
   3624 	struct ifnet *ifp;
   3625 	uint32_t statusword;
   3626 
   3627 	sc = xsc;
   3628 	ifp = &sc->ethercom.ec_if;
   3629 
   3630 	/* It is possible for the interrupt to arrive before
   3631 	 * the status block is updated prior to the interrupt.
   3632 	 * Reading the PCI State register will confirm whether the
   3633 	 * interrupt is ours and will flush the status block.
   3634 	 */
   3635 
   3636 	/* read status word from status block */
   3637 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3638 
   3639 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3640 	    (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3641 		BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3642 		/* Ack interrupt and stop others from occuring. */
   3643 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   3644 
   3645 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3646 
   3647 		/* clear status word */
   3648 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3649 
   3650 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3651 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3652 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3653 			bge_link_upd(sc);
   3654 
   3655 		if (ifp->if_flags & IFF_RUNNING) {
   3656 			/* Check RX return ring producer/consumer */
   3657 			bge_rxeof(sc);
   3658 
   3659 			/* Check TX ring producer/consumer */
   3660 			bge_txeof(sc);
   3661 		}
   3662 
   3663 		if (sc->bge_pending_rxintr_change) {
   3664 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3665 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3666 			uint32_t junk;
   3667 
   3668 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3669 			DELAY(10);
   3670 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3671 
   3672 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3673 			DELAY(10);
   3674 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3675 
   3676 			sc->bge_pending_rxintr_change = 0;
   3677 		}
   3678 		bge_handle_events(sc);
   3679 
   3680 		/* Re-enable interrupts. */
   3681 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   3682 
   3683 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3684 			bge_start(ifp);
   3685 
   3686 		return 1;
   3687 	} else
   3688 		return 0;
   3689 }
   3690 
   3691 static void
   3692 bge_asf_driver_up(struct bge_softc *sc)
   3693 {
   3694 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3695 		/* Send ASF heartbeat aprox. every 2s */
   3696 		if (sc->bge_asf_count)
   3697 			sc->bge_asf_count --;
   3698 		else {
   3699 			sc->bge_asf_count = 2;
   3700 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3701 			    BGE_FW_DRV_ALIVE);
   3702 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3703 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3704 			CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
   3705 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3706 		}
   3707 	}
   3708 }
   3709 
   3710 static void
   3711 bge_tick(void *xsc)
   3712 {
   3713 	struct bge_softc *sc = xsc;
   3714 	struct mii_data *mii = &sc->bge_mii;
   3715 	int s;
   3716 
   3717 	s = splnet();
   3718 
   3719 	if (BGE_IS_5705_PLUS(sc))
   3720 		bge_stats_update_regs(sc);
   3721 	else
   3722 		bge_stats_update(sc);
   3723 
   3724 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3725 		/*
   3726 		 * Since in TBI mode auto-polling can't be used we should poll
   3727 		 * link status manually. Here we register pending link event
   3728 		 * and trigger interrupt.
   3729 		 */
   3730 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3731 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3732 	} else {
   3733 		/*
   3734 		 * Do not touch PHY if we have link up. This could break
   3735 		 * IPMI/ASF mode or produce extra input errors.
   3736 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3737 		 */
   3738 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3739 			mii_tick(mii);
   3740 	}
   3741 
   3742 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3743 
   3744 	splx(s);
   3745 }
   3746 
   3747 static void
   3748 bge_stats_update_regs(struct bge_softc *sc)
   3749 {
   3750 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3751 
   3752 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3753 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3754 
   3755 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3756 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3757 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3758 }
   3759 
   3760 static void
   3761 bge_stats_update(struct bge_softc *sc)
   3762 {
   3763 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3764 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3765 
   3766 #define READ_STAT(sc, stats, stat) \
   3767 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3768 
   3769 	ifp->if_collisions +=
   3770 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3771 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3772 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3773 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3774 	  ifp->if_collisions;
   3775 
   3776 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3777 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3778 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3779 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3780 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3781 		      READ_STAT(sc, stats,
   3782 		      		xoffPauseFramesReceived.bge_addr_lo));
   3783 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3784 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3785 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3786 		      READ_STAT(sc, stats,
   3787 		      		macControlFramesReceived.bge_addr_lo));
   3788 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3789 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3790 
   3791 #undef READ_STAT
   3792 
   3793 #ifdef notdef
   3794 	ifp->if_collisions +=
   3795 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3796 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3797 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3798 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3799 	   ifp->if_collisions;
   3800 #endif
   3801 }
   3802 
   3803 /*
   3804  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3805  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3806  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3807  * the hardware checksum assist gives incorrect results (possibly
   3808  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3809  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3810  */
   3811 static inline int
   3812 bge_cksum_pad(struct mbuf *pkt)
   3813 {
   3814 	struct mbuf *last = NULL;
   3815 	int padlen;
   3816 
   3817 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3818 
   3819 	/* if there's only the packet-header and we can pad there, use it. */
   3820 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3821 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3822 		last = pkt;
   3823 	} else {
   3824 		/*
   3825 		 * Walk packet chain to find last mbuf. We will either
   3826 		 * pad there, or append a new mbuf and pad it
   3827 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3828 		 */
   3829 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3830 	      	       continue; /* do nothing */
   3831 		}
   3832 
   3833 		/* `last' now points to last in chain. */
   3834 		if (M_TRAILINGSPACE(last) < padlen) {
   3835 			/* Allocate new empty mbuf, pad it. Compact later. */
   3836 			struct mbuf *n;
   3837 			MGET(n, M_DONTWAIT, MT_DATA);
   3838 			if (n == NULL)
   3839 				return ENOBUFS;
   3840 			n->m_len = 0;
   3841 			last->m_next = n;
   3842 			last = n;
   3843 		}
   3844 	}
   3845 
   3846 	KDASSERT(!M_READONLY(last));
   3847 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3848 
   3849 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3850 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3851 	last->m_len += padlen;
   3852 	pkt->m_pkthdr.len += padlen;
   3853 	return 0;
   3854 }
   3855 
   3856 /*
   3857  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3858  */
   3859 static inline int
   3860 bge_compact_dma_runt(struct mbuf *pkt)
   3861 {
   3862 	struct mbuf	*m, *prev;
   3863 	int 		totlen, prevlen;
   3864 
   3865 	prev = NULL;
   3866 	totlen = 0;
   3867 	prevlen = -1;
   3868 
   3869 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3870 		int mlen = m->m_len;
   3871 		int shortfall = 8 - mlen ;
   3872 
   3873 		totlen += mlen;
   3874 		if (mlen == 0)
   3875 			continue;
   3876 		if (mlen >= 8)
   3877 			continue;
   3878 
   3879 		/* If we get here, mbuf data is too small for DMA engine.
   3880 		 * Try to fix by shuffling data to prev or next in chain.
   3881 		 * If that fails, do a compacting deep-copy of the whole chain.
   3882 		 */
   3883 
   3884 		/* Internal frag. If fits in prev, copy it there. */
   3885 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3886 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3887 			prev->m_len += mlen;
   3888 			m->m_len = 0;
   3889 			/* XXX stitch chain */
   3890 			prev->m_next = m_free(m);
   3891 			m = prev;
   3892 			continue;
   3893 		}
   3894 		else if (m->m_next != NULL &&
   3895 			     M_TRAILINGSPACE(m) >= shortfall &&
   3896 			     m->m_next->m_len >= (8 + shortfall)) {
   3897 		    /* m is writable and have enough data in next, pull up. */
   3898 
   3899 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   3900 			    shortfall);
   3901 			m->m_len += shortfall;
   3902 			m->m_next->m_len -= shortfall;
   3903 			m->m_next->m_data += shortfall;
   3904 		}
   3905 		else if (m->m_next == NULL || 1) {
   3906 		  	/* Got a runt at the very end of the packet.
   3907 			 * borrow data from the tail of the preceding mbuf and
   3908 			 * update its length in-place. (The original data is still
   3909 			 * valid, so we can do this even if prev is not writable.)
   3910 			 */
   3911 
   3912 			/* if we'd make prev a runt, just move all of its data. */
   3913 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3914 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3915 
   3916 			if ((prev->m_len - shortfall) < 8)
   3917 				shortfall = prev->m_len;
   3918 
   3919 #ifdef notyet	/* just do the safe slow thing for now */
   3920 			if (!M_READONLY(m)) {
   3921 				if (M_LEADINGSPACE(m) < shorfall) {
   3922 					void *m_dat;
   3923 					m_dat = (m->m_flags & M_PKTHDR) ?
   3924 					  m->m_pktdat : m->dat;
   3925 					memmove(m_dat, mtod(m, void*), m->m_len);
   3926 					m->m_data = m_dat;
   3927 				    }
   3928 			} else
   3929 #endif	/* just do the safe slow thing */
   3930 			{
   3931 				struct mbuf * n = NULL;
   3932 				int newprevlen = prev->m_len - shortfall;
   3933 
   3934 				MGET(n, M_NOWAIT, MT_DATA);
   3935 				if (n == NULL)
   3936 				   return ENOBUFS;
   3937 				KASSERT(m->m_len + shortfall < MLEN
   3938 					/*,
   3939 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3940 
   3941 				/* first copy the data we're stealing from prev */
   3942 				memcpy(n->m_data, prev->m_data + newprevlen,
   3943 				    shortfall);
   3944 
   3945 				/* update prev->m_len accordingly */
   3946 				prev->m_len -= shortfall;
   3947 
   3948 				/* copy data from runt m */
   3949 				memcpy(n->m_data + shortfall, m->m_data,
   3950 				    m->m_len);
   3951 
   3952 				/* n holds what we stole from prev, plus m */
   3953 				n->m_len = shortfall + m->m_len;
   3954 
   3955 				/* stitch n into chain and free m */
   3956 				n->m_next = m->m_next;
   3957 				prev->m_next = n;
   3958 				/* KASSERT(m->m_next == NULL); */
   3959 				m->m_next = NULL;
   3960 				m_free(m);
   3961 				m = n;	/* for continuing loop */
   3962 			}
   3963 		}
   3964 		prevlen = m->m_len;
   3965 	}
   3966 	return 0;
   3967 }
   3968 
   3969 /*
   3970  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   3971  * pointers to descriptors.
   3972  */
   3973 static int
   3974 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   3975 {
   3976 	struct bge_tx_bd	*f = NULL;
   3977 	uint32_t		frag, cur;
   3978 	uint16_t		csum_flags = 0;
   3979 	uint16_t		txbd_tso_flags = 0;
   3980 	struct txdmamap_pool_entry *dma;
   3981 	bus_dmamap_t dmamap;
   3982 	int			i = 0;
   3983 	struct m_tag		*mtag;
   3984 	int			use_tso, maxsegsize, error;
   3985 
   3986 	cur = frag = *txidx;
   3987 
   3988 	if (m_head->m_pkthdr.csum_flags) {
   3989 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3990 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3991 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3992 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3993 	}
   3994 
   3995 	/*
   3996 	 * If we were asked to do an outboard checksum, and the NIC
   3997 	 * has the bug where it sometimes adds in the Ethernet padding,
   3998 	 * explicitly pad with zeros so the cksum will be correct either way.
   3999 	 * (For now, do this for all chip versions, until newer
   4000 	 * are confirmed to not require the workaround.)
   4001 	 */
   4002 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4003 #ifdef notyet
   4004 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4005 #endif
   4006 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4007 		goto check_dma_bug;
   4008 
   4009 	if (bge_cksum_pad(m_head) != 0)
   4010 	    return ENOBUFS;
   4011 
   4012 check_dma_bug:
   4013 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4014 		goto doit;
   4015 
   4016 	/*
   4017 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4018 	 * less than eight bytes.  If we encounter a teeny mbuf
   4019 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4020 	 */
   4021 	if (bge_compact_dma_runt(m_head) != 0)
   4022 		return ENOBUFS;
   4023 
   4024 doit:
   4025 	dma = SLIST_FIRST(&sc->txdma_list);
   4026 	if (dma == NULL)
   4027 		return ENOBUFS;
   4028 	dmamap = dma->dmamap;
   4029 
   4030 	/*
   4031 	 * Set up any necessary TSO state before we start packing...
   4032 	 */
   4033 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4034 	if (!use_tso) {
   4035 		maxsegsize = 0;
   4036 	} else {	/* TSO setup */
   4037 		unsigned  mss;
   4038 		struct ether_header *eh;
   4039 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4040 		struct mbuf * m0 = m_head;
   4041 		struct ip *ip;
   4042 		struct tcphdr *th;
   4043 		int iphl, hlen;
   4044 
   4045 		/*
   4046 		 * XXX It would be nice if the mbuf pkthdr had offset
   4047 		 * fields for the protocol headers.
   4048 		 */
   4049 
   4050 		eh = mtod(m0, struct ether_header *);
   4051 		switch (htons(eh->ether_type)) {
   4052 		case ETHERTYPE_IP:
   4053 			offset = ETHER_HDR_LEN;
   4054 			break;
   4055 
   4056 		case ETHERTYPE_VLAN:
   4057 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4058 			break;
   4059 
   4060 		default:
   4061 			/*
   4062 			 * Don't support this protocol or encapsulation.
   4063 			 */
   4064 			return ENOBUFS;
   4065 		}
   4066 
   4067 		/*
   4068 		 * TCP/IP headers are in the first mbuf; we can do
   4069 		 * this the easy way.
   4070 		 */
   4071 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4072 		hlen = iphl + offset;
   4073 		if (__predict_false(m0->m_len <
   4074 				    (hlen + sizeof(struct tcphdr)))) {
   4075 
   4076 			aprint_debug_dev(sc->bge_dev,
   4077 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4078 			    "not handled yet\n",
   4079 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4080 #ifdef NOTYET
   4081 			/*
   4082 			 * XXX jonathan (at) NetBSD.org: untested.
   4083 			 * how to force  this branch to be taken?
   4084 			 */
   4085 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4086 
   4087 			m_copydata(m0, offset, sizeof(ip), &ip);
   4088 			m_copydata(m0, hlen, sizeof(th), &th);
   4089 
   4090 			ip.ip_len = 0;
   4091 
   4092 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4093 			    sizeof(ip.ip_len), &ip.ip_len);
   4094 
   4095 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4096 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4097 
   4098 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4099 			    sizeof(th.th_sum), &th.th_sum);
   4100 
   4101 			hlen += th.th_off << 2;
   4102 			iptcp_opt_words	= hlen;
   4103 #else
   4104 			/*
   4105 			 * if_wm "hard" case not yet supported, can we not
   4106 			 * mandate it out of existence?
   4107 			 */
   4108 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4109 
   4110 			return ENOBUFS;
   4111 #endif
   4112 		} else {
   4113 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4114 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4115 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4116 
   4117 			/* Total IP/TCP options, in 32-bit words */
   4118 			iptcp_opt_words = (ip_tcp_hlen
   4119 					   - sizeof(struct tcphdr)
   4120 					   - sizeof(struct ip)) >> 2;
   4121 		}
   4122 		if (BGE_IS_575X_PLUS(sc)) {
   4123 			th->th_sum = 0;
   4124 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4125 		} else {
   4126 			/*
   4127 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4128 			 * Requires TSO firmware patch for 5701/5703/5704.
   4129 			 */
   4130 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4131 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4132 		}
   4133 
   4134 		mss = m_head->m_pkthdr.segsz;
   4135 		txbd_tso_flags |=
   4136 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4137 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4138 
   4139 		/*
   4140 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4141 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4142 		 * the NIC copies 40 bytes of IP/TCP header from the
   4143 		 * supplied header into the IP/TCP header portion of
   4144 		 * each post-TSO-segment. If the supplied packet has IP or
   4145 		 * TCP options, we need to tell the NIC to copy those extra
   4146 		 * bytes into each  post-TSO header, in addition to the normal
   4147 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4148 		 * Unfortunately, the driver encoding of option length
   4149 		 * varies across different ASIC families.
   4150 		 */
   4151 		tcp_seg_flags = 0;
   4152 		if (iptcp_opt_words) {
   4153 			if (BGE_IS_5705_PLUS(sc)) {
   4154 				tcp_seg_flags =
   4155 					iptcp_opt_words << 11;
   4156 			} else {
   4157 				txbd_tso_flags |=
   4158 					iptcp_opt_words << 12;
   4159 			}
   4160 		}
   4161 		maxsegsize = mss | tcp_seg_flags;
   4162 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4163 
   4164 	}	/* TSO setup */
   4165 
   4166 	/*
   4167 	 * Start packing the mbufs in this chain into
   4168 	 * the fragment pointers. Stop when we run out
   4169 	 * of fragments or hit the end of the mbuf chain.
   4170 	 */
   4171 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4172 	    BUS_DMA_NOWAIT);
   4173 	if (error)
   4174 		return ENOBUFS;
   4175 	/*
   4176 	 * Sanity check: avoid coming within 16 descriptors
   4177 	 * of the end of the ring.
   4178 	 */
   4179 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4180 		BGE_TSO_PRINTF(("%s: "
   4181 		    " dmamap_load_mbuf too close to ring wrap\n",
   4182 		    device_xname(sc->bge_dev)));
   4183 		goto fail_unload;
   4184 	}
   4185 
   4186 	mtag = sc->ethercom.ec_nvlans ?
   4187 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4188 
   4189 
   4190 	/* Iterate over dmap-map fragments. */
   4191 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4192 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4193 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4194 			break;
   4195 
   4196 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4197 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4198 
   4199 		/*
   4200 		 * For 5751 and follow-ons, for TSO we must turn
   4201 		 * off checksum-assist flag in the tx-descr, and
   4202 		 * supply the ASIC-revision-specific encoding
   4203 		 * of TSO flags and segsize.
   4204 		 */
   4205 		if (use_tso) {
   4206 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   4207 				f->bge_rsvd = maxsegsize;
   4208 				f->bge_flags = csum_flags | txbd_tso_flags;
   4209 			} else {
   4210 				f->bge_rsvd = 0;
   4211 				f->bge_flags =
   4212 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4213 			}
   4214 		} else {
   4215 			f->bge_rsvd = 0;
   4216 			f->bge_flags = csum_flags;
   4217 		}
   4218 
   4219 		if (mtag != NULL) {
   4220 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4221 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4222 		} else {
   4223 			f->bge_vlan_tag = 0;
   4224 		}
   4225 		cur = frag;
   4226 		BGE_INC(frag, BGE_TX_RING_CNT);
   4227 	}
   4228 
   4229 	if (i < dmamap->dm_nsegs) {
   4230 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4231 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4232 		goto fail_unload;
   4233 	}
   4234 
   4235 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4236 	    BUS_DMASYNC_PREWRITE);
   4237 
   4238 	if (frag == sc->bge_tx_saved_considx) {
   4239 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4240 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4241 
   4242 		goto fail_unload;
   4243 	}
   4244 
   4245 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4246 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4247 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4248 	sc->txdma[cur] = dma;
   4249 	sc->bge_txcnt += dmamap->dm_nsegs;
   4250 
   4251 	*txidx = frag;
   4252 
   4253 	return 0;
   4254 
   4255 fail_unload:
   4256 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4257 
   4258 	return ENOBUFS;
   4259 }
   4260 
   4261 /*
   4262  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4263  * to the mbuf data regions directly in the transmit descriptors.
   4264  */
   4265 static void
   4266 bge_start(struct ifnet *ifp)
   4267 {
   4268 	struct bge_softc *sc;
   4269 	struct mbuf *m_head = NULL;
   4270 	uint32_t prodidx;
   4271 	int pkts = 0;
   4272 
   4273 	sc = ifp->if_softc;
   4274 
   4275 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4276 		return;
   4277 
   4278 	prodidx = sc->bge_tx_prodidx;
   4279 
   4280 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4281 		IFQ_POLL(&ifp->if_snd, m_head);
   4282 		if (m_head == NULL)
   4283 			break;
   4284 
   4285 #if 0
   4286 		/*
   4287 		 * XXX
   4288 		 * safety overkill.  If this is a fragmented packet chain
   4289 		 * with delayed TCP/UDP checksums, then only encapsulate
   4290 		 * it if we have enough descriptors to handle the entire
   4291 		 * chain at once.
   4292 		 * (paranoia -- may not actually be needed)
   4293 		 */
   4294 		if (m_head->m_flags & M_FIRSTFRAG &&
   4295 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4296 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4297 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4298 				ifp->if_flags |= IFF_OACTIVE;
   4299 				break;
   4300 			}
   4301 		}
   4302 #endif
   4303 
   4304 		/*
   4305 		 * Pack the data into the transmit ring. If we
   4306 		 * don't have room, set the OACTIVE flag and wait
   4307 		 * for the NIC to drain the ring.
   4308 		 */
   4309 		if (bge_encap(sc, m_head, &prodidx)) {
   4310 			ifp->if_flags |= IFF_OACTIVE;
   4311 			break;
   4312 		}
   4313 
   4314 		/* now we are committed to transmit the packet */
   4315 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4316 		pkts++;
   4317 
   4318 		/*
   4319 		 * If there's a BPF listener, bounce a copy of this frame
   4320 		 * to him.
   4321 		 */
   4322 		bpf_mtap(ifp, m_head);
   4323 	}
   4324 	if (pkts == 0)
   4325 		return;
   4326 
   4327 	/* Transmit */
   4328 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4329 	/* 5700 b2 errata */
   4330 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4331 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4332 
   4333 	sc->bge_tx_prodidx = prodidx;
   4334 
   4335 	/*
   4336 	 * Set a timeout in case the chip goes out to lunch.
   4337 	 */
   4338 	ifp->if_timer = 5;
   4339 }
   4340 
   4341 static int
   4342 bge_init(struct ifnet *ifp)
   4343 {
   4344 	struct bge_softc *sc = ifp->if_softc;
   4345 	const uint16_t *m;
   4346 	uint32_t mode;
   4347 	int s, error = 0;
   4348 
   4349 	s = splnet();
   4350 
   4351 	ifp = &sc->ethercom.ec_if;
   4352 
   4353 	/* Cancel pending I/O and flush buffers. */
   4354 	bge_stop(ifp, 0);
   4355 
   4356 	bge_stop_fw(sc);
   4357 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4358 	bge_reset(sc);
   4359 	bge_sig_legacy(sc, BGE_RESET_START);
   4360 	bge_sig_post_reset(sc, BGE_RESET_START);
   4361 
   4362 	bge_chipinit(sc);
   4363 
   4364 	/*
   4365 	 * Init the various state machines, ring
   4366 	 * control blocks and firmware.
   4367 	 */
   4368 	error = bge_blockinit(sc);
   4369 	if (error != 0) {
   4370 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4371 		    error);
   4372 		splx(s);
   4373 		return error;
   4374 	}
   4375 
   4376 	ifp = &sc->ethercom.ec_if;
   4377 
   4378 	/* Specify MTU. */
   4379 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4380 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4381 
   4382 	/* Load our MAC address. */
   4383 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4384 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4385 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4386 
   4387 	/* Enable or disable promiscuous mode as needed. */
   4388 	if (ifp->if_flags & IFF_PROMISC)
   4389 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4390 	else
   4391 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4392 
   4393 	/* Program multicast filter. */
   4394 	bge_setmulti(sc);
   4395 
   4396 	/* Init RX ring. */
   4397 	bge_init_rx_ring_std(sc);
   4398 
   4399 	/*
   4400 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4401 	 * memory to insure that the chip has in fact read the first
   4402 	 * entry of the ring.
   4403 	 */
   4404 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4405 		uint32_t		v, i;
   4406 		for (i = 0; i < 10; i++) {
   4407 			DELAY(20);
   4408 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4409 			if (v == (MCLBYTES - ETHER_ALIGN))
   4410 				break;
   4411 		}
   4412 		if (i == 10)
   4413 			aprint_error_dev(sc->bge_dev,
   4414 			    "5705 A0 chip failed to load RX ring\n");
   4415 	}
   4416 
   4417 	/* Init jumbo RX ring. */
   4418 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4419 		bge_init_rx_ring_jumbo(sc);
   4420 
   4421 	/* Init our RX return ring index */
   4422 	sc->bge_rx_saved_considx = 0;
   4423 
   4424 	/* Init TX ring. */
   4425 	bge_init_tx_ring(sc);
   4426 
   4427 	/* Enable TX MAC state machine lockup fix. */
   4428 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   4429 	if (BGE_IS_5755_PLUS(sc) ||
   4430 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4431 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   4432 
   4433 	/* Turn on transmitter */
   4434 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   4435 	DELAY(100);
   4436 
   4437 	/* Turn on receiver */
   4438 	BGE_SETBIT_FLUSH(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4439 	DELAY(10);
   4440 
   4441 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4442 
   4443 	/* Tell firmware we're alive. */
   4444 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4445 
   4446 	/* Enable host interrupts. */
   4447 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4448 	    BGE_PCIMISCCTL_CLEAR_INTA);
   4449 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4450 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
   4451 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4452 
   4453 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4454 		goto out;
   4455 
   4456 	ifp->if_flags |= IFF_RUNNING;
   4457 	ifp->if_flags &= ~IFF_OACTIVE;
   4458 
   4459 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4460 
   4461 out:
   4462 	sc->bge_if_flags = ifp->if_flags;
   4463 	splx(s);
   4464 
   4465 	return error;
   4466 }
   4467 
   4468 /*
   4469  * Set media options.
   4470  */
   4471 static int
   4472 bge_ifmedia_upd(struct ifnet *ifp)
   4473 {
   4474 	struct bge_softc *sc = ifp->if_softc;
   4475 	struct mii_data *mii = &sc->bge_mii;
   4476 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4477 	int rc;
   4478 
   4479 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4480 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4481 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4482 			return EINVAL;
   4483 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4484 		case IFM_AUTO:
   4485 			/*
   4486 			 * The BCM5704 ASIC appears to have a special
   4487 			 * mechanism for programming the autoneg
   4488 			 * advertisement registers in TBI mode.
   4489 			 */
   4490 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4491 				uint32_t sgdig;
   4492 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4493 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4494 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4495 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4496 					sgdig |= BGE_SGDIGCFG_AUTO |
   4497 					    BGE_SGDIGCFG_PAUSE_CAP |
   4498 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4499 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   4500 					    sgdig | BGE_SGDIGCFG_SEND);
   4501 					DELAY(5);
   4502 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   4503 					    sgdig);
   4504 				}
   4505 			}
   4506 			break;
   4507 		case IFM_1000_SX:
   4508 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4509 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4510 				    BGE_MACMODE_HALF_DUPLEX);
   4511 			} else {
   4512 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4513 				    BGE_MACMODE_HALF_DUPLEX);
   4514 			}
   4515 			break;
   4516 		default:
   4517 			return EINVAL;
   4518 		}
   4519 		/* XXX 802.3x flow control for 1000BASE-SX */
   4520 		return 0;
   4521 	}
   4522 
   4523 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4524 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4525 		return 0;
   4526 
   4527 	/*
   4528 	 * Force an interrupt so that we will call bge_link_upd
   4529 	 * if needed and clear any pending link state attention.
   4530 	 * Without this we are not getting any further interrupts
   4531 	 * for link state changes and thus will not UP the link and
   4532 	 * not be able to send in bge_start. The only way to get
   4533 	 * things working was to receive a packet and get a RX intr.
   4534 	 */
   4535 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4536 	    sc->bge_flags & BGE_IS_5788)
   4537 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4538 	else
   4539 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4540 
   4541 	return rc;
   4542 }
   4543 
   4544 /*
   4545  * Report current media status.
   4546  */
   4547 static void
   4548 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4549 {
   4550 	struct bge_softc *sc = ifp->if_softc;
   4551 	struct mii_data *mii = &sc->bge_mii;
   4552 
   4553 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4554 		ifmr->ifm_status = IFM_AVALID;
   4555 		ifmr->ifm_active = IFM_ETHER;
   4556 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4557 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4558 			ifmr->ifm_status |= IFM_ACTIVE;
   4559 		ifmr->ifm_active |= IFM_1000_SX;
   4560 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4561 			ifmr->ifm_active |= IFM_HDX;
   4562 		else
   4563 			ifmr->ifm_active |= IFM_FDX;
   4564 		return;
   4565 	}
   4566 
   4567 	mii_pollstat(mii);
   4568 	ifmr->ifm_status = mii->mii_media_status;
   4569 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4570 	    sc->bge_flowflags;
   4571 }
   4572 
   4573 static int
   4574 bge_ifflags_cb(struct ethercom *ec)
   4575 {
   4576 	struct ifnet *ifp = &ec->ec_if;
   4577 	struct bge_softc *sc = ifp->if_softc;
   4578 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4579 
   4580 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4581 		return ENETRESET;
   4582 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4583 		return 0;
   4584 
   4585 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4586 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4587 	else
   4588 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4589 
   4590 	bge_setmulti(sc);
   4591 
   4592 	sc->bge_if_flags = ifp->if_flags;
   4593 	return 0;
   4594 }
   4595 
   4596 static int
   4597 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4598 {
   4599 	struct bge_softc *sc = ifp->if_softc;
   4600 	struct ifreq *ifr = (struct ifreq *) data;
   4601 	int s, error = 0;
   4602 	struct mii_data *mii;
   4603 
   4604 	s = splnet();
   4605 
   4606 	switch (command) {
   4607 	case SIOCSIFMEDIA:
   4608 		/* XXX Flow control is not supported for 1000BASE-SX */
   4609 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4610 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4611 			sc->bge_flowflags = 0;
   4612 		}
   4613 
   4614 		/* Flow control requires full-duplex mode. */
   4615 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4616 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4617 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4618 		}
   4619 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4620 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4621 				/* We can do both TXPAUSE and RXPAUSE. */
   4622 				ifr->ifr_media |=
   4623 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4624 			}
   4625 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4626 		}
   4627 		/* FALLTHROUGH */
   4628 	case SIOCGIFMEDIA:
   4629 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4630 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4631 			    command);
   4632 		} else {
   4633 			mii = &sc->bge_mii;
   4634 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4635 			    command);
   4636 		}
   4637 		break;
   4638 	default:
   4639 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4640 			break;
   4641 
   4642 		error = 0;
   4643 
   4644 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4645 			;
   4646 		else if (ifp->if_flags & IFF_RUNNING)
   4647 			bge_setmulti(sc);
   4648 		break;
   4649 	}
   4650 
   4651 	splx(s);
   4652 
   4653 	return error;
   4654 }
   4655 
   4656 static void
   4657 bge_watchdog(struct ifnet *ifp)
   4658 {
   4659 	struct bge_softc *sc;
   4660 
   4661 	sc = ifp->if_softc;
   4662 
   4663 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4664 
   4665 	ifp->if_flags &= ~IFF_RUNNING;
   4666 	bge_init(ifp);
   4667 
   4668 	ifp->if_oerrors++;
   4669 }
   4670 
   4671 static void
   4672 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4673 {
   4674 	int i;
   4675 
   4676 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   4677 
   4678 	for (i = 0; i < 1000; i++) {
   4679 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4680 			return;
   4681 		delay(100);
   4682 	}
   4683 
   4684 	/*
   4685 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4686 	 * on some environment (and once after boot?)
   4687 	 */
   4688 	if (reg != BGE_SRS_MODE)
   4689 		aprint_error_dev(sc->bge_dev,
   4690 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4691 		    (u_long)reg, bit);
   4692 }
   4693 
   4694 /*
   4695  * Stop the adapter and free any mbufs allocated to the
   4696  * RX and TX lists.
   4697  */
   4698 static void
   4699 bge_stop(struct ifnet *ifp, int disable)
   4700 {
   4701 	struct bge_softc *sc = ifp->if_softc;
   4702 
   4703 	callout_stop(&sc->bge_timeout);
   4704 
   4705 	/*
   4706 	 * Tell firmware we're shutting down.
   4707 	 */
   4708 	bge_stop_fw(sc);
   4709 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4710 
   4711 	/* Disable host interrupts. */
   4712 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4713 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
   4714 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4715 
   4716 	/*
   4717 	 * Disable all of the receiver blocks.
   4718 	 */
   4719 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4720 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4721 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4722 	if (BGE_IS_5700_FAMILY(sc))
   4723 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4724 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4725 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4726 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4727 
   4728 	/*
   4729 	 * Disable all of the transmit blocks.
   4730 	 */
   4731 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4732 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4733 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4734 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4735 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4736 	if (BGE_IS_5700_FAMILY(sc))
   4737 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4738 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4739 
   4740 	/*
   4741 	 * Shut down all of the memory managers and related
   4742 	 * state machines.
   4743 	 */
   4744 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4745 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4746 	if (BGE_IS_5700_FAMILY(sc))
   4747 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4748 
   4749 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4750 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4751 
   4752 	if (BGE_IS_5700_FAMILY(sc)) {
   4753 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4754 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4755 	}
   4756 
   4757 	bge_reset(sc);
   4758 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4759 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4760 
   4761 	/*
   4762 	 * Keep the ASF firmware running if up.
   4763 	 */
   4764 	if (sc->bge_asf_mode & ASF_STACKUP)
   4765 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4766 	else
   4767 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4768 
   4769 	/* Free the RX lists. */
   4770 	bge_free_rx_ring_std(sc);
   4771 
   4772 	/* Free jumbo RX list. */
   4773 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4774 		bge_free_rx_ring_jumbo(sc);
   4775 
   4776 	/* Free TX buffers. */
   4777 	bge_free_tx_ring(sc);
   4778 
   4779 	/*
   4780 	 * Isolate/power down the PHY.
   4781 	 */
   4782 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4783 		mii_down(&sc->bge_mii);
   4784 
   4785 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4786 
   4787 	/* Clear MAC's link state (PHY may still have link UP). */
   4788 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4789 
   4790 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4791 }
   4792 
   4793 static void
   4794 bge_link_upd(struct bge_softc *sc)
   4795 {
   4796 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4797 	struct mii_data *mii = &sc->bge_mii;
   4798 	uint32_t status;
   4799 	int link;
   4800 
   4801 	/* Clear 'pending link event' flag */
   4802 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4803 
   4804 	/*
   4805 	 * Process link state changes.
   4806 	 * Grrr. The link status word in the status block does
   4807 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4808 	 * according to all available information. Hence, we have
   4809 	 * to enable MII interrupts in order to properly obtain
   4810 	 * async link changes. Unfortunately, this also means that
   4811 	 * we have to read the MAC status register to detect link
   4812 	 * changes, thereby adding an additional register access to
   4813 	 * the interrupt handler.
   4814 	 */
   4815 
   4816 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4817 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4818 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4819 			mii_pollstat(mii);
   4820 
   4821 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4822 			    mii->mii_media_status & IFM_ACTIVE &&
   4823 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4824 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4825 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4826 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4827 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4828 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4829 
   4830 			/* Clear the interrupt */
   4831 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4832 			    BGE_EVTENB_MI_INTERRUPT);
   4833 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4834 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4835 			    BRGPHY_INTRS);
   4836 		}
   4837 		return;
   4838 	}
   4839 
   4840 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4841 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4842 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4843 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4844 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4845 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4846 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4847 					    BGE_MACMODE_TBI_SEND_CFGS);
   4848 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4849 				if_link_state_change(ifp, LINK_STATE_UP);
   4850 			}
   4851 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4852 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4853 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4854 		}
   4855 	/*
   4856 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4857 	 * This should not happen since mii callouts are locked now, but
   4858 	 * we keep this check for debug.
   4859 	 */
   4860 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4861 		/*
   4862 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4863 		 * bit in status word always set. Workaround this bug by
   4864 		 * reading PHY link status directly.
   4865 		 */
   4866 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4867 		    BGE_STS_LINK : 0;
   4868 
   4869 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4870 			mii_pollstat(mii);
   4871 
   4872 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4873 			    mii->mii_media_status & IFM_ACTIVE &&
   4874 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4875 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4876 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4877 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4878 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4879 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4880 		}
   4881 	}
   4882 
   4883 	/* Clear the attention */
   4884 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4885 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4886 	    BGE_MACSTAT_LINK_CHANGED);
   4887 }
   4888 
   4889 static int
   4890 bge_sysctl_verify(SYSCTLFN_ARGS)
   4891 {
   4892 	int error, t;
   4893 	struct sysctlnode node;
   4894 
   4895 	node = *rnode;
   4896 	t = *(int*)rnode->sysctl_data;
   4897 	node.sysctl_data = &t;
   4898 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   4899 	if (error || newp == NULL)
   4900 		return error;
   4901 
   4902 #if 0
   4903 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   4904 	    node.sysctl_num, rnode->sysctl_num));
   4905 #endif
   4906 
   4907 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   4908 		if (t < 0 || t >= NBGE_RX_THRESH)
   4909 			return EINVAL;
   4910 		bge_update_all_threshes(t);
   4911 	} else
   4912 		return EINVAL;
   4913 
   4914 	*(int*)rnode->sysctl_data = t;
   4915 
   4916 	return 0;
   4917 }
   4918 
   4919 /*
   4920  * Set up sysctl(3) MIB, hw.bge.*.
   4921  */
   4922 static void
   4923 bge_sysctl_init(struct bge_softc *sc)
   4924 {
   4925 	int rc, bge_root_num;
   4926 	const struct sysctlnode *node;
   4927 
   4928 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   4929 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   4930 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   4931 		goto out;
   4932 	}
   4933 
   4934 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4935 	    0, CTLTYPE_NODE, "bge",
   4936 	    SYSCTL_DESCR("BGE interface controls"),
   4937 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   4938 		goto out;
   4939 	}
   4940 
   4941 	bge_root_num = node->sysctl_num;
   4942 
   4943 	/* BGE Rx interrupt mitigation level */
   4944 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   4945 	    CTLFLAG_READWRITE,
   4946 	    CTLTYPE_INT, "rx_lvl",
   4947 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   4948 	    bge_sysctl_verify, 0,
   4949 	    &bge_rx_thresh_lvl,
   4950 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   4951 	    CTL_EOL)) != 0) {
   4952 		goto out;
   4953 	}
   4954 
   4955 	bge_rxthresh_nodenum = node->sysctl_num;
   4956 
   4957 	return;
   4958 
   4959 out:
   4960 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4961 }
   4962 
   4963 #ifdef BGE_DEBUG
   4964 void
   4965 bge_debug_info(struct bge_softc *sc)
   4966 {
   4967 
   4968 	printf("Hardware Flags:\n");
   4969 	if (BGE_IS_5755_PLUS(sc))
   4970 		printf(" - 5755 Plus\n");
   4971 	if (BGE_IS_575X_PLUS(sc))
   4972 		printf(" - 575X Plus\n");
   4973 	if (BGE_IS_5705_PLUS(sc))
   4974 		printf(" - 5705 Plus\n");
   4975 	if (BGE_IS_5714_FAMILY(sc))
   4976 		printf(" - 5714 Family\n");
   4977 	if (BGE_IS_5700_FAMILY(sc))
   4978 		printf(" - 5700 Family\n");
   4979 	if (sc->bge_flags & BGE_IS_5788)
   4980 		printf(" - 5788\n");
   4981 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   4982 		printf(" - Supports Jumbo Frames\n");
   4983 	if (sc->bge_flags & BGE_NO_EEPROM)
   4984 		printf(" - No EEPROM\n");
   4985 	if (sc->bge_flags & BGE_PCIX)
   4986 		printf(" - PCI-X Bus\n");
   4987 	if (sc->bge_flags & BGE_PCIE)
   4988 		printf(" - PCI Express Bus\n");
   4989 	if (sc->bge_flags & BGE_NO_3LED)
   4990 		printf(" - No 3 LEDs\n");
   4991 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   4992 		printf(" - RX Alignment Bug\n");
   4993 	if (sc->bge_flags & BGE_TSO)
   4994 		printf(" - TSO\n");
   4995 }
   4996 #endif /* BGE_DEBUG */
   4997 
   4998 static int
   4999 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5000 {
   5001 	prop_dictionary_t dict;
   5002 	prop_data_t ea;
   5003 
   5004 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5005 		return 1;
   5006 
   5007 	dict = device_properties(sc->bge_dev);
   5008 	ea = prop_dictionary_get(dict, "mac-address");
   5009 	if (ea != NULL) {
   5010 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5011 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5012 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5013 		return 0;
   5014 	}
   5015 
   5016 	return 1;
   5017 }
   5018 
   5019 static int
   5020 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5021 {
   5022 	uint32_t mac_addr;
   5023 
   5024 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5025 	if ((mac_addr >> 16) == 0x484b) {
   5026 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5027 		ether_addr[1] = (uint8_t)mac_addr;
   5028 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5029 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5030 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5031 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5032 		ether_addr[5] = (uint8_t)mac_addr;
   5033 		return 0;
   5034 	}
   5035 	return 1;
   5036 }
   5037 
   5038 static int
   5039 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5040 {
   5041 	int mac_offset = BGE_EE_MAC_OFFSET;
   5042 
   5043 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5044 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5045 
   5046 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5047 	    ETHER_ADDR_LEN));
   5048 }
   5049 
   5050 static int
   5051 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5052 {
   5053 
   5054 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5055 		return 1;
   5056 
   5057 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5058 	   ETHER_ADDR_LEN));
   5059 }
   5060 
   5061 static int
   5062 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5063 {
   5064 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5065 		/* NOTE: Order is critical */
   5066 		bge_get_eaddr_fw,
   5067 		bge_get_eaddr_mem,
   5068 		bge_get_eaddr_nvram,
   5069 		bge_get_eaddr_eeprom,
   5070 		NULL
   5071 	};
   5072 	const bge_eaddr_fcn_t *func;
   5073 
   5074 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5075 		if ((*func)(sc, eaddr) == 0)
   5076 			break;
   5077 	}
   5078 	return (*func == NULL ? ENXIO : 0);
   5079 }
   5080