if_bge.c revision 1.214 1 /* $NetBSD: if_bge.c,v 1.214 2013/03/13 09:44:20 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.214 2013/03/13 09:44:20 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int);
252 static void bge_miibus_writereg(device_t, int, int, int);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_START 1
256 #define BGE_RESET_STOP 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_stop_fw(struct bge_softc *);
261 static int bge_reset(struct bge_softc *);
262 static void bge_link_upd(struct bge_softc *);
263 static void bge_sysctl_init(struct bge_softc *);
264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
265
266 #ifdef BGE_DEBUG
267 #define DPRINTF(x) if (bgedebug) printf x
268 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
269 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
270 int bgedebug = 0;
271 int bge_tso_debug = 0;
272 void bge_debug_info(struct bge_softc *);
273 #else
274 #define DPRINTF(x)
275 #define DPRINTFN(n,x)
276 #define BGE_TSO_PRINTF(x)
277 #endif
278
279 #ifdef BGE_EVENT_COUNTERS
280 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
281 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
282 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
283 #else
284 #define BGE_EVCNT_INCR(ev) /* nothing */
285 #define BGE_EVCNT_ADD(ev, val) /* nothing */
286 #define BGE_EVCNT_UPD(ev, val) /* nothing */
287 #endif
288
289 static const struct bge_product {
290 pci_vendor_id_t bp_vendor;
291 pci_product_id_t bp_product;
292 const char *bp_name;
293 } bge_products[] = {
294 /*
295 * The BCM5700 documentation seems to indicate that the hardware
296 * still has the Alteon vendor ID burned into it, though it
297 * should always be overridden by the value in the EEPROM. We'll
298 * check for it anyway.
299 */
300 { PCI_VENDOR_ALTEON,
301 PCI_PRODUCT_ALTEON_BCM5700,
302 "Broadcom BCM5700 Gigabit Ethernet",
303 },
304 { PCI_VENDOR_ALTEON,
305 PCI_PRODUCT_ALTEON_BCM5701,
306 "Broadcom BCM5701 Gigabit Ethernet",
307 },
308 { PCI_VENDOR_ALTIMA,
309 PCI_PRODUCT_ALTIMA_AC1000,
310 "Altima AC1000 Gigabit Ethernet",
311 },
312 { PCI_VENDOR_ALTIMA,
313 PCI_PRODUCT_ALTIMA_AC1001,
314 "Altima AC1001 Gigabit Ethernet",
315 },
316 { PCI_VENDOR_ALTIMA,
317 PCI_PRODUCT_ALTIMA_AC1003,
318 "Altima AC1003 Gigabit Ethernet",
319 },
320 { PCI_VENDOR_ALTIMA,
321 PCI_PRODUCT_ALTIMA_AC9100,
322 "Altima AC9100 Gigabit Ethernet",
323 },
324 { PCI_VENDOR_APPLE,
325 PCI_PRODUCT_APPLE_BCM5701,
326 "APPLE BCM5701 Gigabit Ethernet",
327 },
328 { PCI_VENDOR_BROADCOM,
329 PCI_PRODUCT_BROADCOM_BCM5700,
330 "Broadcom BCM5700 Gigabit Ethernet",
331 },
332 { PCI_VENDOR_BROADCOM,
333 PCI_PRODUCT_BROADCOM_BCM5701,
334 "Broadcom BCM5701 Gigabit Ethernet",
335 },
336 { PCI_VENDOR_BROADCOM,
337 PCI_PRODUCT_BROADCOM_BCM5702,
338 "Broadcom BCM5702 Gigabit Ethernet",
339 },
340 { PCI_VENDOR_BROADCOM,
341 PCI_PRODUCT_BROADCOM_BCM5702X,
342 "Broadcom BCM5702X Gigabit Ethernet" },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5703,
345 "Broadcom BCM5703 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5703X,
349 "Broadcom BCM5703X Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
353 "Broadcom BCM5703 Gigabit Ethernet",
354 },
355 { PCI_VENDOR_BROADCOM,
356 PCI_PRODUCT_BROADCOM_BCM5704C,
357 "Broadcom BCM5704C Dual Gigabit Ethernet",
358 },
359 { PCI_VENDOR_BROADCOM,
360 PCI_PRODUCT_BROADCOM_BCM5704S,
361 "Broadcom BCM5704S Dual Gigabit Ethernet",
362 },
363 { PCI_VENDOR_BROADCOM,
364 PCI_PRODUCT_BROADCOM_BCM5705,
365 "Broadcom BCM5705 Gigabit Ethernet",
366 },
367 { PCI_VENDOR_BROADCOM,
368 PCI_PRODUCT_BROADCOM_BCM5705F,
369 "Broadcom BCM5705F Gigabit Ethernet",
370 },
371 { PCI_VENDOR_BROADCOM,
372 PCI_PRODUCT_BROADCOM_BCM5705K,
373 "Broadcom BCM5705K Gigabit Ethernet",
374 },
375 { PCI_VENDOR_BROADCOM,
376 PCI_PRODUCT_BROADCOM_BCM5705M,
377 "Broadcom BCM5705M Gigabit Ethernet",
378 },
379 { PCI_VENDOR_BROADCOM,
380 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
381 "Broadcom BCM5705M Gigabit Ethernet",
382 },
383 { PCI_VENDOR_BROADCOM,
384 PCI_PRODUCT_BROADCOM_BCM5714,
385 "Broadcom BCM5714 Gigabit Ethernet",
386 },
387 { PCI_VENDOR_BROADCOM,
388 PCI_PRODUCT_BROADCOM_BCM5714S,
389 "Broadcom BCM5714S Gigabit Ethernet",
390 },
391 { PCI_VENDOR_BROADCOM,
392 PCI_PRODUCT_BROADCOM_BCM5715,
393 "Broadcom BCM5715 Gigabit Ethernet",
394 },
395 { PCI_VENDOR_BROADCOM,
396 PCI_PRODUCT_BROADCOM_BCM5715S,
397 "Broadcom BCM5715S Gigabit Ethernet",
398 },
399 { PCI_VENDOR_BROADCOM,
400 PCI_PRODUCT_BROADCOM_BCM5717,
401 "Broadcom BCM5717 Gigabit Ethernet",
402 },
403 { PCI_VENDOR_BROADCOM,
404 PCI_PRODUCT_BROADCOM_BCM5718,
405 "Broadcom BCM5718 Gigabit Ethernet",
406 },
407 #if 0
408 { PCI_VENDOR_BROADCOM,
409 PCI_PRODUCT_BROADCOM_BCM5720,
410 "Broadcom BCM5720 Gigabit Ethernet",
411 },
412 #endif
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5721,
415 "Broadcom BCM5721 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5722,
419 "Broadcom BCM5722 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5723,
423 "Broadcom BCM5723 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5724,
427 "Broadcom BCM5724 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5750,
431 "Broadcom BCM5750 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5750M,
435 "Broadcom BCM5750M Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5751,
439 "Broadcom BCM5751 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5751F,
443 "Broadcom BCM5751F Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5751M,
447 "Broadcom BCM5751M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5752,
451 "Broadcom BCM5752 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5752M,
455 "Broadcom BCM5752M Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5753,
459 "Broadcom BCM5753 Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5753F,
463 "Broadcom BCM5753F Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5753M,
467 "Broadcom BCM5753M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5754,
471 "Broadcom BCM5754 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5754M,
475 "Broadcom BCM5754M Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5755,
479 "Broadcom BCM5755 Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5755M,
483 "Broadcom BCM5755M Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5756,
487 "Broadcom BCM5756 Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5761,
491 "Broadcom BCM5761 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5761E,
495 "Broadcom BCM5761E Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5761S,
499 "Broadcom BCM5761S Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761SE,
503 "Broadcom BCM5761SE Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5764,
507 "Broadcom BCM5764 Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5780,
511 "Broadcom BCM5780 Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5780S,
515 "Broadcom BCM5780S Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5781,
519 "Broadcom BCM5781 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5782,
523 "Broadcom BCM5782 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5784M,
527 "BCM5784M NetLink 1000baseT Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5785F,
531 "BCM5785F NetLink 10/100 Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5785G,
535 "BCM5785G NetLink 1000baseT Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5786,
539 "Broadcom BCM5786 Gigabit Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5787,
543 "Broadcom BCM5787 Gigabit Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5787F,
547 "Broadcom BCM5787F 10/100 Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5787M,
551 "Broadcom BCM5787M Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5788,
555 "Broadcom BCM5788 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5789,
559 "Broadcom BCM5789 Gigabit Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5901,
563 "Broadcom BCM5901 Fast Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5901A2,
567 "Broadcom BCM5901A2 Fast Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5903M,
571 "Broadcom BCM5903M Fast Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5906,
575 "Broadcom BCM5906 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5906M,
579 "Broadcom BCM5906M Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM57760,
583 "Broadcom BCM57760 Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM57761,
587 "Broadcom BCM57761 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM57762,
591 "Broadcom BCM57762 Gigabit Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57765,
595 "Broadcom BCM57765 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57780,
599 "Broadcom BCM57780 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57781,
603 "Broadcom BCM57781 Fast Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57785,
607 "Broadcom BCM57785 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57788,
611 "Broadcom BCM57788 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57790,
615 "Broadcom BCM57790 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57791,
619 "Broadcom BCM57791 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57795,
623 "Broadcom BCM57795 Fast Ethernet",
624 },
625 { PCI_VENDOR_SCHNEIDERKOCH,
626 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
627 "SysKonnect SK-9Dx1 Gigabit Ethernet",
628 },
629 { PCI_VENDOR_3COM,
630 PCI_PRODUCT_3COM_3C996,
631 "3Com 3c996 Gigabit Ethernet",
632 },
633 { PCI_VENDOR_FUJITSU4,
634 PCI_PRODUCT_FUJITSU4_PW008GE4,
635 "Fujitsu PW008GE4 Gigabit Ethernet",
636 },
637 { PCI_VENDOR_FUJITSU4,
638 PCI_PRODUCT_FUJITSU4_PW008GE5,
639 "Fujitsu PW008GE5 Gigabit Ethernet",
640 },
641 { PCI_VENDOR_FUJITSU4,
642 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
643 "Fujitsu Primepower 250/450 Gigabit Ethernet",
644 },
645 { 0,
646 0,
647 NULL },
648 };
649
650 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
651 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
652 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
653 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
654 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
655 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
656 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
657 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
658
659 static const struct bge_revision {
660 uint32_t br_chipid;
661 const char *br_name;
662 } bge_revisions[] = {
663 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
664 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
665 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
666 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
667 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
668 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
669 /* This is treated like a BCM5700 Bx */
670 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
671 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
672 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
673 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
674 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
675 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
676 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
677 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
678 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
679 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
680 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
681 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
682 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
683 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
684 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
685 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
686 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
687 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
688 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
689 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
690 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
691 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
692 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
693 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
694 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
695 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
696 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
697 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
698 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
699 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
700 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
701 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
702 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
703 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
704 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
705 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
706 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
707 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
708 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
709 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
710 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
711 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
712 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
713 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
714 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
715 /* 5754 and 5787 share the same ASIC ID */
716 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
717 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
718 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
719 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
720 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
721 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
722 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
723 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
724 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
725 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
726
727 { 0, NULL }
728 };
729
730 /*
731 * Some defaults for major revisions, so that newer steppings
732 * that we don't know about have a shot at working.
733 */
734 static const struct bge_revision bge_majorrevs[] = {
735 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
736 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
737 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
738 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
739 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
740 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
741 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
742 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
743 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
744 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
745 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
746 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
747 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
748 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
749 /* 5754 and 5787 share the same ASIC ID */
750 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
751 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
752 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
753 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
754 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
755 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
756
757 { 0, NULL }
758 };
759
760 static int bge_allow_asf = 1;
761
762 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
763 bge_probe, bge_attach, NULL, NULL);
764
765 static uint32_t
766 bge_readmem_ind(struct bge_softc *sc, int off)
767 {
768 pcireg_t val;
769
770 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
771 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
772 return val;
773 }
774
775 static void
776 bge_writemem_ind(struct bge_softc *sc, int off, int val)
777 {
778 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
779 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
780 }
781
782 /*
783 * PCI Express only
784 */
785 static void
786 bge_set_max_readrq(struct bge_softc *sc)
787 {
788 pcireg_t val;
789
790 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
791 + PCI_PCIE_DCSR);
792 if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
793 BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
794 aprint_verbose_dev(sc->bge_dev,
795 "adjust device control 0x%04x ", val);
796 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
797 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
799 + PCI_PCIE_DCSR, val);
800 aprint_verbose("-> 0x%04x\n", val);
801 }
802 }
803
804 #ifdef notdef
805 static uint32_t
806 bge_readreg_ind(struct bge_softc *sc, int off)
807 {
808 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
809 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
810 }
811 #endif
812
813 static void
814 bge_writereg_ind(struct bge_softc *sc, int off, int val)
815 {
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
817 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
818 }
819
820 static void
821 bge_writemem_direct(struct bge_softc *sc, int off, int val)
822 {
823 CSR_WRITE_4(sc, off, val);
824 }
825
826 static void
827 bge_writembx(struct bge_softc *sc, int off, int val)
828 {
829 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
830 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
831
832 CSR_WRITE_4(sc, off, val);
833 }
834
835 static void
836 bge_writembx_flush(struct bge_softc *sc, int off, int val)
837 {
838 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
839 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
840
841 CSR_WRITE_4_FLUSH(sc, off, val);
842 }
843
844 static uint8_t
845 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
846 {
847 uint32_t access, byte = 0;
848 int i;
849
850 /* Lock. */
851 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
852 for (i = 0; i < 8000; i++) {
853 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
854 break;
855 DELAY(20);
856 }
857 if (i == 8000)
858 return 1;
859
860 /* Enable access. */
861 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
862 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
863
864 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
865 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
866 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
867 DELAY(10);
868 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
869 DELAY(10);
870 break;
871 }
872 }
873
874 if (i == BGE_TIMEOUT * 10) {
875 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
876 return 1;
877 }
878
879 /* Get result. */
880 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
881
882 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
883
884 /* Disable access. */
885 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
886
887 /* Unlock. */
888 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
889
890 return 0;
891 }
892
893 /*
894 * Read a sequence of bytes from NVRAM.
895 */
896 static int
897 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
898 {
899 int error = 0, i;
900 uint8_t byte = 0;
901
902 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
903 return 1;
904
905 for (i = 0; i < cnt; i++) {
906 error = bge_nvram_getbyte(sc, off + i, &byte);
907 if (error)
908 break;
909 *(dest + i) = byte;
910 }
911
912 return (error ? 1 : 0);
913 }
914
915 /*
916 * Read a byte of data stored in the EEPROM at address 'addr.' The
917 * BCM570x supports both the traditional bitbang interface and an
918 * auto access interface for reading the EEPROM. We use the auto
919 * access method.
920 */
921 static uint8_t
922 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
923 {
924 int i;
925 uint32_t byte = 0;
926
927 /*
928 * Enable use of auto EEPROM access so we can avoid
929 * having to use the bitbang method.
930 */
931 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
932
933 /* Reset the EEPROM, load the clock period. */
934 CSR_WRITE_4(sc, BGE_EE_ADDR,
935 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
936 DELAY(20);
937
938 /* Issue the read EEPROM command. */
939 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
940
941 /* Wait for completion */
942 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
943 DELAY(10);
944 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
945 break;
946 }
947
948 if (i == BGE_TIMEOUT * 10) {
949 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
950 return 1;
951 }
952
953 /* Get result. */
954 byte = CSR_READ_4(sc, BGE_EE_DATA);
955
956 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
957
958 return 0;
959 }
960
961 /*
962 * Read a sequence of bytes from the EEPROM.
963 */
964 static int
965 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
966 {
967 int error = 0, i;
968 uint8_t byte = 0;
969 char *dest = destv;
970
971 for (i = 0; i < cnt; i++) {
972 error = bge_eeprom_getbyte(sc, off + i, &byte);
973 if (error)
974 break;
975 *(dest + i) = byte;
976 }
977
978 return (error ? 1 : 0);
979 }
980
981 static int
982 bge_miibus_readreg(device_t dev, int phy, int reg)
983 {
984 struct bge_softc *sc = device_private(dev);
985 uint32_t val;
986 uint32_t autopoll;
987 int i;
988
989 /*
990 * Broadcom's own driver always assumes the internal
991 * PHY is at GMII address 1. On some chips, the PHY responds
992 * to accesses at all addresses, which could cause us to
993 * bogusly attach the PHY 32 times at probe type. Always
994 * restricting the lookup to address 1 is simpler than
995 * trying to figure out which chips revisions should be
996 * special-cased.
997 */
998 if (phy != 1)
999 return 0;
1000
1001 /* Reading with autopolling on may trigger PCI errors */
1002 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1003 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1004 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1005 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1006 DELAY(40);
1007 }
1008
1009 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1010 BGE_MIPHY(phy) | BGE_MIREG(reg));
1011
1012 for (i = 0; i < BGE_TIMEOUT; i++) {
1013 val = CSR_READ_4(sc, BGE_MI_COMM);
1014 if (!(val & BGE_MICOMM_BUSY))
1015 break;
1016 delay(10);
1017 }
1018
1019 if (i == BGE_TIMEOUT) {
1020 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1021 val = 0;
1022 goto done;
1023 }
1024
1025 val = CSR_READ_4(sc, BGE_MI_COMM);
1026
1027 done:
1028 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1029 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1030 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1031 DELAY(40);
1032 }
1033
1034 if (val & BGE_MICOMM_READFAIL)
1035 return 0;
1036
1037 return (val & 0xFFFF);
1038 }
1039
1040 static void
1041 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1042 {
1043 struct bge_softc *sc = device_private(dev);
1044 uint32_t autopoll;
1045 int i;
1046
1047 if (phy!=1) {
1048 return;
1049 }
1050
1051 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1052 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1053 return;
1054
1055 /* Reading with autopolling on may trigger PCI errors */
1056 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1057 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1058 delay(40);
1059 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1060 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1061 delay(10); /* 40 usec is supposed to be adequate */
1062 }
1063
1064 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1065 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1066
1067 for (i = 0; i < BGE_TIMEOUT; i++) {
1068 delay(10);
1069 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1070 delay(5);
1071 CSR_READ_4(sc, BGE_MI_COMM);
1072 break;
1073 }
1074 }
1075
1076 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1077 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1078 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1079 delay(40);
1080 }
1081
1082 if (i == BGE_TIMEOUT)
1083 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1084 }
1085
1086 static void
1087 bge_miibus_statchg(struct ifnet *ifp)
1088 {
1089 struct bge_softc *sc = ifp->if_softc;
1090 struct mii_data *mii = &sc->bge_mii;
1091
1092 /*
1093 * Get flow control negotiation result.
1094 */
1095 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1096 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1097 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1098 mii->mii_media_active &= ~IFM_ETH_FMASK;
1099 }
1100
1101 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1102 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1103 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1104 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1105 else
1106 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1107
1108 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1109 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1110 else
1111 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1112 DELAY(40);
1113
1114 /*
1115 * 802.3x flow control
1116 */
1117 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1118 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1119 else
1120 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1121
1122 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1123 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1124 else
1125 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1126 }
1127
1128 /*
1129 * Update rx threshold levels to values in a particular slot
1130 * of the interrupt-mitigation table bge_rx_threshes.
1131 */
1132 static void
1133 bge_set_thresh(struct ifnet *ifp, int lvl)
1134 {
1135 struct bge_softc *sc = ifp->if_softc;
1136 int s;
1137
1138 /* For now, just save the new Rx-intr thresholds and record
1139 * that a threshold update is pending. Updating the hardware
1140 * registers here (even at splhigh()) is observed to
1141 * occasionaly cause glitches where Rx-interrupts are not
1142 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1143 */
1144 s = splnet();
1145 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1146 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1147 sc->bge_pending_rxintr_change = 1;
1148 splx(s);
1149 }
1150
1151
1152 /*
1153 * Update Rx thresholds of all bge devices
1154 */
1155 static void
1156 bge_update_all_threshes(int lvl)
1157 {
1158 struct ifnet *ifp;
1159 const char * const namebuf = "bge";
1160 int namelen;
1161
1162 if (lvl < 0)
1163 lvl = 0;
1164 else if (lvl >= NBGE_RX_THRESH)
1165 lvl = NBGE_RX_THRESH - 1;
1166
1167 namelen = strlen(namebuf);
1168 /*
1169 * Now search all the interfaces for this name/number
1170 */
1171 IFNET_FOREACH(ifp) {
1172 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1173 continue;
1174 /* We got a match: update if doing auto-threshold-tuning */
1175 if (bge_auto_thresh)
1176 bge_set_thresh(ifp, lvl);
1177 }
1178 }
1179
1180 /*
1181 * Handle events that have triggered interrupts.
1182 */
1183 static void
1184 bge_handle_events(struct bge_softc *sc)
1185 {
1186
1187 return;
1188 }
1189
1190 /*
1191 * Memory management for jumbo frames.
1192 */
1193
1194 static int
1195 bge_alloc_jumbo_mem(struct bge_softc *sc)
1196 {
1197 char *ptr, *kva;
1198 bus_dma_segment_t seg;
1199 int i, rseg, state, error;
1200 struct bge_jpool_entry *entry;
1201
1202 state = error = 0;
1203
1204 /* Grab a big chunk o' storage. */
1205 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1206 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1207 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1208 return ENOBUFS;
1209 }
1210
1211 state = 1;
1212 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1213 BUS_DMA_NOWAIT)) {
1214 aprint_error_dev(sc->bge_dev,
1215 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1216 error = ENOBUFS;
1217 goto out;
1218 }
1219
1220 state = 2;
1221 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1222 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1223 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1224 error = ENOBUFS;
1225 goto out;
1226 }
1227
1228 state = 3;
1229 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1230 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1231 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1232 error = ENOBUFS;
1233 goto out;
1234 }
1235
1236 state = 4;
1237 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1238 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1239
1240 SLIST_INIT(&sc->bge_jfree_listhead);
1241 SLIST_INIT(&sc->bge_jinuse_listhead);
1242
1243 /*
1244 * Now divide it up into 9K pieces and save the addresses
1245 * in an array.
1246 */
1247 ptr = sc->bge_cdata.bge_jumbo_buf;
1248 for (i = 0; i < BGE_JSLOTS; i++) {
1249 sc->bge_cdata.bge_jslots[i] = ptr;
1250 ptr += BGE_JLEN;
1251 entry = malloc(sizeof(struct bge_jpool_entry),
1252 M_DEVBUF, M_NOWAIT);
1253 if (entry == NULL) {
1254 aprint_error_dev(sc->bge_dev,
1255 "no memory for jumbo buffer queue!\n");
1256 error = ENOBUFS;
1257 goto out;
1258 }
1259 entry->slot = i;
1260 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1261 entry, jpool_entries);
1262 }
1263 out:
1264 if (error != 0) {
1265 switch (state) {
1266 case 4:
1267 bus_dmamap_unload(sc->bge_dmatag,
1268 sc->bge_cdata.bge_rx_jumbo_map);
1269 case 3:
1270 bus_dmamap_destroy(sc->bge_dmatag,
1271 sc->bge_cdata.bge_rx_jumbo_map);
1272 case 2:
1273 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1274 case 1:
1275 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1276 break;
1277 default:
1278 break;
1279 }
1280 }
1281
1282 return error;
1283 }
1284
1285 /*
1286 * Allocate a jumbo buffer.
1287 */
1288 static void *
1289 bge_jalloc(struct bge_softc *sc)
1290 {
1291 struct bge_jpool_entry *entry;
1292
1293 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1294
1295 if (entry == NULL) {
1296 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1297 return NULL;
1298 }
1299
1300 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1301 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1302 return (sc->bge_cdata.bge_jslots[entry->slot]);
1303 }
1304
1305 /*
1306 * Release a jumbo buffer.
1307 */
1308 static void
1309 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1310 {
1311 struct bge_jpool_entry *entry;
1312 struct bge_softc *sc;
1313 int i, s;
1314
1315 /* Extract the softc struct pointer. */
1316 sc = (struct bge_softc *)arg;
1317
1318 if (sc == NULL)
1319 panic("bge_jfree: can't find softc pointer!");
1320
1321 /* calculate the slot this buffer belongs to */
1322
1323 i = ((char *)buf
1324 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1325
1326 if ((i < 0) || (i >= BGE_JSLOTS))
1327 panic("bge_jfree: asked to free buffer that we don't manage!");
1328
1329 s = splvm();
1330 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1331 if (entry == NULL)
1332 panic("bge_jfree: buffer not in use!");
1333 entry->slot = i;
1334 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1335 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1336
1337 if (__predict_true(m != NULL))
1338 pool_cache_put(mb_cache, m);
1339 splx(s);
1340 }
1341
1342
1343 /*
1344 * Initialize a standard receive ring descriptor.
1345 */
1346 static int
1347 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1348 bus_dmamap_t dmamap)
1349 {
1350 struct mbuf *m_new = NULL;
1351 struct bge_rx_bd *r;
1352 int error;
1353
1354 if (dmamap == NULL) {
1355 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1356 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1357 if (error != 0)
1358 return error;
1359 }
1360
1361 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1362
1363 if (m == NULL) {
1364 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1365 if (m_new == NULL)
1366 return ENOBUFS;
1367
1368 MCLGET(m_new, M_DONTWAIT);
1369 if (!(m_new->m_flags & M_EXT)) {
1370 m_freem(m_new);
1371 return ENOBUFS;
1372 }
1373 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1374
1375 } else {
1376 m_new = m;
1377 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1378 m_new->m_data = m_new->m_ext.ext_buf;
1379 }
1380 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1381 m_adj(m_new, ETHER_ALIGN);
1382 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1383 BUS_DMA_READ|BUS_DMA_NOWAIT))
1384 return ENOBUFS;
1385 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1386 BUS_DMASYNC_PREREAD);
1387
1388 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1389 r = &sc->bge_rdata->bge_rx_std_ring[i];
1390 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1391 r->bge_flags = BGE_RXBDFLAG_END;
1392 r->bge_len = m_new->m_len;
1393 r->bge_idx = i;
1394
1395 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1396 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1397 i * sizeof (struct bge_rx_bd),
1398 sizeof (struct bge_rx_bd),
1399 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1400
1401 return 0;
1402 }
1403
1404 /*
1405 * Initialize a jumbo receive ring descriptor. This allocates
1406 * a jumbo buffer from the pool managed internally by the driver.
1407 */
1408 static int
1409 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1410 {
1411 struct mbuf *m_new = NULL;
1412 struct bge_rx_bd *r;
1413 void *buf = NULL;
1414
1415 if (m == NULL) {
1416
1417 /* Allocate the mbuf. */
1418 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1419 if (m_new == NULL)
1420 return ENOBUFS;
1421
1422 /* Allocate the jumbo buffer */
1423 buf = bge_jalloc(sc);
1424 if (buf == NULL) {
1425 m_freem(m_new);
1426 aprint_error_dev(sc->bge_dev,
1427 "jumbo allocation failed -- packet dropped!\n");
1428 return ENOBUFS;
1429 }
1430
1431 /* Attach the buffer to the mbuf. */
1432 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1433 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1434 bge_jfree, sc);
1435 m_new->m_flags |= M_EXT_RW;
1436 } else {
1437 m_new = m;
1438 buf = m_new->m_data = m_new->m_ext.ext_buf;
1439 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1440 }
1441 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1442 m_adj(m_new, ETHER_ALIGN);
1443 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1444 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1445 BUS_DMASYNC_PREREAD);
1446 /* Set up the descriptor. */
1447 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1448 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1449 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1450 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1451 r->bge_len = m_new->m_len;
1452 r->bge_idx = i;
1453
1454 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1455 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1456 i * sizeof (struct bge_rx_bd),
1457 sizeof (struct bge_rx_bd),
1458 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1465 * that's 1MB or memory, which is a lot. For now, we fill only the first
1466 * 256 ring entries and hope that our CPU is fast enough to keep up with
1467 * the NIC.
1468 */
1469 static int
1470 bge_init_rx_ring_std(struct bge_softc *sc)
1471 {
1472 int i;
1473
1474 if (sc->bge_flags & BGE_RXRING_VALID)
1475 return 0;
1476
1477 for (i = 0; i < BGE_SSLOTS; i++) {
1478 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1479 return ENOBUFS;
1480 }
1481
1482 sc->bge_std = i - 1;
1483 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1484
1485 sc->bge_flags |= BGE_RXRING_VALID;
1486
1487 return 0;
1488 }
1489
1490 static void
1491 bge_free_rx_ring_std(struct bge_softc *sc)
1492 {
1493 int i;
1494
1495 if (!(sc->bge_flags & BGE_RXRING_VALID))
1496 return;
1497
1498 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1499 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1500 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1501 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1502 bus_dmamap_destroy(sc->bge_dmatag,
1503 sc->bge_cdata.bge_rx_std_map[i]);
1504 }
1505 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1506 sizeof(struct bge_rx_bd));
1507 }
1508
1509 sc->bge_flags &= ~BGE_RXRING_VALID;
1510 }
1511
1512 static int
1513 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1514 {
1515 int i;
1516 volatile struct bge_rcb *rcb;
1517
1518 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1519 return 0;
1520
1521 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1522 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1523 return ENOBUFS;
1524 }
1525
1526 sc->bge_jumbo = i - 1;
1527 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1528
1529 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1530 rcb->bge_maxlen_flags = 0;
1531 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532
1533 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1534
1535 return 0;
1536 }
1537
1538 static void
1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1540 {
1541 int i;
1542
1543 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1544 return;
1545
1546 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1547 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1548 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1549 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1550 }
1551 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1552 sizeof(struct bge_rx_bd));
1553 }
1554
1555 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1556 }
1557
1558 static void
1559 bge_free_tx_ring(struct bge_softc *sc)
1560 {
1561 int i;
1562 struct txdmamap_pool_entry *dma;
1563
1564 if (!(sc->bge_flags & BGE_TXRING_VALID))
1565 return;
1566
1567 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1568 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1569 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1570 sc->bge_cdata.bge_tx_chain[i] = NULL;
1571 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1572 link);
1573 sc->txdma[i] = 0;
1574 }
1575 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1576 sizeof(struct bge_tx_bd));
1577 }
1578
1579 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1580 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1581 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1582 free(dma, M_DEVBUF);
1583 }
1584
1585 sc->bge_flags &= ~BGE_TXRING_VALID;
1586 }
1587
1588 static int
1589 bge_init_tx_ring(struct bge_softc *sc)
1590 {
1591 int i;
1592 bus_dmamap_t dmamap;
1593 struct txdmamap_pool_entry *dma;
1594
1595 if (sc->bge_flags & BGE_TXRING_VALID)
1596 return 0;
1597
1598 sc->bge_txcnt = 0;
1599 sc->bge_tx_saved_considx = 0;
1600
1601 /* Initialize transmit producer index for host-memory send ring. */
1602 sc->bge_tx_prodidx = 0;
1603 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1604 /* 5700 b2 errata */
1605 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1606 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1607
1608 /* NIC-memory send ring not used; initialize to zero. */
1609 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1610 /* 5700 b2 errata */
1611 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1612 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1613
1614 SLIST_INIT(&sc->txdma_list);
1615 for (i = 0; i < BGE_RSLOTS; i++) {
1616 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1617 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1618 &dmamap))
1619 return ENOBUFS;
1620 if (dmamap == NULL)
1621 panic("dmamap NULL in bge_init_tx_ring");
1622 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1623 if (dma == NULL) {
1624 aprint_error_dev(sc->bge_dev,
1625 "can't alloc txdmamap_pool_entry\n");
1626 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1627 return ENOMEM;
1628 }
1629 dma->dmamap = dmamap;
1630 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1631 }
1632
1633 sc->bge_flags |= BGE_TXRING_VALID;
1634
1635 return 0;
1636 }
1637
1638 static void
1639 bge_setmulti(struct bge_softc *sc)
1640 {
1641 struct ethercom *ac = &sc->ethercom;
1642 struct ifnet *ifp = &ac->ec_if;
1643 struct ether_multi *enm;
1644 struct ether_multistep step;
1645 uint32_t hashes[4] = { 0, 0, 0, 0 };
1646 uint32_t h;
1647 int i;
1648
1649 if (ifp->if_flags & IFF_PROMISC)
1650 goto allmulti;
1651
1652 /* Now program new ones. */
1653 ETHER_FIRST_MULTI(step, ac, enm);
1654 while (enm != NULL) {
1655 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1656 /*
1657 * We must listen to a range of multicast addresses.
1658 * For now, just accept all multicasts, rather than
1659 * trying to set only those filter bits needed to match
1660 * the range. (At this time, the only use of address
1661 * ranges is for IP multicast routing, for which the
1662 * range is big enough to require all bits set.)
1663 */
1664 goto allmulti;
1665 }
1666
1667 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1668
1669 /* Just want the 7 least-significant bits. */
1670 h &= 0x7f;
1671
1672 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1673 ETHER_NEXT_MULTI(step, enm);
1674 }
1675
1676 ifp->if_flags &= ~IFF_ALLMULTI;
1677 goto setit;
1678
1679 allmulti:
1680 ifp->if_flags |= IFF_ALLMULTI;
1681 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1682
1683 setit:
1684 for (i = 0; i < 4; i++)
1685 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1686 }
1687
1688 static void
1689 bge_sig_pre_reset(struct bge_softc *sc, int type)
1690 {
1691
1692 /*
1693 * Some chips don't like this so only do this if ASF is enabled
1694 */
1695 if (sc->bge_asf_mode)
1696 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1697
1698 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1699 switch (type) {
1700 case BGE_RESET_START:
1701 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1702 break;
1703 case BGE_RESET_STOP:
1704 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1705 break;
1706 }
1707 }
1708 }
1709
1710 static void
1711 bge_sig_post_reset(struct bge_softc *sc, int type)
1712 {
1713
1714 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1715 switch (type) {
1716 case BGE_RESET_START:
1717 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1718 /* START DONE */
1719 break;
1720 case BGE_RESET_STOP:
1721 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1722 break;
1723 }
1724 }
1725 }
1726
1727 static void
1728 bge_sig_legacy(struct bge_softc *sc, int type)
1729 {
1730
1731 if (sc->bge_asf_mode) {
1732 switch (type) {
1733 case BGE_RESET_START:
1734 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1735 break;
1736 case BGE_RESET_STOP:
1737 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1738 break;
1739 }
1740 }
1741 }
1742
1743 static void
1744 bge_stop_fw(struct bge_softc *sc)
1745 {
1746 int i;
1747
1748 if (sc->bge_asf_mode) {
1749 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1750 CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
1751 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1752
1753 for (i = 0; i < 100; i++) {
1754 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1755 break;
1756 DELAY(10);
1757 }
1758 }
1759 }
1760
1761 static int
1762 bge_poll_fw(struct bge_softc *sc)
1763 {
1764 uint32_t val;
1765 int i;
1766
1767 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1768 for (i = 0; i < BGE_TIMEOUT; i++) {
1769 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1770 if (val & BGE_VCPU_STATUS_INIT_DONE)
1771 break;
1772 DELAY(100);
1773 }
1774 if (i >= BGE_TIMEOUT) {
1775 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1776 return -1;
1777 }
1778 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1779 /*
1780 * Poll the value location we just wrote until
1781 * we see the 1's complement of the magic number.
1782 * This indicates that the firmware initialization
1783 * is complete.
1784 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1785 */
1786 for (i = 0; i < BGE_TIMEOUT; i++) {
1787 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1788 if (val == ~BGE_MAGIC_NUMBER)
1789 break;
1790 DELAY(10);
1791 }
1792
1793 if (i >= BGE_TIMEOUT) {
1794 aprint_error_dev(sc->bge_dev,
1795 "firmware handshake timed out, val = %x\n", val);
1796 return -1;
1797 }
1798 }
1799
1800 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1801 /* tg3 says we have to wait extra time */
1802 delay(10 * 1000);
1803 }
1804
1805 return 0;
1806 }
1807
1808 /*
1809 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1810 * self-test results.
1811 */
1812 static int
1813 bge_chipinit(struct bge_softc *sc)
1814 {
1815 uint32_t dma_rw_ctl, mode_ctl, reg;
1816 int i;
1817
1818 /* Set endianness before we access any non-PCI registers. */
1819 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1820 BGE_INIT);
1821
1822 /* Set power state to D0. */
1823 bge_setpowerstate(sc, 0);
1824
1825 /* Clear the MAC control register */
1826 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1827
1828 /*
1829 * Clear the MAC statistics block in the NIC's
1830 * internal memory.
1831 */
1832 for (i = BGE_STATS_BLOCK;
1833 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1834 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1835
1836 for (i = BGE_STATUS_BLOCK;
1837 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1838 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1839
1840 /* 5717 workaround from tg3 */
1841 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
1842 /* Save */
1843 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1844
1845 /* Temporary modify MODE_CTL to control TLP */
1846 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
1847 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
1848
1849 /* Control TLP */
1850 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
1851 BGE_TLP_PHYCTL1);
1852 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
1853 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
1854
1855 /* Restore */
1856 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1857 }
1858
1859 /* XXX Should we use 57765_FAMILY? */
1860 if (BGE_IS_57765_PLUS(sc)) {
1861 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1862 /* Save */
1863 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1864
1865 /* Temporary modify MODE_CTL to control TLP */
1866 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
1867 CSR_WRITE_4(sc, BGE_MODE_CTL,
1868 reg | BGE_MODECTL_PCIE_TLPADDR1);
1869
1870 /* Control TLP */
1871 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
1872 BGE_TLP_PHYCTL5);
1873 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
1874 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
1875
1876 /* Restore */
1877 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1878 }
1879 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
1880 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
1881 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1882 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
1883
1884 /* Save */
1885 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1886
1887 /* Temporary modify MODE_CTL to control TLP */
1888 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
1889 CSR_WRITE_4(sc, BGE_MODE_CTL,
1890 reg | BGE_MODECTL_PCIE_TLPADDR0);
1891
1892 /* Control TLP */
1893 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
1894 BGE_TLP_FTSMAX);
1895 reg &= ~BGE_TLP_FTSMAX_MSK;
1896 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
1897 reg | BGE_TLP_FTSMAX_VAL);
1898
1899 /* Restore */
1900 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1901 }
1902
1903 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1904 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1905 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1906 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
1907 }
1908
1909 /* Set up the PCI DMA control register. */
1910 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1911 if (sc->bge_flags & BGE_PCIE) {
1912 /* Read watermark not used, 128 bytes for write. */
1913 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1914 device_xname(sc->bge_dev)));
1915 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1916 } else if (sc->bge_flags & BGE_PCIX) {
1917 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1918 device_xname(sc->bge_dev)));
1919 /* PCI-X bus */
1920 if (BGE_IS_5714_FAMILY(sc)) {
1921 /* 256 bytes for read and write. */
1922 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1923 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1924
1925 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1926 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1927 else
1928 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1929 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1930 /* 1536 bytes for read, 384 bytes for write. */
1931 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1932 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1933 } else {
1934 /* 384 bytes for read and write. */
1935 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1936 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1937 (0x0F);
1938 }
1939
1940 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1941 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1942 uint32_t tmp;
1943
1944 /* Set ONEDMA_ATONCE for hardware workaround. */
1945 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1946 BGE_PCI_CLKCTL) & 0x1f;
1947 if (tmp == 6 || tmp == 7)
1948 dma_rw_ctl |=
1949 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1950
1951 /* Set PCI-X DMA write workaround. */
1952 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1953 }
1954 } else {
1955 /* Conventional PCI bus: 256 bytes for read and write. */
1956 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1957 device_xname(sc->bge_dev)));
1958 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1959 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1960
1961 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1962 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1963 dma_rw_ctl |= 0x0F;
1964 }
1965
1966 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1967 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1968 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1969 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1970
1971 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1972 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1973 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1974
1975 if (BGE_IS_5717_PLUS(sc)) {
1976 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1977 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1978 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1979
1980 /*
1981 * Enable HW workaround for controllers that misinterpret
1982 * a status tag update and leave interrupts permanently
1983 * disabled.
1984 */
1985 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
1986 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
1987 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1988 }
1989
1990 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1991 dma_rw_ctl);
1992
1993 /*
1994 * Set up general mode register.
1995 */
1996 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1997 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1998 BGE_MODECTL_TX_NO_PHDR_CSUM);
1999
2000 /*
2001 * BCM5701 B5 have a bug causing data corruption when using
2002 * 64-bit DMA reads, which can be terminated early and then
2003 * completed later as 32-bit accesses, in combination with
2004 * certain bridges.
2005 */
2006 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2007 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2008 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
2009
2010 /*
2011 * Tell the firmware the driver is running
2012 */
2013 if (sc->bge_asf_mode & ASF_STACKUP)
2014 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2015
2016 /*
2017 * Disable memory write invalidate. Apparently it is not supported
2018 * properly by these devices.
2019 */
2020 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2021 PCI_COMMAND_INVALIDATE_ENABLE);
2022
2023 #ifdef __brokenalpha__
2024 /*
2025 * Must insure that we do not cross an 8K (bytes) boundary
2026 * for DMA reads. Our highest limit is 1K bytes. This is a
2027 * restriction on some ALPHA platforms with early revision
2028 * 21174 PCI chipsets, such as the AlphaPC 164lx
2029 */
2030 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2031 #endif
2032
2033 /* Set the timer prescaler (always 66MHz) */
2034 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
2035
2036 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2037 DELAY(40); /* XXX */
2038
2039 /* Put PHY into ready state */
2040 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2041 DELAY(40);
2042 }
2043
2044 return 0;
2045 }
2046
2047 static int
2048 bge_blockinit(struct bge_softc *sc)
2049 {
2050 volatile struct bge_rcb *rcb;
2051 bus_size_t rcb_addr;
2052 int i;
2053 struct ifnet *ifp = &sc->ethercom.ec_if;
2054 bge_hostaddr taddr;
2055 uint32_t val;
2056
2057 /*
2058 * Initialize the memory window pointer register so that
2059 * we can access the first 32K of internal NIC RAM. This will
2060 * allow us to set up the TX send ring RCBs and the RX return
2061 * ring RCBs, plus other things which live in NIC memory.
2062 */
2063
2064 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2065
2066 /* Step 33: Configure mbuf memory pool */
2067 if (BGE_IS_5700_FAMILY(sc)) {
2068 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2069 BGE_BUFFPOOL_1);
2070
2071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2072 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2073 else
2074 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2075
2076 /* Configure DMA resource pool */
2077 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2078 BGE_DMA_DESCRIPTORS);
2079 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2080 }
2081
2082 /* Step 35: Configure mbuf pool watermarks */
2083 #ifdef ORIG_WPAUL_VALUES
2084 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
2085 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
2086 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
2087 #else
2088
2089 /* new broadcom docs strongly recommend these: */
2090 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2091 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2092 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2093 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2094 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2095 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2096 } else if (BGE_IS_5705_PLUS(sc)) {
2097 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2098
2099 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2100 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2101 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2102 } else {
2103 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2104 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2105 }
2106 } else if (!BGE_IS_5705_PLUS(sc)) {
2107 if (ifp->if_mtu > ETHER_MAX_LEN) {
2108 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2109 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2110 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2111 } else {
2112 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2113 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2114 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2115 }
2116 } else {
2117 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2118 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2119 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2120 }
2121 #endif
2122
2123 /* Step 36: Configure DMA resource watermarks */
2124 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2125 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2126
2127 /* Step 38: Enable buffer manager */
2128 CSR_WRITE_4(sc, BGE_BMAN_MODE,
2129 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2130
2131 /* Step 39: Poll for buffer manager start indication */
2132 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2133 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2134 break;
2135 DELAY(10);
2136 }
2137
2138 if (i == BGE_TIMEOUT * 2) {
2139 aprint_error_dev(sc->bge_dev,
2140 "buffer manager failed to start\n");
2141 return ENXIO;
2142 }
2143
2144 /* Step 40: Enable flow-through queues */
2145 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2146 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2147
2148 /* Wait until queue initialization is complete */
2149 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2150 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2151 break;
2152 DELAY(10);
2153 }
2154
2155 if (i == BGE_TIMEOUT * 2) {
2156 aprint_error_dev(sc->bge_dev,
2157 "flow-through queue init failed\n");
2158 return ENXIO;
2159 }
2160
2161 /* Step 41: Initialize the standard RX ring control block */
2162 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2163 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2165 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2166 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2167 rcb->bge_maxlen_flags =
2168 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2169 else if (BGE_IS_5705_PLUS(sc))
2170 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2171 else
2172 rcb->bge_maxlen_flags =
2173 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2174 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2175 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2176 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2177 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2178 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2179
2180 /*
2181 * Step 42: Initialize the jumbo RX ring control block
2182 * We set the 'ring disabled' bit in the flags
2183 * field until we're actually ready to start
2184 * using this ring (i.e. once we set the MTU
2185 * high enough to require it).
2186 */
2187 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2188 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2189 BGE_HOSTADDR(rcb->bge_hostaddr,
2190 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2191 rcb->bge_maxlen_flags =
2192 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2193 BGE_RCB_FLAG_RING_DISABLED);
2194 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2195 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2196 rcb->bge_hostaddr.bge_addr_hi);
2197 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2198 rcb->bge_hostaddr.bge_addr_lo);
2199 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2200 rcb->bge_maxlen_flags);
2201 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2202
2203 /* Set up dummy disabled mini ring RCB */
2204 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2205 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2206 BGE_RCB_FLAG_RING_DISABLED);
2207 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2208 rcb->bge_maxlen_flags);
2209
2210 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2211 offsetof(struct bge_ring_data, bge_info),
2212 sizeof (struct bge_gib),
2213 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2214 }
2215
2216 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2217 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2218 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2219 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2220 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2221 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2222 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2223 }
2224 /*
2225 * Set the BD ring replenish thresholds. The recommended
2226 * values are 1/8th the number of descriptors allocated to
2227 * each ring.
2228 */
2229 i = BGE_STD_RX_RING_CNT / 8;
2230
2231 /*
2232 * Use a value of 8 for the following chips to workaround HW errata.
2233 * Some of these chips have been added based on empirical
2234 * evidence (they don't work unless this is done).
2235 */
2236 if (BGE_IS_5705_PLUS(sc))
2237 i = 8;
2238
2239 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2240 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2241
2242 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2243 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2244 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2245 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2246 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2247 }
2248
2249 /*
2250 * Disable all unused send rings by setting the 'ring disabled'
2251 * bit in the flags field of all the TX send ring control blocks.
2252 * These are located in NIC memory.
2253 */
2254 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2255 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2256 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2257 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2258 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2259 rcb_addr += sizeof(struct bge_rcb);
2260 }
2261
2262 /* Configure TX RCB 0 (we use only the first ring) */
2263 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2264 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2265 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2266 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2267 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2268 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2269 if (BGE_IS_5700_FAMILY(sc))
2270 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2271 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2272
2273 /* Disable all unused RX return rings */
2274 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2275 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2276 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2277 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2278 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2279 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2280 BGE_RCB_FLAG_RING_DISABLED));
2281 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2282 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2283 (i * (sizeof(uint64_t))), 0);
2284 rcb_addr += sizeof(struct bge_rcb);
2285 }
2286
2287 /* Initialize RX ring indexes */
2288 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2289 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2290 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2291
2292 /*
2293 * Set up RX return ring 0
2294 * Note that the NIC address for RX return rings is 0x00000000.
2295 * The return rings live entirely within the host, so the
2296 * nicaddr field in the RCB isn't used.
2297 */
2298 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2299 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2300 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2301 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2302 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2303 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2304 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2305
2306 /* Set random backoff seed for TX */
2307 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2308 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2309 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2310 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2311 BGE_TX_BACKOFF_SEED_MASK);
2312
2313 /* Set inter-packet gap */
2314 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2315
2316 /*
2317 * Specify which ring to use for packets that don't match
2318 * any RX rules.
2319 */
2320 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2321
2322 /*
2323 * Configure number of RX lists. One interrupt distribution
2324 * list, sixteen active lists, one bad frames class.
2325 */
2326 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2327
2328 /* Inialize RX list placement stats mask. */
2329 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2330 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2331
2332 /* Disable host coalescing until we get it set up */
2333 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2334
2335 /* Poll to make sure it's shut down. */
2336 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2337 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2338 break;
2339 DELAY(10);
2340 }
2341
2342 if (i == BGE_TIMEOUT * 2) {
2343 aprint_error_dev(sc->bge_dev,
2344 "host coalescing engine failed to idle\n");
2345 return ENXIO;
2346 }
2347
2348 /* Set up host coalescing defaults */
2349 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2350 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2351 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2352 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2353 if (BGE_IS_5700_FAMILY(sc)) {
2354 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2355 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2356 }
2357 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2358 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2359
2360 /* Set up address of statistics block */
2361 if (BGE_IS_5700_FAMILY(sc)) {
2362 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2363 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2364 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2365 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2366 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2367 }
2368
2369 /* Set up address of status block */
2370 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2371 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2372 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2373 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2374 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2375 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2376
2377 /* Turn on host coalescing state machine */
2378 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2379
2380 /* Turn on RX BD completion state machine and enable attentions */
2381 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2382 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2383
2384 /* Turn on RX list placement state machine */
2385 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2386
2387 /* Turn on RX list selector state machine. */
2388 if (BGE_IS_5700_FAMILY(sc))
2389 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2390
2391 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2392 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2393 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2394 BGE_MACMODE_FRMHDR_DMA_ENB;
2395
2396 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2397 val |= BGE_PORTMODE_TBI;
2398 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2399 val |= BGE_PORTMODE_GMII;
2400 else
2401 val |= BGE_PORTMODE_MII;
2402
2403 /* Turn on DMA, clear stats */
2404 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2405 DELAY(40);
2406
2407 /* Set misc. local control, enable interrupts on attentions */
2408 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2409
2410 #ifdef notdef
2411 /* Assert GPIO pins for PHY reset */
2412 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2413 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2414 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2415 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2416 #endif
2417
2418 #if defined(not_quite_yet)
2419 /* Linux driver enables enable gpio pin #1 on 5700s */
2420 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2421 sc->bge_local_ctrl_reg |=
2422 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2423 }
2424 #endif
2425 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2426
2427 /* Turn on DMA completion state machine */
2428 if (BGE_IS_5700_FAMILY(sc))
2429 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2430
2431 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2432
2433 /* Enable host coalescing bug fix */
2434 if (BGE_IS_5755_PLUS(sc))
2435 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2436
2437 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2438 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2439
2440 /* Turn on write DMA state machine */
2441 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2442 DELAY(40);
2443
2444 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2445 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2446 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2447 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2448 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2449 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2450 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2451
2452 if (sc->bge_flags & BGE_PCIE)
2453 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2454 if (sc->bge_flags & BGE_TSO)
2455 val |= BGE_RDMAMODE_TSO4_ENABLE;
2456
2457 /* Turn on read DMA state machine */
2458 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2459 delay(40);
2460
2461 /* Turn on RX data completion state machine */
2462 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2463
2464 /* Turn on RX BD initiator state machine */
2465 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2466
2467 /* Turn on RX data and RX BD initiator state machine */
2468 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2469
2470 /* Turn on Mbuf cluster free state machine */
2471 if (BGE_IS_5700_FAMILY(sc))
2472 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2473
2474 /* Turn on send BD completion state machine */
2475 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2476
2477 /* Turn on send data completion state machine */
2478 val = BGE_SDCMODE_ENABLE;
2479 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2480 val |= BGE_SDCMODE_CDELAY;
2481 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2482
2483 /* Turn on send data initiator state machine */
2484 if (sc->bge_flags & BGE_TSO) {
2485 /* XXX: magic value from Linux driver */
2486 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2487 } else
2488 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2489
2490 /* Turn on send BD initiator state machine */
2491 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2492
2493 /* Turn on send BD selector state machine */
2494 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2495
2496 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2497 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2498 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2499
2500 /* ack/clear link change events */
2501 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2502 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2503 BGE_MACSTAT_LINK_CHANGED);
2504 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2505
2506 /* Enable PHY auto polling (for MII/GMII only) */
2507 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2508 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2509 } else {
2510 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2511 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2512 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2513 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2514 BGE_EVTENB_MI_INTERRUPT);
2515 }
2516
2517 /*
2518 * Clear any pending link state attention.
2519 * Otherwise some link state change events may be lost until attention
2520 * is cleared by bge_intr() -> bge_link_upd() sequence.
2521 * It's not necessary on newer BCM chips - perhaps enabling link
2522 * state change attentions implies clearing pending attention.
2523 */
2524 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2525 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2526 BGE_MACSTAT_LINK_CHANGED);
2527
2528 /* Enable link state change attentions. */
2529 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2530
2531 return 0;
2532 }
2533
2534 static const struct bge_revision *
2535 bge_lookup_rev(uint32_t chipid)
2536 {
2537 const struct bge_revision *br;
2538
2539 for (br = bge_revisions; br->br_name != NULL; br++) {
2540 if (br->br_chipid == chipid)
2541 return br;
2542 }
2543
2544 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2545 if (br->br_chipid == BGE_ASICREV(chipid))
2546 return br;
2547 }
2548
2549 return NULL;
2550 }
2551
2552 static const struct bge_product *
2553 bge_lookup(const struct pci_attach_args *pa)
2554 {
2555 const struct bge_product *bp;
2556
2557 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2558 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2559 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2560 return bp;
2561 }
2562
2563 return NULL;
2564 }
2565
2566 static int
2567 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2568 {
2569 #ifdef NOTYET
2570 uint32_t pm_ctl = 0;
2571
2572 /* XXX FIXME: make sure indirect accesses enabled? */
2573 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2574 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2575 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2576
2577 /* clear the PME_assert bit and power state bits, enable PME */
2578 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2579 pm_ctl &= ~PCIM_PSTAT_DMASK;
2580 pm_ctl |= (1 << 8);
2581
2582 if (powerlevel == 0) {
2583 pm_ctl |= PCIM_PSTAT_D0;
2584 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2585 pm_ctl, 2);
2586 DELAY(10000);
2587 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2588 DELAY(10000);
2589
2590 #ifdef NOTYET
2591 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2592 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2593 #endif
2594 DELAY(40); DELAY(40); DELAY(40);
2595 DELAY(10000); /* above not quite adequate on 5700 */
2596 return 0;
2597 }
2598
2599
2600 /*
2601 * Entering ACPI power states D1-D3 is achieved by wiggling
2602 * GMII gpio pins. Example code assumes all hardware vendors
2603 * followed Broadcom's sample pcb layout. Until we verify that
2604 * for all supported OEM cards, states D1-D3 are unsupported.
2605 */
2606 aprint_error_dev(sc->bge_dev,
2607 "power state %d unimplemented; check GPIO pins\n",
2608 powerlevel);
2609 #endif
2610 return EOPNOTSUPP;
2611 }
2612
2613
2614 /*
2615 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2616 * against our list and return its name if we find a match. Note
2617 * that since the Broadcom controller contains VPD support, we
2618 * can get the device name string from the controller itself instead
2619 * of the compiled-in string. This is a little slow, but it guarantees
2620 * we'll always announce the right product name.
2621 */
2622 static int
2623 bge_probe(device_t parent, cfdata_t match, void *aux)
2624 {
2625 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2626
2627 if (bge_lookup(pa) != NULL)
2628 return 1;
2629
2630 return 0;
2631 }
2632
2633 static void
2634 bge_attach(device_t parent, device_t self, void *aux)
2635 {
2636 struct bge_softc *sc = device_private(self);
2637 struct pci_attach_args *pa = aux;
2638 prop_dictionary_t dict;
2639 const struct bge_product *bp;
2640 const struct bge_revision *br;
2641 pci_chipset_tag_t pc;
2642 pci_intr_handle_t ih;
2643 const char *intrstr = NULL;
2644 bus_dma_segment_t seg;
2645 int rseg;
2646 uint32_t hwcfg = 0;
2647 uint32_t command;
2648 struct ifnet *ifp;
2649 uint32_t misccfg;
2650 void * kva;
2651 u_char eaddr[ETHER_ADDR_LEN];
2652 pcireg_t memtype, subid;
2653 bus_addr_t memaddr;
2654 bus_size_t memsize;
2655 uint32_t pm_ctl;
2656 bool no_seeprom;
2657
2658 bp = bge_lookup(pa);
2659 KASSERT(bp != NULL);
2660
2661 sc->sc_pc = pa->pa_pc;
2662 sc->sc_pcitag = pa->pa_tag;
2663 sc->bge_dev = self;
2664
2665 pc = sc->sc_pc;
2666 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2667
2668 aprint_naive(": Ethernet controller\n");
2669 aprint_normal(": %s\n", bp->bp_name);
2670
2671 /*
2672 * Map control/status registers.
2673 */
2674 DPRINTFN(5, ("Map control/status regs\n"));
2675 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2676 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2677 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2678 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2679
2680 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2681 aprint_error_dev(sc->bge_dev,
2682 "failed to enable memory mapping!\n");
2683 return;
2684 }
2685
2686 DPRINTFN(5, ("pci_mem_find\n"));
2687 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2688 switch (memtype) {
2689 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2690 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2691 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2692 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2693 &memaddr, &memsize) == 0)
2694 break;
2695 default:
2696 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2697 return;
2698 }
2699
2700 DPRINTFN(5, ("pci_intr_map\n"));
2701 if (pci_intr_map(pa, &ih)) {
2702 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2703 return;
2704 }
2705
2706 DPRINTFN(5, ("pci_intr_string\n"));
2707 intrstr = pci_intr_string(pc, ih);
2708
2709 DPRINTFN(5, ("pci_intr_establish\n"));
2710 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2711
2712 if (sc->bge_intrhand == NULL) {
2713 aprint_error_dev(sc->bge_dev,
2714 "couldn't establish interrupt%s%s\n",
2715 intrstr ? " at " : "", intrstr ? intrstr : "");
2716 return;
2717 }
2718 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2719
2720 /*
2721 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2722 * can clobber the chip's PCI config-space power control registers,
2723 * leaving the card in D3 powersave state.
2724 * We do not have memory-mapped registers in this state,
2725 * so force device into D0 state before starting initialization.
2726 */
2727 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2728 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2729 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2730 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2731 DELAY(1000); /* 27 usec is allegedly sufficent */
2732
2733 /*
2734 * Save ASIC rev.
2735 */
2736 sc->bge_chipid =
2737 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2738 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
2739
2740 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2741 switch (PCI_PRODUCT(pa->pa_id)) {
2742 case PCI_PRODUCT_BROADCOM_BCM5717:
2743 case PCI_PRODUCT_BROADCOM_BCM5718:
2744 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
2745 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2746 BGE_PCI_GEN2_PRODID_ASICREV);
2747 break;
2748 case PCI_PRODUCT_BROADCOM_BCM57761:
2749 case PCI_PRODUCT_BROADCOM_BCM57762:
2750 case PCI_PRODUCT_BROADCOM_BCM57765:
2751 case PCI_PRODUCT_BROADCOM_BCM57781:
2752 case PCI_PRODUCT_BROADCOM_BCM57785:
2753 case PCI_PRODUCT_BROADCOM_BCM57791:
2754 case PCI_PRODUCT_BROADCOM_BCM57795:
2755 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2756 BGE_PCI_GEN15_PRODID_ASICREV);
2757 break;
2758 default:
2759 sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2760 BGE_PCI_PRODID_ASICREV);
2761 break;
2762 }
2763 }
2764
2765 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2766 &sc->bge_pciecap, NULL) != 0)
2767 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2768 /* PCIe */
2769 sc->bge_flags |= BGE_PCIE;
2770 bge_set_max_readrq(sc);
2771 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2772 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2773 /* PCI-X */
2774 sc->bge_flags |= BGE_PCIX;
2775 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2776 &sc->bge_pcixcap, NULL) == 0)
2777 aprint_error_dev(sc->bge_dev,
2778 "unable to find PCIX capability\n");
2779 }
2780
2781 /* chipid */
2782 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2783 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2784 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2785 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2786 sc->bge_flags |= BGE_5700_FAMILY;
2787
2788 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2789 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2790 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2791 sc->bge_flags |= BGE_5714_FAMILY;
2792
2793 /* Intentionally exclude BGE_ASICREV_BCM5906 */
2794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2795 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2796 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2797 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2798 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2799 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2800 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2801 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2802 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2803 sc->bge_flags |= BGE_5755_PLUS;
2804
2805 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2806 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2807 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2808 BGE_IS_5755_PLUS(sc) ||
2809 BGE_IS_5714_FAMILY(sc))
2810 sc->bge_flags |= BGE_575X_PLUS;
2811
2812 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2813 BGE_IS_575X_PLUS(sc))
2814 sc->bge_flags |= BGE_5705_PLUS;
2815
2816 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2817 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2818 sc->bge_flags |= BGE_57765_PLUS;
2819
2820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2821 BGE_IS_57765_PLUS(sc))
2822 sc->bge_flags |= BGE_5717_PLUS;
2823 /*
2824 * When using the BCM5701 in PCI-X mode, data corruption has
2825 * been observed in the first few bytes of some received packets.
2826 * Aligning the packet buffer in memory eliminates the corruption.
2827 * Unfortunately, this misaligns the packet payloads. On platforms
2828 * which do not support unaligned accesses, we will realign the
2829 * payloads by copying the received packets.
2830 */
2831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2832 sc->bge_flags & BGE_PCIX)
2833 sc->bge_flags |= BGE_RX_ALIGNBUG;
2834
2835 if (BGE_IS_5700_FAMILY(sc))
2836 sc->bge_flags |= BGE_JUMBO_CAPABLE;
2837
2838 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2839 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2840 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2841 sc->bge_flags |= BGE_NO_3LED;
2842
2843 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2844 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2845
2846 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2847 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2848 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2849 sc->bge_flags |= BGE_IS_5788;
2850
2851 /*
2852 * Some controllers seem to require a special firmware to use
2853 * TSO. But the firmware is not available to FreeBSD and Linux
2854 * claims that the TSO performed by the firmware is slower than
2855 * hardware based TSO. Moreover the firmware based TSO has one
2856 * known bug which can't handle TSO if ethernet header + IP/TCP
2857 * header is greater than 80 bytes. The workaround for the TSO
2858 * bug exist but it seems it's too expensive than not using
2859 * TSO at all. Some hardwares also have the TSO bug so limit
2860 * the TSO to the controllers that are not affected TSO issues
2861 * (e.g. 5755 or higher).
2862 */
2863 if (BGE_IS_5755_PLUS(sc)) {
2864 /*
2865 * BCM5754 and BCM5787 shares the same ASIC id so
2866 * explicit device id check is required.
2867 */
2868 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2869 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2870 sc->bge_flags |= BGE_TSO;
2871 }
2872
2873 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2874 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2875 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2876 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2877 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2878 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2879 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2880 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2881 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2882 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2883 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2884 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2885 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2886 sc->bge_flags |= BGE_10_100_ONLY;
2887
2888 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2889 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2890 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2891 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2892 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2893 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2894
2895 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2896 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2897 sc->bge_flags |= BGE_PHY_CRC_BUG;
2898 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2899 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2900 sc->bge_flags |= BGE_PHY_ADC_BUG;
2901 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2902 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2903
2904 if (BGE_IS_5705_PLUS(sc) &&
2905 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2906 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2907 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2908 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2909 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2910 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2911 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2912 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2913 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2914 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2915 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2916 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2917 sc->bge_flags |= BGE_PHY_JITTER_BUG;
2918 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2919 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2920 } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2921 sc->bge_flags |= BGE_PHY_BER_BUG;
2922 }
2923
2924 /*
2925 * SEEPROM check.
2926 * First check if firmware knows we do not have SEEPROM.
2927 */
2928 if (prop_dictionary_get_bool(device_properties(self),
2929 "without-seeprom", &no_seeprom) && no_seeprom)
2930 sc->bge_flags |= BGE_NO_EEPROM;
2931
2932 /* Now check the 'ROM failed' bit on the RX CPU */
2933 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2934 sc->bge_flags |= BGE_NO_EEPROM;
2935
2936 /* Identify the chips that use an CPMU. */
2937 if (BGE_IS_5717_PLUS(sc) ||
2938 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2939 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2940 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2941 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2942 sc->bge_flags |= BGE_CPMU_PRESENT;
2943
2944 /* Try to reset the chip. */
2945 DPRINTFN(5, ("bge_reset\n"));
2946 bge_reset(sc);
2947
2948 sc->bge_asf_mode = 0;
2949 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2950 == BGE_MAGIC_NUMBER)) {
2951 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2952 & BGE_HWCFG_ASF) {
2953 sc->bge_asf_mode |= ASF_ENABLE;
2954 sc->bge_asf_mode |= ASF_STACKUP;
2955 if (BGE_IS_575X_PLUS(sc)) {
2956 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2957 }
2958 }
2959 }
2960
2961 /* Try to reset the chip again the nice way. */
2962 bge_stop_fw(sc);
2963 bge_sig_pre_reset(sc, BGE_RESET_STOP);
2964 if (bge_reset(sc))
2965 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2966
2967 bge_sig_legacy(sc, BGE_RESET_STOP);
2968 bge_sig_post_reset(sc, BGE_RESET_STOP);
2969
2970 if (bge_chipinit(sc)) {
2971 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2972 bge_release_resources(sc);
2973 return;
2974 }
2975
2976 /*
2977 * Get station address from the EEPROM.
2978 */
2979 if (bge_get_eaddr(sc, eaddr)) {
2980 aprint_error_dev(sc->bge_dev,
2981 "failed to read station address\n");
2982 bge_release_resources(sc);
2983 return;
2984 }
2985
2986 br = bge_lookup_rev(sc->bge_chipid);
2987
2988 if (br == NULL) {
2989 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2990 sc->bge_chipid);
2991 } else {
2992 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2993 br->br_name, sc->bge_chipid);
2994 }
2995 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2996
2997 /* Allocate the general information block and ring buffers. */
2998 if (pci_dma64_available(pa))
2999 sc->bge_dmatag = pa->pa_dmat64;
3000 else
3001 sc->bge_dmatag = pa->pa_dmat;
3002 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3003 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3004 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3005 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3006 return;
3007 }
3008 DPRINTFN(5, ("bus_dmamem_map\n"));
3009 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3010 sizeof(struct bge_ring_data), &kva,
3011 BUS_DMA_NOWAIT)) {
3012 aprint_error_dev(sc->bge_dev,
3013 "can't map DMA buffers (%zu bytes)\n",
3014 sizeof(struct bge_ring_data));
3015 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3016 return;
3017 }
3018 DPRINTFN(5, ("bus_dmamem_create\n"));
3019 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3020 sizeof(struct bge_ring_data), 0,
3021 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3022 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3023 bus_dmamem_unmap(sc->bge_dmatag, kva,
3024 sizeof(struct bge_ring_data));
3025 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3026 return;
3027 }
3028 DPRINTFN(5, ("bus_dmamem_load\n"));
3029 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3030 sizeof(struct bge_ring_data), NULL,
3031 BUS_DMA_NOWAIT)) {
3032 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3033 bus_dmamem_unmap(sc->bge_dmatag, kva,
3034 sizeof(struct bge_ring_data));
3035 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3036 return;
3037 }
3038
3039 DPRINTFN(5, ("bzero\n"));
3040 sc->bge_rdata = (struct bge_ring_data *)kva;
3041
3042 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3043
3044 /* Try to allocate memory for jumbo buffers. */
3045 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3046 if (bge_alloc_jumbo_mem(sc)) {
3047 aprint_error_dev(sc->bge_dev,
3048 "jumbo buffer allocation failed\n");
3049 } else
3050 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3051 }
3052
3053 /* Set default tuneable values. */
3054 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3055 sc->bge_rx_coal_ticks = 150;
3056 sc->bge_rx_max_coal_bds = 64;
3057 #ifdef ORIG_WPAUL_VALUES
3058 sc->bge_tx_coal_ticks = 150;
3059 sc->bge_tx_max_coal_bds = 128;
3060 #else
3061 sc->bge_tx_coal_ticks = 300;
3062 sc->bge_tx_max_coal_bds = 400;
3063 #endif
3064 if (BGE_IS_5705_PLUS(sc)) {
3065 sc->bge_tx_coal_ticks = (12 * 5);
3066 sc->bge_tx_max_coal_bds = (12 * 5);
3067 aprint_verbose_dev(sc->bge_dev,
3068 "setting short Tx thresholds\n");
3069 }
3070
3071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
3072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
3073 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
3074 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3075 else if (BGE_IS_5705_PLUS(sc))
3076 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3077 else
3078 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3079
3080 /* Set up ifnet structure */
3081 ifp = &sc->ethercom.ec_if;
3082 ifp->if_softc = sc;
3083 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3084 ifp->if_ioctl = bge_ioctl;
3085 ifp->if_stop = bge_stop;
3086 ifp->if_start = bge_start;
3087 ifp->if_init = bge_init;
3088 ifp->if_watchdog = bge_watchdog;
3089 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3090 IFQ_SET_READY(&ifp->if_snd);
3091 DPRINTFN(5, ("strcpy if_xname\n"));
3092 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3093
3094 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3095 sc->ethercom.ec_if.if_capabilities |=
3096 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3097 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3098 sc->ethercom.ec_if.if_capabilities |=
3099 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3100 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3101 #endif
3102 sc->ethercom.ec_capabilities |=
3103 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3104
3105 if (sc->bge_flags & BGE_TSO)
3106 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3107
3108 /*
3109 * Do MII setup.
3110 */
3111 DPRINTFN(5, ("mii setup\n"));
3112 sc->bge_mii.mii_ifp = ifp;
3113 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3114 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3115 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3116
3117 /*
3118 * Figure out what sort of media we have by checking the hardware
3119 * config word in the first 32k of NIC internal memory, or fall back to
3120 * the config word in the EEPROM. Note: on some BCM5700 cards,
3121 * this value appears to be unset. If that's the case, we have to rely
3122 * on identifying the NIC by its PCI subsystem ID, as we do below for
3123 * the SysKonnect SK-9D41.
3124 */
3125 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
3126 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3127 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3128 bge_read_eeprom(sc, (void *)&hwcfg,
3129 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3130 hwcfg = be32toh(hwcfg);
3131 }
3132 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3133 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3134 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3135 if (BGE_IS_5714_FAMILY(sc))
3136 sc->bge_flags |= BGE_PHY_FIBER_MII;
3137 else
3138 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3139 }
3140
3141 /* set phyflags and chipid before mii_attach() */
3142 dict = device_properties(self);
3143 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3144 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3145
3146 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3147 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3148 bge_ifmedia_sts);
3149 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3150 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3151 0, NULL);
3152 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3153 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3154 /* Pretend the user requested this setting */
3155 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3156 } else {
3157 /*
3158 * Do transceiver setup and tell the firmware the
3159 * driver is down so we can try to get access the
3160 * probe if ASF is running. Retry a couple of times
3161 * if we get a conflict with the ASF firmware accessing
3162 * the PHY.
3163 */
3164 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3165 bge_asf_driver_up(sc);
3166
3167 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3168 bge_ifmedia_sts);
3169 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3170 MII_PHY_ANY, MII_OFFSET_ANY,
3171 MIIF_FORCEANEG|MIIF_DOPAUSE);
3172
3173 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3174 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3175 ifmedia_add(&sc->bge_mii.mii_media,
3176 IFM_ETHER|IFM_MANUAL, 0, NULL);
3177 ifmedia_set(&sc->bge_mii.mii_media,
3178 IFM_ETHER|IFM_MANUAL);
3179 } else
3180 ifmedia_set(&sc->bge_mii.mii_media,
3181 IFM_ETHER|IFM_AUTO);
3182
3183 /*
3184 * Now tell the firmware we are going up after probing the PHY
3185 */
3186 if (sc->bge_asf_mode & ASF_STACKUP)
3187 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3188 }
3189
3190 /*
3191 * Call MI attach routine.
3192 */
3193 DPRINTFN(5, ("if_attach\n"));
3194 if_attach(ifp);
3195 DPRINTFN(5, ("ether_ifattach\n"));
3196 ether_ifattach(ifp, eaddr);
3197 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3198 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3199 RND_TYPE_NET, 0);
3200 #ifdef BGE_EVENT_COUNTERS
3201 /*
3202 * Attach event counters.
3203 */
3204 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3205 NULL, device_xname(sc->bge_dev), "intr");
3206 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3207 NULL, device_xname(sc->bge_dev), "tx_xoff");
3208 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3209 NULL, device_xname(sc->bge_dev), "tx_xon");
3210 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3211 NULL, device_xname(sc->bge_dev), "rx_xoff");
3212 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3213 NULL, device_xname(sc->bge_dev), "rx_xon");
3214 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3215 NULL, device_xname(sc->bge_dev), "rx_macctl");
3216 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3217 NULL, device_xname(sc->bge_dev), "xoffentered");
3218 #endif /* BGE_EVENT_COUNTERS */
3219 DPRINTFN(5, ("callout_init\n"));
3220 callout_init(&sc->bge_timeout, 0);
3221
3222 if (pmf_device_register(self, NULL, NULL))
3223 pmf_class_network_register(self, ifp);
3224 else
3225 aprint_error_dev(self, "couldn't establish power handler\n");
3226
3227 bge_sysctl_init(sc);
3228
3229 #ifdef BGE_DEBUG
3230 bge_debug_info(sc);
3231 #endif
3232 }
3233
3234 static void
3235 bge_release_resources(struct bge_softc *sc)
3236 {
3237 if (sc->bge_vpd_prodname != NULL)
3238 free(sc->bge_vpd_prodname, M_DEVBUF);
3239
3240 if (sc->bge_vpd_readonly != NULL)
3241 free(sc->bge_vpd_readonly, M_DEVBUF);
3242 }
3243
3244 static int
3245 bge_reset(struct bge_softc *sc)
3246 {
3247 uint32_t cachesize, command, pcistate, marbmode;
3248 #if 0
3249 uint32_t new_pcistate;
3250 #endif
3251 pcireg_t devctl, reg;
3252 int i, val;
3253 void (*write_op)(struct bge_softc *, int, int);
3254
3255 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
3256 && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3257 if (sc->bge_flags & BGE_PCIE)
3258 write_op = bge_writemem_direct;
3259 else
3260 write_op = bge_writemem_ind;
3261 } else
3262 write_op = bge_writereg_ind;
3263
3264 /* Save some important PCI state. */
3265 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3266 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3267 pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3268
3269 /* Step 5a: Enable memory arbiter. */
3270 marbmode = 0;
3271 if (BGE_IS_5714_FAMILY(sc))
3272 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3273 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3274
3275 /* Step 5b-5d: */
3276 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3277 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3278 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3279
3280 /* XXX ???: Disable fastboot on controllers that support it. */
3281 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3282 BGE_IS_5755_PLUS(sc))
3283 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3284
3285 /*
3286 * Step 6: Write the magic number to SRAM at offset 0xB50.
3287 * When firmware finishes its initialization it will
3288 * write ~BGE_MAGIC_NUMBER to the same location.
3289 */
3290 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3291
3292 /* Step 7: */
3293 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3294 /*
3295 * XXX: from FreeBSD/Linux; no documentation
3296 */
3297 if (sc->bge_flags & BGE_PCIE) {
3298 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3299 !BGE_IS_57765_PLUS(sc) &&
3300 (CSR_READ_4(sc, BGE_PCIE_CTL1) ==
3301 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3302 /* PCI Express 1.0 system */
3303 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3304 BGE_PHY_PCIE_SCRAM_MODE);
3305 }
3306 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3307 /*
3308 * Prevent PCI Express link training
3309 * during global reset.
3310 */
3311 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3312 val |= (1<<29);
3313 }
3314 }
3315
3316 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3317 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3318 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3319 i | BGE_VCPU_STATUS_DRV_RESET);
3320 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3321 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3322 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3323 }
3324
3325 /*
3326 * Set GPHY Power Down Override to leave GPHY
3327 * powered up in D0 uninitialized.
3328 */
3329 if (BGE_IS_5705_PLUS(sc))
3330 val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3331
3332 /* XXX 5721, 5751 and 5752 */
3333 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3334 val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3335
3336 /* Issue global reset */
3337 write_op(sc, BGE_MISC_CFG, val);
3338
3339 /* Step 8: wait for complete */
3340 if (sc->bge_flags & BGE_PCIE)
3341 delay(100*1000); /* too big */
3342 else
3343 delay(100);
3344
3345 /* From Linux: dummy read to flush PCI posted writes */
3346 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3347
3348 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3349 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3350 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3351 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3352 | BGE_PCIMISCCTL_CLOCKCTL_RW);
3353 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3354 write_op(sc, BGE_MISC_CFG, (65 << 1));
3355
3356 /* Step 11: disable PCI-X Relaxed Ordering. */
3357 if (sc->bge_flags & BGE_PCIX) {
3358 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3359 + PCI_PCIX_CMD);
3360 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3361 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3362 }
3363
3364 if (sc->bge_flags & BGE_PCIE) {
3365 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3366 DELAY(500000);
3367 /* XXX: Magic Numbers */
3368 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3369 BGE_PCI_UNKNOWN0);
3370 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3371 BGE_PCI_UNKNOWN0,
3372 reg | (1 << 15));
3373 }
3374 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3375 sc->bge_pciecap + PCI_PCIE_DCSR);
3376 /* Clear enable no snoop and disable relaxed ordering. */
3377 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3378 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3379 /* Set PCIE max payload size to 128. */
3380 devctl &= ~(0x00e0);
3381 /* Clear device status register. Write 1b to clear */
3382 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3383 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3384 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3385 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3386 }
3387
3388 /* Step 12: Enable memory arbiter. */
3389 marbmode = 0;
3390 if (BGE_IS_5714_FAMILY(sc))
3391 marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3392 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3393
3394 /* Step 17: Poll until the firmware initialization is complete */
3395 bge_poll_fw(sc);
3396
3397 /* XXX 5721, 5751 and 5752 */
3398 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3399 /* Step 19: */
3400 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3401 /* Step 20: */
3402 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3403 }
3404
3405 /*
3406 * Step 18: wirte mac mode
3407 * XXX Write 0x0c for 5703S and 5704S
3408 */
3409 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, 0);
3410 DELAY(40);
3411
3412
3413 /* Step 21: 5822 B0 errata */
3414 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3415 pcireg_t msidata;
3416
3417 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3418 BGE_PCI_MSI_DATA);
3419 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3420 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3421 msidata);
3422 }
3423
3424 /* Step 23: restore cache line size */
3425 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3426
3427 #if 0
3428 /*
3429 * XXX Wait for the value of the PCISTATE register to
3430 * return to its original pre-reset state. This is a
3431 * fairly good indicator of reset completion. If we don't
3432 * wait for the reset to fully complete, trying to read
3433 * from the device's non-PCI registers may yield garbage
3434 * results.
3435 */
3436 for (i = 0; i < BGE_TIMEOUT; i++) {
3437 new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3438 BGE_PCI_PCISTATE);
3439 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3440 (pcistate & ~BGE_PCISTATE_RESERVED))
3441 break;
3442 DELAY(10);
3443 }
3444 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3445 (pcistate & ~BGE_PCISTATE_RESERVED)) {
3446 aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3447 }
3448 #endif
3449
3450 /* Step 28: Fix up byte swapping */
3451 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3452
3453 /* Tell the ASF firmware we are up */
3454 if (sc->bge_asf_mode & ASF_STACKUP)
3455 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3456
3457 /*
3458 * The 5704 in TBI mode apparently needs some special
3459 * adjustment to insure the SERDES drive level is set
3460 * to 1.2V.
3461 */
3462 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3463 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3464 uint32_t serdescfg;
3465
3466 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3467 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3468 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3469 }
3470
3471 if (sc->bge_flags & BGE_PCIE &&
3472 !BGE_IS_57765_PLUS(sc) &&
3473 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3474 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
3475 uint32_t v;
3476
3477 /* Enable PCI Express bug fix */
3478 v = CSR_READ_4(sc, 0x7c00);
3479 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3480 }
3481 DELAY(10000);
3482
3483 return 0;
3484 }
3485
3486 /*
3487 * Frame reception handling. This is called if there's a frame
3488 * on the receive return list.
3489 *
3490 * Note: we have to be able to handle two possibilities here:
3491 * 1) the frame is from the jumbo receive ring
3492 * 2) the frame is from the standard receive ring
3493 */
3494
3495 static void
3496 bge_rxeof(struct bge_softc *sc)
3497 {
3498 struct ifnet *ifp;
3499 uint16_t rx_prod, rx_cons;
3500 int stdcnt = 0, jumbocnt = 0;
3501 bus_dmamap_t dmamap;
3502 bus_addr_t offset, toff;
3503 bus_size_t tlen;
3504 int tosync;
3505
3506 rx_cons = sc->bge_rx_saved_considx;
3507 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3508
3509 /* Nothing to do */
3510 if (rx_cons == rx_prod)
3511 return;
3512
3513 ifp = &sc->ethercom.ec_if;
3514
3515 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3516 offsetof(struct bge_ring_data, bge_status_block),
3517 sizeof (struct bge_status_block),
3518 BUS_DMASYNC_POSTREAD);
3519
3520 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3521 tosync = rx_prod - rx_cons;
3522
3523 if (tosync != 0)
3524 rnd_add_uint32(&sc->rnd_source, tosync);
3525
3526 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3527
3528 if (tosync < 0) {
3529 tlen = (sc->bge_return_ring_cnt - rx_cons) *
3530 sizeof (struct bge_rx_bd);
3531 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3532 toff, tlen, BUS_DMASYNC_POSTREAD);
3533 tosync = -tosync;
3534 }
3535
3536 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3537 offset, tosync * sizeof (struct bge_rx_bd),
3538 BUS_DMASYNC_POSTREAD);
3539
3540 while (rx_cons != rx_prod) {
3541 struct bge_rx_bd *cur_rx;
3542 uint32_t rxidx;
3543 struct mbuf *m = NULL;
3544
3545 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3546
3547 rxidx = cur_rx->bge_idx;
3548 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3549
3550 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3551 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3552 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3553 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3554 jumbocnt++;
3555 bus_dmamap_sync(sc->bge_dmatag,
3556 sc->bge_cdata.bge_rx_jumbo_map,
3557 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3558 BGE_JLEN, BUS_DMASYNC_POSTREAD);
3559 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3560 ifp->if_ierrors++;
3561 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3562 continue;
3563 }
3564 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3565 NULL)== ENOBUFS) {
3566 ifp->if_ierrors++;
3567 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3568 continue;
3569 }
3570 } else {
3571 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3572 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3573
3574 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3575 stdcnt++;
3576 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3577 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3578 if (dmamap == NULL) {
3579 ifp->if_ierrors++;
3580 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3581 continue;
3582 }
3583 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3584 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3585 bus_dmamap_unload(sc->bge_dmatag, dmamap);
3586 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3587 ifp->if_ierrors++;
3588 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3589 continue;
3590 }
3591 if (bge_newbuf_std(sc, sc->bge_std,
3592 NULL, dmamap) == ENOBUFS) {
3593 ifp->if_ierrors++;
3594 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3595 continue;
3596 }
3597 }
3598
3599 ifp->if_ipackets++;
3600 #ifndef __NO_STRICT_ALIGNMENT
3601 /*
3602 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3603 * the Rx buffer has the layer-2 header unaligned.
3604 * If our CPU requires alignment, re-align by copying.
3605 */
3606 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3607 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3608 cur_rx->bge_len);
3609 m->m_data += ETHER_ALIGN;
3610 }
3611 #endif
3612
3613 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3614 m->m_pkthdr.rcvif = ifp;
3615
3616 /*
3617 * Handle BPF listeners. Let the BPF user see the packet.
3618 */
3619 bpf_mtap(ifp, m);
3620
3621 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3622
3623 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3624 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3625 /*
3626 * Rx transport checksum-offload may also
3627 * have bugs with packets which, when transmitted,
3628 * were `runts' requiring padding.
3629 */
3630 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3631 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3632 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3633 m->m_pkthdr.csum_data =
3634 cur_rx->bge_tcp_udp_csum;
3635 m->m_pkthdr.csum_flags |=
3636 (M_CSUM_TCPv4|M_CSUM_UDPv4|
3637 M_CSUM_DATA);
3638 }
3639
3640 /*
3641 * If we received a packet with a vlan tag, pass it
3642 * to vlan_input() instead of ether_input().
3643 */
3644 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3645 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3646 }
3647
3648 (*ifp->if_input)(ifp, m);
3649 }
3650
3651 sc->bge_rx_saved_considx = rx_cons;
3652 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3653 if (stdcnt)
3654 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3655 if (jumbocnt)
3656 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3657 }
3658
3659 static void
3660 bge_txeof(struct bge_softc *sc)
3661 {
3662 struct bge_tx_bd *cur_tx = NULL;
3663 struct ifnet *ifp;
3664 struct txdmamap_pool_entry *dma;
3665 bus_addr_t offset, toff;
3666 bus_size_t tlen;
3667 int tosync;
3668 struct mbuf *m;
3669
3670 ifp = &sc->ethercom.ec_if;
3671
3672 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3673 offsetof(struct bge_ring_data, bge_status_block),
3674 sizeof (struct bge_status_block),
3675 BUS_DMASYNC_POSTREAD);
3676
3677 offset = offsetof(struct bge_ring_data, bge_tx_ring);
3678 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3679 sc->bge_tx_saved_considx;
3680
3681 if (tosync != 0)
3682 rnd_add_uint32(&sc->rnd_source, tosync);
3683
3684 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3685
3686 if (tosync < 0) {
3687 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3688 sizeof (struct bge_tx_bd);
3689 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3690 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3691 tosync = -tosync;
3692 }
3693
3694 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3695 offset, tosync * sizeof (struct bge_tx_bd),
3696 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3697
3698 /*
3699 * Go through our tx ring and free mbufs for those
3700 * frames that have been sent.
3701 */
3702 while (sc->bge_tx_saved_considx !=
3703 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3704 uint32_t idx = 0;
3705
3706 idx = sc->bge_tx_saved_considx;
3707 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3708 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3709 ifp->if_opackets++;
3710 m = sc->bge_cdata.bge_tx_chain[idx];
3711 if (m != NULL) {
3712 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3713 dma = sc->txdma[idx];
3714 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3715 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3716 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3717 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3718 sc->txdma[idx] = NULL;
3719
3720 m_freem(m);
3721 }
3722 sc->bge_txcnt--;
3723 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3724 ifp->if_timer = 0;
3725 }
3726
3727 if (cur_tx != NULL)
3728 ifp->if_flags &= ~IFF_OACTIVE;
3729 }
3730
3731 static int
3732 bge_intr(void *xsc)
3733 {
3734 struct bge_softc *sc;
3735 struct ifnet *ifp;
3736 uint32_t statusword;
3737
3738 sc = xsc;
3739 ifp = &sc->ethercom.ec_if;
3740
3741 /* It is possible for the interrupt to arrive before
3742 * the status block is updated prior to the interrupt.
3743 * Reading the PCI State register will confirm whether the
3744 * interrupt is ours and will flush the status block.
3745 */
3746
3747 /* read status word from status block */
3748 statusword = sc->bge_rdata->bge_status_block.bge_status;
3749
3750 if ((statusword & BGE_STATFLAG_UPDATED) ||
3751 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3752 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3753 /* Ack interrupt and stop others from occuring. */
3754 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
3755
3756 BGE_EVCNT_INCR(sc->bge_ev_intr);
3757
3758 /* clear status word */
3759 sc->bge_rdata->bge_status_block.bge_status = 0;
3760
3761 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3762 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3763 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3764 bge_link_upd(sc);
3765
3766 if (ifp->if_flags & IFF_RUNNING) {
3767 /* Check RX return ring producer/consumer */
3768 bge_rxeof(sc);
3769
3770 /* Check TX ring producer/consumer */
3771 bge_txeof(sc);
3772 }
3773
3774 if (sc->bge_pending_rxintr_change) {
3775 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3776 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3777 uint32_t junk;
3778
3779 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3780 DELAY(10);
3781 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3782
3783 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3784 DELAY(10);
3785 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3786
3787 sc->bge_pending_rxintr_change = 0;
3788 }
3789 bge_handle_events(sc);
3790
3791 /* Re-enable interrupts. */
3792 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
3793
3794 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3795 bge_start(ifp);
3796
3797 return 1;
3798 } else
3799 return 0;
3800 }
3801
3802 static void
3803 bge_asf_driver_up(struct bge_softc *sc)
3804 {
3805 if (sc->bge_asf_mode & ASF_STACKUP) {
3806 /* Send ASF heartbeat aprox. every 2s */
3807 if (sc->bge_asf_count)
3808 sc->bge_asf_count --;
3809 else {
3810 sc->bge_asf_count = 2;
3811 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3812 BGE_FW_DRV_ALIVE);
3813 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3814 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3815 CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
3816 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3817 }
3818 }
3819 }
3820
3821 static void
3822 bge_tick(void *xsc)
3823 {
3824 struct bge_softc *sc = xsc;
3825 struct mii_data *mii = &sc->bge_mii;
3826 int s;
3827
3828 s = splnet();
3829
3830 if (BGE_IS_5705_PLUS(sc))
3831 bge_stats_update_regs(sc);
3832 else
3833 bge_stats_update(sc);
3834
3835 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3836 /*
3837 * Since in TBI mode auto-polling can't be used we should poll
3838 * link status manually. Here we register pending link event
3839 * and trigger interrupt.
3840 */
3841 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3842 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3843 } else {
3844 /*
3845 * Do not touch PHY if we have link up. This could break
3846 * IPMI/ASF mode or produce extra input errors.
3847 * (extra input errors was reported for bcm5701 & bcm5704).
3848 */
3849 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3850 mii_tick(mii);
3851 }
3852
3853 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3854
3855 splx(s);
3856 }
3857
3858 static void
3859 bge_stats_update_regs(struct bge_softc *sc)
3860 {
3861 struct ifnet *ifp = &sc->ethercom.ec_if;
3862
3863 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3864 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3865
3866 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3867 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3868 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3869 }
3870
3871 static void
3872 bge_stats_update(struct bge_softc *sc)
3873 {
3874 struct ifnet *ifp = &sc->ethercom.ec_if;
3875 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3876
3877 #define READ_STAT(sc, stats, stat) \
3878 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3879
3880 ifp->if_collisions +=
3881 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3882 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3883 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3884 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3885 ifp->if_collisions;
3886
3887 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3888 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3889 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3890 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3891 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3892 READ_STAT(sc, stats,
3893 xoffPauseFramesReceived.bge_addr_lo));
3894 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3895 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3896 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3897 READ_STAT(sc, stats,
3898 macControlFramesReceived.bge_addr_lo));
3899 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3900 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3901
3902 #undef READ_STAT
3903
3904 #ifdef notdef
3905 ifp->if_collisions +=
3906 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3907 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3908 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3909 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3910 ifp->if_collisions;
3911 #endif
3912 }
3913
3914 /*
3915 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3916 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3917 * but when such padded frames employ the bge IP/TCP checksum offload,
3918 * the hardware checksum assist gives incorrect results (possibly
3919 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3920 * If we pad such runts with zeros, the onboard checksum comes out correct.
3921 */
3922 static inline int
3923 bge_cksum_pad(struct mbuf *pkt)
3924 {
3925 struct mbuf *last = NULL;
3926 int padlen;
3927
3928 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3929
3930 /* if there's only the packet-header and we can pad there, use it. */
3931 if (pkt->m_pkthdr.len == pkt->m_len &&
3932 M_TRAILINGSPACE(pkt) >= padlen) {
3933 last = pkt;
3934 } else {
3935 /*
3936 * Walk packet chain to find last mbuf. We will either
3937 * pad there, or append a new mbuf and pad it
3938 * (thus perhaps avoiding the bcm5700 dma-min bug).
3939 */
3940 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3941 continue; /* do nothing */
3942 }
3943
3944 /* `last' now points to last in chain. */
3945 if (M_TRAILINGSPACE(last) < padlen) {
3946 /* Allocate new empty mbuf, pad it. Compact later. */
3947 struct mbuf *n;
3948 MGET(n, M_DONTWAIT, MT_DATA);
3949 if (n == NULL)
3950 return ENOBUFS;
3951 n->m_len = 0;
3952 last->m_next = n;
3953 last = n;
3954 }
3955 }
3956
3957 KDASSERT(!M_READONLY(last));
3958 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3959
3960 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3961 memset(mtod(last, char *) + last->m_len, 0, padlen);
3962 last->m_len += padlen;
3963 pkt->m_pkthdr.len += padlen;
3964 return 0;
3965 }
3966
3967 /*
3968 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3969 */
3970 static inline int
3971 bge_compact_dma_runt(struct mbuf *pkt)
3972 {
3973 struct mbuf *m, *prev;
3974 int totlen, prevlen;
3975
3976 prev = NULL;
3977 totlen = 0;
3978 prevlen = -1;
3979
3980 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3981 int mlen = m->m_len;
3982 int shortfall = 8 - mlen ;
3983
3984 totlen += mlen;
3985 if (mlen == 0)
3986 continue;
3987 if (mlen >= 8)
3988 continue;
3989
3990 /* If we get here, mbuf data is too small for DMA engine.
3991 * Try to fix by shuffling data to prev or next in chain.
3992 * If that fails, do a compacting deep-copy of the whole chain.
3993 */
3994
3995 /* Internal frag. If fits in prev, copy it there. */
3996 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3997 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3998 prev->m_len += mlen;
3999 m->m_len = 0;
4000 /* XXX stitch chain */
4001 prev->m_next = m_free(m);
4002 m = prev;
4003 continue;
4004 }
4005 else if (m->m_next != NULL &&
4006 M_TRAILINGSPACE(m) >= shortfall &&
4007 m->m_next->m_len >= (8 + shortfall)) {
4008 /* m is writable and have enough data in next, pull up. */
4009
4010 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4011 shortfall);
4012 m->m_len += shortfall;
4013 m->m_next->m_len -= shortfall;
4014 m->m_next->m_data += shortfall;
4015 }
4016 else if (m->m_next == NULL || 1) {
4017 /* Got a runt at the very end of the packet.
4018 * borrow data from the tail of the preceding mbuf and
4019 * update its length in-place. (The original data is still
4020 * valid, so we can do this even if prev is not writable.)
4021 */
4022
4023 /* if we'd make prev a runt, just move all of its data. */
4024 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4025 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4026
4027 if ((prev->m_len - shortfall) < 8)
4028 shortfall = prev->m_len;
4029
4030 #ifdef notyet /* just do the safe slow thing for now */
4031 if (!M_READONLY(m)) {
4032 if (M_LEADINGSPACE(m) < shorfall) {
4033 void *m_dat;
4034 m_dat = (m->m_flags & M_PKTHDR) ?
4035 m->m_pktdat : m->dat;
4036 memmove(m_dat, mtod(m, void*), m->m_len);
4037 m->m_data = m_dat;
4038 }
4039 } else
4040 #endif /* just do the safe slow thing */
4041 {
4042 struct mbuf * n = NULL;
4043 int newprevlen = prev->m_len - shortfall;
4044
4045 MGET(n, M_NOWAIT, MT_DATA);
4046 if (n == NULL)
4047 return ENOBUFS;
4048 KASSERT(m->m_len + shortfall < MLEN
4049 /*,
4050 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4051
4052 /* first copy the data we're stealing from prev */
4053 memcpy(n->m_data, prev->m_data + newprevlen,
4054 shortfall);
4055
4056 /* update prev->m_len accordingly */
4057 prev->m_len -= shortfall;
4058
4059 /* copy data from runt m */
4060 memcpy(n->m_data + shortfall, m->m_data,
4061 m->m_len);
4062
4063 /* n holds what we stole from prev, plus m */
4064 n->m_len = shortfall + m->m_len;
4065
4066 /* stitch n into chain and free m */
4067 n->m_next = m->m_next;
4068 prev->m_next = n;
4069 /* KASSERT(m->m_next == NULL); */
4070 m->m_next = NULL;
4071 m_free(m);
4072 m = n; /* for continuing loop */
4073 }
4074 }
4075 prevlen = m->m_len;
4076 }
4077 return 0;
4078 }
4079
4080 /*
4081 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4082 * pointers to descriptors.
4083 */
4084 static int
4085 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4086 {
4087 struct bge_tx_bd *f = NULL;
4088 uint32_t frag, cur;
4089 uint16_t csum_flags = 0;
4090 uint16_t txbd_tso_flags = 0;
4091 struct txdmamap_pool_entry *dma;
4092 bus_dmamap_t dmamap;
4093 int i = 0;
4094 struct m_tag *mtag;
4095 int use_tso, maxsegsize, error;
4096
4097 cur = frag = *txidx;
4098
4099 if (m_head->m_pkthdr.csum_flags) {
4100 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4101 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4102 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4103 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4104 }
4105
4106 /*
4107 * If we were asked to do an outboard checksum, and the NIC
4108 * has the bug where it sometimes adds in the Ethernet padding,
4109 * explicitly pad with zeros so the cksum will be correct either way.
4110 * (For now, do this for all chip versions, until newer
4111 * are confirmed to not require the workaround.)
4112 */
4113 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4114 #ifdef notyet
4115 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4116 #endif
4117 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4118 goto check_dma_bug;
4119
4120 if (bge_cksum_pad(m_head) != 0)
4121 return ENOBUFS;
4122
4123 check_dma_bug:
4124 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4125 goto doit;
4126
4127 /*
4128 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4129 * less than eight bytes. If we encounter a teeny mbuf
4130 * at the end of a chain, we can pad. Otherwise, copy.
4131 */
4132 if (bge_compact_dma_runt(m_head) != 0)
4133 return ENOBUFS;
4134
4135 doit:
4136 dma = SLIST_FIRST(&sc->txdma_list);
4137 if (dma == NULL)
4138 return ENOBUFS;
4139 dmamap = dma->dmamap;
4140
4141 /*
4142 * Set up any necessary TSO state before we start packing...
4143 */
4144 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4145 if (!use_tso) {
4146 maxsegsize = 0;
4147 } else { /* TSO setup */
4148 unsigned mss;
4149 struct ether_header *eh;
4150 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4151 struct mbuf * m0 = m_head;
4152 struct ip *ip;
4153 struct tcphdr *th;
4154 int iphl, hlen;
4155
4156 /*
4157 * XXX It would be nice if the mbuf pkthdr had offset
4158 * fields for the protocol headers.
4159 */
4160
4161 eh = mtod(m0, struct ether_header *);
4162 switch (htons(eh->ether_type)) {
4163 case ETHERTYPE_IP:
4164 offset = ETHER_HDR_LEN;
4165 break;
4166
4167 case ETHERTYPE_VLAN:
4168 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4169 break;
4170
4171 default:
4172 /*
4173 * Don't support this protocol or encapsulation.
4174 */
4175 return ENOBUFS;
4176 }
4177
4178 /*
4179 * TCP/IP headers are in the first mbuf; we can do
4180 * this the easy way.
4181 */
4182 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4183 hlen = iphl + offset;
4184 if (__predict_false(m0->m_len <
4185 (hlen + sizeof(struct tcphdr)))) {
4186
4187 aprint_debug_dev(sc->bge_dev,
4188 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4189 "not handled yet\n",
4190 m0->m_len, hlen+ sizeof(struct tcphdr));
4191 #ifdef NOTYET
4192 /*
4193 * XXX jonathan (at) NetBSD.org: untested.
4194 * how to force this branch to be taken?
4195 */
4196 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4197
4198 m_copydata(m0, offset, sizeof(ip), &ip);
4199 m_copydata(m0, hlen, sizeof(th), &th);
4200
4201 ip.ip_len = 0;
4202
4203 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4204 sizeof(ip.ip_len), &ip.ip_len);
4205
4206 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4207 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4208
4209 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4210 sizeof(th.th_sum), &th.th_sum);
4211
4212 hlen += th.th_off << 2;
4213 iptcp_opt_words = hlen;
4214 #else
4215 /*
4216 * if_wm "hard" case not yet supported, can we not
4217 * mandate it out of existence?
4218 */
4219 (void) ip; (void)th; (void) ip_tcp_hlen;
4220
4221 return ENOBUFS;
4222 #endif
4223 } else {
4224 ip = (struct ip *) (mtod(m0, char *) + offset);
4225 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4226 ip_tcp_hlen = iphl + (th->th_off << 2);
4227
4228 /* Total IP/TCP options, in 32-bit words */
4229 iptcp_opt_words = (ip_tcp_hlen
4230 - sizeof(struct tcphdr)
4231 - sizeof(struct ip)) >> 2;
4232 }
4233 if (BGE_IS_575X_PLUS(sc)) {
4234 th->th_sum = 0;
4235 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4236 } else {
4237 /*
4238 * XXX jonathan (at) NetBSD.org: 5705 untested.
4239 * Requires TSO firmware patch for 5701/5703/5704.
4240 */
4241 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4242 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4243 }
4244
4245 mss = m_head->m_pkthdr.segsz;
4246 txbd_tso_flags |=
4247 BGE_TXBDFLAG_CPU_PRE_DMA |
4248 BGE_TXBDFLAG_CPU_POST_DMA;
4249
4250 /*
4251 * Our NIC TSO-assist assumes TSO has standard, optionless
4252 * IPv4 and TCP headers, which total 40 bytes. By default,
4253 * the NIC copies 40 bytes of IP/TCP header from the
4254 * supplied header into the IP/TCP header portion of
4255 * each post-TSO-segment. If the supplied packet has IP or
4256 * TCP options, we need to tell the NIC to copy those extra
4257 * bytes into each post-TSO header, in addition to the normal
4258 * 40-byte IP/TCP header (and to leave space accordingly).
4259 * Unfortunately, the driver encoding of option length
4260 * varies across different ASIC families.
4261 */
4262 tcp_seg_flags = 0;
4263 if (iptcp_opt_words) {
4264 if (BGE_IS_5705_PLUS(sc)) {
4265 tcp_seg_flags =
4266 iptcp_opt_words << 11;
4267 } else {
4268 txbd_tso_flags |=
4269 iptcp_opt_words << 12;
4270 }
4271 }
4272 maxsegsize = mss | tcp_seg_flags;
4273 ip->ip_len = htons(mss + ip_tcp_hlen);
4274
4275 } /* TSO setup */
4276
4277 /*
4278 * Start packing the mbufs in this chain into
4279 * the fragment pointers. Stop when we run out
4280 * of fragments or hit the end of the mbuf chain.
4281 */
4282 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4283 BUS_DMA_NOWAIT);
4284 if (error)
4285 return ENOBUFS;
4286 /*
4287 * Sanity check: avoid coming within 16 descriptors
4288 * of the end of the ring.
4289 */
4290 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4291 BGE_TSO_PRINTF(("%s: "
4292 " dmamap_load_mbuf too close to ring wrap\n",
4293 device_xname(sc->bge_dev)));
4294 goto fail_unload;
4295 }
4296
4297 mtag = sc->ethercom.ec_nvlans ?
4298 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4299
4300
4301 /* Iterate over dmap-map fragments. */
4302 for (i = 0; i < dmamap->dm_nsegs; i++) {
4303 f = &sc->bge_rdata->bge_tx_ring[frag];
4304 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4305 break;
4306
4307 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4308 f->bge_len = dmamap->dm_segs[i].ds_len;
4309
4310 /*
4311 * For 5751 and follow-ons, for TSO we must turn
4312 * off checksum-assist flag in the tx-descr, and
4313 * supply the ASIC-revision-specific encoding
4314 * of TSO flags and segsize.
4315 */
4316 if (use_tso) {
4317 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4318 f->bge_rsvd = maxsegsize;
4319 f->bge_flags = csum_flags | txbd_tso_flags;
4320 } else {
4321 f->bge_rsvd = 0;
4322 f->bge_flags =
4323 (csum_flags | txbd_tso_flags) & 0x0fff;
4324 }
4325 } else {
4326 f->bge_rsvd = 0;
4327 f->bge_flags = csum_flags;
4328 }
4329
4330 if (mtag != NULL) {
4331 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4332 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4333 } else {
4334 f->bge_vlan_tag = 0;
4335 }
4336 cur = frag;
4337 BGE_INC(frag, BGE_TX_RING_CNT);
4338 }
4339
4340 if (i < dmamap->dm_nsegs) {
4341 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4342 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4343 goto fail_unload;
4344 }
4345
4346 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4347 BUS_DMASYNC_PREWRITE);
4348
4349 if (frag == sc->bge_tx_saved_considx) {
4350 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4351 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4352
4353 goto fail_unload;
4354 }
4355
4356 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4357 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4358 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4359 sc->txdma[cur] = dma;
4360 sc->bge_txcnt += dmamap->dm_nsegs;
4361
4362 *txidx = frag;
4363
4364 return 0;
4365
4366 fail_unload:
4367 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4368
4369 return ENOBUFS;
4370 }
4371
4372 /*
4373 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4374 * to the mbuf data regions directly in the transmit descriptors.
4375 */
4376 static void
4377 bge_start(struct ifnet *ifp)
4378 {
4379 struct bge_softc *sc;
4380 struct mbuf *m_head = NULL;
4381 uint32_t prodidx;
4382 int pkts = 0;
4383
4384 sc = ifp->if_softc;
4385
4386 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4387 return;
4388
4389 prodidx = sc->bge_tx_prodidx;
4390
4391 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4392 IFQ_POLL(&ifp->if_snd, m_head);
4393 if (m_head == NULL)
4394 break;
4395
4396 #if 0
4397 /*
4398 * XXX
4399 * safety overkill. If this is a fragmented packet chain
4400 * with delayed TCP/UDP checksums, then only encapsulate
4401 * it if we have enough descriptors to handle the entire
4402 * chain at once.
4403 * (paranoia -- may not actually be needed)
4404 */
4405 if (m_head->m_flags & M_FIRSTFRAG &&
4406 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4407 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4408 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4409 ifp->if_flags |= IFF_OACTIVE;
4410 break;
4411 }
4412 }
4413 #endif
4414
4415 /*
4416 * Pack the data into the transmit ring. If we
4417 * don't have room, set the OACTIVE flag and wait
4418 * for the NIC to drain the ring.
4419 */
4420 if (bge_encap(sc, m_head, &prodidx)) {
4421 ifp->if_flags |= IFF_OACTIVE;
4422 break;
4423 }
4424
4425 /* now we are committed to transmit the packet */
4426 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4427 pkts++;
4428
4429 /*
4430 * If there's a BPF listener, bounce a copy of this frame
4431 * to him.
4432 */
4433 bpf_mtap(ifp, m_head);
4434 }
4435 if (pkts == 0)
4436 return;
4437
4438 /* Transmit */
4439 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4440 /* 5700 b2 errata */
4441 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4442 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4443
4444 sc->bge_tx_prodidx = prodidx;
4445
4446 /*
4447 * Set a timeout in case the chip goes out to lunch.
4448 */
4449 ifp->if_timer = 5;
4450 }
4451
4452 static int
4453 bge_init(struct ifnet *ifp)
4454 {
4455 struct bge_softc *sc = ifp->if_softc;
4456 const uint16_t *m;
4457 uint32_t mode;
4458 int s, error = 0;
4459
4460 s = splnet();
4461
4462 ifp = &sc->ethercom.ec_if;
4463
4464 /* Cancel pending I/O and flush buffers. */
4465 bge_stop(ifp, 0);
4466
4467 bge_stop_fw(sc);
4468 bge_sig_pre_reset(sc, BGE_RESET_START);
4469 bge_reset(sc);
4470 bge_sig_legacy(sc, BGE_RESET_START);
4471 bge_sig_post_reset(sc, BGE_RESET_START);
4472
4473 bge_chipinit(sc);
4474
4475 /*
4476 * Init the various state machines, ring
4477 * control blocks and firmware.
4478 */
4479 error = bge_blockinit(sc);
4480 if (error != 0) {
4481 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4482 error);
4483 splx(s);
4484 return error;
4485 }
4486
4487 ifp = &sc->ethercom.ec_if;
4488
4489 /* Specify MTU. */
4490 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4491 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4492
4493 /* Load our MAC address. */
4494 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4495 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4496 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4497
4498 /* Enable or disable promiscuous mode as needed. */
4499 if (ifp->if_flags & IFF_PROMISC)
4500 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4501 else
4502 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4503
4504 /* Program multicast filter. */
4505 bge_setmulti(sc);
4506
4507 /* Init RX ring. */
4508 bge_init_rx_ring_std(sc);
4509
4510 /*
4511 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4512 * memory to insure that the chip has in fact read the first
4513 * entry of the ring.
4514 */
4515 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4516 uint32_t v, i;
4517 for (i = 0; i < 10; i++) {
4518 DELAY(20);
4519 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4520 if (v == (MCLBYTES - ETHER_ALIGN))
4521 break;
4522 }
4523 if (i == 10)
4524 aprint_error_dev(sc->bge_dev,
4525 "5705 A0 chip failed to load RX ring\n");
4526 }
4527
4528 /* Init jumbo RX ring. */
4529 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4530 bge_init_rx_ring_jumbo(sc);
4531
4532 /* Init our RX return ring index */
4533 sc->bge_rx_saved_considx = 0;
4534
4535 /* Init TX ring. */
4536 bge_init_tx_ring(sc);
4537
4538 /* Enable TX MAC state machine lockup fix. */
4539 mode = CSR_READ_4(sc, BGE_TX_MODE);
4540 if (BGE_IS_5755_PLUS(sc) ||
4541 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4542 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4543
4544 /* Turn on transmitter */
4545 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4546 DELAY(100);
4547
4548 /* Turn on receiver */
4549 BGE_SETBIT_FLUSH(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4550 DELAY(10);
4551
4552 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4553
4554 /* Tell firmware we're alive. */
4555 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4556
4557 /* Enable host interrupts. */
4558 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4559 BGE_PCIMISCCTL_CLEAR_INTA);
4560 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4561 BGE_PCIMISCCTL_MASK_PCI_INTR);
4562 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4563
4564 if ((error = bge_ifmedia_upd(ifp)) != 0)
4565 goto out;
4566
4567 ifp->if_flags |= IFF_RUNNING;
4568 ifp->if_flags &= ~IFF_OACTIVE;
4569
4570 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4571
4572 out:
4573 sc->bge_if_flags = ifp->if_flags;
4574 splx(s);
4575
4576 return error;
4577 }
4578
4579 /*
4580 * Set media options.
4581 */
4582 static int
4583 bge_ifmedia_upd(struct ifnet *ifp)
4584 {
4585 struct bge_softc *sc = ifp->if_softc;
4586 struct mii_data *mii = &sc->bge_mii;
4587 struct ifmedia *ifm = &sc->bge_ifmedia;
4588 int rc;
4589
4590 /* If this is a 1000baseX NIC, enable the TBI port. */
4591 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4592 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4593 return EINVAL;
4594 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4595 case IFM_AUTO:
4596 /*
4597 * The BCM5704 ASIC appears to have a special
4598 * mechanism for programming the autoneg
4599 * advertisement registers in TBI mode.
4600 */
4601 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4602 uint32_t sgdig;
4603 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4604 if (sgdig & BGE_SGDIGSTS_DONE) {
4605 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4606 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4607 sgdig |= BGE_SGDIGCFG_AUTO |
4608 BGE_SGDIGCFG_PAUSE_CAP |
4609 BGE_SGDIGCFG_ASYM_PAUSE;
4610 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
4611 sgdig | BGE_SGDIGCFG_SEND);
4612 DELAY(5);
4613 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
4614 sgdig);
4615 }
4616 }
4617 break;
4618 case IFM_1000_SX:
4619 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4620 BGE_CLRBIT(sc, BGE_MAC_MODE,
4621 BGE_MACMODE_HALF_DUPLEX);
4622 } else {
4623 BGE_SETBIT(sc, BGE_MAC_MODE,
4624 BGE_MACMODE_HALF_DUPLEX);
4625 }
4626 break;
4627 default:
4628 return EINVAL;
4629 }
4630 /* XXX 802.3x flow control for 1000BASE-SX */
4631 return 0;
4632 }
4633
4634 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4635 if ((rc = mii_mediachg(mii)) == ENXIO)
4636 return 0;
4637
4638 /*
4639 * Force an interrupt so that we will call bge_link_upd
4640 * if needed and clear any pending link state attention.
4641 * Without this we are not getting any further interrupts
4642 * for link state changes and thus will not UP the link and
4643 * not be able to send in bge_start. The only way to get
4644 * things working was to receive a packet and get a RX intr.
4645 */
4646 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4647 sc->bge_flags & BGE_IS_5788)
4648 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4649 else
4650 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4651
4652 return rc;
4653 }
4654
4655 /*
4656 * Report current media status.
4657 */
4658 static void
4659 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4660 {
4661 struct bge_softc *sc = ifp->if_softc;
4662 struct mii_data *mii = &sc->bge_mii;
4663
4664 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4665 ifmr->ifm_status = IFM_AVALID;
4666 ifmr->ifm_active = IFM_ETHER;
4667 if (CSR_READ_4(sc, BGE_MAC_STS) &
4668 BGE_MACSTAT_TBI_PCS_SYNCHED)
4669 ifmr->ifm_status |= IFM_ACTIVE;
4670 ifmr->ifm_active |= IFM_1000_SX;
4671 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4672 ifmr->ifm_active |= IFM_HDX;
4673 else
4674 ifmr->ifm_active |= IFM_FDX;
4675 return;
4676 }
4677
4678 mii_pollstat(mii);
4679 ifmr->ifm_status = mii->mii_media_status;
4680 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4681 sc->bge_flowflags;
4682 }
4683
4684 static int
4685 bge_ifflags_cb(struct ethercom *ec)
4686 {
4687 struct ifnet *ifp = &ec->ec_if;
4688 struct bge_softc *sc = ifp->if_softc;
4689 int change = ifp->if_flags ^ sc->bge_if_flags;
4690
4691 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4692 return ENETRESET;
4693 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4694 return 0;
4695
4696 if ((ifp->if_flags & IFF_PROMISC) == 0)
4697 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4698 else
4699 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4700
4701 bge_setmulti(sc);
4702
4703 sc->bge_if_flags = ifp->if_flags;
4704 return 0;
4705 }
4706
4707 static int
4708 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4709 {
4710 struct bge_softc *sc = ifp->if_softc;
4711 struct ifreq *ifr = (struct ifreq *) data;
4712 int s, error = 0;
4713 struct mii_data *mii;
4714
4715 s = splnet();
4716
4717 switch (command) {
4718 case SIOCSIFMEDIA:
4719 /* XXX Flow control is not supported for 1000BASE-SX */
4720 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4721 ifr->ifr_media &= ~IFM_ETH_FMASK;
4722 sc->bge_flowflags = 0;
4723 }
4724
4725 /* Flow control requires full-duplex mode. */
4726 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4727 (ifr->ifr_media & IFM_FDX) == 0) {
4728 ifr->ifr_media &= ~IFM_ETH_FMASK;
4729 }
4730 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4731 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4732 /* We can do both TXPAUSE and RXPAUSE. */
4733 ifr->ifr_media |=
4734 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4735 }
4736 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4737 }
4738 /* FALLTHROUGH */
4739 case SIOCGIFMEDIA:
4740 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4741 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4742 command);
4743 } else {
4744 mii = &sc->bge_mii;
4745 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4746 command);
4747 }
4748 break;
4749 default:
4750 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4751 break;
4752
4753 error = 0;
4754
4755 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4756 ;
4757 else if (ifp->if_flags & IFF_RUNNING)
4758 bge_setmulti(sc);
4759 break;
4760 }
4761
4762 splx(s);
4763
4764 return error;
4765 }
4766
4767 static void
4768 bge_watchdog(struct ifnet *ifp)
4769 {
4770 struct bge_softc *sc;
4771
4772 sc = ifp->if_softc;
4773
4774 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4775
4776 ifp->if_flags &= ~IFF_RUNNING;
4777 bge_init(ifp);
4778
4779 ifp->if_oerrors++;
4780 }
4781
4782 static void
4783 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4784 {
4785 int i;
4786
4787 BGE_CLRBIT_FLUSH(sc, reg, bit);
4788
4789 for (i = 0; i < 1000; i++) {
4790 if ((CSR_READ_4(sc, reg) & bit) == 0)
4791 return;
4792 delay(100);
4793 }
4794
4795 /*
4796 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4797 * on some environment (and once after boot?)
4798 */
4799 if (reg != BGE_SRS_MODE)
4800 aprint_error_dev(sc->bge_dev,
4801 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4802 (u_long)reg, bit);
4803 }
4804
4805 /*
4806 * Stop the adapter and free any mbufs allocated to the
4807 * RX and TX lists.
4808 */
4809 static void
4810 bge_stop(struct ifnet *ifp, int disable)
4811 {
4812 struct bge_softc *sc = ifp->if_softc;
4813
4814 callout_stop(&sc->bge_timeout);
4815
4816 /*
4817 * Tell firmware we're shutting down.
4818 */
4819 bge_stop_fw(sc);
4820 bge_sig_pre_reset(sc, BGE_RESET_STOP);
4821
4822 /* Disable host interrupts. */
4823 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4824 BGE_PCIMISCCTL_MASK_PCI_INTR);
4825 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4826
4827 /*
4828 * Disable all of the receiver blocks.
4829 */
4830 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4831 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4832 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4833 if (BGE_IS_5700_FAMILY(sc))
4834 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4835 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4836 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4837 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4838
4839 /*
4840 * Disable all of the transmit blocks.
4841 */
4842 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4843 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4844 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4845 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4846 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4847 if (BGE_IS_5700_FAMILY(sc))
4848 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4849 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4850
4851 /*
4852 * Shut down all of the memory managers and related
4853 * state machines.
4854 */
4855 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4856 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4857 if (BGE_IS_5700_FAMILY(sc))
4858 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4859
4860 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4861 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4862
4863 if (BGE_IS_5700_FAMILY(sc)) {
4864 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4865 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4866 }
4867
4868 bge_reset(sc);
4869 bge_sig_legacy(sc, BGE_RESET_STOP);
4870 bge_sig_post_reset(sc, BGE_RESET_STOP);
4871
4872 /*
4873 * Keep the ASF firmware running if up.
4874 */
4875 if (sc->bge_asf_mode & ASF_STACKUP)
4876 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4877 else
4878 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4879
4880 /* Free the RX lists. */
4881 bge_free_rx_ring_std(sc);
4882
4883 /* Free jumbo RX list. */
4884 if (BGE_IS_JUMBO_CAPABLE(sc))
4885 bge_free_rx_ring_jumbo(sc);
4886
4887 /* Free TX buffers. */
4888 bge_free_tx_ring(sc);
4889
4890 /*
4891 * Isolate/power down the PHY.
4892 */
4893 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4894 mii_down(&sc->bge_mii);
4895
4896 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4897
4898 /* Clear MAC's link state (PHY may still have link UP). */
4899 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4900
4901 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4902 }
4903
4904 static void
4905 bge_link_upd(struct bge_softc *sc)
4906 {
4907 struct ifnet *ifp = &sc->ethercom.ec_if;
4908 struct mii_data *mii = &sc->bge_mii;
4909 uint32_t status;
4910 int link;
4911
4912 /* Clear 'pending link event' flag */
4913 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4914
4915 /*
4916 * Process link state changes.
4917 * Grrr. The link status word in the status block does
4918 * not work correctly on the BCM5700 rev AX and BX chips,
4919 * according to all available information. Hence, we have
4920 * to enable MII interrupts in order to properly obtain
4921 * async link changes. Unfortunately, this also means that
4922 * we have to read the MAC status register to detect link
4923 * changes, thereby adding an additional register access to
4924 * the interrupt handler.
4925 */
4926
4927 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4928 status = CSR_READ_4(sc, BGE_MAC_STS);
4929 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4930 mii_pollstat(mii);
4931
4932 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4933 mii->mii_media_status & IFM_ACTIVE &&
4934 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4935 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4936 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4937 (!(mii->mii_media_status & IFM_ACTIVE) ||
4938 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4939 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4940
4941 /* Clear the interrupt */
4942 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4943 BGE_EVTENB_MI_INTERRUPT);
4944 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4945 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4946 BRGPHY_INTRS);
4947 }
4948 return;
4949 }
4950
4951 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4952 status = CSR_READ_4(sc, BGE_MAC_STS);
4953 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4954 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4955 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4956 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4957 BGE_CLRBIT(sc, BGE_MAC_MODE,
4958 BGE_MACMODE_TBI_SEND_CFGS);
4959 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4960 if_link_state_change(ifp, LINK_STATE_UP);
4961 }
4962 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4963 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4964 if_link_state_change(ifp, LINK_STATE_DOWN);
4965 }
4966 /*
4967 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4968 * This should not happen since mii callouts are locked now, but
4969 * we keep this check for debug.
4970 */
4971 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4972 /*
4973 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4974 * bit in status word always set. Workaround this bug by
4975 * reading PHY link status directly.
4976 */
4977 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4978 BGE_STS_LINK : 0;
4979
4980 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4981 mii_pollstat(mii);
4982
4983 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4984 mii->mii_media_status & IFM_ACTIVE &&
4985 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4986 BGE_STS_SETBIT(sc, BGE_STS_LINK);
4987 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4988 (!(mii->mii_media_status & IFM_ACTIVE) ||
4989 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4990 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4991 }
4992 }
4993
4994 /* Clear the attention */
4995 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4996 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4997 BGE_MACSTAT_LINK_CHANGED);
4998 }
4999
5000 static int
5001 bge_sysctl_verify(SYSCTLFN_ARGS)
5002 {
5003 int error, t;
5004 struct sysctlnode node;
5005
5006 node = *rnode;
5007 t = *(int*)rnode->sysctl_data;
5008 node.sysctl_data = &t;
5009 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5010 if (error || newp == NULL)
5011 return error;
5012
5013 #if 0
5014 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5015 node.sysctl_num, rnode->sysctl_num));
5016 #endif
5017
5018 if (node.sysctl_num == bge_rxthresh_nodenum) {
5019 if (t < 0 || t >= NBGE_RX_THRESH)
5020 return EINVAL;
5021 bge_update_all_threshes(t);
5022 } else
5023 return EINVAL;
5024
5025 *(int*)rnode->sysctl_data = t;
5026
5027 return 0;
5028 }
5029
5030 /*
5031 * Set up sysctl(3) MIB, hw.bge.*.
5032 */
5033 static void
5034 bge_sysctl_init(struct bge_softc *sc)
5035 {
5036 int rc, bge_root_num;
5037 const struct sysctlnode *node;
5038
5039 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5040 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5041 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5042 goto out;
5043 }
5044
5045 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5046 0, CTLTYPE_NODE, "bge",
5047 SYSCTL_DESCR("BGE interface controls"),
5048 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5049 goto out;
5050 }
5051
5052 bge_root_num = node->sysctl_num;
5053
5054 /* BGE Rx interrupt mitigation level */
5055 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5056 CTLFLAG_READWRITE,
5057 CTLTYPE_INT, "rx_lvl",
5058 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5059 bge_sysctl_verify, 0,
5060 &bge_rx_thresh_lvl,
5061 0, CTL_HW, bge_root_num, CTL_CREATE,
5062 CTL_EOL)) != 0) {
5063 goto out;
5064 }
5065
5066 bge_rxthresh_nodenum = node->sysctl_num;
5067
5068 return;
5069
5070 out:
5071 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5072 }
5073
5074 #ifdef BGE_DEBUG
5075 void
5076 bge_debug_info(struct bge_softc *sc)
5077 {
5078
5079 printf("Hardware Flags:\n");
5080 if (BGE_IS_57765_PLUS(sc))
5081 printf(" - 57765 Plus\n");
5082 if (BGE_IS_5717_PLUS(sc))
5083 printf(" - 5717 Plus\n");
5084 if (BGE_IS_5755_PLUS(sc))
5085 printf(" - 5755 Plus\n");
5086 if (BGE_IS_575X_PLUS(sc))
5087 printf(" - 575X Plus\n");
5088 if (BGE_IS_5705_PLUS(sc))
5089 printf(" - 5705 Plus\n");
5090 if (BGE_IS_5714_FAMILY(sc))
5091 printf(" - 5714 Family\n");
5092 if (BGE_IS_5700_FAMILY(sc))
5093 printf(" - 5700 Family\n");
5094 if (sc->bge_flags & BGE_IS_5788)
5095 printf(" - 5788\n");
5096 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5097 printf(" - Supports Jumbo Frames\n");
5098 if (sc->bge_flags & BGE_NO_EEPROM)
5099 printf(" - No EEPROM\n");
5100 if (sc->bge_flags & BGE_PCIX)
5101 printf(" - PCI-X Bus\n");
5102 if (sc->bge_flags & BGE_PCIE)
5103 printf(" - PCI Express Bus\n");
5104 if (sc->bge_flags & BGE_NO_3LED)
5105 printf(" - No 3 LEDs\n");
5106 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5107 printf(" - RX Alignment Bug\n");
5108 if (sc->bge_flags & BGE_CPMU_PRESENT)
5109 printf(" - CPMU\n");
5110 if (sc->bge_flags & BGE_TSO)
5111 printf(" - TSO\n");
5112 }
5113 #endif /* BGE_DEBUG */
5114
5115 static int
5116 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5117 {
5118 prop_dictionary_t dict;
5119 prop_data_t ea;
5120
5121 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5122 return 1;
5123
5124 dict = device_properties(sc->bge_dev);
5125 ea = prop_dictionary_get(dict, "mac-address");
5126 if (ea != NULL) {
5127 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5128 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5129 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5130 return 0;
5131 }
5132
5133 return 1;
5134 }
5135
5136 static int
5137 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5138 {
5139 uint32_t mac_addr;
5140
5141 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5142 if ((mac_addr >> 16) == 0x484b) {
5143 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5144 ether_addr[1] = (uint8_t)mac_addr;
5145 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5146 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5147 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5148 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5149 ether_addr[5] = (uint8_t)mac_addr;
5150 return 0;
5151 }
5152 return 1;
5153 }
5154
5155 static int
5156 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5157 {
5158 int mac_offset = BGE_EE_MAC_OFFSET;
5159
5160 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5161 mac_offset = BGE_EE_MAC_OFFSET_5906;
5162
5163 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5164 ETHER_ADDR_LEN));
5165 }
5166
5167 static int
5168 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5169 {
5170
5171 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5172 return 1;
5173
5174 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5175 ETHER_ADDR_LEN));
5176 }
5177
5178 static int
5179 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5180 {
5181 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5182 /* NOTE: Order is critical */
5183 bge_get_eaddr_fw,
5184 bge_get_eaddr_mem,
5185 bge_get_eaddr_nvram,
5186 bge_get_eaddr_eeprom,
5187 NULL
5188 };
5189 const bge_eaddr_fcn_t *func;
5190
5191 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5192 if ((*func)(sc, eaddr) == 0)
5193 break;
5194 }
5195 return (*func == NULL ? ENXIO : 0);
5196 }
5197