if_bge.c revision 1.217 1 /* $NetBSD: if_bge.c,v 1.217 2013/03/17 18:46:10 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.217 2013/03/17 18:46:10 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
680 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
682
683 static const struct bge_revision {
684 uint32_t br_chipid;
685 const char *br_name;
686 } bge_revisions[] = {
687 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
688 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
689 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
690 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
691 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
692 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
693 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
694 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
695 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
696 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
697 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
698 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
699 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
700 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
701 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
702 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
703 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
704 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
705 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
706 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
707 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
708 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
709 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
710 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
711 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
712 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
713 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
714 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
715 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
716 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
717 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
718 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
719 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
720 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
721 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
722 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
723 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
724 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
725 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
726 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
727 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
728 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
729 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
730 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
731 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
732 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
733 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
734 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
735 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
736 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
737 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
738 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
739 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
740 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
741 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
742 /* 5754 and 5787 share the same ASIC ID */
743 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
744 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
745 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
746 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
747 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
748 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
749 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
750 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
751 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
752 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
753
754 { 0, NULL }
755 };
756
757 /*
758 * Some defaults for major revisions, so that newer steppings
759 * that we don't know about have a shot at working.
760 */
761 static const struct bge_revision bge_majorrevs[] = {
762 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
763 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
764 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
765 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
766 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
767 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
768 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
769 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
771 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
772 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
773 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
774 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
775 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
776 /* 5754 and 5787 share the same ASIC ID */
777 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
778 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
779 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
780 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
781 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
782 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
783 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
784 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
785
786 { 0, NULL }
787 };
788
789 static int bge_allow_asf = 1;
790
791 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
792 bge_probe, bge_attach, NULL, NULL);
793
794 static uint32_t
795 bge_readmem_ind(struct bge_softc *sc, int off)
796 {
797 pcireg_t val;
798
799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
800 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
801 return 0;
802
803 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
804 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
806 return val;
807 }
808
809 static void
810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
811 {
812
813 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
816 }
817
818 /*
819 * PCI Express only
820 */
821 static void
822 bge_set_max_readrq(struct bge_softc *sc)
823 {
824 pcireg_t val;
825
826 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
827 + PCI_PCIE_DCSR);
828 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
829 switch (sc->bge_expmrq) {
830 case 2048:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
832 break;
833 case 4096:
834 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
835 break;
836 default:
837 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
838 break;
839 }
840 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
841 + PCI_PCIE_DCSR, val);
842 }
843
844 #ifdef notdef
845 static uint32_t
846 bge_readreg_ind(struct bge_softc *sc, int off)
847 {
848 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
849 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
850 }
851 #endif
852
853 static void
854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
855 {
856 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
858 }
859
860 static void
861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
862 {
863 CSR_WRITE_4(sc, off, val);
864 }
865
866 static void
867 bge_writembx(struct bge_softc *sc, int off, int val)
868 {
869 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
870 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
871
872 CSR_WRITE_4(sc, off, val);
873 }
874
875 static void
876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
877 {
878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
879 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
880
881 CSR_WRITE_4_FLUSH(sc, off, val);
882 }
883
884 /*
885 * Clear all stale locks and select the lock for this driver instance.
886 */
887 void
888 bge_ape_lock_init(struct bge_softc *sc)
889 {
890 struct pci_attach_args *pa = &(sc->bge_pa);
891 uint32_t bit, regbase;
892 int i;
893
894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
895 regbase = BGE_APE_LOCK_GRANT;
896 else
897 regbase = BGE_APE_PER_LOCK_GRANT;
898
899 /* Clear any stale locks. */
900 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
901 switch (i) {
902 case BGE_APE_LOCK_PHY0:
903 case BGE_APE_LOCK_PHY1:
904 case BGE_APE_LOCK_PHY2:
905 case BGE_APE_LOCK_PHY3:
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 break;
908 default:
909 if (pa->pa_function != 0)
910 bit = BGE_APE_LOCK_GRANT_DRIVER0;
911 else
912 bit = (1 << pa->pa_function);
913 }
914 APE_WRITE_4(sc, regbase + 4 * i, bit);
915 }
916
917 /* Select the PHY lock based on the device's function number. */
918 switch (pa->pa_function) {
919 case 0:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
921 break;
922 case 1:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
924 break;
925 case 2:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
927 break;
928 case 3:
929 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
930 break;
931 default:
932 printf("%s: PHY lock not supported on function\n",
933 device_xname(sc->bge_dev));
934 break;
935 }
936 }
937
938 /*
939 * Check for APE firmware, set flags, and print version info.
940 */
941 void
942 bge_ape_read_fw_ver(struct bge_softc *sc)
943 {
944 const char *fwtype;
945 uint32_t apedata, features;
946
947 /* Check for a valid APE signature in shared memory. */
948 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
949 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
950 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
951 return;
952 }
953
954 /* Check if APE firmware is running. */
955 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
956 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
957 printf("%s: APE signature found but FW status not ready! "
958 "0x%08x\n", device_xname(sc->bge_dev), apedata);
959 return;
960 }
961
962 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
963
964 /* Fetch the APE firwmare type and version. */
965 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
966 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
967 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
969 fwtype = "NCSI";
970 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
971 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
972 fwtype = "DASH";
973 } else
974 fwtype = "UNKN";
975
976 /* Print the APE firmware version. */
977 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
978 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
979 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
980 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
981 (apedata & BGE_APE_FW_VERSION_BLDMSK));
982 }
983
984 int
985 bge_ape_lock(struct bge_softc *sc, int locknum)
986 {
987 struct pci_attach_args *pa = &(sc->bge_pa);
988 uint32_t bit, gnt, req, status;
989 int i, off;
990
991 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
992 return (0);
993
994 /* Lock request/grant registers have different bases. */
995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
996 req = BGE_APE_LOCK_REQ;
997 gnt = BGE_APE_LOCK_GRANT;
998 } else {
999 req = BGE_APE_PER_LOCK_REQ;
1000 gnt = BGE_APE_PER_LOCK_GRANT;
1001 }
1002
1003 off = 4 * locknum;
1004
1005 switch (locknum) {
1006 case BGE_APE_LOCK_GPIO:
1007 /* Lock required when using GPIO. */
1008 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1009 return (0);
1010 if (pa->pa_function == 0)
1011 bit = BGE_APE_LOCK_REQ_DRIVER0;
1012 else
1013 bit = (1 << pa->pa_function);
1014 break;
1015 case BGE_APE_LOCK_GRC:
1016 /* Lock required to reset the device. */
1017 if (pa->pa_function == 0)
1018 bit = BGE_APE_LOCK_REQ_DRIVER0;
1019 else
1020 bit = (1 << pa->pa_function);
1021 break;
1022 case BGE_APE_LOCK_MEM:
1023 /* Lock required when accessing certain APE memory. */
1024 if (pa->pa_function == 0)
1025 bit = BGE_APE_LOCK_REQ_DRIVER0;
1026 else
1027 bit = (1 << pa->pa_function);
1028 break;
1029 case BGE_APE_LOCK_PHY0:
1030 case BGE_APE_LOCK_PHY1:
1031 case BGE_APE_LOCK_PHY2:
1032 case BGE_APE_LOCK_PHY3:
1033 /* Lock required when accessing PHYs. */
1034 bit = BGE_APE_LOCK_REQ_DRIVER0;
1035 break;
1036 default:
1037 return (EINVAL);
1038 }
1039
1040 /* Request a lock. */
1041 APE_WRITE_4_FLUSH(sc, req + off, bit);
1042
1043 /* Wait up to 1 second to acquire lock. */
1044 for (i = 0; i < 20000; i++) {
1045 status = APE_READ_4(sc, gnt + off);
1046 if (status == bit)
1047 break;
1048 DELAY(50);
1049 }
1050
1051 /* Handle any errors. */
1052 if (status != bit) {
1053 printf("%s: APE lock %d request failed! "
1054 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1055 device_xname(sc->bge_dev),
1056 locknum, req + off, bit & 0xFFFF, gnt + off,
1057 status & 0xFFFF);
1058 /* Revoke the lock request. */
1059 APE_WRITE_4(sc, gnt + off, bit);
1060 return (EBUSY);
1061 }
1062
1063 return (0);
1064 }
1065
1066 void
1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
1068 {
1069 struct pci_attach_args *pa = &(sc->bge_pa);
1070 uint32_t bit, gnt;
1071 int off;
1072
1073 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1074 return;
1075
1076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1077 gnt = BGE_APE_LOCK_GRANT;
1078 else
1079 gnt = BGE_APE_PER_LOCK_GRANT;
1080
1081 off = 4 * locknum;
1082
1083 switch (locknum) {
1084 case BGE_APE_LOCK_GPIO:
1085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1086 return;
1087 if (pa->pa_function == 0)
1088 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1089 else
1090 bit = (1 << pa->pa_function);
1091 break;
1092 case BGE_APE_LOCK_GRC:
1093 if (pa->pa_function == 0)
1094 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1095 else
1096 bit = (1 << pa->pa_function);
1097 break;
1098 case BGE_APE_LOCK_MEM:
1099 if (pa->pa_function == 0)
1100 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1101 else
1102 bit = (1 << pa->pa_function);
1103 break;
1104 case BGE_APE_LOCK_PHY0:
1105 case BGE_APE_LOCK_PHY1:
1106 case BGE_APE_LOCK_PHY2:
1107 case BGE_APE_LOCK_PHY3:
1108 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1109 break;
1110 default:
1111 return;
1112 }
1113
1114 /* Write and flush for consecutive bge_ape_lock() */
1115 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1116 }
1117
1118 /*
1119 * Send an event to the APE firmware.
1120 */
1121 void
1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1123 {
1124 uint32_t apedata;
1125 int i;
1126
1127 /* NCSI does not support APE events. */
1128 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1129 return;
1130
1131 /* Wait up to 1ms for APE to service previous event. */
1132 for (i = 10; i > 0; i--) {
1133 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1134 break;
1135 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1136 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1137 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1138 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1141 break;
1142 }
1143 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1144 DELAY(100);
1145 }
1146 if (i == 0) {
1147 printf("%s: APE event 0x%08x send timed out\n",
1148 device_xname(sc->bge_dev), event);
1149 }
1150 }
1151
1152 void
1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1154 {
1155 uint32_t apedata, event;
1156
1157 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1158 return;
1159
1160 switch (kind) {
1161 case BGE_RESET_START:
1162 /* If this is the first load, clear the load counter. */
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1164 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1166 else {
1167 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1168 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1169 }
1170 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1171 BGE_APE_HOST_SEG_SIG_MAGIC);
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1173 BGE_APE_HOST_SEG_LEN_MAGIC);
1174
1175 /* Add some version info if bge(4) supports it. */
1176 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1177 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1178 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1179 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1180 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1181 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_START);
1184 event = BGE_APE_EVENT_STATUS_STATE_START;
1185 break;
1186 case BGE_RESET_SHUTDOWN:
1187 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1188 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1189 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1190 break;
1191 case BGE_RESET_SUSPEND:
1192 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1193 break;
1194 default:
1195 return;
1196 }
1197
1198 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1199 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1200 }
1201
1202 static uint8_t
1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1204 {
1205 uint32_t access, byte = 0;
1206 int i;
1207
1208 /* Lock. */
1209 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1210 for (i = 0; i < 8000; i++) {
1211 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1212 break;
1213 DELAY(20);
1214 }
1215 if (i == 8000)
1216 return 1;
1217
1218 /* Enable access. */
1219 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1220 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1221
1222 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1223 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1224 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1225 DELAY(10);
1226 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1227 DELAY(10);
1228 break;
1229 }
1230 }
1231
1232 if (i == BGE_TIMEOUT * 10) {
1233 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1234 return 1;
1235 }
1236
1237 /* Get result. */
1238 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1239
1240 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1241
1242 /* Disable access. */
1243 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1244
1245 /* Unlock. */
1246 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * Read a sequence of bytes from NVRAM.
1253 */
1254 static int
1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1256 {
1257 int error = 0, i;
1258 uint8_t byte = 0;
1259
1260 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1261 return 1;
1262
1263 for (i = 0; i < cnt; i++) {
1264 error = bge_nvram_getbyte(sc, off + i, &byte);
1265 if (error)
1266 break;
1267 *(dest + i) = byte;
1268 }
1269
1270 return (error ? 1 : 0);
1271 }
1272
1273 /*
1274 * Read a byte of data stored in the EEPROM at address 'addr.' The
1275 * BCM570x supports both the traditional bitbang interface and an
1276 * auto access interface for reading the EEPROM. We use the auto
1277 * access method.
1278 */
1279 static uint8_t
1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1281 {
1282 int i;
1283 uint32_t byte = 0;
1284
1285 /*
1286 * Enable use of auto EEPROM access so we can avoid
1287 * having to use the bitbang method.
1288 */
1289 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1290
1291 /* Reset the EEPROM, load the clock period. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR,
1293 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1294 DELAY(20);
1295
1296 /* Issue the read EEPROM command. */
1297 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1298
1299 /* Wait for completion */
1300 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1301 DELAY(10);
1302 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1303 break;
1304 }
1305
1306 if (i == BGE_TIMEOUT * 10) {
1307 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1308 return 1;
1309 }
1310
1311 /* Get result. */
1312 byte = CSR_READ_4(sc, BGE_EE_DATA);
1313
1314 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Read a sequence of bytes from the EEPROM.
1321 */
1322 static int
1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1324 {
1325 int error = 0, i;
1326 uint8_t byte = 0;
1327 char *dest = destv;
1328
1329 for (i = 0; i < cnt; i++) {
1330 error = bge_eeprom_getbyte(sc, off + i, &byte);
1331 if (error)
1332 break;
1333 *(dest + i) = byte;
1334 }
1335
1336 return (error ? 1 : 0);
1337 }
1338
1339 static int
1340 bge_miibus_readreg(device_t dev, int phy, int reg)
1341 {
1342 struct bge_softc *sc = device_private(dev);
1343 uint32_t val;
1344 uint32_t autopoll;
1345 int i;
1346
1347 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1348 return 0;
1349
1350 /* Reading with autopolling on may trigger PCI errors */
1351 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1352 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1353 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1354 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1355 DELAY(80);
1356 }
1357
1358 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1359 BGE_MIPHY(phy) | BGE_MIREG(reg));
1360
1361 for (i = 0; i < BGE_TIMEOUT; i++) {
1362 delay(10);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 if (!(val & BGE_MICOMM_BUSY)) {
1365 DELAY(5);
1366 val = CSR_READ_4(sc, BGE_MI_COMM);
1367 break;
1368 }
1369 }
1370
1371 if (i == BGE_TIMEOUT) {
1372 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1373 val = 0;
1374 goto done;
1375 }
1376
1377 done:
1378 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1379 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1380 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1381 DELAY(80);
1382 }
1383
1384 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1385
1386 if (val & BGE_MICOMM_READFAIL)
1387 return 0;
1388
1389 return (val & 0xFFFF);
1390 }
1391
1392 static void
1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1394 {
1395 struct bge_softc *sc = device_private(dev);
1396 uint32_t autopoll;
1397 int i;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1403 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1404 return;
1405
1406 /* Reading with autopolling on may trigger PCI errors */
1407 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1408 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1409 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1410 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1411 DELAY(80);
1412 }
1413
1414 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1415 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1416
1417 for (i = 0; i < BGE_TIMEOUT; i++) {
1418 delay(10);
1419 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1420 delay(5);
1421 CSR_READ_4(sc, BGE_MI_COMM);
1422 break;
1423 }
1424 }
1425
1426 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1427 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1428 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1429 delay(80);
1430 }
1431
1432 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1433
1434 if (i == BGE_TIMEOUT)
1435 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1436 }
1437
1438 static void
1439 bge_miibus_statchg(struct ifnet *ifp)
1440 {
1441 struct bge_softc *sc = ifp->if_softc;
1442 struct mii_data *mii = &sc->bge_mii;
1443 uint32_t mac_mode, rx_mode, tx_mode;
1444
1445 /*
1446 * Get flow control negotiation result.
1447 */
1448 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1449 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1450 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1451 mii->mii_media_active &= ~IFM_ETH_FMASK;
1452 }
1453
1454 /* Set the port mode (MII/GMII) to match the link speed. */
1455 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1456 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1457 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1458 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1459 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1460 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1461 mac_mode |= BGE_PORTMODE_GMII;
1462 else
1463 mac_mode |= BGE_PORTMODE_MII;
1464
1465 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1466 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1467 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1468 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1469 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1470 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1471 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1472 } else
1473 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1474
1475 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1476 DELAY(40);
1477 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1478 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1479 }
1480
1481 /*
1482 * Update rx threshold levels to values in a particular slot
1483 * of the interrupt-mitigation table bge_rx_threshes.
1484 */
1485 static void
1486 bge_set_thresh(struct ifnet *ifp, int lvl)
1487 {
1488 struct bge_softc *sc = ifp->if_softc;
1489 int s;
1490
1491 /* For now, just save the new Rx-intr thresholds and record
1492 * that a threshold update is pending. Updating the hardware
1493 * registers here (even at splhigh()) is observed to
1494 * occasionaly cause glitches where Rx-interrupts are not
1495 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1496 */
1497 s = splnet();
1498 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1499 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1500 sc->bge_pending_rxintr_change = 1;
1501 splx(s);
1502 }
1503
1504
1505 /*
1506 * Update Rx thresholds of all bge devices
1507 */
1508 static void
1509 bge_update_all_threshes(int lvl)
1510 {
1511 struct ifnet *ifp;
1512 const char * const namebuf = "bge";
1513 int namelen;
1514
1515 if (lvl < 0)
1516 lvl = 0;
1517 else if (lvl >= NBGE_RX_THRESH)
1518 lvl = NBGE_RX_THRESH - 1;
1519
1520 namelen = strlen(namebuf);
1521 /*
1522 * Now search all the interfaces for this name/number
1523 */
1524 IFNET_FOREACH(ifp) {
1525 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1526 continue;
1527 /* We got a match: update if doing auto-threshold-tuning */
1528 if (bge_auto_thresh)
1529 bge_set_thresh(ifp, lvl);
1530 }
1531 }
1532
1533 /*
1534 * Handle events that have triggered interrupts.
1535 */
1536 static void
1537 bge_handle_events(struct bge_softc *sc)
1538 {
1539
1540 return;
1541 }
1542
1543 /*
1544 * Memory management for jumbo frames.
1545 */
1546
1547 static int
1548 bge_alloc_jumbo_mem(struct bge_softc *sc)
1549 {
1550 char *ptr, *kva;
1551 bus_dma_segment_t seg;
1552 int i, rseg, state, error;
1553 struct bge_jpool_entry *entry;
1554
1555 state = error = 0;
1556
1557 /* Grab a big chunk o' storage. */
1558 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1560 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1561 return ENOBUFS;
1562 }
1563
1564 state = 1;
1565 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1566 BUS_DMA_NOWAIT)) {
1567 aprint_error_dev(sc->bge_dev,
1568 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1569 error = ENOBUFS;
1570 goto out;
1571 }
1572
1573 state = 2;
1574 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1575 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1576 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1577 error = ENOBUFS;
1578 goto out;
1579 }
1580
1581 state = 3;
1582 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1583 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1584 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1585 error = ENOBUFS;
1586 goto out;
1587 }
1588
1589 state = 4;
1590 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1591 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1592
1593 SLIST_INIT(&sc->bge_jfree_listhead);
1594 SLIST_INIT(&sc->bge_jinuse_listhead);
1595
1596 /*
1597 * Now divide it up into 9K pieces and save the addresses
1598 * in an array.
1599 */
1600 ptr = sc->bge_cdata.bge_jumbo_buf;
1601 for (i = 0; i < BGE_JSLOTS; i++) {
1602 sc->bge_cdata.bge_jslots[i] = ptr;
1603 ptr += BGE_JLEN;
1604 entry = malloc(sizeof(struct bge_jpool_entry),
1605 M_DEVBUF, M_NOWAIT);
1606 if (entry == NULL) {
1607 aprint_error_dev(sc->bge_dev,
1608 "no memory for jumbo buffer queue!\n");
1609 error = ENOBUFS;
1610 goto out;
1611 }
1612 entry->slot = i;
1613 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1614 entry, jpool_entries);
1615 }
1616 out:
1617 if (error != 0) {
1618 switch (state) {
1619 case 4:
1620 bus_dmamap_unload(sc->bge_dmatag,
1621 sc->bge_cdata.bge_rx_jumbo_map);
1622 case 3:
1623 bus_dmamap_destroy(sc->bge_dmatag,
1624 sc->bge_cdata.bge_rx_jumbo_map);
1625 case 2:
1626 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1627 case 1:
1628 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1629 break;
1630 default:
1631 break;
1632 }
1633 }
1634
1635 return error;
1636 }
1637
1638 /*
1639 * Allocate a jumbo buffer.
1640 */
1641 static void *
1642 bge_jalloc(struct bge_softc *sc)
1643 {
1644 struct bge_jpool_entry *entry;
1645
1646 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1647
1648 if (entry == NULL) {
1649 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1650 return NULL;
1651 }
1652
1653 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1654 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1655 return (sc->bge_cdata.bge_jslots[entry->slot]);
1656 }
1657
1658 /*
1659 * Release a jumbo buffer.
1660 */
1661 static void
1662 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1663 {
1664 struct bge_jpool_entry *entry;
1665 struct bge_softc *sc;
1666 int i, s;
1667
1668 /* Extract the softc struct pointer. */
1669 sc = (struct bge_softc *)arg;
1670
1671 if (sc == NULL)
1672 panic("bge_jfree: can't find softc pointer!");
1673
1674 /* calculate the slot this buffer belongs to */
1675
1676 i = ((char *)buf
1677 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1678
1679 if ((i < 0) || (i >= BGE_JSLOTS))
1680 panic("bge_jfree: asked to free buffer that we don't manage!");
1681
1682 s = splvm();
1683 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1684 if (entry == NULL)
1685 panic("bge_jfree: buffer not in use!");
1686 entry->slot = i;
1687 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1688 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1689
1690 if (__predict_true(m != NULL))
1691 pool_cache_put(mb_cache, m);
1692 splx(s);
1693 }
1694
1695
1696 /*
1697 * Initialize a standard receive ring descriptor.
1698 */
1699 static int
1700 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1701 bus_dmamap_t dmamap)
1702 {
1703 struct mbuf *m_new = NULL;
1704 struct bge_rx_bd *r;
1705 int error;
1706
1707 if (dmamap == NULL) {
1708 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1709 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1710 if (error != 0)
1711 return error;
1712 }
1713
1714 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1715
1716 if (m == NULL) {
1717 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1718 if (m_new == NULL)
1719 return ENOBUFS;
1720
1721 MCLGET(m_new, M_DONTWAIT);
1722 if (!(m_new->m_flags & M_EXT)) {
1723 m_freem(m_new);
1724 return ENOBUFS;
1725 }
1726 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1727
1728 } else {
1729 m_new = m;
1730 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1731 m_new->m_data = m_new->m_ext.ext_buf;
1732 }
1733 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1734 m_adj(m_new, ETHER_ALIGN);
1735 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1736 BUS_DMA_READ|BUS_DMA_NOWAIT))
1737 return ENOBUFS;
1738 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1739 BUS_DMASYNC_PREREAD);
1740
1741 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1742 r = &sc->bge_rdata->bge_rx_std_ring[i];
1743 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1744 r->bge_flags = BGE_RXBDFLAG_END;
1745 r->bge_len = m_new->m_len;
1746 r->bge_idx = i;
1747
1748 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1749 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1750 i * sizeof (struct bge_rx_bd),
1751 sizeof (struct bge_rx_bd),
1752 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1753
1754 return 0;
1755 }
1756
1757 /*
1758 * Initialize a jumbo receive ring descriptor. This allocates
1759 * a jumbo buffer from the pool managed internally by the driver.
1760 */
1761 static int
1762 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1763 {
1764 struct mbuf *m_new = NULL;
1765 struct bge_rx_bd *r;
1766 void *buf = NULL;
1767
1768 if (m == NULL) {
1769
1770 /* Allocate the mbuf. */
1771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1772 if (m_new == NULL)
1773 return ENOBUFS;
1774
1775 /* Allocate the jumbo buffer */
1776 buf = bge_jalloc(sc);
1777 if (buf == NULL) {
1778 m_freem(m_new);
1779 aprint_error_dev(sc->bge_dev,
1780 "jumbo allocation failed -- packet dropped!\n");
1781 return ENOBUFS;
1782 }
1783
1784 /* Attach the buffer to the mbuf. */
1785 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1786 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1787 bge_jfree, sc);
1788 m_new->m_flags |= M_EXT_RW;
1789 } else {
1790 m_new = m;
1791 buf = m_new->m_data = m_new->m_ext.ext_buf;
1792 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1793 }
1794 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1795 m_adj(m_new, ETHER_ALIGN);
1796 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1797 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1798 BUS_DMASYNC_PREREAD);
1799 /* Set up the descriptor. */
1800 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1801 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1802 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1803 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1804 r->bge_len = m_new->m_len;
1805 r->bge_idx = i;
1806
1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1808 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1809 i * sizeof (struct bge_rx_bd),
1810 sizeof (struct bge_rx_bd),
1811 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1818 * that's 1MB or memory, which is a lot. For now, we fill only the first
1819 * 256 ring entries and hope that our CPU is fast enough to keep up with
1820 * the NIC.
1821 */
1822 static int
1823 bge_init_rx_ring_std(struct bge_softc *sc)
1824 {
1825 int i;
1826
1827 if (sc->bge_flags & BGE_RXRING_VALID)
1828 return 0;
1829
1830 for (i = 0; i < BGE_SSLOTS; i++) {
1831 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1832 return ENOBUFS;
1833 }
1834
1835 sc->bge_std = i - 1;
1836 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1837
1838 sc->bge_flags |= BGE_RXRING_VALID;
1839
1840 return 0;
1841 }
1842
1843 static void
1844 bge_free_rx_ring_std(struct bge_softc *sc)
1845 {
1846 int i;
1847
1848 if (!(sc->bge_flags & BGE_RXRING_VALID))
1849 return;
1850
1851 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1852 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1853 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1854 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1855 bus_dmamap_destroy(sc->bge_dmatag,
1856 sc->bge_cdata.bge_rx_std_map[i]);
1857 }
1858 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1859 sizeof(struct bge_rx_bd));
1860 }
1861
1862 sc->bge_flags &= ~BGE_RXRING_VALID;
1863 }
1864
1865 static int
1866 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1867 {
1868 int i;
1869 volatile struct bge_rcb *rcb;
1870
1871 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1872 return 0;
1873
1874 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1875 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1876 return ENOBUFS;
1877 }
1878
1879 sc->bge_jumbo = i - 1;
1880 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1881
1882 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1883 rcb->bge_maxlen_flags = 0;
1884 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1885
1886 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1887
1888 return 0;
1889 }
1890
1891 static void
1892 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1893 {
1894 int i;
1895
1896 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1897 return;
1898
1899 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1900 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1901 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1902 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1903 }
1904 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1905 sizeof(struct bge_rx_bd));
1906 }
1907
1908 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1909 }
1910
1911 static void
1912 bge_free_tx_ring(struct bge_softc *sc)
1913 {
1914 int i;
1915 struct txdmamap_pool_entry *dma;
1916
1917 if (!(sc->bge_flags & BGE_TXRING_VALID))
1918 return;
1919
1920 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1921 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1922 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1923 sc->bge_cdata.bge_tx_chain[i] = NULL;
1924 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1925 link);
1926 sc->txdma[i] = 0;
1927 }
1928 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1929 sizeof(struct bge_tx_bd));
1930 }
1931
1932 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1933 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1934 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1935 free(dma, M_DEVBUF);
1936 }
1937
1938 sc->bge_flags &= ~BGE_TXRING_VALID;
1939 }
1940
1941 static int
1942 bge_init_tx_ring(struct bge_softc *sc)
1943 {
1944 int i;
1945 bus_dmamap_t dmamap;
1946 struct txdmamap_pool_entry *dma;
1947
1948 if (sc->bge_flags & BGE_TXRING_VALID)
1949 return 0;
1950
1951 sc->bge_txcnt = 0;
1952 sc->bge_tx_saved_considx = 0;
1953
1954 /* Initialize transmit producer index for host-memory send ring. */
1955 sc->bge_tx_prodidx = 0;
1956 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1957 /* 5700 b2 errata */
1958 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1959 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1960
1961 /* NIC-memory send ring not used; initialize to zero. */
1962 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1963 /* 5700 b2 errata */
1964 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1965 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1966
1967 SLIST_INIT(&sc->txdma_list);
1968 for (i = 0; i < BGE_RSLOTS; i++) {
1969 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1970 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1971 &dmamap))
1972 return ENOBUFS;
1973 if (dmamap == NULL)
1974 panic("dmamap NULL in bge_init_tx_ring");
1975 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1976 if (dma == NULL) {
1977 aprint_error_dev(sc->bge_dev,
1978 "can't alloc txdmamap_pool_entry\n");
1979 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1980 return ENOMEM;
1981 }
1982 dma->dmamap = dmamap;
1983 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1984 }
1985
1986 sc->bge_flags |= BGE_TXRING_VALID;
1987
1988 return 0;
1989 }
1990
1991 static void
1992 bge_setmulti(struct bge_softc *sc)
1993 {
1994 struct ethercom *ac = &sc->ethercom;
1995 struct ifnet *ifp = &ac->ec_if;
1996 struct ether_multi *enm;
1997 struct ether_multistep step;
1998 uint32_t hashes[4] = { 0, 0, 0, 0 };
1999 uint32_t h;
2000 int i;
2001
2002 if (ifp->if_flags & IFF_PROMISC)
2003 goto allmulti;
2004
2005 /* Now program new ones. */
2006 ETHER_FIRST_MULTI(step, ac, enm);
2007 while (enm != NULL) {
2008 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2009 /*
2010 * We must listen to a range of multicast addresses.
2011 * For now, just accept all multicasts, rather than
2012 * trying to set only those filter bits needed to match
2013 * the range. (At this time, the only use of address
2014 * ranges is for IP multicast routing, for which the
2015 * range is big enough to require all bits set.)
2016 */
2017 goto allmulti;
2018 }
2019
2020 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2021
2022 /* Just want the 7 least-significant bits. */
2023 h &= 0x7f;
2024
2025 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2026 ETHER_NEXT_MULTI(step, enm);
2027 }
2028
2029 ifp->if_flags &= ~IFF_ALLMULTI;
2030 goto setit;
2031
2032 allmulti:
2033 ifp->if_flags |= IFF_ALLMULTI;
2034 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2035
2036 setit:
2037 for (i = 0; i < 4; i++)
2038 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2039 }
2040
2041 static void
2042 bge_sig_pre_reset(struct bge_softc *sc, int type)
2043 {
2044
2045 /*
2046 * Some chips don't like this so only do this if ASF is enabled
2047 */
2048 if (sc->bge_asf_mode)
2049 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2050
2051 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2052 switch (type) {
2053 case BGE_RESET_START:
2054 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2055 BGE_FW_DRV_STATE_START);
2056 break;
2057 case BGE_RESET_SHUTDOWN:
2058 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2059 BGE_FW_DRV_STATE_UNLOAD);
2060 break;
2061 case BGE_RESET_SUSPEND:
2062 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2063 BGE_FW_DRV_STATE_SUSPEND);
2064 break;
2065 }
2066 }
2067
2068 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2069 bge_ape_driver_state_change(sc, type);
2070 }
2071
2072 static void
2073 bge_sig_post_reset(struct bge_softc *sc, int type)
2074 {
2075
2076 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2077 switch (type) {
2078 case BGE_RESET_START:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_START_DONE);
2081 /* START DONE */
2082 break;
2083 case BGE_RESET_SHUTDOWN:
2084 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2085 BGE_FW_DRV_STATE_UNLOAD_DONE);
2086 break;
2087 }
2088 }
2089
2090 if (type == BGE_RESET_SHUTDOWN)
2091 bge_ape_driver_state_change(sc, type);
2092 }
2093
2094 static void
2095 bge_sig_legacy(struct bge_softc *sc, int type)
2096 {
2097
2098 if (sc->bge_asf_mode) {
2099 switch (type) {
2100 case BGE_RESET_START:
2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 BGE_FW_DRV_STATE_START);
2103 break;
2104 case BGE_RESET_SHUTDOWN:
2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 BGE_FW_DRV_STATE_UNLOAD);
2107 break;
2108 }
2109 }
2110 }
2111
2112 static void
2113 bge_wait_for_event_ack(struct bge_softc *sc)
2114 {
2115 int i;
2116
2117 /* wait up to 2500usec */
2118 for (i = 0; i < 250; i++) {
2119 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2120 BGE_RX_CPU_DRV_EVENT))
2121 break;
2122 DELAY(10);
2123 }
2124 }
2125
2126 static void
2127 bge_stop_fw(struct bge_softc *sc)
2128 {
2129
2130 if (sc->bge_asf_mode) {
2131 bge_wait_for_event_ack(sc);
2132
2133 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2134 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2135 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2136
2137 bge_wait_for_event_ack(sc);
2138 }
2139 }
2140
2141 static int
2142 bge_poll_fw(struct bge_softc *sc)
2143 {
2144 uint32_t val;
2145 int i;
2146
2147 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2148 for (i = 0; i < BGE_TIMEOUT; i++) {
2149 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2150 if (val & BGE_VCPU_STATUS_INIT_DONE)
2151 break;
2152 DELAY(100);
2153 }
2154 if (i >= BGE_TIMEOUT) {
2155 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2156 return -1;
2157 }
2158 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2159 /*
2160 * Poll the value location we just wrote until
2161 * we see the 1's complement of the magic number.
2162 * This indicates that the firmware initialization
2163 * is complete.
2164 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2165 */
2166 for (i = 0; i < BGE_TIMEOUT; i++) {
2167 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2168 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2169 break;
2170 DELAY(10);
2171 }
2172
2173 if (i >= BGE_TIMEOUT) {
2174 aprint_error_dev(sc->bge_dev,
2175 "firmware handshake timed out, val = %x\n", val);
2176 return -1;
2177 }
2178 }
2179
2180 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2181 /* tg3 says we have to wait extra time */
2182 delay(10 * 1000);
2183 }
2184
2185 return 0;
2186 }
2187
2188 int
2189 bge_phy_addr(struct bge_softc *sc)
2190 {
2191 struct pci_attach_args *pa = &(sc->bge_pa);
2192 int phy_addr = 1;
2193
2194 /*
2195 * PHY address mapping for various devices.
2196 *
2197 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2198 * ---------+-------+-------+-------+-------+
2199 * BCM57XX | 1 | X | X | X |
2200 * BCM5704 | 1 | X | 1 | X |
2201 * BCM5717 | 1 | 8 | 2 | 9 |
2202 * BCM5719 | 1 | 8 | 2 | 9 |
2203 * BCM5720 | 1 | 8 | 2 | 9 |
2204 *
2205 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2206 * ---------+-------+-------+-------+-------+
2207 * BCM57XX | X | X | X | X |
2208 * BCM5704 | X | X | X | X |
2209 * BCM5717 | X | X | X | X |
2210 * BCM5719 | 3 | 10 | 4 | 11 |
2211 * BCM5720 | X | X | X | X |
2212 *
2213 * Other addresses may respond but they are not
2214 * IEEE compliant PHYs and should be ignored.
2215 */
2216 switch (BGE_ASICREV(sc->bge_chipid)) {
2217 case BGE_ASICREV_BCM5717:
2218 case BGE_ASICREV_BCM5719:
2219 case BGE_ASICREV_BCM5720:
2220 phy_addr = pa->pa_function;
2221 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2222 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2223 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2224 } else {
2225 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2226 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2227 }
2228 }
2229
2230 return phy_addr;
2231 }
2232
2233 /*
2234 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2235 * self-test results.
2236 */
2237 static int
2238 bge_chipinit(struct bge_softc *sc)
2239 {
2240 uint32_t dma_rw_ctl, mode_ctl, reg;
2241 int i;
2242
2243 /* Set endianness before we access any non-PCI registers. */
2244 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2245 BGE_INIT);
2246
2247 /*
2248 * Clear the MAC statistics block in the NIC's
2249 * internal memory.
2250 */
2251 for (i = BGE_STATS_BLOCK;
2252 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2253 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2254
2255 for (i = BGE_STATUS_BLOCK;
2256 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2257 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2258
2259 /* 5717 workaround from tg3 */
2260 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2261 /* Save */
2262 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2263
2264 /* Temporary modify MODE_CTL to control TLP */
2265 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2266 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2267
2268 /* Control TLP */
2269 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2270 BGE_TLP_PHYCTL1);
2271 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2272 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2273
2274 /* Restore */
2275 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276 }
2277
2278 /* XXX Should we use 57765_FAMILY? */
2279 if (BGE_IS_57765_PLUS(sc)) {
2280 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2281 /* Save */
2282 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2283
2284 /* Temporary modify MODE_CTL to control TLP */
2285 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2286 CSR_WRITE_4(sc, BGE_MODE_CTL,
2287 reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL5);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2293 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2299 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2300 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2301 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2302
2303 /* Save */
2304 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305
2306 /* Temporary modify MODE_CTL to control TLP */
2307 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 reg | BGE_MODECTL_PCIE_TLPADDR0);
2310
2311 /* Control TLP */
2312 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 BGE_TLP_FTSMAX);
2314 reg &= ~BGE_TLP_FTSMAX_MSK;
2315 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2316 reg | BGE_TLP_FTSMAX_VAL);
2317
2318 /* Restore */
2319 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2320 }
2321
2322 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2323 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2324 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2325 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2326 }
2327
2328 /* Set up the PCI DMA control register. */
2329 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2330 if (sc->bge_flags & BGE_PCIE) {
2331 /* Read watermark not used, 128 bytes for write. */
2332 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2333 device_xname(sc->bge_dev)));
2334 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2335 } else if (sc->bge_flags & BGE_PCIX) {
2336 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2337 device_xname(sc->bge_dev)));
2338 /* PCI-X bus */
2339 if (BGE_IS_5714_FAMILY(sc)) {
2340 /* 256 bytes for read and write. */
2341 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2342 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2343
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2345 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2346 else
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2348 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2349 /* 1536 bytes for read, 384 bytes for write. */
2350 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2351 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2352 } else {
2353 /* 384 bytes for read and write. */
2354 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2355 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2356 (0x0F);
2357 }
2358
2359 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2360 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2361 uint32_t tmp;
2362
2363 /* Set ONEDMA_ATONCE for hardware workaround. */
2364 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2365 BGE_PCI_CLKCTL) & 0x1f;
2366 if (tmp == 6 || tmp == 7)
2367 dma_rw_ctl |=
2368 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369
2370 /* Set PCI-X DMA write workaround. */
2371 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2372 }
2373 } else {
2374 /* Conventional PCI bus: 256 bytes for read and write. */
2375 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2376 device_xname(sc->bge_dev)));
2377 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2378 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2379
2380 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2381 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2382 dma_rw_ctl |= 0x0F;
2383 }
2384
2385 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2386 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2387 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2388 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2389
2390 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2391 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2392 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2393
2394 if (BGE_IS_5717_PLUS(sc)) {
2395 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2396 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2397 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2398
2399 /*
2400 * Enable HW workaround for controllers that misinterpret
2401 * a status tag update and leave interrupts permanently
2402 * disabled.
2403 */
2404 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2405 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2406 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2407 }
2408
2409 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2410 dma_rw_ctl);
2411
2412 /*
2413 * Set up general mode register.
2414 */
2415 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2417 /* Retain Host-2-BMC settings written by APE firmware. */
2418 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2419 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2420 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2421 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2422 }
2423 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2424 BGE_MODECTL_TX_NO_PHDR_CSUM;
2425
2426 /*
2427 * BCM5701 B5 have a bug causing data corruption when using
2428 * 64-bit DMA reads, which can be terminated early and then
2429 * completed later as 32-bit accesses, in combination with
2430 * certain bridges.
2431 */
2432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2433 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2434 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2435
2436 /*
2437 * Tell the firmware the driver is running
2438 */
2439 if (sc->bge_asf_mode & ASF_STACKUP)
2440 mode_ctl |= BGE_MODECTL_STACKUP;
2441
2442 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2443
2444 /*
2445 * Disable memory write invalidate. Apparently it is not supported
2446 * properly by these devices.
2447 */
2448 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2449 PCI_COMMAND_INVALIDATE_ENABLE);
2450
2451 #ifdef __brokenalpha__
2452 /*
2453 * Must insure that we do not cross an 8K (bytes) boundary
2454 * for DMA reads. Our highest limit is 1K bytes. This is a
2455 * restriction on some ALPHA platforms with early revision
2456 * 21174 PCI chipsets, such as the AlphaPC 164lx
2457 */
2458 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2459 #endif
2460
2461 /* Set the timer prescaler (always 66MHz) */
2462 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2463
2464 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2465 DELAY(40); /* XXX */
2466
2467 /* Put PHY into ready state */
2468 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2469 DELAY(40);
2470 }
2471
2472 return 0;
2473 }
2474
2475 static int
2476 bge_blockinit(struct bge_softc *sc)
2477 {
2478 volatile struct bge_rcb *rcb;
2479 bus_size_t rcb_addr;
2480 int i;
2481 struct ifnet *ifp = &sc->ethercom.ec_if;
2482 bge_hostaddr taddr;
2483 uint32_t dmactl, val;
2484
2485 /*
2486 * Initialize the memory window pointer register so that
2487 * we can access the first 32K of internal NIC RAM. This will
2488 * allow us to set up the TX send ring RCBs and the RX return
2489 * ring RCBs, plus other things which live in NIC memory.
2490 */
2491 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2492
2493 /* Step 33: Configure mbuf memory pool */
2494 if (!BGE_IS_5705_PLUS(sc)) {
2495 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2496 BGE_BUFFPOOL_1);
2497
2498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2499 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2500 else
2501 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2502
2503 /* Configure DMA resource pool */
2504 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2505 BGE_DMA_DESCRIPTORS);
2506 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2507 }
2508
2509 /* Step 35: Configure mbuf pool watermarks */
2510 #ifdef ORIG_WPAUL_VALUES
2511 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
2512 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
2514 #else
2515
2516 /* new broadcom docs strongly recommend these: */
2517 if (BGE_IS_5717_PLUS(sc)) {
2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2519 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2521 } else if (BGE_IS_5705_PLUS(sc)) {
2522 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2523
2524 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2525 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2526 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2527 } else {
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 }
2531 } else if (!BGE_IS_5705_PLUS(sc)) {
2532 if (ifp->if_mtu > ETHER_MAX_LEN) {
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2534 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2536 } else {
2537 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2538 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2539 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2540 }
2541 } else {
2542 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2543 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2544 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2545 }
2546 #endif
2547
2548 /* Step 36: Configure DMA resource watermarks */
2549 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2550 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2551
2552 /* Step 38: Enable buffer manager */
2553 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2554 /*
2555 * Change the arbitration algorithm of TXMBUF read request to
2556 * round-robin instead of priority based for BCM5719. When
2557 * TXFIFO is almost empty, RDMA will hold its request until
2558 * TXFIFO is not almost empty.
2559 */
2560 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2561 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2562 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2563 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2564 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2565 val |= BGE_BMANMODE_LOMBUF_ATTN;
2566 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2567
2568 /* Step 39: Poll for buffer manager start indication */
2569 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2570 DELAY(10);
2571 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2572 break;
2573 }
2574
2575 if (i == BGE_TIMEOUT * 2) {
2576 aprint_error_dev(sc->bge_dev,
2577 "buffer manager failed to start\n");
2578 return ENXIO;
2579 }
2580
2581 /* Step 40: Enable flow-through queues */
2582 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2583 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2584
2585 /* Wait until queue initialization is complete */
2586 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2587 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2588 break;
2589 DELAY(10);
2590 }
2591
2592 if (i == BGE_TIMEOUT * 2) {
2593 aprint_error_dev(sc->bge_dev,
2594 "flow-through queue init failed\n");
2595 return ENXIO;
2596 }
2597
2598 /* Step 41: Initialize the standard RX ring control block */
2599 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2600 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2601 if (BGE_IS_5717_PLUS(sc))
2602 rcb->bge_maxlen_flags =
2603 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2604 else if (BGE_IS_5705_PLUS(sc))
2605 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2606 else
2607 rcb->bge_maxlen_flags =
2608 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2609 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2610 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2611 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2612 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2613 else
2614 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2615 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2616 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2617 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2618 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2619
2620 /*
2621 * Step 42: Initialize the jumbo RX ring control block
2622 * We set the 'ring disabled' bit in the flags
2623 * field until we're actually ready to start
2624 * using this ring (i.e. once we set the MTU
2625 * high enough to require it).
2626 */
2627 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2628 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2629 BGE_HOSTADDR(rcb->bge_hostaddr,
2630 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2631 rcb->bge_maxlen_flags =
2632 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2633 BGE_RCB_FLAG_RING_DISABLED);
2634 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2635 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2636 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2637 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2638 else
2639 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2640 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2641 rcb->bge_hostaddr.bge_addr_hi);
2642 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2643 rcb->bge_hostaddr.bge_addr_lo);
2644 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2645 rcb->bge_maxlen_flags);
2646 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2647 /* Reset the jumbo receive producer ring producer index. */
2648 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2649 }
2650
2651 /* Disable the mini receive producer ring RCB. */
2652 if (BGE_IS_5700_FAMILY(sc)) {
2653 /* Set up dummy disabled mini ring RCB */
2654 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2655 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2656 BGE_RCB_FLAG_RING_DISABLED);
2657 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2658 rcb->bge_maxlen_flags);
2659 /* Reset the mini receive producer ring producer index. */
2660 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2661
2662 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2663 offsetof(struct bge_ring_data, bge_info),
2664 sizeof (struct bge_gib),
2665 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2666 }
2667
2668 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2669 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2670 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2671 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2672 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2673 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2674 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2675 }
2676 /*
2677 * Set the BD ring replenish thresholds. The recommended
2678 * values are 1/8th the number of descriptors allocated to
2679 * each ring.
2680 */
2681 i = BGE_STD_RX_RING_CNT / 8;
2682
2683 /*
2684 * Use a value of 8 for the following chips to workaround HW errata.
2685 * Some of these chips have been added based on empirical
2686 * evidence (they don't work unless this is done).
2687 */
2688 if (BGE_IS_5705_PLUS(sc))
2689 i = 8;
2690
2691 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2692 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2693
2694 if (BGE_IS_5717_PLUS(sc)) {
2695 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2696 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2697 }
2698
2699 /*
2700 * Disable all unused send rings by setting the 'ring disabled'
2701 * bit in the flags field of all the TX send ring control blocks.
2702 * These are located in NIC memory.
2703 */
2704 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2705 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2706 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2707 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2708 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2709 rcb_addr += sizeof(struct bge_rcb);
2710 }
2711
2712 /* Configure TX RCB 0 (we use only the first ring) */
2713 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2714 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2715 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2716 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2717 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2719 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2720 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2721 else
2722 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2723 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2724 if (BGE_IS_5700_FAMILY(sc))
2725 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2726 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2727
2728 /* Disable all unused RX return rings */
2729 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2730 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2731 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2732 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2733 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2734 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2735 BGE_RCB_FLAG_RING_DISABLED));
2736 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2737 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2738 (i * (sizeof(uint64_t))), 0);
2739 rcb_addr += sizeof(struct bge_rcb);
2740 }
2741
2742 /*
2743 * Set up RX return ring 0
2744 * Note that the NIC address for RX return rings is 0x00000000.
2745 * The return rings live entirely within the host, so the
2746 * nicaddr field in the RCB isn't used.
2747 */
2748 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2749 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2750 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2751 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2752 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2753 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2754 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2755
2756 /* Set random backoff seed for TX */
2757 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2758 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2759 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2760 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2761 BGE_TX_BACKOFF_SEED_MASK);
2762
2763 /* Set inter-packet gap */
2764 val = 0x2620;
2765 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2766 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2767 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2768 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2769
2770 /*
2771 * Specify which ring to use for packets that don't match
2772 * any RX rules.
2773 */
2774 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2775
2776 /*
2777 * Configure number of RX lists. One interrupt distribution
2778 * list, sixteen active lists, one bad frames class.
2779 */
2780 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2781
2782 /* Inialize RX list placement stats mask. */
2783 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2784 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2785
2786 /* Disable host coalescing until we get it set up */
2787 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2788
2789 /* Poll to make sure it's shut down. */
2790 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2791 DELAY(10);
2792 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2793 break;
2794 }
2795
2796 if (i == BGE_TIMEOUT * 2) {
2797 aprint_error_dev(sc->bge_dev,
2798 "host coalescing engine failed to idle\n");
2799 return ENXIO;
2800 }
2801
2802 /* Set up host coalescing defaults */
2803 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2804 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2805 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2806 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2807 if (!(BGE_IS_5705_PLUS(sc))) {
2808 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2809 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2810 }
2811 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2812 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2813
2814 /* Set up address of statistics block */
2815 if (BGE_IS_5700_FAMILY(sc)) {
2816 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2817 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2818 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2819 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2820 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2821 }
2822
2823 /* Set up address of status block */
2824 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2825 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2826 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2827 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2828 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2829 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2830
2831 /* Set up status block size. */
2832 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2833 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2834 val = BGE_STATBLKSZ_FULL;
2835 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2836 } else {
2837 val = BGE_STATBLKSZ_32BYTE;
2838 bzero(&sc->bge_rdata->bge_status_block, 32);
2839 }
2840
2841 /* Turn on host coalescing state machine */
2842 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2843
2844 /* Turn on RX BD completion state machine and enable attentions */
2845 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2846 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2847
2848 /* Turn on RX list placement state machine */
2849 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2850
2851 /* Turn on RX list selector state machine. */
2852 if (!(BGE_IS_5705_PLUS(sc)))
2853 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2854
2855 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2856 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2857 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2858 BGE_MACMODE_FRMHDR_DMA_ENB;
2859
2860 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2861 val |= BGE_PORTMODE_TBI;
2862 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2863 val |= BGE_PORTMODE_GMII;
2864 else
2865 val |= BGE_PORTMODE_MII;
2866
2867 /* Allow APE to send/receive frames. */
2868 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2869 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2870
2871 /* Turn on DMA, clear stats */
2872 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2873 DELAY(40);
2874
2875 /* Set misc. local control, enable interrupts on attentions */
2876 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2877
2878 #ifdef notdef
2879 /* Assert GPIO pins for PHY reset */
2880 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2881 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2882 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2883 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2884 #endif
2885
2886 #if defined(not_quite_yet)
2887 /* Linux driver enables enable gpio pin #1 on 5700s */
2888 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2889 sc->bge_local_ctrl_reg |=
2890 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2891 }
2892 #endif
2893 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2894
2895 /* Turn on DMA completion state machine */
2896 if (!(BGE_IS_5705_PLUS(sc)))
2897 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2898
2899 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2900
2901 /* Enable host coalescing bug fix. */
2902 if (BGE_IS_5755_PLUS(sc))
2903 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2904
2905 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2906 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2907
2908 /* Turn on write DMA state machine */
2909 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2910 DELAY(40);
2911
2912 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2913
2914 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2915 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2916
2917 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2918 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2919 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2920 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2921 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2922 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2923
2924 if (sc->bge_flags & BGE_PCIE)
2925 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2926 if (sc->bge_flags & BGE_TSO)
2927 val |= BGE_RDMAMODE_TSO4_ENABLE;
2928
2929 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2930 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2931 BGE_RDMAMODE_H2BNC_VLAN_DET;
2932 /*
2933 * Allow multiple outstanding read requests from
2934 * non-LSO read DMA engine.
2935 */
2936 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2937 }
2938
2939 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2940 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2941 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2942 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2943 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2944 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2945 /*
2946 * Adjust tx margin to prevent TX data corruption and
2947 * fix internal FIFO overflow.
2948 */
2949 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2950 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2951 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2952 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2953 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2954 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2955 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2956 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2957 }
2958 /*
2959 * Enable fix for read DMA FIFO overruns.
2960 * The fix is to limit the number of RX BDs
2961 * the hardware would fetch at a fime.
2962 */
2963 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2964 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2965 }
2966
2967 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2968 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2969 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2970 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2971 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2972 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2973 /*
2974 * Allow 4KB burst length reads for non-LSO frames.
2975 * Enable 512B burst length reads for buffer descriptors.
2976 */
2977 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2978 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2979 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2980 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2981 }
2982
2983 /* Turn on read DMA state machine */
2984 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2985 delay(40);
2986
2987 /* Turn on RX data completion state machine */
2988 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2989
2990 /* Turn on RX BD initiator state machine */
2991 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2992
2993 /* Turn on RX data and RX BD initiator state machine */
2994 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2995
2996 /* Turn on Mbuf cluster free state machine */
2997 if (!BGE_IS_5705_PLUS(sc))
2998 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2999
3000 /* Turn on send BD completion state machine */
3001 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3002
3003 /* Turn on send data completion state machine */
3004 val = BGE_SDCMODE_ENABLE;
3005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3006 val |= BGE_SDCMODE_CDELAY;
3007 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3008
3009 /* Turn on send data initiator state machine */
3010 if (sc->bge_flags & BGE_TSO) {
3011 /* XXX: magic value from Linux driver */
3012 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
3013 } else
3014 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3015
3016 /* Turn on send BD initiator state machine */
3017 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3018
3019 /* Turn on send BD selector state machine */
3020 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3021
3022 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3023 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3024 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3025
3026 /* ack/clear link change events */
3027 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3028 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3029 BGE_MACSTAT_LINK_CHANGED);
3030 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3031
3032 /*
3033 * Enable attention when the link has changed state for
3034 * devices that use auto polling.
3035 */
3036 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3037 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3038 } else {
3039 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3040 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3042 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3043 BGE_EVTENB_MI_INTERRUPT);
3044 }
3045
3046 /*
3047 * Clear any pending link state attention.
3048 * Otherwise some link state change events may be lost until attention
3049 * is cleared by bge_intr() -> bge_link_upd() sequence.
3050 * It's not necessary on newer BCM chips - perhaps enabling link
3051 * state change attentions implies clearing pending attention.
3052 */
3053 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3054 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3055 BGE_MACSTAT_LINK_CHANGED);
3056
3057 /* Enable link state change attentions. */
3058 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3059
3060 return 0;
3061 }
3062
3063 static const struct bge_revision *
3064 bge_lookup_rev(uint32_t chipid)
3065 {
3066 const struct bge_revision *br;
3067
3068 for (br = bge_revisions; br->br_name != NULL; br++) {
3069 if (br->br_chipid == chipid)
3070 return br;
3071 }
3072
3073 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3074 if (br->br_chipid == BGE_ASICREV(chipid))
3075 return br;
3076 }
3077
3078 return NULL;
3079 }
3080
3081 static const struct bge_product *
3082 bge_lookup(const struct pci_attach_args *pa)
3083 {
3084 const struct bge_product *bp;
3085
3086 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3087 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3088 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3089 return bp;
3090 }
3091
3092 return NULL;
3093 }
3094
3095 static uint32_t
3096 bge_chipid(const struct pci_attach_args *pa)
3097 {
3098 uint32_t id;
3099
3100 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3101 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3102
3103 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3104 switch (PCI_PRODUCT(pa->pa_id)) {
3105 case PCI_PRODUCT_BROADCOM_BCM5717:
3106 case PCI_PRODUCT_BROADCOM_BCM5718:
3107 case PCI_PRODUCT_BROADCOM_BCM5719:
3108 case PCI_PRODUCT_BROADCOM_BCM5720:
3109 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3110 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3111 BGE_PCI_GEN2_PRODID_ASICREV);
3112 break;
3113 case PCI_PRODUCT_BROADCOM_BCM57761:
3114 case PCI_PRODUCT_BROADCOM_BCM57762:
3115 case PCI_PRODUCT_BROADCOM_BCM57765:
3116 case PCI_PRODUCT_BROADCOM_BCM57766:
3117 case PCI_PRODUCT_BROADCOM_BCM57781:
3118 case PCI_PRODUCT_BROADCOM_BCM57785:
3119 case PCI_PRODUCT_BROADCOM_BCM57791:
3120 case PCI_PRODUCT_BROADCOM_BCM57795:
3121 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3122 BGE_PCI_GEN15_PRODID_ASICREV);
3123 break;
3124 default:
3125 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3126 BGE_PCI_PRODID_ASICREV);
3127 break;
3128 }
3129 }
3130
3131 return id;
3132 }
3133
3134 /*
3135 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3136 * against our list and return its name if we find a match. Note
3137 * that since the Broadcom controller contains VPD support, we
3138 * can get the device name string from the controller itself instead
3139 * of the compiled-in string. This is a little slow, but it guarantees
3140 * we'll always announce the right product name.
3141 */
3142 static int
3143 bge_probe(device_t parent, cfdata_t match, void *aux)
3144 {
3145 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3146
3147 if (bge_lookup(pa) != NULL)
3148 return 1;
3149
3150 return 0;
3151 }
3152
3153 static void
3154 bge_attach(device_t parent, device_t self, void *aux)
3155 {
3156 struct bge_softc *sc = device_private(self);
3157 struct pci_attach_args *pa = aux;
3158 prop_dictionary_t dict;
3159 const struct bge_product *bp;
3160 const struct bge_revision *br;
3161 pci_chipset_tag_t pc;
3162 pci_intr_handle_t ih;
3163 const char *intrstr = NULL;
3164 bus_dma_segment_t seg;
3165 int rseg;
3166 uint32_t hwcfg = 0;
3167 uint32_t command;
3168 struct ifnet *ifp;
3169 uint32_t misccfg;
3170 void * kva;
3171 u_char eaddr[ETHER_ADDR_LEN];
3172 pcireg_t memtype, subid, reg;
3173 bus_addr_t memaddr;
3174 bus_size_t memsize, apesize;
3175 uint32_t pm_ctl;
3176 bool no_seeprom;
3177
3178 bp = bge_lookup(pa);
3179 KASSERT(bp != NULL);
3180
3181 sc->sc_pc = pa->pa_pc;
3182 sc->sc_pcitag = pa->pa_tag;
3183 sc->bge_dev = self;
3184
3185 sc->bge_pa = *pa;
3186 pc = sc->sc_pc;
3187 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3188
3189 aprint_naive(": Ethernet controller\n");
3190 aprint_normal(": %s\n", bp->bp_name);
3191
3192 /*
3193 * Map control/status registers.
3194 */
3195 DPRINTFN(5, ("Map control/status regs\n"));
3196 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3197 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3198 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3199 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3200
3201 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3202 aprint_error_dev(sc->bge_dev,
3203 "failed to enable memory mapping!\n");
3204 return;
3205 }
3206
3207 DPRINTFN(5, ("pci_mem_find\n"));
3208 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3209 switch (memtype) {
3210 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3211 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3212 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3213 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3214 &memaddr, &memsize) == 0)
3215 break;
3216 default:
3217 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3218 return;
3219 }
3220
3221 DPRINTFN(5, ("pci_intr_map\n"));
3222 if (pci_intr_map(pa, &ih)) {
3223 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3224 return;
3225 }
3226
3227 DPRINTFN(5, ("pci_intr_string\n"));
3228 intrstr = pci_intr_string(pc, ih);
3229
3230 DPRINTFN(5, ("pci_intr_establish\n"));
3231 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3232
3233 if (sc->bge_intrhand == NULL) {
3234 aprint_error_dev(sc->bge_dev,
3235 "couldn't establish interrupt%s%s\n",
3236 intrstr ? " at " : "", intrstr ? intrstr : "");
3237 return;
3238 }
3239 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3240
3241 /* Save various chip information. */
3242 sc->bge_chipid = bge_chipid(pa);
3243 sc->bge_phy_addr = bge_phy_addr(sc);
3244
3245 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3246 &sc->bge_pciecap, NULL) != 0)
3247 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3248 /* PCIe */
3249 sc->bge_flags |= BGE_PCIE;
3250 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3251 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3252 sc->bge_expmrq = 2048;
3253 else
3254 sc->bge_expmrq = 4096;
3255 bge_set_max_readrq(sc);
3256 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3257 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3258 /* PCI-X */
3259 sc->bge_flags |= BGE_PCIX;
3260 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3261 &sc->bge_pcixcap, NULL) == 0)
3262 aprint_error_dev(sc->bge_dev,
3263 "unable to find PCIX capability\n");
3264 }
3265
3266 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3267 /*
3268 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3269 * can clobber the chip's PCI config-space power control
3270 * registers, leaving the card in D3 powersave state. We do
3271 * not have memory-mapped registers in this state, so force
3272 * device into D0 state before starting initialization.
3273 */
3274 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3275 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3276 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3277 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3278 DELAY(1000); /* 27 usec is allegedly sufficent */
3279 }
3280
3281 /* Save chipset family. */
3282 switch (BGE_ASICREV(sc->bge_chipid)) {
3283 case BGE_ASICREV_BCM57765:
3284 case BGE_ASICREV_BCM57766:
3285 sc->bge_flags |= BGE_57765_PLUS;
3286 /* FALLTHROUGH */
3287 case BGE_ASICREV_BCM5717:
3288 case BGE_ASICREV_BCM5719:
3289 case BGE_ASICREV_BCM5720:
3290 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3291 BGE_5705_PLUS;
3292 break;
3293 case BGE_ASICREV_BCM5755:
3294 case BGE_ASICREV_BCM5761:
3295 case BGE_ASICREV_BCM5784:
3296 case BGE_ASICREV_BCM5785:
3297 case BGE_ASICREV_BCM5787:
3298 case BGE_ASICREV_BCM57780:
3299 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3300 break;
3301 case BGE_ASICREV_BCM5700:
3302 case BGE_ASICREV_BCM5701:
3303 case BGE_ASICREV_BCM5703:
3304 case BGE_ASICREV_BCM5704:
3305 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3306 break;
3307 case BGE_ASICREV_BCM5714_A0:
3308 case BGE_ASICREV_BCM5780:
3309 case BGE_ASICREV_BCM5714:
3310 sc->bge_flags |= BGE_5714_FAMILY;
3311 /* FALLTHROUGH */
3312 case BGE_ASICREV_BCM5750:
3313 case BGE_ASICREV_BCM5752:
3314 case BGE_ASICREV_BCM5906:
3315 sc->bge_flags |= BGE_575X_PLUS;
3316 /* FALLTHROUGH */
3317 case BGE_ASICREV_BCM5705:
3318 sc->bge_flags |= BGE_5705_PLUS;
3319 break;
3320 }
3321
3322 /* Identify chips with APE processor. */
3323 switch (BGE_ASICREV(sc->bge_chipid)) {
3324 case BGE_ASICREV_BCM5717:
3325 case BGE_ASICREV_BCM5719:
3326 case BGE_ASICREV_BCM5720:
3327 case BGE_ASICREV_BCM5761:
3328 sc->bge_flags |= BGE_APE;
3329 break;
3330 }
3331
3332 /* Chips with APE need BAR2 access for APE registers/memory. */
3333 if ((sc->bge_flags & BGE_APE) != 0) {
3334 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3335 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3336 &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3337 aprint_error_dev(sc->bge_dev,
3338 "couldn't map BAR2 memory\n");
3339 return;
3340 }
3341
3342 /* Enable APE register/memory access by host driver. */
3343 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3344 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3345 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3346 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3347 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3348
3349 bge_ape_lock_init(sc);
3350 bge_ape_read_fw_ver(sc);
3351 }
3352
3353 /* Identify the chips that use an CPMU. */
3354 if (BGE_IS_5717_PLUS(sc) ||
3355 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3356 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3357 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3358 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3359 sc->bge_flags |= BGE_CPMU_PRESENT;
3360
3361 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3362 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3363 else
3364 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3365
3366 /*
3367 * When using the BCM5701 in PCI-X mode, data corruption has
3368 * been observed in the first few bytes of some received packets.
3369 * Aligning the packet buffer in memory eliminates the corruption.
3370 * Unfortunately, this misaligns the packet payloads. On platforms
3371 * which do not support unaligned accesses, we will realign the
3372 * payloads by copying the received packets.
3373 */
3374 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3375 sc->bge_flags & BGE_PCIX)
3376 sc->bge_flags |= BGE_RX_ALIGNBUG;
3377
3378 if (BGE_IS_5700_FAMILY(sc))
3379 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3380
3381 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3382 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3383 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3384 sc->bge_flags |= BGE_NO_3LED;
3385
3386 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3387 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3388
3389 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3390 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3391 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3392 sc->bge_flags |= BGE_IS_5788;
3393
3394 /*
3395 * Some controllers seem to require a special firmware to use
3396 * TSO. But the firmware is not available to FreeBSD and Linux
3397 * claims that the TSO performed by the firmware is slower than
3398 * hardware based TSO. Moreover the firmware based TSO has one
3399 * known bug which can't handle TSO if ethernet header + IP/TCP
3400 * header is greater than 80 bytes. The workaround for the TSO
3401 * bug exist but it seems it's too expensive than not using
3402 * TSO at all. Some hardwares also have the TSO bug so limit
3403 * the TSO to the controllers that are not affected TSO issues
3404 * (e.g. 5755 or higher).
3405 */
3406 if (BGE_IS_5755_PLUS(sc)) {
3407 /*
3408 * BCM5754 and BCM5787 shares the same ASIC id so
3409 * explicit device id check is required.
3410 */
3411 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3412 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3413 sc->bge_flags |= BGE_TSO;
3414 }
3415
3416 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3417 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3418 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3419 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3420 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3421 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3422 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3423 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3424 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3425 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3426 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3427 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3428 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3429 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3431 sc->bge_flags |= BGE_10_100_ONLY;
3432
3433 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3434 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3435 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3436 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
3437 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3438 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
3439
3440 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3441 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3442 sc->bge_flags |= BGE_PHY_CRC_BUG;
3443 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3444 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3445 sc->bge_flags |= BGE_PHY_ADC_BUG;
3446 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3447 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3448
3449 if (BGE_IS_5705_PLUS(sc) &&
3450 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3451 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3452 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3453 !BGE_IS_5717_PLUS(sc)) {
3454 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3455 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3456 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3457 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3458 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3459 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3460 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3461 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3462 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3463 } else
3464 sc->bge_flags |= BGE_PHY_BER_BUG;
3465 }
3466
3467 /*
3468 * SEEPROM check.
3469 * First check if firmware knows we do not have SEEPROM.
3470 */
3471 if (prop_dictionary_get_bool(device_properties(self),
3472 "without-seeprom", &no_seeprom) && no_seeprom)
3473 sc->bge_flags |= BGE_NO_EEPROM;
3474
3475 /* Now check the 'ROM failed' bit on the RX CPU */
3476 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3477 sc->bge_flags |= BGE_NO_EEPROM;
3478
3479 sc->bge_asf_mode = 0;
3480 /* No ASF if APE present. */
3481 if ((sc->bge_flags & BGE_APE) == 0) {
3482 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3483 BGE_SRAM_DATA_SIG_MAGIC)) {
3484 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3485 BGE_HWCFG_ASF) {
3486 sc->bge_asf_mode |= ASF_ENABLE;
3487 sc->bge_asf_mode |= ASF_STACKUP;
3488 if (BGE_IS_575X_PLUS(sc))
3489 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3490 }
3491 }
3492 }
3493
3494 bge_stop_fw(sc);
3495 bge_sig_pre_reset(sc, BGE_RESET_START);
3496 if (bge_reset(sc))
3497 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3498
3499 bge_sig_legacy(sc, BGE_RESET_START);
3500 bge_sig_post_reset(sc, BGE_RESET_START);
3501
3502 if (bge_chipinit(sc)) {
3503 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3504 bge_release_resources(sc);
3505 return;
3506 }
3507
3508 /*
3509 * Get station address from the EEPROM.
3510 */
3511 if (bge_get_eaddr(sc, eaddr)) {
3512 aprint_error_dev(sc->bge_dev,
3513 "failed to read station address\n");
3514 bge_release_resources(sc);
3515 return;
3516 }
3517
3518 br = bge_lookup_rev(sc->bge_chipid);
3519
3520 if (br == NULL) {
3521 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3522 sc->bge_chipid);
3523 } else {
3524 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3525 br->br_name, sc->bge_chipid);
3526 }
3527 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3528
3529 /* Allocate the general information block and ring buffers. */
3530 if (pci_dma64_available(pa))
3531 sc->bge_dmatag = pa->pa_dmat64;
3532 else
3533 sc->bge_dmatag = pa->pa_dmat;
3534 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3535 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3536 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3537 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3538 return;
3539 }
3540 DPRINTFN(5, ("bus_dmamem_map\n"));
3541 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3542 sizeof(struct bge_ring_data), &kva,
3543 BUS_DMA_NOWAIT)) {
3544 aprint_error_dev(sc->bge_dev,
3545 "can't map DMA buffers (%zu bytes)\n",
3546 sizeof(struct bge_ring_data));
3547 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3548 return;
3549 }
3550 DPRINTFN(5, ("bus_dmamem_create\n"));
3551 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3552 sizeof(struct bge_ring_data), 0,
3553 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3554 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3555 bus_dmamem_unmap(sc->bge_dmatag, kva,
3556 sizeof(struct bge_ring_data));
3557 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3558 return;
3559 }
3560 DPRINTFN(5, ("bus_dmamem_load\n"));
3561 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3562 sizeof(struct bge_ring_data), NULL,
3563 BUS_DMA_NOWAIT)) {
3564 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3565 bus_dmamem_unmap(sc->bge_dmatag, kva,
3566 sizeof(struct bge_ring_data));
3567 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3568 return;
3569 }
3570
3571 DPRINTFN(5, ("bzero\n"));
3572 sc->bge_rdata = (struct bge_ring_data *)kva;
3573
3574 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3575
3576 /* Try to allocate memory for jumbo buffers. */
3577 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3578 if (bge_alloc_jumbo_mem(sc)) {
3579 aprint_error_dev(sc->bge_dev,
3580 "jumbo buffer allocation failed\n");
3581 } else
3582 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3583 }
3584
3585 /* Set default tuneable values. */
3586 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3587 sc->bge_rx_coal_ticks = 150;
3588 sc->bge_rx_max_coal_bds = 64;
3589 #ifdef ORIG_WPAUL_VALUES
3590 sc->bge_tx_coal_ticks = 150;
3591 sc->bge_tx_max_coal_bds = 128;
3592 #else
3593 sc->bge_tx_coal_ticks = 300;
3594 sc->bge_tx_max_coal_bds = 400;
3595 #endif
3596 if (BGE_IS_5705_PLUS(sc)) {
3597 sc->bge_tx_coal_ticks = (12 * 5);
3598 sc->bge_tx_max_coal_bds = (12 * 5);
3599 aprint_verbose_dev(sc->bge_dev,
3600 "setting short Tx thresholds\n");
3601 }
3602
3603 if (BGE_IS_5717_PLUS(sc))
3604 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3605 else if (BGE_IS_5705_PLUS(sc))
3606 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3607 else
3608 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3609
3610 /* Set up ifnet structure */
3611 ifp = &sc->ethercom.ec_if;
3612 ifp->if_softc = sc;
3613 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3614 ifp->if_ioctl = bge_ioctl;
3615 ifp->if_stop = bge_stop;
3616 ifp->if_start = bge_start;
3617 ifp->if_init = bge_init;
3618 ifp->if_watchdog = bge_watchdog;
3619 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3620 IFQ_SET_READY(&ifp->if_snd);
3621 DPRINTFN(5, ("strcpy if_xname\n"));
3622 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3623
3624 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3625 sc->ethercom.ec_if.if_capabilities |=
3626 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3627 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3628 sc->ethercom.ec_if.if_capabilities |=
3629 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3630 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3631 #endif
3632 sc->ethercom.ec_capabilities |=
3633 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3634
3635 if (sc->bge_flags & BGE_TSO)
3636 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3637
3638 /*
3639 * Do MII setup.
3640 */
3641 DPRINTFN(5, ("mii setup\n"));
3642 sc->bge_mii.mii_ifp = ifp;
3643 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3644 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3645 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3646
3647 /*
3648 * Figure out what sort of media we have by checking the hardware
3649 * config word in the first 32k of NIC internal memory, or fall back to
3650 * the config word in the EEPROM. Note: on some BCM5700 cards,
3651 * this value appears to be unset. If that's the case, we have to rely
3652 * on identifying the NIC by its PCI subsystem ID, as we do below for
3653 * the SysKonnect SK-9D41.
3654 */
3655 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3656 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3657 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3658 bge_read_eeprom(sc, (void *)&hwcfg,
3659 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3660 hwcfg = be32toh(hwcfg);
3661 }
3662 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3663 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3664 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3665 if (BGE_IS_5714_FAMILY(sc))
3666 sc->bge_flags |= BGE_PHY_FIBER_MII;
3667 else
3668 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3669 }
3670
3671 /* set phyflags and chipid before mii_attach() */
3672 dict = device_properties(self);
3673 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3674 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3675
3676 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3677 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3678 bge_ifmedia_sts);
3679 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3680 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3681 0, NULL);
3682 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3683 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3684 /* Pretend the user requested this setting */
3685 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3686 } else {
3687 /*
3688 * Do transceiver setup and tell the firmware the
3689 * driver is down so we can try to get access the
3690 * probe if ASF is running. Retry a couple of times
3691 * if we get a conflict with the ASF firmware accessing
3692 * the PHY.
3693 */
3694 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3695 bge_asf_driver_up(sc);
3696
3697 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3698 bge_ifmedia_sts);
3699 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3700 sc->bge_phy_addr, MII_OFFSET_ANY,
3701 MIIF_DOPAUSE);
3702
3703 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3704 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3705 ifmedia_add(&sc->bge_mii.mii_media,
3706 IFM_ETHER|IFM_MANUAL, 0, NULL);
3707 ifmedia_set(&sc->bge_mii.mii_media,
3708 IFM_ETHER|IFM_MANUAL);
3709 } else
3710 ifmedia_set(&sc->bge_mii.mii_media,
3711 IFM_ETHER|IFM_AUTO);
3712
3713 /*
3714 * Now tell the firmware we are going up after probing the PHY
3715 */
3716 if (sc->bge_asf_mode & ASF_STACKUP)
3717 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3718 }
3719
3720 /*
3721 * Call MI attach routine.
3722 */
3723 DPRINTFN(5, ("if_attach\n"));
3724 if_attach(ifp);
3725 DPRINTFN(5, ("ether_ifattach\n"));
3726 ether_ifattach(ifp, eaddr);
3727 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3728 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3729 RND_TYPE_NET, 0);
3730 #ifdef BGE_EVENT_COUNTERS
3731 /*
3732 * Attach event counters.
3733 */
3734 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3735 NULL, device_xname(sc->bge_dev), "intr");
3736 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3737 NULL, device_xname(sc->bge_dev), "tx_xoff");
3738 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3739 NULL, device_xname(sc->bge_dev), "tx_xon");
3740 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3741 NULL, device_xname(sc->bge_dev), "rx_xoff");
3742 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3743 NULL, device_xname(sc->bge_dev), "rx_xon");
3744 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3745 NULL, device_xname(sc->bge_dev), "rx_macctl");
3746 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3747 NULL, device_xname(sc->bge_dev), "xoffentered");
3748 #endif /* BGE_EVENT_COUNTERS */
3749 DPRINTFN(5, ("callout_init\n"));
3750 callout_init(&sc->bge_timeout, 0);
3751
3752 if (pmf_device_register(self, NULL, NULL))
3753 pmf_class_network_register(self, ifp);
3754 else
3755 aprint_error_dev(self, "couldn't establish power handler\n");
3756
3757 bge_sysctl_init(sc);
3758
3759 #ifdef BGE_DEBUG
3760 bge_debug_info(sc);
3761 #endif
3762 }
3763
3764 static void
3765 bge_release_resources(struct bge_softc *sc)
3766 {
3767 if (sc->bge_vpd_prodname != NULL)
3768 free(sc->bge_vpd_prodname, M_DEVBUF);
3769
3770 if (sc->bge_vpd_readonly != NULL)
3771 free(sc->bge_vpd_readonly, M_DEVBUF);
3772 }
3773
3774 static int
3775 bge_reset(struct bge_softc *sc)
3776 {
3777 uint32_t cachesize, command;
3778 uint32_t reset, mac_mode, mac_mode_mask;
3779 pcireg_t devctl, reg;
3780 int i, val;
3781 void (*write_op)(struct bge_softc *, int, int);
3782
3783 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3784 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3785 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3786 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3787
3788 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3789 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3790 if (sc->bge_flags & BGE_PCIE)
3791 write_op = bge_writemem_direct;
3792 else
3793 write_op = bge_writemem_ind;
3794 } else
3795 write_op = bge_writereg_ind;
3796
3797 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3798 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3799 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3800 for (i = 0; i < 8000; i++) {
3801 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3802 BGE_NVRAMSWARB_GNT1)
3803 break;
3804 DELAY(20);
3805 }
3806 if (i == 8000) {
3807 printf("%s: NVRAM lock timedout!\n",
3808 device_xname(sc->bge_dev));
3809 }
3810 }
3811 /* Take APE lock when performing reset. */
3812 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3813
3814 /* Save some important PCI state. */
3815 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3816 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3817
3818 /* Step 5b-5d: */
3819 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3820 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3821 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3822
3823 /* XXX ???: Disable fastboot on controllers that support it. */
3824 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3825 BGE_IS_5755_PLUS(sc))
3826 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3827
3828 /*
3829 * Step 6: Write the magic number to SRAM at offset 0xB50.
3830 * When firmware finishes its initialization it will
3831 * write ~BGE_MAGIC_NUMBER to the same location.
3832 */
3833 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3834
3835 /* Step 7: */
3836 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3837 /*
3838 * XXX: from FreeBSD/Linux; no documentation
3839 */
3840 if (sc->bge_flags & BGE_PCIE) {
3841 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3842 !BGE_IS_57765_PLUS(sc) &&
3843 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3844 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3845 /* PCI Express 1.0 system */
3846 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3847 BGE_PHY_PCIE_SCRAM_MODE);
3848 }
3849 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3850 /*
3851 * Prevent PCI Express link training
3852 * during global reset.
3853 */
3854 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3855 reset |= (1<<29);
3856 }
3857 }
3858
3859 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3860 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3861 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3862 i | BGE_VCPU_STATUS_DRV_RESET);
3863 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3864 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3865 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3866 }
3867
3868 /*
3869 * Set GPHY Power Down Override to leave GPHY
3870 * powered up in D0 uninitialized.
3871 */
3872 if (BGE_IS_5705_PLUS(sc) &&
3873 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3874 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3875
3876 /* XXX 5721, 5751 and 5752 */
3877 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3878 reset |= BGE_MISCCFG_GRC_RESET_DISABLE;
3879
3880 /* Issue global reset */
3881 write_op(sc, BGE_MISC_CFG, reset);
3882
3883 /* Step 8: wait for complete */
3884 if (sc->bge_flags & BGE_PCIE)
3885 delay(100*1000); /* too big */
3886 else
3887 delay(1000);
3888
3889 if (sc->bge_flags & BGE_PCIE) {
3890 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3891 DELAY(500000);
3892 /* XXX: Magic Numbers */
3893 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3894 BGE_PCI_UNKNOWN0);
3895 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3896 BGE_PCI_UNKNOWN0,
3897 reg | (1 << 15));
3898 }
3899 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3900 sc->bge_pciecap + PCI_PCIE_DCSR);
3901 /* Clear enable no snoop and disable relaxed ordering. */
3902 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3903 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3904
3905 /* Set PCIE max payload size to 128 for older PCIe devices */
3906 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3907 devctl &= ~(0x00e0);
3908 /* Clear device status register. Write 1b to clear */
3909 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3910 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3911 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3912 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3913 bge_set_max_readrq(sc);
3914 }
3915
3916 /* From Linux: dummy read to flush PCI posted writes */
3917 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3918
3919 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3920 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3921 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3922 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3923 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3924 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3925 (sc->bge_flags & BGE_PCIX) != 0)
3926 val |= BGE_PCISTATE_RETRY_SAME_DMA;
3927 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3928 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3929 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3930 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3931 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3932 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3933 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3934
3935 /* Step 11: disable PCI-X Relaxed Ordering. */
3936 if (sc->bge_flags & BGE_PCIX) {
3937 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3938 + PCI_PCIX_CMD);
3939 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3940 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3941 }
3942
3943 /* Step 12: Enable memory arbiter. */
3944 if (BGE_IS_5714_FAMILY(sc)) {
3945 val = CSR_READ_4(sc, BGE_MARB_MODE);
3946 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3947 } else
3948 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3949
3950 /* XXX 5721, 5751 and 5752 */
3951 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3952 /* Step 19: */
3953 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3954 /* Step 20: */
3955 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3956 }
3957
3958 /* Step 28: Fix up byte swapping */
3959 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3960
3961 /* Step 21: 5822 B0 errata */
3962 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3963 pcireg_t msidata;
3964
3965 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3966 BGE_PCI_MSI_DATA);
3967 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3968 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3969 msidata);
3970 }
3971
3972 /*
3973 * Step 18: wirte mac mode
3974 * XXX Write 0x0c for 5703S and 5704S
3975 */
3976 val = CSR_READ_4(sc, BGE_MAC_MODE);
3977 val = (val & ~mac_mode_mask) | mac_mode;
3978 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3979 DELAY(40);
3980
3981 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
3982
3983 /* Step 17: Poll until the firmware initialization is complete */
3984 bge_poll_fw(sc);
3985
3986 /*
3987 * The 5704 in TBI mode apparently needs some special
3988 * adjustment to insure the SERDES drive level is set
3989 * to 1.2V.
3990 */
3991 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3992 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3993 uint32_t serdescfg;
3994
3995 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3996 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3997 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3998 }
3999
4000 if (sc->bge_flags & BGE_PCIE &&
4001 !BGE_IS_57765_PLUS(sc) &&
4002 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4003 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4004 uint32_t v;
4005
4006 /* Enable PCI Express bug fix */
4007 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4008 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4009 v | BGE_TLP_DATA_FIFO_PROTECT);
4010 }
4011
4012 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4013 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4014 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4015
4016 return 0;
4017 }
4018
4019 /*
4020 * Frame reception handling. This is called if there's a frame
4021 * on the receive return list.
4022 *
4023 * Note: we have to be able to handle two possibilities here:
4024 * 1) the frame is from the jumbo receive ring
4025 * 2) the frame is from the standard receive ring
4026 */
4027
4028 static void
4029 bge_rxeof(struct bge_softc *sc)
4030 {
4031 struct ifnet *ifp;
4032 uint16_t rx_prod, rx_cons;
4033 int stdcnt = 0, jumbocnt = 0;
4034 bus_dmamap_t dmamap;
4035 bus_addr_t offset, toff;
4036 bus_size_t tlen;
4037 int tosync;
4038
4039 rx_cons = sc->bge_rx_saved_considx;
4040 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4041
4042 /* Nothing to do */
4043 if (rx_cons == rx_prod)
4044 return;
4045
4046 ifp = &sc->ethercom.ec_if;
4047
4048 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4049 offsetof(struct bge_ring_data, bge_status_block),
4050 sizeof (struct bge_status_block),
4051 BUS_DMASYNC_POSTREAD);
4052
4053 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4054 tosync = rx_prod - rx_cons;
4055
4056 if (tosync != 0)
4057 rnd_add_uint32(&sc->rnd_source, tosync);
4058
4059 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4060
4061 if (tosync < 0) {
4062 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4063 sizeof (struct bge_rx_bd);
4064 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4065 toff, tlen, BUS_DMASYNC_POSTREAD);
4066 tosync = -tosync;
4067 }
4068
4069 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4070 offset, tosync * sizeof (struct bge_rx_bd),
4071 BUS_DMASYNC_POSTREAD);
4072
4073 while (rx_cons != rx_prod) {
4074 struct bge_rx_bd *cur_rx;
4075 uint32_t rxidx;
4076 struct mbuf *m = NULL;
4077
4078 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4079
4080 rxidx = cur_rx->bge_idx;
4081 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4082
4083 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4084 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4085 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4086 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4087 jumbocnt++;
4088 bus_dmamap_sync(sc->bge_dmatag,
4089 sc->bge_cdata.bge_rx_jumbo_map,
4090 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4091 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4092 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4093 ifp->if_ierrors++;
4094 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4095 continue;
4096 }
4097 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4098 NULL)== ENOBUFS) {
4099 ifp->if_ierrors++;
4100 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4101 continue;
4102 }
4103 } else {
4104 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4105 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4106
4107 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4108 stdcnt++;
4109 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4110 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4111 if (dmamap == NULL) {
4112 ifp->if_ierrors++;
4113 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4114 continue;
4115 }
4116 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4117 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4118 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4119 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4120 ifp->if_ierrors++;
4121 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4122 continue;
4123 }
4124 if (bge_newbuf_std(sc, sc->bge_std,
4125 NULL, dmamap) == ENOBUFS) {
4126 ifp->if_ierrors++;
4127 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4128 continue;
4129 }
4130 }
4131
4132 ifp->if_ipackets++;
4133 #ifndef __NO_STRICT_ALIGNMENT
4134 /*
4135 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4136 * the Rx buffer has the layer-2 header unaligned.
4137 * If our CPU requires alignment, re-align by copying.
4138 */
4139 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4140 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4141 cur_rx->bge_len);
4142 m->m_data += ETHER_ALIGN;
4143 }
4144 #endif
4145
4146 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4147 m->m_pkthdr.rcvif = ifp;
4148
4149 /*
4150 * Handle BPF listeners. Let the BPF user see the packet.
4151 */
4152 bpf_mtap(ifp, m);
4153
4154 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4155
4156 if (BGE_IS_5717_PLUS(sc)) {
4157 if ((cur_rx->bge_error_flag &
4158 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4159 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4160 } else {
4161 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4162 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4163 }
4164 /*
4165 * Rx transport checksum-offload may also
4166 * have bugs with packets which, when transmitted,
4167 * were `runts' requiring padding.
4168 */
4169 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4170 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4171 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4172 m->m_pkthdr.csum_data =
4173 cur_rx->bge_tcp_udp_csum;
4174 m->m_pkthdr.csum_flags |=
4175 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4176 M_CSUM_DATA);
4177 }
4178
4179 /*
4180 * If we received a packet with a vlan tag, pass it
4181 * to vlan_input() instead of ether_input().
4182 */
4183 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4184 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4185 }
4186
4187 (*ifp->if_input)(ifp, m);
4188 }
4189
4190 sc->bge_rx_saved_considx = rx_cons;
4191 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4192 if (stdcnt)
4193 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4194 if (jumbocnt)
4195 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4196 }
4197
4198 static void
4199 bge_txeof(struct bge_softc *sc)
4200 {
4201 struct bge_tx_bd *cur_tx = NULL;
4202 struct ifnet *ifp;
4203 struct txdmamap_pool_entry *dma;
4204 bus_addr_t offset, toff;
4205 bus_size_t tlen;
4206 int tosync;
4207 struct mbuf *m;
4208
4209 ifp = &sc->ethercom.ec_if;
4210
4211 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4212 offsetof(struct bge_ring_data, bge_status_block),
4213 sizeof (struct bge_status_block),
4214 BUS_DMASYNC_POSTREAD);
4215
4216 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4217 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4218 sc->bge_tx_saved_considx;
4219
4220 if (tosync != 0)
4221 rnd_add_uint32(&sc->rnd_source, tosync);
4222
4223 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4224
4225 if (tosync < 0) {
4226 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4227 sizeof (struct bge_tx_bd);
4228 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4229 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4230 tosync = -tosync;
4231 }
4232
4233 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4234 offset, tosync * sizeof (struct bge_tx_bd),
4235 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4236
4237 /*
4238 * Go through our tx ring and free mbufs for those
4239 * frames that have been sent.
4240 */
4241 while (sc->bge_tx_saved_considx !=
4242 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4243 uint32_t idx = 0;
4244
4245 idx = sc->bge_tx_saved_considx;
4246 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4247 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4248 ifp->if_opackets++;
4249 m = sc->bge_cdata.bge_tx_chain[idx];
4250 if (m != NULL) {
4251 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4252 dma = sc->txdma[idx];
4253 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4254 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4255 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4256 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4257 sc->txdma[idx] = NULL;
4258
4259 m_freem(m);
4260 }
4261 sc->bge_txcnt--;
4262 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4263 ifp->if_timer = 0;
4264 }
4265
4266 if (cur_tx != NULL)
4267 ifp->if_flags &= ~IFF_OACTIVE;
4268 }
4269
4270 static int
4271 bge_intr(void *xsc)
4272 {
4273 struct bge_softc *sc;
4274 struct ifnet *ifp;
4275 uint32_t statusword;
4276
4277 sc = xsc;
4278 ifp = &sc->ethercom.ec_if;
4279
4280 /* It is possible for the interrupt to arrive before
4281 * the status block is updated prior to the interrupt.
4282 * Reading the PCI State register will confirm whether the
4283 * interrupt is ours and will flush the status block.
4284 */
4285
4286 /* read status word from status block */
4287 statusword = sc->bge_rdata->bge_status_block.bge_status;
4288
4289 if ((statusword & BGE_STATFLAG_UPDATED) ||
4290 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
4291 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4292 /* Ack interrupt and stop others from occuring. */
4293 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4294
4295 BGE_EVCNT_INCR(sc->bge_ev_intr);
4296
4297 /* clear status word */
4298 sc->bge_rdata->bge_status_block.bge_status = 0;
4299
4300 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4301 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4302 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4303 bge_link_upd(sc);
4304
4305 if (ifp->if_flags & IFF_RUNNING) {
4306 /* Check RX return ring producer/consumer */
4307 bge_rxeof(sc);
4308
4309 /* Check TX ring producer/consumer */
4310 bge_txeof(sc);
4311 }
4312
4313 if (sc->bge_pending_rxintr_change) {
4314 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4315 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4316 uint32_t junk;
4317
4318 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4319 DELAY(10);
4320 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4321
4322 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4323 DELAY(10);
4324 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4325
4326 sc->bge_pending_rxintr_change = 0;
4327 }
4328 bge_handle_events(sc);
4329
4330 /* Re-enable interrupts. */
4331 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4332
4333 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4334 bge_start(ifp);
4335
4336 return 1;
4337 } else
4338 return 0;
4339 }
4340
4341 static void
4342 bge_asf_driver_up(struct bge_softc *sc)
4343 {
4344 if (sc->bge_asf_mode & ASF_STACKUP) {
4345 /* Send ASF heartbeat aprox. every 2s */
4346 if (sc->bge_asf_count)
4347 sc->bge_asf_count --;
4348 else {
4349 sc->bge_asf_count = 2;
4350
4351 bge_wait_for_event_ack(sc);
4352
4353 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4354 BGE_FW_CMD_DRV_ALIVE);
4355 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4356 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4357 BGE_FW_HB_TIMEOUT_SEC);
4358 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4359 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4360 BGE_RX_CPU_DRV_EVENT);
4361 }
4362 }
4363 }
4364
4365 static void
4366 bge_tick(void *xsc)
4367 {
4368 struct bge_softc *sc = xsc;
4369 struct mii_data *mii = &sc->bge_mii;
4370 int s;
4371
4372 s = splnet();
4373
4374 if (BGE_IS_5705_PLUS(sc))
4375 bge_stats_update_regs(sc);
4376 else
4377 bge_stats_update(sc);
4378
4379 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4380 /*
4381 * Since in TBI mode auto-polling can't be used we should poll
4382 * link status manually. Here we register pending link event
4383 * and trigger interrupt.
4384 */
4385 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4386 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4387 } else {
4388 /*
4389 * Do not touch PHY if we have link up. This could break
4390 * IPMI/ASF mode or produce extra input errors.
4391 * (extra input errors was reported for bcm5701 & bcm5704).
4392 */
4393 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4394 mii_tick(mii);
4395 }
4396
4397 bge_asf_driver_up(sc);
4398
4399 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4400
4401 splx(s);
4402 }
4403
4404 static void
4405 bge_stats_update_regs(struct bge_softc *sc)
4406 {
4407 struct ifnet *ifp = &sc->ethercom.ec_if;
4408
4409 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4410 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4411
4412 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4413 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4414 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4415 }
4416
4417 static void
4418 bge_stats_update(struct bge_softc *sc)
4419 {
4420 struct ifnet *ifp = &sc->ethercom.ec_if;
4421 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4422
4423 #define READ_STAT(sc, stats, stat) \
4424 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4425
4426 ifp->if_collisions +=
4427 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4428 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4429 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4430 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4431 ifp->if_collisions;
4432
4433 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4434 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4435 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4436 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4437 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4438 READ_STAT(sc, stats,
4439 xoffPauseFramesReceived.bge_addr_lo));
4440 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4441 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4442 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4443 READ_STAT(sc, stats,
4444 macControlFramesReceived.bge_addr_lo));
4445 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4446 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4447
4448 #undef READ_STAT
4449
4450 #ifdef notdef
4451 ifp->if_collisions +=
4452 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4453 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4454 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4455 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4456 ifp->if_collisions;
4457 #endif
4458 }
4459
4460 /*
4461 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4462 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4463 * but when such padded frames employ the bge IP/TCP checksum offload,
4464 * the hardware checksum assist gives incorrect results (possibly
4465 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4466 * If we pad such runts with zeros, the onboard checksum comes out correct.
4467 */
4468 static inline int
4469 bge_cksum_pad(struct mbuf *pkt)
4470 {
4471 struct mbuf *last = NULL;
4472 int padlen;
4473
4474 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4475
4476 /* if there's only the packet-header and we can pad there, use it. */
4477 if (pkt->m_pkthdr.len == pkt->m_len &&
4478 M_TRAILINGSPACE(pkt) >= padlen) {
4479 last = pkt;
4480 } else {
4481 /*
4482 * Walk packet chain to find last mbuf. We will either
4483 * pad there, or append a new mbuf and pad it
4484 * (thus perhaps avoiding the bcm5700 dma-min bug).
4485 */
4486 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4487 continue; /* do nothing */
4488 }
4489
4490 /* `last' now points to last in chain. */
4491 if (M_TRAILINGSPACE(last) < padlen) {
4492 /* Allocate new empty mbuf, pad it. Compact later. */
4493 struct mbuf *n;
4494 MGET(n, M_DONTWAIT, MT_DATA);
4495 if (n == NULL)
4496 return ENOBUFS;
4497 n->m_len = 0;
4498 last->m_next = n;
4499 last = n;
4500 }
4501 }
4502
4503 KDASSERT(!M_READONLY(last));
4504 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4505
4506 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4507 memset(mtod(last, char *) + last->m_len, 0, padlen);
4508 last->m_len += padlen;
4509 pkt->m_pkthdr.len += padlen;
4510 return 0;
4511 }
4512
4513 /*
4514 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4515 */
4516 static inline int
4517 bge_compact_dma_runt(struct mbuf *pkt)
4518 {
4519 struct mbuf *m, *prev;
4520 int totlen, prevlen;
4521
4522 prev = NULL;
4523 totlen = 0;
4524 prevlen = -1;
4525
4526 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4527 int mlen = m->m_len;
4528 int shortfall = 8 - mlen ;
4529
4530 totlen += mlen;
4531 if (mlen == 0)
4532 continue;
4533 if (mlen >= 8)
4534 continue;
4535
4536 /* If we get here, mbuf data is too small for DMA engine.
4537 * Try to fix by shuffling data to prev or next in chain.
4538 * If that fails, do a compacting deep-copy of the whole chain.
4539 */
4540
4541 /* Internal frag. If fits in prev, copy it there. */
4542 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4543 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4544 prev->m_len += mlen;
4545 m->m_len = 0;
4546 /* XXX stitch chain */
4547 prev->m_next = m_free(m);
4548 m = prev;
4549 continue;
4550 }
4551 else if (m->m_next != NULL &&
4552 M_TRAILINGSPACE(m) >= shortfall &&
4553 m->m_next->m_len >= (8 + shortfall)) {
4554 /* m is writable and have enough data in next, pull up. */
4555
4556 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4557 shortfall);
4558 m->m_len += shortfall;
4559 m->m_next->m_len -= shortfall;
4560 m->m_next->m_data += shortfall;
4561 }
4562 else if (m->m_next == NULL || 1) {
4563 /* Got a runt at the very end of the packet.
4564 * borrow data from the tail of the preceding mbuf and
4565 * update its length in-place. (The original data is still
4566 * valid, so we can do this even if prev is not writable.)
4567 */
4568
4569 /* if we'd make prev a runt, just move all of its data. */
4570 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4571 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4572
4573 if ((prev->m_len - shortfall) < 8)
4574 shortfall = prev->m_len;
4575
4576 #ifdef notyet /* just do the safe slow thing for now */
4577 if (!M_READONLY(m)) {
4578 if (M_LEADINGSPACE(m) < shorfall) {
4579 void *m_dat;
4580 m_dat = (m->m_flags & M_PKTHDR) ?
4581 m->m_pktdat : m->dat;
4582 memmove(m_dat, mtod(m, void*), m->m_len);
4583 m->m_data = m_dat;
4584 }
4585 } else
4586 #endif /* just do the safe slow thing */
4587 {
4588 struct mbuf * n = NULL;
4589 int newprevlen = prev->m_len - shortfall;
4590
4591 MGET(n, M_NOWAIT, MT_DATA);
4592 if (n == NULL)
4593 return ENOBUFS;
4594 KASSERT(m->m_len + shortfall < MLEN
4595 /*,
4596 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4597
4598 /* first copy the data we're stealing from prev */
4599 memcpy(n->m_data, prev->m_data + newprevlen,
4600 shortfall);
4601
4602 /* update prev->m_len accordingly */
4603 prev->m_len -= shortfall;
4604
4605 /* copy data from runt m */
4606 memcpy(n->m_data + shortfall, m->m_data,
4607 m->m_len);
4608
4609 /* n holds what we stole from prev, plus m */
4610 n->m_len = shortfall + m->m_len;
4611
4612 /* stitch n into chain and free m */
4613 n->m_next = m->m_next;
4614 prev->m_next = n;
4615 /* KASSERT(m->m_next == NULL); */
4616 m->m_next = NULL;
4617 m_free(m);
4618 m = n; /* for continuing loop */
4619 }
4620 }
4621 prevlen = m->m_len;
4622 }
4623 return 0;
4624 }
4625
4626 /*
4627 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4628 * pointers to descriptors.
4629 */
4630 static int
4631 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4632 {
4633 struct bge_tx_bd *f = NULL;
4634 uint32_t frag, cur;
4635 uint16_t csum_flags = 0;
4636 uint16_t txbd_tso_flags = 0;
4637 struct txdmamap_pool_entry *dma;
4638 bus_dmamap_t dmamap;
4639 int i = 0;
4640 struct m_tag *mtag;
4641 int use_tso, maxsegsize, error;
4642
4643 cur = frag = *txidx;
4644
4645 if (m_head->m_pkthdr.csum_flags) {
4646 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4647 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4648 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4649 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4650 }
4651
4652 /*
4653 * If we were asked to do an outboard checksum, and the NIC
4654 * has the bug where it sometimes adds in the Ethernet padding,
4655 * explicitly pad with zeros so the cksum will be correct either way.
4656 * (For now, do this for all chip versions, until newer
4657 * are confirmed to not require the workaround.)
4658 */
4659 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4660 #ifdef notyet
4661 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4662 #endif
4663 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4664 goto check_dma_bug;
4665
4666 if (bge_cksum_pad(m_head) != 0)
4667 return ENOBUFS;
4668
4669 check_dma_bug:
4670 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4671 goto doit;
4672
4673 /*
4674 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4675 * less than eight bytes. If we encounter a teeny mbuf
4676 * at the end of a chain, we can pad. Otherwise, copy.
4677 */
4678 if (bge_compact_dma_runt(m_head) != 0)
4679 return ENOBUFS;
4680
4681 doit:
4682 dma = SLIST_FIRST(&sc->txdma_list);
4683 if (dma == NULL)
4684 return ENOBUFS;
4685 dmamap = dma->dmamap;
4686
4687 /*
4688 * Set up any necessary TSO state before we start packing...
4689 */
4690 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4691 if (!use_tso) {
4692 maxsegsize = 0;
4693 } else { /* TSO setup */
4694 unsigned mss;
4695 struct ether_header *eh;
4696 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4697 struct mbuf * m0 = m_head;
4698 struct ip *ip;
4699 struct tcphdr *th;
4700 int iphl, hlen;
4701
4702 /*
4703 * XXX It would be nice if the mbuf pkthdr had offset
4704 * fields for the protocol headers.
4705 */
4706
4707 eh = mtod(m0, struct ether_header *);
4708 switch (htons(eh->ether_type)) {
4709 case ETHERTYPE_IP:
4710 offset = ETHER_HDR_LEN;
4711 break;
4712
4713 case ETHERTYPE_VLAN:
4714 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4715 break;
4716
4717 default:
4718 /*
4719 * Don't support this protocol or encapsulation.
4720 */
4721 return ENOBUFS;
4722 }
4723
4724 /*
4725 * TCP/IP headers are in the first mbuf; we can do
4726 * this the easy way.
4727 */
4728 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4729 hlen = iphl + offset;
4730 if (__predict_false(m0->m_len <
4731 (hlen + sizeof(struct tcphdr)))) {
4732
4733 aprint_debug_dev(sc->bge_dev,
4734 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4735 "not handled yet\n",
4736 m0->m_len, hlen+ sizeof(struct tcphdr));
4737 #ifdef NOTYET
4738 /*
4739 * XXX jonathan (at) NetBSD.org: untested.
4740 * how to force this branch to be taken?
4741 */
4742 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4743
4744 m_copydata(m0, offset, sizeof(ip), &ip);
4745 m_copydata(m0, hlen, sizeof(th), &th);
4746
4747 ip.ip_len = 0;
4748
4749 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4750 sizeof(ip.ip_len), &ip.ip_len);
4751
4752 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4753 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4754
4755 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4756 sizeof(th.th_sum), &th.th_sum);
4757
4758 hlen += th.th_off << 2;
4759 iptcp_opt_words = hlen;
4760 #else
4761 /*
4762 * if_wm "hard" case not yet supported, can we not
4763 * mandate it out of existence?
4764 */
4765 (void) ip; (void)th; (void) ip_tcp_hlen;
4766
4767 return ENOBUFS;
4768 #endif
4769 } else {
4770 ip = (struct ip *) (mtod(m0, char *) + offset);
4771 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4772 ip_tcp_hlen = iphl + (th->th_off << 2);
4773
4774 /* Total IP/TCP options, in 32-bit words */
4775 iptcp_opt_words = (ip_tcp_hlen
4776 - sizeof(struct tcphdr)
4777 - sizeof(struct ip)) >> 2;
4778 }
4779 if (BGE_IS_575X_PLUS(sc)) {
4780 th->th_sum = 0;
4781 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4782 } else {
4783 /*
4784 * XXX jonathan (at) NetBSD.org: 5705 untested.
4785 * Requires TSO firmware patch for 5701/5703/5704.
4786 */
4787 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4788 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4789 }
4790
4791 mss = m_head->m_pkthdr.segsz;
4792 txbd_tso_flags |=
4793 BGE_TXBDFLAG_CPU_PRE_DMA |
4794 BGE_TXBDFLAG_CPU_POST_DMA;
4795
4796 /*
4797 * Our NIC TSO-assist assumes TSO has standard, optionless
4798 * IPv4 and TCP headers, which total 40 bytes. By default,
4799 * the NIC copies 40 bytes of IP/TCP header from the
4800 * supplied header into the IP/TCP header portion of
4801 * each post-TSO-segment. If the supplied packet has IP or
4802 * TCP options, we need to tell the NIC to copy those extra
4803 * bytes into each post-TSO header, in addition to the normal
4804 * 40-byte IP/TCP header (and to leave space accordingly).
4805 * Unfortunately, the driver encoding of option length
4806 * varies across different ASIC families.
4807 */
4808 tcp_seg_flags = 0;
4809 if (iptcp_opt_words) {
4810 if (BGE_IS_5705_PLUS(sc)) {
4811 tcp_seg_flags =
4812 iptcp_opt_words << 11;
4813 } else {
4814 txbd_tso_flags |=
4815 iptcp_opt_words << 12;
4816 }
4817 }
4818 maxsegsize = mss | tcp_seg_flags;
4819 ip->ip_len = htons(mss + ip_tcp_hlen);
4820
4821 } /* TSO setup */
4822
4823 /*
4824 * Start packing the mbufs in this chain into
4825 * the fragment pointers. Stop when we run out
4826 * of fragments or hit the end of the mbuf chain.
4827 */
4828 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4829 BUS_DMA_NOWAIT);
4830 if (error)
4831 return ENOBUFS;
4832 /*
4833 * Sanity check: avoid coming within 16 descriptors
4834 * of the end of the ring.
4835 */
4836 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4837 BGE_TSO_PRINTF(("%s: "
4838 " dmamap_load_mbuf too close to ring wrap\n",
4839 device_xname(sc->bge_dev)));
4840 goto fail_unload;
4841 }
4842
4843 mtag = sc->ethercom.ec_nvlans ?
4844 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4845
4846
4847 /* Iterate over dmap-map fragments. */
4848 for (i = 0; i < dmamap->dm_nsegs; i++) {
4849 f = &sc->bge_rdata->bge_tx_ring[frag];
4850 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4851 break;
4852
4853 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4854 f->bge_len = dmamap->dm_segs[i].ds_len;
4855
4856 /*
4857 * For 5751 and follow-ons, for TSO we must turn
4858 * off checksum-assist flag in the tx-descr, and
4859 * supply the ASIC-revision-specific encoding
4860 * of TSO flags and segsize.
4861 */
4862 if (use_tso) {
4863 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4864 f->bge_rsvd = maxsegsize;
4865 f->bge_flags = csum_flags | txbd_tso_flags;
4866 } else {
4867 f->bge_rsvd = 0;
4868 f->bge_flags =
4869 (csum_flags | txbd_tso_flags) & 0x0fff;
4870 }
4871 } else {
4872 f->bge_rsvd = 0;
4873 f->bge_flags = csum_flags;
4874 }
4875
4876 if (mtag != NULL) {
4877 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4878 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4879 } else {
4880 f->bge_vlan_tag = 0;
4881 }
4882 cur = frag;
4883 BGE_INC(frag, BGE_TX_RING_CNT);
4884 }
4885
4886 if (i < dmamap->dm_nsegs) {
4887 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4888 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4889 goto fail_unload;
4890 }
4891
4892 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4893 BUS_DMASYNC_PREWRITE);
4894
4895 if (frag == sc->bge_tx_saved_considx) {
4896 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4897 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4898
4899 goto fail_unload;
4900 }
4901
4902 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4903 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4904 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4905 sc->txdma[cur] = dma;
4906 sc->bge_txcnt += dmamap->dm_nsegs;
4907
4908 *txidx = frag;
4909
4910 return 0;
4911
4912 fail_unload:
4913 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4914
4915 return ENOBUFS;
4916 }
4917
4918 /*
4919 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4920 * to the mbuf data regions directly in the transmit descriptors.
4921 */
4922 static void
4923 bge_start(struct ifnet *ifp)
4924 {
4925 struct bge_softc *sc;
4926 struct mbuf *m_head = NULL;
4927 uint32_t prodidx;
4928 int pkts = 0;
4929
4930 sc = ifp->if_softc;
4931
4932 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4933 return;
4934
4935 prodidx = sc->bge_tx_prodidx;
4936
4937 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4938 IFQ_POLL(&ifp->if_snd, m_head);
4939 if (m_head == NULL)
4940 break;
4941
4942 #if 0
4943 /*
4944 * XXX
4945 * safety overkill. If this is a fragmented packet chain
4946 * with delayed TCP/UDP checksums, then only encapsulate
4947 * it if we have enough descriptors to handle the entire
4948 * chain at once.
4949 * (paranoia -- may not actually be needed)
4950 */
4951 if (m_head->m_flags & M_FIRSTFRAG &&
4952 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4953 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4954 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4955 ifp->if_flags |= IFF_OACTIVE;
4956 break;
4957 }
4958 }
4959 #endif
4960
4961 /*
4962 * Pack the data into the transmit ring. If we
4963 * don't have room, set the OACTIVE flag and wait
4964 * for the NIC to drain the ring.
4965 */
4966 if (bge_encap(sc, m_head, &prodidx)) {
4967 ifp->if_flags |= IFF_OACTIVE;
4968 break;
4969 }
4970
4971 /* now we are committed to transmit the packet */
4972 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4973 pkts++;
4974
4975 /*
4976 * If there's a BPF listener, bounce a copy of this frame
4977 * to him.
4978 */
4979 bpf_mtap(ifp, m_head);
4980 }
4981 if (pkts == 0)
4982 return;
4983
4984 /* Transmit */
4985 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4986 /* 5700 b2 errata */
4987 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4988 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4989
4990 sc->bge_tx_prodidx = prodidx;
4991
4992 /*
4993 * Set a timeout in case the chip goes out to lunch.
4994 */
4995 ifp->if_timer = 5;
4996 }
4997
4998 static int
4999 bge_init(struct ifnet *ifp)
5000 {
5001 struct bge_softc *sc = ifp->if_softc;
5002 const uint16_t *m;
5003 uint32_t mode;
5004 int s, error = 0;
5005
5006 s = splnet();
5007
5008 ifp = &sc->ethercom.ec_if;
5009
5010 /* Cancel pending I/O and flush buffers. */
5011 bge_stop(ifp, 0);
5012
5013 bge_stop_fw(sc);
5014 bge_sig_pre_reset(sc, BGE_RESET_START);
5015 bge_reset(sc);
5016 bge_sig_legacy(sc, BGE_RESET_START);
5017 bge_sig_post_reset(sc, BGE_RESET_START);
5018
5019 bge_chipinit(sc);
5020
5021 /*
5022 * Init the various state machines, ring
5023 * control blocks and firmware.
5024 */
5025 error = bge_blockinit(sc);
5026 if (error != 0) {
5027 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5028 error);
5029 splx(s);
5030 return error;
5031 }
5032
5033 ifp = &sc->ethercom.ec_if;
5034
5035 /* Specify MTU. */
5036 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5037 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5038
5039 /* Load our MAC address. */
5040 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5041 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5042 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5043
5044 /* Enable or disable promiscuous mode as needed. */
5045 if (ifp->if_flags & IFF_PROMISC)
5046 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5047 else
5048 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5049
5050 /* Program multicast filter. */
5051 bge_setmulti(sc);
5052
5053 /* Init RX ring. */
5054 bge_init_rx_ring_std(sc);
5055
5056 /*
5057 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5058 * memory to insure that the chip has in fact read the first
5059 * entry of the ring.
5060 */
5061 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5062 uint32_t v, i;
5063 for (i = 0; i < 10; i++) {
5064 DELAY(20);
5065 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5066 if (v == (MCLBYTES - ETHER_ALIGN))
5067 break;
5068 }
5069 if (i == 10)
5070 aprint_error_dev(sc->bge_dev,
5071 "5705 A0 chip failed to load RX ring\n");
5072 }
5073
5074 /* Init jumbo RX ring. */
5075 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5076 bge_init_rx_ring_jumbo(sc);
5077
5078 /* Init our RX return ring index */
5079 sc->bge_rx_saved_considx = 0;
5080
5081 /* Init TX ring. */
5082 bge_init_tx_ring(sc);
5083
5084 /* Enable TX MAC state machine lockup fix. */
5085 mode = CSR_READ_4(sc, BGE_TX_MODE);
5086 if (BGE_IS_5755_PLUS(sc) ||
5087 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5088 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5089 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5090 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5091 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5092 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5093 }
5094
5095 /* Turn on transmitter */
5096 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5097 DELAY(100);
5098
5099 /* Turn on receiver */
5100 mode = CSR_READ_4(sc, BGE_RX_MODE);
5101 if (BGE_IS_5755_PLUS(sc))
5102 mode |= BGE_RXMODE_IPV6_ENABLE;
5103 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5104 DELAY(10);
5105
5106 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5107
5108 /* Tell firmware we're alive. */
5109 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5110
5111 /* Enable host interrupts. */
5112 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5113 BGE_PCIMISCCTL_CLEAR_INTA);
5114 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5115 BGE_PCIMISCCTL_MASK_PCI_INTR);
5116 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5117
5118 if ((error = bge_ifmedia_upd(ifp)) != 0)
5119 goto out;
5120
5121 ifp->if_flags |= IFF_RUNNING;
5122 ifp->if_flags &= ~IFF_OACTIVE;
5123
5124 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5125
5126 out:
5127 sc->bge_if_flags = ifp->if_flags;
5128 splx(s);
5129
5130 return error;
5131 }
5132
5133 /*
5134 * Set media options.
5135 */
5136 static int
5137 bge_ifmedia_upd(struct ifnet *ifp)
5138 {
5139 struct bge_softc *sc = ifp->if_softc;
5140 struct mii_data *mii = &sc->bge_mii;
5141 struct ifmedia *ifm = &sc->bge_ifmedia;
5142 int rc;
5143
5144 /* If this is a 1000baseX NIC, enable the TBI port. */
5145 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5146 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5147 return EINVAL;
5148 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5149 case IFM_AUTO:
5150 /*
5151 * The BCM5704 ASIC appears to have a special
5152 * mechanism for programming the autoneg
5153 * advertisement registers in TBI mode.
5154 */
5155 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5156 uint32_t sgdig;
5157 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5158 if (sgdig & BGE_SGDIGSTS_DONE) {
5159 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5160 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5161 sgdig |= BGE_SGDIGCFG_AUTO |
5162 BGE_SGDIGCFG_PAUSE_CAP |
5163 BGE_SGDIGCFG_ASYM_PAUSE;
5164 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5165 sgdig | BGE_SGDIGCFG_SEND);
5166 DELAY(5);
5167 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5168 sgdig);
5169 }
5170 }
5171 break;
5172 case IFM_1000_SX:
5173 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5174 BGE_CLRBIT(sc, BGE_MAC_MODE,
5175 BGE_MACMODE_HALF_DUPLEX);
5176 } else {
5177 BGE_SETBIT(sc, BGE_MAC_MODE,
5178 BGE_MACMODE_HALF_DUPLEX);
5179 }
5180 DELAY(40);
5181 break;
5182 default:
5183 return EINVAL;
5184 }
5185 /* XXX 802.3x flow control for 1000BASE-SX */
5186 return 0;
5187 }
5188
5189 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5190 if ((rc = mii_mediachg(mii)) == ENXIO)
5191 return 0;
5192
5193 /*
5194 * Force an interrupt so that we will call bge_link_upd
5195 * if needed and clear any pending link state attention.
5196 * Without this we are not getting any further interrupts
5197 * for link state changes and thus will not UP the link and
5198 * not be able to send in bge_start. The only way to get
5199 * things working was to receive a packet and get a RX intr.
5200 */
5201 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5202 sc->bge_flags & BGE_IS_5788)
5203 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5204 else
5205 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5206
5207 return rc;
5208 }
5209
5210 /*
5211 * Report current media status.
5212 */
5213 static void
5214 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5215 {
5216 struct bge_softc *sc = ifp->if_softc;
5217 struct mii_data *mii = &sc->bge_mii;
5218
5219 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5220 ifmr->ifm_status = IFM_AVALID;
5221 ifmr->ifm_active = IFM_ETHER;
5222 if (CSR_READ_4(sc, BGE_MAC_STS) &
5223 BGE_MACSTAT_TBI_PCS_SYNCHED)
5224 ifmr->ifm_status |= IFM_ACTIVE;
5225 ifmr->ifm_active |= IFM_1000_SX;
5226 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5227 ifmr->ifm_active |= IFM_HDX;
5228 else
5229 ifmr->ifm_active |= IFM_FDX;
5230 return;
5231 }
5232
5233 mii_pollstat(mii);
5234 ifmr->ifm_status = mii->mii_media_status;
5235 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5236 sc->bge_flowflags;
5237 }
5238
5239 static int
5240 bge_ifflags_cb(struct ethercom *ec)
5241 {
5242 struct ifnet *ifp = &ec->ec_if;
5243 struct bge_softc *sc = ifp->if_softc;
5244 int change = ifp->if_flags ^ sc->bge_if_flags;
5245
5246 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5247 return ENETRESET;
5248 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5249 return 0;
5250
5251 if ((ifp->if_flags & IFF_PROMISC) == 0)
5252 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5253 else
5254 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5255
5256 bge_setmulti(sc);
5257
5258 sc->bge_if_flags = ifp->if_flags;
5259 return 0;
5260 }
5261
5262 static int
5263 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5264 {
5265 struct bge_softc *sc = ifp->if_softc;
5266 struct ifreq *ifr = (struct ifreq *) data;
5267 int s, error = 0;
5268 struct mii_data *mii;
5269
5270 s = splnet();
5271
5272 switch (command) {
5273 case SIOCSIFMEDIA:
5274 /* XXX Flow control is not supported for 1000BASE-SX */
5275 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5276 ifr->ifr_media &= ~IFM_ETH_FMASK;
5277 sc->bge_flowflags = 0;
5278 }
5279
5280 /* Flow control requires full-duplex mode. */
5281 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5282 (ifr->ifr_media & IFM_FDX) == 0) {
5283 ifr->ifr_media &= ~IFM_ETH_FMASK;
5284 }
5285 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5286 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5287 /* We can do both TXPAUSE and RXPAUSE. */
5288 ifr->ifr_media |=
5289 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5290 }
5291 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5292 }
5293 /* FALLTHROUGH */
5294 case SIOCGIFMEDIA:
5295 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5296 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5297 command);
5298 } else {
5299 mii = &sc->bge_mii;
5300 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5301 command);
5302 }
5303 break;
5304 default:
5305 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5306 break;
5307
5308 error = 0;
5309
5310 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5311 ;
5312 else if (ifp->if_flags & IFF_RUNNING)
5313 bge_setmulti(sc);
5314 break;
5315 }
5316
5317 splx(s);
5318
5319 return error;
5320 }
5321
5322 static void
5323 bge_watchdog(struct ifnet *ifp)
5324 {
5325 struct bge_softc *sc;
5326
5327 sc = ifp->if_softc;
5328
5329 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5330
5331 ifp->if_flags &= ~IFF_RUNNING;
5332 bge_init(ifp);
5333
5334 ifp->if_oerrors++;
5335 }
5336
5337 static void
5338 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5339 {
5340 int i;
5341
5342 BGE_CLRBIT_FLUSH(sc, reg, bit);
5343
5344 for (i = 0; i < 1000; i++) {
5345 delay(100);
5346 if ((CSR_READ_4(sc, reg) & bit) == 0)
5347 return;
5348 }
5349
5350 /*
5351 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5352 * on some environment (and once after boot?)
5353 */
5354 if (reg != BGE_SRS_MODE)
5355 aprint_error_dev(sc->bge_dev,
5356 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5357 (u_long)reg, bit);
5358 }
5359
5360 /*
5361 * Stop the adapter and free any mbufs allocated to the
5362 * RX and TX lists.
5363 */
5364 static void
5365 bge_stop(struct ifnet *ifp, int disable)
5366 {
5367 struct bge_softc *sc = ifp->if_softc;
5368
5369 callout_stop(&sc->bge_timeout);
5370
5371 /* Disable host interrupts. */
5372 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5373 BGE_PCIMISCCTL_MASK_PCI_INTR);
5374 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5375
5376 /*
5377 * Tell firmware we're shutting down.
5378 */
5379 bge_stop_fw(sc);
5380 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5381
5382 /*
5383 * Disable all of the receiver blocks.
5384 */
5385 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5386 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5387 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5388 if (BGE_IS_5700_FAMILY(sc))
5389 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5390 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5391 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5392 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5393
5394 /*
5395 * Disable all of the transmit blocks.
5396 */
5397 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5398 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5399 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5400 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5401 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5402 if (BGE_IS_5700_FAMILY(sc))
5403 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5404 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5405
5406 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5407 delay(40);
5408
5409 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5410
5411 /*
5412 * Shut down all of the memory managers and related
5413 * state machines.
5414 */
5415 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5416 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5417 if (BGE_IS_5700_FAMILY(sc))
5418 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5419
5420 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5421 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5422
5423 if (BGE_IS_5700_FAMILY(sc)) {
5424 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5425 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5426 }
5427
5428 bge_reset(sc);
5429 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5430 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5431
5432 /*
5433 * Keep the ASF firmware running if up.
5434 */
5435 if (sc->bge_asf_mode & ASF_STACKUP)
5436 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5437 else
5438 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5439
5440 /* Free the RX lists. */
5441 bge_free_rx_ring_std(sc);
5442
5443 /* Free jumbo RX list. */
5444 if (BGE_IS_JUMBO_CAPABLE(sc))
5445 bge_free_rx_ring_jumbo(sc);
5446
5447 /* Free TX buffers. */
5448 bge_free_tx_ring(sc);
5449
5450 /*
5451 * Isolate/power down the PHY.
5452 */
5453 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5454 mii_down(&sc->bge_mii);
5455
5456 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5457
5458 /* Clear MAC's link state (PHY may still have link UP). */
5459 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5460
5461 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5462 }
5463
5464 static void
5465 bge_link_upd(struct bge_softc *sc)
5466 {
5467 struct ifnet *ifp = &sc->ethercom.ec_if;
5468 struct mii_data *mii = &sc->bge_mii;
5469 uint32_t status;
5470 int link;
5471
5472 /* Clear 'pending link event' flag */
5473 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5474
5475 /*
5476 * Process link state changes.
5477 * Grrr. The link status word in the status block does
5478 * not work correctly on the BCM5700 rev AX and BX chips,
5479 * according to all available information. Hence, we have
5480 * to enable MII interrupts in order to properly obtain
5481 * async link changes. Unfortunately, this also means that
5482 * we have to read the MAC status register to detect link
5483 * changes, thereby adding an additional register access to
5484 * the interrupt handler.
5485 */
5486
5487 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5488 status = CSR_READ_4(sc, BGE_MAC_STS);
5489 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5490 mii_pollstat(mii);
5491
5492 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5493 mii->mii_media_status & IFM_ACTIVE &&
5494 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5495 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5496 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5497 (!(mii->mii_media_status & IFM_ACTIVE) ||
5498 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5499 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5500
5501 /* Clear the interrupt */
5502 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5503 BGE_EVTENB_MI_INTERRUPT);
5504 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5505 BRGPHY_MII_ISR);
5506 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5507 BRGPHY_MII_IMR, BRGPHY_INTRS);
5508 }
5509 return;
5510 }
5511
5512 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5513 status = CSR_READ_4(sc, BGE_MAC_STS);
5514 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5515 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5516 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5517 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
5518 BGE_CLRBIT(sc, BGE_MAC_MODE,
5519 BGE_MACMODE_TBI_SEND_CFGS);
5520 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5521 if_link_state_change(ifp, LINK_STATE_UP);
5522 }
5523 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5524 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5525 if_link_state_change(ifp, LINK_STATE_DOWN);
5526 }
5527 /*
5528 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5529 * This should not happen since mii callouts are locked now, but
5530 * we keep this check for debug.
5531 */
5532 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5533 /*
5534 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5535 * bit in status word always set. Workaround this bug by
5536 * reading PHY link status directly.
5537 */
5538 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5539 BGE_STS_LINK : 0;
5540
5541 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5542 mii_pollstat(mii);
5543
5544 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5545 mii->mii_media_status & IFM_ACTIVE &&
5546 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5547 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5548 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5549 (!(mii->mii_media_status & IFM_ACTIVE) ||
5550 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5551 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5552 }
5553 }
5554
5555 /* Clear the attention */
5556 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5557 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5558 BGE_MACSTAT_LINK_CHANGED);
5559 }
5560
5561 static int
5562 bge_sysctl_verify(SYSCTLFN_ARGS)
5563 {
5564 int error, t;
5565 struct sysctlnode node;
5566
5567 node = *rnode;
5568 t = *(int*)rnode->sysctl_data;
5569 node.sysctl_data = &t;
5570 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5571 if (error || newp == NULL)
5572 return error;
5573
5574 #if 0
5575 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5576 node.sysctl_num, rnode->sysctl_num));
5577 #endif
5578
5579 if (node.sysctl_num == bge_rxthresh_nodenum) {
5580 if (t < 0 || t >= NBGE_RX_THRESH)
5581 return EINVAL;
5582 bge_update_all_threshes(t);
5583 } else
5584 return EINVAL;
5585
5586 *(int*)rnode->sysctl_data = t;
5587
5588 return 0;
5589 }
5590
5591 /*
5592 * Set up sysctl(3) MIB, hw.bge.*.
5593 */
5594 static void
5595 bge_sysctl_init(struct bge_softc *sc)
5596 {
5597 int rc, bge_root_num;
5598 const struct sysctlnode *node;
5599
5600 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5601 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5602 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5603 goto out;
5604 }
5605
5606 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5607 0, CTLTYPE_NODE, "bge",
5608 SYSCTL_DESCR("BGE interface controls"),
5609 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5610 goto out;
5611 }
5612
5613 bge_root_num = node->sysctl_num;
5614
5615 /* BGE Rx interrupt mitigation level */
5616 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5617 CTLFLAG_READWRITE,
5618 CTLTYPE_INT, "rx_lvl",
5619 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5620 bge_sysctl_verify, 0,
5621 &bge_rx_thresh_lvl,
5622 0, CTL_HW, bge_root_num, CTL_CREATE,
5623 CTL_EOL)) != 0) {
5624 goto out;
5625 }
5626
5627 bge_rxthresh_nodenum = node->sysctl_num;
5628
5629 return;
5630
5631 out:
5632 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5633 }
5634
5635 #ifdef BGE_DEBUG
5636 void
5637 bge_debug_info(struct bge_softc *sc)
5638 {
5639
5640 printf("Hardware Flags:\n");
5641 if (BGE_IS_57765_PLUS(sc))
5642 printf(" - 57765 Plus\n");
5643 if (BGE_IS_5717_PLUS(sc))
5644 printf(" - 5717 Plus\n");
5645 if (BGE_IS_5755_PLUS(sc))
5646 printf(" - 5755 Plus\n");
5647 if (BGE_IS_575X_PLUS(sc))
5648 printf(" - 575X Plus\n");
5649 if (BGE_IS_5705_PLUS(sc))
5650 printf(" - 5705 Plus\n");
5651 if (BGE_IS_5714_FAMILY(sc))
5652 printf(" - 5714 Family\n");
5653 if (BGE_IS_5700_FAMILY(sc))
5654 printf(" - 5700 Family\n");
5655 if (sc->bge_flags & BGE_IS_5788)
5656 printf(" - 5788\n");
5657 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5658 printf(" - Supports Jumbo Frames\n");
5659 if (sc->bge_flags & BGE_NO_EEPROM)
5660 printf(" - No EEPROM\n");
5661 if (sc->bge_flags & BGE_PCIX)
5662 printf(" - PCI-X Bus\n");
5663 if (sc->bge_flags & BGE_PCIE)
5664 printf(" - PCI Express Bus\n");
5665 if (sc->bge_flags & BGE_NO_3LED)
5666 printf(" - No 3 LEDs\n");
5667 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5668 printf(" - RX Alignment Bug\n");
5669 if (sc->bge_flags & BGE_APE)
5670 printf(" - APE\n");
5671 if (sc->bge_flags & BGE_CPMU_PRESENT)
5672 printf(" - CPMU\n");
5673 if (sc->bge_flags & BGE_TSO)
5674 printf(" - TSO\n");
5675 }
5676 #endif /* BGE_DEBUG */
5677
5678 static int
5679 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5680 {
5681 prop_dictionary_t dict;
5682 prop_data_t ea;
5683
5684 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5685 return 1;
5686
5687 dict = device_properties(sc->bge_dev);
5688 ea = prop_dictionary_get(dict, "mac-address");
5689 if (ea != NULL) {
5690 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5691 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5692 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5693 return 0;
5694 }
5695
5696 return 1;
5697 }
5698
5699 static int
5700 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5701 {
5702 uint32_t mac_addr;
5703
5704 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5705 if ((mac_addr >> 16) == 0x484b) {
5706 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5707 ether_addr[1] = (uint8_t)mac_addr;
5708 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5709 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5710 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5711 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5712 ether_addr[5] = (uint8_t)mac_addr;
5713 return 0;
5714 }
5715 return 1;
5716 }
5717
5718 static int
5719 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5720 {
5721 int mac_offset = BGE_EE_MAC_OFFSET;
5722
5723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5724 mac_offset = BGE_EE_MAC_OFFSET_5906;
5725
5726 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5727 ETHER_ADDR_LEN));
5728 }
5729
5730 static int
5731 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5732 {
5733
5734 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5735 return 1;
5736
5737 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5738 ETHER_ADDR_LEN));
5739 }
5740
5741 static int
5742 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5743 {
5744 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5745 /* NOTE: Order is critical */
5746 bge_get_eaddr_fw,
5747 bge_get_eaddr_mem,
5748 bge_get_eaddr_nvram,
5749 bge_get_eaddr_eeprom,
5750 NULL
5751 };
5752 const bge_eaddr_fcn_t *func;
5753
5754 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5755 if ((*func)(sc, eaddr) == 0)
5756 break;
5757 }
5758 return (*func == NULL ? ENXIO : 0);
5759 }
5760