if_bge.c revision 1.213 1 /* $NetBSD: if_bge.c,v 1.213 2013/03/07 10:57:01 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.213 2013/03/07 10:57:01 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int);
252 static void bge_miibus_writereg(device_t, int, int, int);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_START 1
256 #define BGE_RESET_STOP 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_stop_fw(struct bge_softc *);
261 static int bge_reset(struct bge_softc *);
262 static void bge_link_upd(struct bge_softc *);
263 static void bge_sysctl_init(struct bge_softc *);
264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
265
266 #ifdef BGE_DEBUG
267 #define DPRINTF(x) if (bgedebug) printf x
268 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
269 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
270 int bgedebug = 0;
271 int bge_tso_debug = 0;
272 void bge_debug_info(struct bge_softc *);
273 #else
274 #define DPRINTF(x)
275 #define DPRINTFN(n,x)
276 #define BGE_TSO_PRINTF(x)
277 #endif
278
279 #ifdef BGE_EVENT_COUNTERS
280 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
281 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
282 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
283 #else
284 #define BGE_EVCNT_INCR(ev) /* nothing */
285 #define BGE_EVCNT_ADD(ev, val) /* nothing */
286 #define BGE_EVCNT_UPD(ev, val) /* nothing */
287 #endif
288
289 static const struct bge_product {
290 pci_vendor_id_t bp_vendor;
291 pci_product_id_t bp_product;
292 const char *bp_name;
293 } bge_products[] = {
294 /*
295 * The BCM5700 documentation seems to indicate that the hardware
296 * still has the Alteon vendor ID burned into it, though it
297 * should always be overridden by the value in the EEPROM. We'll
298 * check for it anyway.
299 */
300 { PCI_VENDOR_ALTEON,
301 PCI_PRODUCT_ALTEON_BCM5700,
302 "Broadcom BCM5700 Gigabit Ethernet",
303 },
304 { PCI_VENDOR_ALTEON,
305 PCI_PRODUCT_ALTEON_BCM5701,
306 "Broadcom BCM5701 Gigabit Ethernet",
307 },
308 { PCI_VENDOR_ALTIMA,
309 PCI_PRODUCT_ALTIMA_AC1000,
310 "Altima AC1000 Gigabit Ethernet",
311 },
312 { PCI_VENDOR_ALTIMA,
313 PCI_PRODUCT_ALTIMA_AC1001,
314 "Altima AC1001 Gigabit Ethernet",
315 },
316 { PCI_VENDOR_ALTIMA,
317 PCI_PRODUCT_ALTIMA_AC1003,
318 "Altima AC1003 Gigabit Ethernet",
319 },
320 { PCI_VENDOR_ALTIMA,
321 PCI_PRODUCT_ALTIMA_AC9100,
322 "Altima AC9100 Gigabit Ethernet",
323 },
324 { PCI_VENDOR_APPLE,
325 PCI_PRODUCT_APPLE_BCM5701,
326 "APPLE BCM5701 Gigabit Ethernet",
327 },
328 { PCI_VENDOR_BROADCOM,
329 PCI_PRODUCT_BROADCOM_BCM5700,
330 "Broadcom BCM5700 Gigabit Ethernet",
331 },
332 { PCI_VENDOR_BROADCOM,
333 PCI_PRODUCT_BROADCOM_BCM5701,
334 "Broadcom BCM5701 Gigabit Ethernet",
335 },
336 { PCI_VENDOR_BROADCOM,
337 PCI_PRODUCT_BROADCOM_BCM5702,
338 "Broadcom BCM5702 Gigabit Ethernet",
339 },
340 { PCI_VENDOR_BROADCOM,
341 PCI_PRODUCT_BROADCOM_BCM5702X,
342 "Broadcom BCM5702X Gigabit Ethernet" },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5703,
345 "Broadcom BCM5703 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5703X,
349 "Broadcom BCM5703X Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
353 "Broadcom BCM5703 Gigabit Ethernet",
354 },
355 { PCI_VENDOR_BROADCOM,
356 PCI_PRODUCT_BROADCOM_BCM5704C,
357 "Broadcom BCM5704C Dual Gigabit Ethernet",
358 },
359 { PCI_VENDOR_BROADCOM,
360 PCI_PRODUCT_BROADCOM_BCM5704S,
361 "Broadcom BCM5704S Dual Gigabit Ethernet",
362 },
363 { PCI_VENDOR_BROADCOM,
364 PCI_PRODUCT_BROADCOM_BCM5705,
365 "Broadcom BCM5705 Gigabit Ethernet",
366 },
367 { PCI_VENDOR_BROADCOM,
368 PCI_PRODUCT_BROADCOM_BCM5705F,
369 "Broadcom BCM5705F Gigabit Ethernet",
370 },
371 { PCI_VENDOR_BROADCOM,
372 PCI_PRODUCT_BROADCOM_BCM5705K,
373 "Broadcom BCM5705K Gigabit Ethernet",
374 },
375 { PCI_VENDOR_BROADCOM,
376 PCI_PRODUCT_BROADCOM_BCM5705M,
377 "Broadcom BCM5705M Gigabit Ethernet",
378 },
379 { PCI_VENDOR_BROADCOM,
380 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
381 "Broadcom BCM5705M Gigabit Ethernet",
382 },
383 { PCI_VENDOR_BROADCOM,
384 PCI_PRODUCT_BROADCOM_BCM5714,
385 "Broadcom BCM5714 Gigabit Ethernet",
386 },
387 { PCI_VENDOR_BROADCOM,
388 PCI_PRODUCT_BROADCOM_BCM5714S,
389 "Broadcom BCM5714S Gigabit Ethernet",
390 },
391 { PCI_VENDOR_BROADCOM,
392 PCI_PRODUCT_BROADCOM_BCM5715,
393 "Broadcom BCM5715 Gigabit Ethernet",
394 },
395 { PCI_VENDOR_BROADCOM,
396 PCI_PRODUCT_BROADCOM_BCM5715S,
397 "Broadcom BCM5715S Gigabit Ethernet",
398 },
399 { PCI_VENDOR_BROADCOM,
400 PCI_PRODUCT_BROADCOM_BCM5717,
401 "Broadcom BCM5717 Gigabit Ethernet",
402 },
403 { PCI_VENDOR_BROADCOM,
404 PCI_PRODUCT_BROADCOM_BCM5718,
405 "Broadcom BCM5718 Gigabit Ethernet",
406 },
407 #if 0
408 { PCI_VENDOR_BROADCOM,
409 PCI_PRODUCT_BROADCOM_BCM5720,
410 "Broadcom BCM5720 Gigabit Ethernet",
411 },
412 #endif
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5721,
415 "Broadcom BCM5721 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5722,
419 "Broadcom BCM5722 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5723,
423 "Broadcom BCM5723 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5724,
427 "Broadcom BCM5724 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5750,
431 "Broadcom BCM5750 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5750M,
435 "Broadcom BCM5750M Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5751,
439 "Broadcom BCM5751 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5751F,
443 "Broadcom BCM5751F Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5751M,
447 "Broadcom BCM5751M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5752,
451 "Broadcom BCM5752 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5752M,
455 "Broadcom BCM5752M Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5753,
459 "Broadcom BCM5753 Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5753F,
463 "Broadcom BCM5753F Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5753M,
467 "Broadcom BCM5753M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5754,
471 "Broadcom BCM5754 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5754M,
475 "Broadcom BCM5754M Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5755,
479 "Broadcom BCM5755 Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5755M,
483 "Broadcom BCM5755M Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5756,
487 "Broadcom BCM5756 Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5761,
491 "Broadcom BCM5761 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5761E,
495 "Broadcom BCM5761E Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5761S,
499 "Broadcom BCM5761S Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761SE,
503 "Broadcom BCM5761SE Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5764,
507 "Broadcom BCM5764 Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5780,
511 "Broadcom BCM5780 Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5780S,
515 "Broadcom BCM5780S Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5781,
519 "Broadcom BCM5781 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5782,
523 "Broadcom BCM5782 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5784M,
527 "BCM5784M NetLink 1000baseT Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5785F,
531 "BCM5785F NetLink 10/100 Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5785G,
535 "BCM5785G NetLink 1000baseT Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5786,
539 "Broadcom BCM5786 Gigabit Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5787,
543 "Broadcom BCM5787 Gigabit Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5787F,
547 "Broadcom BCM5787F 10/100 Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5787M,
551 "Broadcom BCM5787M Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5788,
555 "Broadcom BCM5788 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5789,
559 "Broadcom BCM5789 Gigabit Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5901,
563 "Broadcom BCM5901 Fast Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5901A2,
567 "Broadcom BCM5901A2 Fast Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5903M,
571 "Broadcom BCM5903M Fast Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5906,
575 "Broadcom BCM5906 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5906M,
579 "Broadcom BCM5906M Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM57760,
583 "Broadcom BCM57760 Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM57761,
587 "Broadcom BCM57761 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM57762,
591 "Broadcom BCM57762 Gigabit Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57765,
595 "Broadcom BCM57765 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57780,
599 "Broadcom BCM57780 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57781,
603 "Broadcom BCM57781 Fast Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57785,
607 "Broadcom BCM57785 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57788,
611 "Broadcom BCM57788 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57790,
615 "Broadcom BCM57790 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57791,
619 "Broadcom BCM57791 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57795,
623 "Broadcom BCM57795 Fast Ethernet",
624 },
625 { PCI_VENDOR_SCHNEIDERKOCH,
626 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
627 "SysKonnect SK-9Dx1 Gigabit Ethernet",
628 },
629 { PCI_VENDOR_3COM,
630 PCI_PRODUCT_3COM_3C996,
631 "3Com 3c996 Gigabit Ethernet",
632 },
633 { PCI_VENDOR_FUJITSU4,
634 PCI_PRODUCT_FUJITSU4_PW008GE4,
635 "Fujitsu PW008GE4 Gigabit Ethernet",
636 },
637 { PCI_VENDOR_FUJITSU4,
638 PCI_PRODUCT_FUJITSU4_PW008GE5,
639 "Fujitsu PW008GE5 Gigabit Ethernet",
640 },
641 { PCI_VENDOR_FUJITSU4,
642 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
643 "Fujitsu Primepower 250/450 Gigabit Ethernet",
644 },
645 { 0,
646 0,
647 NULL },
648 };
649
650 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
651 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
652 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
653 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
654 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
655 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
656
657 static const struct bge_revision {
658 uint32_t br_chipid;
659 const char *br_name;
660 } bge_revisions[] = {
661 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
662 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
663 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
664 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
665 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
666 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
667 /* This is treated like a BCM5700 Bx */
668 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
669 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
670 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
671 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
672 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
673 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
674 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
675 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
676 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
677 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
678 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
679 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
680 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
681 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
682 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
683 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
684 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
685 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
686 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
687 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
688 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
689 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
690 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
691 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
692 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
693 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
694 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
695 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
696 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
697 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
698 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
699 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
700 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
701 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
702 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
703 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
704 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
705 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
706 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
707 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
708 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
709 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
710 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
711 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
712 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
713 /* 5754 and 5787 share the same ASIC ID */
714 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
715 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
716 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
717 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
718 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
719 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
720 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
721 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
722
723 { 0, NULL }
724 };
725
726 /*
727 * Some defaults for major revisions, so that newer steppings
728 * that we don't know about have a shot at working.
729 */
730 static const struct bge_revision bge_majorrevs[] = {
731 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
732 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
733 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
734 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
735 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
736 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
737 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
738 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
739 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
740 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
741 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
742 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
743 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
744 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
745 /* 5754 and 5787 share the same ASIC ID */
746 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
747 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
748 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
749 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
750 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
751 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
752
753 { 0, NULL }
754 };
755
756 static int bge_allow_asf = 1;
757
758 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
759 bge_probe, bge_attach, NULL, NULL);
760
761 static uint32_t
762 bge_readmem_ind(struct bge_softc *sc, int off)
763 {
764 pcireg_t val;
765
766 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
767 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
768 return val;
769 }
770
771 static void
772 bge_writemem_ind(struct bge_softc *sc, int off, int val)
773 {
774 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
775 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
776 }
777
778 /*
779 * PCI Express only
780 */
781 static void
782 bge_set_max_readrq(struct bge_softc *sc)
783 {
784 pcireg_t val;
785
786 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
787 + PCI_PCIE_DCSR);
788 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
789 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
790 aprint_verbose_dev(sc->bge_dev,
791 "adjust device control 0x%04x ", val);
792 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
793 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
794 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
795 + PCI_PCIE_DCSR, val);
796 aprint_verbose("-> 0x%04x\n", val);
797 }
798 }
799
800 #ifdef notdef
801 static uint32_t
802 bge_readreg_ind(struct bge_softc *sc, int off)
803 {
804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
805 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
806 }
807 #endif
808
809 static void
810 bge_writereg_ind(struct bge_softc *sc, int off, int val)
811 {
812 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
813 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
814 }
815
816 static void
817 bge_writemem_direct(struct bge_softc *sc, int off, int val)
818 {
819 CSR_WRITE_4(sc, off, val);
820 }
821
822 static void
823 bge_writembx(struct bge_softc *sc, int off, int val)
824 {
825 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
826 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
827
828 CSR_WRITE_4(sc, off, val);
829 }
830
831 static void
832 bge_writembx_flush(struct bge_softc *sc, int off, int val)
833 {
834 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
835 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
836
837 CSR_WRITE_4_FLUSH(sc, off, val);
838 }
839
840 static uint8_t
841 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
842 {
843 uint32_t access, byte = 0;
844 int i;
845
846 /* Lock. */
847 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
848 for (i = 0; i < 8000; i++) {
849 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
850 break;
851 DELAY(20);
852 }
853 if (i == 8000)
854 return 1;
855
856 /* Enable access. */
857 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
858 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
859
860 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
861 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
862 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
863 DELAY(10);
864 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
865 DELAY(10);
866 break;
867 }
868 }
869
870 if (i == BGE_TIMEOUT * 10) {
871 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
872 return 1;
873 }
874
875 /* Get result. */
876 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
877
878 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
879
880 /* Disable access. */
881 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
882
883 /* Unlock. */
884 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
885
886 return 0;
887 }
888
889 /*
890 * Read a sequence of bytes from NVRAM.
891 */
892 static int
893 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
894 {
895 int error = 0, i;
896 uint8_t byte = 0;
897
898 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
899 return 1;
900
901 for (i = 0; i < cnt; i++) {
902 error = bge_nvram_getbyte(sc, off + i, &byte);
903 if (error)
904 break;
905 *(dest + i) = byte;
906 }
907
908 return (error ? 1 : 0);
909 }
910
911 /*
912 * Read a byte of data stored in the EEPROM at address 'addr.' The
913 * BCM570x supports both the traditional bitbang interface and an
914 * auto access interface for reading the EEPROM. We use the auto
915 * access method.
916 */
917 static uint8_t
918 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
919 {
920 int i;
921 uint32_t byte = 0;
922
923 /*
924 * Enable use of auto EEPROM access so we can avoid
925 * having to use the bitbang method.
926 */
927 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
928
929 /* Reset the EEPROM, load the clock period. */
930 CSR_WRITE_4(sc, BGE_EE_ADDR,
931 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
932 DELAY(20);
933
934 /* Issue the read EEPROM command. */
935 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
936
937 /* Wait for completion */
938 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
939 DELAY(10);
940 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
941 break;
942 }
943
944 if (i == BGE_TIMEOUT * 10) {
945 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
946 return 1;
947 }
948
949 /* Get result. */
950 byte = CSR_READ_4(sc, BGE_EE_DATA);
951
952 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
953
954 return 0;
955 }
956
957 /*
958 * Read a sequence of bytes from the EEPROM.
959 */
960 static int
961 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
962 {
963 int error = 0, i;
964 uint8_t byte = 0;
965 char *dest = destv;
966
967 for (i = 0; i < cnt; i++) {
968 error = bge_eeprom_getbyte(sc, off + i, &byte);
969 if (error)
970 break;
971 *(dest + i) = byte;
972 }
973
974 return (error ? 1 : 0);
975 }
976
977 static int
978 bge_miibus_readreg(device_t dev, int phy, int reg)
979 {
980 struct bge_softc *sc = device_private(dev);
981 uint32_t val;
982 uint32_t autopoll;
983 int i;
984
985 /*
986 * Broadcom's own driver always assumes the internal
987 * PHY is at GMII address 1. On some chips, the PHY responds
988 * to accesses at all addresses, which could cause us to
989 * bogusly attach the PHY 32 times at probe type. Always
990 * restricting the lookup to address 1 is simpler than
991 * trying to figure out which chips revisions should be
992 * special-cased.
993 */
994 if (phy != 1)
995 return 0;
996
997 /* Reading with autopolling on may trigger PCI errors */
998 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
999 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1000 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1001 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1002 DELAY(40);
1003 }
1004
1005 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1006 BGE_MIPHY(phy) | BGE_MIREG(reg));
1007
1008 for (i = 0; i < BGE_TIMEOUT; i++) {
1009 val = CSR_READ_4(sc, BGE_MI_COMM);
1010 if (!(val & BGE_MICOMM_BUSY))
1011 break;
1012 delay(10);
1013 }
1014
1015 if (i == BGE_TIMEOUT) {
1016 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1017 val = 0;
1018 goto done;
1019 }
1020
1021 val = CSR_READ_4(sc, BGE_MI_COMM);
1022
1023 done:
1024 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1025 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1026 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1027 DELAY(40);
1028 }
1029
1030 if (val & BGE_MICOMM_READFAIL)
1031 return 0;
1032
1033 return (val & 0xFFFF);
1034 }
1035
1036 static void
1037 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1038 {
1039 struct bge_softc *sc = device_private(dev);
1040 uint32_t autopoll;
1041 int i;
1042
1043 if (phy!=1) {
1044 return;
1045 }
1046
1047 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1048 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1049 return;
1050
1051 /* Reading with autopolling on may trigger PCI errors */
1052 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1053 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1054 delay(40);
1055 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1056 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1057 delay(10); /* 40 usec is supposed to be adequate */
1058 }
1059
1060 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1061 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1062
1063 for (i = 0; i < BGE_TIMEOUT; i++) {
1064 delay(10);
1065 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1066 delay(5);
1067 CSR_READ_4(sc, BGE_MI_COMM);
1068 break;
1069 }
1070 }
1071
1072 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1073 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1074 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1075 delay(40);
1076 }
1077
1078 if (i == BGE_TIMEOUT)
1079 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1080 }
1081
1082 static void
1083 bge_miibus_statchg(struct ifnet *ifp)
1084 {
1085 struct bge_softc *sc = ifp->if_softc;
1086 struct mii_data *mii = &sc->bge_mii;
1087
1088 /*
1089 * Get flow control negotiation result.
1090 */
1091 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1092 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1093 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1094 mii->mii_media_active &= ~IFM_ETH_FMASK;
1095 }
1096
1097 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1098 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1099 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1100 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1101 else
1102 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1103
1104 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1105 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1106 else
1107 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1108 DELAY(40);
1109
1110 /*
1111 * 802.3x flow control
1112 */
1113 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1114 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1115 else
1116 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1117
1118 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1119 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1120 else
1121 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1122 }
1123
1124 /*
1125 * Update rx threshold levels to values in a particular slot
1126 * of the interrupt-mitigation table bge_rx_threshes.
1127 */
1128 static void
1129 bge_set_thresh(struct ifnet *ifp, int lvl)
1130 {
1131 struct bge_softc *sc = ifp->if_softc;
1132 int s;
1133
1134 /* For now, just save the new Rx-intr thresholds and record
1135 * that a threshold update is pending. Updating the hardware
1136 * registers here (even at splhigh()) is observed to
1137 * occasionaly cause glitches where Rx-interrupts are not
1138 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1139 */
1140 s = splnet();
1141 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1142 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1143 sc->bge_pending_rxintr_change = 1;
1144 splx(s);
1145 }
1146
1147
1148 /*
1149 * Update Rx thresholds of all bge devices
1150 */
1151 static void
1152 bge_update_all_threshes(int lvl)
1153 {
1154 struct ifnet *ifp;
1155 const char * const namebuf = "bge";
1156 int namelen;
1157
1158 if (lvl < 0)
1159 lvl = 0;
1160 else if (lvl >= NBGE_RX_THRESH)
1161 lvl = NBGE_RX_THRESH - 1;
1162
1163 namelen = strlen(namebuf);
1164 /*
1165 * Now search all the interfaces for this name/number
1166 */
1167 IFNET_FOREACH(ifp) {
1168 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1169 continue;
1170 /* We got a match: update if doing auto-threshold-tuning */
1171 if (bge_auto_thresh)
1172 bge_set_thresh(ifp, lvl);
1173 }
1174 }
1175
1176 /*
1177 * Handle events that have triggered interrupts.
1178 */
1179 static void
1180 bge_handle_events(struct bge_softc *sc)
1181 {
1182
1183 return;
1184 }
1185
1186 /*
1187 * Memory management for jumbo frames.
1188 */
1189
1190 static int
1191 bge_alloc_jumbo_mem(struct bge_softc *sc)
1192 {
1193 char *ptr, *kva;
1194 bus_dma_segment_t seg;
1195 int i, rseg, state, error;
1196 struct bge_jpool_entry *entry;
1197
1198 state = error = 0;
1199
1200 /* Grab a big chunk o' storage. */
1201 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1202 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1203 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1204 return ENOBUFS;
1205 }
1206
1207 state = 1;
1208 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1209 BUS_DMA_NOWAIT)) {
1210 aprint_error_dev(sc->bge_dev,
1211 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1212 error = ENOBUFS;
1213 goto out;
1214 }
1215
1216 state = 2;
1217 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1218 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1219 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1220 error = ENOBUFS;
1221 goto out;
1222 }
1223
1224 state = 3;
1225 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1226 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1227 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1228 error = ENOBUFS;
1229 goto out;
1230 }
1231
1232 state = 4;
1233 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1234 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1235
1236 SLIST_INIT(&sc->bge_jfree_listhead);
1237 SLIST_INIT(&sc->bge_jinuse_listhead);
1238
1239 /*
1240 * Now divide it up into 9K pieces and save the addresses
1241 * in an array.
1242 */
1243 ptr = sc->bge_cdata.bge_jumbo_buf;
1244 for (i = 0; i < BGE_JSLOTS; i++) {
1245 sc->bge_cdata.bge_jslots[i] = ptr;
1246 ptr += BGE_JLEN;
1247 entry = malloc(sizeof(struct bge_jpool_entry),
1248 M_DEVBUF, M_NOWAIT);
1249 if (entry == NULL) {
1250 aprint_error_dev(sc->bge_dev,
1251 "no memory for jumbo buffer queue!\n");
1252 error = ENOBUFS;
1253 goto out;
1254 }
1255 entry->slot = i;
1256 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1257 entry, jpool_entries);
1258 }
1259 out:
1260 if (error != 0) {
1261 switch (state) {
1262 case 4:
1263 bus_dmamap_unload(sc->bge_dmatag,
1264 sc->bge_cdata.bge_rx_jumbo_map);
1265 case 3:
1266 bus_dmamap_destroy(sc->bge_dmatag,
1267 sc->bge_cdata.bge_rx_jumbo_map);
1268 case 2:
1269 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1270 case 1:
1271 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1272 break;
1273 default:
1274 break;
1275 }
1276 }
1277
1278 return error;
1279 }
1280
1281 /*
1282 * Allocate a jumbo buffer.
1283 */
1284 static void *
1285 bge_jalloc(struct bge_softc *sc)
1286 {
1287 struct bge_jpool_entry *entry;
1288
1289 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1290
1291 if (entry == NULL) {
1292 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1293 return NULL;
1294 }
1295
1296 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1297 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1298 return (sc->bge_cdata.bge_jslots[entry->slot]);
1299 }
1300
1301 /*
1302 * Release a jumbo buffer.
1303 */
1304 static void
1305 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1306 {
1307 struct bge_jpool_entry *entry;
1308 struct bge_softc *sc;
1309 int i, s;
1310
1311 /* Extract the softc struct pointer. */
1312 sc = (struct bge_softc *)arg;
1313
1314 if (sc == NULL)
1315 panic("bge_jfree: can't find softc pointer!");
1316
1317 /* calculate the slot this buffer belongs to */
1318
1319 i = ((char *)buf
1320 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1321
1322 if ((i < 0) || (i >= BGE_JSLOTS))
1323 panic("bge_jfree: asked to free buffer that we don't manage!");
1324
1325 s = splvm();
1326 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1327 if (entry == NULL)
1328 panic("bge_jfree: buffer not in use!");
1329 entry->slot = i;
1330 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1331 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1332
1333 if (__predict_true(m != NULL))
1334 pool_cache_put(mb_cache, m);
1335 splx(s);
1336 }
1337
1338
1339 /*
1340 * Initialize a standard receive ring descriptor.
1341 */
1342 static int
1343 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1344 bus_dmamap_t dmamap)
1345 {
1346 struct mbuf *m_new = NULL;
1347 struct bge_rx_bd *r;
1348 int error;
1349
1350 if (dmamap == NULL) {
1351 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1352 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1353 if (error != 0)
1354 return error;
1355 }
1356
1357 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1358
1359 if (m == NULL) {
1360 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1361 if (m_new == NULL)
1362 return ENOBUFS;
1363
1364 MCLGET(m_new, M_DONTWAIT);
1365 if (!(m_new->m_flags & M_EXT)) {
1366 m_freem(m_new);
1367 return ENOBUFS;
1368 }
1369 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1370
1371 } else {
1372 m_new = m;
1373 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1374 m_new->m_data = m_new->m_ext.ext_buf;
1375 }
1376 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1377 m_adj(m_new, ETHER_ALIGN);
1378 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1379 BUS_DMA_READ|BUS_DMA_NOWAIT))
1380 return ENOBUFS;
1381 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1382 BUS_DMASYNC_PREREAD);
1383
1384 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1385 r = &sc->bge_rdata->bge_rx_std_ring[i];
1386 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1387 r->bge_flags = BGE_RXBDFLAG_END;
1388 r->bge_len = m_new->m_len;
1389 r->bge_idx = i;
1390
1391 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1392 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1393 i * sizeof (struct bge_rx_bd),
1394 sizeof (struct bge_rx_bd),
1395 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1396
1397 return 0;
1398 }
1399
1400 /*
1401 * Initialize a jumbo receive ring descriptor. This allocates
1402 * a jumbo buffer from the pool managed internally by the driver.
1403 */
1404 static int
1405 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1406 {
1407 struct mbuf *m_new = NULL;
1408 struct bge_rx_bd *r;
1409 void *buf = NULL;
1410
1411 if (m == NULL) {
1412
1413 /* Allocate the mbuf. */
1414 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1415 if (m_new == NULL)
1416 return ENOBUFS;
1417
1418 /* Allocate the jumbo buffer */
1419 buf = bge_jalloc(sc);
1420 if (buf == NULL) {
1421 m_freem(m_new);
1422 aprint_error_dev(sc->bge_dev,
1423 "jumbo allocation failed -- packet dropped!\n");
1424 return ENOBUFS;
1425 }
1426
1427 /* Attach the buffer to the mbuf. */
1428 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1429 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1430 bge_jfree, sc);
1431 m_new->m_flags |= M_EXT_RW;
1432 } else {
1433 m_new = m;
1434 buf = m_new->m_data = m_new->m_ext.ext_buf;
1435 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1436 }
1437 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1438 m_adj(m_new, ETHER_ALIGN);
1439 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1440 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1441 BUS_DMASYNC_PREREAD);
1442 /* Set up the descriptor. */
1443 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1444 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1445 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1446 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1447 r->bge_len = m_new->m_len;
1448 r->bge_idx = i;
1449
1450 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1451 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1452 i * sizeof (struct bge_rx_bd),
1453 sizeof (struct bge_rx_bd),
1454 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1455
1456 return 0;
1457 }
1458
1459 /*
1460 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1461 * that's 1MB or memory, which is a lot. For now, we fill only the first
1462 * 256 ring entries and hope that our CPU is fast enough to keep up with
1463 * the NIC.
1464 */
1465 static int
1466 bge_init_rx_ring_std(struct bge_softc *sc)
1467 {
1468 int i;
1469
1470 if (sc->bge_flags & BGE_RXRING_VALID)
1471 return 0;
1472
1473 for (i = 0; i < BGE_SSLOTS; i++) {
1474 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1475 return ENOBUFS;
1476 }
1477
1478 sc->bge_std = i - 1;
1479 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1480
1481 sc->bge_flags |= BGE_RXRING_VALID;
1482
1483 return 0;
1484 }
1485
1486 static void
1487 bge_free_rx_ring_std(struct bge_softc *sc)
1488 {
1489 int i;
1490
1491 if (!(sc->bge_flags & BGE_RXRING_VALID))
1492 return;
1493
1494 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1495 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1496 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1497 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1498 bus_dmamap_destroy(sc->bge_dmatag,
1499 sc->bge_cdata.bge_rx_std_map[i]);
1500 }
1501 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1502 sizeof(struct bge_rx_bd));
1503 }
1504
1505 sc->bge_flags &= ~BGE_RXRING_VALID;
1506 }
1507
1508 static int
1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1510 {
1511 int i;
1512 volatile struct bge_rcb *rcb;
1513
1514 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1515 return 0;
1516
1517 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1518 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1519 return ENOBUFS;
1520 }
1521
1522 sc->bge_jumbo = i - 1;
1523 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1524
1525 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1526 rcb->bge_maxlen_flags = 0;
1527 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1528
1529 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1530
1531 return 0;
1532 }
1533
1534 static void
1535 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1536 {
1537 int i;
1538
1539 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1540 return;
1541
1542 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1543 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1544 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1545 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1546 }
1547 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1548 sizeof(struct bge_rx_bd));
1549 }
1550
1551 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1552 }
1553
1554 static void
1555 bge_free_tx_ring(struct bge_softc *sc)
1556 {
1557 int i;
1558 struct txdmamap_pool_entry *dma;
1559
1560 if (!(sc->bge_flags & BGE_TXRING_VALID))
1561 return;
1562
1563 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1564 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1565 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1566 sc->bge_cdata.bge_tx_chain[i] = NULL;
1567 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1568 link);
1569 sc->txdma[i] = 0;
1570 }
1571 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1572 sizeof(struct bge_tx_bd));
1573 }
1574
1575 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1576 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1577 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1578 free(dma, M_DEVBUF);
1579 }
1580
1581 sc->bge_flags &= ~BGE_TXRING_VALID;
1582 }
1583
1584 static int
1585 bge_init_tx_ring(struct bge_softc *sc)
1586 {
1587 int i;
1588 bus_dmamap_t dmamap;
1589 struct txdmamap_pool_entry *dma;
1590
1591 if (sc->bge_flags & BGE_TXRING_VALID)
1592 return 0;
1593
1594 sc->bge_txcnt = 0;
1595 sc->bge_tx_saved_considx = 0;
1596
1597 /* Initialize transmit producer index for host-memory send ring. */
1598 sc->bge_tx_prodidx = 0;
1599 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1600 /* 5700 b2 errata */
1601 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1602 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1603
1604 /* NIC-memory send ring not used; initialize to zero. */
1605 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1606 /* 5700 b2 errata */
1607 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1608 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1609
1610 SLIST_INIT(&sc->txdma_list);
1611 for (i = 0; i < BGE_RSLOTS; i++) {
1612 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1613 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1614 &dmamap))
1615 return ENOBUFS;
1616 if (dmamap == NULL)
1617 panic("dmamap NULL in bge_init_tx_ring");
1618 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1619 if (dma == NULL) {
1620 aprint_error_dev(sc->bge_dev,
1621 "can't alloc txdmamap_pool_entry\n");
1622 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1623 return ENOMEM;
1624 }
1625 dma->dmamap = dmamap;
1626 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1627 }
1628
1629 sc->bge_flags |= BGE_TXRING_VALID;
1630
1631 return 0;
1632 }
1633
1634 static void
1635 bge_setmulti(struct bge_softc *sc)
1636 {
1637 struct ethercom *ac = &sc->ethercom;
1638 struct ifnet *ifp = &ac->ec_if;
1639 struct ether_multi *enm;
1640 struct ether_multistep step;
1641 uint32_t hashes[4] = { 0, 0, 0, 0 };
1642 uint32_t h;
1643 int i;
1644
1645 if (ifp->if_flags & IFF_PROMISC)
1646 goto allmulti;
1647
1648 /* Now program new ones. */
1649 ETHER_FIRST_MULTI(step, ac, enm);
1650 while (enm != NULL) {
1651 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1652 /*
1653 * We must listen to a range of multicast addresses.
1654 * For now, just accept all multicasts, rather than
1655 * trying to set only those filter bits needed to match
1656 * the range. (At this time, the only use of address
1657 * ranges is for IP multicast routing, for which the
1658 * range is big enough to require all bits set.)
1659 */
1660 goto allmulti;
1661 }
1662
1663 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1664
1665 /* Just want the 7 least-significant bits. */
1666 h &= 0x7f;
1667
1668 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1669 ETHER_NEXT_MULTI(step, enm);
1670 }
1671
1672 ifp->if_flags &= ~IFF_ALLMULTI;
1673 goto setit;
1674
1675 allmulti:
1676 ifp->if_flags |= IFF_ALLMULTI;
1677 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1678
1679 setit:
1680 for (i = 0; i < 4; i++)
1681 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1682 }
1683
1684 static void
1685 bge_sig_pre_reset(struct bge_softc *sc, int type)
1686 {
1687
1688 /*
1689 * Some chips don't like this so only do this if ASF is enabled
1690 */
1691 if (sc->bge_asf_mode)
1692 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1693
1694 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1695 switch (type) {
1696 case BGE_RESET_START:
1697 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1698 break;
1699 case BGE_RESET_STOP:
1700 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1701 break;
1702 }
1703 }
1704 }
1705
1706 static void
1707 bge_sig_post_reset(struct bge_softc *sc, int type)
1708 {
1709
1710 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1711 switch (type) {
1712 case BGE_RESET_START:
1713 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1714 /* START DONE */
1715 break;
1716 case BGE_RESET_STOP:
1717 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1718 break;
1719 }
1720 }
1721 }
1722
1723 static void
1724 bge_sig_legacy(struct bge_softc *sc, int type)
1725 {
1726
1727 if (sc->bge_asf_mode) {
1728 switch (type) {
1729 case BGE_RESET_START:
1730 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1731 break;
1732 case BGE_RESET_STOP:
1733 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1734 break;
1735 }
1736 }
1737 }
1738
1739 static void
1740 bge_stop_fw(struct bge_softc *sc)
1741 {
1742 int i;
1743
1744 if (sc->bge_asf_mode) {
1745 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1746 CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
1747 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1748
1749 for (i = 0; i < 100; i++) {
1750 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1751 break;
1752 DELAY(10);
1753 }
1754 }
1755 }
1756
1757 static int
1758 bge_poll_fw(struct bge_softc *sc)
1759 {
1760 uint32_t val;
1761 int i;
1762
1763 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1764 for (i = 0; i < BGE_TIMEOUT; i++) {
1765 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1766 if (val & BGE_VCPU_STATUS_INIT_DONE)
1767 break;
1768 DELAY(100);
1769 }
1770 if (i >= BGE_TIMEOUT) {
1771 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1772 return -1;
1773 }
1774 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1775 /*
1776 * Poll the value location we just wrote until
1777 * we see the 1's complement of the magic number.
1778 * This indicates that the firmware initialization
1779 * is complete.
1780 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1781 */
1782 for (i = 0; i < BGE_TIMEOUT; i++) {
1783 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1784 if (val == ~BGE_MAGIC_NUMBER)
1785 break;
1786 DELAY(10);
1787 }
1788
1789 if (i >= BGE_TIMEOUT) {
1790 aprint_error_dev(sc->bge_dev,
1791 "firmware handshake timed out, val = %x\n", val);
1792 return -1;
1793 }
1794 }
1795
1796 return 0;
1797 }
1798
1799 /*
1800 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1801 * self-test results.
1802 */
1803 static int
1804 bge_chipinit(struct bge_softc *sc)
1805 {
1806 int i;
1807 uint32_t dma_rw_ctl;
1808
1809 /* Set endianness before we access any non-PCI registers. */
1810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1811 BGE_INIT);
1812
1813 /* Set power state to D0. */
1814 bge_setpowerstate(sc, 0);
1815
1816 /* Clear the MAC control register */
1817 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1818
1819 /*
1820 * Clear the MAC statistics block in the NIC's
1821 * internal memory.
1822 */
1823 for (i = BGE_STATS_BLOCK;
1824 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1825 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1826
1827 for (i = BGE_STATUS_BLOCK;
1828 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1829 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1830
1831 /* Set up the PCI DMA control register. */
1832 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1833 if (sc->bge_flags & BGE_PCIE) {
1834 /* Read watermark not used, 128 bytes for write. */
1835 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1836 device_xname(sc->bge_dev)));
1837 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1838 } else if (sc->bge_flags & BGE_PCIX) {
1839 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1840 device_xname(sc->bge_dev)));
1841 /* PCI-X bus */
1842 if (BGE_IS_5714_FAMILY(sc)) {
1843 /* 256 bytes for read and write. */
1844 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1845 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1846
1847 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1848 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1849 else
1850 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1851 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1852 /* 1536 bytes for read, 384 bytes for write. */
1853 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1854 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1855 } else {
1856 /* 384 bytes for read and write. */
1857 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1858 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1859 (0x0F);
1860 }
1861
1862 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1863 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1864 uint32_t tmp;
1865
1866 /* Set ONEDMA_ATONCE for hardware workaround. */
1867 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1868 BGE_PCI_CLKCTL) & 0x1f;
1869 if (tmp == 6 || tmp == 7)
1870 dma_rw_ctl |=
1871 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1872
1873 /* Set PCI-X DMA write workaround. */
1874 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1875 }
1876 } else {
1877 /* Conventional PCI bus: 256 bytes for read and write. */
1878 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1879 device_xname(sc->bge_dev)));
1880 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1881 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1882
1883 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1884 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1885 dma_rw_ctl |= 0x0F;
1886 }
1887
1888 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1889 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1890 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1891 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1892
1893 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1894 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1895 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1896
1897 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1898 dma_rw_ctl);
1899
1900 /*
1901 * Set up general mode register.
1902 */
1903 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1904 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1905 BGE_MODECTL_TX_NO_PHDR_CSUM);
1906
1907 /*
1908 * BCM5701 B5 have a bug causing data corruption when using
1909 * 64-bit DMA reads, which can be terminated early and then
1910 * completed later as 32-bit accesses, in combination with
1911 * certain bridges.
1912 */
1913 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1914 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1915 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1916
1917 /*
1918 * Tell the firmware the driver is running
1919 */
1920 if (sc->bge_asf_mode & ASF_STACKUP)
1921 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1922
1923 /*
1924 * Disable memory write invalidate. Apparently it is not supported
1925 * properly by these devices.
1926 */
1927 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1928 PCI_COMMAND_INVALIDATE_ENABLE);
1929
1930 #ifdef __brokenalpha__
1931 /*
1932 * Must insure that we do not cross an 8K (bytes) boundary
1933 * for DMA reads. Our highest limit is 1K bytes. This is a
1934 * restriction on some ALPHA platforms with early revision
1935 * 21174 PCI chipsets, such as the AlphaPC 164lx
1936 */
1937 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1938 #endif
1939
1940 /* Set the timer prescaler (always 66MHz) */
1941 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1942
1943 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1944 DELAY(40); /* XXX */
1945
1946 /* Put PHY into ready state */
1947 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1948 DELAY(40);
1949 }
1950
1951 return 0;
1952 }
1953
1954 static int
1955 bge_blockinit(struct bge_softc *sc)
1956 {
1957 volatile struct bge_rcb *rcb;
1958 bus_size_t rcb_addr;
1959 int i;
1960 struct ifnet *ifp = &sc->ethercom.ec_if;
1961 bge_hostaddr taddr;
1962 uint32_t val;
1963
1964 /*
1965 * Initialize the memory window pointer register so that
1966 * we can access the first 32K of internal NIC RAM. This will
1967 * allow us to set up the TX send ring RCBs and the RX return
1968 * ring RCBs, plus other things which live in NIC memory.
1969 */
1970
1971 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1972
1973 /* Step 33: Configure mbuf memory pool */
1974 if (BGE_IS_5700_FAMILY(sc)) {
1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1976 BGE_BUFFPOOL_1);
1977
1978 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1979 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1980 else
1981 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1982
1983 /* Configure DMA resource pool */
1984 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1985 BGE_DMA_DESCRIPTORS);
1986 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1987 }
1988
1989 /* Step 35: Configure mbuf pool watermarks */
1990 #ifdef ORIG_WPAUL_VALUES
1991 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1992 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1993 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1994 #else
1995
1996 /* new broadcom docs strongly recommend these: */
1997 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1998 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
1999 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2000 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2001 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2002 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2003 } else if (BGE_IS_5705_PLUS(sc)) {
2004 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2005
2006 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2007 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2008 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2009 } else {
2010 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2011 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2012 }
2013 } else if (!BGE_IS_5705_PLUS(sc)) {
2014 if (ifp->if_mtu > ETHER_MAX_LEN) {
2015 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2016 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2017 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018 } else {
2019 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2020 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2021 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2022 }
2023 } else {
2024 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2025 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2026 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2027 }
2028 #endif
2029
2030 /* Step 36: Configure DMA resource watermarks */
2031 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2032 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2033
2034 /* Step 38: Enable buffer manager */
2035 CSR_WRITE_4(sc, BGE_BMAN_MODE,
2036 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2037
2038 /* Step 39: Poll for buffer manager start indication */
2039 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2040 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2041 break;
2042 DELAY(10);
2043 }
2044
2045 if (i == BGE_TIMEOUT * 2) {
2046 aprint_error_dev(sc->bge_dev,
2047 "buffer manager failed to start\n");
2048 return ENXIO;
2049 }
2050
2051 /* Step 40: Enable flow-through queues */
2052 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2053 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2054
2055 /* Wait until queue initialization is complete */
2056 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2057 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2058 break;
2059 DELAY(10);
2060 }
2061
2062 if (i == BGE_TIMEOUT * 2) {
2063 aprint_error_dev(sc->bge_dev,
2064 "flow-through queue init failed\n");
2065 return ENXIO;
2066 }
2067
2068 /* Step 41: Initialize the standard RX ring control block */
2069 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2070 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2073 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2074 rcb->bge_maxlen_flags =
2075 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2076 else if (BGE_IS_5705_PLUS(sc))
2077 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2078 else
2079 rcb->bge_maxlen_flags =
2080 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2081 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2082 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2083 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2084 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2085 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2086
2087 /*
2088 * Step 42: Initialize the jumbo RX ring control block
2089 * We set the 'ring disabled' bit in the flags
2090 * field until we're actually ready to start
2091 * using this ring (i.e. once we set the MTU
2092 * high enough to require it).
2093 */
2094 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2095 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2096 BGE_HOSTADDR(rcb->bge_hostaddr,
2097 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2098 rcb->bge_maxlen_flags =
2099 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2100 BGE_RCB_FLAG_RING_DISABLED);
2101 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2102 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2103 rcb->bge_hostaddr.bge_addr_hi);
2104 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2105 rcb->bge_hostaddr.bge_addr_lo);
2106 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2107 rcb->bge_maxlen_flags);
2108 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2109
2110 /* Set up dummy disabled mini ring RCB */
2111 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2112 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2113 BGE_RCB_FLAG_RING_DISABLED);
2114 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2115 rcb->bge_maxlen_flags);
2116
2117 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2118 offsetof(struct bge_ring_data, bge_info),
2119 sizeof (struct bge_gib),
2120 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2121 }
2122
2123 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2124 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2125 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2126 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2127 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2128 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2129 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2130 }
2131 /*
2132 * Set the BD ring replenish thresholds. The recommended
2133 * values are 1/8th the number of descriptors allocated to
2134 * each ring.
2135 */
2136 i = BGE_STD_RX_RING_CNT / 8;
2137
2138 /*
2139 * Use a value of 8 for the following chips to workaround HW errata.
2140 * Some of these chips have been added based on empirical
2141 * evidence (they don't work unless this is done).
2142 */
2143 if (BGE_IS_5705_PLUS(sc))
2144 i = 8;
2145
2146 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2147 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2148
2149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2150 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2151 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2152 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2153 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2154 }
2155
2156 /*
2157 * Disable all unused send rings by setting the 'ring disabled'
2158 * bit in the flags field of all the TX send ring control blocks.
2159 * These are located in NIC memory.
2160 */
2161 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2162 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2163 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2164 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2165 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2166 rcb_addr += sizeof(struct bge_rcb);
2167 }
2168
2169 /* Configure TX RCB 0 (we use only the first ring) */
2170 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2171 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2172 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2173 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2174 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2175 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2176 if (BGE_IS_5700_FAMILY(sc))
2177 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2178 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2179
2180 /* Disable all unused RX return rings */
2181 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2182 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2183 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2184 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2185 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2186 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2187 BGE_RCB_FLAG_RING_DISABLED));
2188 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2189 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2190 (i * (sizeof(uint64_t))), 0);
2191 rcb_addr += sizeof(struct bge_rcb);
2192 }
2193
2194 /* Initialize RX ring indexes */
2195 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2196 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2197 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2198
2199 /*
2200 * Set up RX return ring 0
2201 * Note that the NIC address for RX return rings is 0x00000000.
2202 * The return rings live entirely within the host, so the
2203 * nicaddr field in the RCB isn't used.
2204 */
2205 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2206 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2207 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2208 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2209 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2210 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2211 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2212
2213 /* Set random backoff seed for TX */
2214 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2215 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2216 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2217 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2218 BGE_TX_BACKOFF_SEED_MASK);
2219
2220 /* Set inter-packet gap */
2221 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2222
2223 /*
2224 * Specify which ring to use for packets that don't match
2225 * any RX rules.
2226 */
2227 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2228
2229 /*
2230 * Configure number of RX lists. One interrupt distribution
2231 * list, sixteen active lists, one bad frames class.
2232 */
2233 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2234
2235 /* Inialize RX list placement stats mask. */
2236 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2237 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2238
2239 /* Disable host coalescing until we get it set up */
2240 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2241
2242 /* Poll to make sure it's shut down. */
2243 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2244 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2245 break;
2246 DELAY(10);
2247 }
2248
2249 if (i == BGE_TIMEOUT * 2) {
2250 aprint_error_dev(sc->bge_dev,
2251 "host coalescing engine failed to idle\n");
2252 return ENXIO;
2253 }
2254
2255 /* Set up host coalescing defaults */
2256 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2257 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2258 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2259 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2260 if (BGE_IS_5700_FAMILY(sc)) {
2261 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2262 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2263 }
2264 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2265 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2266
2267 /* Set up address of statistics block */
2268 if (BGE_IS_5700_FAMILY(sc)) {
2269 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2270 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2271 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2272 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2273 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2274 }
2275
2276 /* Set up address of status block */
2277 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2278 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2279 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2280 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2281 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2282 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2283
2284 /* Turn on host coalescing state machine */
2285 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2286
2287 /* Turn on RX BD completion state machine and enable attentions */
2288 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2289 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2290
2291 /* Turn on RX list placement state machine */
2292 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2293
2294 /* Turn on RX list selector state machine. */
2295 if (BGE_IS_5700_FAMILY(sc))
2296 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2297
2298 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2299 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2300 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2301 BGE_MACMODE_FRMHDR_DMA_ENB;
2302
2303 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2304 val |= BGE_PORTMODE_TBI;
2305 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2306 val |= BGE_PORTMODE_GMII;
2307 else
2308 val |= BGE_PORTMODE_MII;
2309
2310 /* Turn on DMA, clear stats */
2311 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2312 DELAY(40);
2313
2314 /* Set misc. local control, enable interrupts on attentions */
2315 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2316
2317 #ifdef notdef
2318 /* Assert GPIO pins for PHY reset */
2319 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2320 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2321 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2322 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2323 #endif
2324
2325 #if defined(not_quite_yet)
2326 /* Linux driver enables enable gpio pin #1 on 5700s */
2327 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2328 sc->bge_local_ctrl_reg |=
2329 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2330 }
2331 #endif
2332 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2333
2334 /* Turn on DMA completion state machine */
2335 if (BGE_IS_5700_FAMILY(sc))
2336 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2337
2338 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2339
2340 /* Enable host coalescing bug fix */
2341 if (BGE_IS_5755_PLUS(sc))
2342 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2343
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2345 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2346
2347 /* Turn on write DMA state machine */
2348 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2349 DELAY(40);
2350
2351 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2352 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2353 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2354 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2355 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2356 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2357 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2358
2359 if (sc->bge_flags & BGE_PCIE)
2360 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2361 if (sc->bge_flags & BGE_TSO)
2362 val |= BGE_RDMAMODE_TSO4_ENABLE;
2363
2364 /* Turn on read DMA state machine */
2365 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2366 delay(40);
2367
2368 /* Turn on RX data completion state machine */
2369 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2370
2371 /* Turn on RX BD initiator state machine */
2372 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2373
2374 /* Turn on RX data and RX BD initiator state machine */
2375 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2376
2377 /* Turn on Mbuf cluster free state machine */
2378 if (BGE_IS_5700_FAMILY(sc))
2379 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2380
2381 /* Turn on send BD completion state machine */
2382 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2383
2384 /* Turn on send data completion state machine */
2385 val = BGE_SDCMODE_ENABLE;
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2387 val |= BGE_SDCMODE_CDELAY;
2388 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2389
2390 /* Turn on send data initiator state machine */
2391 if (sc->bge_flags & BGE_TSO) {
2392 /* XXX: magic value from Linux driver */
2393 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2394 } else
2395 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2396
2397 /* Turn on send BD initiator state machine */
2398 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2399
2400 /* Turn on send BD selector state machine */
2401 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2402
2403 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2404 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2405 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2406
2407 /* ack/clear link change events */
2408 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2409 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2410 BGE_MACSTAT_LINK_CHANGED);
2411 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2412
2413 /* Enable PHY auto polling (for MII/GMII only) */
2414 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2415 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2416 } else {
2417 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2418 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2419 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2420 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2421 BGE_EVTENB_MI_INTERRUPT);
2422 }
2423
2424 /*
2425 * Clear any pending link state attention.
2426 * Otherwise some link state change events may be lost until attention
2427 * is cleared by bge_intr() -> bge_link_upd() sequence.
2428 * It's not necessary on newer BCM chips - perhaps enabling link
2429 * state change attentions implies clearing pending attention.
2430 */
2431 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2432 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2433 BGE_MACSTAT_LINK_CHANGED);
2434
2435 /* Enable link state change attentions. */
2436 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2437
2438 return 0;
2439 }
2440
2441 static const struct bge_revision *
2442 bge_lookup_rev(uint32_t chipid)
2443 {
2444 const struct bge_revision *br;
2445
2446 for (br = bge_revisions; br->br_name != NULL; br++) {
2447 if (br->br_chipid == chipid)
2448 return br;
2449 }
2450
2451 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2452 if (br->br_chipid == BGE_ASICREV(chipid))
2453 return br;
2454 }
2455
2456 return NULL;
2457 }
2458
2459 static const struct bge_product *
2460 bge_lookup(const struct pci_attach_args *pa)
2461 {
2462 const struct bge_product *bp;
2463
2464 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2465 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2466 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2467 return bp;
2468 }
2469
2470 return NULL;
2471 }
2472
2473 static int
2474 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2475 {
2476 #ifdef NOTYET
2477 uint32_t pm_ctl = 0;
2478
2479 /* XXX FIXME: make sure indirect accesses enabled? */
2480 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2481 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2482 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2483
2484 /* clear the PME_assert bit and power state bits, enable PME */
2485 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2486 pm_ctl &= ~PCIM_PSTAT_DMASK;
2487 pm_ctl |= (1 << 8);
2488
2489 if (powerlevel == 0) {
2490 pm_ctl |= PCIM_PSTAT_D0;
2491 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2492 pm_ctl, 2);
2493 DELAY(10000);
2494 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2495 DELAY(10000);
2496
2497 #ifdef NOTYET
2498 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2499 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2500 #endif
2501 DELAY(40); DELAY(40); DELAY(40);
2502 DELAY(10000); /* above not quite adequate on 5700 */
2503 return 0;
2504 }
2505
2506
2507 /*
2508 * Entering ACPI power states D1-D3 is achieved by wiggling
2509 * GMII gpio pins. Example code assumes all hardware vendors
2510 * followed Broadcom's sample pcb layout. Until we verify that
2511 * for all supported OEM cards, states D1-D3 are unsupported.
2512 */
2513 aprint_error_dev(sc->bge_dev,
2514 "power state %d unimplemented; check GPIO pins\n",
2515 powerlevel);
2516 #endif
2517 return EOPNOTSUPP;
2518 }
2519
2520
2521 /*
2522 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2523 * against our list and return its name if we find a match. Note
2524 * that since the Broadcom controller contains VPD support, we
2525 * can get the device name string from the controller itself instead
2526 * of the compiled-in string. This is a little slow, but it guarantees
2527 * we'll always announce the right product name.
2528 */
2529 static int
2530 bge_probe(device_t parent, cfdata_t match, void *aux)
2531 {
2532 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2533
2534 if (bge_lookup(pa) != NULL)
2535 return 1;
2536
2537 return 0;
2538 }
2539
2540 static void
2541 bge_attach(device_t parent, device_t self, void *aux)
2542 {
2543 struct bge_softc *sc = device_private(self);
2544 struct pci_attach_args *pa = aux;
2545 prop_dictionary_t dict;
2546 const struct bge_product *bp;
2547 const struct bge_revision *br;
2548 pci_chipset_tag_t pc;
2549 pci_intr_handle_t ih;
2550 const char *intrstr = NULL;
2551 bus_dma_segment_t seg;
2552 int rseg;
2553 uint32_t hwcfg = 0;
2554 uint32_t command;
2555 struct ifnet *ifp;
2556 uint32_t misccfg;
2557 void * kva;
2558 u_char eaddr[ETHER_ADDR_LEN];
2559 pcireg_t memtype, subid;
2560 bus_addr_t memaddr;
2561 bus_size_t memsize;
2562 uint32_t pm_ctl;
2563 bool no_seeprom;
2564
2565 bp = bge_lookup(pa);
2566 KASSERT(bp != NULL);
2567
2568 sc->sc_pc = pa->pa_pc;
2569 sc->sc_pcitag = pa->pa_tag;
2570 sc->bge_dev = self;
2571
2572 pc = sc->sc_pc;
2573 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2574
2575 aprint_naive(": Ethernet controller\n");
2576 aprint_normal(": %s\n", bp->bp_name);
2577
2578 /*
2579 * Map control/status registers.
2580 */
2581 DPRINTFN(5, ("Map control/status regs\n"));
2582 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2583 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2584 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2585 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2586
2587 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2588 aprint_error_dev(sc->bge_dev,
2589 "failed to enable memory mapping!\n");
2590 return;
2591 }
2592
2593 DPRINTFN(5, ("pci_mem_find\n"));
2594 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2595 switch (memtype) {
2596 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2597 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2598 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2599 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2600 &memaddr, &memsize) == 0)
2601 break;
2602 default:
2603 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2604 return;
2605 }
2606
2607 DPRINTFN(5, ("pci_intr_map\n"));
2608 if (pci_intr_map(pa, &ih)) {
2609 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2610 return;
2611 }
2612
2613 DPRINTFN(5, ("pci_intr_string\n"));
2614 intrstr = pci_intr_string(pc, ih);
2615
2616 DPRINTFN(5, ("pci_intr_establish\n"));
2617 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2618
2619 if (sc->bge_intrhand == NULL) {
2620 aprint_error_dev(sc->bge_dev,
2621 "couldn't establish interrupt%s%s\n",
2622 intrstr ? " at " : "", intrstr ? intrstr : "");
2623 return;
2624 }
2625 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2626
2627 /*
2628 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2629 * can clobber the chip's PCI config-space power control registers,
2630 * leaving the card in D3 powersave state.
2631 * We do not have memory-mapped registers in this state,
2632 * so force device into D0 state before starting initialization.
2633 */
2634 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2635 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2636 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2637 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2638 DELAY(1000); /* 27 usec is allegedly sufficent */
2639
2640 /*
2641 * Save ASIC rev.
2642 */
2643 sc->bge_chipid =
2644 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2645 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2646
2647 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2648 switch (PCI_PRODUCT(pa->pa_id)) {
2649 case PCI_PRODUCT_BROADCOM_BCM5717:
2650 case PCI_PRODUCT_BROADCOM_BCM5718:
2651 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
2652 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2653 BGE_PCI_GEN2_PRODID_ASICREV);
2654 break;
2655 case PCI_PRODUCT_BROADCOM_BCM57761:
2656 case PCI_PRODUCT_BROADCOM_BCM57762:
2657 case PCI_PRODUCT_BROADCOM_BCM57765:
2658 case PCI_PRODUCT_BROADCOM_BCM57781:
2659 case PCI_PRODUCT_BROADCOM_BCM57785:
2660 case PCI_PRODUCT_BROADCOM_BCM57791:
2661 case PCI_PRODUCT_BROADCOM_BCM57795:
2662 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2663 BGE_PCI_GEN15_PRODID_ASICREV);
2664 break;
2665 default:
2666 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2667 BGE_PCI_PRODID_ASICREV);
2668 break;
2669 }
2670 }
2671
2672 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2673 &sc->bge_pciecap, NULL) != 0)
2674 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2675 /* PCIe */
2676 sc->bge_flags |= BGE_PCIE;
2677 bge_set_max_readrq(sc);
2678 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2679 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2680 /* PCI-X */
2681 sc->bge_flags |= BGE_PCIX;
2682 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2683 &sc->bge_pcixcap, NULL) == 0)
2684 aprint_error_dev(sc->bge_dev,
2685 "unable to find PCIX capability\n");
2686 }
2687
2688 /* chipid */
2689 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2690 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2691 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2692 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2693 sc->bge_flags |= BGE_5700_FAMILY;
2694
2695 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2696 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2697 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2698 sc->bge_flags |= BGE_5714_FAMILY;
2699
2700 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2701 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2702 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2703 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2704 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2705 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2706 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2707 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2708 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2709 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2710 sc->bge_flags |= BGE_5755_PLUS;
2711
2712 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2713 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2714 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2715 BGE_IS_5755_PLUS(sc) ||
2716 BGE_IS_5714_FAMILY(sc))
2717 sc->bge_flags |= BGE_575X_PLUS;
2718
2719 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2720 BGE_IS_575X_PLUS(sc))
2721 sc->bge_flags |= BGE_5705_PLUS;
2722
2723 /*
2724 * When using the BCM5701 in PCI-X mode, data corruption has
2725 * been observed in the first few bytes of some received packets.
2726 * Aligning the packet buffer in memory eliminates the corruption.
2727 * Unfortunately, this misaligns the packet payloads. On platforms
2728 * which do not support unaligned accesses, we will realign the
2729 * payloads by copying the received packets.
2730 */
2731 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2732 sc->bge_flags & BGE_PCIX)
2733 sc->bge_flags |= BGE_RX_ALIGNBUG;
2734
2735 if (BGE_IS_5700_FAMILY(sc))
2736 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2737
2738 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2739 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2740 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2741 sc->bge_flags |= BGE_NO_3LED;
2742
2743 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2744 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2745
2746 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2747 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2748 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2749 sc->bge_flags |= BGE_IS_5788;
2750
2751 /*
2752 * Some controllers seem to require a special firmware to use
2753 * TSO. But the firmware is not available to FreeBSD and Linux
2754 * claims that the TSO performed by the firmware is slower than
2755 * hardware based TSO. Moreover the firmware based TSO has one
2756 * known bug which can't handle TSO if ethernet header + IP/TCP
2757 * header is greater than 80 bytes. The workaround for the TSO
2758 * bug exist but it seems it's too expensive than not using
2759 * TSO at all. Some hardwares also have the TSO bug so limit
2760 * the TSO to the controllers that are not affected TSO issues
2761 * (e.g. 5755 or higher).
2762 */
2763 if (BGE_IS_5755_PLUS(sc)) {
2764 /*
2765 * BCM5754 and BCM5787 shares the same ASIC id so
2766 * explicit device id check is required.
2767 */
2768 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2769 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2770 sc->bge_flags |= BGE_TSO;
2771 }
2772
2773 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2774 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2775 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2776 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2777 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2778 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2779 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2780 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2781 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2782 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2783 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2784 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2785 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2786 sc->bge_flags |= BGE_10_100_ONLY;
2787
2788 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2789 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2790 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2791 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2792 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2793 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2794
2795 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2796 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2797 sc->bge_flags |= BGE_PHY_CRC_BUG;
2798 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2799 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2800 sc->bge_flags |= BGE_PHY_ADC_BUG;
2801 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2802 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2803
2804 if (BGE_IS_5705_PLUS(sc) &&
2805 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2806 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2807 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2808 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2809 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2810 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2812 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2813 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2814 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2815 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2816 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2817 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2818 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2819 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2820 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2821 sc->bge_flags |= BGE_PHY_BER_BUG;
2822 }
2823
2824 /*
2825 * SEEPROM check.
2826 * First check if firmware knows we do not have SEEPROM.
2827 */
2828 if (prop_dictionary_get_bool(device_properties(self),
2829 "without-seeprom", &no_seeprom) && no_seeprom)
2830 sc->bge_flags |= BGE_NO_EEPROM;
2831
2832 /* Now check the 'ROM failed' bit on the RX CPU */
2833 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2834 sc->bge_flags |= BGE_NO_EEPROM;
2835
2836 /* Try to reset the chip. */
2837 DPRINTFN(5, ("bge_reset\n"));
2838 bge_reset(sc);
2839
2840 sc->bge_asf_mode = 0;
2841 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2842 == BGE_MAGIC_NUMBER)) {
2843 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2844 & BGE_HWCFG_ASF) {
2845 sc->bge_asf_mode |= ASF_ENABLE;
2846 sc->bge_asf_mode |= ASF_STACKUP;
2847 if (BGE_IS_575X_PLUS(sc)) {
2848 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2849 }
2850 }
2851 }
2852
2853 /* Try to reset the chip again the nice way. */
2854 bge_stop_fw(sc);
2855 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2856 if (bge_reset(sc))
2857 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2858
2859 bge_sig_legacy(sc, BGE_RESET_STOP);
2860 bge_sig_post_reset(sc, BGE_RESET_STOP);
2861
2862 if (bge_chipinit(sc)) {
2863 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2864 bge_release_resources(sc);
2865 return;
2866 }
2867
2868 /*
2869 * Get station address from the EEPROM.
2870 */
2871 if (bge_get_eaddr(sc, eaddr)) {
2872 aprint_error_dev(sc->bge_dev,
2873 "failed to read station address\n");
2874 bge_release_resources(sc);
2875 return;
2876 }
2877
2878 br = bge_lookup_rev(sc->bge_chipid);
2879
2880 if (br == NULL) {
2881 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2882 sc->bge_chipid);
2883 } else {
2884 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2885 br->br_name, sc->bge_chipid);
2886 }
2887 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2888
2889 /* Allocate the general information block and ring buffers. */
2890 if (pci_dma64_available(pa))
2891 sc->bge_dmatag = pa->pa_dmat64;
2892 else
2893 sc->bge_dmatag = pa->pa_dmat;
2894 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2895 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2896 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2897 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2898 return;
2899 }
2900 DPRINTFN(5, ("bus_dmamem_map\n"));
2901 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2902 sizeof(struct bge_ring_data), &kva,
2903 BUS_DMA_NOWAIT)) {
2904 aprint_error_dev(sc->bge_dev,
2905 "can't map DMA buffers (%zu bytes)\n",
2906 sizeof(struct bge_ring_data));
2907 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2908 return;
2909 }
2910 DPRINTFN(5, ("bus_dmamem_create\n"));
2911 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2912 sizeof(struct bge_ring_data), 0,
2913 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2914 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2915 bus_dmamem_unmap(sc->bge_dmatag, kva,
2916 sizeof(struct bge_ring_data));
2917 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2918 return;
2919 }
2920 DPRINTFN(5, ("bus_dmamem_load\n"));
2921 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2922 sizeof(struct bge_ring_data), NULL,
2923 BUS_DMA_NOWAIT)) {
2924 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2925 bus_dmamem_unmap(sc->bge_dmatag, kva,
2926 sizeof(struct bge_ring_data));
2927 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2928 return;
2929 }
2930
2931 DPRINTFN(5, ("bzero\n"));
2932 sc->bge_rdata = (struct bge_ring_data *)kva;
2933
2934 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2935
2936 /* Try to allocate memory for jumbo buffers. */
2937 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2938 if (bge_alloc_jumbo_mem(sc)) {
2939 aprint_error_dev(sc->bge_dev,
2940 "jumbo buffer allocation failed\n");
2941 } else
2942 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2943 }
2944
2945 /* Set default tuneable values. */
2946 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2947 sc->bge_rx_coal_ticks = 150;
2948 sc->bge_rx_max_coal_bds = 64;
2949 #ifdef ORIG_WPAUL_VALUES
2950 sc->bge_tx_coal_ticks = 150;
2951 sc->bge_tx_max_coal_bds = 128;
2952 #else
2953 sc->bge_tx_coal_ticks = 300;
2954 sc->bge_tx_max_coal_bds = 400;
2955 #endif
2956 if (BGE_IS_5705_PLUS(sc)) {
2957 sc->bge_tx_coal_ticks = (12 * 5);
2958 sc->bge_tx_max_coal_bds = (12 * 5);
2959 aprint_verbose_dev(sc->bge_dev,
2960 "setting short Tx thresholds\n");
2961 }
2962
2963 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2964 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2965 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2966 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2967 else if (BGE_IS_5705_PLUS(sc))
2968 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2969 else
2970 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2971
2972 /* Set up ifnet structure */
2973 ifp = &sc->ethercom.ec_if;
2974 ifp->if_softc = sc;
2975 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2976 ifp->if_ioctl = bge_ioctl;
2977 ifp->if_stop = bge_stop;
2978 ifp->if_start = bge_start;
2979 ifp->if_init = bge_init;
2980 ifp->if_watchdog = bge_watchdog;
2981 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2982 IFQ_SET_READY(&ifp->if_snd);
2983 DPRINTFN(5, ("strcpy if_xname\n"));
2984 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2985
2986 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2987 sc->ethercom.ec_if.if_capabilities |=
2988 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2989 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
2990 sc->ethercom.ec_if.if_capabilities |=
2991 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2992 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2993 #endif
2994 sc->ethercom.ec_capabilities |=
2995 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2996
2997 if (sc->bge_flags & BGE_TSO)
2998 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2999
3000 /*
3001 * Do MII setup.
3002 */
3003 DPRINTFN(5, ("mii setup\n"));
3004 sc->bge_mii.mii_ifp = ifp;
3005 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3006 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3007 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3008
3009 /*
3010 * Figure out what sort of media we have by checking the hardware
3011 * config word in the first 32k of NIC internal memory, or fall back to
3012 * the config word in the EEPROM. Note: on some BCM5700 cards,
3013 * this value appears to be unset. If that's the case, we have to rely
3014 * on identifying the NIC by its PCI subsystem ID, as we do below for
3015 * the SysKonnect SK-9D41.
3016 */
3017 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
3018 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3019 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3020 bge_read_eeprom(sc, (void *)&hwcfg,
3021 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3022 hwcfg = be32toh(hwcfg);
3023 }
3024 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3025 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3026 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3027 if (BGE_IS_5714_FAMILY(sc))
3028 sc->bge_flags |= BGE_PHY_FIBER_MII;
3029 else
3030 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3031 }
3032
3033 /* set phyflags and chipid before mii_attach() */
3034 dict = device_properties(self);
3035 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3036 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3037
3038 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3039 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3040 bge_ifmedia_sts);
3041 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3042 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3043 0, NULL);
3044 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3045 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3046 /* Pretend the user requested this setting */
3047 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3048 } else {
3049 /*
3050 * Do transceiver setup and tell the firmware the
3051 * driver is down so we can try to get access the
3052 * probe if ASF is running. Retry a couple of times
3053 * if we get a conflict with the ASF firmware accessing
3054 * the PHY.
3055 */
3056 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3057 bge_asf_driver_up(sc);
3058
3059 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3060 bge_ifmedia_sts);
3061 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3062 MII_PHY_ANY, MII_OFFSET_ANY,
3063 MIIF_FORCEANEG|MIIF_DOPAUSE);
3064
3065 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3066 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3067 ifmedia_add(&sc->bge_mii.mii_media,
3068 IFM_ETHER|IFM_MANUAL, 0, NULL);
3069 ifmedia_set(&sc->bge_mii.mii_media,
3070 IFM_ETHER|IFM_MANUAL);
3071 } else
3072 ifmedia_set(&sc->bge_mii.mii_media,
3073 IFM_ETHER|IFM_AUTO);
3074
3075 /*
3076 * Now tell the firmware we are going up after probing the PHY
3077 */
3078 if (sc->bge_asf_mode & ASF_STACKUP)
3079 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3080 }
3081
3082 /*
3083 * Call MI attach routine.
3084 */
3085 DPRINTFN(5, ("if_attach\n"));
3086 if_attach(ifp);
3087 DPRINTFN(5, ("ether_ifattach\n"));
3088 ether_ifattach(ifp, eaddr);
3089 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3090 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3091 RND_TYPE_NET, 0);
3092 #ifdef BGE_EVENT_COUNTERS
3093 /*
3094 * Attach event counters.
3095 */
3096 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3097 NULL, device_xname(sc->bge_dev), "intr");
3098 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3099 NULL, device_xname(sc->bge_dev), "tx_xoff");
3100 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3101 NULL, device_xname(sc->bge_dev), "tx_xon");
3102 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3103 NULL, device_xname(sc->bge_dev), "rx_xoff");
3104 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3105 NULL, device_xname(sc->bge_dev), "rx_xon");
3106 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3107 NULL, device_xname(sc->bge_dev), "rx_macctl");
3108 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3109 NULL, device_xname(sc->bge_dev), "xoffentered");
3110 #endif /* BGE_EVENT_COUNTERS */
3111 DPRINTFN(5, ("callout_init\n"));
3112 callout_init(&sc->bge_timeout, 0);
3113
3114 if (pmf_device_register(self, NULL, NULL))
3115 pmf_class_network_register(self, ifp);
3116 else
3117 aprint_error_dev(self, "couldn't establish power handler\n");
3118
3119 bge_sysctl_init(sc);
3120
3121 #ifdef BGE_DEBUG
3122 bge_debug_info(sc);
3123 #endif
3124 }
3125
3126 static void
3127 bge_release_resources(struct bge_softc *sc)
3128 {
3129 if (sc->bge_vpd_prodname != NULL)
3130 free(sc->bge_vpd_prodname, M_DEVBUF);
3131
3132 if (sc->bge_vpd_readonly != NULL)
3133 free(sc->bge_vpd_readonly, M_DEVBUF);
3134 }
3135
3136 static int
3137 bge_reset(struct bge_softc *sc)
3138 {
3139 uint32_t cachesize, command, pcistate, marbmode;
3140 #if 0
3141 uint32_t new_pcistate;
3142 #endif
3143 pcireg_t devctl, reg;
3144 int i, val;
3145 void (*write_op)(struct bge_softc *, int, int);
3146
3147 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
3148 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3149 if (sc->bge_flags & BGE_PCIE)
3150 write_op = bge_writemem_direct;
3151 else
3152 write_op = bge_writemem_ind;
3153 } else
3154 write_op = bge_writereg_ind;
3155
3156 /* Save some important PCI state. */
3157 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3158 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3159 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3160
3161 /* Step 5a: Enable memory arbiter. */
3162 marbmode = 0;
3163 if (BGE_IS_5714_FAMILY(sc))
3164 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3165 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3166
3167 /* Step 5b-5d: */
3168 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3169 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3170 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3171
3172 /* XXX ???: Disable fastboot on controllers that support it. */
3173 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3174 BGE_IS_5755_PLUS(sc))
3175 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3176
3177 /*
3178 * Step 6: Write the magic number to SRAM at offset 0xB50.
3179 * When firmware finishes its initialization it will
3180 * write ~BGE_MAGIC_NUMBER to the same location.
3181 */
3182 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3183
3184 /* Step 7: */
3185 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3186 /*
3187 * XXX: from FreeBSD/Linux; no documentation
3188 */
3189 if (sc->bge_flags & BGE_PCIE) {
3190 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3191 /* PCI Express 1.0 system */
3192 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3193 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3194 /*
3195 * Prevent PCI Express link training
3196 * during global reset.
3197 */
3198 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3199 val |= (1<<29);
3200 }
3201 }
3202
3203 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3204 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3205 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3206 i | BGE_VCPU_STATUS_DRV_RESET);
3207 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3208 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3209 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3210 }
3211
3212 /*
3213 * Set GPHY Power Down Override to leave GPHY
3214 * powered up in D0 uninitialized.
3215 */
3216 if (BGE_IS_5705_PLUS(sc))
3217 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3218
3219 /* XXX 5721, 5751 and 5752 */
3220 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3221 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3222
3223 /* Issue global reset */
3224 write_op(sc, BGE_MISC_CFG, val);
3225
3226 /* Step 8: wait for complete */
3227 if (sc->bge_flags & BGE_PCIE)
3228 delay(100*1000); /* too big */
3229 else
3230 delay(100);
3231
3232 /* From Linux: dummy read to flush PCI posted writes */
3233 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3234
3235 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3236 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3237 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3238 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3239 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3240 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3241 write_op(sc, BGE_MISC_CFG, (65 << 1));
3242
3243 /* Step 11: disable PCI-X Relaxed Ordering. */
3244 if (sc->bge_flags & BGE_PCIX) {
3245 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3246 + PCI_PCIX_CMD);
3247 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3248 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3249 }
3250
3251 if (sc->bge_flags & BGE_PCIE) {
3252 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3253 DELAY(500000);
3254 /* XXX: Magic Numbers */
3255 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3256 BGE_PCI_UNKNOWN0);
3257 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3258 BGE_PCI_UNKNOWN0,
3259 reg | (1 << 15));
3260 }
3261 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3262 sc->bge_pciecap + PCI_PCIE_DCSR);
3263 /* Clear enable no snoop and disable relaxed ordering. */
3264 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3265 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3266 /* Set PCIE max payload size to 128. */
3267 devctl &= ~(0x00e0);
3268 /* Clear device status register. Write 1b to clear */
3269 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3270 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3271 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3272 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3273 }
3274
3275 /* Step 12: Enable memory arbiter. */
3276 marbmode = 0;
3277 if (BGE_IS_5714_FAMILY(sc))
3278 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3279 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3280
3281 /* Step 17: Poll until the firmware initialization is complete */
3282 bge_poll_fw(sc);
3283
3284 /* XXX 5721, 5751 and 5752 */
3285 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3286 /* Step 19: */
3287 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3288 /* Step 20: */
3289 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3290 }
3291
3292 /*
3293 * Step 18: wirte mac mode
3294 * XXX Write 0x0c for 5703S and 5704S
3295 */
3296 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, 0);
3297 DELAY(40);
3298
3299
3300 /* Step 21: 5822 B0 errata */
3301 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3302 pcireg_t msidata;
3303
3304 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3305 BGE_PCI_MSI_DATA);
3306 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3307 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3308 msidata);
3309 }
3310
3311 /* Step 23: restore cache line size */
3312 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3313
3314 #if 0
3315 /*
3316 * XXX Wait for the value of the PCISTATE register to
3317 * return to its original pre-reset state. This is a
3318 * fairly good indicator of reset completion. If we don't
3319 * wait for the reset to fully complete, trying to read
3320 * from the device's non-PCI registers may yield garbage
3321 * results.
3322 */
3323 for (i = 0; i < BGE_TIMEOUT; i++) {
3324 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3325 BGE_PCI_PCISTATE);
3326 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3327 (pcistate & ~BGE_PCISTATE_RESERVED))
3328 break;
3329 DELAY(10);
3330 }
3331 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3332 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3333 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3334 }
3335 #endif
3336
3337 /* Step 28: Fix up byte swapping */
3338 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3339
3340 /* Tell the ASF firmware we are up */
3341 if (sc->bge_asf_mode & ASF_STACKUP)
3342 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3343
3344 /*
3345 * The 5704 in TBI mode apparently needs some special
3346 * adjustment to insure the SERDES drive level is set
3347 * to 1.2V.
3348 */
3349 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3350 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3351 uint32_t serdescfg;
3352
3353 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3354 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3355 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3356 }
3357
3358 if (sc->bge_flags & BGE_PCIE &&
3359 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3360 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3361 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3362 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
3363 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
3364 uint32_t v;
3365
3366 /* Enable PCI Express bug fix */
3367 v = CSR_READ_4(sc, 0x7c00);
3368 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3369 }
3370 DELAY(10000);
3371
3372 return 0;
3373 }
3374
3375 /*
3376 * Frame reception handling. This is called if there's a frame
3377 * on the receive return list.
3378 *
3379 * Note: we have to be able to handle two possibilities here:
3380 * 1) the frame is from the jumbo receive ring
3381 * 2) the frame is from the standard receive ring
3382 */
3383
3384 static void
3385 bge_rxeof(struct bge_softc *sc)
3386 {
3387 struct ifnet *ifp;
3388 uint16_t rx_prod, rx_cons;
3389 int stdcnt = 0, jumbocnt = 0;
3390 bus_dmamap_t dmamap;
3391 bus_addr_t offset, toff;
3392 bus_size_t tlen;
3393 int tosync;
3394
3395 rx_cons = sc->bge_rx_saved_considx;
3396 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3397
3398 /* Nothing to do */
3399 if (rx_cons == rx_prod)
3400 return;
3401
3402 ifp = &sc->ethercom.ec_if;
3403
3404 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3405 offsetof(struct bge_ring_data, bge_status_block),
3406 sizeof (struct bge_status_block),
3407 BUS_DMASYNC_POSTREAD);
3408
3409 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3410 tosync = rx_prod - rx_cons;
3411
3412 if (tosync != 0)
3413 rnd_add_uint32(&sc->rnd_source, tosync);
3414
3415 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3416
3417 if (tosync < 0) {
3418 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3419 sizeof (struct bge_rx_bd);
3420 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3421 toff, tlen, BUS_DMASYNC_POSTREAD);
3422 tosync = -tosync;
3423 }
3424
3425 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3426 offset, tosync * sizeof (struct bge_rx_bd),
3427 BUS_DMASYNC_POSTREAD);
3428
3429 while (rx_cons != rx_prod) {
3430 struct bge_rx_bd *cur_rx;
3431 uint32_t rxidx;
3432 struct mbuf *m = NULL;
3433
3434 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3435
3436 rxidx = cur_rx->bge_idx;
3437 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3438
3439 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3440 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3441 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3442 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3443 jumbocnt++;
3444 bus_dmamap_sync(sc->bge_dmatag,
3445 sc->bge_cdata.bge_rx_jumbo_map,
3446 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3447 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3448 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3449 ifp->if_ierrors++;
3450 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3451 continue;
3452 }
3453 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3454 NULL)== ENOBUFS) {
3455 ifp->if_ierrors++;
3456 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3457 continue;
3458 }
3459 } else {
3460 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3461 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3462
3463 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3464 stdcnt++;
3465 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3466 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3467 if (dmamap == NULL) {
3468 ifp->if_ierrors++;
3469 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3470 continue;
3471 }
3472 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3473 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3474 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3475 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3476 ifp->if_ierrors++;
3477 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3478 continue;
3479 }
3480 if (bge_newbuf_std(sc, sc->bge_std,
3481 NULL, dmamap) == ENOBUFS) {
3482 ifp->if_ierrors++;
3483 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3484 continue;
3485 }
3486 }
3487
3488 ifp->if_ipackets++;
3489 #ifndef __NO_STRICT_ALIGNMENT
3490 /*
3491 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3492 * the Rx buffer has the layer-2 header unaligned.
3493 * If our CPU requires alignment, re-align by copying.
3494 */
3495 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3496 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3497 cur_rx->bge_len);
3498 m->m_data += ETHER_ALIGN;
3499 }
3500 #endif
3501
3502 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3503 m->m_pkthdr.rcvif = ifp;
3504
3505 /*
3506 * Handle BPF listeners. Let the BPF user see the packet.
3507 */
3508 bpf_mtap(ifp, m);
3509
3510 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3511
3512 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3513 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3514 /*
3515 * Rx transport checksum-offload may also
3516 * have bugs with packets which, when transmitted,
3517 * were `runts' requiring padding.
3518 */
3519 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3520 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3521 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3522 m->m_pkthdr.csum_data =
3523 cur_rx->bge_tcp_udp_csum;
3524 m->m_pkthdr.csum_flags |=
3525 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3526 M_CSUM_DATA);
3527 }
3528
3529 /*
3530 * If we received a packet with a vlan tag, pass it
3531 * to vlan_input() instead of ether_input().
3532 */
3533 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3534 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3535 }
3536
3537 (*ifp->if_input)(ifp, m);
3538 }
3539
3540 sc->bge_rx_saved_considx = rx_cons;
3541 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3542 if (stdcnt)
3543 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3544 if (jumbocnt)
3545 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3546 }
3547
3548 static void
3549 bge_txeof(struct bge_softc *sc)
3550 {
3551 struct bge_tx_bd *cur_tx = NULL;
3552 struct ifnet *ifp;
3553 struct txdmamap_pool_entry *dma;
3554 bus_addr_t offset, toff;
3555 bus_size_t tlen;
3556 int tosync;
3557 struct mbuf *m;
3558
3559 ifp = &sc->ethercom.ec_if;
3560
3561 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3562 offsetof(struct bge_ring_data, bge_status_block),
3563 sizeof (struct bge_status_block),
3564 BUS_DMASYNC_POSTREAD);
3565
3566 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3567 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3568 sc->bge_tx_saved_considx;
3569
3570 if (tosync != 0)
3571 rnd_add_uint32(&sc->rnd_source, tosync);
3572
3573 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3574
3575 if (tosync < 0) {
3576 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3577 sizeof (struct bge_tx_bd);
3578 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3579 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3580 tosync = -tosync;
3581 }
3582
3583 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3584 offset, tosync * sizeof (struct bge_tx_bd),
3585 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3586
3587 /*
3588 * Go through our tx ring and free mbufs for those
3589 * frames that have been sent.
3590 */
3591 while (sc->bge_tx_saved_considx !=
3592 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3593 uint32_t idx = 0;
3594
3595 idx = sc->bge_tx_saved_considx;
3596 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3597 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3598 ifp->if_opackets++;
3599 m = sc->bge_cdata.bge_tx_chain[idx];
3600 if (m != NULL) {
3601 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3602 dma = sc->txdma[idx];
3603 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3604 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3605 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3606 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3607 sc->txdma[idx] = NULL;
3608
3609 m_freem(m);
3610 }
3611 sc->bge_txcnt--;
3612 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3613 ifp->if_timer = 0;
3614 }
3615
3616 if (cur_tx != NULL)
3617 ifp->if_flags &= ~IFF_OACTIVE;
3618 }
3619
3620 static int
3621 bge_intr(void *xsc)
3622 {
3623 struct bge_softc *sc;
3624 struct ifnet *ifp;
3625 uint32_t statusword;
3626
3627 sc = xsc;
3628 ifp = &sc->ethercom.ec_if;
3629
3630 /* It is possible for the interrupt to arrive before
3631 * the status block is updated prior to the interrupt.
3632 * Reading the PCI State register will confirm whether the
3633 * interrupt is ours and will flush the status block.
3634 */
3635
3636 /* read status word from status block */
3637 statusword = sc->bge_rdata->bge_status_block.bge_status;
3638
3639 if ((statusword & BGE_STATFLAG_UPDATED) ||
3640 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3641 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3642 /* Ack interrupt and stop others from occuring. */
3643 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
3644
3645 BGE_EVCNT_INCR(sc->bge_ev_intr);
3646
3647 /* clear status word */
3648 sc->bge_rdata->bge_status_block.bge_status = 0;
3649
3650 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3651 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3652 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3653 bge_link_upd(sc);
3654
3655 if (ifp->if_flags & IFF_RUNNING) {
3656 /* Check RX return ring producer/consumer */
3657 bge_rxeof(sc);
3658
3659 /* Check TX ring producer/consumer */
3660 bge_txeof(sc);
3661 }
3662
3663 if (sc->bge_pending_rxintr_change) {
3664 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3665 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3666 uint32_t junk;
3667
3668 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3669 DELAY(10);
3670 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3671
3672 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3673 DELAY(10);
3674 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3675
3676 sc->bge_pending_rxintr_change = 0;
3677 }
3678 bge_handle_events(sc);
3679
3680 /* Re-enable interrupts. */
3681 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
3682
3683 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3684 bge_start(ifp);
3685
3686 return 1;
3687 } else
3688 return 0;
3689 }
3690
3691 static void
3692 bge_asf_driver_up(struct bge_softc *sc)
3693 {
3694 if (sc->bge_asf_mode & ASF_STACKUP) {
3695 /* Send ASF heartbeat aprox. every 2s */
3696 if (sc->bge_asf_count)
3697 sc->bge_asf_count --;
3698 else {
3699 sc->bge_asf_count = 2;
3700 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3701 BGE_FW_DRV_ALIVE);
3702 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3703 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3704 CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
3705 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3706 }
3707 }
3708 }
3709
3710 static void
3711 bge_tick(void *xsc)
3712 {
3713 struct bge_softc *sc = xsc;
3714 struct mii_data *mii = &sc->bge_mii;
3715 int s;
3716
3717 s = splnet();
3718
3719 if (BGE_IS_5705_PLUS(sc))
3720 bge_stats_update_regs(sc);
3721 else
3722 bge_stats_update(sc);
3723
3724 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3725 /*
3726 * Since in TBI mode auto-polling can't be used we should poll
3727 * link status manually. Here we register pending link event
3728 * and trigger interrupt.
3729 */
3730 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3731 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3732 } else {
3733 /*
3734 * Do not touch PHY if we have link up. This could break
3735 * IPMI/ASF mode or produce extra input errors.
3736 * (extra input errors was reported for bcm5701 & bcm5704).
3737 */
3738 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3739 mii_tick(mii);
3740 }
3741
3742 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3743
3744 splx(s);
3745 }
3746
3747 static void
3748 bge_stats_update_regs(struct bge_softc *sc)
3749 {
3750 struct ifnet *ifp = &sc->ethercom.ec_if;
3751
3752 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3753 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3754
3755 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3756 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3757 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3758 }
3759
3760 static void
3761 bge_stats_update(struct bge_softc *sc)
3762 {
3763 struct ifnet *ifp = &sc->ethercom.ec_if;
3764 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3765
3766 #define READ_STAT(sc, stats, stat) \
3767 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3768
3769 ifp->if_collisions +=
3770 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3771 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3772 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3773 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3774 ifp->if_collisions;
3775
3776 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3777 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3778 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3779 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3780 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3781 READ_STAT(sc, stats,
3782 xoffPauseFramesReceived.bge_addr_lo));
3783 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3784 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3785 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3786 READ_STAT(sc, stats,
3787 macControlFramesReceived.bge_addr_lo));
3788 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3789 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3790
3791 #undef READ_STAT
3792
3793 #ifdef notdef
3794 ifp->if_collisions +=
3795 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3796 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3797 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3798 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3799 ifp->if_collisions;
3800 #endif
3801 }
3802
3803 /*
3804 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3805 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3806 * but when such padded frames employ the bge IP/TCP checksum offload,
3807 * the hardware checksum assist gives incorrect results (possibly
3808 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3809 * If we pad such runts with zeros, the onboard checksum comes out correct.
3810 */
3811 static inline int
3812 bge_cksum_pad(struct mbuf *pkt)
3813 {
3814 struct mbuf *last = NULL;
3815 int padlen;
3816
3817 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3818
3819 /* if there's only the packet-header and we can pad there, use it. */
3820 if (pkt->m_pkthdr.len == pkt->m_len &&
3821 M_TRAILINGSPACE(pkt) >= padlen) {
3822 last = pkt;
3823 } else {
3824 /*
3825 * Walk packet chain to find last mbuf. We will either
3826 * pad there, or append a new mbuf and pad it
3827 * (thus perhaps avoiding the bcm5700 dma-min bug).
3828 */
3829 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3830 continue; /* do nothing */
3831 }
3832
3833 /* `last' now points to last in chain. */
3834 if (M_TRAILINGSPACE(last) < padlen) {
3835 /* Allocate new empty mbuf, pad it. Compact later. */
3836 struct mbuf *n;
3837 MGET(n, M_DONTWAIT, MT_DATA);
3838 if (n == NULL)
3839 return ENOBUFS;
3840 n->m_len = 0;
3841 last->m_next = n;
3842 last = n;
3843 }
3844 }
3845
3846 KDASSERT(!M_READONLY(last));
3847 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3848
3849 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3850 memset(mtod(last, char *) + last->m_len, 0, padlen);
3851 last->m_len += padlen;
3852 pkt->m_pkthdr.len += padlen;
3853 return 0;
3854 }
3855
3856 /*
3857 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3858 */
3859 static inline int
3860 bge_compact_dma_runt(struct mbuf *pkt)
3861 {
3862 struct mbuf *m, *prev;
3863 int totlen, prevlen;
3864
3865 prev = NULL;
3866 totlen = 0;
3867 prevlen = -1;
3868
3869 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3870 int mlen = m->m_len;
3871 int shortfall = 8 - mlen ;
3872
3873 totlen += mlen;
3874 if (mlen == 0)
3875 continue;
3876 if (mlen >= 8)
3877 continue;
3878
3879 /* If we get here, mbuf data is too small for DMA engine.
3880 * Try to fix by shuffling data to prev or next in chain.
3881 * If that fails, do a compacting deep-copy of the whole chain.
3882 */
3883
3884 /* Internal frag. If fits in prev, copy it there. */
3885 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3886 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3887 prev->m_len += mlen;
3888 m->m_len = 0;
3889 /* XXX stitch chain */
3890 prev->m_next = m_free(m);
3891 m = prev;
3892 continue;
3893 }
3894 else if (m->m_next != NULL &&
3895 M_TRAILINGSPACE(m) >= shortfall &&
3896 m->m_next->m_len >= (8 + shortfall)) {
3897 /* m is writable and have enough data in next, pull up. */
3898
3899 memcpy(m->m_data + m->m_len, m->m_next->m_data,
3900 shortfall);
3901 m->m_len += shortfall;
3902 m->m_next->m_len -= shortfall;
3903 m->m_next->m_data += shortfall;
3904 }
3905 else if (m->m_next == NULL || 1) {
3906 /* Got a runt at the very end of the packet.
3907 * borrow data from the tail of the preceding mbuf and
3908 * update its length in-place. (The original data is still
3909 * valid, so we can do this even if prev is not writable.)
3910 */
3911
3912 /* if we'd make prev a runt, just move all of its data. */
3913 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3914 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3915
3916 if ((prev->m_len - shortfall) < 8)
3917 shortfall = prev->m_len;
3918
3919 #ifdef notyet /* just do the safe slow thing for now */
3920 if (!M_READONLY(m)) {
3921 if (M_LEADINGSPACE(m) < shorfall) {
3922 void *m_dat;
3923 m_dat = (m->m_flags & M_PKTHDR) ?
3924 m->m_pktdat : m->dat;
3925 memmove(m_dat, mtod(m, void*), m->m_len);
3926 m->m_data = m_dat;
3927 }
3928 } else
3929 #endif /* just do the safe slow thing */
3930 {
3931 struct mbuf * n = NULL;
3932 int newprevlen = prev->m_len - shortfall;
3933
3934 MGET(n, M_NOWAIT, MT_DATA);
3935 if (n == NULL)
3936 return ENOBUFS;
3937 KASSERT(m->m_len + shortfall < MLEN
3938 /*,
3939 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3940
3941 /* first copy the data we're stealing from prev */
3942 memcpy(n->m_data, prev->m_data + newprevlen,
3943 shortfall);
3944
3945 /* update prev->m_len accordingly */
3946 prev->m_len -= shortfall;
3947
3948 /* copy data from runt m */
3949 memcpy(n->m_data + shortfall, m->m_data,
3950 m->m_len);
3951
3952 /* n holds what we stole from prev, plus m */
3953 n->m_len = shortfall + m->m_len;
3954
3955 /* stitch n into chain and free m */
3956 n->m_next = m->m_next;
3957 prev->m_next = n;
3958 /* KASSERT(m->m_next == NULL); */
3959 m->m_next = NULL;
3960 m_free(m);
3961 m = n; /* for continuing loop */
3962 }
3963 }
3964 prevlen = m->m_len;
3965 }
3966 return 0;
3967 }
3968
3969 /*
3970 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3971 * pointers to descriptors.
3972 */
3973 static int
3974 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3975 {
3976 struct bge_tx_bd *f = NULL;
3977 uint32_t frag, cur;
3978 uint16_t csum_flags = 0;
3979 uint16_t txbd_tso_flags = 0;
3980 struct txdmamap_pool_entry *dma;
3981 bus_dmamap_t dmamap;
3982 int i = 0;
3983 struct m_tag *mtag;
3984 int use_tso, maxsegsize, error;
3985
3986 cur = frag = *txidx;
3987
3988 if (m_head->m_pkthdr.csum_flags) {
3989 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3990 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3991 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3992 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3993 }
3994
3995 /*
3996 * If we were asked to do an outboard checksum, and the NIC
3997 * has the bug where it sometimes adds in the Ethernet padding,
3998 * explicitly pad with zeros so the cksum will be correct either way.
3999 * (For now, do this for all chip versions, until newer
4000 * are confirmed to not require the workaround.)
4001 */
4002 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4003 #ifdef notyet
4004 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4005 #endif
4006 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4007 goto check_dma_bug;
4008
4009 if (bge_cksum_pad(m_head) != 0)
4010 return ENOBUFS;
4011
4012 check_dma_bug:
4013 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4014 goto doit;
4015
4016 /*
4017 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4018 * less than eight bytes. If we encounter a teeny mbuf
4019 * at the end of a chain, we can pad. Otherwise, copy.
4020 */
4021 if (bge_compact_dma_runt(m_head) != 0)
4022 return ENOBUFS;
4023
4024 doit:
4025 dma = SLIST_FIRST(&sc->txdma_list);
4026 if (dma == NULL)
4027 return ENOBUFS;
4028 dmamap = dma->dmamap;
4029
4030 /*
4031 * Set up any necessary TSO state before we start packing...
4032 */
4033 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4034 if (!use_tso) {
4035 maxsegsize = 0;
4036 } else { /* TSO setup */
4037 unsigned mss;
4038 struct ether_header *eh;
4039 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4040 struct mbuf * m0 = m_head;
4041 struct ip *ip;
4042 struct tcphdr *th;
4043 int iphl, hlen;
4044
4045 /*
4046 * XXX It would be nice if the mbuf pkthdr had offset
4047 * fields for the protocol headers.
4048 */
4049
4050 eh = mtod(m0, struct ether_header *);
4051 switch (htons(eh->ether_type)) {
4052 case ETHERTYPE_IP:
4053 offset = ETHER_HDR_LEN;
4054 break;
4055
4056 case ETHERTYPE_VLAN:
4057 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4058 break;
4059
4060 default:
4061 /*
4062 * Don't support this protocol or encapsulation.
4063 */
4064 return ENOBUFS;
4065 }
4066
4067 /*
4068 * TCP/IP headers are in the first mbuf; we can do
4069 * this the easy way.
4070 */
4071 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4072 hlen = iphl + offset;
4073 if (__predict_false(m0->m_len <
4074 (hlen + sizeof(struct tcphdr)))) {
4075
4076 aprint_debug_dev(sc->bge_dev,
4077 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4078 "not handled yet\n",
4079 m0->m_len, hlen+ sizeof(struct tcphdr));
4080 #ifdef NOTYET
4081 /*
4082 * XXX jonathan (at) NetBSD.org: untested.
4083 * how to force this branch to be taken?
4084 */
4085 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4086
4087 m_copydata(m0, offset, sizeof(ip), &ip);
4088 m_copydata(m0, hlen, sizeof(th), &th);
4089
4090 ip.ip_len = 0;
4091
4092 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4093 sizeof(ip.ip_len), &ip.ip_len);
4094
4095 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4096 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4097
4098 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4099 sizeof(th.th_sum), &th.th_sum);
4100
4101 hlen += th.th_off << 2;
4102 iptcp_opt_words = hlen;
4103 #else
4104 /*
4105 * if_wm "hard" case not yet supported, can we not
4106 * mandate it out of existence?
4107 */
4108 (void) ip; (void)th; (void) ip_tcp_hlen;
4109
4110 return ENOBUFS;
4111 #endif
4112 } else {
4113 ip = (struct ip *) (mtod(m0, char *) + offset);
4114 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4115 ip_tcp_hlen = iphl + (th->th_off << 2);
4116
4117 /* Total IP/TCP options, in 32-bit words */
4118 iptcp_opt_words = (ip_tcp_hlen
4119 - sizeof(struct tcphdr)
4120 - sizeof(struct ip)) >> 2;
4121 }
4122 if (BGE_IS_575X_PLUS(sc)) {
4123 th->th_sum = 0;
4124 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4125 } else {
4126 /*
4127 * XXX jonathan (at) NetBSD.org: 5705 untested.
4128 * Requires TSO firmware patch for 5701/5703/5704.
4129 */
4130 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4131 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4132 }
4133
4134 mss = m_head->m_pkthdr.segsz;
4135 txbd_tso_flags |=
4136 BGE_TXBDFLAG_CPU_PRE_DMA |
4137 BGE_TXBDFLAG_CPU_POST_DMA;
4138
4139 /*
4140 * Our NIC TSO-assist assumes TSO has standard, optionless
4141 * IPv4 and TCP headers, which total 40 bytes. By default,
4142 * the NIC copies 40 bytes of IP/TCP header from the
4143 * supplied header into the IP/TCP header portion of
4144 * each post-TSO-segment. If the supplied packet has IP or
4145 * TCP options, we need to tell the NIC to copy those extra
4146 * bytes into each post-TSO header, in addition to the normal
4147 * 40-byte IP/TCP header (and to leave space accordingly).
4148 * Unfortunately, the driver encoding of option length
4149 * varies across different ASIC families.
4150 */
4151 tcp_seg_flags = 0;
4152 if (iptcp_opt_words) {
4153 if (BGE_IS_5705_PLUS(sc)) {
4154 tcp_seg_flags =
4155 iptcp_opt_words << 11;
4156 } else {
4157 txbd_tso_flags |=
4158 iptcp_opt_words << 12;
4159 }
4160 }
4161 maxsegsize = mss | tcp_seg_flags;
4162 ip->ip_len = htons(mss + ip_tcp_hlen);
4163
4164 } /* TSO setup */
4165
4166 /*
4167 * Start packing the mbufs in this chain into
4168 * the fragment pointers. Stop when we run out
4169 * of fragments or hit the end of the mbuf chain.
4170 */
4171 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4172 BUS_DMA_NOWAIT);
4173 if (error)
4174 return ENOBUFS;
4175 /*
4176 * Sanity check: avoid coming within 16 descriptors
4177 * of the end of the ring.
4178 */
4179 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4180 BGE_TSO_PRINTF(("%s: "
4181 " dmamap_load_mbuf too close to ring wrap\n",
4182 device_xname(sc->bge_dev)));
4183 goto fail_unload;
4184 }
4185
4186 mtag = sc->ethercom.ec_nvlans ?
4187 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4188
4189
4190 /* Iterate over dmap-map fragments. */
4191 for (i = 0; i < dmamap->dm_nsegs; i++) {
4192 f = &sc->bge_rdata->bge_tx_ring[frag];
4193 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4194 break;
4195
4196 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4197 f->bge_len = dmamap->dm_segs[i].ds_len;
4198
4199 /*
4200 * For 5751 and follow-ons, for TSO we must turn
4201 * off checksum-assist flag in the tx-descr, and
4202 * supply the ASIC-revision-specific encoding
4203 * of TSO flags and segsize.
4204 */
4205 if (use_tso) {
4206 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4207 f->bge_rsvd = maxsegsize;
4208 f->bge_flags = csum_flags | txbd_tso_flags;
4209 } else {
4210 f->bge_rsvd = 0;
4211 f->bge_flags =
4212 (csum_flags | txbd_tso_flags) & 0x0fff;
4213 }
4214 } else {
4215 f->bge_rsvd = 0;
4216 f->bge_flags = csum_flags;
4217 }
4218
4219 if (mtag != NULL) {
4220 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4221 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4222 } else {
4223 f->bge_vlan_tag = 0;
4224 }
4225 cur = frag;
4226 BGE_INC(frag, BGE_TX_RING_CNT);
4227 }
4228
4229 if (i < dmamap->dm_nsegs) {
4230 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4231 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4232 goto fail_unload;
4233 }
4234
4235 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4236 BUS_DMASYNC_PREWRITE);
4237
4238 if (frag == sc->bge_tx_saved_considx) {
4239 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4240 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4241
4242 goto fail_unload;
4243 }
4244
4245 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4246 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4247 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4248 sc->txdma[cur] = dma;
4249 sc->bge_txcnt += dmamap->dm_nsegs;
4250
4251 *txidx = frag;
4252
4253 return 0;
4254
4255 fail_unload:
4256 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4257
4258 return ENOBUFS;
4259 }
4260
4261 /*
4262 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4263 * to the mbuf data regions directly in the transmit descriptors.
4264 */
4265 static void
4266 bge_start(struct ifnet *ifp)
4267 {
4268 struct bge_softc *sc;
4269 struct mbuf *m_head = NULL;
4270 uint32_t prodidx;
4271 int pkts = 0;
4272
4273 sc = ifp->if_softc;
4274
4275 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4276 return;
4277
4278 prodidx = sc->bge_tx_prodidx;
4279
4280 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4281 IFQ_POLL(&ifp->if_snd, m_head);
4282 if (m_head == NULL)
4283 break;
4284
4285 #if 0
4286 /*
4287 * XXX
4288 * safety overkill. If this is a fragmented packet chain
4289 * with delayed TCP/UDP checksums, then only encapsulate
4290 * it if we have enough descriptors to handle the entire
4291 * chain at once.
4292 * (paranoia -- may not actually be needed)
4293 */
4294 if (m_head->m_flags & M_FIRSTFRAG &&
4295 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4296 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4297 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4298 ifp->if_flags |= IFF_OACTIVE;
4299 break;
4300 }
4301 }
4302 #endif
4303
4304 /*
4305 * Pack the data into the transmit ring. If we
4306 * don't have room, set the OACTIVE flag and wait
4307 * for the NIC to drain the ring.
4308 */
4309 if (bge_encap(sc, m_head, &prodidx)) {
4310 ifp->if_flags |= IFF_OACTIVE;
4311 break;
4312 }
4313
4314 /* now we are committed to transmit the packet */
4315 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4316 pkts++;
4317
4318 /*
4319 * If there's a BPF listener, bounce a copy of this frame
4320 * to him.
4321 */
4322 bpf_mtap(ifp, m_head);
4323 }
4324 if (pkts == 0)
4325 return;
4326
4327 /* Transmit */
4328 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4329 /* 5700 b2 errata */
4330 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4331 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4332
4333 sc->bge_tx_prodidx = prodidx;
4334
4335 /*
4336 * Set a timeout in case the chip goes out to lunch.
4337 */
4338 ifp->if_timer = 5;
4339 }
4340
4341 static int
4342 bge_init(struct ifnet *ifp)
4343 {
4344 struct bge_softc *sc = ifp->if_softc;
4345 const uint16_t *m;
4346 uint32_t mode;
4347 int s, error = 0;
4348
4349 s = splnet();
4350
4351 ifp = &sc->ethercom.ec_if;
4352
4353 /* Cancel pending I/O and flush buffers. */
4354 bge_stop(ifp, 0);
4355
4356 bge_stop_fw(sc);
4357 bge_sig_pre_reset(sc, BGE_RESET_START);
4358 bge_reset(sc);
4359 bge_sig_legacy(sc, BGE_RESET_START);
4360 bge_sig_post_reset(sc, BGE_RESET_START);
4361
4362 bge_chipinit(sc);
4363
4364 /*
4365 * Init the various state machines, ring
4366 * control blocks and firmware.
4367 */
4368 error = bge_blockinit(sc);
4369 if (error != 0) {
4370 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4371 error);
4372 splx(s);
4373 return error;
4374 }
4375
4376 ifp = &sc->ethercom.ec_if;
4377
4378 /* Specify MTU. */
4379 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4380 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4381
4382 /* Load our MAC address. */
4383 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4384 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4385 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4386
4387 /* Enable or disable promiscuous mode as needed. */
4388 if (ifp->if_flags & IFF_PROMISC)
4389 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4390 else
4391 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4392
4393 /* Program multicast filter. */
4394 bge_setmulti(sc);
4395
4396 /* Init RX ring. */
4397 bge_init_rx_ring_std(sc);
4398
4399 /*
4400 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4401 * memory to insure that the chip has in fact read the first
4402 * entry of the ring.
4403 */
4404 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4405 uint32_t v, i;
4406 for (i = 0; i < 10; i++) {
4407 DELAY(20);
4408 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4409 if (v == (MCLBYTES - ETHER_ALIGN))
4410 break;
4411 }
4412 if (i == 10)
4413 aprint_error_dev(sc->bge_dev,
4414 "5705 A0 chip failed to load RX ring\n");
4415 }
4416
4417 /* Init jumbo RX ring. */
4418 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4419 bge_init_rx_ring_jumbo(sc);
4420
4421 /* Init our RX return ring index */
4422 sc->bge_rx_saved_considx = 0;
4423
4424 /* Init TX ring. */
4425 bge_init_tx_ring(sc);
4426
4427 /* Enable TX MAC state machine lockup fix. */
4428 mode = CSR_READ_4(sc, BGE_TX_MODE);
4429 if (BGE_IS_5755_PLUS(sc) ||
4430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4431 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4432
4433 /* Turn on transmitter */
4434 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4435 DELAY(100);
4436
4437 /* Turn on receiver */
4438 BGE_SETBIT_FLUSH(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4439 DELAY(10);
4440
4441 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4442
4443 /* Tell firmware we're alive. */
4444 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4445
4446 /* Enable host interrupts. */
4447 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4448 BGE_PCIMISCCTL_CLEAR_INTA);
4449 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4450 BGE_PCIMISCCTL_MASK_PCI_INTR);
4451 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4452
4453 if ((error = bge_ifmedia_upd(ifp)) != 0)
4454 goto out;
4455
4456 ifp->if_flags |= IFF_RUNNING;
4457 ifp->if_flags &= ~IFF_OACTIVE;
4458
4459 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4460
4461 out:
4462 sc->bge_if_flags = ifp->if_flags;
4463 splx(s);
4464
4465 return error;
4466 }
4467
4468 /*
4469 * Set media options.
4470 */
4471 static int
4472 bge_ifmedia_upd(struct ifnet *ifp)
4473 {
4474 struct bge_softc *sc = ifp->if_softc;
4475 struct mii_data *mii = &sc->bge_mii;
4476 struct ifmedia *ifm = &sc->bge_ifmedia;
4477 int rc;
4478
4479 /* If this is a 1000baseX NIC, enable the TBI port. */
4480 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4481 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4482 return EINVAL;
4483 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4484 case IFM_AUTO:
4485 /*
4486 * The BCM5704 ASIC appears to have a special
4487 * mechanism for programming the autoneg
4488 * advertisement registers in TBI mode.
4489 */
4490 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4491 uint32_t sgdig;
4492 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4493 if (sgdig & BGE_SGDIGSTS_DONE) {
4494 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4495 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4496 sgdig |= BGE_SGDIGCFG_AUTO |
4497 BGE_SGDIGCFG_PAUSE_CAP |
4498 BGE_SGDIGCFG_ASYM_PAUSE;
4499 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
4500 sgdig | BGE_SGDIGCFG_SEND);
4501 DELAY(5);
4502 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
4503 sgdig);
4504 }
4505 }
4506 break;
4507 case IFM_1000_SX:
4508 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4509 BGE_CLRBIT(sc, BGE_MAC_MODE,
4510 BGE_MACMODE_HALF_DUPLEX);
4511 } else {
4512 BGE_SETBIT(sc, BGE_MAC_MODE,
4513 BGE_MACMODE_HALF_DUPLEX);
4514 }
4515 break;
4516 default:
4517 return EINVAL;
4518 }
4519 /* XXX 802.3x flow control for 1000BASE-SX */
4520 return 0;
4521 }
4522
4523 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4524 if ((rc = mii_mediachg(mii)) == ENXIO)
4525 return 0;
4526
4527 /*
4528 * Force an interrupt so that we will call bge_link_upd
4529 * if needed and clear any pending link state attention.
4530 * Without this we are not getting any further interrupts
4531 * for link state changes and thus will not UP the link and
4532 * not be able to send in bge_start. The only way to get
4533 * things working was to receive a packet and get a RX intr.
4534 */
4535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4536 sc->bge_flags & BGE_IS_5788)
4537 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4538 else
4539 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4540
4541 return rc;
4542 }
4543
4544 /*
4545 * Report current media status.
4546 */
4547 static void
4548 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4549 {
4550 struct bge_softc *sc = ifp->if_softc;
4551 struct mii_data *mii = &sc->bge_mii;
4552
4553 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4554 ifmr->ifm_status = IFM_AVALID;
4555 ifmr->ifm_active = IFM_ETHER;
4556 if (CSR_READ_4(sc, BGE_MAC_STS) &
4557 BGE_MACSTAT_TBI_PCS_SYNCHED)
4558 ifmr->ifm_status |= IFM_ACTIVE;
4559 ifmr->ifm_active |= IFM_1000_SX;
4560 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4561 ifmr->ifm_active |= IFM_HDX;
4562 else
4563 ifmr->ifm_active |= IFM_FDX;
4564 return;
4565 }
4566
4567 mii_pollstat(mii);
4568 ifmr->ifm_status = mii->mii_media_status;
4569 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4570 sc->bge_flowflags;
4571 }
4572
4573 static int
4574 bge_ifflags_cb(struct ethercom *ec)
4575 {
4576 struct ifnet *ifp = &ec->ec_if;
4577 struct bge_softc *sc = ifp->if_softc;
4578 int change = ifp->if_flags ^ sc->bge_if_flags;
4579
4580 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4581 return ENETRESET;
4582 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4583 return 0;
4584
4585 if ((ifp->if_flags & IFF_PROMISC) == 0)
4586 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4587 else
4588 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4589
4590 bge_setmulti(sc);
4591
4592 sc->bge_if_flags = ifp->if_flags;
4593 return 0;
4594 }
4595
4596 static int
4597 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4598 {
4599 struct bge_softc *sc = ifp->if_softc;
4600 struct ifreq *ifr = (struct ifreq *) data;
4601 int s, error = 0;
4602 struct mii_data *mii;
4603
4604 s = splnet();
4605
4606 switch (command) {
4607 case SIOCSIFMEDIA:
4608 /* XXX Flow control is not supported for 1000BASE-SX */
4609 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4610 ifr->ifr_media &= ~IFM_ETH_FMASK;
4611 sc->bge_flowflags = 0;
4612 }
4613
4614 /* Flow control requires full-duplex mode. */
4615 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4616 (ifr->ifr_media & IFM_FDX) == 0) {
4617 ifr->ifr_media &= ~IFM_ETH_FMASK;
4618 }
4619 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4620 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4621 /* We can do both TXPAUSE and RXPAUSE. */
4622 ifr->ifr_media |=
4623 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4624 }
4625 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4626 }
4627 /* FALLTHROUGH */
4628 case SIOCGIFMEDIA:
4629 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4630 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4631 command);
4632 } else {
4633 mii = &sc->bge_mii;
4634 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4635 command);
4636 }
4637 break;
4638 default:
4639 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4640 break;
4641
4642 error = 0;
4643
4644 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4645 ;
4646 else if (ifp->if_flags & IFF_RUNNING)
4647 bge_setmulti(sc);
4648 break;
4649 }
4650
4651 splx(s);
4652
4653 return error;
4654 }
4655
4656 static void
4657 bge_watchdog(struct ifnet *ifp)
4658 {
4659 struct bge_softc *sc;
4660
4661 sc = ifp->if_softc;
4662
4663 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4664
4665 ifp->if_flags &= ~IFF_RUNNING;
4666 bge_init(ifp);
4667
4668 ifp->if_oerrors++;
4669 }
4670
4671 static void
4672 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4673 {
4674 int i;
4675
4676 BGE_CLRBIT_FLUSH(sc, reg, bit);
4677
4678 for (i = 0; i < 1000; i++) {
4679 if ((CSR_READ_4(sc, reg) & bit) == 0)
4680 return;
4681 delay(100);
4682 }
4683
4684 /*
4685 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4686 * on some environment (and once after boot?)
4687 */
4688 if (reg != BGE_SRS_MODE)
4689 aprint_error_dev(sc->bge_dev,
4690 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4691 (u_long)reg, bit);
4692 }
4693
4694 /*
4695 * Stop the adapter and free any mbufs allocated to the
4696 * RX and TX lists.
4697 */
4698 static void
4699 bge_stop(struct ifnet *ifp, int disable)
4700 {
4701 struct bge_softc *sc = ifp->if_softc;
4702
4703 callout_stop(&sc->bge_timeout);
4704
4705 /*
4706 * Tell firmware we're shutting down.
4707 */
4708 bge_stop_fw(sc);
4709 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4710
4711 /* Disable host interrupts. */
4712 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4713 BGE_PCIMISCCTL_MASK_PCI_INTR);
4714 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4715
4716 /*
4717 * Disable all of the receiver blocks.
4718 */
4719 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4720 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4721 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4722 if (BGE_IS_5700_FAMILY(sc))
4723 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4724 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4725 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4726 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4727
4728 /*
4729 * Disable all of the transmit blocks.
4730 */
4731 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4732 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4733 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4734 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4735 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4736 if (BGE_IS_5700_FAMILY(sc))
4737 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4738 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4739
4740 /*
4741 * Shut down all of the memory managers and related
4742 * state machines.
4743 */
4744 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4745 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4746 if (BGE_IS_5700_FAMILY(sc))
4747 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4748
4749 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4750 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4751
4752 if (BGE_IS_5700_FAMILY(sc)) {
4753 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4754 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4755 }
4756
4757 bge_reset(sc);
4758 bge_sig_legacy(sc, BGE_RESET_STOP);
4759 bge_sig_post_reset(sc, BGE_RESET_STOP);
4760
4761 /*
4762 * Keep the ASF firmware running if up.
4763 */
4764 if (sc->bge_asf_mode & ASF_STACKUP)
4765 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4766 else
4767 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4768
4769 /* Free the RX lists. */
4770 bge_free_rx_ring_std(sc);
4771
4772 /* Free jumbo RX list. */
4773 if (BGE_IS_JUMBO_CAPABLE(sc))
4774 bge_free_rx_ring_jumbo(sc);
4775
4776 /* Free TX buffers. */
4777 bge_free_tx_ring(sc);
4778
4779 /*
4780 * Isolate/power down the PHY.
4781 */
4782 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4783 mii_down(&sc->bge_mii);
4784
4785 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4786
4787 /* Clear MAC's link state (PHY may still have link UP). */
4788 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4789
4790 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4791 }
4792
4793 static void
4794 bge_link_upd(struct bge_softc *sc)
4795 {
4796 struct ifnet *ifp = &sc->ethercom.ec_if;
4797 struct mii_data *mii = &sc->bge_mii;
4798 uint32_t status;
4799 int link;
4800
4801 /* Clear 'pending link event' flag */
4802 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4803
4804 /*
4805 * Process link state changes.
4806 * Grrr. The link status word in the status block does
4807 * not work correctly on the BCM5700 rev AX and BX chips,
4808 * according to all available information. Hence, we have
4809 * to enable MII interrupts in order to properly obtain
4810 * async link changes. Unfortunately, this also means that
4811 * we have to read the MAC status register to detect link
4812 * changes, thereby adding an additional register access to
4813 * the interrupt handler.
4814 */
4815
4816 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4817 status = CSR_READ_4(sc, BGE_MAC_STS);
4818 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4819 mii_pollstat(mii);
4820
4821 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4822 mii->mii_media_status & IFM_ACTIVE &&
4823 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4824 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4825 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4826 (!(mii->mii_media_status & IFM_ACTIVE) ||
4827 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4828 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4829
4830 /* Clear the interrupt */
4831 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4832 BGE_EVTENB_MI_INTERRUPT);
4833 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4834 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4835 BRGPHY_INTRS);
4836 }
4837 return;
4838 }
4839
4840 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4841 status = CSR_READ_4(sc, BGE_MAC_STS);
4842 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4843 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4844 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4845 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4846 BGE_CLRBIT(sc, BGE_MAC_MODE,
4847 BGE_MACMODE_TBI_SEND_CFGS);
4848 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4849 if_link_state_change(ifp, LINK_STATE_UP);
4850 }
4851 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4852 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4853 if_link_state_change(ifp, LINK_STATE_DOWN);
4854 }
4855 /*
4856 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4857 * This should not happen since mii callouts are locked now, but
4858 * we keep this check for debug.
4859 */
4860 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4861 /*
4862 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4863 * bit in status word always set. Workaround this bug by
4864 * reading PHY link status directly.
4865 */
4866 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4867 BGE_STS_LINK : 0;
4868
4869 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4870 mii_pollstat(mii);
4871
4872 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4873 mii->mii_media_status & IFM_ACTIVE &&
4874 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4875 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4876 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4877 (!(mii->mii_media_status & IFM_ACTIVE) ||
4878 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4879 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4880 }
4881 }
4882
4883 /* Clear the attention */
4884 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4885 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4886 BGE_MACSTAT_LINK_CHANGED);
4887 }
4888
4889 static int
4890 bge_sysctl_verify(SYSCTLFN_ARGS)
4891 {
4892 int error, t;
4893 struct sysctlnode node;
4894
4895 node = *rnode;
4896 t = *(int*)rnode->sysctl_data;
4897 node.sysctl_data = &t;
4898 error = sysctl_lookup(SYSCTLFN_CALL(&node));
4899 if (error || newp == NULL)
4900 return error;
4901
4902 #if 0
4903 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4904 node.sysctl_num, rnode->sysctl_num));
4905 #endif
4906
4907 if (node.sysctl_num == bge_rxthresh_nodenum) {
4908 if (t < 0 || t >= NBGE_RX_THRESH)
4909 return EINVAL;
4910 bge_update_all_threshes(t);
4911 } else
4912 return EINVAL;
4913
4914 *(int*)rnode->sysctl_data = t;
4915
4916 return 0;
4917 }
4918
4919 /*
4920 * Set up sysctl(3) MIB, hw.bge.*.
4921 */
4922 static void
4923 bge_sysctl_init(struct bge_softc *sc)
4924 {
4925 int rc, bge_root_num;
4926 const struct sysctlnode *node;
4927
4928 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4929 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4930 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4931 goto out;
4932 }
4933
4934 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4935 0, CTLTYPE_NODE, "bge",
4936 SYSCTL_DESCR("BGE interface controls"),
4937 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4938 goto out;
4939 }
4940
4941 bge_root_num = node->sysctl_num;
4942
4943 /* BGE Rx interrupt mitigation level */
4944 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4945 CTLFLAG_READWRITE,
4946 CTLTYPE_INT, "rx_lvl",
4947 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4948 bge_sysctl_verify, 0,
4949 &bge_rx_thresh_lvl,
4950 0, CTL_HW, bge_root_num, CTL_CREATE,
4951 CTL_EOL)) != 0) {
4952 goto out;
4953 }
4954
4955 bge_rxthresh_nodenum = node->sysctl_num;
4956
4957 return;
4958
4959 out:
4960 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4961 }
4962
4963 #ifdef BGE_DEBUG
4964 void
4965 bge_debug_info(struct bge_softc *sc)
4966 {
4967
4968 printf("Hardware Flags:\n");
4969 if (BGE_IS_5755_PLUS(sc))
4970 printf(" - 5755 Plus\n");
4971 if (BGE_IS_575X_PLUS(sc))
4972 printf(" - 575X Plus\n");
4973 if (BGE_IS_5705_PLUS(sc))
4974 printf(" - 5705 Plus\n");
4975 if (BGE_IS_5714_FAMILY(sc))
4976 printf(" - 5714 Family\n");
4977 if (BGE_IS_5700_FAMILY(sc))
4978 printf(" - 5700 Family\n");
4979 if (sc->bge_flags & BGE_IS_5788)
4980 printf(" - 5788\n");
4981 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4982 printf(" - Supports Jumbo Frames\n");
4983 if (sc->bge_flags & BGE_NO_EEPROM)
4984 printf(" - No EEPROM\n");
4985 if (sc->bge_flags & BGE_PCIX)
4986 printf(" - PCI-X Bus\n");
4987 if (sc->bge_flags & BGE_PCIE)
4988 printf(" - PCI Express Bus\n");
4989 if (sc->bge_flags & BGE_NO_3LED)
4990 printf(" - No 3 LEDs\n");
4991 if (sc->bge_flags & BGE_RX_ALIGNBUG)
4992 printf(" - RX Alignment Bug\n");
4993 if (sc->bge_flags & BGE_TSO)
4994 printf(" - TSO\n");
4995 }
4996 #endif /* BGE_DEBUG */
4997
4998 static int
4999 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5000 {
5001 prop_dictionary_t dict;
5002 prop_data_t ea;
5003
5004 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5005 return 1;
5006
5007 dict = device_properties(sc->bge_dev);
5008 ea = prop_dictionary_get(dict, "mac-address");
5009 if (ea != NULL) {
5010 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5011 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5012 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5013 return 0;
5014 }
5015
5016 return 1;
5017 }
5018
5019 static int
5020 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5021 {
5022 uint32_t mac_addr;
5023
5024 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5025 if ((mac_addr >> 16) == 0x484b) {
5026 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5027 ether_addr[1] = (uint8_t)mac_addr;
5028 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5029 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5030 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5031 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5032 ether_addr[5] = (uint8_t)mac_addr;
5033 return 0;
5034 }
5035 return 1;
5036 }
5037
5038 static int
5039 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5040 {
5041 int mac_offset = BGE_EE_MAC_OFFSET;
5042
5043 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5044 mac_offset = BGE_EE_MAC_OFFSET_5906;
5045
5046 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5047 ETHER_ADDR_LEN));
5048 }
5049
5050 static int
5051 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5052 {
5053
5054 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5055 return 1;
5056
5057 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5058 ETHER_ADDR_LEN));
5059 }
5060
5061 static int
5062 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5063 {
5064 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5065 /* NOTE: Order is critical */
5066 bge_get_eaddr_fw,
5067 bge_get_eaddr_mem,
5068 bge_get_eaddr_nvram,
5069 bge_get_eaddr_eeprom,
5070 NULL
5071 };
5072 const bge_eaddr_fcn_t *func;
5073
5074 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5075 if ((*func)(sc, eaddr) == 0)
5076 break;
5077 }
5078 return (*func == NULL ? ENXIO : 0);
5079 }
5080