Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.214
      1 /*	$NetBSD: if_bge.c,v 1.214 2013/03/13 09:44:20 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.214 2013/03/13 09:44:20 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_setpowerstate(struct bge_softc *, int);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writembx_flush(struct bge_softc *, int, int);
    247 static void bge_writemem_direct(struct bge_softc *, int, int);
    248 static void bge_writereg_ind(struct bge_softc *, int, int);
    249 static void bge_set_max_readrq(struct bge_softc *);
    250 
    251 static int bge_miibus_readreg(device_t, int, int);
    252 static void bge_miibus_writereg(device_t, int, int, int);
    253 static void bge_miibus_statchg(struct ifnet *);
    254 
    255 #define	BGE_RESET_START 1
    256 #define	BGE_RESET_STOP  2
    257 static void bge_sig_post_reset(struct bge_softc *, int);
    258 static void bge_sig_legacy(struct bge_softc *, int);
    259 static void bge_sig_pre_reset(struct bge_softc *, int);
    260 static void bge_stop_fw(struct bge_softc *);
    261 static int bge_reset(struct bge_softc *);
    262 static void bge_link_upd(struct bge_softc *);
    263 static void bge_sysctl_init(struct bge_softc *);
    264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    265 
    266 #ifdef BGE_DEBUG
    267 #define DPRINTF(x)	if (bgedebug) printf x
    268 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    269 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    270 int	bgedebug = 0;
    271 int	bge_tso_debug = 0;
    272 void		bge_debug_info(struct bge_softc *);
    273 #else
    274 #define DPRINTF(x)
    275 #define DPRINTFN(n,x)
    276 #define BGE_TSO_PRINTF(x)
    277 #endif
    278 
    279 #ifdef BGE_EVENT_COUNTERS
    280 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    281 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    282 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    283 #else
    284 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    285 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    286 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    287 #endif
    288 
    289 static const struct bge_product {
    290 	pci_vendor_id_t		bp_vendor;
    291 	pci_product_id_t	bp_product;
    292 	const char		*bp_name;
    293 } bge_products[] = {
    294 	/*
    295 	 * The BCM5700 documentation seems to indicate that the hardware
    296 	 * still has the Alteon vendor ID burned into it, though it
    297 	 * should always be overridden by the value in the EEPROM.  We'll
    298 	 * check for it anyway.
    299 	 */
    300 	{ PCI_VENDOR_ALTEON,
    301 	  PCI_PRODUCT_ALTEON_BCM5700,
    302 	  "Broadcom BCM5700 Gigabit Ethernet",
    303 	  },
    304 	{ PCI_VENDOR_ALTEON,
    305 	  PCI_PRODUCT_ALTEON_BCM5701,
    306 	  "Broadcom BCM5701 Gigabit Ethernet",
    307 	  },
    308 	{ PCI_VENDOR_ALTIMA,
    309 	  PCI_PRODUCT_ALTIMA_AC1000,
    310 	  "Altima AC1000 Gigabit Ethernet",
    311 	  },
    312 	{ PCI_VENDOR_ALTIMA,
    313 	  PCI_PRODUCT_ALTIMA_AC1001,
    314 	  "Altima AC1001 Gigabit Ethernet",
    315 	   },
    316 	{ PCI_VENDOR_ALTIMA,
    317 	  PCI_PRODUCT_ALTIMA_AC1003,
    318 	  "Altima AC1003 Gigabit Ethernet",
    319 	   },
    320 	{ PCI_VENDOR_ALTIMA,
    321 	  PCI_PRODUCT_ALTIMA_AC9100,
    322 	  "Altima AC9100 Gigabit Ethernet",
    323 	  },
    324 	{ PCI_VENDOR_APPLE,
    325 	  PCI_PRODUCT_APPLE_BCM5701,
    326 	  "APPLE BCM5701 Gigabit Ethernet",
    327 	  },
    328 	{ PCI_VENDOR_BROADCOM,
    329 	  PCI_PRODUCT_BROADCOM_BCM5700,
    330 	  "Broadcom BCM5700 Gigabit Ethernet",
    331 	  },
    332 	{ PCI_VENDOR_BROADCOM,
    333 	  PCI_PRODUCT_BROADCOM_BCM5701,
    334 	  "Broadcom BCM5701 Gigabit Ethernet",
    335 	  },
    336 	{ PCI_VENDOR_BROADCOM,
    337 	  PCI_PRODUCT_BROADCOM_BCM5702,
    338 	  "Broadcom BCM5702 Gigabit Ethernet",
    339 	  },
    340 	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    342 	  "Broadcom BCM5702X Gigabit Ethernet" },
    343 	{ PCI_VENDOR_BROADCOM,
    344 	  PCI_PRODUCT_BROADCOM_BCM5703,
    345 	  "Broadcom BCM5703 Gigabit Ethernet",
    346 	  },
    347 	{ PCI_VENDOR_BROADCOM,
    348 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    349 	  "Broadcom BCM5703X Gigabit Ethernet",
    350 	  },
    351 	{ PCI_VENDOR_BROADCOM,
    352 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    353 	  "Broadcom BCM5703 Gigabit Ethernet",
    354 	  },
    355 	{ PCI_VENDOR_BROADCOM,
    356 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    357 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    358 	  },
    359 	{ PCI_VENDOR_BROADCOM,
    360 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    361 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    362 	  },
    363 	{ PCI_VENDOR_BROADCOM,
    364 	  PCI_PRODUCT_BROADCOM_BCM5705,
    365 	  "Broadcom BCM5705 Gigabit Ethernet",
    366 	  },
    367 	{ PCI_VENDOR_BROADCOM,
    368 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    369 	  "Broadcom BCM5705F Gigabit Ethernet",
    370 	  },
    371 	{ PCI_VENDOR_BROADCOM,
    372 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    373 	  "Broadcom BCM5705K Gigabit Ethernet",
    374 	  },
    375 	{ PCI_VENDOR_BROADCOM,
    376 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    377 	  "Broadcom BCM5705M Gigabit Ethernet",
    378 	  },
    379 	{ PCI_VENDOR_BROADCOM,
    380 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    381 	  "Broadcom BCM5705M Gigabit Ethernet",
    382 	  },
    383 	{ PCI_VENDOR_BROADCOM,
    384 	  PCI_PRODUCT_BROADCOM_BCM5714,
    385 	  "Broadcom BCM5714 Gigabit Ethernet",
    386 	  },
    387 	{ PCI_VENDOR_BROADCOM,
    388 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    389 	  "Broadcom BCM5714S Gigabit Ethernet",
    390 	  },
    391 	{ PCI_VENDOR_BROADCOM,
    392 	  PCI_PRODUCT_BROADCOM_BCM5715,
    393 	  "Broadcom BCM5715 Gigabit Ethernet",
    394 	  },
    395 	{ PCI_VENDOR_BROADCOM,
    396 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    397 	  "Broadcom BCM5715S Gigabit Ethernet",
    398 	  },
    399 	{ PCI_VENDOR_BROADCOM,
    400 	  PCI_PRODUCT_BROADCOM_BCM5717,
    401 	  "Broadcom BCM5717 Gigabit Ethernet",
    402 	  },
    403 	{ PCI_VENDOR_BROADCOM,
    404 	  PCI_PRODUCT_BROADCOM_BCM5718,
    405 	  "Broadcom BCM5718 Gigabit Ethernet",
    406 	  },
    407 #if 0
    408 	{ PCI_VENDOR_BROADCOM,
    409 	  PCI_PRODUCT_BROADCOM_BCM5720,
    410 	  "Broadcom BCM5720 Gigabit Ethernet",
    411 	  },
    412 #endif
    413 	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5721,
    415 	  "Broadcom BCM5721 Gigabit Ethernet",
    416 	  },
    417 	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5722,
    419 	  "Broadcom BCM5722 Gigabit Ethernet",
    420 	  },
    421 	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5723,
    423 	  "Broadcom BCM5723 Gigabit Ethernet",
    424 	  },
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5724,
    427 	  "Broadcom BCM5724 Gigabit Ethernet",
    428 	  },
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5750,
    431 	  "Broadcom BCM5750 Gigabit Ethernet",
    432 	  },
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    435 	  "Broadcom BCM5750M Gigabit Ethernet",
    436 	  },
    437 	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5751,
    439 	  "Broadcom BCM5751 Gigabit Ethernet",
    440 	  },
    441 	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    443 	  "Broadcom BCM5751F Gigabit Ethernet",
    444 	  },
    445 	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    447 	  "Broadcom BCM5751M Gigabit Ethernet",
    448 	  },
    449 	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5752,
    451 	  "Broadcom BCM5752 Gigabit Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_BROADCOM,
    454 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    455 	  "Broadcom BCM5752M Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_BROADCOM,
    458 	  PCI_PRODUCT_BROADCOM_BCM5753,
    459 	  "Broadcom BCM5753 Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    463 	  "Broadcom BCM5753F Gigabit Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    467 	  "Broadcom BCM5753M Gigabit Ethernet",
    468 	  },
    469 	{ PCI_VENDOR_BROADCOM,
    470 	  PCI_PRODUCT_BROADCOM_BCM5754,
    471 	  "Broadcom BCM5754 Gigabit Ethernet",
    472 	},
    473 	{ PCI_VENDOR_BROADCOM,
    474 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    475 	  "Broadcom BCM5754M Gigabit Ethernet",
    476 	},
    477 	{ PCI_VENDOR_BROADCOM,
    478 	  PCI_PRODUCT_BROADCOM_BCM5755,
    479 	  "Broadcom BCM5755 Gigabit Ethernet",
    480 	},
    481 	{ PCI_VENDOR_BROADCOM,
    482 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    483 	  "Broadcom BCM5755M Gigabit Ethernet",
    484 	},
    485 	{ PCI_VENDOR_BROADCOM,
    486 	  PCI_PRODUCT_BROADCOM_BCM5756,
    487 	  "Broadcom BCM5756 Gigabit Ethernet",
    488 	},
    489 	{ PCI_VENDOR_BROADCOM,
    490 	  PCI_PRODUCT_BROADCOM_BCM5761,
    491 	  "Broadcom BCM5761 Gigabit Ethernet",
    492 	},
    493 	{ PCI_VENDOR_BROADCOM,
    494 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    495 	  "Broadcom BCM5761E Gigabit Ethernet",
    496 	},
    497 	{ PCI_VENDOR_BROADCOM,
    498 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    499 	  "Broadcom BCM5761S Gigabit Ethernet",
    500 	},
    501 	{ PCI_VENDOR_BROADCOM,
    502 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    503 	  "Broadcom BCM5761SE Gigabit Ethernet",
    504 	},
    505 	{ PCI_VENDOR_BROADCOM,
    506 	  PCI_PRODUCT_BROADCOM_BCM5764,
    507 	  "Broadcom BCM5764 Gigabit Ethernet",
    508 	  },
    509 	{ PCI_VENDOR_BROADCOM,
    510 	  PCI_PRODUCT_BROADCOM_BCM5780,
    511 	  "Broadcom BCM5780 Gigabit Ethernet",
    512 	  },
    513 	{ PCI_VENDOR_BROADCOM,
    514 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    515 	  "Broadcom BCM5780S Gigabit Ethernet",
    516 	  },
    517 	{ PCI_VENDOR_BROADCOM,
    518 	  PCI_PRODUCT_BROADCOM_BCM5781,
    519 	  "Broadcom BCM5781 Gigabit Ethernet",
    520 	  },
    521 	{ PCI_VENDOR_BROADCOM,
    522 	  PCI_PRODUCT_BROADCOM_BCM5782,
    523 	  "Broadcom BCM5782 Gigabit Ethernet",
    524 	},
    525 	{ PCI_VENDOR_BROADCOM,
    526 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    527 	  "BCM5784M NetLink 1000baseT Ethernet",
    528 	},
    529 	{ PCI_VENDOR_BROADCOM,
    530 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    531 	  "BCM5785F NetLink 10/100 Ethernet",
    532 	},
    533 	{ PCI_VENDOR_BROADCOM,
    534 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    535 	  "BCM5785G NetLink 1000baseT Ethernet",
    536 	},
    537 	{ PCI_VENDOR_BROADCOM,
    538 	  PCI_PRODUCT_BROADCOM_BCM5786,
    539 	  "Broadcom BCM5786 Gigabit Ethernet",
    540 	},
    541 	{ PCI_VENDOR_BROADCOM,
    542 	  PCI_PRODUCT_BROADCOM_BCM5787,
    543 	  "Broadcom BCM5787 Gigabit Ethernet",
    544 	},
    545 	{ PCI_VENDOR_BROADCOM,
    546 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    547 	  "Broadcom BCM5787F 10/100 Ethernet",
    548 	},
    549 	{ PCI_VENDOR_BROADCOM,
    550 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    551 	  "Broadcom BCM5787M Gigabit Ethernet",
    552 	},
    553 	{ PCI_VENDOR_BROADCOM,
    554 	  PCI_PRODUCT_BROADCOM_BCM5788,
    555 	  "Broadcom BCM5788 Gigabit Ethernet",
    556 	  },
    557 	{ PCI_VENDOR_BROADCOM,
    558 	  PCI_PRODUCT_BROADCOM_BCM5789,
    559 	  "Broadcom BCM5789 Gigabit Ethernet",
    560 	  },
    561 	{ PCI_VENDOR_BROADCOM,
    562 	  PCI_PRODUCT_BROADCOM_BCM5901,
    563 	  "Broadcom BCM5901 Fast Ethernet",
    564 	  },
    565 	{ PCI_VENDOR_BROADCOM,
    566 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    567 	  "Broadcom BCM5901A2 Fast Ethernet",
    568 	  },
    569 	{ PCI_VENDOR_BROADCOM,
    570 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    571 	  "Broadcom BCM5903M Fast Ethernet",
    572 	  },
    573 	{ PCI_VENDOR_BROADCOM,
    574 	  PCI_PRODUCT_BROADCOM_BCM5906,
    575 	  "Broadcom BCM5906 Fast Ethernet",
    576 	  },
    577 	{ PCI_VENDOR_BROADCOM,
    578 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    579 	  "Broadcom BCM5906M Fast Ethernet",
    580 	  },
    581 	{ PCI_VENDOR_BROADCOM,
    582 	  PCI_PRODUCT_BROADCOM_BCM57760,
    583 	  "Broadcom BCM57760 Fast Ethernet",
    584 	  },
    585 	{ PCI_VENDOR_BROADCOM,
    586 	  PCI_PRODUCT_BROADCOM_BCM57761,
    587 	  "Broadcom BCM57761 Fast Ethernet",
    588 	  },
    589 	{ PCI_VENDOR_BROADCOM,
    590 	  PCI_PRODUCT_BROADCOM_BCM57762,
    591 	  "Broadcom BCM57762 Gigabit Ethernet",
    592 	  },
    593 	{ PCI_VENDOR_BROADCOM,
    594 	  PCI_PRODUCT_BROADCOM_BCM57765,
    595 	  "Broadcom BCM57765 Fast Ethernet",
    596 	  },
    597 	{ PCI_VENDOR_BROADCOM,
    598 	  PCI_PRODUCT_BROADCOM_BCM57780,
    599 	  "Broadcom BCM57780 Fast Ethernet",
    600 	  },
    601 	{ PCI_VENDOR_BROADCOM,
    602 	  PCI_PRODUCT_BROADCOM_BCM57781,
    603 	  "Broadcom BCM57781 Fast Ethernet",
    604 	  },
    605 	{ PCI_VENDOR_BROADCOM,
    606 	  PCI_PRODUCT_BROADCOM_BCM57785,
    607 	  "Broadcom BCM57785 Fast Ethernet",
    608 	  },
    609 	{ PCI_VENDOR_BROADCOM,
    610 	  PCI_PRODUCT_BROADCOM_BCM57788,
    611 	  "Broadcom BCM57788 Fast Ethernet",
    612 	  },
    613 	{ PCI_VENDOR_BROADCOM,
    614 	  PCI_PRODUCT_BROADCOM_BCM57790,
    615 	  "Broadcom BCM57790 Fast Ethernet",
    616 	  },
    617 	{ PCI_VENDOR_BROADCOM,
    618 	  PCI_PRODUCT_BROADCOM_BCM57791,
    619 	  "Broadcom BCM57791 Fast Ethernet",
    620 	  },
    621 	{ PCI_VENDOR_BROADCOM,
    622 	  PCI_PRODUCT_BROADCOM_BCM57795,
    623 	  "Broadcom BCM57795 Fast Ethernet",
    624 	  },
    625 	{ PCI_VENDOR_SCHNEIDERKOCH,
    626 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    627 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    628 	  },
    629 	{ PCI_VENDOR_3COM,
    630 	  PCI_PRODUCT_3COM_3C996,
    631 	  "3Com 3c996 Gigabit Ethernet",
    632 	  },
    633 	{ PCI_VENDOR_FUJITSU4,
    634 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    635 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    636 	  },
    637 	{ PCI_VENDOR_FUJITSU4,
    638 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    639 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    640 	  },
    641 	{ PCI_VENDOR_FUJITSU4,
    642 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    643 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    644 	  },
    645 	{ 0,
    646 	  0,
    647 	  NULL },
    648 };
    649 
    650 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    651 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    652 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
    653 #define BGE_IS_575X_PLUS(sc)	((sc)->bge_flags & BGE_575X_PLUS)
    654 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
    655 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    656 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    657 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    658 
    659 static const struct bge_revision {
    660 	uint32_t		br_chipid;
    661 	const char		*br_name;
    662 } bge_revisions[] = {
    663 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    664 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    665 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    666 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    667 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    668 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    669 	/* This is treated like a BCM5700 Bx */
    670 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    671 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    672 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    673 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    674 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    675 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    676 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    677 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    678 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    679 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    680 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    681 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    682 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    683 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    684 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    685 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    686 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    687 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    688 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    689 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    690 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    691 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    692 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    693 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    694 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    695 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    696 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    697 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    698 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    699 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    700 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    701 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    702 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    703 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    704 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    705 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    706 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    707 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    708 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    709 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    710 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    711 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    712 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    713 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    714 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    715 	/* 5754 and 5787 share the same ASIC ID */
    716 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    717 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    718 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    719 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    720 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    721 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    722 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    723 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    724 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    725 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    726 
    727 	{ 0, NULL }
    728 };
    729 
    730 /*
    731  * Some defaults for major revisions, so that newer steppings
    732  * that we don't know about have a shot at working.
    733  */
    734 static const struct bge_revision bge_majorrevs[] = {
    735 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    736 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    737 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    738 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    739 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    740 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    741 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    742 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    743 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    744 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    745 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    746 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    747 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    748 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    749 	/* 5754 and 5787 share the same ASIC ID */
    750 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    751 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    752 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    753 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    754 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    755 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    756 
    757 	{ 0, NULL }
    758 };
    759 
    760 static int bge_allow_asf = 1;
    761 
    762 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    763     bge_probe, bge_attach, NULL, NULL);
    764 
    765 static uint32_t
    766 bge_readmem_ind(struct bge_softc *sc, int off)
    767 {
    768 	pcireg_t val;
    769 
    770 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    771 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    772 	return val;
    773 }
    774 
    775 static void
    776 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    777 {
    778 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    779 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    780 }
    781 
    782 /*
    783  * PCI Express only
    784  */
    785 static void
    786 bge_set_max_readrq(struct bge_softc *sc)
    787 {
    788 	pcireg_t val;
    789 
    790 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    791 	    + PCI_PCIE_DCSR);
    792 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
    793 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
    794 		aprint_verbose_dev(sc->bge_dev,
    795 		    "adjust device control 0x%04x ", val);
    796 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    797 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    798 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    799 		    + PCI_PCIE_DCSR, val);
    800 		aprint_verbose("-> 0x%04x\n", val);
    801 	}
    802 }
    803 
    804 #ifdef notdef
    805 static uint32_t
    806 bge_readreg_ind(struct bge_softc *sc, int off)
    807 {
    808 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    809 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    810 }
    811 #endif
    812 
    813 static void
    814 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    815 {
    816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    817 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    818 }
    819 
    820 static void
    821 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    822 {
    823 	CSR_WRITE_4(sc, off, val);
    824 }
    825 
    826 static void
    827 bge_writembx(struct bge_softc *sc, int off, int val)
    828 {
    829 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    830 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    831 
    832 	CSR_WRITE_4(sc, off, val);
    833 }
    834 
    835 static void
    836 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    837 {
    838 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    839 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    840 
    841 	CSR_WRITE_4_FLUSH(sc, off, val);
    842 }
    843 
    844 static uint8_t
    845 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    846 {
    847 	uint32_t access, byte = 0;
    848 	int i;
    849 
    850 	/* Lock. */
    851 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    852 	for (i = 0; i < 8000; i++) {
    853 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    854 			break;
    855 		DELAY(20);
    856 	}
    857 	if (i == 8000)
    858 		return 1;
    859 
    860 	/* Enable access. */
    861 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    862 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    863 
    864 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    865 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    866 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    867 		DELAY(10);
    868 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    869 			DELAY(10);
    870 			break;
    871 		}
    872 	}
    873 
    874 	if (i == BGE_TIMEOUT * 10) {
    875 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    876 		return 1;
    877 	}
    878 
    879 	/* Get result. */
    880 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    881 
    882 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    883 
    884 	/* Disable access. */
    885 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    886 
    887 	/* Unlock. */
    888 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    889 
    890 	return 0;
    891 }
    892 
    893 /*
    894  * Read a sequence of bytes from NVRAM.
    895  */
    896 static int
    897 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    898 {
    899 	int error = 0, i;
    900 	uint8_t byte = 0;
    901 
    902 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    903 		return 1;
    904 
    905 	for (i = 0; i < cnt; i++) {
    906 		error = bge_nvram_getbyte(sc, off + i, &byte);
    907 		if (error)
    908 			break;
    909 		*(dest + i) = byte;
    910 	}
    911 
    912 	return (error ? 1 : 0);
    913 }
    914 
    915 /*
    916  * Read a byte of data stored in the EEPROM at address 'addr.' The
    917  * BCM570x supports both the traditional bitbang interface and an
    918  * auto access interface for reading the EEPROM. We use the auto
    919  * access method.
    920  */
    921 static uint8_t
    922 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    923 {
    924 	int i;
    925 	uint32_t byte = 0;
    926 
    927 	/*
    928 	 * Enable use of auto EEPROM access so we can avoid
    929 	 * having to use the bitbang method.
    930 	 */
    931 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    932 
    933 	/* Reset the EEPROM, load the clock period. */
    934 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    935 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    936 	DELAY(20);
    937 
    938 	/* Issue the read EEPROM command. */
    939 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    940 
    941 	/* Wait for completion */
    942 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    943 		DELAY(10);
    944 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    945 			break;
    946 	}
    947 
    948 	if (i == BGE_TIMEOUT * 10) {
    949 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
    950 		return 1;
    951 	}
    952 
    953 	/* Get result. */
    954 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    955 
    956 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    957 
    958 	return 0;
    959 }
    960 
    961 /*
    962  * Read a sequence of bytes from the EEPROM.
    963  */
    964 static int
    965 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
    966 {
    967 	int error = 0, i;
    968 	uint8_t byte = 0;
    969 	char *dest = destv;
    970 
    971 	for (i = 0; i < cnt; i++) {
    972 		error = bge_eeprom_getbyte(sc, off + i, &byte);
    973 		if (error)
    974 			break;
    975 		*(dest + i) = byte;
    976 	}
    977 
    978 	return (error ? 1 : 0);
    979 }
    980 
    981 static int
    982 bge_miibus_readreg(device_t dev, int phy, int reg)
    983 {
    984 	struct bge_softc *sc = device_private(dev);
    985 	uint32_t val;
    986 	uint32_t autopoll;
    987 	int i;
    988 
    989 	/*
    990 	 * Broadcom's own driver always assumes the internal
    991 	 * PHY is at GMII address 1. On some chips, the PHY responds
    992 	 * to accesses at all addresses, which could cause us to
    993 	 * bogusly attach the PHY 32 times at probe type. Always
    994 	 * restricting the lookup to address 1 is simpler than
    995 	 * trying to figure out which chips revisions should be
    996 	 * special-cased.
    997 	 */
    998 	if (phy != 1)
    999 		return 0;
   1000 
   1001 	/* Reading with autopolling on may trigger PCI errors */
   1002 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1003 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1004 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1005 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1006 		DELAY(40);
   1007 	}
   1008 
   1009 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1010 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1011 
   1012 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1013 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1014 		if (!(val & BGE_MICOMM_BUSY))
   1015 			break;
   1016 		delay(10);
   1017 	}
   1018 
   1019 	if (i == BGE_TIMEOUT) {
   1020 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1021 		val = 0;
   1022 		goto done;
   1023 	}
   1024 
   1025 	val = CSR_READ_4(sc, BGE_MI_COMM);
   1026 
   1027 done:
   1028 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1029 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1030 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1031 		DELAY(40);
   1032 	}
   1033 
   1034 	if (val & BGE_MICOMM_READFAIL)
   1035 		return 0;
   1036 
   1037 	return (val & 0xFFFF);
   1038 }
   1039 
   1040 static void
   1041 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1042 {
   1043 	struct bge_softc *sc = device_private(dev);
   1044 	uint32_t autopoll;
   1045 	int i;
   1046 
   1047 	if (phy!=1) {
   1048 		return;
   1049 	}
   1050 
   1051 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1052 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1053 		return;
   1054 
   1055 	/* Reading with autopolling on may trigger PCI errors */
   1056 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1057 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1058 		delay(40);
   1059 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1060 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1061 		delay(10); /* 40 usec is supposed to be adequate */
   1062 	}
   1063 
   1064 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1065 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1066 
   1067 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1068 		delay(10);
   1069 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1070 			delay(5);
   1071 			CSR_READ_4(sc, BGE_MI_COMM);
   1072 			break;
   1073 		}
   1074 	}
   1075 
   1076 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1077 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1078 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1079 		delay(40);
   1080 	}
   1081 
   1082 	if (i == BGE_TIMEOUT)
   1083 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1084 }
   1085 
   1086 static void
   1087 bge_miibus_statchg(struct ifnet *ifp)
   1088 {
   1089 	struct bge_softc *sc = ifp->if_softc;
   1090 	struct mii_data *mii = &sc->bge_mii;
   1091 
   1092 	/*
   1093 	 * Get flow control negotiation result.
   1094 	 */
   1095 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1096 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1097 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1098 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1099 	}
   1100 
   1101 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
   1102 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1103 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1104 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
   1105 	else
   1106 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
   1107 
   1108 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
   1109 		BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1110 	else
   1111 		BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
   1112 	DELAY(40);
   1113 
   1114 	/*
   1115 	 * 802.3x flow control
   1116 	 */
   1117 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1118 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1119 	else
   1120 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
   1121 
   1122 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1123 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1124 	else
   1125 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
   1126 }
   1127 
   1128 /*
   1129  * Update rx threshold levels to values in a particular slot
   1130  * of the interrupt-mitigation table bge_rx_threshes.
   1131  */
   1132 static void
   1133 bge_set_thresh(struct ifnet *ifp, int lvl)
   1134 {
   1135 	struct bge_softc *sc = ifp->if_softc;
   1136 	int s;
   1137 
   1138 	/* For now, just save the new Rx-intr thresholds and record
   1139 	 * that a threshold update is pending.  Updating the hardware
   1140 	 * registers here (even at splhigh()) is observed to
   1141 	 * occasionaly cause glitches where Rx-interrupts are not
   1142 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1143 	 */
   1144 	s = splnet();
   1145 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1146 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1147 	sc->bge_pending_rxintr_change = 1;
   1148 	splx(s);
   1149 }
   1150 
   1151 
   1152 /*
   1153  * Update Rx thresholds of all bge devices
   1154  */
   1155 static void
   1156 bge_update_all_threshes(int lvl)
   1157 {
   1158 	struct ifnet *ifp;
   1159 	const char * const namebuf = "bge";
   1160 	int namelen;
   1161 
   1162 	if (lvl < 0)
   1163 		lvl = 0;
   1164 	else if (lvl >= NBGE_RX_THRESH)
   1165 		lvl = NBGE_RX_THRESH - 1;
   1166 
   1167 	namelen = strlen(namebuf);
   1168 	/*
   1169 	 * Now search all the interfaces for this name/number
   1170 	 */
   1171 	IFNET_FOREACH(ifp) {
   1172 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1173 		      continue;
   1174 		/* We got a match: update if doing auto-threshold-tuning */
   1175 		if (bge_auto_thresh)
   1176 			bge_set_thresh(ifp, lvl);
   1177 	}
   1178 }
   1179 
   1180 /*
   1181  * Handle events that have triggered interrupts.
   1182  */
   1183 static void
   1184 bge_handle_events(struct bge_softc *sc)
   1185 {
   1186 
   1187 	return;
   1188 }
   1189 
   1190 /*
   1191  * Memory management for jumbo frames.
   1192  */
   1193 
   1194 static int
   1195 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1196 {
   1197 	char *ptr, *kva;
   1198 	bus_dma_segment_t	seg;
   1199 	int		i, rseg, state, error;
   1200 	struct bge_jpool_entry   *entry;
   1201 
   1202 	state = error = 0;
   1203 
   1204 	/* Grab a big chunk o' storage. */
   1205 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1206 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1207 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1208 		return ENOBUFS;
   1209 	}
   1210 
   1211 	state = 1;
   1212 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1213 	    BUS_DMA_NOWAIT)) {
   1214 		aprint_error_dev(sc->bge_dev,
   1215 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1216 		error = ENOBUFS;
   1217 		goto out;
   1218 	}
   1219 
   1220 	state = 2;
   1221 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1222 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1223 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1224 		error = ENOBUFS;
   1225 		goto out;
   1226 	}
   1227 
   1228 	state = 3;
   1229 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1230 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1231 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1232 		error = ENOBUFS;
   1233 		goto out;
   1234 	}
   1235 
   1236 	state = 4;
   1237 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1238 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1239 
   1240 	SLIST_INIT(&sc->bge_jfree_listhead);
   1241 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1242 
   1243 	/*
   1244 	 * Now divide it up into 9K pieces and save the addresses
   1245 	 * in an array.
   1246 	 */
   1247 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1248 	for (i = 0; i < BGE_JSLOTS; i++) {
   1249 		sc->bge_cdata.bge_jslots[i] = ptr;
   1250 		ptr += BGE_JLEN;
   1251 		entry = malloc(sizeof(struct bge_jpool_entry),
   1252 		    M_DEVBUF, M_NOWAIT);
   1253 		if (entry == NULL) {
   1254 			aprint_error_dev(sc->bge_dev,
   1255 			    "no memory for jumbo buffer queue!\n");
   1256 			error = ENOBUFS;
   1257 			goto out;
   1258 		}
   1259 		entry->slot = i;
   1260 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1261 				 entry, jpool_entries);
   1262 	}
   1263 out:
   1264 	if (error != 0) {
   1265 		switch (state) {
   1266 		case 4:
   1267 			bus_dmamap_unload(sc->bge_dmatag,
   1268 			    sc->bge_cdata.bge_rx_jumbo_map);
   1269 		case 3:
   1270 			bus_dmamap_destroy(sc->bge_dmatag,
   1271 			    sc->bge_cdata.bge_rx_jumbo_map);
   1272 		case 2:
   1273 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1274 		case 1:
   1275 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1276 			break;
   1277 		default:
   1278 			break;
   1279 		}
   1280 	}
   1281 
   1282 	return error;
   1283 }
   1284 
   1285 /*
   1286  * Allocate a jumbo buffer.
   1287  */
   1288 static void *
   1289 bge_jalloc(struct bge_softc *sc)
   1290 {
   1291 	struct bge_jpool_entry   *entry;
   1292 
   1293 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1294 
   1295 	if (entry == NULL) {
   1296 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1297 		return NULL;
   1298 	}
   1299 
   1300 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1301 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1302 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1303 }
   1304 
   1305 /*
   1306  * Release a jumbo buffer.
   1307  */
   1308 static void
   1309 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1310 {
   1311 	struct bge_jpool_entry *entry;
   1312 	struct bge_softc *sc;
   1313 	int i, s;
   1314 
   1315 	/* Extract the softc struct pointer. */
   1316 	sc = (struct bge_softc *)arg;
   1317 
   1318 	if (sc == NULL)
   1319 		panic("bge_jfree: can't find softc pointer!");
   1320 
   1321 	/* calculate the slot this buffer belongs to */
   1322 
   1323 	i = ((char *)buf
   1324 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1325 
   1326 	if ((i < 0) || (i >= BGE_JSLOTS))
   1327 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1328 
   1329 	s = splvm();
   1330 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1331 	if (entry == NULL)
   1332 		panic("bge_jfree: buffer not in use!");
   1333 	entry->slot = i;
   1334 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1335 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1336 
   1337 	if (__predict_true(m != NULL))
   1338   		pool_cache_put(mb_cache, m);
   1339 	splx(s);
   1340 }
   1341 
   1342 
   1343 /*
   1344  * Initialize a standard receive ring descriptor.
   1345  */
   1346 static int
   1347 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1348     bus_dmamap_t dmamap)
   1349 {
   1350 	struct mbuf		*m_new = NULL;
   1351 	struct bge_rx_bd	*r;
   1352 	int			error;
   1353 
   1354 	if (dmamap == NULL) {
   1355 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1356 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1357 		if (error != 0)
   1358 			return error;
   1359 	}
   1360 
   1361 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1362 
   1363 	if (m == NULL) {
   1364 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1365 		if (m_new == NULL)
   1366 			return ENOBUFS;
   1367 
   1368 		MCLGET(m_new, M_DONTWAIT);
   1369 		if (!(m_new->m_flags & M_EXT)) {
   1370 			m_freem(m_new);
   1371 			return ENOBUFS;
   1372 		}
   1373 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1374 
   1375 	} else {
   1376 		m_new = m;
   1377 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1378 		m_new->m_data = m_new->m_ext.ext_buf;
   1379 	}
   1380 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1381 	    m_adj(m_new, ETHER_ALIGN);
   1382 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1383 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1384 		return ENOBUFS;
   1385 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1386 	    BUS_DMASYNC_PREREAD);
   1387 
   1388 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1389 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1390 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1391 	r->bge_flags = BGE_RXBDFLAG_END;
   1392 	r->bge_len = m_new->m_len;
   1393 	r->bge_idx = i;
   1394 
   1395 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1396 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1397 		i * sizeof (struct bge_rx_bd),
   1398 	    sizeof (struct bge_rx_bd),
   1399 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1400 
   1401 	return 0;
   1402 }
   1403 
   1404 /*
   1405  * Initialize a jumbo receive ring descriptor. This allocates
   1406  * a jumbo buffer from the pool managed internally by the driver.
   1407  */
   1408 static int
   1409 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1410 {
   1411 	struct mbuf *m_new = NULL;
   1412 	struct bge_rx_bd *r;
   1413 	void *buf = NULL;
   1414 
   1415 	if (m == NULL) {
   1416 
   1417 		/* Allocate the mbuf. */
   1418 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1419 		if (m_new == NULL)
   1420 			return ENOBUFS;
   1421 
   1422 		/* Allocate the jumbo buffer */
   1423 		buf = bge_jalloc(sc);
   1424 		if (buf == NULL) {
   1425 			m_freem(m_new);
   1426 			aprint_error_dev(sc->bge_dev,
   1427 			    "jumbo allocation failed -- packet dropped!\n");
   1428 			return ENOBUFS;
   1429 		}
   1430 
   1431 		/* Attach the buffer to the mbuf. */
   1432 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1433 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1434 		    bge_jfree, sc);
   1435 		m_new->m_flags |= M_EXT_RW;
   1436 	} else {
   1437 		m_new = m;
   1438 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1439 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1440 	}
   1441 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1442 	    m_adj(m_new, ETHER_ALIGN);
   1443 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1444 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1445 	    BUS_DMASYNC_PREREAD);
   1446 	/* Set up the descriptor. */
   1447 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1448 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1449 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1450 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1451 	r->bge_len = m_new->m_len;
   1452 	r->bge_idx = i;
   1453 
   1454 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1455 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1456 		i * sizeof (struct bge_rx_bd),
   1457 	    sizeof (struct bge_rx_bd),
   1458 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1459 
   1460 	return 0;
   1461 }
   1462 
   1463 /*
   1464  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1465  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1466  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1467  * the NIC.
   1468  */
   1469 static int
   1470 bge_init_rx_ring_std(struct bge_softc *sc)
   1471 {
   1472 	int i;
   1473 
   1474 	if (sc->bge_flags & BGE_RXRING_VALID)
   1475 		return 0;
   1476 
   1477 	for (i = 0; i < BGE_SSLOTS; i++) {
   1478 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1479 			return ENOBUFS;
   1480 	}
   1481 
   1482 	sc->bge_std = i - 1;
   1483 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1484 
   1485 	sc->bge_flags |= BGE_RXRING_VALID;
   1486 
   1487 	return 0;
   1488 }
   1489 
   1490 static void
   1491 bge_free_rx_ring_std(struct bge_softc *sc)
   1492 {
   1493 	int i;
   1494 
   1495 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1496 		return;
   1497 
   1498 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1499 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1500 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1501 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1502 			bus_dmamap_destroy(sc->bge_dmatag,
   1503 			    sc->bge_cdata.bge_rx_std_map[i]);
   1504 		}
   1505 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1506 		    sizeof(struct bge_rx_bd));
   1507 	}
   1508 
   1509 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1510 }
   1511 
   1512 static int
   1513 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1514 {
   1515 	int i;
   1516 	volatile struct bge_rcb *rcb;
   1517 
   1518 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1519 		return 0;
   1520 
   1521 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1522 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1523 			return ENOBUFS;
   1524 	}
   1525 
   1526 	sc->bge_jumbo = i - 1;
   1527 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1528 
   1529 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1530 	rcb->bge_maxlen_flags = 0;
   1531 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1532 
   1533 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1534 
   1535 	return 0;
   1536 }
   1537 
   1538 static void
   1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1540 {
   1541 	int i;
   1542 
   1543 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1544 		return;
   1545 
   1546 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1547 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1548 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1549 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1550 		}
   1551 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1552 		    sizeof(struct bge_rx_bd));
   1553 	}
   1554 
   1555 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1556 }
   1557 
   1558 static void
   1559 bge_free_tx_ring(struct bge_softc *sc)
   1560 {
   1561 	int i;
   1562 	struct txdmamap_pool_entry *dma;
   1563 
   1564 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1565 		return;
   1566 
   1567 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1568 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1569 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1570 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1571 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1572 					    link);
   1573 			sc->txdma[i] = 0;
   1574 		}
   1575 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1576 		    sizeof(struct bge_tx_bd));
   1577 	}
   1578 
   1579 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1580 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1581 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1582 		free(dma, M_DEVBUF);
   1583 	}
   1584 
   1585 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1586 }
   1587 
   1588 static int
   1589 bge_init_tx_ring(struct bge_softc *sc)
   1590 {
   1591 	int i;
   1592 	bus_dmamap_t dmamap;
   1593 	struct txdmamap_pool_entry *dma;
   1594 
   1595 	if (sc->bge_flags & BGE_TXRING_VALID)
   1596 		return 0;
   1597 
   1598 	sc->bge_txcnt = 0;
   1599 	sc->bge_tx_saved_considx = 0;
   1600 
   1601 	/* Initialize transmit producer index for host-memory send ring. */
   1602 	sc->bge_tx_prodidx = 0;
   1603 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1604 	/* 5700 b2 errata */
   1605 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1606 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1607 
   1608 	/* NIC-memory send ring not used; initialize to zero. */
   1609 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1610 	/* 5700 b2 errata */
   1611 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1612 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1613 
   1614 	SLIST_INIT(&sc->txdma_list);
   1615 	for (i = 0; i < BGE_RSLOTS; i++) {
   1616 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1617 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1618 		    &dmamap))
   1619 			return ENOBUFS;
   1620 		if (dmamap == NULL)
   1621 			panic("dmamap NULL in bge_init_tx_ring");
   1622 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1623 		if (dma == NULL) {
   1624 			aprint_error_dev(sc->bge_dev,
   1625 			    "can't alloc txdmamap_pool_entry\n");
   1626 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1627 			return ENOMEM;
   1628 		}
   1629 		dma->dmamap = dmamap;
   1630 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1631 	}
   1632 
   1633 	sc->bge_flags |= BGE_TXRING_VALID;
   1634 
   1635 	return 0;
   1636 }
   1637 
   1638 static void
   1639 bge_setmulti(struct bge_softc *sc)
   1640 {
   1641 	struct ethercom		*ac = &sc->ethercom;
   1642 	struct ifnet		*ifp = &ac->ec_if;
   1643 	struct ether_multi	*enm;
   1644 	struct ether_multistep  step;
   1645 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1646 	uint32_t		h;
   1647 	int			i;
   1648 
   1649 	if (ifp->if_flags & IFF_PROMISC)
   1650 		goto allmulti;
   1651 
   1652 	/* Now program new ones. */
   1653 	ETHER_FIRST_MULTI(step, ac, enm);
   1654 	while (enm != NULL) {
   1655 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1656 			/*
   1657 			 * We must listen to a range of multicast addresses.
   1658 			 * For now, just accept all multicasts, rather than
   1659 			 * trying to set only those filter bits needed to match
   1660 			 * the range.  (At this time, the only use of address
   1661 			 * ranges is for IP multicast routing, for which the
   1662 			 * range is big enough to require all bits set.)
   1663 			 */
   1664 			goto allmulti;
   1665 		}
   1666 
   1667 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1668 
   1669 		/* Just want the 7 least-significant bits. */
   1670 		h &= 0x7f;
   1671 
   1672 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1673 		ETHER_NEXT_MULTI(step, enm);
   1674 	}
   1675 
   1676 	ifp->if_flags &= ~IFF_ALLMULTI;
   1677 	goto setit;
   1678 
   1679  allmulti:
   1680 	ifp->if_flags |= IFF_ALLMULTI;
   1681 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1682 
   1683  setit:
   1684 	for (i = 0; i < 4; i++)
   1685 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1686 }
   1687 
   1688 static void
   1689 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1690 {
   1691 
   1692 	/*
   1693 	 * Some chips don't like this so only do this if ASF is enabled
   1694 	 */
   1695 	if (sc->bge_asf_mode)
   1696 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   1697 
   1698 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1699 		switch (type) {
   1700 		case BGE_RESET_START:
   1701 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1702 			break;
   1703 		case BGE_RESET_STOP:
   1704 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1705 			break;
   1706 		}
   1707 	}
   1708 }
   1709 
   1710 static void
   1711 bge_sig_post_reset(struct bge_softc *sc, int type)
   1712 {
   1713 
   1714 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1715 		switch (type) {
   1716 		case BGE_RESET_START:
   1717 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
   1718 			/* START DONE */
   1719 			break;
   1720 		case BGE_RESET_STOP:
   1721 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
   1722 			break;
   1723 		}
   1724 	}
   1725 }
   1726 
   1727 static void
   1728 bge_sig_legacy(struct bge_softc *sc, int type)
   1729 {
   1730 
   1731 	if (sc->bge_asf_mode) {
   1732 		switch (type) {
   1733 		case BGE_RESET_START:
   1734 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
   1735 			break;
   1736 		case BGE_RESET_STOP:
   1737 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
   1738 			break;
   1739 		}
   1740 	}
   1741 }
   1742 
   1743 static void
   1744 bge_stop_fw(struct bge_softc *sc)
   1745 {
   1746 	int i;
   1747 
   1748 	if (sc->bge_asf_mode) {
   1749 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
   1750 		CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
   1751 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   1752 
   1753 		for (i = 0; i < 100; i++) {
   1754 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
   1755 				break;
   1756 			DELAY(10);
   1757 		}
   1758 	}
   1759 }
   1760 
   1761 static int
   1762 bge_poll_fw(struct bge_softc *sc)
   1763 {
   1764 	uint32_t val;
   1765 	int i;
   1766 
   1767 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1768 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1769 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1770 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1771 				break;
   1772 			DELAY(100);
   1773 		}
   1774 		if (i >= BGE_TIMEOUT) {
   1775 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1776 			return -1;
   1777 		}
   1778 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   1779 		/*
   1780 		 * Poll the value location we just wrote until
   1781 		 * we see the 1's complement of the magic number.
   1782 		 * This indicates that the firmware initialization
   1783 		 * is complete.
   1784 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1785 		 */
   1786 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1787 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   1788 			if (val == ~BGE_MAGIC_NUMBER)
   1789 				break;
   1790 			DELAY(10);
   1791 		}
   1792 
   1793 		if (i >= BGE_TIMEOUT) {
   1794 			aprint_error_dev(sc->bge_dev,
   1795 			    "firmware handshake timed out, val = %x\n", val);
   1796 			return -1;
   1797 		}
   1798 	}
   1799 
   1800 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1801 		/* tg3 says we have to wait extra time */
   1802 		delay(10 * 1000);
   1803 	}
   1804 
   1805 	return 0;
   1806 }
   1807 
   1808 /*
   1809  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1810  * self-test results.
   1811  */
   1812 static int
   1813 bge_chipinit(struct bge_softc *sc)
   1814 {
   1815 	uint32_t dma_rw_ctl, mode_ctl, reg;
   1816 	int i;
   1817 
   1818 	/* Set endianness before we access any non-PCI registers. */
   1819 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   1820 	    BGE_INIT);
   1821 
   1822 	/* Set power state to D0. */
   1823 	bge_setpowerstate(sc, 0);
   1824 
   1825 	/* Clear the MAC control register */
   1826 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1827 
   1828 	/*
   1829 	 * Clear the MAC statistics block in the NIC's
   1830 	 * internal memory.
   1831 	 */
   1832 	for (i = BGE_STATS_BLOCK;
   1833 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   1834 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1835 
   1836 	for (i = BGE_STATUS_BLOCK;
   1837 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   1838 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   1839 
   1840 	/* 5717 workaround from tg3 */
   1841 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   1842 		/* Save */
   1843 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   1844 
   1845 		/* Temporary modify MODE_CTL to control TLP */
   1846 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   1847 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   1848 
   1849 		/* Control TLP */
   1850 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   1851 		    BGE_TLP_PHYCTL1);
   1852 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   1853 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   1854 
   1855 		/* Restore */
   1856 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   1857 	}
   1858 
   1859 	/* XXX Should we use 57765_FAMILY? */
   1860 	if (BGE_IS_57765_PLUS(sc)) {
   1861 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1862 			/* Save */
   1863 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   1864 
   1865 			/* Temporary modify MODE_CTL to control TLP */
   1866 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   1867 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   1868 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   1869 
   1870 			/* Control TLP */
   1871 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   1872 			    BGE_TLP_PHYCTL5);
   1873 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   1874 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   1875 
   1876 			/* Restore */
   1877 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   1878 		}
   1879 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   1880 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   1881 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   1882 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   1883 
   1884 			/* Save */
   1885 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   1886 
   1887 			/* Temporary modify MODE_CTL to control TLP */
   1888 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   1889 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   1890 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   1891 
   1892 			/* Control TLP */
   1893 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   1894 			    BGE_TLP_FTSMAX);
   1895 			reg &= ~BGE_TLP_FTSMAX_MSK;
   1896 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   1897 			    reg | BGE_TLP_FTSMAX_VAL);
   1898 
   1899 			/* Restore */
   1900 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   1901 		}
   1902 
   1903 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   1904 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   1905 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   1906 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   1907 	}
   1908 
   1909 	/* Set up the PCI DMA control register. */
   1910 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   1911 	if (sc->bge_flags & BGE_PCIE) {
   1912 		/* Read watermark not used, 128 bytes for write. */
   1913 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1914 		    device_xname(sc->bge_dev)));
   1915 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1916 	} else if (sc->bge_flags & BGE_PCIX) {
   1917 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   1918 		    device_xname(sc->bge_dev)));
   1919 		/* PCI-X bus */
   1920 		if (BGE_IS_5714_FAMILY(sc)) {
   1921 			/* 256 bytes for read and write. */
   1922 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   1923 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   1924 
   1925 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   1926 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1927 			else
   1928 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   1929 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1930 			/* 1536 bytes for read, 384 bytes for write. */
   1931 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1932 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   1933 		} else {
   1934 			/* 384 bytes for read and write. */
   1935 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   1936 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   1937 			    (0x0F);
   1938 		}
   1939 
   1940 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1941 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1942 			uint32_t tmp;
   1943 
   1944 			/* Set ONEDMA_ATONCE for hardware workaround. */
   1945 			tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   1946 			    BGE_PCI_CLKCTL) & 0x1f;
   1947 			if (tmp == 6 || tmp == 7)
   1948 				dma_rw_ctl |=
   1949 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   1950 
   1951 			/* Set PCI-X DMA write workaround. */
   1952 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1953 		}
   1954 	} else {
   1955 		/* Conventional PCI bus: 256 bytes for read and write. */
   1956 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   1957 		    device_xname(sc->bge_dev)));
   1958 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   1959 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   1960 
   1961 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   1962 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   1963 			dma_rw_ctl |= 0x0F;
   1964 	}
   1965 
   1966 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   1967 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   1968 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   1969 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   1970 
   1971 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   1972 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   1973 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   1974 
   1975 	if (BGE_IS_5717_PLUS(sc)) {
   1976 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   1977 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   1978 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   1979 
   1980 		/*
   1981 		 * Enable HW workaround for controllers that misinterpret
   1982 		 * a status tag update and leave interrupts permanently
   1983 		 * disabled.
   1984 		 */
   1985 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   1986 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   1987 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   1988 	}
   1989 
   1990 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   1991 	    dma_rw_ctl);
   1992 
   1993 	/*
   1994 	 * Set up general mode register.
   1995 	 */
   1996 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
   1997 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   1998 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
   1999 
   2000 	/*
   2001 	 * BCM5701 B5 have a bug causing data corruption when using
   2002 	 * 64-bit DMA reads, which can be terminated early and then
   2003 	 * completed later as 32-bit accesses, in combination with
   2004 	 * certain bridges.
   2005 	 */
   2006 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2007 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2008 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
   2009 
   2010 	/*
   2011 	 * Tell the firmware the driver is running
   2012 	 */
   2013 	if (sc->bge_asf_mode & ASF_STACKUP)
   2014 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2015 
   2016 	/*
   2017 	 * Disable memory write invalidate.  Apparently it is not supported
   2018 	 * properly by these devices.
   2019 	 */
   2020 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2021 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2022 
   2023 #ifdef __brokenalpha__
   2024 	/*
   2025 	 * Must insure that we do not cross an 8K (bytes) boundary
   2026 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2027 	 * restriction on some ALPHA platforms with early revision
   2028 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2029 	 */
   2030 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2031 #endif
   2032 
   2033 	/* Set the timer prescaler (always 66MHz) */
   2034 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   2035 
   2036 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2037 		DELAY(40);	/* XXX */
   2038 
   2039 		/* Put PHY into ready state */
   2040 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2041 		DELAY(40);
   2042 	}
   2043 
   2044 	return 0;
   2045 }
   2046 
   2047 static int
   2048 bge_blockinit(struct bge_softc *sc)
   2049 {
   2050 	volatile struct bge_rcb	 *rcb;
   2051 	bus_size_t rcb_addr;
   2052 	int i;
   2053 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2054 	bge_hostaddr taddr;
   2055 	uint32_t val;
   2056 
   2057 	/*
   2058 	 * Initialize the memory window pointer register so that
   2059 	 * we can access the first 32K of internal NIC RAM. This will
   2060 	 * allow us to set up the TX send ring RCBs and the RX return
   2061 	 * ring RCBs, plus other things which live in NIC memory.
   2062 	 */
   2063 
   2064 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2065 
   2066 	/* Step 33: Configure mbuf memory pool */
   2067 	if (BGE_IS_5700_FAMILY(sc)) {
   2068 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2069 		    BGE_BUFFPOOL_1);
   2070 
   2071 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2072 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2073 		else
   2074 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2075 
   2076 		/* Configure DMA resource pool */
   2077 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2078 		    BGE_DMA_DESCRIPTORS);
   2079 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2080 	}
   2081 
   2082 	/* Step 35: Configure mbuf pool watermarks */
   2083 #ifdef ORIG_WPAUL_VALUES
   2084 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   2085 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   2086 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   2087 #else
   2088 
   2089 	/* new broadcom docs strongly recommend these: */
   2090 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2091 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2092 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2093 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2094 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2095 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2096 	} else if (BGE_IS_5705_PLUS(sc)) {
   2097 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2098 
   2099 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2100 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2101 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2102 		} else {
   2103 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2104 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2105 		}
   2106 	} else if (!BGE_IS_5705_PLUS(sc)) {
   2107 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   2108 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2109 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2110 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2111 		} else {
   2112 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   2113 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   2114 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   2115 		}
   2116 	} else {
   2117 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2118 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2119 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2120 	}
   2121 #endif
   2122 
   2123 	/* Step 36: Configure DMA resource watermarks */
   2124 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2125 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2126 
   2127 	/* Step 38: Enable buffer manager */
   2128 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   2129 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
   2130 
   2131 	/* Step 39: Poll for buffer manager start indication */
   2132 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2133 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2134 			break;
   2135 		DELAY(10);
   2136 	}
   2137 
   2138 	if (i == BGE_TIMEOUT * 2) {
   2139 		aprint_error_dev(sc->bge_dev,
   2140 		    "buffer manager failed to start\n");
   2141 		return ENXIO;
   2142 	}
   2143 
   2144 	/* Step 40: Enable flow-through queues */
   2145 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2146 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2147 
   2148 	/* Wait until queue initialization is complete */
   2149 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2150 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2151 			break;
   2152 		DELAY(10);
   2153 	}
   2154 
   2155 	if (i == BGE_TIMEOUT * 2) {
   2156 		aprint_error_dev(sc->bge_dev,
   2157 		    "flow-through queue init failed\n");
   2158 		return ENXIO;
   2159 	}
   2160 
   2161 	/* Step 41: Initialize the standard RX ring control block */
   2162 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2163 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2164 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2165 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2166 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2167 		rcb->bge_maxlen_flags =
   2168 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2169 	else if (BGE_IS_5705_PLUS(sc))
   2170 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2171 	else
   2172 		rcb->bge_maxlen_flags =
   2173 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2174 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2175 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2176 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2177 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2178 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2179 
   2180 	/*
   2181 	 * Step 42: Initialize the jumbo RX ring control block
   2182 	 * We set the 'ring disabled' bit in the flags
   2183 	 * field until we're actually ready to start
   2184 	 * using this ring (i.e. once we set the MTU
   2185 	 * high enough to require it).
   2186 	 */
   2187 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2188 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2189 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2190 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2191 		rcb->bge_maxlen_flags =
   2192 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   2193 			BGE_RCB_FLAG_RING_DISABLED);
   2194 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2195 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2196 		    rcb->bge_hostaddr.bge_addr_hi);
   2197 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2198 		    rcb->bge_hostaddr.bge_addr_lo);
   2199 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2200 		    rcb->bge_maxlen_flags);
   2201 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2202 
   2203 		/* Set up dummy disabled mini ring RCB */
   2204 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2205 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2206 		    BGE_RCB_FLAG_RING_DISABLED);
   2207 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2208 		    rcb->bge_maxlen_flags);
   2209 
   2210 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2211 		    offsetof(struct bge_ring_data, bge_info),
   2212 		    sizeof (struct bge_gib),
   2213 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2214 	}
   2215 
   2216 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2217 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2218 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2219 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2220 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2221 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2222 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2223 	}
   2224 	/*
   2225 	 * Set the BD ring replenish thresholds. The recommended
   2226 	 * values are 1/8th the number of descriptors allocated to
   2227 	 * each ring.
   2228 	 */
   2229 	i = BGE_STD_RX_RING_CNT / 8;
   2230 
   2231 	/*
   2232 	 * Use a value of 8 for the following chips to workaround HW errata.
   2233 	 * Some of these chips have been added based on empirical
   2234 	 * evidence (they don't work unless this is done).
   2235 	 */
   2236 	if (BGE_IS_5705_PLUS(sc))
   2237 		i = 8;
   2238 
   2239 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
   2240 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
   2241 
   2242 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2243 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2244 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2245 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2246 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2247 	}
   2248 
   2249 	/*
   2250 	 * Disable all unused send rings by setting the 'ring disabled'
   2251 	 * bit in the flags field of all the TX send ring control blocks.
   2252 	 * These are located in NIC memory.
   2253 	 */
   2254 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2255 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   2256 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2257 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2258 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2259 		rcb_addr += sizeof(struct bge_rcb);
   2260 	}
   2261 
   2262 	/* Configure TX RCB 0 (we use only the first ring) */
   2263 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2264 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2265 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2266 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2267 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2268 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2269 	if (BGE_IS_5700_FAMILY(sc))
   2270 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2271 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2272 
   2273 	/* Disable all unused RX return rings */
   2274 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2275 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   2276 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2277 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2278 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2279 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2280 			BGE_RCB_FLAG_RING_DISABLED));
   2281 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2282 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2283 		    (i * (sizeof(uint64_t))), 0);
   2284 		rcb_addr += sizeof(struct bge_rcb);
   2285 	}
   2286 
   2287 	/* Initialize RX ring indexes */
   2288 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2289 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2290 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2291 
   2292 	/*
   2293 	 * Set up RX return ring 0
   2294 	 * Note that the NIC address for RX return rings is 0x00000000.
   2295 	 * The return rings live entirely within the host, so the
   2296 	 * nicaddr field in the RCB isn't used.
   2297 	 */
   2298 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2299 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2300 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2301 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2302 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2303 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2304 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2305 
   2306 	/* Set random backoff seed for TX */
   2307 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2308 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2309 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2310 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2311 	    BGE_TX_BACKOFF_SEED_MASK);
   2312 
   2313 	/* Set inter-packet gap */
   2314 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   2315 
   2316 	/*
   2317 	 * Specify which ring to use for packets that don't match
   2318 	 * any RX rules.
   2319 	 */
   2320 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2321 
   2322 	/*
   2323 	 * Configure number of RX lists. One interrupt distribution
   2324 	 * list, sixteen active lists, one bad frames class.
   2325 	 */
   2326 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2327 
   2328 	/* Inialize RX list placement stats mask. */
   2329 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2330 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2331 
   2332 	/* Disable host coalescing until we get it set up */
   2333 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2334 
   2335 	/* Poll to make sure it's shut down. */
   2336 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2337 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2338 			break;
   2339 		DELAY(10);
   2340 	}
   2341 
   2342 	if (i == BGE_TIMEOUT * 2) {
   2343 		aprint_error_dev(sc->bge_dev,
   2344 		    "host coalescing engine failed to idle\n");
   2345 		return ENXIO;
   2346 	}
   2347 
   2348 	/* Set up host coalescing defaults */
   2349 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2350 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2351 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2352 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2353 	if (BGE_IS_5700_FAMILY(sc)) {
   2354 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2355 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2356 	}
   2357 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2358 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2359 
   2360 	/* Set up address of statistics block */
   2361 	if (BGE_IS_5700_FAMILY(sc)) {
   2362 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2363 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2364 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2365 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2366 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2367 	}
   2368 
   2369 	/* Set up address of status block */
   2370 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2371 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2372 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2373 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2374 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2375 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2376 
   2377 	/* Turn on host coalescing state machine */
   2378 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   2379 
   2380 	/* Turn on RX BD completion state machine and enable attentions */
   2381 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2382 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2383 
   2384 	/* Turn on RX list placement state machine */
   2385 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2386 
   2387 	/* Turn on RX list selector state machine. */
   2388 	if (BGE_IS_5700_FAMILY(sc))
   2389 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2390 
   2391 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2392 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2393 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2394 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2395 
   2396 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2397 		val |= BGE_PORTMODE_TBI;
   2398 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2399 		val |= BGE_PORTMODE_GMII;
   2400 	else
   2401 		val |= BGE_PORTMODE_MII;
   2402 
   2403 	/* Turn on DMA, clear stats */
   2404 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2405 	DELAY(40);
   2406 
   2407 	/* Set misc. local control, enable interrupts on attentions */
   2408 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   2409 
   2410 #ifdef notdef
   2411 	/* Assert GPIO pins for PHY reset */
   2412 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   2413 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   2414 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   2415 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   2416 #endif
   2417 
   2418 #if defined(not_quite_yet)
   2419 	/* Linux driver enables enable gpio pin #1 on 5700s */
   2420 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   2421 		sc->bge_local_ctrl_reg |=
   2422 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   2423 	}
   2424 #endif
   2425 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2426 
   2427 	/* Turn on DMA completion state machine */
   2428 	if (BGE_IS_5700_FAMILY(sc))
   2429 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2430 
   2431 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2432 
   2433 	/* Enable host coalescing bug fix */
   2434 	if (BGE_IS_5755_PLUS(sc))
   2435 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2436 
   2437 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2438 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2439 
   2440 	/* Turn on write DMA state machine */
   2441 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2442 	DELAY(40);
   2443 
   2444 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2445 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2446 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2447 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2448 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2449 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2450 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2451 
   2452 	if (sc->bge_flags & BGE_PCIE)
   2453 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2454 	if (sc->bge_flags & BGE_TSO)
   2455 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2456 
   2457 	/* Turn on read DMA state machine */
   2458 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2459 	delay(40);
   2460 
   2461 	/* Turn on RX data completion state machine */
   2462 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2463 
   2464 	/* Turn on RX BD initiator state machine */
   2465 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2466 
   2467 	/* Turn on RX data and RX BD initiator state machine */
   2468 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2469 
   2470 	/* Turn on Mbuf cluster free state machine */
   2471 	if (BGE_IS_5700_FAMILY(sc))
   2472 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2473 
   2474 	/* Turn on send BD completion state machine */
   2475 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2476 
   2477 	/* Turn on send data completion state machine */
   2478 	val = BGE_SDCMODE_ENABLE;
   2479 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2480 		val |= BGE_SDCMODE_CDELAY;
   2481 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2482 
   2483 	/* Turn on send data initiator state machine */
   2484 	if (sc->bge_flags & BGE_TSO) {
   2485 		/* XXX: magic value from Linux driver */
   2486 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
   2487 	} else
   2488 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2489 
   2490 	/* Turn on send BD initiator state machine */
   2491 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2492 
   2493 	/* Turn on send BD selector state machine */
   2494 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2495 
   2496 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2497 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2498 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2499 
   2500 	/* ack/clear link change events */
   2501 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2502 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2503 	    BGE_MACSTAT_LINK_CHANGED);
   2504 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2505 
   2506 	/* Enable PHY auto polling (for MII/GMII only) */
   2507 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   2508 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2509 	} else {
   2510 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2511 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   2512 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2513 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2514 			    BGE_EVTENB_MI_INTERRUPT);
   2515 	}
   2516 
   2517 	/*
   2518 	 * Clear any pending link state attention.
   2519 	 * Otherwise some link state change events may be lost until attention
   2520 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   2521 	 * It's not necessary on newer BCM chips - perhaps enabling link
   2522 	 * state change attentions implies clearing pending attention.
   2523 	 */
   2524 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2525 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2526 	    BGE_MACSTAT_LINK_CHANGED);
   2527 
   2528 	/* Enable link state change attentions. */
   2529 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   2530 
   2531 	return 0;
   2532 }
   2533 
   2534 static const struct bge_revision *
   2535 bge_lookup_rev(uint32_t chipid)
   2536 {
   2537 	const struct bge_revision *br;
   2538 
   2539 	for (br = bge_revisions; br->br_name != NULL; br++) {
   2540 		if (br->br_chipid == chipid)
   2541 			return br;
   2542 	}
   2543 
   2544 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   2545 		if (br->br_chipid == BGE_ASICREV(chipid))
   2546 			return br;
   2547 	}
   2548 
   2549 	return NULL;
   2550 }
   2551 
   2552 static const struct bge_product *
   2553 bge_lookup(const struct pci_attach_args *pa)
   2554 {
   2555 	const struct bge_product *bp;
   2556 
   2557 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2558 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2559 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2560 			return bp;
   2561 	}
   2562 
   2563 	return NULL;
   2564 }
   2565 
   2566 static int
   2567 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
   2568 {
   2569 #ifdef NOTYET
   2570 	uint32_t pm_ctl = 0;
   2571 
   2572 	/* XXX FIXME: make sure indirect accesses enabled? */
   2573 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2574 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2575 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2576 
   2577 	/* clear the PME_assert bit and power state bits, enable PME */
   2578 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2579 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2580 	pm_ctl |= (1 << 8);
   2581 
   2582 	if (powerlevel == 0) {
   2583 		pm_ctl |= PCIM_PSTAT_D0;
   2584 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2585 		    pm_ctl, 2);
   2586 		DELAY(10000);
   2587 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2588 		DELAY(10000);
   2589 
   2590 #ifdef NOTYET
   2591 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2592 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2593 #endif
   2594 		DELAY(40); DELAY(40); DELAY(40);
   2595 		DELAY(10000);	/* above not quite adequate on 5700 */
   2596 		return 0;
   2597 	}
   2598 
   2599 
   2600 	/*
   2601 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2602 	 * GMII gpio pins. Example code assumes all hardware vendors
   2603 	 * followed Broadcom's sample pcb layout. Until we verify that
   2604 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2605 	 */
   2606 	aprint_error_dev(sc->bge_dev,
   2607 	    "power state %d unimplemented; check GPIO pins\n",
   2608 	    powerlevel);
   2609 #endif
   2610 	return EOPNOTSUPP;
   2611 }
   2612 
   2613 
   2614 /*
   2615  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2616  * against our list and return its name if we find a match. Note
   2617  * that since the Broadcom controller contains VPD support, we
   2618  * can get the device name string from the controller itself instead
   2619  * of the compiled-in string. This is a little slow, but it guarantees
   2620  * we'll always announce the right product name.
   2621  */
   2622 static int
   2623 bge_probe(device_t parent, cfdata_t match, void *aux)
   2624 {
   2625 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2626 
   2627 	if (bge_lookup(pa) != NULL)
   2628 		return 1;
   2629 
   2630 	return 0;
   2631 }
   2632 
   2633 static void
   2634 bge_attach(device_t parent, device_t self, void *aux)
   2635 {
   2636 	struct bge_softc	*sc = device_private(self);
   2637 	struct pci_attach_args	*pa = aux;
   2638 	prop_dictionary_t dict;
   2639 	const struct bge_product *bp;
   2640 	const struct bge_revision *br;
   2641 	pci_chipset_tag_t	pc;
   2642 	pci_intr_handle_t	ih;
   2643 	const char		*intrstr = NULL;
   2644 	bus_dma_segment_t	seg;
   2645 	int			rseg;
   2646 	uint32_t		hwcfg = 0;
   2647 	uint32_t		command;
   2648 	struct ifnet		*ifp;
   2649 	uint32_t		misccfg;
   2650 	void *			kva;
   2651 	u_char			eaddr[ETHER_ADDR_LEN];
   2652 	pcireg_t		memtype, subid;
   2653 	bus_addr_t		memaddr;
   2654 	bus_size_t		memsize;
   2655 	uint32_t		pm_ctl;
   2656 	bool			no_seeprom;
   2657 
   2658 	bp = bge_lookup(pa);
   2659 	KASSERT(bp != NULL);
   2660 
   2661 	sc->sc_pc = pa->pa_pc;
   2662 	sc->sc_pcitag = pa->pa_tag;
   2663 	sc->bge_dev = self;
   2664 
   2665 	pc = sc->sc_pc;
   2666 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   2667 
   2668 	aprint_naive(": Ethernet controller\n");
   2669 	aprint_normal(": %s\n", bp->bp_name);
   2670 
   2671 	/*
   2672 	 * Map control/status registers.
   2673 	 */
   2674 	DPRINTFN(5, ("Map control/status regs\n"));
   2675 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2676 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2677 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   2678 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   2679 
   2680 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2681 		aprint_error_dev(sc->bge_dev,
   2682 		    "failed to enable memory mapping!\n");
   2683 		return;
   2684 	}
   2685 
   2686 	DPRINTFN(5, ("pci_mem_find\n"));
   2687 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   2688 	switch (memtype) {
   2689 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2690 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2691 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2692 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2693 		    &memaddr, &memsize) == 0)
   2694 			break;
   2695 	default:
   2696 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   2697 		return;
   2698 	}
   2699 
   2700 	DPRINTFN(5, ("pci_intr_map\n"));
   2701 	if (pci_intr_map(pa, &ih)) {
   2702 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   2703 		return;
   2704 	}
   2705 
   2706 	DPRINTFN(5, ("pci_intr_string\n"));
   2707 	intrstr = pci_intr_string(pc, ih);
   2708 
   2709 	DPRINTFN(5, ("pci_intr_establish\n"));
   2710 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2711 
   2712 	if (sc->bge_intrhand == NULL) {
   2713 		aprint_error_dev(sc->bge_dev,
   2714 		    "couldn't establish interrupt%s%s\n",
   2715 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   2716 		return;
   2717 	}
   2718 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   2719 
   2720 	/*
   2721 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2722 	 * can clobber the chip's PCI config-space power control registers,
   2723 	 * leaving the card in D3 powersave state.
   2724 	 * We do not have memory-mapped registers in this state,
   2725 	 * so force device into D0 state before starting initialization.
   2726 	 */
   2727 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   2728 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2729 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2730 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2731 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2732 
   2733 	/*
   2734 	 * Save ASIC rev.
   2735 	 */
   2736 	sc->bge_chipid =
   2737 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   2738 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   2739 
   2740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
   2741 		switch (PCI_PRODUCT(pa->pa_id)) {
   2742 		case PCI_PRODUCT_BROADCOM_BCM5717:
   2743 		case PCI_PRODUCT_BROADCOM_BCM5718:
   2744 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   2745 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2746 			    BGE_PCI_GEN2_PRODID_ASICREV);
   2747 			break;
   2748 		case PCI_PRODUCT_BROADCOM_BCM57761:
   2749 		case PCI_PRODUCT_BROADCOM_BCM57762:
   2750 		case PCI_PRODUCT_BROADCOM_BCM57765:
   2751 		case PCI_PRODUCT_BROADCOM_BCM57781:
   2752 		case PCI_PRODUCT_BROADCOM_BCM57785:
   2753 		case PCI_PRODUCT_BROADCOM_BCM57791:
   2754 		case PCI_PRODUCT_BROADCOM_BCM57795:
   2755 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2756 			    BGE_PCI_GEN15_PRODID_ASICREV);
   2757 			break;
   2758 		default:
   2759 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
   2760 			    BGE_PCI_PRODID_ASICREV);
   2761 			break;
   2762 		}
   2763 	}
   2764 
   2765 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   2766 	        &sc->bge_pciecap, NULL) != 0)
   2767 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   2768 		/* PCIe */
   2769 		sc->bge_flags |= BGE_PCIE;
   2770 		bge_set_max_readrq(sc);
   2771 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   2772 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   2773 		/* PCI-X */
   2774 		sc->bge_flags |= BGE_PCIX;
   2775 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   2776 			&sc->bge_pcixcap, NULL) == 0)
   2777 			aprint_error_dev(sc->bge_dev,
   2778 			    "unable to find PCIX capability\n");
   2779 	}
   2780 
   2781 	/* chipid */
   2782 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2783 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
   2784 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2785 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2786 		sc->bge_flags |= BGE_5700_FAMILY;
   2787 
   2788 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
   2789 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
   2790 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
   2791 		sc->bge_flags |= BGE_5714_FAMILY;
   2792 
   2793 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
   2794 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2795 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2796 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2797 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2798 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2799 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
   2800 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2801 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   2802 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2803 		sc->bge_flags |= BGE_5755_PLUS;
   2804 
   2805 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
   2806 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   2807 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
   2808 	    BGE_IS_5755_PLUS(sc) ||
   2809 	    BGE_IS_5714_FAMILY(sc))
   2810 		sc->bge_flags |= BGE_575X_PLUS;
   2811 
   2812 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
   2813 	    BGE_IS_575X_PLUS(sc))
   2814 		sc->bge_flags |= BGE_5705_PLUS;
   2815 
   2816 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   2817 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   2818 		sc->bge_flags |= BGE_57765_PLUS;
   2819 
   2820 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2821 	    BGE_IS_57765_PLUS(sc))
   2822 		sc->bge_flags |= BGE_5717_PLUS;
   2823 	/*
   2824 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2825 	 * been observed in the first few bytes of some received packets.
   2826 	 * Aligning the packet buffer in memory eliminates the corruption.
   2827 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2828 	 * which do not support unaligned accesses, we will realign the
   2829 	 * payloads by copying the received packets.
   2830 	 */
   2831 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2832 	    sc->bge_flags & BGE_PCIX)
   2833 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   2834 
   2835 	if (BGE_IS_5700_FAMILY(sc))
   2836 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   2837 
   2838 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2839 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   2840 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   2841 		sc->bge_flags |= BGE_NO_3LED;
   2842 
   2843 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   2844 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   2845 
   2846 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2847 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   2848 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   2849 		sc->bge_flags |= BGE_IS_5788;
   2850 
   2851 	/*
   2852 	 * Some controllers seem to require a special firmware to use
   2853 	 * TSO. But the firmware is not available to FreeBSD and Linux
   2854 	 * claims that the TSO performed by the firmware is slower than
   2855 	 * hardware based TSO. Moreover the firmware based TSO has one
   2856 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   2857 	 * header is greater than 80 bytes. The workaround for the TSO
   2858 	 * bug exist but it seems it's too expensive than not using
   2859 	 * TSO at all. Some hardwares also have the TSO bug so limit
   2860 	 * the TSO to the controllers that are not affected TSO issues
   2861 	 * (e.g. 5755 or higher).
   2862 	 */
   2863 	if (BGE_IS_5755_PLUS(sc)) {
   2864 		/*
   2865 		 * BCM5754 and BCM5787 shares the same ASIC id so
   2866 		 * explicit device id check is required.
   2867 		 */
   2868 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   2869 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   2870 			sc->bge_flags |= BGE_TSO;
   2871 	}
   2872 
   2873 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   2874 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   2875 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2876 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2877 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   2878 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   2879 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   2880 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   2881 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   2882 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   2883 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   2884 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   2885 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2886 		sc->bge_flags |= BGE_10_100_ONLY;
   2887 
   2888 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2889 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   2890 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   2891 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
   2892 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   2893 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
   2894 
   2895 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   2896 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   2897 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   2898 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   2899 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   2900 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   2901 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   2902 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   2903 
   2904 	if (BGE_IS_5705_PLUS(sc) &&
   2905 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   2906 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2907 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   2908 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
   2909 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
   2910 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
   2911 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2912 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2913 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2914 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   2915 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   2916 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   2917 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   2918 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   2919 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   2920 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   2921 			sc->bge_flags |= BGE_PHY_BER_BUG;
   2922 	}
   2923 
   2924 	/*
   2925 	 * SEEPROM check.
   2926 	 * First check if firmware knows we do not have SEEPROM.
   2927 	 */
   2928 	if (prop_dictionary_get_bool(device_properties(self),
   2929 	     "without-seeprom", &no_seeprom) && no_seeprom)
   2930 	 	sc->bge_flags |= BGE_NO_EEPROM;
   2931 
   2932 	/* Now check the 'ROM failed' bit on the RX CPU */
   2933 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   2934 		sc->bge_flags |= BGE_NO_EEPROM;
   2935 
   2936 	/* Identify the chips that use an CPMU. */
   2937 	if (BGE_IS_5717_PLUS(sc) ||
   2938 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2939 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2940 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2941 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2942 		sc->bge_flags |= BGE_CPMU_PRESENT;
   2943 
   2944 	/* Try to reset the chip. */
   2945 	DPRINTFN(5, ("bge_reset\n"));
   2946 	bge_reset(sc);
   2947 
   2948 	sc->bge_asf_mode = 0;
   2949 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
   2950 	    == BGE_MAGIC_NUMBER)) {
   2951 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
   2952 		    & BGE_HWCFG_ASF) {
   2953 			sc->bge_asf_mode |= ASF_ENABLE;
   2954 			sc->bge_asf_mode |= ASF_STACKUP;
   2955 			if (BGE_IS_575X_PLUS(sc)) {
   2956 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   2957 			}
   2958 		}
   2959 	}
   2960 
   2961 	/* Try to reset the chip again the nice way. */
   2962 	bge_stop_fw(sc);
   2963 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   2964 	if (bge_reset(sc))
   2965 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   2966 
   2967 	bge_sig_legacy(sc, BGE_RESET_STOP);
   2968 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   2969 
   2970 	if (bge_chipinit(sc)) {
   2971 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   2972 		bge_release_resources(sc);
   2973 		return;
   2974 	}
   2975 
   2976 	/*
   2977 	 * Get station address from the EEPROM.
   2978 	 */
   2979 	if (bge_get_eaddr(sc, eaddr)) {
   2980 		aprint_error_dev(sc->bge_dev,
   2981 		    "failed to read station address\n");
   2982 		bge_release_resources(sc);
   2983 		return;
   2984 	}
   2985 
   2986 	br = bge_lookup_rev(sc->bge_chipid);
   2987 
   2988 	if (br == NULL) {
   2989 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   2990 		    sc->bge_chipid);
   2991 	} else {
   2992 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   2993 		    br->br_name, sc->bge_chipid);
   2994 	}
   2995 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2996 
   2997 	/* Allocate the general information block and ring buffers. */
   2998 	if (pci_dma64_available(pa))
   2999 		sc->bge_dmatag = pa->pa_dmat64;
   3000 	else
   3001 		sc->bge_dmatag = pa->pa_dmat;
   3002 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3003 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3004 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   3005 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3006 		return;
   3007 	}
   3008 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3009 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   3010 			   sizeof(struct bge_ring_data), &kva,
   3011 			   BUS_DMA_NOWAIT)) {
   3012 		aprint_error_dev(sc->bge_dev,
   3013 		    "can't map DMA buffers (%zu bytes)\n",
   3014 		    sizeof(struct bge_ring_data));
   3015 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3016 		return;
   3017 	}
   3018 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3019 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3020 	    sizeof(struct bge_ring_data), 0,
   3021 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3022 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3023 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3024 				 sizeof(struct bge_ring_data));
   3025 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3026 		return;
   3027 	}
   3028 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3029 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3030 			    sizeof(struct bge_ring_data), NULL,
   3031 			    BUS_DMA_NOWAIT)) {
   3032 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3033 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3034 				 sizeof(struct bge_ring_data));
   3035 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3036 		return;
   3037 	}
   3038 
   3039 	DPRINTFN(5, ("bzero\n"));
   3040 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3041 
   3042 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3043 
   3044 	/* Try to allocate memory for jumbo buffers. */
   3045 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3046 		if (bge_alloc_jumbo_mem(sc)) {
   3047 			aprint_error_dev(sc->bge_dev,
   3048 			    "jumbo buffer allocation failed\n");
   3049 		} else
   3050 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3051 	}
   3052 
   3053 	/* Set default tuneable values. */
   3054 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3055 	sc->bge_rx_coal_ticks = 150;
   3056 	sc->bge_rx_max_coal_bds = 64;
   3057 #ifdef ORIG_WPAUL_VALUES
   3058 	sc->bge_tx_coal_ticks = 150;
   3059 	sc->bge_tx_max_coal_bds = 128;
   3060 #else
   3061 	sc->bge_tx_coal_ticks = 300;
   3062 	sc->bge_tx_max_coal_bds = 400;
   3063 #endif
   3064 	if (BGE_IS_5705_PLUS(sc)) {
   3065 		sc->bge_tx_coal_ticks = (12 * 5);
   3066 		sc->bge_tx_max_coal_bds = (12 * 5);
   3067 			aprint_verbose_dev(sc->bge_dev,
   3068 			    "setting short Tx thresholds\n");
   3069 	}
   3070 
   3071 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   3072 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
   3073 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
   3074 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3075 	else if (BGE_IS_5705_PLUS(sc))
   3076 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3077 	else
   3078 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3079 
   3080 	/* Set up ifnet structure */
   3081 	ifp = &sc->ethercom.ec_if;
   3082 	ifp->if_softc = sc;
   3083 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3084 	ifp->if_ioctl = bge_ioctl;
   3085 	ifp->if_stop = bge_stop;
   3086 	ifp->if_start = bge_start;
   3087 	ifp->if_init = bge_init;
   3088 	ifp->if_watchdog = bge_watchdog;
   3089 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3090 	IFQ_SET_READY(&ifp->if_snd);
   3091 	DPRINTFN(5, ("strcpy if_xname\n"));
   3092 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3093 
   3094 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3095 		sc->ethercom.ec_if.if_capabilities |=
   3096 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3097 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3098 		sc->ethercom.ec_if.if_capabilities |=
   3099 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3100 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3101 #endif
   3102 	sc->ethercom.ec_capabilities |=
   3103 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3104 
   3105 	if (sc->bge_flags & BGE_TSO)
   3106 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3107 
   3108 	/*
   3109 	 * Do MII setup.
   3110 	 */
   3111 	DPRINTFN(5, ("mii setup\n"));
   3112 	sc->bge_mii.mii_ifp = ifp;
   3113 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3114 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3115 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3116 
   3117 	/*
   3118 	 * Figure out what sort of media we have by checking the hardware
   3119 	 * config word in the first 32k of NIC internal memory, or fall back to
   3120 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   3121 	 * this value appears to be unset. If that's the case, we have to rely
   3122 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3123 	 * the SysKonnect SK-9D41.
   3124 	 */
   3125 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   3126 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   3127 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3128 		bge_read_eeprom(sc, (void *)&hwcfg,
   3129 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3130 		hwcfg = be32toh(hwcfg);
   3131 	}
   3132 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3133 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3134 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3135 		if (BGE_IS_5714_FAMILY(sc))
   3136 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3137 		else
   3138 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3139 	}
   3140 
   3141 	/* set phyflags and chipid before mii_attach() */
   3142 	dict = device_properties(self);
   3143 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3144 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3145 
   3146 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3147 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3148 		    bge_ifmedia_sts);
   3149 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3150 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3151 			    0, NULL);
   3152 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3153 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3154 		/* Pretend the user requested this setting */
   3155 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3156 	} else {
   3157 		/*
   3158 		 * Do transceiver setup and tell the firmware the
   3159 		 * driver is down so we can try to get access the
   3160 		 * probe if ASF is running.  Retry a couple of times
   3161 		 * if we get a conflict with the ASF firmware accessing
   3162 		 * the PHY.
   3163 		 */
   3164 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3165 		bge_asf_driver_up(sc);
   3166 
   3167 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3168 			     bge_ifmedia_sts);
   3169 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
   3170 			   MII_PHY_ANY, MII_OFFSET_ANY,
   3171 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   3172 
   3173 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3174 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3175 			ifmedia_add(&sc->bge_mii.mii_media,
   3176 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3177 			ifmedia_set(&sc->bge_mii.mii_media,
   3178 				    IFM_ETHER|IFM_MANUAL);
   3179 		} else
   3180 			ifmedia_set(&sc->bge_mii.mii_media,
   3181 				    IFM_ETHER|IFM_AUTO);
   3182 
   3183 		/*
   3184 		 * Now tell the firmware we are going up after probing the PHY
   3185 		 */
   3186 		if (sc->bge_asf_mode & ASF_STACKUP)
   3187 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3188 	}
   3189 
   3190 	/*
   3191 	 * Call MI attach routine.
   3192 	 */
   3193 	DPRINTFN(5, ("if_attach\n"));
   3194 	if_attach(ifp);
   3195 	DPRINTFN(5, ("ether_ifattach\n"));
   3196 	ether_ifattach(ifp, eaddr);
   3197 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3198 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3199 		RND_TYPE_NET, 0);
   3200 #ifdef BGE_EVENT_COUNTERS
   3201 	/*
   3202 	 * Attach event counters.
   3203 	 */
   3204 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3205 	    NULL, device_xname(sc->bge_dev), "intr");
   3206 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3207 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3208 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3209 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3210 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3211 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3212 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3213 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3214 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3215 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3216 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3217 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3218 #endif /* BGE_EVENT_COUNTERS */
   3219 	DPRINTFN(5, ("callout_init\n"));
   3220 	callout_init(&sc->bge_timeout, 0);
   3221 
   3222 	if (pmf_device_register(self, NULL, NULL))
   3223 		pmf_class_network_register(self, ifp);
   3224 	else
   3225 		aprint_error_dev(self, "couldn't establish power handler\n");
   3226 
   3227 	bge_sysctl_init(sc);
   3228 
   3229 #ifdef BGE_DEBUG
   3230 	bge_debug_info(sc);
   3231 #endif
   3232 }
   3233 
   3234 static void
   3235 bge_release_resources(struct bge_softc *sc)
   3236 {
   3237 	if (sc->bge_vpd_prodname != NULL)
   3238 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3239 
   3240 	if (sc->bge_vpd_readonly != NULL)
   3241 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3242 }
   3243 
   3244 static int
   3245 bge_reset(struct bge_softc *sc)
   3246 {
   3247 	uint32_t cachesize, command, pcistate, marbmode;
   3248 #if 0
   3249 	uint32_t new_pcistate;
   3250 #endif
   3251 	pcireg_t devctl, reg;
   3252 	int i, val;
   3253 	void (*write_op)(struct bge_softc *, int, int);
   3254 
   3255 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)
   3256 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3257 	    	if (sc->bge_flags & BGE_PCIE)
   3258 			write_op = bge_writemem_direct;
   3259 		else
   3260 			write_op = bge_writemem_ind;
   3261 	} else
   3262 		write_op = bge_writereg_ind;
   3263 
   3264 	/* Save some important PCI state. */
   3265 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3266 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3267 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
   3268 
   3269 	/* Step 5a: Enable memory arbiter. */
   3270 	marbmode = 0;
   3271 	if (BGE_IS_5714_FAMILY(sc))
   3272 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3273 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3274 
   3275 	/* Step 5b-5d: */
   3276 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3277 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3278 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3279 
   3280 	/* XXX ???: Disable fastboot on controllers that support it. */
   3281 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3282 	    BGE_IS_5755_PLUS(sc))
   3283 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3284 
   3285 	/*
   3286 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3287 	 * When firmware finishes its initialization it will
   3288 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3289 	 */
   3290 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   3291 
   3292 	/* Step 7: */
   3293 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   3294 	/*
   3295 	 * XXX: from FreeBSD/Linux; no documentation
   3296 	 */
   3297 	if (sc->bge_flags & BGE_PCIE) {
   3298 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   3299 		    !BGE_IS_57765_PLUS(sc) &&
   3300 		    (CSR_READ_4(sc, BGE_PCIE_CTL1) ==
   3301 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   3302 			/* PCI Express 1.0 system */
   3303 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   3304 			    BGE_PHY_PCIE_SCRAM_MODE);
   3305 		}
   3306 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3307 			/*
   3308 			 * Prevent PCI Express link training
   3309 			 * during global reset.
   3310 			 */
   3311 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3312 			val |= (1<<29);
   3313 		}
   3314 	}
   3315 
   3316 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3317 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3318 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3319 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3320 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3321 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3322 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3323 	}
   3324 
   3325 	/*
   3326 	 * Set GPHY Power Down Override to leave GPHY
   3327 	 * powered up in D0 uninitialized.
   3328 	 */
   3329 	if (BGE_IS_5705_PLUS(sc))
   3330 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
   3331 
   3332 	/* XXX 5721, 5751 and 5752 */
   3333 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
   3334 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
   3335 
   3336 	/* Issue global reset */
   3337 	write_op(sc, BGE_MISC_CFG, val);
   3338 
   3339 	/* Step 8: wait for complete */
   3340 	if (sc->bge_flags & BGE_PCIE)
   3341 		delay(100*1000); /* too big */
   3342 	else
   3343 		delay(100);
   3344 
   3345 	/* From Linux: dummy read to flush PCI posted writes */
   3346 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3347 
   3348 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3349 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3350 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3351 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
   3352 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
   3353 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3354 	write_op(sc, BGE_MISC_CFG, (65 << 1));
   3355 
   3356 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3357 	if (sc->bge_flags & BGE_PCIX) {
   3358 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3359 		    + PCI_PCIX_CMD);
   3360 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3361 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3362 	}
   3363 
   3364 	if (sc->bge_flags & BGE_PCIE) {
   3365 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3366 			DELAY(500000);
   3367 			/* XXX: Magic Numbers */
   3368 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3369 			    BGE_PCI_UNKNOWN0);
   3370 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3371 			    BGE_PCI_UNKNOWN0,
   3372 			    reg | (1 << 15));
   3373 		}
   3374 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3375 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3376 		/* Clear enable no snoop and disable relaxed ordering. */
   3377 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   3378 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3379 		/* Set PCIE max payload size to 128. */
   3380 		devctl &= ~(0x00e0);
   3381 		/* Clear device status register. Write 1b to clear */
   3382 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3383 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3384 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3385 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3386 	}
   3387 
   3388 	/* Step 12: Enable memory arbiter. */
   3389 	marbmode = 0;
   3390 	if (BGE_IS_5714_FAMILY(sc))
   3391 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
   3392 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
   3393 
   3394 	/* Step 17: Poll until the firmware initialization is complete */
   3395 	bge_poll_fw(sc);
   3396 
   3397 	/* XXX 5721, 5751 and 5752 */
   3398 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3399 		/* Step 19: */
   3400 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3401 		/* Step 20: */
   3402 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3403 	}
   3404 
   3405 	/*
   3406 	 * Step 18: wirte mac mode
   3407 	 * XXX Write 0x0c for 5703S and 5704S
   3408 	 */
   3409 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, 0);
   3410 	DELAY(40);
   3411 
   3412 
   3413 	/* Step 21: 5822 B0 errata */
   3414 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   3415 		pcireg_t msidata;
   3416 
   3417 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3418 		    BGE_PCI_MSI_DATA);
   3419 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   3420 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   3421 		    msidata);
   3422 	}
   3423 
   3424 	/* Step 23: restore cache line size */
   3425 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3426 
   3427 #if 0
   3428 	/*
   3429 	 * XXX Wait for the value of the PCISTATE register to
   3430 	 * return to its original pre-reset state. This is a
   3431 	 * fairly good indicator of reset completion. If we don't
   3432 	 * wait for the reset to fully complete, trying to read
   3433 	 * from the device's non-PCI registers may yield garbage
   3434 	 * results.
   3435 	 */
   3436 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3437 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3438 		    BGE_PCI_PCISTATE);
   3439 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   3440 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   3441 			break;
   3442 		DELAY(10);
   3443 	}
   3444 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   3445 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   3446 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
   3447 	}
   3448 #endif
   3449 
   3450 	/* Step 28: Fix up byte swapping */
   3451 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3452 
   3453 	/* Tell the ASF firmware we are up */
   3454 	if (sc->bge_asf_mode & ASF_STACKUP)
   3455 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3456 
   3457 	/*
   3458 	 * The 5704 in TBI mode apparently needs some special
   3459 	 * adjustment to insure the SERDES drive level is set
   3460 	 * to 1.2V.
   3461 	 */
   3462 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   3463 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   3464 		uint32_t serdescfg;
   3465 
   3466 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   3467 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   3468 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   3469 	}
   3470 
   3471 	if (sc->bge_flags & BGE_PCIE &&
   3472 	    !BGE_IS_57765_PLUS(sc) &&
   3473 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   3474 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   3475 		uint32_t v;
   3476 
   3477 		/* Enable PCI Express bug fix */
   3478 		v = CSR_READ_4(sc, 0x7c00);
   3479 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
   3480 	}
   3481 	DELAY(10000);
   3482 
   3483 	return 0;
   3484 }
   3485 
   3486 /*
   3487  * Frame reception handling. This is called if there's a frame
   3488  * on the receive return list.
   3489  *
   3490  * Note: we have to be able to handle two possibilities here:
   3491  * 1) the frame is from the jumbo receive ring
   3492  * 2) the frame is from the standard receive ring
   3493  */
   3494 
   3495 static void
   3496 bge_rxeof(struct bge_softc *sc)
   3497 {
   3498 	struct ifnet *ifp;
   3499 	uint16_t rx_prod, rx_cons;
   3500 	int stdcnt = 0, jumbocnt = 0;
   3501 	bus_dmamap_t dmamap;
   3502 	bus_addr_t offset, toff;
   3503 	bus_size_t tlen;
   3504 	int tosync;
   3505 
   3506 	rx_cons = sc->bge_rx_saved_considx;
   3507 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   3508 
   3509 	/* Nothing to do */
   3510 	if (rx_cons == rx_prod)
   3511 		return;
   3512 
   3513 	ifp = &sc->ethercom.ec_if;
   3514 
   3515 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3516 	    offsetof(struct bge_ring_data, bge_status_block),
   3517 	    sizeof (struct bge_status_block),
   3518 	    BUS_DMASYNC_POSTREAD);
   3519 
   3520 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   3521 	tosync = rx_prod - rx_cons;
   3522 
   3523 	if (tosync != 0)
   3524 		rnd_add_uint32(&sc->rnd_source, tosync);
   3525 
   3526 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   3527 
   3528 	if (tosync < 0) {
   3529 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   3530 		    sizeof (struct bge_rx_bd);
   3531 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3532 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   3533 		tosync = -tosync;
   3534 	}
   3535 
   3536 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3537 	    offset, tosync * sizeof (struct bge_rx_bd),
   3538 	    BUS_DMASYNC_POSTREAD);
   3539 
   3540 	while (rx_cons != rx_prod) {
   3541 		struct bge_rx_bd	*cur_rx;
   3542 		uint32_t		rxidx;
   3543 		struct mbuf		*m = NULL;
   3544 
   3545 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   3546 
   3547 		rxidx = cur_rx->bge_idx;
   3548 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   3549 
   3550 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   3551 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   3552 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   3553 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   3554 			jumbocnt++;
   3555 			bus_dmamap_sync(sc->bge_dmatag,
   3556 			    sc->bge_cdata.bge_rx_jumbo_map,
   3557 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   3558 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   3559 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3560 				ifp->if_ierrors++;
   3561 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3562 				continue;
   3563 			}
   3564 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   3565 					     NULL)== ENOBUFS) {
   3566 				ifp->if_ierrors++;
   3567 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   3568 				continue;
   3569 			}
   3570 		} else {
   3571 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   3572 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   3573 
   3574 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   3575 			stdcnt++;
   3576 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   3577 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   3578 			if (dmamap == NULL) {
   3579 				ifp->if_ierrors++;
   3580 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3581 				continue;
   3582 			}
   3583 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   3584 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3585 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   3586 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   3587 				ifp->if_ierrors++;
   3588 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3589 				continue;
   3590 			}
   3591 			if (bge_newbuf_std(sc, sc->bge_std,
   3592 			    NULL, dmamap) == ENOBUFS) {
   3593 				ifp->if_ierrors++;
   3594 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   3595 				continue;
   3596 			}
   3597 		}
   3598 
   3599 		ifp->if_ipackets++;
   3600 #ifndef __NO_STRICT_ALIGNMENT
   3601 		/*
   3602 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   3603 		 * the Rx buffer has the layer-2 header unaligned.
   3604 		 * If our CPU requires alignment, re-align by copying.
   3605 		 */
   3606 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   3607 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   3608 				cur_rx->bge_len);
   3609 			m->m_data += ETHER_ALIGN;
   3610 		}
   3611 #endif
   3612 
   3613 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   3614 		m->m_pkthdr.rcvif = ifp;
   3615 
   3616 		/*
   3617 		 * Handle BPF listeners. Let the BPF user see the packet.
   3618 		 */
   3619 		bpf_mtap(ifp, m);
   3620 
   3621 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   3622 
   3623 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   3624 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   3625 		/*
   3626 		 * Rx transport checksum-offload may also
   3627 		 * have bugs with packets which, when transmitted,
   3628 		 * were `runts' requiring padding.
   3629 		 */
   3630 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   3631 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   3632 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   3633 			m->m_pkthdr.csum_data =
   3634 			    cur_rx->bge_tcp_udp_csum;
   3635 			m->m_pkthdr.csum_flags |=
   3636 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   3637 			     M_CSUM_DATA);
   3638 		}
   3639 
   3640 		/*
   3641 		 * If we received a packet with a vlan tag, pass it
   3642 		 * to vlan_input() instead of ether_input().
   3643 		 */
   3644 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   3645 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   3646 		}
   3647 
   3648 		(*ifp->if_input)(ifp, m);
   3649 	}
   3650 
   3651 	sc->bge_rx_saved_considx = rx_cons;
   3652 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   3653 	if (stdcnt)
   3654 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   3655 	if (jumbocnt)
   3656 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   3657 }
   3658 
   3659 static void
   3660 bge_txeof(struct bge_softc *sc)
   3661 {
   3662 	struct bge_tx_bd *cur_tx = NULL;
   3663 	struct ifnet *ifp;
   3664 	struct txdmamap_pool_entry *dma;
   3665 	bus_addr_t offset, toff;
   3666 	bus_size_t tlen;
   3667 	int tosync;
   3668 	struct mbuf *m;
   3669 
   3670 	ifp = &sc->ethercom.ec_if;
   3671 
   3672 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3673 	    offsetof(struct bge_ring_data, bge_status_block),
   3674 	    sizeof (struct bge_status_block),
   3675 	    BUS_DMASYNC_POSTREAD);
   3676 
   3677 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   3678 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   3679 	    sc->bge_tx_saved_considx;
   3680 
   3681 	if (tosync != 0)
   3682 		rnd_add_uint32(&sc->rnd_source, tosync);
   3683 
   3684 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   3685 
   3686 	if (tosync < 0) {
   3687 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   3688 		    sizeof (struct bge_tx_bd);
   3689 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3690 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3691 		tosync = -tosync;
   3692 	}
   3693 
   3694 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   3695 	    offset, tosync * sizeof (struct bge_tx_bd),
   3696 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3697 
   3698 	/*
   3699 	 * Go through our tx ring and free mbufs for those
   3700 	 * frames that have been sent.
   3701 	 */
   3702 	while (sc->bge_tx_saved_considx !=
   3703 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   3704 		uint32_t		idx = 0;
   3705 
   3706 		idx = sc->bge_tx_saved_considx;
   3707 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   3708 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   3709 			ifp->if_opackets++;
   3710 		m = sc->bge_cdata.bge_tx_chain[idx];
   3711 		if (m != NULL) {
   3712 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   3713 			dma = sc->txdma[idx];
   3714 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   3715 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3716 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   3717 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   3718 			sc->txdma[idx] = NULL;
   3719 
   3720 			m_freem(m);
   3721 		}
   3722 		sc->bge_txcnt--;
   3723 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   3724 		ifp->if_timer = 0;
   3725 	}
   3726 
   3727 	if (cur_tx != NULL)
   3728 		ifp->if_flags &= ~IFF_OACTIVE;
   3729 }
   3730 
   3731 static int
   3732 bge_intr(void *xsc)
   3733 {
   3734 	struct bge_softc *sc;
   3735 	struct ifnet *ifp;
   3736 	uint32_t statusword;
   3737 
   3738 	sc = xsc;
   3739 	ifp = &sc->ethercom.ec_if;
   3740 
   3741 	/* It is possible for the interrupt to arrive before
   3742 	 * the status block is updated prior to the interrupt.
   3743 	 * Reading the PCI State register will confirm whether the
   3744 	 * interrupt is ours and will flush the status block.
   3745 	 */
   3746 
   3747 	/* read status word from status block */
   3748 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   3749 
   3750 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   3751 	    (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3752 		BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   3753 		/* Ack interrupt and stop others from occuring. */
   3754 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   3755 
   3756 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   3757 
   3758 		/* clear status word */
   3759 		sc->bge_rdata->bge_status_block.bge_status = 0;
   3760 
   3761 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3762 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   3763 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   3764 			bge_link_upd(sc);
   3765 
   3766 		if (ifp->if_flags & IFF_RUNNING) {
   3767 			/* Check RX return ring producer/consumer */
   3768 			bge_rxeof(sc);
   3769 
   3770 			/* Check TX ring producer/consumer */
   3771 			bge_txeof(sc);
   3772 		}
   3773 
   3774 		if (sc->bge_pending_rxintr_change) {
   3775 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3776 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3777 			uint32_t junk;
   3778 
   3779 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3780 			DELAY(10);
   3781 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3782 
   3783 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3784 			DELAY(10);
   3785 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3786 
   3787 			sc->bge_pending_rxintr_change = 0;
   3788 		}
   3789 		bge_handle_events(sc);
   3790 
   3791 		/* Re-enable interrupts. */
   3792 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   3793 
   3794 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3795 			bge_start(ifp);
   3796 
   3797 		return 1;
   3798 	} else
   3799 		return 0;
   3800 }
   3801 
   3802 static void
   3803 bge_asf_driver_up(struct bge_softc *sc)
   3804 {
   3805 	if (sc->bge_asf_mode & ASF_STACKUP) {
   3806 		/* Send ASF heartbeat aprox. every 2s */
   3807 		if (sc->bge_asf_count)
   3808 			sc->bge_asf_count --;
   3809 		else {
   3810 			sc->bge_asf_count = 2;
   3811 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
   3812 			    BGE_FW_DRV_ALIVE);
   3813 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
   3814 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
   3815 			CSR_WRITE_4_FLUSH(sc, BGE_CPU_EVENT,
   3816 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
   3817 		}
   3818 	}
   3819 }
   3820 
   3821 static void
   3822 bge_tick(void *xsc)
   3823 {
   3824 	struct bge_softc *sc = xsc;
   3825 	struct mii_data *mii = &sc->bge_mii;
   3826 	int s;
   3827 
   3828 	s = splnet();
   3829 
   3830 	if (BGE_IS_5705_PLUS(sc))
   3831 		bge_stats_update_regs(sc);
   3832 	else
   3833 		bge_stats_update(sc);
   3834 
   3835 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3836 		/*
   3837 		 * Since in TBI mode auto-polling can't be used we should poll
   3838 		 * link status manually. Here we register pending link event
   3839 		 * and trigger interrupt.
   3840 		 */
   3841 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   3842 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   3843 	} else {
   3844 		/*
   3845 		 * Do not touch PHY if we have link up. This could break
   3846 		 * IPMI/ASF mode or produce extra input errors.
   3847 		 * (extra input errors was reported for bcm5701 & bcm5704).
   3848 		 */
   3849 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   3850 			mii_tick(mii);
   3851 	}
   3852 
   3853 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3854 
   3855 	splx(s);
   3856 }
   3857 
   3858 static void
   3859 bge_stats_update_regs(struct bge_softc *sc)
   3860 {
   3861 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3862 
   3863 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   3864 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   3865 
   3866 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   3867 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   3868 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   3869 }
   3870 
   3871 static void
   3872 bge_stats_update(struct bge_softc *sc)
   3873 {
   3874 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3875 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3876 
   3877 #define READ_STAT(sc, stats, stat) \
   3878 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3879 
   3880 	ifp->if_collisions +=
   3881 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3882 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3883 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3884 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3885 	  ifp->if_collisions;
   3886 
   3887 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3888 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3889 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3890 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3891 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3892 		      READ_STAT(sc, stats,
   3893 		      		xoffPauseFramesReceived.bge_addr_lo));
   3894 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3895 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3896 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3897 		      READ_STAT(sc, stats,
   3898 		      		macControlFramesReceived.bge_addr_lo));
   3899 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3900 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3901 
   3902 #undef READ_STAT
   3903 
   3904 #ifdef notdef
   3905 	ifp->if_collisions +=
   3906 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3907 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3908 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3909 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3910 	   ifp->if_collisions;
   3911 #endif
   3912 }
   3913 
   3914 /*
   3915  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3916  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3917  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3918  * the hardware checksum assist gives incorrect results (possibly
   3919  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3920  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3921  */
   3922 static inline int
   3923 bge_cksum_pad(struct mbuf *pkt)
   3924 {
   3925 	struct mbuf *last = NULL;
   3926 	int padlen;
   3927 
   3928 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3929 
   3930 	/* if there's only the packet-header and we can pad there, use it. */
   3931 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3932 	    M_TRAILINGSPACE(pkt) >= padlen) {
   3933 		last = pkt;
   3934 	} else {
   3935 		/*
   3936 		 * Walk packet chain to find last mbuf. We will either
   3937 		 * pad there, or append a new mbuf and pad it
   3938 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3939 		 */
   3940 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3941 	      	       continue; /* do nothing */
   3942 		}
   3943 
   3944 		/* `last' now points to last in chain. */
   3945 		if (M_TRAILINGSPACE(last) < padlen) {
   3946 			/* Allocate new empty mbuf, pad it. Compact later. */
   3947 			struct mbuf *n;
   3948 			MGET(n, M_DONTWAIT, MT_DATA);
   3949 			if (n == NULL)
   3950 				return ENOBUFS;
   3951 			n->m_len = 0;
   3952 			last->m_next = n;
   3953 			last = n;
   3954 		}
   3955 	}
   3956 
   3957 	KDASSERT(!M_READONLY(last));
   3958 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   3959 
   3960 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3961 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   3962 	last->m_len += padlen;
   3963 	pkt->m_pkthdr.len += padlen;
   3964 	return 0;
   3965 }
   3966 
   3967 /*
   3968  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3969  */
   3970 static inline int
   3971 bge_compact_dma_runt(struct mbuf *pkt)
   3972 {
   3973 	struct mbuf	*m, *prev;
   3974 	int 		totlen, prevlen;
   3975 
   3976 	prev = NULL;
   3977 	totlen = 0;
   3978 	prevlen = -1;
   3979 
   3980 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3981 		int mlen = m->m_len;
   3982 		int shortfall = 8 - mlen ;
   3983 
   3984 		totlen += mlen;
   3985 		if (mlen == 0)
   3986 			continue;
   3987 		if (mlen >= 8)
   3988 			continue;
   3989 
   3990 		/* If we get here, mbuf data is too small for DMA engine.
   3991 		 * Try to fix by shuffling data to prev or next in chain.
   3992 		 * If that fails, do a compacting deep-copy of the whole chain.
   3993 		 */
   3994 
   3995 		/* Internal frag. If fits in prev, copy it there. */
   3996 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   3997 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   3998 			prev->m_len += mlen;
   3999 			m->m_len = 0;
   4000 			/* XXX stitch chain */
   4001 			prev->m_next = m_free(m);
   4002 			m = prev;
   4003 			continue;
   4004 		}
   4005 		else if (m->m_next != NULL &&
   4006 			     M_TRAILINGSPACE(m) >= shortfall &&
   4007 			     m->m_next->m_len >= (8 + shortfall)) {
   4008 		    /* m is writable and have enough data in next, pull up. */
   4009 
   4010 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4011 			    shortfall);
   4012 			m->m_len += shortfall;
   4013 			m->m_next->m_len -= shortfall;
   4014 			m->m_next->m_data += shortfall;
   4015 		}
   4016 		else if (m->m_next == NULL || 1) {
   4017 		  	/* Got a runt at the very end of the packet.
   4018 			 * borrow data from the tail of the preceding mbuf and
   4019 			 * update its length in-place. (The original data is still
   4020 			 * valid, so we can do this even if prev is not writable.)
   4021 			 */
   4022 
   4023 			/* if we'd make prev a runt, just move all of its data. */
   4024 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4025 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4026 
   4027 			if ((prev->m_len - shortfall) < 8)
   4028 				shortfall = prev->m_len;
   4029 
   4030 #ifdef notyet	/* just do the safe slow thing for now */
   4031 			if (!M_READONLY(m)) {
   4032 				if (M_LEADINGSPACE(m) < shorfall) {
   4033 					void *m_dat;
   4034 					m_dat = (m->m_flags & M_PKTHDR) ?
   4035 					  m->m_pktdat : m->dat;
   4036 					memmove(m_dat, mtod(m, void*), m->m_len);
   4037 					m->m_data = m_dat;
   4038 				    }
   4039 			} else
   4040 #endif	/* just do the safe slow thing */
   4041 			{
   4042 				struct mbuf * n = NULL;
   4043 				int newprevlen = prev->m_len - shortfall;
   4044 
   4045 				MGET(n, M_NOWAIT, MT_DATA);
   4046 				if (n == NULL)
   4047 				   return ENOBUFS;
   4048 				KASSERT(m->m_len + shortfall < MLEN
   4049 					/*,
   4050 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4051 
   4052 				/* first copy the data we're stealing from prev */
   4053 				memcpy(n->m_data, prev->m_data + newprevlen,
   4054 				    shortfall);
   4055 
   4056 				/* update prev->m_len accordingly */
   4057 				prev->m_len -= shortfall;
   4058 
   4059 				/* copy data from runt m */
   4060 				memcpy(n->m_data + shortfall, m->m_data,
   4061 				    m->m_len);
   4062 
   4063 				/* n holds what we stole from prev, plus m */
   4064 				n->m_len = shortfall + m->m_len;
   4065 
   4066 				/* stitch n into chain and free m */
   4067 				n->m_next = m->m_next;
   4068 				prev->m_next = n;
   4069 				/* KASSERT(m->m_next == NULL); */
   4070 				m->m_next = NULL;
   4071 				m_free(m);
   4072 				m = n;	/* for continuing loop */
   4073 			}
   4074 		}
   4075 		prevlen = m->m_len;
   4076 	}
   4077 	return 0;
   4078 }
   4079 
   4080 /*
   4081  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4082  * pointers to descriptors.
   4083  */
   4084 static int
   4085 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4086 {
   4087 	struct bge_tx_bd	*f = NULL;
   4088 	uint32_t		frag, cur;
   4089 	uint16_t		csum_flags = 0;
   4090 	uint16_t		txbd_tso_flags = 0;
   4091 	struct txdmamap_pool_entry *dma;
   4092 	bus_dmamap_t dmamap;
   4093 	int			i = 0;
   4094 	struct m_tag		*mtag;
   4095 	int			use_tso, maxsegsize, error;
   4096 
   4097 	cur = frag = *txidx;
   4098 
   4099 	if (m_head->m_pkthdr.csum_flags) {
   4100 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4101 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4102 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4103 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4104 	}
   4105 
   4106 	/*
   4107 	 * If we were asked to do an outboard checksum, and the NIC
   4108 	 * has the bug where it sometimes adds in the Ethernet padding,
   4109 	 * explicitly pad with zeros so the cksum will be correct either way.
   4110 	 * (For now, do this for all chip versions, until newer
   4111 	 * are confirmed to not require the workaround.)
   4112 	 */
   4113 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4114 #ifdef notyet
   4115 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4116 #endif
   4117 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4118 		goto check_dma_bug;
   4119 
   4120 	if (bge_cksum_pad(m_head) != 0)
   4121 	    return ENOBUFS;
   4122 
   4123 check_dma_bug:
   4124 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4125 		goto doit;
   4126 
   4127 	/*
   4128 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4129 	 * less than eight bytes.  If we encounter a teeny mbuf
   4130 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4131 	 */
   4132 	if (bge_compact_dma_runt(m_head) != 0)
   4133 		return ENOBUFS;
   4134 
   4135 doit:
   4136 	dma = SLIST_FIRST(&sc->txdma_list);
   4137 	if (dma == NULL)
   4138 		return ENOBUFS;
   4139 	dmamap = dma->dmamap;
   4140 
   4141 	/*
   4142 	 * Set up any necessary TSO state before we start packing...
   4143 	 */
   4144 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4145 	if (!use_tso) {
   4146 		maxsegsize = 0;
   4147 	} else {	/* TSO setup */
   4148 		unsigned  mss;
   4149 		struct ether_header *eh;
   4150 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4151 		struct mbuf * m0 = m_head;
   4152 		struct ip *ip;
   4153 		struct tcphdr *th;
   4154 		int iphl, hlen;
   4155 
   4156 		/*
   4157 		 * XXX It would be nice if the mbuf pkthdr had offset
   4158 		 * fields for the protocol headers.
   4159 		 */
   4160 
   4161 		eh = mtod(m0, struct ether_header *);
   4162 		switch (htons(eh->ether_type)) {
   4163 		case ETHERTYPE_IP:
   4164 			offset = ETHER_HDR_LEN;
   4165 			break;
   4166 
   4167 		case ETHERTYPE_VLAN:
   4168 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4169 			break;
   4170 
   4171 		default:
   4172 			/*
   4173 			 * Don't support this protocol or encapsulation.
   4174 			 */
   4175 			return ENOBUFS;
   4176 		}
   4177 
   4178 		/*
   4179 		 * TCP/IP headers are in the first mbuf; we can do
   4180 		 * this the easy way.
   4181 		 */
   4182 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4183 		hlen = iphl + offset;
   4184 		if (__predict_false(m0->m_len <
   4185 				    (hlen + sizeof(struct tcphdr)))) {
   4186 
   4187 			aprint_debug_dev(sc->bge_dev,
   4188 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4189 			    "not handled yet\n",
   4190 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4191 #ifdef NOTYET
   4192 			/*
   4193 			 * XXX jonathan (at) NetBSD.org: untested.
   4194 			 * how to force  this branch to be taken?
   4195 			 */
   4196 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4197 
   4198 			m_copydata(m0, offset, sizeof(ip), &ip);
   4199 			m_copydata(m0, hlen, sizeof(th), &th);
   4200 
   4201 			ip.ip_len = 0;
   4202 
   4203 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4204 			    sizeof(ip.ip_len), &ip.ip_len);
   4205 
   4206 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4207 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4208 
   4209 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4210 			    sizeof(th.th_sum), &th.th_sum);
   4211 
   4212 			hlen += th.th_off << 2;
   4213 			iptcp_opt_words	= hlen;
   4214 #else
   4215 			/*
   4216 			 * if_wm "hard" case not yet supported, can we not
   4217 			 * mandate it out of existence?
   4218 			 */
   4219 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4220 
   4221 			return ENOBUFS;
   4222 #endif
   4223 		} else {
   4224 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4225 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4226 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4227 
   4228 			/* Total IP/TCP options, in 32-bit words */
   4229 			iptcp_opt_words = (ip_tcp_hlen
   4230 					   - sizeof(struct tcphdr)
   4231 					   - sizeof(struct ip)) >> 2;
   4232 		}
   4233 		if (BGE_IS_575X_PLUS(sc)) {
   4234 			th->th_sum = 0;
   4235 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4236 		} else {
   4237 			/*
   4238 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4239 			 * Requires TSO firmware patch for 5701/5703/5704.
   4240 			 */
   4241 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4242 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4243 		}
   4244 
   4245 		mss = m_head->m_pkthdr.segsz;
   4246 		txbd_tso_flags |=
   4247 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4248 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4249 
   4250 		/*
   4251 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4252 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4253 		 * the NIC copies 40 bytes of IP/TCP header from the
   4254 		 * supplied header into the IP/TCP header portion of
   4255 		 * each post-TSO-segment. If the supplied packet has IP or
   4256 		 * TCP options, we need to tell the NIC to copy those extra
   4257 		 * bytes into each  post-TSO header, in addition to the normal
   4258 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4259 		 * Unfortunately, the driver encoding of option length
   4260 		 * varies across different ASIC families.
   4261 		 */
   4262 		tcp_seg_flags = 0;
   4263 		if (iptcp_opt_words) {
   4264 			if (BGE_IS_5705_PLUS(sc)) {
   4265 				tcp_seg_flags =
   4266 					iptcp_opt_words << 11;
   4267 			} else {
   4268 				txbd_tso_flags |=
   4269 					iptcp_opt_words << 12;
   4270 			}
   4271 		}
   4272 		maxsegsize = mss | tcp_seg_flags;
   4273 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4274 
   4275 	}	/* TSO setup */
   4276 
   4277 	/*
   4278 	 * Start packing the mbufs in this chain into
   4279 	 * the fragment pointers. Stop when we run out
   4280 	 * of fragments or hit the end of the mbuf chain.
   4281 	 */
   4282 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4283 	    BUS_DMA_NOWAIT);
   4284 	if (error)
   4285 		return ENOBUFS;
   4286 	/*
   4287 	 * Sanity check: avoid coming within 16 descriptors
   4288 	 * of the end of the ring.
   4289 	 */
   4290 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4291 		BGE_TSO_PRINTF(("%s: "
   4292 		    " dmamap_load_mbuf too close to ring wrap\n",
   4293 		    device_xname(sc->bge_dev)));
   4294 		goto fail_unload;
   4295 	}
   4296 
   4297 	mtag = sc->ethercom.ec_nvlans ?
   4298 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4299 
   4300 
   4301 	/* Iterate over dmap-map fragments. */
   4302 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4303 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4304 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4305 			break;
   4306 
   4307 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4308 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4309 
   4310 		/*
   4311 		 * For 5751 and follow-ons, for TSO we must turn
   4312 		 * off checksum-assist flag in the tx-descr, and
   4313 		 * supply the ASIC-revision-specific encoding
   4314 		 * of TSO flags and segsize.
   4315 		 */
   4316 		if (use_tso) {
   4317 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   4318 				f->bge_rsvd = maxsegsize;
   4319 				f->bge_flags = csum_flags | txbd_tso_flags;
   4320 			} else {
   4321 				f->bge_rsvd = 0;
   4322 				f->bge_flags =
   4323 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4324 			}
   4325 		} else {
   4326 			f->bge_rsvd = 0;
   4327 			f->bge_flags = csum_flags;
   4328 		}
   4329 
   4330 		if (mtag != NULL) {
   4331 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4332 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4333 		} else {
   4334 			f->bge_vlan_tag = 0;
   4335 		}
   4336 		cur = frag;
   4337 		BGE_INC(frag, BGE_TX_RING_CNT);
   4338 	}
   4339 
   4340 	if (i < dmamap->dm_nsegs) {
   4341 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4342 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4343 		goto fail_unload;
   4344 	}
   4345 
   4346 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4347 	    BUS_DMASYNC_PREWRITE);
   4348 
   4349 	if (frag == sc->bge_tx_saved_considx) {
   4350 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4351 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4352 
   4353 		goto fail_unload;
   4354 	}
   4355 
   4356 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4357 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4358 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4359 	sc->txdma[cur] = dma;
   4360 	sc->bge_txcnt += dmamap->dm_nsegs;
   4361 
   4362 	*txidx = frag;
   4363 
   4364 	return 0;
   4365 
   4366 fail_unload:
   4367 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4368 
   4369 	return ENOBUFS;
   4370 }
   4371 
   4372 /*
   4373  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4374  * to the mbuf data regions directly in the transmit descriptors.
   4375  */
   4376 static void
   4377 bge_start(struct ifnet *ifp)
   4378 {
   4379 	struct bge_softc *sc;
   4380 	struct mbuf *m_head = NULL;
   4381 	uint32_t prodidx;
   4382 	int pkts = 0;
   4383 
   4384 	sc = ifp->if_softc;
   4385 
   4386 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   4387 		return;
   4388 
   4389 	prodidx = sc->bge_tx_prodidx;
   4390 
   4391 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   4392 		IFQ_POLL(&ifp->if_snd, m_head);
   4393 		if (m_head == NULL)
   4394 			break;
   4395 
   4396 #if 0
   4397 		/*
   4398 		 * XXX
   4399 		 * safety overkill.  If this is a fragmented packet chain
   4400 		 * with delayed TCP/UDP checksums, then only encapsulate
   4401 		 * it if we have enough descriptors to handle the entire
   4402 		 * chain at once.
   4403 		 * (paranoia -- may not actually be needed)
   4404 		 */
   4405 		if (m_head->m_flags & M_FIRSTFRAG &&
   4406 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   4407 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   4408 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   4409 				ifp->if_flags |= IFF_OACTIVE;
   4410 				break;
   4411 			}
   4412 		}
   4413 #endif
   4414 
   4415 		/*
   4416 		 * Pack the data into the transmit ring. If we
   4417 		 * don't have room, set the OACTIVE flag and wait
   4418 		 * for the NIC to drain the ring.
   4419 		 */
   4420 		if (bge_encap(sc, m_head, &prodidx)) {
   4421 			ifp->if_flags |= IFF_OACTIVE;
   4422 			break;
   4423 		}
   4424 
   4425 		/* now we are committed to transmit the packet */
   4426 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4427 		pkts++;
   4428 
   4429 		/*
   4430 		 * If there's a BPF listener, bounce a copy of this frame
   4431 		 * to him.
   4432 		 */
   4433 		bpf_mtap(ifp, m_head);
   4434 	}
   4435 	if (pkts == 0)
   4436 		return;
   4437 
   4438 	/* Transmit */
   4439 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4440 	/* 5700 b2 errata */
   4441 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   4442 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   4443 
   4444 	sc->bge_tx_prodidx = prodidx;
   4445 
   4446 	/*
   4447 	 * Set a timeout in case the chip goes out to lunch.
   4448 	 */
   4449 	ifp->if_timer = 5;
   4450 }
   4451 
   4452 static int
   4453 bge_init(struct ifnet *ifp)
   4454 {
   4455 	struct bge_softc *sc = ifp->if_softc;
   4456 	const uint16_t *m;
   4457 	uint32_t mode;
   4458 	int s, error = 0;
   4459 
   4460 	s = splnet();
   4461 
   4462 	ifp = &sc->ethercom.ec_if;
   4463 
   4464 	/* Cancel pending I/O and flush buffers. */
   4465 	bge_stop(ifp, 0);
   4466 
   4467 	bge_stop_fw(sc);
   4468 	bge_sig_pre_reset(sc, BGE_RESET_START);
   4469 	bge_reset(sc);
   4470 	bge_sig_legacy(sc, BGE_RESET_START);
   4471 	bge_sig_post_reset(sc, BGE_RESET_START);
   4472 
   4473 	bge_chipinit(sc);
   4474 
   4475 	/*
   4476 	 * Init the various state machines, ring
   4477 	 * control blocks and firmware.
   4478 	 */
   4479 	error = bge_blockinit(sc);
   4480 	if (error != 0) {
   4481 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   4482 		    error);
   4483 		splx(s);
   4484 		return error;
   4485 	}
   4486 
   4487 	ifp = &sc->ethercom.ec_if;
   4488 
   4489 	/* Specify MTU. */
   4490 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   4491 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   4492 
   4493 	/* Load our MAC address. */
   4494 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   4495 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   4496 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   4497 
   4498 	/* Enable or disable promiscuous mode as needed. */
   4499 	if (ifp->if_flags & IFF_PROMISC)
   4500 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4501 	else
   4502 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4503 
   4504 	/* Program multicast filter. */
   4505 	bge_setmulti(sc);
   4506 
   4507 	/* Init RX ring. */
   4508 	bge_init_rx_ring_std(sc);
   4509 
   4510 	/*
   4511 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   4512 	 * memory to insure that the chip has in fact read the first
   4513 	 * entry of the ring.
   4514 	 */
   4515 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   4516 		uint32_t		v, i;
   4517 		for (i = 0; i < 10; i++) {
   4518 			DELAY(20);
   4519 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   4520 			if (v == (MCLBYTES - ETHER_ALIGN))
   4521 				break;
   4522 		}
   4523 		if (i == 10)
   4524 			aprint_error_dev(sc->bge_dev,
   4525 			    "5705 A0 chip failed to load RX ring\n");
   4526 	}
   4527 
   4528 	/* Init jumbo RX ring. */
   4529 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   4530 		bge_init_rx_ring_jumbo(sc);
   4531 
   4532 	/* Init our RX return ring index */
   4533 	sc->bge_rx_saved_considx = 0;
   4534 
   4535 	/* Init TX ring. */
   4536 	bge_init_tx_ring(sc);
   4537 
   4538 	/* Enable TX MAC state machine lockup fix. */
   4539 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   4540 	if (BGE_IS_5755_PLUS(sc) ||
   4541 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   4542 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   4543 
   4544 	/* Turn on transmitter */
   4545 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   4546 	DELAY(100);
   4547 
   4548 	/* Turn on receiver */
   4549 	BGE_SETBIT_FLUSH(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4550 	DELAY(10);
   4551 
   4552 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   4553 
   4554 	/* Tell firmware we're alive. */
   4555 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4556 
   4557 	/* Enable host interrupts. */
   4558 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4559 	    BGE_PCIMISCCTL_CLEAR_INTA);
   4560 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4561 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
   4562 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4563 
   4564 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   4565 		goto out;
   4566 
   4567 	ifp->if_flags |= IFF_RUNNING;
   4568 	ifp->if_flags &= ~IFF_OACTIVE;
   4569 
   4570 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4571 
   4572 out:
   4573 	sc->bge_if_flags = ifp->if_flags;
   4574 	splx(s);
   4575 
   4576 	return error;
   4577 }
   4578 
   4579 /*
   4580  * Set media options.
   4581  */
   4582 static int
   4583 bge_ifmedia_upd(struct ifnet *ifp)
   4584 {
   4585 	struct bge_softc *sc = ifp->if_softc;
   4586 	struct mii_data *mii = &sc->bge_mii;
   4587 	struct ifmedia *ifm = &sc->bge_ifmedia;
   4588 	int rc;
   4589 
   4590 	/* If this is a 1000baseX NIC, enable the TBI port. */
   4591 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4592 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   4593 			return EINVAL;
   4594 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   4595 		case IFM_AUTO:
   4596 			/*
   4597 			 * The BCM5704 ASIC appears to have a special
   4598 			 * mechanism for programming the autoneg
   4599 			 * advertisement registers in TBI mode.
   4600 			 */
   4601 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4602 				uint32_t sgdig;
   4603 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   4604 				if (sgdig & BGE_SGDIGSTS_DONE) {
   4605 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   4606 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   4607 					sgdig |= BGE_SGDIGCFG_AUTO |
   4608 					    BGE_SGDIGCFG_PAUSE_CAP |
   4609 					    BGE_SGDIGCFG_ASYM_PAUSE;
   4610 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   4611 					    sgdig | BGE_SGDIGCFG_SEND);
   4612 					DELAY(5);
   4613 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   4614 					    sgdig);
   4615 				}
   4616 			}
   4617 			break;
   4618 		case IFM_1000_SX:
   4619 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   4620 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   4621 				    BGE_MACMODE_HALF_DUPLEX);
   4622 			} else {
   4623 				BGE_SETBIT(sc, BGE_MAC_MODE,
   4624 				    BGE_MACMODE_HALF_DUPLEX);
   4625 			}
   4626 			break;
   4627 		default:
   4628 			return EINVAL;
   4629 		}
   4630 		/* XXX 802.3x flow control for 1000BASE-SX */
   4631 		return 0;
   4632 	}
   4633 
   4634 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4635 	if ((rc = mii_mediachg(mii)) == ENXIO)
   4636 		return 0;
   4637 
   4638 	/*
   4639 	 * Force an interrupt so that we will call bge_link_upd
   4640 	 * if needed and clear any pending link state attention.
   4641 	 * Without this we are not getting any further interrupts
   4642 	 * for link state changes and thus will not UP the link and
   4643 	 * not be able to send in bge_start. The only way to get
   4644 	 * things working was to receive a packet and get a RX intr.
   4645 	 */
   4646 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4647 	    sc->bge_flags & BGE_IS_5788)
   4648 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4649 	else
   4650 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   4651 
   4652 	return rc;
   4653 }
   4654 
   4655 /*
   4656  * Report current media status.
   4657  */
   4658 static void
   4659 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4660 {
   4661 	struct bge_softc *sc = ifp->if_softc;
   4662 	struct mii_data *mii = &sc->bge_mii;
   4663 
   4664 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4665 		ifmr->ifm_status = IFM_AVALID;
   4666 		ifmr->ifm_active = IFM_ETHER;
   4667 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   4668 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   4669 			ifmr->ifm_status |= IFM_ACTIVE;
   4670 		ifmr->ifm_active |= IFM_1000_SX;
   4671 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   4672 			ifmr->ifm_active |= IFM_HDX;
   4673 		else
   4674 			ifmr->ifm_active |= IFM_FDX;
   4675 		return;
   4676 	}
   4677 
   4678 	mii_pollstat(mii);
   4679 	ifmr->ifm_status = mii->mii_media_status;
   4680 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4681 	    sc->bge_flowflags;
   4682 }
   4683 
   4684 static int
   4685 bge_ifflags_cb(struct ethercom *ec)
   4686 {
   4687 	struct ifnet *ifp = &ec->ec_if;
   4688 	struct bge_softc *sc = ifp->if_softc;
   4689 	int change = ifp->if_flags ^ sc->bge_if_flags;
   4690 
   4691 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   4692 		return ENETRESET;
   4693 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   4694 		return 0;
   4695 
   4696 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   4697 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4698 	else
   4699 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   4700 
   4701 	bge_setmulti(sc);
   4702 
   4703 	sc->bge_if_flags = ifp->if_flags;
   4704 	return 0;
   4705 }
   4706 
   4707 static int
   4708 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   4709 {
   4710 	struct bge_softc *sc = ifp->if_softc;
   4711 	struct ifreq *ifr = (struct ifreq *) data;
   4712 	int s, error = 0;
   4713 	struct mii_data *mii;
   4714 
   4715 	s = splnet();
   4716 
   4717 	switch (command) {
   4718 	case SIOCSIFMEDIA:
   4719 		/* XXX Flow control is not supported for 1000BASE-SX */
   4720 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4721 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   4722 			sc->bge_flowflags = 0;
   4723 		}
   4724 
   4725 		/* Flow control requires full-duplex mode. */
   4726 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   4727 		    (ifr->ifr_media & IFM_FDX) == 0) {
   4728 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   4729 		}
   4730 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   4731 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   4732 				/* We can do both TXPAUSE and RXPAUSE. */
   4733 				ifr->ifr_media |=
   4734 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   4735 			}
   4736 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   4737 		}
   4738 		/* FALLTHROUGH */
   4739 	case SIOCGIFMEDIA:
   4740 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4741 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   4742 			    command);
   4743 		} else {
   4744 			mii = &sc->bge_mii;
   4745 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   4746 			    command);
   4747 		}
   4748 		break;
   4749 	default:
   4750 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4751 			break;
   4752 
   4753 		error = 0;
   4754 
   4755 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   4756 			;
   4757 		else if (ifp->if_flags & IFF_RUNNING)
   4758 			bge_setmulti(sc);
   4759 		break;
   4760 	}
   4761 
   4762 	splx(s);
   4763 
   4764 	return error;
   4765 }
   4766 
   4767 static void
   4768 bge_watchdog(struct ifnet *ifp)
   4769 {
   4770 	struct bge_softc *sc;
   4771 
   4772 	sc = ifp->if_softc;
   4773 
   4774 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   4775 
   4776 	ifp->if_flags &= ~IFF_RUNNING;
   4777 	bge_init(ifp);
   4778 
   4779 	ifp->if_oerrors++;
   4780 }
   4781 
   4782 static void
   4783 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   4784 {
   4785 	int i;
   4786 
   4787 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   4788 
   4789 	for (i = 0; i < 1000; i++) {
   4790 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   4791 			return;
   4792 		delay(100);
   4793 	}
   4794 
   4795 	/*
   4796 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   4797 	 * on some environment (and once after boot?)
   4798 	 */
   4799 	if (reg != BGE_SRS_MODE)
   4800 		aprint_error_dev(sc->bge_dev,
   4801 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   4802 		    (u_long)reg, bit);
   4803 }
   4804 
   4805 /*
   4806  * Stop the adapter and free any mbufs allocated to the
   4807  * RX and TX lists.
   4808  */
   4809 static void
   4810 bge_stop(struct ifnet *ifp, int disable)
   4811 {
   4812 	struct bge_softc *sc = ifp->if_softc;
   4813 
   4814 	callout_stop(&sc->bge_timeout);
   4815 
   4816 	/*
   4817 	 * Tell firmware we're shutting down.
   4818 	 */
   4819 	bge_stop_fw(sc);
   4820 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
   4821 
   4822 	/* Disable host interrupts. */
   4823 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4824 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
   4825 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4826 
   4827 	/*
   4828 	 * Disable all of the receiver blocks.
   4829 	 */
   4830 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   4831 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   4832 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   4833 	if (BGE_IS_5700_FAMILY(sc))
   4834 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   4835 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   4836 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   4837 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   4838 
   4839 	/*
   4840 	 * Disable all of the transmit blocks.
   4841 	 */
   4842 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   4843 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   4844 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   4845 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   4846 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   4847 	if (BGE_IS_5700_FAMILY(sc))
   4848 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   4849 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   4850 
   4851 	/*
   4852 	 * Shut down all of the memory managers and related
   4853 	 * state machines.
   4854 	 */
   4855 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   4856 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   4857 	if (BGE_IS_5700_FAMILY(sc))
   4858 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   4859 
   4860 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   4861 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   4862 
   4863 	if (BGE_IS_5700_FAMILY(sc)) {
   4864 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   4865 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4866 	}
   4867 
   4868 	bge_reset(sc);
   4869 	bge_sig_legacy(sc, BGE_RESET_STOP);
   4870 	bge_sig_post_reset(sc, BGE_RESET_STOP);
   4871 
   4872 	/*
   4873 	 * Keep the ASF firmware running if up.
   4874 	 */
   4875 	if (sc->bge_asf_mode & ASF_STACKUP)
   4876 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4877 	else
   4878 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4879 
   4880 	/* Free the RX lists. */
   4881 	bge_free_rx_ring_std(sc);
   4882 
   4883 	/* Free jumbo RX list. */
   4884 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4885 		bge_free_rx_ring_jumbo(sc);
   4886 
   4887 	/* Free TX buffers. */
   4888 	bge_free_tx_ring(sc);
   4889 
   4890 	/*
   4891 	 * Isolate/power down the PHY.
   4892 	 */
   4893 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   4894 		mii_down(&sc->bge_mii);
   4895 
   4896 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   4897 
   4898 	/* Clear MAC's link state (PHY may still have link UP). */
   4899 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4900 
   4901 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   4902 }
   4903 
   4904 static void
   4905 bge_link_upd(struct bge_softc *sc)
   4906 {
   4907 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4908 	struct mii_data *mii = &sc->bge_mii;
   4909 	uint32_t status;
   4910 	int link;
   4911 
   4912 	/* Clear 'pending link event' flag */
   4913 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   4914 
   4915 	/*
   4916 	 * Process link state changes.
   4917 	 * Grrr. The link status word in the status block does
   4918 	 * not work correctly on the BCM5700 rev AX and BX chips,
   4919 	 * according to all available information. Hence, we have
   4920 	 * to enable MII interrupts in order to properly obtain
   4921 	 * async link changes. Unfortunately, this also means that
   4922 	 * we have to read the MAC status register to detect link
   4923 	 * changes, thereby adding an additional register access to
   4924 	 * the interrupt handler.
   4925 	 */
   4926 
   4927 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   4928 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4929 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   4930 			mii_pollstat(mii);
   4931 
   4932 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4933 			    mii->mii_media_status & IFM_ACTIVE &&
   4934 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4935 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4936 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4937 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4938 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4939 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4940 
   4941 			/* Clear the interrupt */
   4942 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   4943 			    BGE_EVTENB_MI_INTERRUPT);
   4944 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
   4945 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
   4946 			    BRGPHY_INTRS);
   4947 		}
   4948 		return;
   4949 	}
   4950 
   4951 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4952 		status = CSR_READ_4(sc, BGE_MAC_STS);
   4953 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   4954 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4955 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4956 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   4957 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   4958 					    BGE_MACMODE_TBI_SEND_CFGS);
   4959 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   4960 				if_link_state_change(ifp, LINK_STATE_UP);
   4961 			}
   4962 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4963 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4964 			if_link_state_change(ifp, LINK_STATE_DOWN);
   4965 		}
   4966 	/*
   4967 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   4968 	 * This should not happen since mii callouts are locked now, but
   4969 	 * we keep this check for debug.
   4970 	 */
   4971 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   4972 		/*
   4973 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   4974 		 * bit in status word always set. Workaround this bug by
   4975 		 * reading PHY link status directly.
   4976 		 */
   4977 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   4978 		    BGE_STS_LINK : 0;
   4979 
   4980 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   4981 			mii_pollstat(mii);
   4982 
   4983 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4984 			    mii->mii_media_status & IFM_ACTIVE &&
   4985 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   4986 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   4987 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   4988 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   4989 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   4990 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   4991 		}
   4992 	}
   4993 
   4994 	/* Clear the attention */
   4995 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   4996 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   4997 	    BGE_MACSTAT_LINK_CHANGED);
   4998 }
   4999 
   5000 static int
   5001 bge_sysctl_verify(SYSCTLFN_ARGS)
   5002 {
   5003 	int error, t;
   5004 	struct sysctlnode node;
   5005 
   5006 	node = *rnode;
   5007 	t = *(int*)rnode->sysctl_data;
   5008 	node.sysctl_data = &t;
   5009 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5010 	if (error || newp == NULL)
   5011 		return error;
   5012 
   5013 #if 0
   5014 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5015 	    node.sysctl_num, rnode->sysctl_num));
   5016 #endif
   5017 
   5018 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5019 		if (t < 0 || t >= NBGE_RX_THRESH)
   5020 			return EINVAL;
   5021 		bge_update_all_threshes(t);
   5022 	} else
   5023 		return EINVAL;
   5024 
   5025 	*(int*)rnode->sysctl_data = t;
   5026 
   5027 	return 0;
   5028 }
   5029 
   5030 /*
   5031  * Set up sysctl(3) MIB, hw.bge.*.
   5032  */
   5033 static void
   5034 bge_sysctl_init(struct bge_softc *sc)
   5035 {
   5036 	int rc, bge_root_num;
   5037 	const struct sysctlnode *node;
   5038 
   5039 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5040 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5041 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5042 		goto out;
   5043 	}
   5044 
   5045 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5046 	    0, CTLTYPE_NODE, "bge",
   5047 	    SYSCTL_DESCR("BGE interface controls"),
   5048 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5049 		goto out;
   5050 	}
   5051 
   5052 	bge_root_num = node->sysctl_num;
   5053 
   5054 	/* BGE Rx interrupt mitigation level */
   5055 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5056 	    CTLFLAG_READWRITE,
   5057 	    CTLTYPE_INT, "rx_lvl",
   5058 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5059 	    bge_sysctl_verify, 0,
   5060 	    &bge_rx_thresh_lvl,
   5061 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5062 	    CTL_EOL)) != 0) {
   5063 		goto out;
   5064 	}
   5065 
   5066 	bge_rxthresh_nodenum = node->sysctl_num;
   5067 
   5068 	return;
   5069 
   5070 out:
   5071 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5072 }
   5073 
   5074 #ifdef BGE_DEBUG
   5075 void
   5076 bge_debug_info(struct bge_softc *sc)
   5077 {
   5078 
   5079 	printf("Hardware Flags:\n");
   5080 	if (BGE_IS_57765_PLUS(sc))
   5081 		printf(" - 57765 Plus\n");
   5082 	if (BGE_IS_5717_PLUS(sc))
   5083 		printf(" - 5717 Plus\n");
   5084 	if (BGE_IS_5755_PLUS(sc))
   5085 		printf(" - 5755 Plus\n");
   5086 	if (BGE_IS_575X_PLUS(sc))
   5087 		printf(" - 575X Plus\n");
   5088 	if (BGE_IS_5705_PLUS(sc))
   5089 		printf(" - 5705 Plus\n");
   5090 	if (BGE_IS_5714_FAMILY(sc))
   5091 		printf(" - 5714 Family\n");
   5092 	if (BGE_IS_5700_FAMILY(sc))
   5093 		printf(" - 5700 Family\n");
   5094 	if (sc->bge_flags & BGE_IS_5788)
   5095 		printf(" - 5788\n");
   5096 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5097 		printf(" - Supports Jumbo Frames\n");
   5098 	if (sc->bge_flags & BGE_NO_EEPROM)
   5099 		printf(" - No EEPROM\n");
   5100 	if (sc->bge_flags & BGE_PCIX)
   5101 		printf(" - PCI-X Bus\n");
   5102 	if (sc->bge_flags & BGE_PCIE)
   5103 		printf(" - PCI Express Bus\n");
   5104 	if (sc->bge_flags & BGE_NO_3LED)
   5105 		printf(" - No 3 LEDs\n");
   5106 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5107 		printf(" - RX Alignment Bug\n");
   5108 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5109 		printf(" - CPMU\n");
   5110 	if (sc->bge_flags & BGE_TSO)
   5111 		printf(" - TSO\n");
   5112 }
   5113 #endif /* BGE_DEBUG */
   5114 
   5115 static int
   5116 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5117 {
   5118 	prop_dictionary_t dict;
   5119 	prop_data_t ea;
   5120 
   5121 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5122 		return 1;
   5123 
   5124 	dict = device_properties(sc->bge_dev);
   5125 	ea = prop_dictionary_get(dict, "mac-address");
   5126 	if (ea != NULL) {
   5127 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5128 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5129 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5130 		return 0;
   5131 	}
   5132 
   5133 	return 1;
   5134 }
   5135 
   5136 static int
   5137 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5138 {
   5139 	uint32_t mac_addr;
   5140 
   5141 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5142 	if ((mac_addr >> 16) == 0x484b) {
   5143 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5144 		ether_addr[1] = (uint8_t)mac_addr;
   5145 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5146 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5147 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5148 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5149 		ether_addr[5] = (uint8_t)mac_addr;
   5150 		return 0;
   5151 	}
   5152 	return 1;
   5153 }
   5154 
   5155 static int
   5156 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5157 {
   5158 	int mac_offset = BGE_EE_MAC_OFFSET;
   5159 
   5160 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5161 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5162 
   5163 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5164 	    ETHER_ADDR_LEN));
   5165 }
   5166 
   5167 static int
   5168 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5169 {
   5170 
   5171 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5172 		return 1;
   5173 
   5174 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5175 	   ETHER_ADDR_LEN));
   5176 }
   5177 
   5178 static int
   5179 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5180 {
   5181 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5182 		/* NOTE: Order is critical */
   5183 		bge_get_eaddr_fw,
   5184 		bge_get_eaddr_mem,
   5185 		bge_get_eaddr_nvram,
   5186 		bge_get_eaddr_eeprom,
   5187 		NULL
   5188 	};
   5189 	const bge_eaddr_fcn_t *func;
   5190 
   5191 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5192 		if ((*func)(sc, eaddr) == 0)
   5193 			break;
   5194 	}
   5195 	return (*func == NULL ? ENXIO : 0);
   5196 }
   5197