if_bge.c revision 1.218 1 /* $NetBSD: if_bge.c,v 1.218 2013/03/19 02:56:16 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.218 2013/03/19 02:56:16 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
680 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
682
683 static const struct bge_revision {
684 uint32_t br_chipid;
685 const char *br_name;
686 } bge_revisions[] = {
687 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
688 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
689 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
690 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
691 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
692 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
693 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
694 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
695 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
696 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
697 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
698 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
699 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
700 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
701 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
702 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
703 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
704 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
705 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
706 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
707 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
708 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
709 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
710 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
711 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
712 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
713 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
714 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
715 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
716 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
717 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
718 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
719 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
720 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
721 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
722 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
723 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
724 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
725 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
726 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
727 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
728 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
729 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
730 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
731 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
732 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
733 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
734 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
735 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
736 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
737 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
738 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
739 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
740 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
741 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
742 /* 5754 and 5787 share the same ASIC ID */
743 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
744 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
745 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
746 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
747 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
748 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
749 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
750 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
751 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
752 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
753
754 { 0, NULL }
755 };
756
757 /*
758 * Some defaults for major revisions, so that newer steppings
759 * that we don't know about have a shot at working.
760 */
761 static const struct bge_revision bge_majorrevs[] = {
762 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
763 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
764 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
765 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
766 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
767 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
768 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
769 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
771 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
772 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
773 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
774 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
775 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
776 /* 5754 and 5787 share the same ASIC ID */
777 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
778 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
779 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
780 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
781 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
782 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
783 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
784 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
785
786 { 0, NULL }
787 };
788
789 static int bge_allow_asf = 1;
790
791 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
792 bge_probe, bge_attach, NULL, NULL);
793
794 static uint32_t
795 bge_readmem_ind(struct bge_softc *sc, int off)
796 {
797 pcireg_t val;
798
799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
800 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
801 return 0;
802
803 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
804 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
806 return val;
807 }
808
809 static void
810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
811 {
812
813 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
816 }
817
818 /*
819 * PCI Express only
820 */
821 static void
822 bge_set_max_readrq(struct bge_softc *sc)
823 {
824 pcireg_t val;
825
826 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
827 + PCI_PCIE_DCSR);
828 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
829 switch (sc->bge_expmrq) {
830 case 2048:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
832 break;
833 case 4096:
834 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
835 break;
836 default:
837 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
838 break;
839 }
840 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
841 + PCI_PCIE_DCSR, val);
842 }
843
844 #ifdef notdef
845 static uint32_t
846 bge_readreg_ind(struct bge_softc *sc, int off)
847 {
848 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
849 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
850 }
851 #endif
852
853 static void
854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
855 {
856 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
858 }
859
860 static void
861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
862 {
863 CSR_WRITE_4(sc, off, val);
864 }
865
866 static void
867 bge_writembx(struct bge_softc *sc, int off, int val)
868 {
869 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
870 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
871
872 CSR_WRITE_4(sc, off, val);
873 }
874
875 static void
876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
877 {
878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
879 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
880
881 CSR_WRITE_4_FLUSH(sc, off, val);
882 }
883
884 /*
885 * Clear all stale locks and select the lock for this driver instance.
886 */
887 void
888 bge_ape_lock_init(struct bge_softc *sc)
889 {
890 struct pci_attach_args *pa = &(sc->bge_pa);
891 uint32_t bit, regbase;
892 int i;
893
894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
895 regbase = BGE_APE_LOCK_GRANT;
896 else
897 regbase = BGE_APE_PER_LOCK_GRANT;
898
899 /* Clear any stale locks. */
900 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
901 switch (i) {
902 case BGE_APE_LOCK_PHY0:
903 case BGE_APE_LOCK_PHY1:
904 case BGE_APE_LOCK_PHY2:
905 case BGE_APE_LOCK_PHY3:
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 break;
908 default:
909 if (pa->pa_function != 0)
910 bit = BGE_APE_LOCK_GRANT_DRIVER0;
911 else
912 bit = (1 << pa->pa_function);
913 }
914 APE_WRITE_4(sc, regbase + 4 * i, bit);
915 }
916
917 /* Select the PHY lock based on the device's function number. */
918 switch (pa->pa_function) {
919 case 0:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
921 break;
922 case 1:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
924 break;
925 case 2:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
927 break;
928 case 3:
929 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
930 break;
931 default:
932 printf("%s: PHY lock not supported on function\n",
933 device_xname(sc->bge_dev));
934 break;
935 }
936 }
937
938 /*
939 * Check for APE firmware, set flags, and print version info.
940 */
941 void
942 bge_ape_read_fw_ver(struct bge_softc *sc)
943 {
944 const char *fwtype;
945 uint32_t apedata, features;
946
947 /* Check for a valid APE signature in shared memory. */
948 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
949 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
950 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
951 return;
952 }
953
954 /* Check if APE firmware is running. */
955 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
956 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
957 printf("%s: APE signature found but FW status not ready! "
958 "0x%08x\n", device_xname(sc->bge_dev), apedata);
959 return;
960 }
961
962 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
963
964 /* Fetch the APE firwmare type and version. */
965 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
966 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
967 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
969 fwtype = "NCSI";
970 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
971 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
972 fwtype = "DASH";
973 } else
974 fwtype = "UNKN";
975
976 /* Print the APE firmware version. */
977 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
978 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
979 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
980 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
981 (apedata & BGE_APE_FW_VERSION_BLDMSK));
982 }
983
984 int
985 bge_ape_lock(struct bge_softc *sc, int locknum)
986 {
987 struct pci_attach_args *pa = &(sc->bge_pa);
988 uint32_t bit, gnt, req, status;
989 int i, off;
990
991 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
992 return (0);
993
994 /* Lock request/grant registers have different bases. */
995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
996 req = BGE_APE_LOCK_REQ;
997 gnt = BGE_APE_LOCK_GRANT;
998 } else {
999 req = BGE_APE_PER_LOCK_REQ;
1000 gnt = BGE_APE_PER_LOCK_GRANT;
1001 }
1002
1003 off = 4 * locknum;
1004
1005 switch (locknum) {
1006 case BGE_APE_LOCK_GPIO:
1007 /* Lock required when using GPIO. */
1008 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1009 return (0);
1010 if (pa->pa_function == 0)
1011 bit = BGE_APE_LOCK_REQ_DRIVER0;
1012 else
1013 bit = (1 << pa->pa_function);
1014 break;
1015 case BGE_APE_LOCK_GRC:
1016 /* Lock required to reset the device. */
1017 if (pa->pa_function == 0)
1018 bit = BGE_APE_LOCK_REQ_DRIVER0;
1019 else
1020 bit = (1 << pa->pa_function);
1021 break;
1022 case BGE_APE_LOCK_MEM:
1023 /* Lock required when accessing certain APE memory. */
1024 if (pa->pa_function == 0)
1025 bit = BGE_APE_LOCK_REQ_DRIVER0;
1026 else
1027 bit = (1 << pa->pa_function);
1028 break;
1029 case BGE_APE_LOCK_PHY0:
1030 case BGE_APE_LOCK_PHY1:
1031 case BGE_APE_LOCK_PHY2:
1032 case BGE_APE_LOCK_PHY3:
1033 /* Lock required when accessing PHYs. */
1034 bit = BGE_APE_LOCK_REQ_DRIVER0;
1035 break;
1036 default:
1037 return (EINVAL);
1038 }
1039
1040 /* Request a lock. */
1041 APE_WRITE_4_FLUSH(sc, req + off, bit);
1042
1043 /* Wait up to 1 second to acquire lock. */
1044 for (i = 0; i < 20000; i++) {
1045 status = APE_READ_4(sc, gnt + off);
1046 if (status == bit)
1047 break;
1048 DELAY(50);
1049 }
1050
1051 /* Handle any errors. */
1052 if (status != bit) {
1053 printf("%s: APE lock %d request failed! "
1054 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1055 device_xname(sc->bge_dev),
1056 locknum, req + off, bit & 0xFFFF, gnt + off,
1057 status & 0xFFFF);
1058 /* Revoke the lock request. */
1059 APE_WRITE_4(sc, gnt + off, bit);
1060 return (EBUSY);
1061 }
1062
1063 return (0);
1064 }
1065
1066 void
1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
1068 {
1069 struct pci_attach_args *pa = &(sc->bge_pa);
1070 uint32_t bit, gnt;
1071 int off;
1072
1073 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1074 return;
1075
1076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1077 gnt = BGE_APE_LOCK_GRANT;
1078 else
1079 gnt = BGE_APE_PER_LOCK_GRANT;
1080
1081 off = 4 * locknum;
1082
1083 switch (locknum) {
1084 case BGE_APE_LOCK_GPIO:
1085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1086 return;
1087 if (pa->pa_function == 0)
1088 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1089 else
1090 bit = (1 << pa->pa_function);
1091 break;
1092 case BGE_APE_LOCK_GRC:
1093 if (pa->pa_function == 0)
1094 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1095 else
1096 bit = (1 << pa->pa_function);
1097 break;
1098 case BGE_APE_LOCK_MEM:
1099 if (pa->pa_function == 0)
1100 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1101 else
1102 bit = (1 << pa->pa_function);
1103 break;
1104 case BGE_APE_LOCK_PHY0:
1105 case BGE_APE_LOCK_PHY1:
1106 case BGE_APE_LOCK_PHY2:
1107 case BGE_APE_LOCK_PHY3:
1108 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1109 break;
1110 default:
1111 return;
1112 }
1113
1114 /* Write and flush for consecutive bge_ape_lock() */
1115 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1116 }
1117
1118 /*
1119 * Send an event to the APE firmware.
1120 */
1121 void
1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1123 {
1124 uint32_t apedata;
1125 int i;
1126
1127 /* NCSI does not support APE events. */
1128 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1129 return;
1130
1131 /* Wait up to 1ms for APE to service previous event. */
1132 for (i = 10; i > 0; i--) {
1133 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1134 break;
1135 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1136 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1137 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1138 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1141 break;
1142 }
1143 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1144 DELAY(100);
1145 }
1146 if (i == 0) {
1147 printf("%s: APE event 0x%08x send timed out\n",
1148 device_xname(sc->bge_dev), event);
1149 }
1150 }
1151
1152 void
1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1154 {
1155 uint32_t apedata, event;
1156
1157 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1158 return;
1159
1160 switch (kind) {
1161 case BGE_RESET_START:
1162 /* If this is the first load, clear the load counter. */
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1164 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1166 else {
1167 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1168 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1169 }
1170 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1171 BGE_APE_HOST_SEG_SIG_MAGIC);
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1173 BGE_APE_HOST_SEG_LEN_MAGIC);
1174
1175 /* Add some version info if bge(4) supports it. */
1176 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1177 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1178 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1179 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1180 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1181 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_START);
1184 event = BGE_APE_EVENT_STATUS_STATE_START;
1185 break;
1186 case BGE_RESET_SHUTDOWN:
1187 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1188 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1189 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1190 break;
1191 case BGE_RESET_SUSPEND:
1192 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1193 break;
1194 default:
1195 return;
1196 }
1197
1198 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1199 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1200 }
1201
1202 static uint8_t
1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1204 {
1205 uint32_t access, byte = 0;
1206 int i;
1207
1208 /* Lock. */
1209 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1210 for (i = 0; i < 8000; i++) {
1211 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1212 break;
1213 DELAY(20);
1214 }
1215 if (i == 8000)
1216 return 1;
1217
1218 /* Enable access. */
1219 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1220 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1221
1222 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1223 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1224 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1225 DELAY(10);
1226 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1227 DELAY(10);
1228 break;
1229 }
1230 }
1231
1232 if (i == BGE_TIMEOUT * 10) {
1233 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1234 return 1;
1235 }
1236
1237 /* Get result. */
1238 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1239
1240 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1241
1242 /* Disable access. */
1243 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1244
1245 /* Unlock. */
1246 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * Read a sequence of bytes from NVRAM.
1253 */
1254 static int
1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1256 {
1257 int error = 0, i;
1258 uint8_t byte = 0;
1259
1260 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1261 return 1;
1262
1263 for (i = 0; i < cnt; i++) {
1264 error = bge_nvram_getbyte(sc, off + i, &byte);
1265 if (error)
1266 break;
1267 *(dest + i) = byte;
1268 }
1269
1270 return (error ? 1 : 0);
1271 }
1272
1273 /*
1274 * Read a byte of data stored in the EEPROM at address 'addr.' The
1275 * BCM570x supports both the traditional bitbang interface and an
1276 * auto access interface for reading the EEPROM. We use the auto
1277 * access method.
1278 */
1279 static uint8_t
1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1281 {
1282 int i;
1283 uint32_t byte = 0;
1284
1285 /*
1286 * Enable use of auto EEPROM access so we can avoid
1287 * having to use the bitbang method.
1288 */
1289 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1290
1291 /* Reset the EEPROM, load the clock period. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR,
1293 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1294 DELAY(20);
1295
1296 /* Issue the read EEPROM command. */
1297 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1298
1299 /* Wait for completion */
1300 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1301 DELAY(10);
1302 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1303 break;
1304 }
1305
1306 if (i == BGE_TIMEOUT * 10) {
1307 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1308 return 1;
1309 }
1310
1311 /* Get result. */
1312 byte = CSR_READ_4(sc, BGE_EE_DATA);
1313
1314 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Read a sequence of bytes from the EEPROM.
1321 */
1322 static int
1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1324 {
1325 int error = 0, i;
1326 uint8_t byte = 0;
1327 char *dest = destv;
1328
1329 for (i = 0; i < cnt; i++) {
1330 error = bge_eeprom_getbyte(sc, off + i, &byte);
1331 if (error)
1332 break;
1333 *(dest + i) = byte;
1334 }
1335
1336 return (error ? 1 : 0);
1337 }
1338
1339 static int
1340 bge_miibus_readreg(device_t dev, int phy, int reg)
1341 {
1342 struct bge_softc *sc = device_private(dev);
1343 uint32_t val;
1344 uint32_t autopoll;
1345 int i;
1346
1347 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1348 return 0;
1349
1350 /* Reading with autopolling on may trigger PCI errors */
1351 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1352 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1353 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1354 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1355 DELAY(80);
1356 }
1357
1358 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1359 BGE_MIPHY(phy) | BGE_MIREG(reg));
1360
1361 for (i = 0; i < BGE_TIMEOUT; i++) {
1362 delay(10);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 if (!(val & BGE_MICOMM_BUSY)) {
1365 DELAY(5);
1366 val = CSR_READ_4(sc, BGE_MI_COMM);
1367 break;
1368 }
1369 }
1370
1371 if (i == BGE_TIMEOUT) {
1372 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1373 val = 0;
1374 goto done;
1375 }
1376
1377 done:
1378 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1379 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1380 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1381 DELAY(80);
1382 }
1383
1384 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1385
1386 if (val & BGE_MICOMM_READFAIL)
1387 return 0;
1388
1389 return (val & 0xFFFF);
1390 }
1391
1392 static void
1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1394 {
1395 struct bge_softc *sc = device_private(dev);
1396 uint32_t autopoll;
1397 int i;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1403 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1404 return;
1405
1406 /* Reading with autopolling on may trigger PCI errors */
1407 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1408 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1409 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1410 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1411 DELAY(80);
1412 }
1413
1414 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1415 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1416
1417 for (i = 0; i < BGE_TIMEOUT; i++) {
1418 delay(10);
1419 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1420 delay(5);
1421 CSR_READ_4(sc, BGE_MI_COMM);
1422 break;
1423 }
1424 }
1425
1426 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1427 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1428 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1429 delay(80);
1430 }
1431
1432 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1433
1434 if (i == BGE_TIMEOUT)
1435 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1436 }
1437
1438 static void
1439 bge_miibus_statchg(struct ifnet *ifp)
1440 {
1441 struct bge_softc *sc = ifp->if_softc;
1442 struct mii_data *mii = &sc->bge_mii;
1443 uint32_t mac_mode, rx_mode, tx_mode;
1444
1445 /*
1446 * Get flow control negotiation result.
1447 */
1448 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1449 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1450 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1451 mii->mii_media_active &= ~IFM_ETH_FMASK;
1452 }
1453
1454 /* Set the port mode (MII/GMII) to match the link speed. */
1455 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1456 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1457 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1458 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1459 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1460 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1461 mac_mode |= BGE_PORTMODE_GMII;
1462 else
1463 mac_mode |= BGE_PORTMODE_MII;
1464
1465 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1466 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1467 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1468 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1469 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1470 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1471 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1472 } else
1473 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1474
1475 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1476 DELAY(40);
1477 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1478 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1479 }
1480
1481 /*
1482 * Update rx threshold levels to values in a particular slot
1483 * of the interrupt-mitigation table bge_rx_threshes.
1484 */
1485 static void
1486 bge_set_thresh(struct ifnet *ifp, int lvl)
1487 {
1488 struct bge_softc *sc = ifp->if_softc;
1489 int s;
1490
1491 /* For now, just save the new Rx-intr thresholds and record
1492 * that a threshold update is pending. Updating the hardware
1493 * registers here (even at splhigh()) is observed to
1494 * occasionaly cause glitches where Rx-interrupts are not
1495 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1496 */
1497 s = splnet();
1498 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1499 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1500 sc->bge_pending_rxintr_change = 1;
1501 splx(s);
1502 }
1503
1504
1505 /*
1506 * Update Rx thresholds of all bge devices
1507 */
1508 static void
1509 bge_update_all_threshes(int lvl)
1510 {
1511 struct ifnet *ifp;
1512 const char * const namebuf = "bge";
1513 int namelen;
1514
1515 if (lvl < 0)
1516 lvl = 0;
1517 else if (lvl >= NBGE_RX_THRESH)
1518 lvl = NBGE_RX_THRESH - 1;
1519
1520 namelen = strlen(namebuf);
1521 /*
1522 * Now search all the interfaces for this name/number
1523 */
1524 IFNET_FOREACH(ifp) {
1525 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1526 continue;
1527 /* We got a match: update if doing auto-threshold-tuning */
1528 if (bge_auto_thresh)
1529 bge_set_thresh(ifp, lvl);
1530 }
1531 }
1532
1533 /*
1534 * Handle events that have triggered interrupts.
1535 */
1536 static void
1537 bge_handle_events(struct bge_softc *sc)
1538 {
1539
1540 return;
1541 }
1542
1543 /*
1544 * Memory management for jumbo frames.
1545 */
1546
1547 static int
1548 bge_alloc_jumbo_mem(struct bge_softc *sc)
1549 {
1550 char *ptr, *kva;
1551 bus_dma_segment_t seg;
1552 int i, rseg, state, error;
1553 struct bge_jpool_entry *entry;
1554
1555 state = error = 0;
1556
1557 /* Grab a big chunk o' storage. */
1558 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1560 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1561 return ENOBUFS;
1562 }
1563
1564 state = 1;
1565 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1566 BUS_DMA_NOWAIT)) {
1567 aprint_error_dev(sc->bge_dev,
1568 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1569 error = ENOBUFS;
1570 goto out;
1571 }
1572
1573 state = 2;
1574 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1575 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1576 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1577 error = ENOBUFS;
1578 goto out;
1579 }
1580
1581 state = 3;
1582 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1583 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1584 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1585 error = ENOBUFS;
1586 goto out;
1587 }
1588
1589 state = 4;
1590 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1591 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1592
1593 SLIST_INIT(&sc->bge_jfree_listhead);
1594 SLIST_INIT(&sc->bge_jinuse_listhead);
1595
1596 /*
1597 * Now divide it up into 9K pieces and save the addresses
1598 * in an array.
1599 */
1600 ptr = sc->bge_cdata.bge_jumbo_buf;
1601 for (i = 0; i < BGE_JSLOTS; i++) {
1602 sc->bge_cdata.bge_jslots[i] = ptr;
1603 ptr += BGE_JLEN;
1604 entry = malloc(sizeof(struct bge_jpool_entry),
1605 M_DEVBUF, M_NOWAIT);
1606 if (entry == NULL) {
1607 aprint_error_dev(sc->bge_dev,
1608 "no memory for jumbo buffer queue!\n");
1609 error = ENOBUFS;
1610 goto out;
1611 }
1612 entry->slot = i;
1613 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1614 entry, jpool_entries);
1615 }
1616 out:
1617 if (error != 0) {
1618 switch (state) {
1619 case 4:
1620 bus_dmamap_unload(sc->bge_dmatag,
1621 sc->bge_cdata.bge_rx_jumbo_map);
1622 case 3:
1623 bus_dmamap_destroy(sc->bge_dmatag,
1624 sc->bge_cdata.bge_rx_jumbo_map);
1625 case 2:
1626 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1627 case 1:
1628 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1629 break;
1630 default:
1631 break;
1632 }
1633 }
1634
1635 return error;
1636 }
1637
1638 /*
1639 * Allocate a jumbo buffer.
1640 */
1641 static void *
1642 bge_jalloc(struct bge_softc *sc)
1643 {
1644 struct bge_jpool_entry *entry;
1645
1646 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1647
1648 if (entry == NULL) {
1649 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1650 return NULL;
1651 }
1652
1653 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1654 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1655 return (sc->bge_cdata.bge_jslots[entry->slot]);
1656 }
1657
1658 /*
1659 * Release a jumbo buffer.
1660 */
1661 static void
1662 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1663 {
1664 struct bge_jpool_entry *entry;
1665 struct bge_softc *sc;
1666 int i, s;
1667
1668 /* Extract the softc struct pointer. */
1669 sc = (struct bge_softc *)arg;
1670
1671 if (sc == NULL)
1672 panic("bge_jfree: can't find softc pointer!");
1673
1674 /* calculate the slot this buffer belongs to */
1675
1676 i = ((char *)buf
1677 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1678
1679 if ((i < 0) || (i >= BGE_JSLOTS))
1680 panic("bge_jfree: asked to free buffer that we don't manage!");
1681
1682 s = splvm();
1683 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1684 if (entry == NULL)
1685 panic("bge_jfree: buffer not in use!");
1686 entry->slot = i;
1687 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1688 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1689
1690 if (__predict_true(m != NULL))
1691 pool_cache_put(mb_cache, m);
1692 splx(s);
1693 }
1694
1695
1696 /*
1697 * Initialize a standard receive ring descriptor.
1698 */
1699 static int
1700 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1701 bus_dmamap_t dmamap)
1702 {
1703 struct mbuf *m_new = NULL;
1704 struct bge_rx_bd *r;
1705 int error;
1706
1707 if (dmamap == NULL) {
1708 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1709 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1710 if (error != 0)
1711 return error;
1712 }
1713
1714 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1715
1716 if (m == NULL) {
1717 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1718 if (m_new == NULL)
1719 return ENOBUFS;
1720
1721 MCLGET(m_new, M_DONTWAIT);
1722 if (!(m_new->m_flags & M_EXT)) {
1723 m_freem(m_new);
1724 return ENOBUFS;
1725 }
1726 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1727
1728 } else {
1729 m_new = m;
1730 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1731 m_new->m_data = m_new->m_ext.ext_buf;
1732 }
1733 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1734 m_adj(m_new, ETHER_ALIGN);
1735 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1736 BUS_DMA_READ|BUS_DMA_NOWAIT))
1737 return ENOBUFS;
1738 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1739 BUS_DMASYNC_PREREAD);
1740
1741 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1742 r = &sc->bge_rdata->bge_rx_std_ring[i];
1743 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1744 r->bge_flags = BGE_RXBDFLAG_END;
1745 r->bge_len = m_new->m_len;
1746 r->bge_idx = i;
1747
1748 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1749 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1750 i * sizeof (struct bge_rx_bd),
1751 sizeof (struct bge_rx_bd),
1752 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1753
1754 return 0;
1755 }
1756
1757 /*
1758 * Initialize a jumbo receive ring descriptor. This allocates
1759 * a jumbo buffer from the pool managed internally by the driver.
1760 */
1761 static int
1762 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1763 {
1764 struct mbuf *m_new = NULL;
1765 struct bge_rx_bd *r;
1766 void *buf = NULL;
1767
1768 if (m == NULL) {
1769
1770 /* Allocate the mbuf. */
1771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1772 if (m_new == NULL)
1773 return ENOBUFS;
1774
1775 /* Allocate the jumbo buffer */
1776 buf = bge_jalloc(sc);
1777 if (buf == NULL) {
1778 m_freem(m_new);
1779 aprint_error_dev(sc->bge_dev,
1780 "jumbo allocation failed -- packet dropped!\n");
1781 return ENOBUFS;
1782 }
1783
1784 /* Attach the buffer to the mbuf. */
1785 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1786 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1787 bge_jfree, sc);
1788 m_new->m_flags |= M_EXT_RW;
1789 } else {
1790 m_new = m;
1791 buf = m_new->m_data = m_new->m_ext.ext_buf;
1792 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1793 }
1794 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1795 m_adj(m_new, ETHER_ALIGN);
1796 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1797 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1798 BUS_DMASYNC_PREREAD);
1799 /* Set up the descriptor. */
1800 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1801 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1802 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1803 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1804 r->bge_len = m_new->m_len;
1805 r->bge_idx = i;
1806
1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1808 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1809 i * sizeof (struct bge_rx_bd),
1810 sizeof (struct bge_rx_bd),
1811 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1818 * that's 1MB or memory, which is a lot. For now, we fill only the first
1819 * 256 ring entries and hope that our CPU is fast enough to keep up with
1820 * the NIC.
1821 */
1822 static int
1823 bge_init_rx_ring_std(struct bge_softc *sc)
1824 {
1825 int i;
1826
1827 if (sc->bge_flags & BGE_RXRING_VALID)
1828 return 0;
1829
1830 for (i = 0; i < BGE_SSLOTS; i++) {
1831 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1832 return ENOBUFS;
1833 }
1834
1835 sc->bge_std = i - 1;
1836 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1837
1838 sc->bge_flags |= BGE_RXRING_VALID;
1839
1840 return 0;
1841 }
1842
1843 static void
1844 bge_free_rx_ring_std(struct bge_softc *sc)
1845 {
1846 int i;
1847
1848 if (!(sc->bge_flags & BGE_RXRING_VALID))
1849 return;
1850
1851 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1852 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1853 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1854 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1855 bus_dmamap_destroy(sc->bge_dmatag,
1856 sc->bge_cdata.bge_rx_std_map[i]);
1857 }
1858 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1859 sizeof(struct bge_rx_bd));
1860 }
1861
1862 sc->bge_flags &= ~BGE_RXRING_VALID;
1863 }
1864
1865 static int
1866 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1867 {
1868 int i;
1869 volatile struct bge_rcb *rcb;
1870
1871 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1872 return 0;
1873
1874 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1875 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1876 return ENOBUFS;
1877 }
1878
1879 sc->bge_jumbo = i - 1;
1880 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1881
1882 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1883 rcb->bge_maxlen_flags = 0;
1884 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1885
1886 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1887
1888 return 0;
1889 }
1890
1891 static void
1892 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1893 {
1894 int i;
1895
1896 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1897 return;
1898
1899 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1900 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1901 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1902 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1903 }
1904 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1905 sizeof(struct bge_rx_bd));
1906 }
1907
1908 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1909 }
1910
1911 static void
1912 bge_free_tx_ring(struct bge_softc *sc)
1913 {
1914 int i;
1915 struct txdmamap_pool_entry *dma;
1916
1917 if (!(sc->bge_flags & BGE_TXRING_VALID))
1918 return;
1919
1920 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1921 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1922 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1923 sc->bge_cdata.bge_tx_chain[i] = NULL;
1924 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1925 link);
1926 sc->txdma[i] = 0;
1927 }
1928 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1929 sizeof(struct bge_tx_bd));
1930 }
1931
1932 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1933 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1934 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1935 free(dma, M_DEVBUF);
1936 }
1937
1938 sc->bge_flags &= ~BGE_TXRING_VALID;
1939 }
1940
1941 static int
1942 bge_init_tx_ring(struct bge_softc *sc)
1943 {
1944 int i;
1945 bus_dmamap_t dmamap;
1946 struct txdmamap_pool_entry *dma;
1947
1948 if (sc->bge_flags & BGE_TXRING_VALID)
1949 return 0;
1950
1951 sc->bge_txcnt = 0;
1952 sc->bge_tx_saved_considx = 0;
1953
1954 /* Initialize transmit producer index for host-memory send ring. */
1955 sc->bge_tx_prodidx = 0;
1956 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1957 /* 5700 b2 errata */
1958 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1959 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1960
1961 /* NIC-memory send ring not used; initialize to zero. */
1962 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1963 /* 5700 b2 errata */
1964 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1965 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1966
1967 SLIST_INIT(&sc->txdma_list);
1968 for (i = 0; i < BGE_RSLOTS; i++) {
1969 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1970 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1971 &dmamap))
1972 return ENOBUFS;
1973 if (dmamap == NULL)
1974 panic("dmamap NULL in bge_init_tx_ring");
1975 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1976 if (dma == NULL) {
1977 aprint_error_dev(sc->bge_dev,
1978 "can't alloc txdmamap_pool_entry\n");
1979 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1980 return ENOMEM;
1981 }
1982 dma->dmamap = dmamap;
1983 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1984 }
1985
1986 sc->bge_flags |= BGE_TXRING_VALID;
1987
1988 return 0;
1989 }
1990
1991 static void
1992 bge_setmulti(struct bge_softc *sc)
1993 {
1994 struct ethercom *ac = &sc->ethercom;
1995 struct ifnet *ifp = &ac->ec_if;
1996 struct ether_multi *enm;
1997 struct ether_multistep step;
1998 uint32_t hashes[4] = { 0, 0, 0, 0 };
1999 uint32_t h;
2000 int i;
2001
2002 if (ifp->if_flags & IFF_PROMISC)
2003 goto allmulti;
2004
2005 /* Now program new ones. */
2006 ETHER_FIRST_MULTI(step, ac, enm);
2007 while (enm != NULL) {
2008 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2009 /*
2010 * We must listen to a range of multicast addresses.
2011 * For now, just accept all multicasts, rather than
2012 * trying to set only those filter bits needed to match
2013 * the range. (At this time, the only use of address
2014 * ranges is for IP multicast routing, for which the
2015 * range is big enough to require all bits set.)
2016 */
2017 goto allmulti;
2018 }
2019
2020 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2021
2022 /* Just want the 7 least-significant bits. */
2023 h &= 0x7f;
2024
2025 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2026 ETHER_NEXT_MULTI(step, enm);
2027 }
2028
2029 ifp->if_flags &= ~IFF_ALLMULTI;
2030 goto setit;
2031
2032 allmulti:
2033 ifp->if_flags |= IFF_ALLMULTI;
2034 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2035
2036 setit:
2037 for (i = 0; i < 4; i++)
2038 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2039 }
2040
2041 static void
2042 bge_sig_pre_reset(struct bge_softc *sc, int type)
2043 {
2044
2045 /*
2046 * Some chips don't like this so only do this if ASF is enabled
2047 */
2048 if (sc->bge_asf_mode)
2049 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2050
2051 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2052 switch (type) {
2053 case BGE_RESET_START:
2054 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2055 BGE_FW_DRV_STATE_START);
2056 break;
2057 case BGE_RESET_SHUTDOWN:
2058 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2059 BGE_FW_DRV_STATE_UNLOAD);
2060 break;
2061 case BGE_RESET_SUSPEND:
2062 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2063 BGE_FW_DRV_STATE_SUSPEND);
2064 break;
2065 }
2066 }
2067
2068 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2069 bge_ape_driver_state_change(sc, type);
2070 }
2071
2072 static void
2073 bge_sig_post_reset(struct bge_softc *sc, int type)
2074 {
2075
2076 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2077 switch (type) {
2078 case BGE_RESET_START:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_START_DONE);
2081 /* START DONE */
2082 break;
2083 case BGE_RESET_SHUTDOWN:
2084 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2085 BGE_FW_DRV_STATE_UNLOAD_DONE);
2086 break;
2087 }
2088 }
2089
2090 if (type == BGE_RESET_SHUTDOWN)
2091 bge_ape_driver_state_change(sc, type);
2092 }
2093
2094 static void
2095 bge_sig_legacy(struct bge_softc *sc, int type)
2096 {
2097
2098 if (sc->bge_asf_mode) {
2099 switch (type) {
2100 case BGE_RESET_START:
2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 BGE_FW_DRV_STATE_START);
2103 break;
2104 case BGE_RESET_SHUTDOWN:
2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 BGE_FW_DRV_STATE_UNLOAD);
2107 break;
2108 }
2109 }
2110 }
2111
2112 static void
2113 bge_wait_for_event_ack(struct bge_softc *sc)
2114 {
2115 int i;
2116
2117 /* wait up to 2500usec */
2118 for (i = 0; i < 250; i++) {
2119 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2120 BGE_RX_CPU_DRV_EVENT))
2121 break;
2122 DELAY(10);
2123 }
2124 }
2125
2126 static void
2127 bge_stop_fw(struct bge_softc *sc)
2128 {
2129
2130 if (sc->bge_asf_mode) {
2131 bge_wait_for_event_ack(sc);
2132
2133 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2134 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2135 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2136
2137 bge_wait_for_event_ack(sc);
2138 }
2139 }
2140
2141 static int
2142 bge_poll_fw(struct bge_softc *sc)
2143 {
2144 uint32_t val;
2145 int i;
2146
2147 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2148 for (i = 0; i < BGE_TIMEOUT; i++) {
2149 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2150 if (val & BGE_VCPU_STATUS_INIT_DONE)
2151 break;
2152 DELAY(100);
2153 }
2154 if (i >= BGE_TIMEOUT) {
2155 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2156 return -1;
2157 }
2158 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2159 /*
2160 * Poll the value location we just wrote until
2161 * we see the 1's complement of the magic number.
2162 * This indicates that the firmware initialization
2163 * is complete.
2164 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2165 */
2166 for (i = 0; i < BGE_TIMEOUT; i++) {
2167 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2168 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2169 break;
2170 DELAY(10);
2171 }
2172
2173 if (i >= BGE_TIMEOUT) {
2174 aprint_error_dev(sc->bge_dev,
2175 "firmware handshake timed out, val = %x\n", val);
2176 return -1;
2177 }
2178 }
2179
2180 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2181 /* tg3 says we have to wait extra time */
2182 delay(10 * 1000);
2183 }
2184
2185 return 0;
2186 }
2187
2188 int
2189 bge_phy_addr(struct bge_softc *sc)
2190 {
2191 struct pci_attach_args *pa = &(sc->bge_pa);
2192 int phy_addr = 1;
2193
2194 /*
2195 * PHY address mapping for various devices.
2196 *
2197 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2198 * ---------+-------+-------+-------+-------+
2199 * BCM57XX | 1 | X | X | X |
2200 * BCM5704 | 1 | X | 1 | X |
2201 * BCM5717 | 1 | 8 | 2 | 9 |
2202 * BCM5719 | 1 | 8 | 2 | 9 |
2203 * BCM5720 | 1 | 8 | 2 | 9 |
2204 *
2205 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2206 * ---------+-------+-------+-------+-------+
2207 * BCM57XX | X | X | X | X |
2208 * BCM5704 | X | X | X | X |
2209 * BCM5717 | X | X | X | X |
2210 * BCM5719 | 3 | 10 | 4 | 11 |
2211 * BCM5720 | X | X | X | X |
2212 *
2213 * Other addresses may respond but they are not
2214 * IEEE compliant PHYs and should be ignored.
2215 */
2216 switch (BGE_ASICREV(sc->bge_chipid)) {
2217 case BGE_ASICREV_BCM5717:
2218 case BGE_ASICREV_BCM5719:
2219 case BGE_ASICREV_BCM5720:
2220 phy_addr = pa->pa_function;
2221 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2222 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2223 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2224 } else {
2225 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2226 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2227 }
2228 }
2229
2230 return phy_addr;
2231 }
2232
2233 /*
2234 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2235 * self-test results.
2236 */
2237 static int
2238 bge_chipinit(struct bge_softc *sc)
2239 {
2240 uint32_t dma_rw_ctl, mode_ctl, reg;
2241 int i;
2242
2243 /* Set endianness before we access any non-PCI registers. */
2244 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2245 BGE_INIT);
2246
2247 /*
2248 * Clear the MAC statistics block in the NIC's
2249 * internal memory.
2250 */
2251 for (i = BGE_STATS_BLOCK;
2252 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2253 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2254
2255 for (i = BGE_STATUS_BLOCK;
2256 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2257 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2258
2259 /* 5717 workaround from tg3 */
2260 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2261 /* Save */
2262 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2263
2264 /* Temporary modify MODE_CTL to control TLP */
2265 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2266 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2267
2268 /* Control TLP */
2269 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2270 BGE_TLP_PHYCTL1);
2271 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2272 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2273
2274 /* Restore */
2275 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276 }
2277
2278 /* XXX Should we use 57765_FAMILY? */
2279 if (BGE_IS_57765_PLUS(sc)) {
2280 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2281 /* Save */
2282 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2283
2284 /* Temporary modify MODE_CTL to control TLP */
2285 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2286 CSR_WRITE_4(sc, BGE_MODE_CTL,
2287 reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL5);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2293 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2299 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2300 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2301 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2302
2303 /* Save */
2304 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305
2306 /* Temporary modify MODE_CTL to control TLP */
2307 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 reg | BGE_MODECTL_PCIE_TLPADDR0);
2310
2311 /* Control TLP */
2312 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 BGE_TLP_FTSMAX);
2314 reg &= ~BGE_TLP_FTSMAX_MSK;
2315 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2316 reg | BGE_TLP_FTSMAX_VAL);
2317
2318 /* Restore */
2319 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2320 }
2321
2322 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2323 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2324 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2325 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2326 }
2327
2328 /* Set up the PCI DMA control register. */
2329 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2330 if (sc->bge_flags & BGE_PCIE) {
2331 /* Read watermark not used, 128 bytes for write. */
2332 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2333 device_xname(sc->bge_dev)));
2334 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2335 } else if (sc->bge_flags & BGE_PCIX) {
2336 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2337 device_xname(sc->bge_dev)));
2338 /* PCI-X bus */
2339 if (BGE_IS_5714_FAMILY(sc)) {
2340 /* 256 bytes for read and write. */
2341 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2342 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2343
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2345 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2346 else
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2348 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2349 /* 1536 bytes for read, 384 bytes for write. */
2350 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2351 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2352 } else {
2353 /* 384 bytes for read and write. */
2354 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2355 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2356 (0x0F);
2357 }
2358
2359 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2360 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2361 uint32_t tmp;
2362
2363 /* Set ONEDMA_ATONCE for hardware workaround. */
2364 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2365 BGE_PCI_CLKCTL) & 0x1f;
2366 if (tmp == 6 || tmp == 7)
2367 dma_rw_ctl |=
2368 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369
2370 /* Set PCI-X DMA write workaround. */
2371 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2372 }
2373 } else {
2374 /* Conventional PCI bus: 256 bytes for read and write. */
2375 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2376 device_xname(sc->bge_dev)));
2377 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2378 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2379
2380 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2381 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2382 dma_rw_ctl |= 0x0F;
2383 }
2384
2385 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2386 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2387 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2388 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2389
2390 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2391 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2392 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2393
2394 if (BGE_IS_5717_PLUS(sc)) {
2395 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2396 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2397 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2398
2399 /*
2400 * Enable HW workaround for controllers that misinterpret
2401 * a status tag update and leave interrupts permanently
2402 * disabled.
2403 */
2404 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2405 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2406 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2407 }
2408
2409 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2410 dma_rw_ctl);
2411
2412 /*
2413 * Set up general mode register.
2414 */
2415 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2417 /* Retain Host-2-BMC settings written by APE firmware. */
2418 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2419 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2420 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2421 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2422 }
2423 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2424 BGE_MODECTL_TX_NO_PHDR_CSUM;
2425
2426 /*
2427 * BCM5701 B5 have a bug causing data corruption when using
2428 * 64-bit DMA reads, which can be terminated early and then
2429 * completed later as 32-bit accesses, in combination with
2430 * certain bridges.
2431 */
2432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2433 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2434 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2435
2436 /*
2437 * Tell the firmware the driver is running
2438 */
2439 if (sc->bge_asf_mode & ASF_STACKUP)
2440 mode_ctl |= BGE_MODECTL_STACKUP;
2441
2442 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2443
2444 /*
2445 * Disable memory write invalidate. Apparently it is not supported
2446 * properly by these devices.
2447 */
2448 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2449 PCI_COMMAND_INVALIDATE_ENABLE);
2450
2451 #ifdef __brokenalpha__
2452 /*
2453 * Must insure that we do not cross an 8K (bytes) boundary
2454 * for DMA reads. Our highest limit is 1K bytes. This is a
2455 * restriction on some ALPHA platforms with early revision
2456 * 21174 PCI chipsets, such as the AlphaPC 164lx
2457 */
2458 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2459 #endif
2460
2461 /* Set the timer prescaler (always 66MHz) */
2462 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2463
2464 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2465 DELAY(40); /* XXX */
2466
2467 /* Put PHY into ready state */
2468 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2469 DELAY(40);
2470 }
2471
2472 return 0;
2473 }
2474
2475 static int
2476 bge_blockinit(struct bge_softc *sc)
2477 {
2478 volatile struct bge_rcb *rcb;
2479 bus_size_t rcb_addr;
2480 int i;
2481 struct ifnet *ifp = &sc->ethercom.ec_if;
2482 bge_hostaddr taddr;
2483 uint32_t dmactl, val;
2484
2485 /*
2486 * Initialize the memory window pointer register so that
2487 * we can access the first 32K of internal NIC RAM. This will
2488 * allow us to set up the TX send ring RCBs and the RX return
2489 * ring RCBs, plus other things which live in NIC memory.
2490 */
2491 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2492
2493 /* Step 33: Configure mbuf memory pool */
2494 if (!BGE_IS_5705_PLUS(sc)) {
2495 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2496 BGE_BUFFPOOL_1);
2497
2498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2499 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2500 else
2501 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2502
2503 /* Configure DMA resource pool */
2504 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2505 BGE_DMA_DESCRIPTORS);
2506 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2507 }
2508
2509 /* Step 35: Configure mbuf pool watermarks */
2510 #ifdef ORIG_WPAUL_VALUES
2511 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
2512 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
2514 #else
2515
2516 /* new broadcom docs strongly recommend these: */
2517 if (BGE_IS_5717_PLUS(sc)) {
2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2519 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2521 } else if (BGE_IS_5705_PLUS(sc)) {
2522 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2523
2524 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2525 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2526 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2527 } else {
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 }
2531 } else {
2532 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2534 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2535 }
2536 #endif
2537
2538 /* Step 36: Configure DMA resource watermarks */
2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2540 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2541
2542 /* Step 38: Enable buffer manager */
2543 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2544 /*
2545 * Change the arbitration algorithm of TXMBUF read request to
2546 * round-robin instead of priority based for BCM5719. When
2547 * TXFIFO is almost empty, RDMA will hold its request until
2548 * TXFIFO is not almost empty.
2549 */
2550 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2551 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2552 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2553 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2554 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2555 val |= BGE_BMANMODE_LOMBUF_ATTN;
2556 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2557
2558 /* Step 39: Poll for buffer manager start indication */
2559 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2560 DELAY(10);
2561 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2562 break;
2563 }
2564
2565 if (i == BGE_TIMEOUT * 2) {
2566 aprint_error_dev(sc->bge_dev,
2567 "buffer manager failed to start\n");
2568 return ENXIO;
2569 }
2570
2571 /* Step 40: Enable flow-through queues */
2572 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2573 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2574
2575 /* Wait until queue initialization is complete */
2576 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2577 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2578 break;
2579 DELAY(10);
2580 }
2581
2582 if (i == BGE_TIMEOUT * 2) {
2583 aprint_error_dev(sc->bge_dev,
2584 "flow-through queue init failed\n");
2585 return ENXIO;
2586 }
2587
2588 /* Step 41: Initialize the standard RX ring control block */
2589 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2590 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2591 if (BGE_IS_5717_PLUS(sc))
2592 rcb->bge_maxlen_flags =
2593 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2594 else if (BGE_IS_5705_PLUS(sc))
2595 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2596 else
2597 rcb->bge_maxlen_flags =
2598 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2599 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2601 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2602 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2603 else
2604 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2605 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2606 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2607 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2608 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2609
2610 /*
2611 * Step 42: Initialize the jumbo RX ring control block
2612 * We set the 'ring disabled' bit in the flags
2613 * field until we're actually ready to start
2614 * using this ring (i.e. once we set the MTU
2615 * high enough to require it).
2616 */
2617 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2618 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2619 BGE_HOSTADDR(rcb->bge_hostaddr,
2620 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2621 rcb->bge_maxlen_flags =
2622 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2623 BGE_RCB_FLAG_RING_DISABLED);
2624 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2625 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2626 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2627 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2628 else
2629 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2630 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2631 rcb->bge_hostaddr.bge_addr_hi);
2632 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2633 rcb->bge_hostaddr.bge_addr_lo);
2634 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2635 rcb->bge_maxlen_flags);
2636 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2637 /* Reset the jumbo receive producer ring producer index. */
2638 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2639 }
2640
2641 /* Disable the mini receive producer ring RCB. */
2642 if (BGE_IS_5700_FAMILY(sc)) {
2643 /* Set up dummy disabled mini ring RCB */
2644 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2645 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2646 BGE_RCB_FLAG_RING_DISABLED);
2647 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2648 rcb->bge_maxlen_flags);
2649 /* Reset the mini receive producer ring producer index. */
2650 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2651
2652 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2653 offsetof(struct bge_ring_data, bge_info),
2654 sizeof (struct bge_gib),
2655 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2656 }
2657
2658 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2659 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2660 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2661 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2662 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2663 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2664 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2665 }
2666 /*
2667 * Set the BD ring replenish thresholds. The recommended
2668 * values are 1/8th the number of descriptors allocated to
2669 * each ring.
2670 */
2671 i = BGE_STD_RX_RING_CNT / 8;
2672
2673 /*
2674 * Use a value of 8 for the following chips to workaround HW errata.
2675 * Some of these chips have been added based on empirical
2676 * evidence (they don't work unless this is done).
2677 */
2678 if (BGE_IS_5705_PLUS(sc))
2679 i = 8;
2680
2681 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2682 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2683
2684 if (BGE_IS_5717_PLUS(sc)) {
2685 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2686 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2687 }
2688
2689 /*
2690 * Disable all unused send rings by setting the 'ring disabled'
2691 * bit in the flags field of all the TX send ring control blocks.
2692 * These are located in NIC memory.
2693 */
2694 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2695 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2696 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2697 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2698 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2699 rcb_addr += sizeof(struct bge_rcb);
2700 }
2701
2702 /* Configure TX RCB 0 (we use only the first ring) */
2703 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2704 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2705 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2706 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2707 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2708 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2709 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2710 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2711 else
2712 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2713 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2714 if (BGE_IS_5700_FAMILY(sc))
2715 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2716 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2717
2718 /* Disable all unused RX return rings */
2719 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2720 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2721 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2722 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2723 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2724 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2725 BGE_RCB_FLAG_RING_DISABLED));
2726 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2727 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2728 (i * (sizeof(uint64_t))), 0);
2729 rcb_addr += sizeof(struct bge_rcb);
2730 }
2731
2732 /*
2733 * Set up RX return ring 0
2734 * Note that the NIC address for RX return rings is 0x00000000.
2735 * The return rings live entirely within the host, so the
2736 * nicaddr field in the RCB isn't used.
2737 */
2738 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2739 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2740 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2741 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2742 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2743 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2744 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2745
2746 /* Set random backoff seed for TX */
2747 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2748 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2749 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2750 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2751 BGE_TX_BACKOFF_SEED_MASK);
2752
2753 /* Set inter-packet gap */
2754 val = 0x2620;
2755 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2756 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2757 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2758 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2759
2760 /*
2761 * Specify which ring to use for packets that don't match
2762 * any RX rules.
2763 */
2764 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2765
2766 /*
2767 * Configure number of RX lists. One interrupt distribution
2768 * list, sixteen active lists, one bad frames class.
2769 */
2770 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2771
2772 /* Inialize RX list placement stats mask. */
2773 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2774 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2775
2776 /* Disable host coalescing until we get it set up */
2777 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2778
2779 /* Poll to make sure it's shut down. */
2780 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2781 DELAY(10);
2782 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2783 break;
2784 }
2785
2786 if (i == BGE_TIMEOUT * 2) {
2787 aprint_error_dev(sc->bge_dev,
2788 "host coalescing engine failed to idle\n");
2789 return ENXIO;
2790 }
2791
2792 /* Set up host coalescing defaults */
2793 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2794 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2795 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2796 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2797 if (!(BGE_IS_5705_PLUS(sc))) {
2798 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2799 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2800 }
2801 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2802 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2803
2804 /* Set up address of statistics block */
2805 if (BGE_IS_5700_FAMILY(sc)) {
2806 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2807 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2808 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2809 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2810 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2811 }
2812
2813 /* Set up address of status block */
2814 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2815 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2816 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2817 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2818 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2819 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2820
2821 /* Set up status block size. */
2822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2823 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2824 val = BGE_STATBLKSZ_FULL;
2825 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2826 } else {
2827 val = BGE_STATBLKSZ_32BYTE;
2828 bzero(&sc->bge_rdata->bge_status_block, 32);
2829 }
2830
2831 /* Turn on host coalescing state machine */
2832 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2833
2834 /* Turn on RX BD completion state machine and enable attentions */
2835 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2836 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2837
2838 /* Turn on RX list placement state machine */
2839 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2840
2841 /* Turn on RX list selector state machine. */
2842 if (!(BGE_IS_5705_PLUS(sc)))
2843 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2844
2845 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2846 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2847 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2848 BGE_MACMODE_FRMHDR_DMA_ENB;
2849
2850 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2851 val |= BGE_PORTMODE_TBI;
2852 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2853 val |= BGE_PORTMODE_GMII;
2854 else
2855 val |= BGE_PORTMODE_MII;
2856
2857 /* Allow APE to send/receive frames. */
2858 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2859 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2860
2861 /* Turn on DMA, clear stats */
2862 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2863 DELAY(40);
2864
2865 /* Set misc. local control, enable interrupts on attentions */
2866 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2867
2868 #ifdef notdef
2869 /* Assert GPIO pins for PHY reset */
2870 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2871 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2872 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2873 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2874 #endif
2875
2876 #if defined(not_quite_yet)
2877 /* Linux driver enables enable gpio pin #1 on 5700s */
2878 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2879 sc->bge_local_ctrl_reg |=
2880 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2881 }
2882 #endif
2883 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2884
2885 /* Turn on DMA completion state machine */
2886 if (!(BGE_IS_5705_PLUS(sc)))
2887 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2888
2889 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2890
2891 /* Enable host coalescing bug fix. */
2892 if (BGE_IS_5755_PLUS(sc))
2893 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2894
2895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2896 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2897
2898 /* Turn on write DMA state machine */
2899 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2900 DELAY(40);
2901
2902 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2903
2904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2905 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2906
2907 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2908 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2909 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2910 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2911 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2912 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2913
2914 if (sc->bge_flags & BGE_PCIE)
2915 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2916 if (sc->bge_flags & BGE_TSO)
2917 val |= BGE_RDMAMODE_TSO4_ENABLE;
2918
2919 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2920 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2921 BGE_RDMAMODE_H2BNC_VLAN_DET;
2922 /*
2923 * Allow multiple outstanding read requests from
2924 * non-LSO read DMA engine.
2925 */
2926 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2927 }
2928
2929 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2930 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2931 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2932 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2933 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2934 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2935 /*
2936 * Adjust tx margin to prevent TX data corruption and
2937 * fix internal FIFO overflow.
2938 */
2939 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2940 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2941 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2942 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2943 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2944 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2945 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2946 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2947 }
2948 /*
2949 * Enable fix for read DMA FIFO overruns.
2950 * The fix is to limit the number of RX BDs
2951 * the hardware would fetch at a fime.
2952 */
2953 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2954 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2955 }
2956
2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2958 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2959 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2960 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2961 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2962 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2963 /*
2964 * Allow 4KB burst length reads for non-LSO frames.
2965 * Enable 512B burst length reads for buffer descriptors.
2966 */
2967 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2968 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2969 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2970 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2971 }
2972
2973 /* Turn on read DMA state machine */
2974 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2975 delay(40);
2976
2977 /* Turn on RX data completion state machine */
2978 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2979
2980 /* Turn on RX BD initiator state machine */
2981 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2982
2983 /* Turn on RX data and RX BD initiator state machine */
2984 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2985
2986 /* Turn on Mbuf cluster free state machine */
2987 if (!BGE_IS_5705_PLUS(sc))
2988 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2989
2990 /* Turn on send BD completion state machine */
2991 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2992
2993 /* Turn on send data completion state machine */
2994 val = BGE_SDCMODE_ENABLE;
2995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2996 val |= BGE_SDCMODE_CDELAY;
2997 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2998
2999 /* Turn on send data initiator state machine */
3000 if (sc->bge_flags & BGE_TSO) {
3001 /* XXX: magic value from Linux driver */
3002 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
3003 } else
3004 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3005
3006 /* Turn on send BD initiator state machine */
3007 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3008
3009 /* Turn on send BD selector state machine */
3010 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3011
3012 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3013 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3014 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3015
3016 /* ack/clear link change events */
3017 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3018 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3019 BGE_MACSTAT_LINK_CHANGED);
3020 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3021
3022 /*
3023 * Enable attention when the link has changed state for
3024 * devices that use auto polling.
3025 */
3026 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3027 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3028 } else {
3029 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3030 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3031 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3032 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3033 BGE_EVTENB_MI_INTERRUPT);
3034 }
3035
3036 /*
3037 * Clear any pending link state attention.
3038 * Otherwise some link state change events may be lost until attention
3039 * is cleared by bge_intr() -> bge_link_upd() sequence.
3040 * It's not necessary on newer BCM chips - perhaps enabling link
3041 * state change attentions implies clearing pending attention.
3042 */
3043 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3044 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3045 BGE_MACSTAT_LINK_CHANGED);
3046
3047 /* Enable link state change attentions. */
3048 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3049
3050 return 0;
3051 }
3052
3053 static const struct bge_revision *
3054 bge_lookup_rev(uint32_t chipid)
3055 {
3056 const struct bge_revision *br;
3057
3058 for (br = bge_revisions; br->br_name != NULL; br++) {
3059 if (br->br_chipid == chipid)
3060 return br;
3061 }
3062
3063 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3064 if (br->br_chipid == BGE_ASICREV(chipid))
3065 return br;
3066 }
3067
3068 return NULL;
3069 }
3070
3071 static const struct bge_product *
3072 bge_lookup(const struct pci_attach_args *pa)
3073 {
3074 const struct bge_product *bp;
3075
3076 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3077 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3078 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3079 return bp;
3080 }
3081
3082 return NULL;
3083 }
3084
3085 static uint32_t
3086 bge_chipid(const struct pci_attach_args *pa)
3087 {
3088 uint32_t id;
3089
3090 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3091 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3092
3093 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3094 switch (PCI_PRODUCT(pa->pa_id)) {
3095 case PCI_PRODUCT_BROADCOM_BCM5717:
3096 case PCI_PRODUCT_BROADCOM_BCM5718:
3097 case PCI_PRODUCT_BROADCOM_BCM5719:
3098 case PCI_PRODUCT_BROADCOM_BCM5720:
3099 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3100 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3101 BGE_PCI_GEN2_PRODID_ASICREV);
3102 break;
3103 case PCI_PRODUCT_BROADCOM_BCM57761:
3104 case PCI_PRODUCT_BROADCOM_BCM57762:
3105 case PCI_PRODUCT_BROADCOM_BCM57765:
3106 case PCI_PRODUCT_BROADCOM_BCM57766:
3107 case PCI_PRODUCT_BROADCOM_BCM57781:
3108 case PCI_PRODUCT_BROADCOM_BCM57785:
3109 case PCI_PRODUCT_BROADCOM_BCM57791:
3110 case PCI_PRODUCT_BROADCOM_BCM57795:
3111 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 BGE_PCI_GEN15_PRODID_ASICREV);
3113 break;
3114 default:
3115 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3116 BGE_PCI_PRODID_ASICREV);
3117 break;
3118 }
3119 }
3120
3121 return id;
3122 }
3123
3124 /*
3125 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3126 * against our list and return its name if we find a match. Note
3127 * that since the Broadcom controller contains VPD support, we
3128 * can get the device name string from the controller itself instead
3129 * of the compiled-in string. This is a little slow, but it guarantees
3130 * we'll always announce the right product name.
3131 */
3132 static int
3133 bge_probe(device_t parent, cfdata_t match, void *aux)
3134 {
3135 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3136
3137 if (bge_lookup(pa) != NULL)
3138 return 1;
3139
3140 return 0;
3141 }
3142
3143 static void
3144 bge_attach(device_t parent, device_t self, void *aux)
3145 {
3146 struct bge_softc *sc = device_private(self);
3147 struct pci_attach_args *pa = aux;
3148 prop_dictionary_t dict;
3149 const struct bge_product *bp;
3150 const struct bge_revision *br;
3151 pci_chipset_tag_t pc;
3152 pci_intr_handle_t ih;
3153 const char *intrstr = NULL;
3154 bus_dma_segment_t seg;
3155 int rseg;
3156 uint32_t hwcfg = 0;
3157 uint32_t command;
3158 struct ifnet *ifp;
3159 uint32_t misccfg;
3160 void * kva;
3161 u_char eaddr[ETHER_ADDR_LEN];
3162 pcireg_t memtype, subid, reg;
3163 bus_addr_t memaddr;
3164 bus_size_t memsize, apesize;
3165 uint32_t pm_ctl;
3166 bool no_seeprom;
3167
3168 bp = bge_lookup(pa);
3169 KASSERT(bp != NULL);
3170
3171 sc->sc_pc = pa->pa_pc;
3172 sc->sc_pcitag = pa->pa_tag;
3173 sc->bge_dev = self;
3174
3175 sc->bge_pa = *pa;
3176 pc = sc->sc_pc;
3177 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3178
3179 aprint_naive(": Ethernet controller\n");
3180 aprint_normal(": %s\n", bp->bp_name);
3181
3182 /*
3183 * Map control/status registers.
3184 */
3185 DPRINTFN(5, ("Map control/status regs\n"));
3186 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3187 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3188 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3189 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3190
3191 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3192 aprint_error_dev(sc->bge_dev,
3193 "failed to enable memory mapping!\n");
3194 return;
3195 }
3196
3197 DPRINTFN(5, ("pci_mem_find\n"));
3198 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3199 switch (memtype) {
3200 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3201 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3202 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3203 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3204 &memaddr, &memsize) == 0)
3205 break;
3206 default:
3207 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3208 return;
3209 }
3210
3211 DPRINTFN(5, ("pci_intr_map\n"));
3212 if (pci_intr_map(pa, &ih)) {
3213 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3214 return;
3215 }
3216
3217 DPRINTFN(5, ("pci_intr_string\n"));
3218 intrstr = pci_intr_string(pc, ih);
3219
3220 DPRINTFN(5, ("pci_intr_establish\n"));
3221 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3222
3223 if (sc->bge_intrhand == NULL) {
3224 aprint_error_dev(sc->bge_dev,
3225 "couldn't establish interrupt%s%s\n",
3226 intrstr ? " at " : "", intrstr ? intrstr : "");
3227 return;
3228 }
3229 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3230
3231 /* Save various chip information. */
3232 sc->bge_chipid = bge_chipid(pa);
3233 sc->bge_phy_addr = bge_phy_addr(sc);
3234
3235 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3236 &sc->bge_pciecap, NULL) != 0)
3237 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3238 /* PCIe */
3239 sc->bge_flags |= BGE_PCIE;
3240 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3241 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3242 sc->bge_expmrq = 2048;
3243 else
3244 sc->bge_expmrq = 4096;
3245 bge_set_max_readrq(sc);
3246 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3247 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3248 /* PCI-X */
3249 sc->bge_flags |= BGE_PCIX;
3250 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3251 &sc->bge_pcixcap, NULL) == 0)
3252 aprint_error_dev(sc->bge_dev,
3253 "unable to find PCIX capability\n");
3254 }
3255
3256 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3257 /*
3258 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3259 * can clobber the chip's PCI config-space power control
3260 * registers, leaving the card in D3 powersave state. We do
3261 * not have memory-mapped registers in this state, so force
3262 * device into D0 state before starting initialization.
3263 */
3264 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3265 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3266 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3267 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3268 DELAY(1000); /* 27 usec is allegedly sufficent */
3269 }
3270
3271 /* Save chipset family. */
3272 switch (BGE_ASICREV(sc->bge_chipid)) {
3273 case BGE_ASICREV_BCM57765:
3274 case BGE_ASICREV_BCM57766:
3275 sc->bge_flags |= BGE_57765_PLUS;
3276 /* FALLTHROUGH */
3277 case BGE_ASICREV_BCM5717:
3278 case BGE_ASICREV_BCM5719:
3279 case BGE_ASICREV_BCM5720:
3280 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3281 BGE_5705_PLUS;
3282 break;
3283 case BGE_ASICREV_BCM5755:
3284 case BGE_ASICREV_BCM5761:
3285 case BGE_ASICREV_BCM5784:
3286 case BGE_ASICREV_BCM5785:
3287 case BGE_ASICREV_BCM5787:
3288 case BGE_ASICREV_BCM57780:
3289 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3290 break;
3291 case BGE_ASICREV_BCM5700:
3292 case BGE_ASICREV_BCM5701:
3293 case BGE_ASICREV_BCM5703:
3294 case BGE_ASICREV_BCM5704:
3295 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3296 break;
3297 case BGE_ASICREV_BCM5714_A0:
3298 case BGE_ASICREV_BCM5780:
3299 case BGE_ASICREV_BCM5714:
3300 sc->bge_flags |= BGE_5714_FAMILY;
3301 /* FALLTHROUGH */
3302 case BGE_ASICREV_BCM5750:
3303 case BGE_ASICREV_BCM5752:
3304 case BGE_ASICREV_BCM5906:
3305 sc->bge_flags |= BGE_575X_PLUS;
3306 /* FALLTHROUGH */
3307 case BGE_ASICREV_BCM5705:
3308 sc->bge_flags |= BGE_5705_PLUS;
3309 break;
3310 }
3311
3312 /* Identify chips with APE processor. */
3313 switch (BGE_ASICREV(sc->bge_chipid)) {
3314 case BGE_ASICREV_BCM5717:
3315 case BGE_ASICREV_BCM5719:
3316 case BGE_ASICREV_BCM5720:
3317 case BGE_ASICREV_BCM5761:
3318 sc->bge_flags |= BGE_APE;
3319 break;
3320 }
3321
3322 /* Chips with APE need BAR2 access for APE registers/memory. */
3323 if ((sc->bge_flags & BGE_APE) != 0) {
3324 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3325 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3326 &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3327 aprint_error_dev(sc->bge_dev,
3328 "couldn't map BAR2 memory\n");
3329 return;
3330 }
3331
3332 /* Enable APE register/memory access by host driver. */
3333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3334 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3335 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3336 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3337 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3338
3339 bge_ape_lock_init(sc);
3340 bge_ape_read_fw_ver(sc);
3341 }
3342
3343 /* Identify the chips that use an CPMU. */
3344 if (BGE_IS_5717_PLUS(sc) ||
3345 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3346 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3347 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3348 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3349 sc->bge_flags |= BGE_CPMU_PRESENT;
3350
3351 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3352 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3353 else
3354 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3355
3356 /*
3357 * When using the BCM5701 in PCI-X mode, data corruption has
3358 * been observed in the first few bytes of some received packets.
3359 * Aligning the packet buffer in memory eliminates the corruption.
3360 * Unfortunately, this misaligns the packet payloads. On platforms
3361 * which do not support unaligned accesses, we will realign the
3362 * payloads by copying the received packets.
3363 */
3364 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3365 sc->bge_flags & BGE_PCIX)
3366 sc->bge_flags |= BGE_RX_ALIGNBUG;
3367
3368 if (BGE_IS_5700_FAMILY(sc))
3369 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3370
3371 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3372 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3373 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3374 sc->bge_flags |= BGE_NO_3LED;
3375
3376 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3377 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3378
3379 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3380 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3381 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3382 sc->bge_flags |= BGE_IS_5788;
3383
3384 /*
3385 * Some controllers seem to require a special firmware to use
3386 * TSO. But the firmware is not available to FreeBSD and Linux
3387 * claims that the TSO performed by the firmware is slower than
3388 * hardware based TSO. Moreover the firmware based TSO has one
3389 * known bug which can't handle TSO if ethernet header + IP/TCP
3390 * header is greater than 80 bytes. The workaround for the TSO
3391 * bug exist but it seems it's too expensive than not using
3392 * TSO at all. Some hardwares also have the TSO bug so limit
3393 * the TSO to the controllers that are not affected TSO issues
3394 * (e.g. 5755 or higher).
3395 */
3396 if (BGE_IS_5755_PLUS(sc)) {
3397 /*
3398 * BCM5754 and BCM5787 shares the same ASIC id so
3399 * explicit device id check is required.
3400 */
3401 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3402 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3403 sc->bge_flags |= BGE_TSO;
3404 }
3405
3406 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3407 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3408 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3409 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3410 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3411 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3412 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3413 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3414 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3415 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3416 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3417 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3418 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3419 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3420 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3421 sc->bge_flags |= BGE_10_100_ONLY;
3422
3423 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3424 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3425 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3426 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3428 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
3429
3430 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3431 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3432 sc->bge_flags |= BGE_PHY_CRC_BUG;
3433 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3434 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3435 sc->bge_flags |= BGE_PHY_ADC_BUG;
3436 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3437 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3438
3439 if (BGE_IS_5705_PLUS(sc) &&
3440 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3441 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3442 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3443 !BGE_IS_5717_PLUS(sc)) {
3444 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3445 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3446 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3447 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3448 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3449 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3450 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3451 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3452 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3453 } else
3454 sc->bge_flags |= BGE_PHY_BER_BUG;
3455 }
3456
3457 /*
3458 * SEEPROM check.
3459 * First check if firmware knows we do not have SEEPROM.
3460 */
3461 if (prop_dictionary_get_bool(device_properties(self),
3462 "without-seeprom", &no_seeprom) && no_seeprom)
3463 sc->bge_flags |= BGE_NO_EEPROM;
3464
3465 /* Now check the 'ROM failed' bit on the RX CPU */
3466 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3467 sc->bge_flags |= BGE_NO_EEPROM;
3468
3469 sc->bge_asf_mode = 0;
3470 /* No ASF if APE present. */
3471 if ((sc->bge_flags & BGE_APE) == 0) {
3472 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3473 BGE_SRAM_DATA_SIG_MAGIC)) {
3474 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3475 BGE_HWCFG_ASF) {
3476 sc->bge_asf_mode |= ASF_ENABLE;
3477 sc->bge_asf_mode |= ASF_STACKUP;
3478 if (BGE_IS_575X_PLUS(sc))
3479 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3480 }
3481 }
3482 }
3483
3484 bge_stop_fw(sc);
3485 bge_sig_pre_reset(sc, BGE_RESET_START);
3486 if (bge_reset(sc))
3487 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3488
3489 bge_sig_legacy(sc, BGE_RESET_START);
3490 bge_sig_post_reset(sc, BGE_RESET_START);
3491
3492 if (bge_chipinit(sc)) {
3493 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3494 bge_release_resources(sc);
3495 return;
3496 }
3497
3498 /*
3499 * Get station address from the EEPROM.
3500 */
3501 if (bge_get_eaddr(sc, eaddr)) {
3502 aprint_error_dev(sc->bge_dev,
3503 "failed to read station address\n");
3504 bge_release_resources(sc);
3505 return;
3506 }
3507
3508 br = bge_lookup_rev(sc->bge_chipid);
3509
3510 if (br == NULL) {
3511 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3512 sc->bge_chipid);
3513 } else {
3514 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3515 br->br_name, sc->bge_chipid);
3516 }
3517 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3518
3519 /* Allocate the general information block and ring buffers. */
3520 if (pci_dma64_available(pa))
3521 sc->bge_dmatag = pa->pa_dmat64;
3522 else
3523 sc->bge_dmatag = pa->pa_dmat;
3524 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3525 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3526 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3527 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3528 return;
3529 }
3530 DPRINTFN(5, ("bus_dmamem_map\n"));
3531 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3532 sizeof(struct bge_ring_data), &kva,
3533 BUS_DMA_NOWAIT)) {
3534 aprint_error_dev(sc->bge_dev,
3535 "can't map DMA buffers (%zu bytes)\n",
3536 sizeof(struct bge_ring_data));
3537 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3538 return;
3539 }
3540 DPRINTFN(5, ("bus_dmamem_create\n"));
3541 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3542 sizeof(struct bge_ring_data), 0,
3543 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3544 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3545 bus_dmamem_unmap(sc->bge_dmatag, kva,
3546 sizeof(struct bge_ring_data));
3547 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3548 return;
3549 }
3550 DPRINTFN(5, ("bus_dmamem_load\n"));
3551 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3552 sizeof(struct bge_ring_data), NULL,
3553 BUS_DMA_NOWAIT)) {
3554 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3555 bus_dmamem_unmap(sc->bge_dmatag, kva,
3556 sizeof(struct bge_ring_data));
3557 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3558 return;
3559 }
3560
3561 DPRINTFN(5, ("bzero\n"));
3562 sc->bge_rdata = (struct bge_ring_data *)kva;
3563
3564 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3565
3566 /* Try to allocate memory for jumbo buffers. */
3567 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3568 if (bge_alloc_jumbo_mem(sc)) {
3569 aprint_error_dev(sc->bge_dev,
3570 "jumbo buffer allocation failed\n");
3571 } else
3572 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3573 }
3574
3575 /* Set default tuneable values. */
3576 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3577 sc->bge_rx_coal_ticks = 150;
3578 sc->bge_rx_max_coal_bds = 64;
3579 #ifdef ORIG_WPAUL_VALUES
3580 sc->bge_tx_coal_ticks = 150;
3581 sc->bge_tx_max_coal_bds = 128;
3582 #else
3583 sc->bge_tx_coal_ticks = 300;
3584 sc->bge_tx_max_coal_bds = 400;
3585 #endif
3586 if (BGE_IS_5705_PLUS(sc)) {
3587 sc->bge_tx_coal_ticks = (12 * 5);
3588 sc->bge_tx_max_coal_bds = (12 * 5);
3589 aprint_verbose_dev(sc->bge_dev,
3590 "setting short Tx thresholds\n");
3591 }
3592
3593 if (BGE_IS_5717_PLUS(sc))
3594 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3595 else if (BGE_IS_5705_PLUS(sc))
3596 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3597 else
3598 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3599
3600 /* Set up ifnet structure */
3601 ifp = &sc->ethercom.ec_if;
3602 ifp->if_softc = sc;
3603 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3604 ifp->if_ioctl = bge_ioctl;
3605 ifp->if_stop = bge_stop;
3606 ifp->if_start = bge_start;
3607 ifp->if_init = bge_init;
3608 ifp->if_watchdog = bge_watchdog;
3609 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3610 IFQ_SET_READY(&ifp->if_snd);
3611 DPRINTFN(5, ("strcpy if_xname\n"));
3612 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3613
3614 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3615 sc->ethercom.ec_if.if_capabilities |=
3616 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3617 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3618 sc->ethercom.ec_if.if_capabilities |=
3619 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3620 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3621 #endif
3622 sc->ethercom.ec_capabilities |=
3623 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3624
3625 if (sc->bge_flags & BGE_TSO)
3626 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3627
3628 /*
3629 * Do MII setup.
3630 */
3631 DPRINTFN(5, ("mii setup\n"));
3632 sc->bge_mii.mii_ifp = ifp;
3633 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3634 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3635 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3636
3637 /*
3638 * Figure out what sort of media we have by checking the hardware
3639 * config word in the first 32k of NIC internal memory, or fall back to
3640 * the config word in the EEPROM. Note: on some BCM5700 cards,
3641 * this value appears to be unset. If that's the case, we have to rely
3642 * on identifying the NIC by its PCI subsystem ID, as we do below for
3643 * the SysKonnect SK-9D41.
3644 */
3645 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3646 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3647 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3648 bge_read_eeprom(sc, (void *)&hwcfg,
3649 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3650 hwcfg = be32toh(hwcfg);
3651 }
3652 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3653 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3654 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3655 if (BGE_IS_5714_FAMILY(sc))
3656 sc->bge_flags |= BGE_PHY_FIBER_MII;
3657 else
3658 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3659 }
3660
3661 /* set phyflags and chipid before mii_attach() */
3662 dict = device_properties(self);
3663 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3664 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3665
3666 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3667 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3668 bge_ifmedia_sts);
3669 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3670 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3671 0, NULL);
3672 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3673 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3674 /* Pretend the user requested this setting */
3675 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3676 } else {
3677 /*
3678 * Do transceiver setup and tell the firmware the
3679 * driver is down so we can try to get access the
3680 * probe if ASF is running. Retry a couple of times
3681 * if we get a conflict with the ASF firmware accessing
3682 * the PHY.
3683 */
3684 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3685 bge_asf_driver_up(sc);
3686
3687 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3688 bge_ifmedia_sts);
3689 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3690 sc->bge_phy_addr, MII_OFFSET_ANY,
3691 MIIF_DOPAUSE);
3692
3693 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3694 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3695 ifmedia_add(&sc->bge_mii.mii_media,
3696 IFM_ETHER|IFM_MANUAL, 0, NULL);
3697 ifmedia_set(&sc->bge_mii.mii_media,
3698 IFM_ETHER|IFM_MANUAL);
3699 } else
3700 ifmedia_set(&sc->bge_mii.mii_media,
3701 IFM_ETHER|IFM_AUTO);
3702
3703 /*
3704 * Now tell the firmware we are going up after probing the PHY
3705 */
3706 if (sc->bge_asf_mode & ASF_STACKUP)
3707 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3708 }
3709
3710 /*
3711 * Call MI attach routine.
3712 */
3713 DPRINTFN(5, ("if_attach\n"));
3714 if_attach(ifp);
3715 DPRINTFN(5, ("ether_ifattach\n"));
3716 ether_ifattach(ifp, eaddr);
3717 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3718 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3719 RND_TYPE_NET, 0);
3720 #ifdef BGE_EVENT_COUNTERS
3721 /*
3722 * Attach event counters.
3723 */
3724 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3725 NULL, device_xname(sc->bge_dev), "intr");
3726 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3727 NULL, device_xname(sc->bge_dev), "tx_xoff");
3728 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3729 NULL, device_xname(sc->bge_dev), "tx_xon");
3730 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3731 NULL, device_xname(sc->bge_dev), "rx_xoff");
3732 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3733 NULL, device_xname(sc->bge_dev), "rx_xon");
3734 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3735 NULL, device_xname(sc->bge_dev), "rx_macctl");
3736 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3737 NULL, device_xname(sc->bge_dev), "xoffentered");
3738 #endif /* BGE_EVENT_COUNTERS */
3739 DPRINTFN(5, ("callout_init\n"));
3740 callout_init(&sc->bge_timeout, 0);
3741
3742 if (pmf_device_register(self, NULL, NULL))
3743 pmf_class_network_register(self, ifp);
3744 else
3745 aprint_error_dev(self, "couldn't establish power handler\n");
3746
3747 bge_sysctl_init(sc);
3748
3749 #ifdef BGE_DEBUG
3750 bge_debug_info(sc);
3751 #endif
3752 }
3753
3754 static void
3755 bge_release_resources(struct bge_softc *sc)
3756 {
3757 if (sc->bge_vpd_prodname != NULL)
3758 free(sc->bge_vpd_prodname, M_DEVBUF);
3759
3760 if (sc->bge_vpd_readonly != NULL)
3761 free(sc->bge_vpd_readonly, M_DEVBUF);
3762 }
3763
3764 static int
3765 bge_reset(struct bge_softc *sc)
3766 {
3767 uint32_t cachesize, command;
3768 uint32_t reset, mac_mode, mac_mode_mask;
3769 pcireg_t devctl, reg;
3770 int i, val;
3771 void (*write_op)(struct bge_softc *, int, int);
3772
3773 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3774 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3775 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3776 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3777
3778 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3779 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3780 if (sc->bge_flags & BGE_PCIE)
3781 write_op = bge_writemem_direct;
3782 else
3783 write_op = bge_writemem_ind;
3784 } else
3785 write_op = bge_writereg_ind;
3786
3787 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3788 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3789 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3790 for (i = 0; i < 8000; i++) {
3791 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3792 BGE_NVRAMSWARB_GNT1)
3793 break;
3794 DELAY(20);
3795 }
3796 if (i == 8000) {
3797 printf("%s: NVRAM lock timedout!\n",
3798 device_xname(sc->bge_dev));
3799 }
3800 }
3801 /* Take APE lock when performing reset. */
3802 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3803
3804 /* Save some important PCI state. */
3805 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3806 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3807
3808 /* Step 5b-5d: */
3809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3810 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3811 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3812
3813 /* XXX ???: Disable fastboot on controllers that support it. */
3814 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3815 BGE_IS_5755_PLUS(sc))
3816 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3817
3818 /*
3819 * Step 6: Write the magic number to SRAM at offset 0xB50.
3820 * When firmware finishes its initialization it will
3821 * write ~BGE_MAGIC_NUMBER to the same location.
3822 */
3823 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3824
3825 /* Step 7: */
3826 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3827 /*
3828 * XXX: from FreeBSD/Linux; no documentation
3829 */
3830 if (sc->bge_flags & BGE_PCIE) {
3831 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3832 !BGE_IS_57765_PLUS(sc) &&
3833 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3834 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3835 /* PCI Express 1.0 system */
3836 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3837 BGE_PHY_PCIE_SCRAM_MODE);
3838 }
3839 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3840 /*
3841 * Prevent PCI Express link training
3842 * during global reset.
3843 */
3844 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3845 reset |= (1<<29);
3846 }
3847 }
3848
3849 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3850 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3851 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3852 i | BGE_VCPU_STATUS_DRV_RESET);
3853 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3854 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3855 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3856 }
3857
3858 /*
3859 * Set GPHY Power Down Override to leave GPHY
3860 * powered up in D0 uninitialized.
3861 */
3862 if (BGE_IS_5705_PLUS(sc) &&
3863 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3864 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3865
3866 /* XXX 5721, 5751 and 5752 */
3867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3868 reset |= BGE_MISCCFG_GRC_RESET_DISABLE;
3869
3870 /* Issue global reset */
3871 write_op(sc, BGE_MISC_CFG, reset);
3872
3873 /* Step 8: wait for complete */
3874 if (sc->bge_flags & BGE_PCIE)
3875 delay(100*1000); /* too big */
3876 else
3877 delay(1000);
3878
3879 if (sc->bge_flags & BGE_PCIE) {
3880 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3881 DELAY(500000);
3882 /* XXX: Magic Numbers */
3883 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3884 BGE_PCI_UNKNOWN0);
3885 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3886 BGE_PCI_UNKNOWN0,
3887 reg | (1 << 15));
3888 }
3889 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3890 sc->bge_pciecap + PCI_PCIE_DCSR);
3891 /* Clear enable no snoop and disable relaxed ordering. */
3892 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3893 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3894
3895 /* Set PCIE max payload size to 128 for older PCIe devices */
3896 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3897 devctl &= ~(0x00e0);
3898 /* Clear device status register. Write 1b to clear */
3899 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3900 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3901 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3902 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3903 bge_set_max_readrq(sc);
3904 }
3905
3906 /* From Linux: dummy read to flush PCI posted writes */
3907 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3908
3909 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3910 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3911 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3912 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3913 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3914 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3915 (sc->bge_flags & BGE_PCIX) != 0)
3916 val |= BGE_PCISTATE_RETRY_SAME_DMA;
3917 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3918 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3919 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3920 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3921 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3922 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3923 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3924
3925 /* Step 11: disable PCI-X Relaxed Ordering. */
3926 if (sc->bge_flags & BGE_PCIX) {
3927 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3928 + PCI_PCIX_CMD);
3929 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3930 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3931 }
3932
3933 /* Step 12: Enable memory arbiter. */
3934 if (BGE_IS_5714_FAMILY(sc)) {
3935 val = CSR_READ_4(sc, BGE_MARB_MODE);
3936 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3937 } else
3938 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3939
3940 /* XXX 5721, 5751 and 5752 */
3941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3942 /* Step 19: */
3943 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3944 /* Step 20: */
3945 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3946 }
3947
3948 /* Step 28: Fix up byte swapping */
3949 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3950
3951 /* Step 21: 5822 B0 errata */
3952 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3953 pcireg_t msidata;
3954
3955 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3956 BGE_PCI_MSI_DATA);
3957 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3958 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3959 msidata);
3960 }
3961
3962 /*
3963 * Step 18: wirte mac mode
3964 * XXX Write 0x0c for 5703S and 5704S
3965 */
3966 val = CSR_READ_4(sc, BGE_MAC_MODE);
3967 val = (val & ~mac_mode_mask) | mac_mode;
3968 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3969 DELAY(40);
3970
3971 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
3972
3973 /* Step 17: Poll until the firmware initialization is complete */
3974 bge_poll_fw(sc);
3975
3976 /*
3977 * The 5704 in TBI mode apparently needs some special
3978 * adjustment to insure the SERDES drive level is set
3979 * to 1.2V.
3980 */
3981 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3982 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3983 uint32_t serdescfg;
3984
3985 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3986 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3987 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3988 }
3989
3990 if (sc->bge_flags & BGE_PCIE &&
3991 !BGE_IS_57765_PLUS(sc) &&
3992 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3993 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
3994 uint32_t v;
3995
3996 /* Enable PCI Express bug fix */
3997 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
3998 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
3999 v | BGE_TLP_DATA_FIFO_PROTECT);
4000 }
4001
4002 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4003 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4004 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4005
4006 return 0;
4007 }
4008
4009 /*
4010 * Frame reception handling. This is called if there's a frame
4011 * on the receive return list.
4012 *
4013 * Note: we have to be able to handle two possibilities here:
4014 * 1) the frame is from the jumbo receive ring
4015 * 2) the frame is from the standard receive ring
4016 */
4017
4018 static void
4019 bge_rxeof(struct bge_softc *sc)
4020 {
4021 struct ifnet *ifp;
4022 uint16_t rx_prod, rx_cons;
4023 int stdcnt = 0, jumbocnt = 0;
4024 bus_dmamap_t dmamap;
4025 bus_addr_t offset, toff;
4026 bus_size_t tlen;
4027 int tosync;
4028
4029 rx_cons = sc->bge_rx_saved_considx;
4030 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4031
4032 /* Nothing to do */
4033 if (rx_cons == rx_prod)
4034 return;
4035
4036 ifp = &sc->ethercom.ec_if;
4037
4038 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4039 offsetof(struct bge_ring_data, bge_status_block),
4040 sizeof (struct bge_status_block),
4041 BUS_DMASYNC_POSTREAD);
4042
4043 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4044 tosync = rx_prod - rx_cons;
4045
4046 if (tosync != 0)
4047 rnd_add_uint32(&sc->rnd_source, tosync);
4048
4049 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4050
4051 if (tosync < 0) {
4052 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4053 sizeof (struct bge_rx_bd);
4054 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4055 toff, tlen, BUS_DMASYNC_POSTREAD);
4056 tosync = -tosync;
4057 }
4058
4059 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4060 offset, tosync * sizeof (struct bge_rx_bd),
4061 BUS_DMASYNC_POSTREAD);
4062
4063 while (rx_cons != rx_prod) {
4064 struct bge_rx_bd *cur_rx;
4065 uint32_t rxidx;
4066 struct mbuf *m = NULL;
4067
4068 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4069
4070 rxidx = cur_rx->bge_idx;
4071 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4072
4073 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4074 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4075 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4076 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4077 jumbocnt++;
4078 bus_dmamap_sync(sc->bge_dmatag,
4079 sc->bge_cdata.bge_rx_jumbo_map,
4080 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4081 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4082 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4083 ifp->if_ierrors++;
4084 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4085 continue;
4086 }
4087 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4088 NULL)== ENOBUFS) {
4089 ifp->if_ierrors++;
4090 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4091 continue;
4092 }
4093 } else {
4094 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4095 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4096
4097 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4098 stdcnt++;
4099 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4100 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4101 if (dmamap == NULL) {
4102 ifp->if_ierrors++;
4103 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4104 continue;
4105 }
4106 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4107 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4108 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4109 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4110 ifp->if_ierrors++;
4111 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4112 continue;
4113 }
4114 if (bge_newbuf_std(sc, sc->bge_std,
4115 NULL, dmamap) == ENOBUFS) {
4116 ifp->if_ierrors++;
4117 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4118 continue;
4119 }
4120 }
4121
4122 ifp->if_ipackets++;
4123 #ifndef __NO_STRICT_ALIGNMENT
4124 /*
4125 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4126 * the Rx buffer has the layer-2 header unaligned.
4127 * If our CPU requires alignment, re-align by copying.
4128 */
4129 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4130 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4131 cur_rx->bge_len);
4132 m->m_data += ETHER_ALIGN;
4133 }
4134 #endif
4135
4136 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4137 m->m_pkthdr.rcvif = ifp;
4138
4139 /*
4140 * Handle BPF listeners. Let the BPF user see the packet.
4141 */
4142 bpf_mtap(ifp, m);
4143
4144 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4145
4146 if (BGE_IS_5717_PLUS(sc)) {
4147 if ((cur_rx->bge_error_flag &
4148 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4149 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4150 } else {
4151 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4152 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4153 }
4154 /*
4155 * Rx transport checksum-offload may also
4156 * have bugs with packets which, when transmitted,
4157 * were `runts' requiring padding.
4158 */
4159 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4160 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4161 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4162 m->m_pkthdr.csum_data =
4163 cur_rx->bge_tcp_udp_csum;
4164 m->m_pkthdr.csum_flags |=
4165 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4166 M_CSUM_DATA);
4167 }
4168
4169 /*
4170 * If we received a packet with a vlan tag, pass it
4171 * to vlan_input() instead of ether_input().
4172 */
4173 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4174 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4175 }
4176
4177 (*ifp->if_input)(ifp, m);
4178 }
4179
4180 sc->bge_rx_saved_considx = rx_cons;
4181 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4182 if (stdcnt)
4183 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4184 if (jumbocnt)
4185 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4186 }
4187
4188 static void
4189 bge_txeof(struct bge_softc *sc)
4190 {
4191 struct bge_tx_bd *cur_tx = NULL;
4192 struct ifnet *ifp;
4193 struct txdmamap_pool_entry *dma;
4194 bus_addr_t offset, toff;
4195 bus_size_t tlen;
4196 int tosync;
4197 struct mbuf *m;
4198
4199 ifp = &sc->ethercom.ec_if;
4200
4201 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4202 offsetof(struct bge_ring_data, bge_status_block),
4203 sizeof (struct bge_status_block),
4204 BUS_DMASYNC_POSTREAD);
4205
4206 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4207 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4208 sc->bge_tx_saved_considx;
4209
4210 if (tosync != 0)
4211 rnd_add_uint32(&sc->rnd_source, tosync);
4212
4213 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4214
4215 if (tosync < 0) {
4216 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4217 sizeof (struct bge_tx_bd);
4218 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4219 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4220 tosync = -tosync;
4221 }
4222
4223 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4224 offset, tosync * sizeof (struct bge_tx_bd),
4225 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4226
4227 /*
4228 * Go through our tx ring and free mbufs for those
4229 * frames that have been sent.
4230 */
4231 while (sc->bge_tx_saved_considx !=
4232 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4233 uint32_t idx = 0;
4234
4235 idx = sc->bge_tx_saved_considx;
4236 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4237 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4238 ifp->if_opackets++;
4239 m = sc->bge_cdata.bge_tx_chain[idx];
4240 if (m != NULL) {
4241 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4242 dma = sc->txdma[idx];
4243 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4244 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4245 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4246 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4247 sc->txdma[idx] = NULL;
4248
4249 m_freem(m);
4250 }
4251 sc->bge_txcnt--;
4252 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4253 ifp->if_timer = 0;
4254 }
4255
4256 if (cur_tx != NULL)
4257 ifp->if_flags &= ~IFF_OACTIVE;
4258 }
4259
4260 static int
4261 bge_intr(void *xsc)
4262 {
4263 struct bge_softc *sc;
4264 struct ifnet *ifp;
4265 uint32_t statusword;
4266
4267 sc = xsc;
4268 ifp = &sc->ethercom.ec_if;
4269
4270 /* It is possible for the interrupt to arrive before
4271 * the status block is updated prior to the interrupt.
4272 * Reading the PCI State register will confirm whether the
4273 * interrupt is ours and will flush the status block.
4274 */
4275
4276 /* read status word from status block */
4277 statusword = sc->bge_rdata->bge_status_block.bge_status;
4278
4279 if ((statusword & BGE_STATFLAG_UPDATED) ||
4280 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
4281 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4282 /* Ack interrupt and stop others from occuring. */
4283 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4284
4285 BGE_EVCNT_INCR(sc->bge_ev_intr);
4286
4287 /* clear status word */
4288 sc->bge_rdata->bge_status_block.bge_status = 0;
4289
4290 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4291 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4292 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4293 bge_link_upd(sc);
4294
4295 if (ifp->if_flags & IFF_RUNNING) {
4296 /* Check RX return ring producer/consumer */
4297 bge_rxeof(sc);
4298
4299 /* Check TX ring producer/consumer */
4300 bge_txeof(sc);
4301 }
4302
4303 if (sc->bge_pending_rxintr_change) {
4304 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4305 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4306 uint32_t junk;
4307
4308 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4309 DELAY(10);
4310 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4311
4312 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4313 DELAY(10);
4314 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4315
4316 sc->bge_pending_rxintr_change = 0;
4317 }
4318 bge_handle_events(sc);
4319
4320 /* Re-enable interrupts. */
4321 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4322
4323 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4324 bge_start(ifp);
4325
4326 return 1;
4327 } else
4328 return 0;
4329 }
4330
4331 static void
4332 bge_asf_driver_up(struct bge_softc *sc)
4333 {
4334 if (sc->bge_asf_mode & ASF_STACKUP) {
4335 /* Send ASF heartbeat aprox. every 2s */
4336 if (sc->bge_asf_count)
4337 sc->bge_asf_count --;
4338 else {
4339 sc->bge_asf_count = 2;
4340
4341 bge_wait_for_event_ack(sc);
4342
4343 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4344 BGE_FW_CMD_DRV_ALIVE);
4345 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4346 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4347 BGE_FW_HB_TIMEOUT_SEC);
4348 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4349 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4350 BGE_RX_CPU_DRV_EVENT);
4351 }
4352 }
4353 }
4354
4355 static void
4356 bge_tick(void *xsc)
4357 {
4358 struct bge_softc *sc = xsc;
4359 struct mii_data *mii = &sc->bge_mii;
4360 int s;
4361
4362 s = splnet();
4363
4364 if (BGE_IS_5705_PLUS(sc))
4365 bge_stats_update_regs(sc);
4366 else
4367 bge_stats_update(sc);
4368
4369 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4370 /*
4371 * Since in TBI mode auto-polling can't be used we should poll
4372 * link status manually. Here we register pending link event
4373 * and trigger interrupt.
4374 */
4375 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4376 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4377 } else {
4378 /*
4379 * Do not touch PHY if we have link up. This could break
4380 * IPMI/ASF mode or produce extra input errors.
4381 * (extra input errors was reported for bcm5701 & bcm5704).
4382 */
4383 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4384 mii_tick(mii);
4385 }
4386
4387 bge_asf_driver_up(sc);
4388
4389 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4390
4391 splx(s);
4392 }
4393
4394 static void
4395 bge_stats_update_regs(struct bge_softc *sc)
4396 {
4397 struct ifnet *ifp = &sc->ethercom.ec_if;
4398
4399 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4400 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4401
4402 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4403 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4404 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4405 }
4406
4407 static void
4408 bge_stats_update(struct bge_softc *sc)
4409 {
4410 struct ifnet *ifp = &sc->ethercom.ec_if;
4411 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4412
4413 #define READ_STAT(sc, stats, stat) \
4414 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4415
4416 ifp->if_collisions +=
4417 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4418 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4419 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4420 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4421 ifp->if_collisions;
4422
4423 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4424 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4425 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4426 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4427 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4428 READ_STAT(sc, stats,
4429 xoffPauseFramesReceived.bge_addr_lo));
4430 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4431 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4432 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4433 READ_STAT(sc, stats,
4434 macControlFramesReceived.bge_addr_lo));
4435 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4436 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4437
4438 #undef READ_STAT
4439
4440 #ifdef notdef
4441 ifp->if_collisions +=
4442 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4443 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4444 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4445 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4446 ifp->if_collisions;
4447 #endif
4448 }
4449
4450 /*
4451 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4452 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4453 * but when such padded frames employ the bge IP/TCP checksum offload,
4454 * the hardware checksum assist gives incorrect results (possibly
4455 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4456 * If we pad such runts with zeros, the onboard checksum comes out correct.
4457 */
4458 static inline int
4459 bge_cksum_pad(struct mbuf *pkt)
4460 {
4461 struct mbuf *last = NULL;
4462 int padlen;
4463
4464 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4465
4466 /* if there's only the packet-header and we can pad there, use it. */
4467 if (pkt->m_pkthdr.len == pkt->m_len &&
4468 M_TRAILINGSPACE(pkt) >= padlen) {
4469 last = pkt;
4470 } else {
4471 /*
4472 * Walk packet chain to find last mbuf. We will either
4473 * pad there, or append a new mbuf and pad it
4474 * (thus perhaps avoiding the bcm5700 dma-min bug).
4475 */
4476 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4477 continue; /* do nothing */
4478 }
4479
4480 /* `last' now points to last in chain. */
4481 if (M_TRAILINGSPACE(last) < padlen) {
4482 /* Allocate new empty mbuf, pad it. Compact later. */
4483 struct mbuf *n;
4484 MGET(n, M_DONTWAIT, MT_DATA);
4485 if (n == NULL)
4486 return ENOBUFS;
4487 n->m_len = 0;
4488 last->m_next = n;
4489 last = n;
4490 }
4491 }
4492
4493 KDASSERT(!M_READONLY(last));
4494 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4495
4496 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4497 memset(mtod(last, char *) + last->m_len, 0, padlen);
4498 last->m_len += padlen;
4499 pkt->m_pkthdr.len += padlen;
4500 return 0;
4501 }
4502
4503 /*
4504 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4505 */
4506 static inline int
4507 bge_compact_dma_runt(struct mbuf *pkt)
4508 {
4509 struct mbuf *m, *prev;
4510 int totlen, prevlen;
4511
4512 prev = NULL;
4513 totlen = 0;
4514 prevlen = -1;
4515
4516 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4517 int mlen = m->m_len;
4518 int shortfall = 8 - mlen ;
4519
4520 totlen += mlen;
4521 if (mlen == 0)
4522 continue;
4523 if (mlen >= 8)
4524 continue;
4525
4526 /* If we get here, mbuf data is too small for DMA engine.
4527 * Try to fix by shuffling data to prev or next in chain.
4528 * If that fails, do a compacting deep-copy of the whole chain.
4529 */
4530
4531 /* Internal frag. If fits in prev, copy it there. */
4532 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4533 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4534 prev->m_len += mlen;
4535 m->m_len = 0;
4536 /* XXX stitch chain */
4537 prev->m_next = m_free(m);
4538 m = prev;
4539 continue;
4540 }
4541 else if (m->m_next != NULL &&
4542 M_TRAILINGSPACE(m) >= shortfall &&
4543 m->m_next->m_len >= (8 + shortfall)) {
4544 /* m is writable and have enough data in next, pull up. */
4545
4546 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4547 shortfall);
4548 m->m_len += shortfall;
4549 m->m_next->m_len -= shortfall;
4550 m->m_next->m_data += shortfall;
4551 }
4552 else if (m->m_next == NULL || 1) {
4553 /* Got a runt at the very end of the packet.
4554 * borrow data from the tail of the preceding mbuf and
4555 * update its length in-place. (The original data is still
4556 * valid, so we can do this even if prev is not writable.)
4557 */
4558
4559 /* if we'd make prev a runt, just move all of its data. */
4560 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4561 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4562
4563 if ((prev->m_len - shortfall) < 8)
4564 shortfall = prev->m_len;
4565
4566 #ifdef notyet /* just do the safe slow thing for now */
4567 if (!M_READONLY(m)) {
4568 if (M_LEADINGSPACE(m) < shorfall) {
4569 void *m_dat;
4570 m_dat = (m->m_flags & M_PKTHDR) ?
4571 m->m_pktdat : m->dat;
4572 memmove(m_dat, mtod(m, void*), m->m_len);
4573 m->m_data = m_dat;
4574 }
4575 } else
4576 #endif /* just do the safe slow thing */
4577 {
4578 struct mbuf * n = NULL;
4579 int newprevlen = prev->m_len - shortfall;
4580
4581 MGET(n, M_NOWAIT, MT_DATA);
4582 if (n == NULL)
4583 return ENOBUFS;
4584 KASSERT(m->m_len + shortfall < MLEN
4585 /*,
4586 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4587
4588 /* first copy the data we're stealing from prev */
4589 memcpy(n->m_data, prev->m_data + newprevlen,
4590 shortfall);
4591
4592 /* update prev->m_len accordingly */
4593 prev->m_len -= shortfall;
4594
4595 /* copy data from runt m */
4596 memcpy(n->m_data + shortfall, m->m_data,
4597 m->m_len);
4598
4599 /* n holds what we stole from prev, plus m */
4600 n->m_len = shortfall + m->m_len;
4601
4602 /* stitch n into chain and free m */
4603 n->m_next = m->m_next;
4604 prev->m_next = n;
4605 /* KASSERT(m->m_next == NULL); */
4606 m->m_next = NULL;
4607 m_free(m);
4608 m = n; /* for continuing loop */
4609 }
4610 }
4611 prevlen = m->m_len;
4612 }
4613 return 0;
4614 }
4615
4616 /*
4617 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4618 * pointers to descriptors.
4619 */
4620 static int
4621 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4622 {
4623 struct bge_tx_bd *f = NULL;
4624 uint32_t frag, cur;
4625 uint16_t csum_flags = 0;
4626 uint16_t txbd_tso_flags = 0;
4627 struct txdmamap_pool_entry *dma;
4628 bus_dmamap_t dmamap;
4629 int i = 0;
4630 struct m_tag *mtag;
4631 int use_tso, maxsegsize, error;
4632
4633 cur = frag = *txidx;
4634
4635 if (m_head->m_pkthdr.csum_flags) {
4636 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4637 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4638 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4639 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4640 }
4641
4642 /*
4643 * If we were asked to do an outboard checksum, and the NIC
4644 * has the bug where it sometimes adds in the Ethernet padding,
4645 * explicitly pad with zeros so the cksum will be correct either way.
4646 * (For now, do this for all chip versions, until newer
4647 * are confirmed to not require the workaround.)
4648 */
4649 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4650 #ifdef notyet
4651 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4652 #endif
4653 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4654 goto check_dma_bug;
4655
4656 if (bge_cksum_pad(m_head) != 0)
4657 return ENOBUFS;
4658
4659 check_dma_bug:
4660 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4661 goto doit;
4662
4663 /*
4664 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4665 * less than eight bytes. If we encounter a teeny mbuf
4666 * at the end of a chain, we can pad. Otherwise, copy.
4667 */
4668 if (bge_compact_dma_runt(m_head) != 0)
4669 return ENOBUFS;
4670
4671 doit:
4672 dma = SLIST_FIRST(&sc->txdma_list);
4673 if (dma == NULL)
4674 return ENOBUFS;
4675 dmamap = dma->dmamap;
4676
4677 /*
4678 * Set up any necessary TSO state before we start packing...
4679 */
4680 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4681 if (!use_tso) {
4682 maxsegsize = 0;
4683 } else { /* TSO setup */
4684 unsigned mss;
4685 struct ether_header *eh;
4686 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4687 struct mbuf * m0 = m_head;
4688 struct ip *ip;
4689 struct tcphdr *th;
4690 int iphl, hlen;
4691
4692 /*
4693 * XXX It would be nice if the mbuf pkthdr had offset
4694 * fields for the protocol headers.
4695 */
4696
4697 eh = mtod(m0, struct ether_header *);
4698 switch (htons(eh->ether_type)) {
4699 case ETHERTYPE_IP:
4700 offset = ETHER_HDR_LEN;
4701 break;
4702
4703 case ETHERTYPE_VLAN:
4704 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4705 break;
4706
4707 default:
4708 /*
4709 * Don't support this protocol or encapsulation.
4710 */
4711 return ENOBUFS;
4712 }
4713
4714 /*
4715 * TCP/IP headers are in the first mbuf; we can do
4716 * this the easy way.
4717 */
4718 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4719 hlen = iphl + offset;
4720 if (__predict_false(m0->m_len <
4721 (hlen + sizeof(struct tcphdr)))) {
4722
4723 aprint_debug_dev(sc->bge_dev,
4724 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4725 "not handled yet\n",
4726 m0->m_len, hlen+ sizeof(struct tcphdr));
4727 #ifdef NOTYET
4728 /*
4729 * XXX jonathan (at) NetBSD.org: untested.
4730 * how to force this branch to be taken?
4731 */
4732 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4733
4734 m_copydata(m0, offset, sizeof(ip), &ip);
4735 m_copydata(m0, hlen, sizeof(th), &th);
4736
4737 ip.ip_len = 0;
4738
4739 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4740 sizeof(ip.ip_len), &ip.ip_len);
4741
4742 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4743 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4744
4745 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4746 sizeof(th.th_sum), &th.th_sum);
4747
4748 hlen += th.th_off << 2;
4749 iptcp_opt_words = hlen;
4750 #else
4751 /*
4752 * if_wm "hard" case not yet supported, can we not
4753 * mandate it out of existence?
4754 */
4755 (void) ip; (void)th; (void) ip_tcp_hlen;
4756
4757 return ENOBUFS;
4758 #endif
4759 } else {
4760 ip = (struct ip *) (mtod(m0, char *) + offset);
4761 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4762 ip_tcp_hlen = iphl + (th->th_off << 2);
4763
4764 /* Total IP/TCP options, in 32-bit words */
4765 iptcp_opt_words = (ip_tcp_hlen
4766 - sizeof(struct tcphdr)
4767 - sizeof(struct ip)) >> 2;
4768 }
4769 if (BGE_IS_575X_PLUS(sc)) {
4770 th->th_sum = 0;
4771 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4772 } else {
4773 /*
4774 * XXX jonathan (at) NetBSD.org: 5705 untested.
4775 * Requires TSO firmware patch for 5701/5703/5704.
4776 */
4777 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4778 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4779 }
4780
4781 mss = m_head->m_pkthdr.segsz;
4782 txbd_tso_flags |=
4783 BGE_TXBDFLAG_CPU_PRE_DMA |
4784 BGE_TXBDFLAG_CPU_POST_DMA;
4785
4786 /*
4787 * Our NIC TSO-assist assumes TSO has standard, optionless
4788 * IPv4 and TCP headers, which total 40 bytes. By default,
4789 * the NIC copies 40 bytes of IP/TCP header from the
4790 * supplied header into the IP/TCP header portion of
4791 * each post-TSO-segment. If the supplied packet has IP or
4792 * TCP options, we need to tell the NIC to copy those extra
4793 * bytes into each post-TSO header, in addition to the normal
4794 * 40-byte IP/TCP header (and to leave space accordingly).
4795 * Unfortunately, the driver encoding of option length
4796 * varies across different ASIC families.
4797 */
4798 tcp_seg_flags = 0;
4799 if (iptcp_opt_words) {
4800 if (BGE_IS_5705_PLUS(sc)) {
4801 tcp_seg_flags =
4802 iptcp_opt_words << 11;
4803 } else {
4804 txbd_tso_flags |=
4805 iptcp_opt_words << 12;
4806 }
4807 }
4808 maxsegsize = mss | tcp_seg_flags;
4809 ip->ip_len = htons(mss + ip_tcp_hlen);
4810
4811 } /* TSO setup */
4812
4813 /*
4814 * Start packing the mbufs in this chain into
4815 * the fragment pointers. Stop when we run out
4816 * of fragments or hit the end of the mbuf chain.
4817 */
4818 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4819 BUS_DMA_NOWAIT);
4820 if (error)
4821 return ENOBUFS;
4822 /*
4823 * Sanity check: avoid coming within 16 descriptors
4824 * of the end of the ring.
4825 */
4826 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4827 BGE_TSO_PRINTF(("%s: "
4828 " dmamap_load_mbuf too close to ring wrap\n",
4829 device_xname(sc->bge_dev)));
4830 goto fail_unload;
4831 }
4832
4833 mtag = sc->ethercom.ec_nvlans ?
4834 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4835
4836
4837 /* Iterate over dmap-map fragments. */
4838 for (i = 0; i < dmamap->dm_nsegs; i++) {
4839 f = &sc->bge_rdata->bge_tx_ring[frag];
4840 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4841 break;
4842
4843 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4844 f->bge_len = dmamap->dm_segs[i].ds_len;
4845
4846 /*
4847 * For 5751 and follow-ons, for TSO we must turn
4848 * off checksum-assist flag in the tx-descr, and
4849 * supply the ASIC-revision-specific encoding
4850 * of TSO flags and segsize.
4851 */
4852 if (use_tso) {
4853 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4854 f->bge_rsvd = maxsegsize;
4855 f->bge_flags = csum_flags | txbd_tso_flags;
4856 } else {
4857 f->bge_rsvd = 0;
4858 f->bge_flags =
4859 (csum_flags | txbd_tso_flags) & 0x0fff;
4860 }
4861 } else {
4862 f->bge_rsvd = 0;
4863 f->bge_flags = csum_flags;
4864 }
4865
4866 if (mtag != NULL) {
4867 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4868 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4869 } else {
4870 f->bge_vlan_tag = 0;
4871 }
4872 cur = frag;
4873 BGE_INC(frag, BGE_TX_RING_CNT);
4874 }
4875
4876 if (i < dmamap->dm_nsegs) {
4877 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4878 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4879 goto fail_unload;
4880 }
4881
4882 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4883 BUS_DMASYNC_PREWRITE);
4884
4885 if (frag == sc->bge_tx_saved_considx) {
4886 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4887 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4888
4889 goto fail_unload;
4890 }
4891
4892 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4893 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4894 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4895 sc->txdma[cur] = dma;
4896 sc->bge_txcnt += dmamap->dm_nsegs;
4897
4898 *txidx = frag;
4899
4900 return 0;
4901
4902 fail_unload:
4903 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4904
4905 return ENOBUFS;
4906 }
4907
4908 /*
4909 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4910 * to the mbuf data regions directly in the transmit descriptors.
4911 */
4912 static void
4913 bge_start(struct ifnet *ifp)
4914 {
4915 struct bge_softc *sc;
4916 struct mbuf *m_head = NULL;
4917 uint32_t prodidx;
4918 int pkts = 0;
4919
4920 sc = ifp->if_softc;
4921
4922 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4923 return;
4924
4925 prodidx = sc->bge_tx_prodidx;
4926
4927 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4928 IFQ_POLL(&ifp->if_snd, m_head);
4929 if (m_head == NULL)
4930 break;
4931
4932 #if 0
4933 /*
4934 * XXX
4935 * safety overkill. If this is a fragmented packet chain
4936 * with delayed TCP/UDP checksums, then only encapsulate
4937 * it if we have enough descriptors to handle the entire
4938 * chain at once.
4939 * (paranoia -- may not actually be needed)
4940 */
4941 if (m_head->m_flags & M_FIRSTFRAG &&
4942 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4943 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4944 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4945 ifp->if_flags |= IFF_OACTIVE;
4946 break;
4947 }
4948 }
4949 #endif
4950
4951 /*
4952 * Pack the data into the transmit ring. If we
4953 * don't have room, set the OACTIVE flag and wait
4954 * for the NIC to drain the ring.
4955 */
4956 if (bge_encap(sc, m_head, &prodidx)) {
4957 ifp->if_flags |= IFF_OACTIVE;
4958 break;
4959 }
4960
4961 /* now we are committed to transmit the packet */
4962 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4963 pkts++;
4964
4965 /*
4966 * If there's a BPF listener, bounce a copy of this frame
4967 * to him.
4968 */
4969 bpf_mtap(ifp, m_head);
4970 }
4971 if (pkts == 0)
4972 return;
4973
4974 /* Transmit */
4975 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4976 /* 5700 b2 errata */
4977 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4978 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4979
4980 sc->bge_tx_prodidx = prodidx;
4981
4982 /*
4983 * Set a timeout in case the chip goes out to lunch.
4984 */
4985 ifp->if_timer = 5;
4986 }
4987
4988 static int
4989 bge_init(struct ifnet *ifp)
4990 {
4991 struct bge_softc *sc = ifp->if_softc;
4992 const uint16_t *m;
4993 uint32_t mode;
4994 int s, error = 0;
4995
4996 s = splnet();
4997
4998 ifp = &sc->ethercom.ec_if;
4999
5000 /* Cancel pending I/O and flush buffers. */
5001 bge_stop(ifp, 0);
5002
5003 bge_stop_fw(sc);
5004 bge_sig_pre_reset(sc, BGE_RESET_START);
5005 bge_reset(sc);
5006 bge_sig_legacy(sc, BGE_RESET_START);
5007 bge_sig_post_reset(sc, BGE_RESET_START);
5008
5009 bge_chipinit(sc);
5010
5011 /*
5012 * Init the various state machines, ring
5013 * control blocks and firmware.
5014 */
5015 error = bge_blockinit(sc);
5016 if (error != 0) {
5017 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5018 error);
5019 splx(s);
5020 return error;
5021 }
5022
5023 ifp = &sc->ethercom.ec_if;
5024
5025 /* Specify MTU. */
5026 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5027 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5028
5029 /* Load our MAC address. */
5030 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5031 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5032 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5033
5034 /* Enable or disable promiscuous mode as needed. */
5035 if (ifp->if_flags & IFF_PROMISC)
5036 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5037 else
5038 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5039
5040 /* Program multicast filter. */
5041 bge_setmulti(sc);
5042
5043 /* Init RX ring. */
5044 bge_init_rx_ring_std(sc);
5045
5046 /*
5047 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5048 * memory to insure that the chip has in fact read the first
5049 * entry of the ring.
5050 */
5051 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5052 uint32_t v, i;
5053 for (i = 0; i < 10; i++) {
5054 DELAY(20);
5055 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5056 if (v == (MCLBYTES - ETHER_ALIGN))
5057 break;
5058 }
5059 if (i == 10)
5060 aprint_error_dev(sc->bge_dev,
5061 "5705 A0 chip failed to load RX ring\n");
5062 }
5063
5064 /* Init jumbo RX ring. */
5065 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5066 bge_init_rx_ring_jumbo(sc);
5067
5068 /* Init our RX return ring index */
5069 sc->bge_rx_saved_considx = 0;
5070
5071 /* Init TX ring. */
5072 bge_init_tx_ring(sc);
5073
5074 /* Enable TX MAC state machine lockup fix. */
5075 mode = CSR_READ_4(sc, BGE_TX_MODE);
5076 if (BGE_IS_5755_PLUS(sc) ||
5077 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5078 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5079 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5080 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5081 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5082 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5083 }
5084
5085 /* Turn on transmitter */
5086 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5087 DELAY(100);
5088
5089 /* Turn on receiver */
5090 mode = CSR_READ_4(sc, BGE_RX_MODE);
5091 if (BGE_IS_5755_PLUS(sc))
5092 mode |= BGE_RXMODE_IPV6_ENABLE;
5093 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5094 DELAY(10);
5095
5096 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5097
5098 /* Tell firmware we're alive. */
5099 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5100
5101 /* Enable host interrupts. */
5102 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5103 BGE_PCIMISCCTL_CLEAR_INTA);
5104 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5105 BGE_PCIMISCCTL_MASK_PCI_INTR);
5106 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5107
5108 if ((error = bge_ifmedia_upd(ifp)) != 0)
5109 goto out;
5110
5111 ifp->if_flags |= IFF_RUNNING;
5112 ifp->if_flags &= ~IFF_OACTIVE;
5113
5114 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5115
5116 out:
5117 sc->bge_if_flags = ifp->if_flags;
5118 splx(s);
5119
5120 return error;
5121 }
5122
5123 /*
5124 * Set media options.
5125 */
5126 static int
5127 bge_ifmedia_upd(struct ifnet *ifp)
5128 {
5129 struct bge_softc *sc = ifp->if_softc;
5130 struct mii_data *mii = &sc->bge_mii;
5131 struct ifmedia *ifm = &sc->bge_ifmedia;
5132 int rc;
5133
5134 /* If this is a 1000baseX NIC, enable the TBI port. */
5135 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5136 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5137 return EINVAL;
5138 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5139 case IFM_AUTO:
5140 /*
5141 * The BCM5704 ASIC appears to have a special
5142 * mechanism for programming the autoneg
5143 * advertisement registers in TBI mode.
5144 */
5145 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5146 uint32_t sgdig;
5147 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5148 if (sgdig & BGE_SGDIGSTS_DONE) {
5149 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5150 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5151 sgdig |= BGE_SGDIGCFG_AUTO |
5152 BGE_SGDIGCFG_PAUSE_CAP |
5153 BGE_SGDIGCFG_ASYM_PAUSE;
5154 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5155 sgdig | BGE_SGDIGCFG_SEND);
5156 DELAY(5);
5157 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5158 sgdig);
5159 }
5160 }
5161 break;
5162 case IFM_1000_SX:
5163 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5164 BGE_CLRBIT(sc, BGE_MAC_MODE,
5165 BGE_MACMODE_HALF_DUPLEX);
5166 } else {
5167 BGE_SETBIT(sc, BGE_MAC_MODE,
5168 BGE_MACMODE_HALF_DUPLEX);
5169 }
5170 DELAY(40);
5171 break;
5172 default:
5173 return EINVAL;
5174 }
5175 /* XXX 802.3x flow control for 1000BASE-SX */
5176 return 0;
5177 }
5178
5179 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5180 if ((rc = mii_mediachg(mii)) == ENXIO)
5181 return 0;
5182
5183 /*
5184 * Force an interrupt so that we will call bge_link_upd
5185 * if needed and clear any pending link state attention.
5186 * Without this we are not getting any further interrupts
5187 * for link state changes and thus will not UP the link and
5188 * not be able to send in bge_start. The only way to get
5189 * things working was to receive a packet and get a RX intr.
5190 */
5191 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5192 sc->bge_flags & BGE_IS_5788)
5193 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5194 else
5195 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5196
5197 return rc;
5198 }
5199
5200 /*
5201 * Report current media status.
5202 */
5203 static void
5204 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5205 {
5206 struct bge_softc *sc = ifp->if_softc;
5207 struct mii_data *mii = &sc->bge_mii;
5208
5209 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5210 ifmr->ifm_status = IFM_AVALID;
5211 ifmr->ifm_active = IFM_ETHER;
5212 if (CSR_READ_4(sc, BGE_MAC_STS) &
5213 BGE_MACSTAT_TBI_PCS_SYNCHED)
5214 ifmr->ifm_status |= IFM_ACTIVE;
5215 ifmr->ifm_active |= IFM_1000_SX;
5216 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5217 ifmr->ifm_active |= IFM_HDX;
5218 else
5219 ifmr->ifm_active |= IFM_FDX;
5220 return;
5221 }
5222
5223 mii_pollstat(mii);
5224 ifmr->ifm_status = mii->mii_media_status;
5225 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5226 sc->bge_flowflags;
5227 }
5228
5229 static int
5230 bge_ifflags_cb(struct ethercom *ec)
5231 {
5232 struct ifnet *ifp = &ec->ec_if;
5233 struct bge_softc *sc = ifp->if_softc;
5234 int change = ifp->if_flags ^ sc->bge_if_flags;
5235
5236 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5237 return ENETRESET;
5238 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5239 return 0;
5240
5241 if ((ifp->if_flags & IFF_PROMISC) == 0)
5242 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5243 else
5244 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5245
5246 bge_setmulti(sc);
5247
5248 sc->bge_if_flags = ifp->if_flags;
5249 return 0;
5250 }
5251
5252 static int
5253 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5254 {
5255 struct bge_softc *sc = ifp->if_softc;
5256 struct ifreq *ifr = (struct ifreq *) data;
5257 int s, error = 0;
5258 struct mii_data *mii;
5259
5260 s = splnet();
5261
5262 switch (command) {
5263 case SIOCSIFMEDIA:
5264 /* XXX Flow control is not supported for 1000BASE-SX */
5265 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5266 ifr->ifr_media &= ~IFM_ETH_FMASK;
5267 sc->bge_flowflags = 0;
5268 }
5269
5270 /* Flow control requires full-duplex mode. */
5271 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5272 (ifr->ifr_media & IFM_FDX) == 0) {
5273 ifr->ifr_media &= ~IFM_ETH_FMASK;
5274 }
5275 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5276 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5277 /* We can do both TXPAUSE and RXPAUSE. */
5278 ifr->ifr_media |=
5279 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5280 }
5281 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5282 }
5283 /* FALLTHROUGH */
5284 case SIOCGIFMEDIA:
5285 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5286 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5287 command);
5288 } else {
5289 mii = &sc->bge_mii;
5290 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5291 command);
5292 }
5293 break;
5294 default:
5295 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5296 break;
5297
5298 error = 0;
5299
5300 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5301 ;
5302 else if (ifp->if_flags & IFF_RUNNING)
5303 bge_setmulti(sc);
5304 break;
5305 }
5306
5307 splx(s);
5308
5309 return error;
5310 }
5311
5312 static void
5313 bge_watchdog(struct ifnet *ifp)
5314 {
5315 struct bge_softc *sc;
5316
5317 sc = ifp->if_softc;
5318
5319 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5320
5321 ifp->if_flags &= ~IFF_RUNNING;
5322 bge_init(ifp);
5323
5324 ifp->if_oerrors++;
5325 }
5326
5327 static void
5328 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5329 {
5330 int i;
5331
5332 BGE_CLRBIT_FLUSH(sc, reg, bit);
5333
5334 for (i = 0; i < 1000; i++) {
5335 delay(100);
5336 if ((CSR_READ_4(sc, reg) & bit) == 0)
5337 return;
5338 }
5339
5340 /*
5341 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5342 * on some environment (and once after boot?)
5343 */
5344 if (reg != BGE_SRS_MODE)
5345 aprint_error_dev(sc->bge_dev,
5346 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5347 (u_long)reg, bit);
5348 }
5349
5350 /*
5351 * Stop the adapter and free any mbufs allocated to the
5352 * RX and TX lists.
5353 */
5354 static void
5355 bge_stop(struct ifnet *ifp, int disable)
5356 {
5357 struct bge_softc *sc = ifp->if_softc;
5358
5359 callout_stop(&sc->bge_timeout);
5360
5361 /* Disable host interrupts. */
5362 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5363 BGE_PCIMISCCTL_MASK_PCI_INTR);
5364 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5365
5366 /*
5367 * Tell firmware we're shutting down.
5368 */
5369 bge_stop_fw(sc);
5370 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5371
5372 /*
5373 * Disable all of the receiver blocks.
5374 */
5375 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5376 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5377 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5378 if (BGE_IS_5700_FAMILY(sc))
5379 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5380 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5381 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5382 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5383
5384 /*
5385 * Disable all of the transmit blocks.
5386 */
5387 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5388 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5389 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5390 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5391 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5392 if (BGE_IS_5700_FAMILY(sc))
5393 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5394 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5395
5396 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5397 delay(40);
5398
5399 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5400
5401 /*
5402 * Shut down all of the memory managers and related
5403 * state machines.
5404 */
5405 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5406 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5407 if (BGE_IS_5700_FAMILY(sc))
5408 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5409
5410 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5411 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5412
5413 if (BGE_IS_5700_FAMILY(sc)) {
5414 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5415 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5416 }
5417
5418 bge_reset(sc);
5419 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5420 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5421
5422 /*
5423 * Keep the ASF firmware running if up.
5424 */
5425 if (sc->bge_asf_mode & ASF_STACKUP)
5426 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5427 else
5428 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5429
5430 /* Free the RX lists. */
5431 bge_free_rx_ring_std(sc);
5432
5433 /* Free jumbo RX list. */
5434 if (BGE_IS_JUMBO_CAPABLE(sc))
5435 bge_free_rx_ring_jumbo(sc);
5436
5437 /* Free TX buffers. */
5438 bge_free_tx_ring(sc);
5439
5440 /*
5441 * Isolate/power down the PHY.
5442 */
5443 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5444 mii_down(&sc->bge_mii);
5445
5446 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5447
5448 /* Clear MAC's link state (PHY may still have link UP). */
5449 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5450
5451 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5452 }
5453
5454 static void
5455 bge_link_upd(struct bge_softc *sc)
5456 {
5457 struct ifnet *ifp = &sc->ethercom.ec_if;
5458 struct mii_data *mii = &sc->bge_mii;
5459 uint32_t status;
5460 int link;
5461
5462 /* Clear 'pending link event' flag */
5463 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5464
5465 /*
5466 * Process link state changes.
5467 * Grrr. The link status word in the status block does
5468 * not work correctly on the BCM5700 rev AX and BX chips,
5469 * according to all available information. Hence, we have
5470 * to enable MII interrupts in order to properly obtain
5471 * async link changes. Unfortunately, this also means that
5472 * we have to read the MAC status register to detect link
5473 * changes, thereby adding an additional register access to
5474 * the interrupt handler.
5475 */
5476
5477 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5478 status = CSR_READ_4(sc, BGE_MAC_STS);
5479 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5480 mii_pollstat(mii);
5481
5482 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5483 mii->mii_media_status & IFM_ACTIVE &&
5484 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5485 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5486 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5487 (!(mii->mii_media_status & IFM_ACTIVE) ||
5488 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5489 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5490
5491 /* Clear the interrupt */
5492 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5493 BGE_EVTENB_MI_INTERRUPT);
5494 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5495 BRGPHY_MII_ISR);
5496 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5497 BRGPHY_MII_IMR, BRGPHY_INTRS);
5498 }
5499 return;
5500 }
5501
5502 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5503 status = CSR_READ_4(sc, BGE_MAC_STS);
5504 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5505 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5506 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5507 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
5508 BGE_CLRBIT(sc, BGE_MAC_MODE,
5509 BGE_MACMODE_TBI_SEND_CFGS);
5510 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5511 if_link_state_change(ifp, LINK_STATE_UP);
5512 }
5513 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5514 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5515 if_link_state_change(ifp, LINK_STATE_DOWN);
5516 }
5517 /*
5518 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5519 * This should not happen since mii callouts are locked now, but
5520 * we keep this check for debug.
5521 */
5522 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5523 /*
5524 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5525 * bit in status word always set. Workaround this bug by
5526 * reading PHY link status directly.
5527 */
5528 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5529 BGE_STS_LINK : 0;
5530
5531 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5532 mii_pollstat(mii);
5533
5534 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5535 mii->mii_media_status & IFM_ACTIVE &&
5536 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5537 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5538 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5539 (!(mii->mii_media_status & IFM_ACTIVE) ||
5540 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5541 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5542 }
5543 }
5544
5545 /* Clear the attention */
5546 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5547 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5548 BGE_MACSTAT_LINK_CHANGED);
5549 }
5550
5551 static int
5552 bge_sysctl_verify(SYSCTLFN_ARGS)
5553 {
5554 int error, t;
5555 struct sysctlnode node;
5556
5557 node = *rnode;
5558 t = *(int*)rnode->sysctl_data;
5559 node.sysctl_data = &t;
5560 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5561 if (error || newp == NULL)
5562 return error;
5563
5564 #if 0
5565 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5566 node.sysctl_num, rnode->sysctl_num));
5567 #endif
5568
5569 if (node.sysctl_num == bge_rxthresh_nodenum) {
5570 if (t < 0 || t >= NBGE_RX_THRESH)
5571 return EINVAL;
5572 bge_update_all_threshes(t);
5573 } else
5574 return EINVAL;
5575
5576 *(int*)rnode->sysctl_data = t;
5577
5578 return 0;
5579 }
5580
5581 /*
5582 * Set up sysctl(3) MIB, hw.bge.*.
5583 */
5584 static void
5585 bge_sysctl_init(struct bge_softc *sc)
5586 {
5587 int rc, bge_root_num;
5588 const struct sysctlnode *node;
5589
5590 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5591 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5592 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5593 goto out;
5594 }
5595
5596 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5597 0, CTLTYPE_NODE, "bge",
5598 SYSCTL_DESCR("BGE interface controls"),
5599 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5600 goto out;
5601 }
5602
5603 bge_root_num = node->sysctl_num;
5604
5605 /* BGE Rx interrupt mitigation level */
5606 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5607 CTLFLAG_READWRITE,
5608 CTLTYPE_INT, "rx_lvl",
5609 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5610 bge_sysctl_verify, 0,
5611 &bge_rx_thresh_lvl,
5612 0, CTL_HW, bge_root_num, CTL_CREATE,
5613 CTL_EOL)) != 0) {
5614 goto out;
5615 }
5616
5617 bge_rxthresh_nodenum = node->sysctl_num;
5618
5619 return;
5620
5621 out:
5622 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5623 }
5624
5625 #ifdef BGE_DEBUG
5626 void
5627 bge_debug_info(struct bge_softc *sc)
5628 {
5629
5630 printf("Hardware Flags:\n");
5631 if (BGE_IS_57765_PLUS(sc))
5632 printf(" - 57765 Plus\n");
5633 if (BGE_IS_5717_PLUS(sc))
5634 printf(" - 5717 Plus\n");
5635 if (BGE_IS_5755_PLUS(sc))
5636 printf(" - 5755 Plus\n");
5637 if (BGE_IS_575X_PLUS(sc))
5638 printf(" - 575X Plus\n");
5639 if (BGE_IS_5705_PLUS(sc))
5640 printf(" - 5705 Plus\n");
5641 if (BGE_IS_5714_FAMILY(sc))
5642 printf(" - 5714 Family\n");
5643 if (BGE_IS_5700_FAMILY(sc))
5644 printf(" - 5700 Family\n");
5645 if (sc->bge_flags & BGE_IS_5788)
5646 printf(" - 5788\n");
5647 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5648 printf(" - Supports Jumbo Frames\n");
5649 if (sc->bge_flags & BGE_NO_EEPROM)
5650 printf(" - No EEPROM\n");
5651 if (sc->bge_flags & BGE_PCIX)
5652 printf(" - PCI-X Bus\n");
5653 if (sc->bge_flags & BGE_PCIE)
5654 printf(" - PCI Express Bus\n");
5655 if (sc->bge_flags & BGE_NO_3LED)
5656 printf(" - No 3 LEDs\n");
5657 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5658 printf(" - RX Alignment Bug\n");
5659 if (sc->bge_flags & BGE_APE)
5660 printf(" - APE\n");
5661 if (sc->bge_flags & BGE_CPMU_PRESENT)
5662 printf(" - CPMU\n");
5663 if (sc->bge_flags & BGE_TSO)
5664 printf(" - TSO\n");
5665 }
5666 #endif /* BGE_DEBUG */
5667
5668 static int
5669 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5670 {
5671 prop_dictionary_t dict;
5672 prop_data_t ea;
5673
5674 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5675 return 1;
5676
5677 dict = device_properties(sc->bge_dev);
5678 ea = prop_dictionary_get(dict, "mac-address");
5679 if (ea != NULL) {
5680 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5681 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5682 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5683 return 0;
5684 }
5685
5686 return 1;
5687 }
5688
5689 static int
5690 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5691 {
5692 uint32_t mac_addr;
5693
5694 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5695 if ((mac_addr >> 16) == 0x484b) {
5696 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5697 ether_addr[1] = (uint8_t)mac_addr;
5698 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5699 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5700 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5701 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5702 ether_addr[5] = (uint8_t)mac_addr;
5703 return 0;
5704 }
5705 return 1;
5706 }
5707
5708 static int
5709 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5710 {
5711 int mac_offset = BGE_EE_MAC_OFFSET;
5712
5713 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5714 mac_offset = BGE_EE_MAC_OFFSET_5906;
5715
5716 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5717 ETHER_ADDR_LEN));
5718 }
5719
5720 static int
5721 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5722 {
5723
5724 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5725 return 1;
5726
5727 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5728 ETHER_ADDR_LEN));
5729 }
5730
5731 static int
5732 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5733 {
5734 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5735 /* NOTE: Order is critical */
5736 bge_get_eaddr_fw,
5737 bge_get_eaddr_mem,
5738 bge_get_eaddr_nvram,
5739 bge_get_eaddr_eeprom,
5740 NULL
5741 };
5742 const bge_eaddr_fcn_t *func;
5743
5744 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5745 if ((*func)(sc, eaddr) == 0)
5746 break;
5747 }
5748 return (*func == NULL ? ENXIO : 0);
5749 }
5750