if_bge.c revision 1.219 1 /* $NetBSD: if_bge.c,v 1.219 2013/03/19 03:40:16 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.219 2013/03/19 03:40:16 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5724,
440 "Broadcom BCM5724 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5750,
444 "Broadcom BCM5750 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5750M,
448 "Broadcom BCM5750M Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751,
452 "Broadcom BCM5751 Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5751F,
456 "Broadcom BCM5751F Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5751M,
460 "Broadcom BCM5751M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5752,
464 "Broadcom BCM5752 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5752M,
468 "Broadcom BCM5752M Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753,
472 "Broadcom BCM5753 Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5753F,
476 "Broadcom BCM5753F Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5753M,
480 "Broadcom BCM5753M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5754,
484 "Broadcom BCM5754 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5754M,
488 "Broadcom BCM5754M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5755,
492 "Broadcom BCM5755 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5755M,
496 "Broadcom BCM5755M Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5756,
500 "Broadcom BCM5756 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761,
504 "Broadcom BCM5761 Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761E,
508 "Broadcom BCM5761E Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5761S,
512 "Broadcom BCM5761S Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5761SE,
516 "Broadcom BCM5761SE Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5764,
520 "Broadcom BCM5764 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5780,
524 "Broadcom BCM5780 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5780S,
528 "Broadcom BCM5780S Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5781,
532 "Broadcom BCM5781 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5782,
536 "Broadcom BCM5782 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5784M,
540 "BCM5784M NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5785F,
544 "BCM5785F NetLink 10/100 Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5785G,
548 "BCM5785G NetLink 1000baseT Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5786,
552 "Broadcom BCM5786 Gigabit Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787,
556 "Broadcom BCM5787 Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5787F,
560 "Broadcom BCM5787F 10/100 Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5787M,
564 "Broadcom BCM5787M Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5788,
568 "Broadcom BCM5788 Gigabit Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5789,
572 "Broadcom BCM5789 Gigabit Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5901,
576 "Broadcom BCM5901 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5901A2,
580 "Broadcom BCM5901A2 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5903M,
584 "Broadcom BCM5903M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM5906,
588 "Broadcom BCM5906 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM5906M,
592 "Broadcom BCM5906M Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57760,
596 "Broadcom BCM57760 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57761,
600 "Broadcom BCM57761 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57762,
604 "Broadcom BCM57762 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57765,
608 "Broadcom BCM57765 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57766,
612 "Broadcom BCM57766 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57780,
616 "Broadcom BCM57780 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57781,
620 "Broadcom BCM57781 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57782,
624 "Broadcom BCM57782 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57785,
628 "Broadcom BCM57785 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57786,
632 "Broadcom BCM57786 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57788,
636 "Broadcom BCM57788 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57790,
640 "Broadcom BCM57790 Fast Ethernet",
641 },
642 { PCI_VENDOR_BROADCOM,
643 PCI_PRODUCT_BROADCOM_BCM57791,
644 "Broadcom BCM57791 Fast Ethernet",
645 },
646 { PCI_VENDOR_BROADCOM,
647 PCI_PRODUCT_BROADCOM_BCM57795,
648 "Broadcom BCM57795 Fast Ethernet",
649 },
650 { PCI_VENDOR_SCHNEIDERKOCH,
651 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
652 "SysKonnect SK-9Dx1 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_3COM,
655 PCI_PRODUCT_3COM_3C996,
656 "3Com 3c996 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PW008GE4,
660 "Fujitsu PW008GE4 Gigabit Ethernet",
661 },
662 { PCI_VENDOR_FUJITSU4,
663 PCI_PRODUCT_FUJITSU4_PW008GE5,
664 "Fujitsu PW008GE5 Gigabit Ethernet",
665 },
666 { PCI_VENDOR_FUJITSU4,
667 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
668 "Fujitsu Primepower 250/450 Gigabit Ethernet",
669 },
670 { 0,
671 0,
672 NULL },
673 };
674
675 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
676 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
677 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
678 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
679 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
680 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
681 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
682 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
683
684 static const struct bge_revision {
685 uint32_t br_chipid;
686 const char *br_name;
687 } bge_revisions[] = {
688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 /* 5754 and 5787 share the same ASIC ID */
744 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754
755 { 0, NULL }
756 };
757
758 /*
759 * Some defaults for major revisions, so that newer steppings
760 * that we don't know about have a shot at working.
761 */
762 static const struct bge_revision bge_majorrevs[] = {
763 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 /* 5754 and 5787 share the same ASIC ID */
778 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
786
787 { 0, NULL }
788 };
789
790 static int bge_allow_asf = 1;
791
792 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
793 bge_probe, bge_attach, NULL, NULL);
794
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 pcireg_t val;
799
800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 return 0;
803
804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 return val;
808 }
809
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818
819 /*
820 * PCI Express only
821 */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 pcireg_t val;
826
827 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 + PCI_PCIE_DCSR);
829 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
830 switch (sc->bge_expmrq) {
831 case 2048:
832 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 break;
834 case 4096:
835 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 break;
837 default:
838 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 break;
840 }
841 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 + PCI_PCIE_DCSR, val);
843 }
844
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 CSR_WRITE_4(sc, off, val);
865 }
866
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872
873 CSR_WRITE_4(sc, off, val);
874 }
875
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881
882 CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884
885 /*
886 * Clear all stale locks and select the lock for this driver instance.
887 */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 struct pci_attach_args *pa = &(sc->bge_pa);
892 uint32_t bit, regbase;
893 int i;
894
895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 regbase = BGE_APE_LOCK_GRANT;
897 else
898 regbase = BGE_APE_PER_LOCK_GRANT;
899
900 /* Clear any stale locks. */
901 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 switch (i) {
903 case BGE_APE_LOCK_PHY0:
904 case BGE_APE_LOCK_PHY1:
905 case BGE_APE_LOCK_PHY2:
906 case BGE_APE_LOCK_PHY3:
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 break;
909 default:
910 if (pa->pa_function != 0)
911 bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 else
913 bit = (1 << pa->pa_function);
914 }
915 APE_WRITE_4(sc, regbase + 4 * i, bit);
916 }
917
918 /* Select the PHY lock based on the device's function number. */
919 switch (pa->pa_function) {
920 case 0:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 break;
923 case 1:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 break;
926 case 2:
927 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 break;
929 case 3:
930 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 break;
932 default:
933 printf("%s: PHY lock not supported on function\n",
934 device_xname(sc->bge_dev));
935 break;
936 }
937 }
938
939 /*
940 * Check for APE firmware, set flags, and print version info.
941 */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 const char *fwtype;
946 uint32_t apedata, features;
947
948 /* Check for a valid APE signature in shared memory. */
949 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 return;
953 }
954
955 /* Check if APE firmware is running. */
956 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 printf("%s: APE signature found but FW status not ready! "
959 "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 return;
961 }
962
963 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964
965 /* Fetch the APE firwmare type and version. */
966 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 fwtype = "NCSI";
971 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 fwtype = "DASH";
974 } else
975 fwtype = "UNKN";
976
977 /* Print the APE firmware version. */
978 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 struct pci_attach_args *pa = &(sc->bge_pa);
989 uint32_t bit, gnt, req, status;
990 int i, off;
991
992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 return (0);
994
995 /* Lock request/grant registers have different bases. */
996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 req = BGE_APE_LOCK_REQ;
998 gnt = BGE_APE_LOCK_GRANT;
999 } else {
1000 req = BGE_APE_PER_LOCK_REQ;
1001 gnt = BGE_APE_PER_LOCK_GRANT;
1002 }
1003
1004 off = 4 * locknum;
1005
1006 switch (locknum) {
1007 case BGE_APE_LOCK_GPIO:
1008 /* Lock required when using GPIO. */
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 return (0);
1011 if (pa->pa_function == 0)
1012 bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 else
1014 bit = (1 << pa->pa_function);
1015 break;
1016 case BGE_APE_LOCK_GRC:
1017 /* Lock required to reset the device. */
1018 if (pa->pa_function == 0)
1019 bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 else
1021 bit = (1 << pa->pa_function);
1022 break;
1023 case BGE_APE_LOCK_MEM:
1024 /* Lock required when accessing certain APE memory. */
1025 if (pa->pa_function == 0)
1026 bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 else
1028 bit = (1 << pa->pa_function);
1029 break;
1030 case BGE_APE_LOCK_PHY0:
1031 case BGE_APE_LOCK_PHY1:
1032 case BGE_APE_LOCK_PHY2:
1033 case BGE_APE_LOCK_PHY3:
1034 /* Lock required when accessing PHYs. */
1035 bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 break;
1037 default:
1038 return (EINVAL);
1039 }
1040
1041 /* Request a lock. */
1042 APE_WRITE_4_FLUSH(sc, req + off, bit);
1043
1044 /* Wait up to 1 second to acquire lock. */
1045 for (i = 0; i < 20000; i++) {
1046 status = APE_READ_4(sc, gnt + off);
1047 if (status == bit)
1048 break;
1049 DELAY(50);
1050 }
1051
1052 /* Handle any errors. */
1053 if (status != bit) {
1054 printf("%s: APE lock %d request failed! "
1055 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 device_xname(sc->bge_dev),
1057 locknum, req + off, bit & 0xFFFF, gnt + off,
1058 status & 0xFFFF);
1059 /* Revoke the lock request. */
1060 APE_WRITE_4(sc, gnt + off, bit);
1061 return (EBUSY);
1062 }
1063
1064 return (0);
1065 }
1066
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 struct pci_attach_args *pa = &(sc->bge_pa);
1071 uint32_t bit, gnt;
1072 int off;
1073
1074 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 return;
1076
1077 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 gnt = BGE_APE_LOCK_GRANT;
1079 else
1080 gnt = BGE_APE_PER_LOCK_GRANT;
1081
1082 off = 4 * locknum;
1083
1084 switch (locknum) {
1085 case BGE_APE_LOCK_GPIO:
1086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 return;
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_GRC:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_MEM:
1100 if (pa->pa_function == 0)
1101 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 else
1103 bit = (1 << pa->pa_function);
1104 break;
1105 case BGE_APE_LOCK_PHY0:
1106 case BGE_APE_LOCK_PHY1:
1107 case BGE_APE_LOCK_PHY2:
1108 case BGE_APE_LOCK_PHY3:
1109 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 break;
1111 default:
1112 return;
1113 }
1114
1115 /* Write and flush for consecutive bge_ape_lock() */
1116 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118
1119 /*
1120 * Send an event to the APE firmware.
1121 */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 uint32_t apedata;
1126 int i;
1127
1128 /* NCSI does not support APE events. */
1129 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 return;
1131
1132 /* Wait up to 1ms for APE to service previous event. */
1133 for (i = 10; i > 0; i--) {
1134 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 break;
1136 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 break;
1143 }
1144 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 DELAY(100);
1146 }
1147 if (i == 0) {
1148 printf("%s: APE event 0x%08x send timed out\n",
1149 device_xname(sc->bge_dev), event);
1150 }
1151 }
1152
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 uint32_t apedata, event;
1157
1158 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 return;
1160
1161 switch (kind) {
1162 case BGE_RESET_START:
1163 /* If this is the first load, clear the load counter. */
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 else {
1168 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 }
1171 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 BGE_APE_HOST_SEG_SIG_MAGIC);
1173 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 BGE_APE_HOST_SEG_LEN_MAGIC);
1175
1176 /* Add some version info if bge(4) supports it. */
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_START);
1185 event = BGE_APE_EVENT_STATUS_STATE_START;
1186 break;
1187 case BGE_RESET_SHUTDOWN:
1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 break;
1192 case BGE_RESET_SUSPEND:
1193 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 break;
1195 default:
1196 return;
1197 }
1198
1199 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 uint32_t access, byte = 0;
1207 int i;
1208
1209 /* Lock. */
1210 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 for (i = 0; i < 8000; i++) {
1212 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 break;
1214 DELAY(20);
1215 }
1216 if (i == 8000)
1217 return 1;
1218
1219 /* Enable access. */
1220 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222
1223 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 DELAY(10);
1227 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 DELAY(10);
1229 break;
1230 }
1231 }
1232
1233 if (i == BGE_TIMEOUT * 10) {
1234 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 return 1;
1236 }
1237
1238 /* Get result. */
1239 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240
1241 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242
1243 /* Disable access. */
1244 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245
1246 /* Unlock. */
1247 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Read a sequence of bytes from NVRAM.
1254 */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 int error = 0, i;
1259 uint8_t byte = 0;
1260
1261 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 return 1;
1263
1264 for (i = 0; i < cnt; i++) {
1265 error = bge_nvram_getbyte(sc, off + i, &byte);
1266 if (error)
1267 break;
1268 *(dest + i) = byte;
1269 }
1270
1271 return (error ? 1 : 0);
1272 }
1273
1274 /*
1275 * Read a byte of data stored in the EEPROM at address 'addr.' The
1276 * BCM570x supports both the traditional bitbang interface and an
1277 * auto access interface for reading the EEPROM. We use the auto
1278 * access method.
1279 */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 int i;
1284 uint32_t byte = 0;
1285
1286 /*
1287 * Enable use of auto EEPROM access so we can avoid
1288 * having to use the bitbang method.
1289 */
1290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291
1292 /* Reset the EEPROM, load the clock period. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 DELAY(20);
1296
1297 /* Issue the read EEPROM command. */
1298 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299
1300 /* Wait for completion */
1301 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 DELAY(10);
1303 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 break;
1305 }
1306
1307 if (i == BGE_TIMEOUT * 10) {
1308 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 return 1;
1310 }
1311
1312 /* Get result. */
1313 byte = CSR_READ_4(sc, BGE_EE_DATA);
1314
1315 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * Read a sequence of bytes from the EEPROM.
1322 */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 int error = 0, i;
1327 uint8_t byte = 0;
1328 char *dest = destv;
1329
1330 for (i = 0; i < cnt; i++) {
1331 error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 if (error)
1333 break;
1334 *(dest + i) = byte;
1335 }
1336
1337 return (error ? 1 : 0);
1338 }
1339
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 struct bge_softc *sc = device_private(dev);
1344 uint32_t val;
1345 uint32_t autopoll;
1346 int i;
1347
1348 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 return 0;
1350
1351 /* Reading with autopolling on may trigger PCI errors */
1352 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 DELAY(80);
1357 }
1358
1359 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 BGE_MIPHY(phy) | BGE_MIREG(reg));
1361
1362 for (i = 0; i < BGE_TIMEOUT; i++) {
1363 delay(10);
1364 val = CSR_READ_4(sc, BGE_MI_COMM);
1365 if (!(val & BGE_MICOMM_BUSY)) {
1366 DELAY(5);
1367 val = CSR_READ_4(sc, BGE_MI_COMM);
1368 break;
1369 }
1370 }
1371
1372 if (i == BGE_TIMEOUT) {
1373 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 val = 0;
1375 goto done;
1376 }
1377
1378 done:
1379 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 DELAY(80);
1383 }
1384
1385 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386
1387 if (val & BGE_MICOMM_READFAIL)
1388 return 0;
1389
1390 return (val & 0xFFFF);
1391 }
1392
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 struct bge_softc *sc = device_private(dev);
1397 uint32_t autopoll;
1398 int i;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 return;
1406
1407 /* Reading with autopolling on may trigger PCI errors */
1408 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 DELAY(80);
1413 }
1414
1415 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417
1418 for (i = 0; i < BGE_TIMEOUT; i++) {
1419 delay(10);
1420 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 delay(5);
1422 CSR_READ_4(sc, BGE_MI_COMM);
1423 break;
1424 }
1425 }
1426
1427 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 delay(80);
1431 }
1432
1433 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434
1435 if (i == BGE_TIMEOUT)
1436 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 struct bge_softc *sc = ifp->if_softc;
1443 struct mii_data *mii = &sc->bge_mii;
1444 uint32_t mac_mode, rx_mode, tx_mode;
1445
1446 /*
1447 * Get flow control negotiation result.
1448 */
1449 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1451 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 mii->mii_media_active &= ~IFM_ETH_FMASK;
1453 }
1454
1455 /* Set the port mode (MII/GMII) to match the link speed. */
1456 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1457 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1458 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1459 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1460 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1461 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1462 mac_mode |= BGE_PORTMODE_GMII;
1463 else
1464 mac_mode |= BGE_PORTMODE_MII;
1465
1466 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1467 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1468 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1469 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1470 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1471 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1472 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1473 } else
1474 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1475
1476 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1477 DELAY(40);
1478 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1479 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1480 }
1481
1482 /*
1483 * Update rx threshold levels to values in a particular slot
1484 * of the interrupt-mitigation table bge_rx_threshes.
1485 */
1486 static void
1487 bge_set_thresh(struct ifnet *ifp, int lvl)
1488 {
1489 struct bge_softc *sc = ifp->if_softc;
1490 int s;
1491
1492 /* For now, just save the new Rx-intr thresholds and record
1493 * that a threshold update is pending. Updating the hardware
1494 * registers here (even at splhigh()) is observed to
1495 * occasionaly cause glitches where Rx-interrupts are not
1496 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1497 */
1498 s = splnet();
1499 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1500 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1501 sc->bge_pending_rxintr_change = 1;
1502 splx(s);
1503 }
1504
1505
1506 /*
1507 * Update Rx thresholds of all bge devices
1508 */
1509 static void
1510 bge_update_all_threshes(int lvl)
1511 {
1512 struct ifnet *ifp;
1513 const char * const namebuf = "bge";
1514 int namelen;
1515
1516 if (lvl < 0)
1517 lvl = 0;
1518 else if (lvl >= NBGE_RX_THRESH)
1519 lvl = NBGE_RX_THRESH - 1;
1520
1521 namelen = strlen(namebuf);
1522 /*
1523 * Now search all the interfaces for this name/number
1524 */
1525 IFNET_FOREACH(ifp) {
1526 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1527 continue;
1528 /* We got a match: update if doing auto-threshold-tuning */
1529 if (bge_auto_thresh)
1530 bge_set_thresh(ifp, lvl);
1531 }
1532 }
1533
1534 /*
1535 * Handle events that have triggered interrupts.
1536 */
1537 static void
1538 bge_handle_events(struct bge_softc *sc)
1539 {
1540
1541 return;
1542 }
1543
1544 /*
1545 * Memory management for jumbo frames.
1546 */
1547
1548 static int
1549 bge_alloc_jumbo_mem(struct bge_softc *sc)
1550 {
1551 char *ptr, *kva;
1552 bus_dma_segment_t seg;
1553 int i, rseg, state, error;
1554 struct bge_jpool_entry *entry;
1555
1556 state = error = 0;
1557
1558 /* Grab a big chunk o' storage. */
1559 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1560 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1561 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1562 return ENOBUFS;
1563 }
1564
1565 state = 1;
1566 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1567 BUS_DMA_NOWAIT)) {
1568 aprint_error_dev(sc->bge_dev,
1569 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1570 error = ENOBUFS;
1571 goto out;
1572 }
1573
1574 state = 2;
1575 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1576 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1577 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1578 error = ENOBUFS;
1579 goto out;
1580 }
1581
1582 state = 3;
1583 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1584 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1585 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1586 error = ENOBUFS;
1587 goto out;
1588 }
1589
1590 state = 4;
1591 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1592 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1593
1594 SLIST_INIT(&sc->bge_jfree_listhead);
1595 SLIST_INIT(&sc->bge_jinuse_listhead);
1596
1597 /*
1598 * Now divide it up into 9K pieces and save the addresses
1599 * in an array.
1600 */
1601 ptr = sc->bge_cdata.bge_jumbo_buf;
1602 for (i = 0; i < BGE_JSLOTS; i++) {
1603 sc->bge_cdata.bge_jslots[i] = ptr;
1604 ptr += BGE_JLEN;
1605 entry = malloc(sizeof(struct bge_jpool_entry),
1606 M_DEVBUF, M_NOWAIT);
1607 if (entry == NULL) {
1608 aprint_error_dev(sc->bge_dev,
1609 "no memory for jumbo buffer queue!\n");
1610 error = ENOBUFS;
1611 goto out;
1612 }
1613 entry->slot = i;
1614 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1615 entry, jpool_entries);
1616 }
1617 out:
1618 if (error != 0) {
1619 switch (state) {
1620 case 4:
1621 bus_dmamap_unload(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_jumbo_map);
1623 case 3:
1624 bus_dmamap_destroy(sc->bge_dmatag,
1625 sc->bge_cdata.bge_rx_jumbo_map);
1626 case 2:
1627 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1628 case 1:
1629 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1630 break;
1631 default:
1632 break;
1633 }
1634 }
1635
1636 return error;
1637 }
1638
1639 /*
1640 * Allocate a jumbo buffer.
1641 */
1642 static void *
1643 bge_jalloc(struct bge_softc *sc)
1644 {
1645 struct bge_jpool_entry *entry;
1646
1647 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1648
1649 if (entry == NULL) {
1650 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1651 return NULL;
1652 }
1653
1654 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1655 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1656 return (sc->bge_cdata.bge_jslots[entry->slot]);
1657 }
1658
1659 /*
1660 * Release a jumbo buffer.
1661 */
1662 static void
1663 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1664 {
1665 struct bge_jpool_entry *entry;
1666 struct bge_softc *sc;
1667 int i, s;
1668
1669 /* Extract the softc struct pointer. */
1670 sc = (struct bge_softc *)arg;
1671
1672 if (sc == NULL)
1673 panic("bge_jfree: can't find softc pointer!");
1674
1675 /* calculate the slot this buffer belongs to */
1676
1677 i = ((char *)buf
1678 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1679
1680 if ((i < 0) || (i >= BGE_JSLOTS))
1681 panic("bge_jfree: asked to free buffer that we don't manage!");
1682
1683 s = splvm();
1684 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1685 if (entry == NULL)
1686 panic("bge_jfree: buffer not in use!");
1687 entry->slot = i;
1688 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1689 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1690
1691 if (__predict_true(m != NULL))
1692 pool_cache_put(mb_cache, m);
1693 splx(s);
1694 }
1695
1696
1697 /*
1698 * Initialize a standard receive ring descriptor.
1699 */
1700 static int
1701 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1702 bus_dmamap_t dmamap)
1703 {
1704 struct mbuf *m_new = NULL;
1705 struct bge_rx_bd *r;
1706 int error;
1707
1708 if (dmamap == NULL) {
1709 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1710 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1711 if (error != 0)
1712 return error;
1713 }
1714
1715 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1716
1717 if (m == NULL) {
1718 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1719 if (m_new == NULL)
1720 return ENOBUFS;
1721
1722 MCLGET(m_new, M_DONTWAIT);
1723 if (!(m_new->m_flags & M_EXT)) {
1724 m_freem(m_new);
1725 return ENOBUFS;
1726 }
1727 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1728
1729 } else {
1730 m_new = m;
1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732 m_new->m_data = m_new->m_ext.ext_buf;
1733 }
1734 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1735 m_adj(m_new, ETHER_ALIGN);
1736 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1737 BUS_DMA_READ|BUS_DMA_NOWAIT))
1738 return ENOBUFS;
1739 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1740 BUS_DMASYNC_PREREAD);
1741
1742 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1743 r = &sc->bge_rdata->bge_rx_std_ring[i];
1744 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1745 r->bge_flags = BGE_RXBDFLAG_END;
1746 r->bge_len = m_new->m_len;
1747 r->bge_idx = i;
1748
1749 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1750 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1751 i * sizeof (struct bge_rx_bd),
1752 sizeof (struct bge_rx_bd),
1753 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * Initialize a jumbo receive ring descriptor. This allocates
1760 * a jumbo buffer from the pool managed internally by the driver.
1761 */
1762 static int
1763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1764 {
1765 struct mbuf *m_new = NULL;
1766 struct bge_rx_bd *r;
1767 void *buf = NULL;
1768
1769 if (m == NULL) {
1770
1771 /* Allocate the mbuf. */
1772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1773 if (m_new == NULL)
1774 return ENOBUFS;
1775
1776 /* Allocate the jumbo buffer */
1777 buf = bge_jalloc(sc);
1778 if (buf == NULL) {
1779 m_freem(m_new);
1780 aprint_error_dev(sc->bge_dev,
1781 "jumbo allocation failed -- packet dropped!\n");
1782 return ENOBUFS;
1783 }
1784
1785 /* Attach the buffer to the mbuf. */
1786 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1787 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1788 bge_jfree, sc);
1789 m_new->m_flags |= M_EXT_RW;
1790 } else {
1791 m_new = m;
1792 buf = m_new->m_data = m_new->m_ext.ext_buf;
1793 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1794 }
1795 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1796 m_adj(m_new, ETHER_ALIGN);
1797 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1798 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1799 BUS_DMASYNC_PREREAD);
1800 /* Set up the descriptor. */
1801 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1802 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1803 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1804 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1805 r->bge_len = m_new->m_len;
1806 r->bge_idx = i;
1807
1808 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1809 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1810 i * sizeof (struct bge_rx_bd),
1811 sizeof (struct bge_rx_bd),
1812 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1813
1814 return 0;
1815 }
1816
1817 /*
1818 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1819 * that's 1MB or memory, which is a lot. For now, we fill only the first
1820 * 256 ring entries and hope that our CPU is fast enough to keep up with
1821 * the NIC.
1822 */
1823 static int
1824 bge_init_rx_ring_std(struct bge_softc *sc)
1825 {
1826 int i;
1827
1828 if (sc->bge_flags & BGE_RXRING_VALID)
1829 return 0;
1830
1831 for (i = 0; i < BGE_SSLOTS; i++) {
1832 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1833 return ENOBUFS;
1834 }
1835
1836 sc->bge_std = i - 1;
1837 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1838
1839 sc->bge_flags |= BGE_RXRING_VALID;
1840
1841 return 0;
1842 }
1843
1844 static void
1845 bge_free_rx_ring_std(struct bge_softc *sc)
1846 {
1847 int i;
1848
1849 if (!(sc->bge_flags & BGE_RXRING_VALID))
1850 return;
1851
1852 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1853 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1854 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1855 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1856 bus_dmamap_destroy(sc->bge_dmatag,
1857 sc->bge_cdata.bge_rx_std_map[i]);
1858 }
1859 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1860 sizeof(struct bge_rx_bd));
1861 }
1862
1863 sc->bge_flags &= ~BGE_RXRING_VALID;
1864 }
1865
1866 static int
1867 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1868 {
1869 int i;
1870 volatile struct bge_rcb *rcb;
1871
1872 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1873 return 0;
1874
1875 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1876 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1877 return ENOBUFS;
1878 }
1879
1880 sc->bge_jumbo = i - 1;
1881 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1882
1883 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1884 rcb->bge_maxlen_flags = 0;
1885 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1886
1887 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1888
1889 return 0;
1890 }
1891
1892 static void
1893 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1894 {
1895 int i;
1896
1897 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1898 return;
1899
1900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1901 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1902 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1903 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1904 }
1905 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1906 sizeof(struct bge_rx_bd));
1907 }
1908
1909 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1910 }
1911
1912 static void
1913 bge_free_tx_ring(struct bge_softc *sc)
1914 {
1915 int i;
1916 struct txdmamap_pool_entry *dma;
1917
1918 if (!(sc->bge_flags & BGE_TXRING_VALID))
1919 return;
1920
1921 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1922 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1923 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1924 sc->bge_cdata.bge_tx_chain[i] = NULL;
1925 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1926 link);
1927 sc->txdma[i] = 0;
1928 }
1929 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1930 sizeof(struct bge_tx_bd));
1931 }
1932
1933 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1934 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1935 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1936 free(dma, M_DEVBUF);
1937 }
1938
1939 sc->bge_flags &= ~BGE_TXRING_VALID;
1940 }
1941
1942 static int
1943 bge_init_tx_ring(struct bge_softc *sc)
1944 {
1945 int i;
1946 bus_dmamap_t dmamap;
1947 struct txdmamap_pool_entry *dma;
1948
1949 if (sc->bge_flags & BGE_TXRING_VALID)
1950 return 0;
1951
1952 sc->bge_txcnt = 0;
1953 sc->bge_tx_saved_considx = 0;
1954
1955 /* Initialize transmit producer index for host-memory send ring. */
1956 sc->bge_tx_prodidx = 0;
1957 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1958 /* 5700 b2 errata */
1959 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1960 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1961
1962 /* NIC-memory send ring not used; initialize to zero. */
1963 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1964 /* 5700 b2 errata */
1965 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1966 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1967
1968 SLIST_INIT(&sc->txdma_list);
1969 for (i = 0; i < BGE_RSLOTS; i++) {
1970 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1971 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1972 &dmamap))
1973 return ENOBUFS;
1974 if (dmamap == NULL)
1975 panic("dmamap NULL in bge_init_tx_ring");
1976 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1977 if (dma == NULL) {
1978 aprint_error_dev(sc->bge_dev,
1979 "can't alloc txdmamap_pool_entry\n");
1980 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1981 return ENOMEM;
1982 }
1983 dma->dmamap = dmamap;
1984 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1985 }
1986
1987 sc->bge_flags |= BGE_TXRING_VALID;
1988
1989 return 0;
1990 }
1991
1992 static void
1993 bge_setmulti(struct bge_softc *sc)
1994 {
1995 struct ethercom *ac = &sc->ethercom;
1996 struct ifnet *ifp = &ac->ec_if;
1997 struct ether_multi *enm;
1998 struct ether_multistep step;
1999 uint32_t hashes[4] = { 0, 0, 0, 0 };
2000 uint32_t h;
2001 int i;
2002
2003 if (ifp->if_flags & IFF_PROMISC)
2004 goto allmulti;
2005
2006 /* Now program new ones. */
2007 ETHER_FIRST_MULTI(step, ac, enm);
2008 while (enm != NULL) {
2009 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2010 /*
2011 * We must listen to a range of multicast addresses.
2012 * For now, just accept all multicasts, rather than
2013 * trying to set only those filter bits needed to match
2014 * the range. (At this time, the only use of address
2015 * ranges is for IP multicast routing, for which the
2016 * range is big enough to require all bits set.)
2017 */
2018 goto allmulti;
2019 }
2020
2021 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022
2023 /* Just want the 7 least-significant bits. */
2024 h &= 0x7f;
2025
2026 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2027 ETHER_NEXT_MULTI(step, enm);
2028 }
2029
2030 ifp->if_flags &= ~IFF_ALLMULTI;
2031 goto setit;
2032
2033 allmulti:
2034 ifp->if_flags |= IFF_ALLMULTI;
2035 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2036
2037 setit:
2038 for (i = 0; i < 4; i++)
2039 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2040 }
2041
2042 static void
2043 bge_sig_pre_reset(struct bge_softc *sc, int type)
2044 {
2045
2046 /*
2047 * Some chips don't like this so only do this if ASF is enabled
2048 */
2049 if (sc->bge_asf_mode)
2050 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2051
2052 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2053 switch (type) {
2054 case BGE_RESET_START:
2055 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2056 BGE_FW_DRV_STATE_START);
2057 break;
2058 case BGE_RESET_SHUTDOWN:
2059 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2060 BGE_FW_DRV_STATE_UNLOAD);
2061 break;
2062 case BGE_RESET_SUSPEND:
2063 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2064 BGE_FW_DRV_STATE_SUSPEND);
2065 break;
2066 }
2067 }
2068
2069 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2070 bge_ape_driver_state_change(sc, type);
2071 }
2072
2073 static void
2074 bge_sig_post_reset(struct bge_softc *sc, int type)
2075 {
2076
2077 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2078 switch (type) {
2079 case BGE_RESET_START:
2080 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2081 BGE_FW_DRV_STATE_START_DONE);
2082 /* START DONE */
2083 break;
2084 case BGE_RESET_SHUTDOWN:
2085 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2086 BGE_FW_DRV_STATE_UNLOAD_DONE);
2087 break;
2088 }
2089 }
2090
2091 if (type == BGE_RESET_SHUTDOWN)
2092 bge_ape_driver_state_change(sc, type);
2093 }
2094
2095 static void
2096 bge_sig_legacy(struct bge_softc *sc, int type)
2097 {
2098
2099 if (sc->bge_asf_mode) {
2100 switch (type) {
2101 case BGE_RESET_START:
2102 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2103 BGE_FW_DRV_STATE_START);
2104 break;
2105 case BGE_RESET_SHUTDOWN:
2106 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2107 BGE_FW_DRV_STATE_UNLOAD);
2108 break;
2109 }
2110 }
2111 }
2112
2113 static void
2114 bge_wait_for_event_ack(struct bge_softc *sc)
2115 {
2116 int i;
2117
2118 /* wait up to 2500usec */
2119 for (i = 0; i < 250; i++) {
2120 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2121 BGE_RX_CPU_DRV_EVENT))
2122 break;
2123 DELAY(10);
2124 }
2125 }
2126
2127 static void
2128 bge_stop_fw(struct bge_softc *sc)
2129 {
2130
2131 if (sc->bge_asf_mode) {
2132 bge_wait_for_event_ack(sc);
2133
2134 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2135 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2136 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2137
2138 bge_wait_for_event_ack(sc);
2139 }
2140 }
2141
2142 static int
2143 bge_poll_fw(struct bge_softc *sc)
2144 {
2145 uint32_t val;
2146 int i;
2147
2148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2149 for (i = 0; i < BGE_TIMEOUT; i++) {
2150 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2151 if (val & BGE_VCPU_STATUS_INIT_DONE)
2152 break;
2153 DELAY(100);
2154 }
2155 if (i >= BGE_TIMEOUT) {
2156 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2157 return -1;
2158 }
2159 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2160 /*
2161 * Poll the value location we just wrote until
2162 * we see the 1's complement of the magic number.
2163 * This indicates that the firmware initialization
2164 * is complete.
2165 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2166 */
2167 for (i = 0; i < BGE_TIMEOUT; i++) {
2168 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2169 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2170 break;
2171 DELAY(10);
2172 }
2173
2174 if (i >= BGE_TIMEOUT) {
2175 aprint_error_dev(sc->bge_dev,
2176 "firmware handshake timed out, val = %x\n", val);
2177 return -1;
2178 }
2179 }
2180
2181 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2182 /* tg3 says we have to wait extra time */
2183 delay(10 * 1000);
2184 }
2185
2186 return 0;
2187 }
2188
2189 int
2190 bge_phy_addr(struct bge_softc *sc)
2191 {
2192 struct pci_attach_args *pa = &(sc->bge_pa);
2193 int phy_addr = 1;
2194
2195 /*
2196 * PHY address mapping for various devices.
2197 *
2198 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2199 * ---------+-------+-------+-------+-------+
2200 * BCM57XX | 1 | X | X | X |
2201 * BCM5704 | 1 | X | 1 | X |
2202 * BCM5717 | 1 | 8 | 2 | 9 |
2203 * BCM5719 | 1 | 8 | 2 | 9 |
2204 * BCM5720 | 1 | 8 | 2 | 9 |
2205 *
2206 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2207 * ---------+-------+-------+-------+-------+
2208 * BCM57XX | X | X | X | X |
2209 * BCM5704 | X | X | X | X |
2210 * BCM5717 | X | X | X | X |
2211 * BCM5719 | 3 | 10 | 4 | 11 |
2212 * BCM5720 | X | X | X | X |
2213 *
2214 * Other addresses may respond but they are not
2215 * IEEE compliant PHYs and should be ignored.
2216 */
2217 switch (BGE_ASICREV(sc->bge_chipid)) {
2218 case BGE_ASICREV_BCM5717:
2219 case BGE_ASICREV_BCM5719:
2220 case BGE_ASICREV_BCM5720:
2221 phy_addr = pa->pa_function;
2222 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2223 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2224 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2225 } else {
2226 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2227 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2228 }
2229 }
2230
2231 return phy_addr;
2232 }
2233
2234 /*
2235 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2236 * self-test results.
2237 */
2238 static int
2239 bge_chipinit(struct bge_softc *sc)
2240 {
2241 uint32_t dma_rw_ctl, mode_ctl, reg;
2242 int i;
2243
2244 /* Set endianness before we access any non-PCI registers. */
2245 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2246 BGE_INIT);
2247
2248 /*
2249 * Clear the MAC statistics block in the NIC's
2250 * internal memory.
2251 */
2252 for (i = BGE_STATS_BLOCK;
2253 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2254 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2255
2256 for (i = BGE_STATUS_BLOCK;
2257 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2258 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2259
2260 /* 5717 workaround from tg3 */
2261 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2262 /* Save */
2263 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2264
2265 /* Temporary modify MODE_CTL to control TLP */
2266 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2267 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2268
2269 /* Control TLP */
2270 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2271 BGE_TLP_PHYCTL1);
2272 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2273 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2274
2275 /* Restore */
2276 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2277 }
2278
2279 /* XXX Should we use 57765_FAMILY? */
2280 if (BGE_IS_57765_PLUS(sc)) {
2281 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL,
2288 reg | BGE_MODECTL_PCIE_TLPADDR1);
2289
2290 /* Control TLP */
2291 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2292 BGE_TLP_PHYCTL5);
2293 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2294 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2295
2296 /* Restore */
2297 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2298 }
2299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2300 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2301 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2302 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2303
2304 /* Save */
2305 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2306
2307 /* Temporary modify MODE_CTL to control TLP */
2308 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2309 CSR_WRITE_4(sc, BGE_MODE_CTL,
2310 reg | BGE_MODECTL_PCIE_TLPADDR0);
2311
2312 /* Control TLP */
2313 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2314 BGE_TLP_FTSMAX);
2315 reg &= ~BGE_TLP_FTSMAX_MSK;
2316 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2317 reg | BGE_TLP_FTSMAX_VAL);
2318
2319 /* Restore */
2320 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 }
2322
2323 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2324 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2325 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2326 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2327 }
2328
2329 /* Set up the PCI DMA control register. */
2330 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2331 if (sc->bge_flags & BGE_PCIE) {
2332 /* Read watermark not used, 128 bytes for write. */
2333 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2334 device_xname(sc->bge_dev)));
2335 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2336 } else if (sc->bge_flags & BGE_PCIX) {
2337 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2338 device_xname(sc->bge_dev)));
2339 /* PCI-X bus */
2340 if (BGE_IS_5714_FAMILY(sc)) {
2341 /* 256 bytes for read and write. */
2342 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2343 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2344
2345 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2346 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2347 else
2348 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2349 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2350 /* 1536 bytes for read, 384 bytes for write. */
2351 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2352 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2353 } else {
2354 /* 384 bytes for read and write. */
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2356 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2357 (0x0F);
2358 }
2359
2360 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2361 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2362 uint32_t tmp;
2363
2364 /* Set ONEDMA_ATONCE for hardware workaround. */
2365 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2366 BGE_PCI_CLKCTL) & 0x1f;
2367 if (tmp == 6 || tmp == 7)
2368 dma_rw_ctl |=
2369 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2370
2371 /* Set PCI-X DMA write workaround. */
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2373 }
2374 } else {
2375 /* Conventional PCI bus: 256 bytes for read and write. */
2376 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2377 device_xname(sc->bge_dev)));
2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2380
2381 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2382 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2383 dma_rw_ctl |= 0x0F;
2384 }
2385
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2387 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2388 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2389 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2390
2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2393 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2394
2395 if (BGE_IS_5717_PLUS(sc)) {
2396 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2397 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2398 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2399
2400 /*
2401 * Enable HW workaround for controllers that misinterpret
2402 * a status tag update and leave interrupts permanently
2403 * disabled.
2404 */
2405 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2406 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2407 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2408 }
2409
2410 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2411 dma_rw_ctl);
2412
2413 /*
2414 * Set up general mode register.
2415 */
2416 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2417 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2418 /* Retain Host-2-BMC settings written by APE firmware. */
2419 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2420 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2421 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2422 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2423 }
2424 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2425 BGE_MODECTL_TX_NO_PHDR_CSUM;
2426
2427 /*
2428 * BCM5701 B5 have a bug causing data corruption when using
2429 * 64-bit DMA reads, which can be terminated early and then
2430 * completed later as 32-bit accesses, in combination with
2431 * certain bridges.
2432 */
2433 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2434 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2435 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2436
2437 /*
2438 * Tell the firmware the driver is running
2439 */
2440 if (sc->bge_asf_mode & ASF_STACKUP)
2441 mode_ctl |= BGE_MODECTL_STACKUP;
2442
2443 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2444
2445 /*
2446 * Disable memory write invalidate. Apparently it is not supported
2447 * properly by these devices.
2448 */
2449 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2450 PCI_COMMAND_INVALIDATE_ENABLE);
2451
2452 #ifdef __brokenalpha__
2453 /*
2454 * Must insure that we do not cross an 8K (bytes) boundary
2455 * for DMA reads. Our highest limit is 1K bytes. This is a
2456 * restriction on some ALPHA platforms with early revision
2457 * 21174 PCI chipsets, such as the AlphaPC 164lx
2458 */
2459 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2460 #endif
2461
2462 /* Set the timer prescaler (always 66MHz) */
2463 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2464
2465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2466 DELAY(40); /* XXX */
2467
2468 /* Put PHY into ready state */
2469 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2470 DELAY(40);
2471 }
2472
2473 return 0;
2474 }
2475
2476 static int
2477 bge_blockinit(struct bge_softc *sc)
2478 {
2479 volatile struct bge_rcb *rcb;
2480 bus_size_t rcb_addr;
2481 int i;
2482 struct ifnet *ifp = &sc->ethercom.ec_if;
2483 bge_hostaddr taddr;
2484 uint32_t dmactl, val;
2485
2486 /*
2487 * Initialize the memory window pointer register so that
2488 * we can access the first 32K of internal NIC RAM. This will
2489 * allow us to set up the TX send ring RCBs and the RX return
2490 * ring RCBs, plus other things which live in NIC memory.
2491 */
2492 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2493
2494 /* Step 33: Configure mbuf memory pool */
2495 if (!BGE_IS_5705_PLUS(sc)) {
2496 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2497 BGE_BUFFPOOL_1);
2498
2499 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2500 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2501 else
2502 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2503
2504 /* Configure DMA resource pool */
2505 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 BGE_DMA_DESCRIPTORS);
2507 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 }
2509
2510 /* Step 35: Configure mbuf pool watermarks */
2511 #ifdef ORIG_WPAUL_VALUES
2512 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
2514 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
2515 #else
2516
2517 /* new broadcom docs strongly recommend these: */
2518 if (BGE_IS_5717_PLUS(sc)) {
2519 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2521 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2522 } else if (BGE_IS_5705_PLUS(sc)) {
2523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2524
2525 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2526 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2528 } else {
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2530 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2531 }
2532 } else {
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2534 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2536 }
2537 #endif
2538
2539 /* Step 36: Configure DMA resource watermarks */
2540 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2541 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2542
2543 /* Step 38: Enable buffer manager */
2544 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2545 /*
2546 * Change the arbitration algorithm of TXMBUF read request to
2547 * round-robin instead of priority based for BCM5719. When
2548 * TXFIFO is almost empty, RDMA will hold its request until
2549 * TXFIFO is not almost empty.
2550 */
2551 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2552 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2553 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2554 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2555 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2556 val |= BGE_BMANMODE_LOMBUF_ATTN;
2557 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2558
2559 /* Step 39: Poll for buffer manager start indication */
2560 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2561 DELAY(10);
2562 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2563 break;
2564 }
2565
2566 if (i == BGE_TIMEOUT * 2) {
2567 aprint_error_dev(sc->bge_dev,
2568 "buffer manager failed to start\n");
2569 return ENXIO;
2570 }
2571
2572 /* Step 40: Enable flow-through queues */
2573 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2574 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2575
2576 /* Wait until queue initialization is complete */
2577 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2578 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2579 break;
2580 DELAY(10);
2581 }
2582
2583 if (i == BGE_TIMEOUT * 2) {
2584 aprint_error_dev(sc->bge_dev,
2585 "flow-through queue init failed\n");
2586 return ENXIO;
2587 }
2588
2589 /* Step 41: Initialize the standard RX ring control block */
2590 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2591 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2592 if (BGE_IS_5717_PLUS(sc))
2593 rcb->bge_maxlen_flags =
2594 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2595 else if (BGE_IS_5705_PLUS(sc))
2596 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2597 else
2598 rcb->bge_maxlen_flags =
2599 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2600 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2601 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2602 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2603 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2604 else
2605 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2606 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2607 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2608 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2609 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2610
2611 /*
2612 * Step 42: Initialize the jumbo RX ring control block
2613 * We set the 'ring disabled' bit in the flags
2614 * field until we're actually ready to start
2615 * using this ring (i.e. once we set the MTU
2616 * high enough to require it).
2617 */
2618 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2619 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2620 BGE_HOSTADDR(rcb->bge_hostaddr,
2621 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2622 rcb->bge_maxlen_flags =
2623 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2624 BGE_RCB_FLAG_RING_DISABLED);
2625 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2626 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2627 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2628 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2629 else
2630 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2631 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2632 rcb->bge_hostaddr.bge_addr_hi);
2633 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2634 rcb->bge_hostaddr.bge_addr_lo);
2635 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2636 rcb->bge_maxlen_flags);
2637 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2638 /* Reset the jumbo receive producer ring producer index. */
2639 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2640 }
2641
2642 /* Disable the mini receive producer ring RCB. */
2643 if (BGE_IS_5700_FAMILY(sc)) {
2644 /* Set up dummy disabled mini ring RCB */
2645 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2646 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2647 BGE_RCB_FLAG_RING_DISABLED);
2648 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2649 rcb->bge_maxlen_flags);
2650 /* Reset the mini receive producer ring producer index. */
2651 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2652
2653 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2654 offsetof(struct bge_ring_data, bge_info),
2655 sizeof (struct bge_gib),
2656 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2657 }
2658
2659 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2660 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2661 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2662 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2663 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2664 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2665 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2666 }
2667 /*
2668 * Set the BD ring replenish thresholds. The recommended
2669 * values are 1/8th the number of descriptors allocated to
2670 * each ring.
2671 */
2672 i = BGE_STD_RX_RING_CNT / 8;
2673
2674 /*
2675 * Use a value of 8 for the following chips to workaround HW errata.
2676 * Some of these chips have been added based on empirical
2677 * evidence (they don't work unless this is done).
2678 */
2679 if (BGE_IS_5705_PLUS(sc))
2680 i = 8;
2681
2682 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2683 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2684
2685 if (BGE_IS_5717_PLUS(sc)) {
2686 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2687 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2688 }
2689
2690 /*
2691 * Disable all unused send rings by setting the 'ring disabled'
2692 * bit in the flags field of all the TX send ring control blocks.
2693 * These are located in NIC memory.
2694 */
2695 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2696 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2697 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2698 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2699 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2700 rcb_addr += sizeof(struct bge_rcb);
2701 }
2702
2703 /* Configure TX RCB 0 (we use only the first ring) */
2704 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2705 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2706 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2707 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2708 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2709 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2710 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2711 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2712 else
2713 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2714 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2715 if (BGE_IS_5700_FAMILY(sc))
2716 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2717 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2718
2719 /* Disable all unused RX return rings */
2720 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2721 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2722 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2723 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2724 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2725 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2726 BGE_RCB_FLAG_RING_DISABLED));
2727 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2728 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2729 (i * (sizeof(uint64_t))), 0);
2730 rcb_addr += sizeof(struct bge_rcb);
2731 }
2732
2733 /*
2734 * Set up RX return ring 0
2735 * Note that the NIC address for RX return rings is 0x00000000.
2736 * The return rings live entirely within the host, so the
2737 * nicaddr field in the RCB isn't used.
2738 */
2739 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2740 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2741 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2742 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2743 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2744 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2745 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2746
2747 /* Set random backoff seed for TX */
2748 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2749 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2750 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2751 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2752 BGE_TX_BACKOFF_SEED_MASK);
2753
2754 /* Set inter-packet gap */
2755 val = 0x2620;
2756 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2757 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2758 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2759 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2760
2761 /*
2762 * Specify which ring to use for packets that don't match
2763 * any RX rules.
2764 */
2765 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2766
2767 /*
2768 * Configure number of RX lists. One interrupt distribution
2769 * list, sixteen active lists, one bad frames class.
2770 */
2771 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2772
2773 /* Inialize RX list placement stats mask. */
2774 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2775 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2776
2777 /* Disable host coalescing until we get it set up */
2778 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2779
2780 /* Poll to make sure it's shut down. */
2781 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2782 DELAY(10);
2783 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2784 break;
2785 }
2786
2787 if (i == BGE_TIMEOUT * 2) {
2788 aprint_error_dev(sc->bge_dev,
2789 "host coalescing engine failed to idle\n");
2790 return ENXIO;
2791 }
2792
2793 /* Set up host coalescing defaults */
2794 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2795 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2796 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2797 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2798 if (!(BGE_IS_5705_PLUS(sc))) {
2799 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2800 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2801 }
2802 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2803 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2804
2805 /* Set up address of statistics block */
2806 if (BGE_IS_5700_FAMILY(sc)) {
2807 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2808 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2809 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2810 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2811 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2812 }
2813
2814 /* Set up address of status block */
2815 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2816 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2817 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2818 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2819 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2820 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2821
2822 /* Set up status block size. */
2823 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2824 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2825 val = BGE_STATBLKSZ_FULL;
2826 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2827 } else {
2828 val = BGE_STATBLKSZ_32BYTE;
2829 bzero(&sc->bge_rdata->bge_status_block, 32);
2830 }
2831
2832 /* Turn on host coalescing state machine */
2833 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2834
2835 /* Turn on RX BD completion state machine and enable attentions */
2836 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2837 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2838
2839 /* Turn on RX list placement state machine */
2840 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2841
2842 /* Turn on RX list selector state machine. */
2843 if (!(BGE_IS_5705_PLUS(sc)))
2844 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2845
2846 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2847 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2848 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2849 BGE_MACMODE_FRMHDR_DMA_ENB;
2850
2851 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2852 val |= BGE_PORTMODE_TBI;
2853 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2854 val |= BGE_PORTMODE_GMII;
2855 else
2856 val |= BGE_PORTMODE_MII;
2857
2858 /* Allow APE to send/receive frames. */
2859 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2860 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2861
2862 /* Turn on DMA, clear stats */
2863 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2864 DELAY(40);
2865
2866 /* Set misc. local control, enable interrupts on attentions */
2867 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2868
2869 #ifdef notdef
2870 /* Assert GPIO pins for PHY reset */
2871 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2872 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2873 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2874 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2875 #endif
2876
2877 #if defined(not_quite_yet)
2878 /* Linux driver enables enable gpio pin #1 on 5700s */
2879 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2880 sc->bge_local_ctrl_reg |=
2881 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2882 }
2883 #endif
2884 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2885
2886 /* Turn on DMA completion state machine */
2887 if (!(BGE_IS_5705_PLUS(sc)))
2888 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2889
2890 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2891
2892 /* Enable host coalescing bug fix. */
2893 if (BGE_IS_5755_PLUS(sc))
2894 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2895
2896 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2897 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2898
2899 /* Turn on write DMA state machine */
2900 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2901 DELAY(40);
2902
2903 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2904
2905 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2906 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2907
2908 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2909 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2910 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2911 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2912 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2913 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2914
2915 if (sc->bge_flags & BGE_PCIE)
2916 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2917 if (sc->bge_flags & BGE_TSO)
2918 val |= BGE_RDMAMODE_TSO4_ENABLE;
2919
2920 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2921 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2922 BGE_RDMAMODE_H2BNC_VLAN_DET;
2923 /*
2924 * Allow multiple outstanding read requests from
2925 * non-LSO read DMA engine.
2926 */
2927 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2928 }
2929
2930 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2931 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2932 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2933 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2934 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2935 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2936 /*
2937 * Adjust tx margin to prevent TX data corruption and
2938 * fix internal FIFO overflow.
2939 */
2940 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2941 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2942 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2943 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2944 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2945 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2946 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2947 }
2948 /*
2949 * Enable fix for read DMA FIFO overruns.
2950 * The fix is to limit the number of RX BDs
2951 * the hardware would fetch at a fime.
2952 */
2953 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2954 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2955 }
2956
2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2958 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2959 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2960 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2961 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2962 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2963 /*
2964 * Allow 4KB burst length reads for non-LSO frames.
2965 * Enable 512B burst length reads for buffer descriptors.
2966 */
2967 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2968 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2969 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2970 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2971 }
2972
2973 /* Turn on read DMA state machine */
2974 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2975 delay(40);
2976
2977 /* Turn on RX data completion state machine */
2978 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2979
2980 /* Turn on RX BD initiator state machine */
2981 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2982
2983 /* Turn on RX data and RX BD initiator state machine */
2984 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2985
2986 /* Turn on Mbuf cluster free state machine */
2987 if (!BGE_IS_5705_PLUS(sc))
2988 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2989
2990 /* Turn on send BD completion state machine */
2991 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2992
2993 /* Turn on send data completion state machine */
2994 val = BGE_SDCMODE_ENABLE;
2995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2996 val |= BGE_SDCMODE_CDELAY;
2997 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2998
2999 /* Turn on send data initiator state machine */
3000 if (sc->bge_flags & BGE_TSO) {
3001 /* XXX: magic value from Linux driver */
3002 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
3003 } else
3004 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3005
3006 /* Turn on send BD initiator state machine */
3007 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3008
3009 /* Turn on send BD selector state machine */
3010 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3011
3012 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3013 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3014 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3015
3016 /* ack/clear link change events */
3017 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3018 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3019 BGE_MACSTAT_LINK_CHANGED);
3020 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3021
3022 /*
3023 * Enable attention when the link has changed state for
3024 * devices that use auto polling.
3025 */
3026 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3027 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3028 } else {
3029 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3030 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3031 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3032 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3033 BGE_EVTENB_MI_INTERRUPT);
3034 }
3035
3036 /*
3037 * Clear any pending link state attention.
3038 * Otherwise some link state change events may be lost until attention
3039 * is cleared by bge_intr() -> bge_link_upd() sequence.
3040 * It's not necessary on newer BCM chips - perhaps enabling link
3041 * state change attentions implies clearing pending attention.
3042 */
3043 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3044 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3045 BGE_MACSTAT_LINK_CHANGED);
3046
3047 /* Enable link state change attentions. */
3048 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3049
3050 return 0;
3051 }
3052
3053 static const struct bge_revision *
3054 bge_lookup_rev(uint32_t chipid)
3055 {
3056 const struct bge_revision *br;
3057
3058 for (br = bge_revisions; br->br_name != NULL; br++) {
3059 if (br->br_chipid == chipid)
3060 return br;
3061 }
3062
3063 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3064 if (br->br_chipid == BGE_ASICREV(chipid))
3065 return br;
3066 }
3067
3068 return NULL;
3069 }
3070
3071 static const struct bge_product *
3072 bge_lookup(const struct pci_attach_args *pa)
3073 {
3074 const struct bge_product *bp;
3075
3076 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3077 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3078 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3079 return bp;
3080 }
3081
3082 return NULL;
3083 }
3084
3085 static uint32_t
3086 bge_chipid(const struct pci_attach_args *pa)
3087 {
3088 uint32_t id;
3089
3090 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3091 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3092
3093 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3094 switch (PCI_PRODUCT(pa->pa_id)) {
3095 case PCI_PRODUCT_BROADCOM_BCM5717:
3096 case PCI_PRODUCT_BROADCOM_BCM5718:
3097 case PCI_PRODUCT_BROADCOM_BCM5719:
3098 case PCI_PRODUCT_BROADCOM_BCM5720:
3099 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3100 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3101 BGE_PCI_GEN2_PRODID_ASICREV);
3102 break;
3103 case PCI_PRODUCT_BROADCOM_BCM57761:
3104 case PCI_PRODUCT_BROADCOM_BCM57762:
3105 case PCI_PRODUCT_BROADCOM_BCM57765:
3106 case PCI_PRODUCT_BROADCOM_BCM57766:
3107 case PCI_PRODUCT_BROADCOM_BCM57781:
3108 case PCI_PRODUCT_BROADCOM_BCM57785:
3109 case PCI_PRODUCT_BROADCOM_BCM57791:
3110 case PCI_PRODUCT_BROADCOM_BCM57795:
3111 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 BGE_PCI_GEN15_PRODID_ASICREV);
3113 break;
3114 default:
3115 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3116 BGE_PCI_PRODID_ASICREV);
3117 break;
3118 }
3119 }
3120
3121 return id;
3122 }
3123
3124 /*
3125 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3126 * against our list and return its name if we find a match. Note
3127 * that since the Broadcom controller contains VPD support, we
3128 * can get the device name string from the controller itself instead
3129 * of the compiled-in string. This is a little slow, but it guarantees
3130 * we'll always announce the right product name.
3131 */
3132 static int
3133 bge_probe(device_t parent, cfdata_t match, void *aux)
3134 {
3135 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3136
3137 if (bge_lookup(pa) != NULL)
3138 return 1;
3139
3140 return 0;
3141 }
3142
3143 static void
3144 bge_attach(device_t parent, device_t self, void *aux)
3145 {
3146 struct bge_softc *sc = device_private(self);
3147 struct pci_attach_args *pa = aux;
3148 prop_dictionary_t dict;
3149 const struct bge_product *bp;
3150 const struct bge_revision *br;
3151 pci_chipset_tag_t pc;
3152 pci_intr_handle_t ih;
3153 const char *intrstr = NULL;
3154 bus_dma_segment_t seg;
3155 int rseg;
3156 uint32_t hwcfg = 0;
3157 uint32_t command;
3158 struct ifnet *ifp;
3159 uint32_t misccfg;
3160 void * kva;
3161 u_char eaddr[ETHER_ADDR_LEN];
3162 pcireg_t memtype, subid, reg;
3163 bus_addr_t memaddr;
3164 bus_size_t memsize, apesize;
3165 uint32_t pm_ctl;
3166 bool no_seeprom;
3167
3168 bp = bge_lookup(pa);
3169 KASSERT(bp != NULL);
3170
3171 sc->sc_pc = pa->pa_pc;
3172 sc->sc_pcitag = pa->pa_tag;
3173 sc->bge_dev = self;
3174
3175 sc->bge_pa = *pa;
3176 pc = sc->sc_pc;
3177 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3178
3179 aprint_naive(": Ethernet controller\n");
3180 aprint_normal(": %s\n", bp->bp_name);
3181
3182 /*
3183 * Map control/status registers.
3184 */
3185 DPRINTFN(5, ("Map control/status regs\n"));
3186 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3187 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3188 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3189 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3190
3191 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3192 aprint_error_dev(sc->bge_dev,
3193 "failed to enable memory mapping!\n");
3194 return;
3195 }
3196
3197 DPRINTFN(5, ("pci_mem_find\n"));
3198 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3199 switch (memtype) {
3200 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3201 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3202 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3203 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3204 &memaddr, &memsize) == 0)
3205 break;
3206 default:
3207 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3208 return;
3209 }
3210
3211 DPRINTFN(5, ("pci_intr_map\n"));
3212 if (pci_intr_map(pa, &ih)) {
3213 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3214 return;
3215 }
3216
3217 DPRINTFN(5, ("pci_intr_string\n"));
3218 intrstr = pci_intr_string(pc, ih);
3219
3220 DPRINTFN(5, ("pci_intr_establish\n"));
3221 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3222
3223 if (sc->bge_intrhand == NULL) {
3224 aprint_error_dev(sc->bge_dev,
3225 "couldn't establish interrupt%s%s\n",
3226 intrstr ? " at " : "", intrstr ? intrstr : "");
3227 return;
3228 }
3229 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3230
3231 /* Save various chip information. */
3232 sc->bge_chipid = bge_chipid(pa);
3233 sc->bge_phy_addr = bge_phy_addr(sc);
3234
3235 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3236 &sc->bge_pciecap, NULL) != 0)
3237 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3238 /* PCIe */
3239 sc->bge_flags |= BGE_PCIE;
3240 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3241 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3242 sc->bge_expmrq = 2048;
3243 else
3244 sc->bge_expmrq = 4096;
3245 bge_set_max_readrq(sc);
3246 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3247 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3248 /* PCI-X */
3249 sc->bge_flags |= BGE_PCIX;
3250 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3251 &sc->bge_pcixcap, NULL) == 0)
3252 aprint_error_dev(sc->bge_dev,
3253 "unable to find PCIX capability\n");
3254 }
3255
3256 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3257 /*
3258 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3259 * can clobber the chip's PCI config-space power control
3260 * registers, leaving the card in D3 powersave state. We do
3261 * not have memory-mapped registers in this state, so force
3262 * device into D0 state before starting initialization.
3263 */
3264 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3265 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3266 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3267 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3268 DELAY(1000); /* 27 usec is allegedly sufficent */
3269 }
3270
3271 /* Save chipset family. */
3272 switch (BGE_ASICREV(sc->bge_chipid)) {
3273 case BGE_ASICREV_BCM57765:
3274 case BGE_ASICREV_BCM57766:
3275 sc->bge_flags |= BGE_57765_PLUS;
3276 /* FALLTHROUGH */
3277 case BGE_ASICREV_BCM5717:
3278 case BGE_ASICREV_BCM5719:
3279 case BGE_ASICREV_BCM5720:
3280 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3281 BGE_5705_PLUS;
3282 break;
3283 case BGE_ASICREV_BCM5755:
3284 case BGE_ASICREV_BCM5761:
3285 case BGE_ASICREV_BCM5784:
3286 case BGE_ASICREV_BCM5785:
3287 case BGE_ASICREV_BCM5787:
3288 case BGE_ASICREV_BCM57780:
3289 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3290 break;
3291 case BGE_ASICREV_BCM5700:
3292 case BGE_ASICREV_BCM5701:
3293 case BGE_ASICREV_BCM5703:
3294 case BGE_ASICREV_BCM5704:
3295 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3296 break;
3297 case BGE_ASICREV_BCM5714_A0:
3298 case BGE_ASICREV_BCM5780:
3299 case BGE_ASICREV_BCM5714:
3300 sc->bge_flags |= BGE_5714_FAMILY;
3301 /* FALLTHROUGH */
3302 case BGE_ASICREV_BCM5750:
3303 case BGE_ASICREV_BCM5752:
3304 case BGE_ASICREV_BCM5906:
3305 sc->bge_flags |= BGE_575X_PLUS;
3306 /* FALLTHROUGH */
3307 case BGE_ASICREV_BCM5705:
3308 sc->bge_flags |= BGE_5705_PLUS;
3309 break;
3310 }
3311
3312 /* Identify chips with APE processor. */
3313 switch (BGE_ASICREV(sc->bge_chipid)) {
3314 case BGE_ASICREV_BCM5717:
3315 case BGE_ASICREV_BCM5719:
3316 case BGE_ASICREV_BCM5720:
3317 case BGE_ASICREV_BCM5761:
3318 sc->bge_flags |= BGE_APE;
3319 break;
3320 }
3321
3322 /* Chips with APE need BAR2 access for APE registers/memory. */
3323 if ((sc->bge_flags & BGE_APE) != 0) {
3324 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3325 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3326 &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3327 aprint_error_dev(sc->bge_dev,
3328 "couldn't map BAR2 memory\n");
3329 return;
3330 }
3331
3332 /* Enable APE register/memory access by host driver. */
3333 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3334 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3335 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3336 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3337 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3338
3339 bge_ape_lock_init(sc);
3340 bge_ape_read_fw_ver(sc);
3341 }
3342
3343 /* Identify the chips that use an CPMU. */
3344 if (BGE_IS_5717_PLUS(sc) ||
3345 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3346 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3347 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3348 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3349 sc->bge_flags |= BGE_CPMU_PRESENT;
3350
3351 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3352 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3353 else
3354 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3355
3356 /*
3357 * When using the BCM5701 in PCI-X mode, data corruption has
3358 * been observed in the first few bytes of some received packets.
3359 * Aligning the packet buffer in memory eliminates the corruption.
3360 * Unfortunately, this misaligns the packet payloads. On platforms
3361 * which do not support unaligned accesses, we will realign the
3362 * payloads by copying the received packets.
3363 */
3364 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3365 sc->bge_flags & BGE_PCIX)
3366 sc->bge_flags |= BGE_RX_ALIGNBUG;
3367
3368 if (BGE_IS_5700_FAMILY(sc))
3369 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3370
3371 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3372 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3373 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3374 sc->bge_flags |= BGE_NO_3LED;
3375
3376 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3377 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3378
3379 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3380 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3381 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3382 sc->bge_flags |= BGE_IS_5788;
3383
3384 /*
3385 * Some controllers seem to require a special firmware to use
3386 * TSO. But the firmware is not available to FreeBSD and Linux
3387 * claims that the TSO performed by the firmware is slower than
3388 * hardware based TSO. Moreover the firmware based TSO has one
3389 * known bug which can't handle TSO if ethernet header + IP/TCP
3390 * header is greater than 80 bytes. The workaround for the TSO
3391 * bug exist but it seems it's too expensive than not using
3392 * TSO at all. Some hardwares also have the TSO bug so limit
3393 * the TSO to the controllers that are not affected TSO issues
3394 * (e.g. 5755 or higher).
3395 */
3396 if (BGE_IS_5755_PLUS(sc)) {
3397 /*
3398 * BCM5754 and BCM5787 shares the same ASIC id so
3399 * explicit device id check is required.
3400 */
3401 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3402 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3403 sc->bge_flags |= BGE_TSO;
3404 }
3405
3406 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3407 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3408 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3409 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3410 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3411 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3412 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3413 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3414 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3415 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3416 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3417 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3418 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3419 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3420 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3421 sc->bge_flags |= BGE_10_100_ONLY;
3422
3423 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3424 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3425 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3426 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3428 sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
3429
3430 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3431 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3432 sc->bge_flags |= BGE_PHY_CRC_BUG;
3433 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3434 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3435 sc->bge_flags |= BGE_PHY_ADC_BUG;
3436 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3437 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3438
3439 if (BGE_IS_5705_PLUS(sc) &&
3440 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3441 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3442 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3443 !BGE_IS_5717_PLUS(sc)) {
3444 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3445 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3446 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3447 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3448 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3449 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3450 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3451 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3452 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3453 } else
3454 sc->bge_flags |= BGE_PHY_BER_BUG;
3455 }
3456
3457 /*
3458 * SEEPROM check.
3459 * First check if firmware knows we do not have SEEPROM.
3460 */
3461 if (prop_dictionary_get_bool(device_properties(self),
3462 "without-seeprom", &no_seeprom) && no_seeprom)
3463 sc->bge_flags |= BGE_NO_EEPROM;
3464
3465 /* Now check the 'ROM failed' bit on the RX CPU */
3466 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3467 sc->bge_flags |= BGE_NO_EEPROM;
3468
3469 sc->bge_asf_mode = 0;
3470 /* No ASF if APE present. */
3471 if ((sc->bge_flags & BGE_APE) == 0) {
3472 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3473 BGE_SRAM_DATA_SIG_MAGIC)) {
3474 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3475 BGE_HWCFG_ASF) {
3476 sc->bge_asf_mode |= ASF_ENABLE;
3477 sc->bge_asf_mode |= ASF_STACKUP;
3478 if (BGE_IS_575X_PLUS(sc))
3479 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3480 }
3481 }
3482 }
3483
3484 bge_stop_fw(sc);
3485 bge_sig_pre_reset(sc, BGE_RESET_START);
3486 if (bge_reset(sc))
3487 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3488
3489 bge_sig_legacy(sc, BGE_RESET_START);
3490 bge_sig_post_reset(sc, BGE_RESET_START);
3491
3492 if (bge_chipinit(sc)) {
3493 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3494 bge_release_resources(sc);
3495 return;
3496 }
3497
3498 /*
3499 * Get station address from the EEPROM.
3500 */
3501 if (bge_get_eaddr(sc, eaddr)) {
3502 aprint_error_dev(sc->bge_dev,
3503 "failed to read station address\n");
3504 bge_release_resources(sc);
3505 return;
3506 }
3507
3508 br = bge_lookup_rev(sc->bge_chipid);
3509
3510 if (br == NULL) {
3511 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3512 sc->bge_chipid);
3513 } else {
3514 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3515 br->br_name, sc->bge_chipid);
3516 }
3517 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3518
3519 /* Allocate the general information block and ring buffers. */
3520 if (pci_dma64_available(pa))
3521 sc->bge_dmatag = pa->pa_dmat64;
3522 else
3523 sc->bge_dmatag = pa->pa_dmat;
3524 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3525 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3526 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3527 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3528 return;
3529 }
3530 DPRINTFN(5, ("bus_dmamem_map\n"));
3531 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3532 sizeof(struct bge_ring_data), &kva,
3533 BUS_DMA_NOWAIT)) {
3534 aprint_error_dev(sc->bge_dev,
3535 "can't map DMA buffers (%zu bytes)\n",
3536 sizeof(struct bge_ring_data));
3537 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3538 return;
3539 }
3540 DPRINTFN(5, ("bus_dmamem_create\n"));
3541 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3542 sizeof(struct bge_ring_data), 0,
3543 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3544 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3545 bus_dmamem_unmap(sc->bge_dmatag, kva,
3546 sizeof(struct bge_ring_data));
3547 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3548 return;
3549 }
3550 DPRINTFN(5, ("bus_dmamem_load\n"));
3551 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3552 sizeof(struct bge_ring_data), NULL,
3553 BUS_DMA_NOWAIT)) {
3554 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3555 bus_dmamem_unmap(sc->bge_dmatag, kva,
3556 sizeof(struct bge_ring_data));
3557 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3558 return;
3559 }
3560
3561 DPRINTFN(5, ("bzero\n"));
3562 sc->bge_rdata = (struct bge_ring_data *)kva;
3563
3564 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3565
3566 /* Try to allocate memory for jumbo buffers. */
3567 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3568 if (bge_alloc_jumbo_mem(sc)) {
3569 aprint_error_dev(sc->bge_dev,
3570 "jumbo buffer allocation failed\n");
3571 } else
3572 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3573 }
3574
3575 /* Set default tuneable values. */
3576 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3577 sc->bge_rx_coal_ticks = 150;
3578 sc->bge_rx_max_coal_bds = 64;
3579 #ifdef ORIG_WPAUL_VALUES
3580 sc->bge_tx_coal_ticks = 150;
3581 sc->bge_tx_max_coal_bds = 128;
3582 #else
3583 sc->bge_tx_coal_ticks = 300;
3584 sc->bge_tx_max_coal_bds = 400;
3585 #endif
3586 if (BGE_IS_5705_PLUS(sc)) {
3587 sc->bge_tx_coal_ticks = (12 * 5);
3588 sc->bge_tx_max_coal_bds = (12 * 5);
3589 aprint_verbose_dev(sc->bge_dev,
3590 "setting short Tx thresholds\n");
3591 }
3592
3593 if (BGE_IS_5717_PLUS(sc))
3594 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3595 else if (BGE_IS_5705_PLUS(sc))
3596 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3597 else
3598 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3599
3600 /* Set up ifnet structure */
3601 ifp = &sc->ethercom.ec_if;
3602 ifp->if_softc = sc;
3603 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3604 ifp->if_ioctl = bge_ioctl;
3605 ifp->if_stop = bge_stop;
3606 ifp->if_start = bge_start;
3607 ifp->if_init = bge_init;
3608 ifp->if_watchdog = bge_watchdog;
3609 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3610 IFQ_SET_READY(&ifp->if_snd);
3611 DPRINTFN(5, ("strcpy if_xname\n"));
3612 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3613
3614 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3615 sc->ethercom.ec_if.if_capabilities |=
3616 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3617 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3618 sc->ethercom.ec_if.if_capabilities |=
3619 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3620 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3621 #endif
3622 sc->ethercom.ec_capabilities |=
3623 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3624
3625 if (sc->bge_flags & BGE_TSO)
3626 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3627
3628 /*
3629 * Do MII setup.
3630 */
3631 DPRINTFN(5, ("mii setup\n"));
3632 sc->bge_mii.mii_ifp = ifp;
3633 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3634 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3635 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3636
3637 /*
3638 * Figure out what sort of media we have by checking the hardware
3639 * config word in the first 32k of NIC internal memory, or fall back to
3640 * the config word in the EEPROM. Note: on some BCM5700 cards,
3641 * this value appears to be unset. If that's the case, we have to rely
3642 * on identifying the NIC by its PCI subsystem ID, as we do below for
3643 * the SysKonnect SK-9D41.
3644 */
3645 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3646 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3647 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3648 bge_read_eeprom(sc, (void *)&hwcfg,
3649 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3650 hwcfg = be32toh(hwcfg);
3651 }
3652 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3653 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3654 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3655 if (BGE_IS_5714_FAMILY(sc))
3656 sc->bge_flags |= BGE_PHY_FIBER_MII;
3657 else
3658 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3659 }
3660
3661 /* set phyflags and chipid before mii_attach() */
3662 dict = device_properties(self);
3663 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3664 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3665
3666 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3667 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3668 bge_ifmedia_sts);
3669 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3670 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3671 0, NULL);
3672 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3673 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3674 /* Pretend the user requested this setting */
3675 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3676 } else {
3677 /*
3678 * Do transceiver setup and tell the firmware the
3679 * driver is down so we can try to get access the
3680 * probe if ASF is running. Retry a couple of times
3681 * if we get a conflict with the ASF firmware accessing
3682 * the PHY.
3683 */
3684 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3685 bge_asf_driver_up(sc);
3686
3687 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3688 bge_ifmedia_sts);
3689 mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3690 sc->bge_phy_addr, MII_OFFSET_ANY,
3691 MIIF_DOPAUSE);
3692
3693 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3694 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3695 ifmedia_add(&sc->bge_mii.mii_media,
3696 IFM_ETHER|IFM_MANUAL, 0, NULL);
3697 ifmedia_set(&sc->bge_mii.mii_media,
3698 IFM_ETHER|IFM_MANUAL);
3699 } else
3700 ifmedia_set(&sc->bge_mii.mii_media,
3701 IFM_ETHER|IFM_AUTO);
3702
3703 /*
3704 * Now tell the firmware we are going up after probing the PHY
3705 */
3706 if (sc->bge_asf_mode & ASF_STACKUP)
3707 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3708 }
3709
3710 /*
3711 * Call MI attach routine.
3712 */
3713 DPRINTFN(5, ("if_attach\n"));
3714 if_attach(ifp);
3715 DPRINTFN(5, ("ether_ifattach\n"));
3716 ether_ifattach(ifp, eaddr);
3717 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3718 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3719 RND_TYPE_NET, 0);
3720 #ifdef BGE_EVENT_COUNTERS
3721 /*
3722 * Attach event counters.
3723 */
3724 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3725 NULL, device_xname(sc->bge_dev), "intr");
3726 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3727 NULL, device_xname(sc->bge_dev), "tx_xoff");
3728 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3729 NULL, device_xname(sc->bge_dev), "tx_xon");
3730 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3731 NULL, device_xname(sc->bge_dev), "rx_xoff");
3732 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3733 NULL, device_xname(sc->bge_dev), "rx_xon");
3734 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3735 NULL, device_xname(sc->bge_dev), "rx_macctl");
3736 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3737 NULL, device_xname(sc->bge_dev), "xoffentered");
3738 #endif /* BGE_EVENT_COUNTERS */
3739 DPRINTFN(5, ("callout_init\n"));
3740 callout_init(&sc->bge_timeout, 0);
3741
3742 if (pmf_device_register(self, NULL, NULL))
3743 pmf_class_network_register(self, ifp);
3744 else
3745 aprint_error_dev(self, "couldn't establish power handler\n");
3746
3747 bge_sysctl_init(sc);
3748
3749 #ifdef BGE_DEBUG
3750 bge_debug_info(sc);
3751 #endif
3752 }
3753
3754 static void
3755 bge_release_resources(struct bge_softc *sc)
3756 {
3757 if (sc->bge_vpd_prodname != NULL)
3758 free(sc->bge_vpd_prodname, M_DEVBUF);
3759
3760 if (sc->bge_vpd_readonly != NULL)
3761 free(sc->bge_vpd_readonly, M_DEVBUF);
3762 }
3763
3764 static int
3765 bge_reset(struct bge_softc *sc)
3766 {
3767 uint32_t cachesize, command;
3768 uint32_t reset, mac_mode, mac_mode_mask;
3769 pcireg_t devctl, reg;
3770 int i, val;
3771 void (*write_op)(struct bge_softc *, int, int);
3772
3773 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3774 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3775 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3776 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3777
3778 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3779 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3780 if (sc->bge_flags & BGE_PCIE)
3781 write_op = bge_writemem_direct;
3782 else
3783 write_op = bge_writemem_ind;
3784 } else
3785 write_op = bge_writereg_ind;
3786
3787 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3788 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3789 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3790 for (i = 0; i < 8000; i++) {
3791 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3792 BGE_NVRAMSWARB_GNT1)
3793 break;
3794 DELAY(20);
3795 }
3796 if (i == 8000) {
3797 printf("%s: NVRAM lock timedout!\n",
3798 device_xname(sc->bge_dev));
3799 }
3800 }
3801 /* Take APE lock when performing reset. */
3802 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3803
3804 /* Save some important PCI state. */
3805 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3806 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3807
3808 /* Step 5b-5d: */
3809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3810 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3811 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3812
3813 /* XXX ???: Disable fastboot on controllers that support it. */
3814 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3815 BGE_IS_5755_PLUS(sc))
3816 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3817
3818 /*
3819 * Step 6: Write the magic number to SRAM at offset 0xB50.
3820 * When firmware finishes its initialization it will
3821 * write ~BGE_MAGIC_NUMBER to the same location.
3822 */
3823 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3824
3825 /* Step 7: */
3826 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3827 /*
3828 * XXX: from FreeBSD/Linux; no documentation
3829 */
3830 if (sc->bge_flags & BGE_PCIE) {
3831 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3832 !BGE_IS_57765_PLUS(sc) &&
3833 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3834 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3835 /* PCI Express 1.0 system */
3836 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3837 BGE_PHY_PCIE_SCRAM_MODE);
3838 }
3839 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3840 /*
3841 * Prevent PCI Express link training
3842 * during global reset.
3843 */
3844 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3845 reset |= (1<<29);
3846 }
3847 }
3848
3849 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3850 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3851 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3852 i | BGE_VCPU_STATUS_DRV_RESET);
3853 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3854 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3855 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3856 }
3857
3858 /*
3859 * Set GPHY Power Down Override to leave GPHY
3860 * powered up in D0 uninitialized.
3861 */
3862 if (BGE_IS_5705_PLUS(sc) &&
3863 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3864 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3865
3866 /* XXX 5721, 5751 and 5752 */
3867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3868 reset |= BGE_MISCCFG_GRC_RESET_DISABLE;
3869
3870 /* Issue global reset */
3871 write_op(sc, BGE_MISC_CFG, reset);
3872
3873 /* Step 8: wait for complete */
3874 if (sc->bge_flags & BGE_PCIE)
3875 delay(100*1000); /* too big */
3876 else
3877 delay(1000);
3878
3879 if (sc->bge_flags & BGE_PCIE) {
3880 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3881 DELAY(500000);
3882 /* XXX: Magic Numbers */
3883 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3884 BGE_PCI_UNKNOWN0);
3885 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3886 BGE_PCI_UNKNOWN0,
3887 reg | (1 << 15));
3888 }
3889 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3890 sc->bge_pciecap + PCI_PCIE_DCSR);
3891 /* Clear enable no snoop and disable relaxed ordering. */
3892 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3893 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3894
3895 /* Set PCIE max payload size to 128 for older PCIe devices */
3896 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3897 devctl &= ~(0x00e0);
3898 /* Clear device status register. Write 1b to clear */
3899 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3900 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3901 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3902 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3903 bge_set_max_readrq(sc);
3904 }
3905
3906 /* From Linux: dummy read to flush PCI posted writes */
3907 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3908
3909 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3910 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3911 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3912 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3913 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3914 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3915 (sc->bge_flags & BGE_PCIX) != 0)
3916 val |= BGE_PCISTATE_RETRY_SAME_DMA;
3917 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3918 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3919 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3920 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3921 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3922 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3923 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3924
3925 /* Step 11: disable PCI-X Relaxed Ordering. */
3926 if (sc->bge_flags & BGE_PCIX) {
3927 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3928 + PCI_PCIX_CMD);
3929 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3930 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3931 }
3932
3933 /* Step 12: Enable memory arbiter. */
3934 if (BGE_IS_5714_FAMILY(sc)) {
3935 val = CSR_READ_4(sc, BGE_MARB_MODE);
3936 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3937 } else
3938 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3939
3940 /* XXX 5721, 5751 and 5752 */
3941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3942 /* Step 19: */
3943 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3944 /* Step 20: */
3945 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3946 }
3947
3948 /* Step 28: Fix up byte swapping */
3949 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3950
3951 /* Step 21: 5822 B0 errata */
3952 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3953 pcireg_t msidata;
3954
3955 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3956 BGE_PCI_MSI_DATA);
3957 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3958 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3959 msidata);
3960 }
3961
3962 /*
3963 * Step 18: wirte mac mode
3964 * XXX Write 0x0c for 5703S and 5704S
3965 */
3966 val = CSR_READ_4(sc, BGE_MAC_MODE);
3967 val = (val & ~mac_mode_mask) | mac_mode;
3968 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3969 DELAY(40);
3970
3971 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
3972
3973 /* Step 17: Poll until the firmware initialization is complete */
3974 bge_poll_fw(sc);
3975
3976 /*
3977 * The 5704 in TBI mode apparently needs some special
3978 * adjustment to insure the SERDES drive level is set
3979 * to 1.2V.
3980 */
3981 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3982 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3983 uint32_t serdescfg;
3984
3985 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3986 serdescfg = (serdescfg & ~0xFFF) | 0x880;
3987 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3988 }
3989
3990 if (sc->bge_flags & BGE_PCIE &&
3991 !BGE_IS_57765_PLUS(sc) &&
3992 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3993 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
3994 uint32_t v;
3995
3996 /* Enable PCI Express bug fix */
3997 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
3998 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
3999 v | BGE_TLP_DATA_FIFO_PROTECT);
4000 }
4001
4002 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4003 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4004 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4005
4006 return 0;
4007 }
4008
4009 /*
4010 * Frame reception handling. This is called if there's a frame
4011 * on the receive return list.
4012 *
4013 * Note: we have to be able to handle two possibilities here:
4014 * 1) the frame is from the jumbo receive ring
4015 * 2) the frame is from the standard receive ring
4016 */
4017
4018 static void
4019 bge_rxeof(struct bge_softc *sc)
4020 {
4021 struct ifnet *ifp;
4022 uint16_t rx_prod, rx_cons;
4023 int stdcnt = 0, jumbocnt = 0;
4024 bus_dmamap_t dmamap;
4025 bus_addr_t offset, toff;
4026 bus_size_t tlen;
4027 int tosync;
4028
4029 rx_cons = sc->bge_rx_saved_considx;
4030 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4031
4032 /* Nothing to do */
4033 if (rx_cons == rx_prod)
4034 return;
4035
4036 ifp = &sc->ethercom.ec_if;
4037
4038 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4039 offsetof(struct bge_ring_data, bge_status_block),
4040 sizeof (struct bge_status_block),
4041 BUS_DMASYNC_POSTREAD);
4042
4043 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4044 tosync = rx_prod - rx_cons;
4045
4046 if (tosync != 0)
4047 rnd_add_uint32(&sc->rnd_source, tosync);
4048
4049 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4050
4051 if (tosync < 0) {
4052 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4053 sizeof (struct bge_rx_bd);
4054 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4055 toff, tlen, BUS_DMASYNC_POSTREAD);
4056 tosync = -tosync;
4057 }
4058
4059 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4060 offset, tosync * sizeof (struct bge_rx_bd),
4061 BUS_DMASYNC_POSTREAD);
4062
4063 while (rx_cons != rx_prod) {
4064 struct bge_rx_bd *cur_rx;
4065 uint32_t rxidx;
4066 struct mbuf *m = NULL;
4067
4068 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4069
4070 rxidx = cur_rx->bge_idx;
4071 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4072
4073 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4074 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4075 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4076 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4077 jumbocnt++;
4078 bus_dmamap_sync(sc->bge_dmatag,
4079 sc->bge_cdata.bge_rx_jumbo_map,
4080 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4081 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4082 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4083 ifp->if_ierrors++;
4084 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4085 continue;
4086 }
4087 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4088 NULL)== ENOBUFS) {
4089 ifp->if_ierrors++;
4090 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4091 continue;
4092 }
4093 } else {
4094 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4095 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4096
4097 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4098 stdcnt++;
4099 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4100 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4101 if (dmamap == NULL) {
4102 ifp->if_ierrors++;
4103 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4104 continue;
4105 }
4106 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4107 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4108 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4109 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4110 ifp->if_ierrors++;
4111 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4112 continue;
4113 }
4114 if (bge_newbuf_std(sc, sc->bge_std,
4115 NULL, dmamap) == ENOBUFS) {
4116 ifp->if_ierrors++;
4117 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4118 continue;
4119 }
4120 }
4121
4122 ifp->if_ipackets++;
4123 #ifndef __NO_STRICT_ALIGNMENT
4124 /*
4125 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4126 * the Rx buffer has the layer-2 header unaligned.
4127 * If our CPU requires alignment, re-align by copying.
4128 */
4129 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4130 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4131 cur_rx->bge_len);
4132 m->m_data += ETHER_ALIGN;
4133 }
4134 #endif
4135
4136 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4137 m->m_pkthdr.rcvif = ifp;
4138
4139 /*
4140 * Handle BPF listeners. Let the BPF user see the packet.
4141 */
4142 bpf_mtap(ifp, m);
4143
4144 bge_rxcsum(sc, cur_rx, m);
4145
4146 /*
4147 * If we received a packet with a vlan tag, pass it
4148 * to vlan_input() instead of ether_input().
4149 */
4150 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4151 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4152 }
4153
4154 (*ifp->if_input)(ifp, m);
4155 }
4156
4157 sc->bge_rx_saved_considx = rx_cons;
4158 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4159 if (stdcnt)
4160 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4161 if (jumbocnt)
4162 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4163 }
4164
4165 static void
4166 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4167 {
4168
4169 if (BGE_IS_5717_PLUS(sc)) {
4170 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4171 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4172 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4173 if ((cur_rx->bge_error_flag &
4174 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4175 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4176 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4177 m->m_pkthdr.csum_data =
4178 cur_rx->bge_tcp_udp_csum;
4179 m->m_pkthdr.csum_flags |=
4180 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4181 M_CSUM_DATA);
4182 }
4183 }
4184 } else {
4185 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4186 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4187 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4188 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4189 /*
4190 * Rx transport checksum-offload may also
4191 * have bugs with packets which, when transmitted,
4192 * were `runts' requiring padding.
4193 */
4194 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4195 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4196 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4197 m->m_pkthdr.csum_data =
4198 cur_rx->bge_tcp_udp_csum;
4199 m->m_pkthdr.csum_flags |=
4200 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4201 M_CSUM_DATA);
4202 }
4203 }
4204 }
4205
4206 static void
4207 bge_txeof(struct bge_softc *sc)
4208 {
4209 struct bge_tx_bd *cur_tx = NULL;
4210 struct ifnet *ifp;
4211 struct txdmamap_pool_entry *dma;
4212 bus_addr_t offset, toff;
4213 bus_size_t tlen;
4214 int tosync;
4215 struct mbuf *m;
4216
4217 ifp = &sc->ethercom.ec_if;
4218
4219 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4220 offsetof(struct bge_ring_data, bge_status_block),
4221 sizeof (struct bge_status_block),
4222 BUS_DMASYNC_POSTREAD);
4223
4224 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4225 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4226 sc->bge_tx_saved_considx;
4227
4228 if (tosync != 0)
4229 rnd_add_uint32(&sc->rnd_source, tosync);
4230
4231 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4232
4233 if (tosync < 0) {
4234 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4235 sizeof (struct bge_tx_bd);
4236 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4237 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4238 tosync = -tosync;
4239 }
4240
4241 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4242 offset, tosync * sizeof (struct bge_tx_bd),
4243 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4244
4245 /*
4246 * Go through our tx ring and free mbufs for those
4247 * frames that have been sent.
4248 */
4249 while (sc->bge_tx_saved_considx !=
4250 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4251 uint32_t idx = 0;
4252
4253 idx = sc->bge_tx_saved_considx;
4254 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4255 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4256 ifp->if_opackets++;
4257 m = sc->bge_cdata.bge_tx_chain[idx];
4258 if (m != NULL) {
4259 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4260 dma = sc->txdma[idx];
4261 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4262 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4263 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4264 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4265 sc->txdma[idx] = NULL;
4266
4267 m_freem(m);
4268 }
4269 sc->bge_txcnt--;
4270 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4271 ifp->if_timer = 0;
4272 }
4273
4274 if (cur_tx != NULL)
4275 ifp->if_flags &= ~IFF_OACTIVE;
4276 }
4277
4278 static int
4279 bge_intr(void *xsc)
4280 {
4281 struct bge_softc *sc;
4282 struct ifnet *ifp;
4283 uint32_t statusword;
4284
4285 sc = xsc;
4286 ifp = &sc->ethercom.ec_if;
4287
4288 /* It is possible for the interrupt to arrive before
4289 * the status block is updated prior to the interrupt.
4290 * Reading the PCI State register will confirm whether the
4291 * interrupt is ours and will flush the status block.
4292 */
4293
4294 /* read status word from status block */
4295 statusword = sc->bge_rdata->bge_status_block.bge_status;
4296
4297 if ((statusword & BGE_STATFLAG_UPDATED) ||
4298 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
4299 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4300 /* Ack interrupt and stop others from occuring. */
4301 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4302
4303 BGE_EVCNT_INCR(sc->bge_ev_intr);
4304
4305 /* clear status word */
4306 sc->bge_rdata->bge_status_block.bge_status = 0;
4307
4308 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4309 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4310 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4311 bge_link_upd(sc);
4312
4313 if (ifp->if_flags & IFF_RUNNING) {
4314 /* Check RX return ring producer/consumer */
4315 bge_rxeof(sc);
4316
4317 /* Check TX ring producer/consumer */
4318 bge_txeof(sc);
4319 }
4320
4321 if (sc->bge_pending_rxintr_change) {
4322 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4323 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4324 uint32_t junk;
4325
4326 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4327 DELAY(10);
4328 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4329
4330 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4331 DELAY(10);
4332 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4333
4334 sc->bge_pending_rxintr_change = 0;
4335 }
4336 bge_handle_events(sc);
4337
4338 /* Re-enable interrupts. */
4339 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4340
4341 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4342 bge_start(ifp);
4343
4344 return 1;
4345 } else
4346 return 0;
4347 }
4348
4349 static void
4350 bge_asf_driver_up(struct bge_softc *sc)
4351 {
4352 if (sc->bge_asf_mode & ASF_STACKUP) {
4353 /* Send ASF heartbeat aprox. every 2s */
4354 if (sc->bge_asf_count)
4355 sc->bge_asf_count --;
4356 else {
4357 sc->bge_asf_count = 2;
4358
4359 bge_wait_for_event_ack(sc);
4360
4361 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4362 BGE_FW_CMD_DRV_ALIVE);
4363 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4364 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4365 BGE_FW_HB_TIMEOUT_SEC);
4366 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4367 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4368 BGE_RX_CPU_DRV_EVENT);
4369 }
4370 }
4371 }
4372
4373 static void
4374 bge_tick(void *xsc)
4375 {
4376 struct bge_softc *sc = xsc;
4377 struct mii_data *mii = &sc->bge_mii;
4378 int s;
4379
4380 s = splnet();
4381
4382 if (BGE_IS_5705_PLUS(sc))
4383 bge_stats_update_regs(sc);
4384 else
4385 bge_stats_update(sc);
4386
4387 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4388 /*
4389 * Since in TBI mode auto-polling can't be used we should poll
4390 * link status manually. Here we register pending link event
4391 * and trigger interrupt.
4392 */
4393 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4394 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4395 } else {
4396 /*
4397 * Do not touch PHY if we have link up. This could break
4398 * IPMI/ASF mode or produce extra input errors.
4399 * (extra input errors was reported for bcm5701 & bcm5704).
4400 */
4401 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4402 mii_tick(mii);
4403 }
4404
4405 bge_asf_driver_up(sc);
4406
4407 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4408
4409 splx(s);
4410 }
4411
4412 static void
4413 bge_stats_update_regs(struct bge_softc *sc)
4414 {
4415 struct ifnet *ifp = &sc->ethercom.ec_if;
4416
4417 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4418 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4419
4420 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4421 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4422 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4423 }
4424
4425 static void
4426 bge_stats_update(struct bge_softc *sc)
4427 {
4428 struct ifnet *ifp = &sc->ethercom.ec_if;
4429 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4430
4431 #define READ_STAT(sc, stats, stat) \
4432 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4433
4434 ifp->if_collisions +=
4435 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4436 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4437 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4438 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4439 ifp->if_collisions;
4440
4441 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4442 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4443 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4444 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4445 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4446 READ_STAT(sc, stats,
4447 xoffPauseFramesReceived.bge_addr_lo));
4448 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4449 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4450 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4451 READ_STAT(sc, stats,
4452 macControlFramesReceived.bge_addr_lo));
4453 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4454 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4455
4456 #undef READ_STAT
4457
4458 #ifdef notdef
4459 ifp->if_collisions +=
4460 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4461 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4462 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4463 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4464 ifp->if_collisions;
4465 #endif
4466 }
4467
4468 /*
4469 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4470 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4471 * but when such padded frames employ the bge IP/TCP checksum offload,
4472 * the hardware checksum assist gives incorrect results (possibly
4473 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4474 * If we pad such runts with zeros, the onboard checksum comes out correct.
4475 */
4476 static inline int
4477 bge_cksum_pad(struct mbuf *pkt)
4478 {
4479 struct mbuf *last = NULL;
4480 int padlen;
4481
4482 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4483
4484 /* if there's only the packet-header and we can pad there, use it. */
4485 if (pkt->m_pkthdr.len == pkt->m_len &&
4486 M_TRAILINGSPACE(pkt) >= padlen) {
4487 last = pkt;
4488 } else {
4489 /*
4490 * Walk packet chain to find last mbuf. We will either
4491 * pad there, or append a new mbuf and pad it
4492 * (thus perhaps avoiding the bcm5700 dma-min bug).
4493 */
4494 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4495 continue; /* do nothing */
4496 }
4497
4498 /* `last' now points to last in chain. */
4499 if (M_TRAILINGSPACE(last) < padlen) {
4500 /* Allocate new empty mbuf, pad it. Compact later. */
4501 struct mbuf *n;
4502 MGET(n, M_DONTWAIT, MT_DATA);
4503 if (n == NULL)
4504 return ENOBUFS;
4505 n->m_len = 0;
4506 last->m_next = n;
4507 last = n;
4508 }
4509 }
4510
4511 KDASSERT(!M_READONLY(last));
4512 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4513
4514 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4515 memset(mtod(last, char *) + last->m_len, 0, padlen);
4516 last->m_len += padlen;
4517 pkt->m_pkthdr.len += padlen;
4518 return 0;
4519 }
4520
4521 /*
4522 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4523 */
4524 static inline int
4525 bge_compact_dma_runt(struct mbuf *pkt)
4526 {
4527 struct mbuf *m, *prev;
4528 int totlen, prevlen;
4529
4530 prev = NULL;
4531 totlen = 0;
4532 prevlen = -1;
4533
4534 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4535 int mlen = m->m_len;
4536 int shortfall = 8 - mlen ;
4537
4538 totlen += mlen;
4539 if (mlen == 0)
4540 continue;
4541 if (mlen >= 8)
4542 continue;
4543
4544 /* If we get here, mbuf data is too small for DMA engine.
4545 * Try to fix by shuffling data to prev or next in chain.
4546 * If that fails, do a compacting deep-copy of the whole chain.
4547 */
4548
4549 /* Internal frag. If fits in prev, copy it there. */
4550 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4551 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4552 prev->m_len += mlen;
4553 m->m_len = 0;
4554 /* XXX stitch chain */
4555 prev->m_next = m_free(m);
4556 m = prev;
4557 continue;
4558 }
4559 else if (m->m_next != NULL &&
4560 M_TRAILINGSPACE(m) >= shortfall &&
4561 m->m_next->m_len >= (8 + shortfall)) {
4562 /* m is writable and have enough data in next, pull up. */
4563
4564 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4565 shortfall);
4566 m->m_len += shortfall;
4567 m->m_next->m_len -= shortfall;
4568 m->m_next->m_data += shortfall;
4569 }
4570 else if (m->m_next == NULL || 1) {
4571 /* Got a runt at the very end of the packet.
4572 * borrow data from the tail of the preceding mbuf and
4573 * update its length in-place. (The original data is still
4574 * valid, so we can do this even if prev is not writable.)
4575 */
4576
4577 /* if we'd make prev a runt, just move all of its data. */
4578 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4579 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4580
4581 if ((prev->m_len - shortfall) < 8)
4582 shortfall = prev->m_len;
4583
4584 #ifdef notyet /* just do the safe slow thing for now */
4585 if (!M_READONLY(m)) {
4586 if (M_LEADINGSPACE(m) < shorfall) {
4587 void *m_dat;
4588 m_dat = (m->m_flags & M_PKTHDR) ?
4589 m->m_pktdat : m->dat;
4590 memmove(m_dat, mtod(m, void*), m->m_len);
4591 m->m_data = m_dat;
4592 }
4593 } else
4594 #endif /* just do the safe slow thing */
4595 {
4596 struct mbuf * n = NULL;
4597 int newprevlen = prev->m_len - shortfall;
4598
4599 MGET(n, M_NOWAIT, MT_DATA);
4600 if (n == NULL)
4601 return ENOBUFS;
4602 KASSERT(m->m_len + shortfall < MLEN
4603 /*,
4604 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4605
4606 /* first copy the data we're stealing from prev */
4607 memcpy(n->m_data, prev->m_data + newprevlen,
4608 shortfall);
4609
4610 /* update prev->m_len accordingly */
4611 prev->m_len -= shortfall;
4612
4613 /* copy data from runt m */
4614 memcpy(n->m_data + shortfall, m->m_data,
4615 m->m_len);
4616
4617 /* n holds what we stole from prev, plus m */
4618 n->m_len = shortfall + m->m_len;
4619
4620 /* stitch n into chain and free m */
4621 n->m_next = m->m_next;
4622 prev->m_next = n;
4623 /* KASSERT(m->m_next == NULL); */
4624 m->m_next = NULL;
4625 m_free(m);
4626 m = n; /* for continuing loop */
4627 }
4628 }
4629 prevlen = m->m_len;
4630 }
4631 return 0;
4632 }
4633
4634 /*
4635 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4636 * pointers to descriptors.
4637 */
4638 static int
4639 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4640 {
4641 struct bge_tx_bd *f = NULL;
4642 uint32_t frag, cur;
4643 uint16_t csum_flags = 0;
4644 uint16_t txbd_tso_flags = 0;
4645 struct txdmamap_pool_entry *dma;
4646 bus_dmamap_t dmamap;
4647 int i = 0;
4648 struct m_tag *mtag;
4649 int use_tso, maxsegsize, error;
4650
4651 cur = frag = *txidx;
4652
4653 if (m_head->m_pkthdr.csum_flags) {
4654 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4655 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4656 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4657 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4658 }
4659
4660 /*
4661 * If we were asked to do an outboard checksum, and the NIC
4662 * has the bug where it sometimes adds in the Ethernet padding,
4663 * explicitly pad with zeros so the cksum will be correct either way.
4664 * (For now, do this for all chip versions, until newer
4665 * are confirmed to not require the workaround.)
4666 */
4667 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4668 #ifdef notyet
4669 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4670 #endif
4671 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4672 goto check_dma_bug;
4673
4674 if (bge_cksum_pad(m_head) != 0)
4675 return ENOBUFS;
4676
4677 check_dma_bug:
4678 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4679 goto doit;
4680
4681 /*
4682 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4683 * less than eight bytes. If we encounter a teeny mbuf
4684 * at the end of a chain, we can pad. Otherwise, copy.
4685 */
4686 if (bge_compact_dma_runt(m_head) != 0)
4687 return ENOBUFS;
4688
4689 doit:
4690 dma = SLIST_FIRST(&sc->txdma_list);
4691 if (dma == NULL)
4692 return ENOBUFS;
4693 dmamap = dma->dmamap;
4694
4695 /*
4696 * Set up any necessary TSO state before we start packing...
4697 */
4698 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4699 if (!use_tso) {
4700 maxsegsize = 0;
4701 } else { /* TSO setup */
4702 unsigned mss;
4703 struct ether_header *eh;
4704 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4705 struct mbuf * m0 = m_head;
4706 struct ip *ip;
4707 struct tcphdr *th;
4708 int iphl, hlen;
4709
4710 /*
4711 * XXX It would be nice if the mbuf pkthdr had offset
4712 * fields for the protocol headers.
4713 */
4714
4715 eh = mtod(m0, struct ether_header *);
4716 switch (htons(eh->ether_type)) {
4717 case ETHERTYPE_IP:
4718 offset = ETHER_HDR_LEN;
4719 break;
4720
4721 case ETHERTYPE_VLAN:
4722 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4723 break;
4724
4725 default:
4726 /*
4727 * Don't support this protocol or encapsulation.
4728 */
4729 return ENOBUFS;
4730 }
4731
4732 /*
4733 * TCP/IP headers are in the first mbuf; we can do
4734 * this the easy way.
4735 */
4736 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4737 hlen = iphl + offset;
4738 if (__predict_false(m0->m_len <
4739 (hlen + sizeof(struct tcphdr)))) {
4740
4741 aprint_debug_dev(sc->bge_dev,
4742 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4743 "not handled yet\n",
4744 m0->m_len, hlen+ sizeof(struct tcphdr));
4745 #ifdef NOTYET
4746 /*
4747 * XXX jonathan (at) NetBSD.org: untested.
4748 * how to force this branch to be taken?
4749 */
4750 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4751
4752 m_copydata(m0, offset, sizeof(ip), &ip);
4753 m_copydata(m0, hlen, sizeof(th), &th);
4754
4755 ip.ip_len = 0;
4756
4757 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4758 sizeof(ip.ip_len), &ip.ip_len);
4759
4760 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4761 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4762
4763 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4764 sizeof(th.th_sum), &th.th_sum);
4765
4766 hlen += th.th_off << 2;
4767 iptcp_opt_words = hlen;
4768 #else
4769 /*
4770 * if_wm "hard" case not yet supported, can we not
4771 * mandate it out of existence?
4772 */
4773 (void) ip; (void)th; (void) ip_tcp_hlen;
4774
4775 return ENOBUFS;
4776 #endif
4777 } else {
4778 ip = (struct ip *) (mtod(m0, char *) + offset);
4779 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4780 ip_tcp_hlen = iphl + (th->th_off << 2);
4781
4782 /* Total IP/TCP options, in 32-bit words */
4783 iptcp_opt_words = (ip_tcp_hlen
4784 - sizeof(struct tcphdr)
4785 - sizeof(struct ip)) >> 2;
4786 }
4787 if (BGE_IS_575X_PLUS(sc)) {
4788 th->th_sum = 0;
4789 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4790 } else {
4791 /*
4792 * XXX jonathan (at) NetBSD.org: 5705 untested.
4793 * Requires TSO firmware patch for 5701/5703/5704.
4794 */
4795 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4796 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4797 }
4798
4799 mss = m_head->m_pkthdr.segsz;
4800 txbd_tso_flags |=
4801 BGE_TXBDFLAG_CPU_PRE_DMA |
4802 BGE_TXBDFLAG_CPU_POST_DMA;
4803
4804 /*
4805 * Our NIC TSO-assist assumes TSO has standard, optionless
4806 * IPv4 and TCP headers, which total 40 bytes. By default,
4807 * the NIC copies 40 bytes of IP/TCP header from the
4808 * supplied header into the IP/TCP header portion of
4809 * each post-TSO-segment. If the supplied packet has IP or
4810 * TCP options, we need to tell the NIC to copy those extra
4811 * bytes into each post-TSO header, in addition to the normal
4812 * 40-byte IP/TCP header (and to leave space accordingly).
4813 * Unfortunately, the driver encoding of option length
4814 * varies across different ASIC families.
4815 */
4816 tcp_seg_flags = 0;
4817 if (iptcp_opt_words) {
4818 if (BGE_IS_5705_PLUS(sc)) {
4819 tcp_seg_flags =
4820 iptcp_opt_words << 11;
4821 } else {
4822 txbd_tso_flags |=
4823 iptcp_opt_words << 12;
4824 }
4825 }
4826 maxsegsize = mss | tcp_seg_flags;
4827 ip->ip_len = htons(mss + ip_tcp_hlen);
4828
4829 } /* TSO setup */
4830
4831 /*
4832 * Start packing the mbufs in this chain into
4833 * the fragment pointers. Stop when we run out
4834 * of fragments or hit the end of the mbuf chain.
4835 */
4836 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4837 BUS_DMA_NOWAIT);
4838 if (error)
4839 return ENOBUFS;
4840 /*
4841 * Sanity check: avoid coming within 16 descriptors
4842 * of the end of the ring.
4843 */
4844 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4845 BGE_TSO_PRINTF(("%s: "
4846 " dmamap_load_mbuf too close to ring wrap\n",
4847 device_xname(sc->bge_dev)));
4848 goto fail_unload;
4849 }
4850
4851 mtag = sc->ethercom.ec_nvlans ?
4852 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4853
4854
4855 /* Iterate over dmap-map fragments. */
4856 for (i = 0; i < dmamap->dm_nsegs; i++) {
4857 f = &sc->bge_rdata->bge_tx_ring[frag];
4858 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4859 break;
4860
4861 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4862 f->bge_len = dmamap->dm_segs[i].ds_len;
4863
4864 /*
4865 * For 5751 and follow-ons, for TSO we must turn
4866 * off checksum-assist flag in the tx-descr, and
4867 * supply the ASIC-revision-specific encoding
4868 * of TSO flags and segsize.
4869 */
4870 if (use_tso) {
4871 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4872 f->bge_rsvd = maxsegsize;
4873 f->bge_flags = csum_flags | txbd_tso_flags;
4874 } else {
4875 f->bge_rsvd = 0;
4876 f->bge_flags =
4877 (csum_flags | txbd_tso_flags) & 0x0fff;
4878 }
4879 } else {
4880 f->bge_rsvd = 0;
4881 f->bge_flags = csum_flags;
4882 }
4883
4884 if (mtag != NULL) {
4885 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4886 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4887 } else {
4888 f->bge_vlan_tag = 0;
4889 }
4890 cur = frag;
4891 BGE_INC(frag, BGE_TX_RING_CNT);
4892 }
4893
4894 if (i < dmamap->dm_nsegs) {
4895 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4896 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4897 goto fail_unload;
4898 }
4899
4900 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4901 BUS_DMASYNC_PREWRITE);
4902
4903 if (frag == sc->bge_tx_saved_considx) {
4904 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4905 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4906
4907 goto fail_unload;
4908 }
4909
4910 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4911 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4912 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4913 sc->txdma[cur] = dma;
4914 sc->bge_txcnt += dmamap->dm_nsegs;
4915
4916 *txidx = frag;
4917
4918 return 0;
4919
4920 fail_unload:
4921 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4922
4923 return ENOBUFS;
4924 }
4925
4926 /*
4927 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4928 * to the mbuf data regions directly in the transmit descriptors.
4929 */
4930 static void
4931 bge_start(struct ifnet *ifp)
4932 {
4933 struct bge_softc *sc;
4934 struct mbuf *m_head = NULL;
4935 uint32_t prodidx;
4936 int pkts = 0;
4937
4938 sc = ifp->if_softc;
4939
4940 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4941 return;
4942
4943 prodidx = sc->bge_tx_prodidx;
4944
4945 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4946 IFQ_POLL(&ifp->if_snd, m_head);
4947 if (m_head == NULL)
4948 break;
4949
4950 #if 0
4951 /*
4952 * XXX
4953 * safety overkill. If this is a fragmented packet chain
4954 * with delayed TCP/UDP checksums, then only encapsulate
4955 * it if we have enough descriptors to handle the entire
4956 * chain at once.
4957 * (paranoia -- may not actually be needed)
4958 */
4959 if (m_head->m_flags & M_FIRSTFRAG &&
4960 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4961 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4962 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4963 ifp->if_flags |= IFF_OACTIVE;
4964 break;
4965 }
4966 }
4967 #endif
4968
4969 /*
4970 * Pack the data into the transmit ring. If we
4971 * don't have room, set the OACTIVE flag and wait
4972 * for the NIC to drain the ring.
4973 */
4974 if (bge_encap(sc, m_head, &prodidx)) {
4975 ifp->if_flags |= IFF_OACTIVE;
4976 break;
4977 }
4978
4979 /* now we are committed to transmit the packet */
4980 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4981 pkts++;
4982
4983 /*
4984 * If there's a BPF listener, bounce a copy of this frame
4985 * to him.
4986 */
4987 bpf_mtap(ifp, m_head);
4988 }
4989 if (pkts == 0)
4990 return;
4991
4992 /* Transmit */
4993 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4994 /* 5700 b2 errata */
4995 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4996 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4997
4998 sc->bge_tx_prodidx = prodidx;
4999
5000 /*
5001 * Set a timeout in case the chip goes out to lunch.
5002 */
5003 ifp->if_timer = 5;
5004 }
5005
5006 static int
5007 bge_init(struct ifnet *ifp)
5008 {
5009 struct bge_softc *sc = ifp->if_softc;
5010 const uint16_t *m;
5011 uint32_t mode;
5012 int s, error = 0;
5013
5014 s = splnet();
5015
5016 ifp = &sc->ethercom.ec_if;
5017
5018 /* Cancel pending I/O and flush buffers. */
5019 bge_stop(ifp, 0);
5020
5021 bge_stop_fw(sc);
5022 bge_sig_pre_reset(sc, BGE_RESET_START);
5023 bge_reset(sc);
5024 bge_sig_legacy(sc, BGE_RESET_START);
5025 bge_sig_post_reset(sc, BGE_RESET_START);
5026
5027 bge_chipinit(sc);
5028
5029 /*
5030 * Init the various state machines, ring
5031 * control blocks and firmware.
5032 */
5033 error = bge_blockinit(sc);
5034 if (error != 0) {
5035 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5036 error);
5037 splx(s);
5038 return error;
5039 }
5040
5041 ifp = &sc->ethercom.ec_if;
5042
5043 /* Specify MTU. */
5044 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5045 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5046
5047 /* Load our MAC address. */
5048 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5049 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5050 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5051
5052 /* Enable or disable promiscuous mode as needed. */
5053 if (ifp->if_flags & IFF_PROMISC)
5054 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5055 else
5056 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5057
5058 /* Program multicast filter. */
5059 bge_setmulti(sc);
5060
5061 /* Init RX ring. */
5062 bge_init_rx_ring_std(sc);
5063
5064 /*
5065 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5066 * memory to insure that the chip has in fact read the first
5067 * entry of the ring.
5068 */
5069 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5070 uint32_t v, i;
5071 for (i = 0; i < 10; i++) {
5072 DELAY(20);
5073 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5074 if (v == (MCLBYTES - ETHER_ALIGN))
5075 break;
5076 }
5077 if (i == 10)
5078 aprint_error_dev(sc->bge_dev,
5079 "5705 A0 chip failed to load RX ring\n");
5080 }
5081
5082 /* Init jumbo RX ring. */
5083 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5084 bge_init_rx_ring_jumbo(sc);
5085
5086 /* Init our RX return ring index */
5087 sc->bge_rx_saved_considx = 0;
5088
5089 /* Init TX ring. */
5090 bge_init_tx_ring(sc);
5091
5092 /* Enable TX MAC state machine lockup fix. */
5093 mode = CSR_READ_4(sc, BGE_TX_MODE);
5094 if (BGE_IS_5755_PLUS(sc) ||
5095 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5096 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5097 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5098 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5099 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5100 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5101 }
5102
5103 /* Turn on transmitter */
5104 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5105 DELAY(100);
5106
5107 /* Turn on receiver */
5108 mode = CSR_READ_4(sc, BGE_RX_MODE);
5109 if (BGE_IS_5755_PLUS(sc))
5110 mode |= BGE_RXMODE_IPV6_ENABLE;
5111 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5112 DELAY(10);
5113
5114 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5115
5116 /* Tell firmware we're alive. */
5117 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5118
5119 /* Enable host interrupts. */
5120 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5121 BGE_PCIMISCCTL_CLEAR_INTA);
5122 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5123 BGE_PCIMISCCTL_MASK_PCI_INTR);
5124 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5125
5126 if ((error = bge_ifmedia_upd(ifp)) != 0)
5127 goto out;
5128
5129 ifp->if_flags |= IFF_RUNNING;
5130 ifp->if_flags &= ~IFF_OACTIVE;
5131
5132 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5133
5134 out:
5135 sc->bge_if_flags = ifp->if_flags;
5136 splx(s);
5137
5138 return error;
5139 }
5140
5141 /*
5142 * Set media options.
5143 */
5144 static int
5145 bge_ifmedia_upd(struct ifnet *ifp)
5146 {
5147 struct bge_softc *sc = ifp->if_softc;
5148 struct mii_data *mii = &sc->bge_mii;
5149 struct ifmedia *ifm = &sc->bge_ifmedia;
5150 int rc;
5151
5152 /* If this is a 1000baseX NIC, enable the TBI port. */
5153 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5154 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5155 return EINVAL;
5156 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5157 case IFM_AUTO:
5158 /*
5159 * The BCM5704 ASIC appears to have a special
5160 * mechanism for programming the autoneg
5161 * advertisement registers in TBI mode.
5162 */
5163 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5164 uint32_t sgdig;
5165 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5166 if (sgdig & BGE_SGDIGSTS_DONE) {
5167 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5168 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5169 sgdig |= BGE_SGDIGCFG_AUTO |
5170 BGE_SGDIGCFG_PAUSE_CAP |
5171 BGE_SGDIGCFG_ASYM_PAUSE;
5172 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5173 sgdig | BGE_SGDIGCFG_SEND);
5174 DELAY(5);
5175 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5176 sgdig);
5177 }
5178 }
5179 break;
5180 case IFM_1000_SX:
5181 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5182 BGE_CLRBIT(sc, BGE_MAC_MODE,
5183 BGE_MACMODE_HALF_DUPLEX);
5184 } else {
5185 BGE_SETBIT(sc, BGE_MAC_MODE,
5186 BGE_MACMODE_HALF_DUPLEX);
5187 }
5188 DELAY(40);
5189 break;
5190 default:
5191 return EINVAL;
5192 }
5193 /* XXX 802.3x flow control for 1000BASE-SX */
5194 return 0;
5195 }
5196
5197 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5198 if ((rc = mii_mediachg(mii)) == ENXIO)
5199 return 0;
5200
5201 /*
5202 * Force an interrupt so that we will call bge_link_upd
5203 * if needed and clear any pending link state attention.
5204 * Without this we are not getting any further interrupts
5205 * for link state changes and thus will not UP the link and
5206 * not be able to send in bge_start. The only way to get
5207 * things working was to receive a packet and get a RX intr.
5208 */
5209 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5210 sc->bge_flags & BGE_IS_5788)
5211 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5212 else
5213 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5214
5215 return rc;
5216 }
5217
5218 /*
5219 * Report current media status.
5220 */
5221 static void
5222 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5223 {
5224 struct bge_softc *sc = ifp->if_softc;
5225 struct mii_data *mii = &sc->bge_mii;
5226
5227 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5228 ifmr->ifm_status = IFM_AVALID;
5229 ifmr->ifm_active = IFM_ETHER;
5230 if (CSR_READ_4(sc, BGE_MAC_STS) &
5231 BGE_MACSTAT_TBI_PCS_SYNCHED)
5232 ifmr->ifm_status |= IFM_ACTIVE;
5233 ifmr->ifm_active |= IFM_1000_SX;
5234 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5235 ifmr->ifm_active |= IFM_HDX;
5236 else
5237 ifmr->ifm_active |= IFM_FDX;
5238 return;
5239 }
5240
5241 mii_pollstat(mii);
5242 ifmr->ifm_status = mii->mii_media_status;
5243 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5244 sc->bge_flowflags;
5245 }
5246
5247 static int
5248 bge_ifflags_cb(struct ethercom *ec)
5249 {
5250 struct ifnet *ifp = &ec->ec_if;
5251 struct bge_softc *sc = ifp->if_softc;
5252 int change = ifp->if_flags ^ sc->bge_if_flags;
5253
5254 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5255 return ENETRESET;
5256 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5257 return 0;
5258
5259 if ((ifp->if_flags & IFF_PROMISC) == 0)
5260 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5261 else
5262 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5263
5264 bge_setmulti(sc);
5265
5266 sc->bge_if_flags = ifp->if_flags;
5267 return 0;
5268 }
5269
5270 static int
5271 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5272 {
5273 struct bge_softc *sc = ifp->if_softc;
5274 struct ifreq *ifr = (struct ifreq *) data;
5275 int s, error = 0;
5276 struct mii_data *mii;
5277
5278 s = splnet();
5279
5280 switch (command) {
5281 case SIOCSIFMEDIA:
5282 /* XXX Flow control is not supported for 1000BASE-SX */
5283 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5284 ifr->ifr_media &= ~IFM_ETH_FMASK;
5285 sc->bge_flowflags = 0;
5286 }
5287
5288 /* Flow control requires full-duplex mode. */
5289 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5290 (ifr->ifr_media & IFM_FDX) == 0) {
5291 ifr->ifr_media &= ~IFM_ETH_FMASK;
5292 }
5293 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5294 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5295 /* We can do both TXPAUSE and RXPAUSE. */
5296 ifr->ifr_media |=
5297 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5298 }
5299 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5300 }
5301 /* FALLTHROUGH */
5302 case SIOCGIFMEDIA:
5303 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5304 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5305 command);
5306 } else {
5307 mii = &sc->bge_mii;
5308 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5309 command);
5310 }
5311 break;
5312 default:
5313 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5314 break;
5315
5316 error = 0;
5317
5318 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5319 ;
5320 else if (ifp->if_flags & IFF_RUNNING)
5321 bge_setmulti(sc);
5322 break;
5323 }
5324
5325 splx(s);
5326
5327 return error;
5328 }
5329
5330 static void
5331 bge_watchdog(struct ifnet *ifp)
5332 {
5333 struct bge_softc *sc;
5334
5335 sc = ifp->if_softc;
5336
5337 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5338
5339 ifp->if_flags &= ~IFF_RUNNING;
5340 bge_init(ifp);
5341
5342 ifp->if_oerrors++;
5343 }
5344
5345 static void
5346 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5347 {
5348 int i;
5349
5350 BGE_CLRBIT_FLUSH(sc, reg, bit);
5351
5352 for (i = 0; i < 1000; i++) {
5353 delay(100);
5354 if ((CSR_READ_4(sc, reg) & bit) == 0)
5355 return;
5356 }
5357
5358 /*
5359 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5360 * on some environment (and once after boot?)
5361 */
5362 if (reg != BGE_SRS_MODE)
5363 aprint_error_dev(sc->bge_dev,
5364 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5365 (u_long)reg, bit);
5366 }
5367
5368 /*
5369 * Stop the adapter and free any mbufs allocated to the
5370 * RX and TX lists.
5371 */
5372 static void
5373 bge_stop(struct ifnet *ifp, int disable)
5374 {
5375 struct bge_softc *sc = ifp->if_softc;
5376
5377 callout_stop(&sc->bge_timeout);
5378
5379 /* Disable host interrupts. */
5380 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5381 BGE_PCIMISCCTL_MASK_PCI_INTR);
5382 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5383
5384 /*
5385 * Tell firmware we're shutting down.
5386 */
5387 bge_stop_fw(sc);
5388 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5389
5390 /*
5391 * Disable all of the receiver blocks.
5392 */
5393 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5394 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5395 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5396 if (BGE_IS_5700_FAMILY(sc))
5397 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5398 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5399 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5400 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5401
5402 /*
5403 * Disable all of the transmit blocks.
5404 */
5405 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5406 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5407 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5408 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5409 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5410 if (BGE_IS_5700_FAMILY(sc))
5411 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5412 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5413
5414 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5415 delay(40);
5416
5417 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5418
5419 /*
5420 * Shut down all of the memory managers and related
5421 * state machines.
5422 */
5423 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5424 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5425 if (BGE_IS_5700_FAMILY(sc))
5426 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5427
5428 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5429 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5430
5431 if (BGE_IS_5700_FAMILY(sc)) {
5432 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5433 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5434 }
5435
5436 bge_reset(sc);
5437 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5438 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5439
5440 /*
5441 * Keep the ASF firmware running if up.
5442 */
5443 if (sc->bge_asf_mode & ASF_STACKUP)
5444 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5445 else
5446 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5447
5448 /* Free the RX lists. */
5449 bge_free_rx_ring_std(sc);
5450
5451 /* Free jumbo RX list. */
5452 if (BGE_IS_JUMBO_CAPABLE(sc))
5453 bge_free_rx_ring_jumbo(sc);
5454
5455 /* Free TX buffers. */
5456 bge_free_tx_ring(sc);
5457
5458 /*
5459 * Isolate/power down the PHY.
5460 */
5461 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5462 mii_down(&sc->bge_mii);
5463
5464 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5465
5466 /* Clear MAC's link state (PHY may still have link UP). */
5467 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5468
5469 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5470 }
5471
5472 static void
5473 bge_link_upd(struct bge_softc *sc)
5474 {
5475 struct ifnet *ifp = &sc->ethercom.ec_if;
5476 struct mii_data *mii = &sc->bge_mii;
5477 uint32_t status;
5478 int link;
5479
5480 /* Clear 'pending link event' flag */
5481 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5482
5483 /*
5484 * Process link state changes.
5485 * Grrr. The link status word in the status block does
5486 * not work correctly on the BCM5700 rev AX and BX chips,
5487 * according to all available information. Hence, we have
5488 * to enable MII interrupts in order to properly obtain
5489 * async link changes. Unfortunately, this also means that
5490 * we have to read the MAC status register to detect link
5491 * changes, thereby adding an additional register access to
5492 * the interrupt handler.
5493 */
5494
5495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5496 status = CSR_READ_4(sc, BGE_MAC_STS);
5497 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5498 mii_pollstat(mii);
5499
5500 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5501 mii->mii_media_status & IFM_ACTIVE &&
5502 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5503 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5504 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5505 (!(mii->mii_media_status & IFM_ACTIVE) ||
5506 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5507 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5508
5509 /* Clear the interrupt */
5510 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5511 BGE_EVTENB_MI_INTERRUPT);
5512 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5513 BRGPHY_MII_ISR);
5514 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5515 BRGPHY_MII_IMR, BRGPHY_INTRS);
5516 }
5517 return;
5518 }
5519
5520 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5521 status = CSR_READ_4(sc, BGE_MAC_STS);
5522 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5523 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5524 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5525 if (BGE_ASICREV(sc->bge_chipid)
5526 == BGE_ASICREV_BCM5704) {
5527 BGE_CLRBIT(sc, BGE_MAC_MODE,
5528 BGE_MACMODE_TBI_SEND_CFGS);
5529 DELAY(40);
5530 }
5531 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5532 if_link_state_change(ifp, LINK_STATE_UP);
5533 }
5534 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5535 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5536 if_link_state_change(ifp, LINK_STATE_DOWN);
5537 }
5538 /*
5539 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5540 * This should not happen since mii callouts are locked now, but
5541 * we keep this check for debug.
5542 */
5543 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5544 /*
5545 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5546 * bit in status word always set. Workaround this bug by
5547 * reading PHY link status directly.
5548 */
5549 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5550 BGE_STS_LINK : 0;
5551
5552 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5553 mii_pollstat(mii);
5554
5555 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5556 mii->mii_media_status & IFM_ACTIVE &&
5557 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5558 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5559 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5560 (!(mii->mii_media_status & IFM_ACTIVE) ||
5561 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5562 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5563 }
5564 }
5565
5566 /* Clear the attention */
5567 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5568 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5569 BGE_MACSTAT_LINK_CHANGED);
5570 }
5571
5572 static int
5573 bge_sysctl_verify(SYSCTLFN_ARGS)
5574 {
5575 int error, t;
5576 struct sysctlnode node;
5577
5578 node = *rnode;
5579 t = *(int*)rnode->sysctl_data;
5580 node.sysctl_data = &t;
5581 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5582 if (error || newp == NULL)
5583 return error;
5584
5585 #if 0
5586 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5587 node.sysctl_num, rnode->sysctl_num));
5588 #endif
5589
5590 if (node.sysctl_num == bge_rxthresh_nodenum) {
5591 if (t < 0 || t >= NBGE_RX_THRESH)
5592 return EINVAL;
5593 bge_update_all_threshes(t);
5594 } else
5595 return EINVAL;
5596
5597 *(int*)rnode->sysctl_data = t;
5598
5599 return 0;
5600 }
5601
5602 /*
5603 * Set up sysctl(3) MIB, hw.bge.*.
5604 */
5605 static void
5606 bge_sysctl_init(struct bge_softc *sc)
5607 {
5608 int rc, bge_root_num;
5609 const struct sysctlnode *node;
5610
5611 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5612 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5613 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5614 goto out;
5615 }
5616
5617 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5618 0, CTLTYPE_NODE, "bge",
5619 SYSCTL_DESCR("BGE interface controls"),
5620 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5621 goto out;
5622 }
5623
5624 bge_root_num = node->sysctl_num;
5625
5626 /* BGE Rx interrupt mitigation level */
5627 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5628 CTLFLAG_READWRITE,
5629 CTLTYPE_INT, "rx_lvl",
5630 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5631 bge_sysctl_verify, 0,
5632 &bge_rx_thresh_lvl,
5633 0, CTL_HW, bge_root_num, CTL_CREATE,
5634 CTL_EOL)) != 0) {
5635 goto out;
5636 }
5637
5638 bge_rxthresh_nodenum = node->sysctl_num;
5639
5640 return;
5641
5642 out:
5643 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5644 }
5645
5646 #ifdef BGE_DEBUG
5647 void
5648 bge_debug_info(struct bge_softc *sc)
5649 {
5650
5651 printf("Hardware Flags:\n");
5652 if (BGE_IS_57765_PLUS(sc))
5653 printf(" - 57765 Plus\n");
5654 if (BGE_IS_5717_PLUS(sc))
5655 printf(" - 5717 Plus\n");
5656 if (BGE_IS_5755_PLUS(sc))
5657 printf(" - 5755 Plus\n");
5658 if (BGE_IS_575X_PLUS(sc))
5659 printf(" - 575X Plus\n");
5660 if (BGE_IS_5705_PLUS(sc))
5661 printf(" - 5705 Plus\n");
5662 if (BGE_IS_5714_FAMILY(sc))
5663 printf(" - 5714 Family\n");
5664 if (BGE_IS_5700_FAMILY(sc))
5665 printf(" - 5700 Family\n");
5666 if (sc->bge_flags & BGE_IS_5788)
5667 printf(" - 5788\n");
5668 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5669 printf(" - Supports Jumbo Frames\n");
5670 if (sc->bge_flags & BGE_NO_EEPROM)
5671 printf(" - No EEPROM\n");
5672 if (sc->bge_flags & BGE_PCIX)
5673 printf(" - PCI-X Bus\n");
5674 if (sc->bge_flags & BGE_PCIE)
5675 printf(" - PCI Express Bus\n");
5676 if (sc->bge_flags & BGE_NO_3LED)
5677 printf(" - No 3 LEDs\n");
5678 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5679 printf(" - RX Alignment Bug\n");
5680 if (sc->bge_flags & BGE_APE)
5681 printf(" - APE\n");
5682 if (sc->bge_flags & BGE_CPMU_PRESENT)
5683 printf(" - CPMU\n");
5684 if (sc->bge_flags & BGE_TSO)
5685 printf(" - TSO\n");
5686 }
5687 #endif /* BGE_DEBUG */
5688
5689 static int
5690 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5691 {
5692 prop_dictionary_t dict;
5693 prop_data_t ea;
5694
5695 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5696 return 1;
5697
5698 dict = device_properties(sc->bge_dev);
5699 ea = prop_dictionary_get(dict, "mac-address");
5700 if (ea != NULL) {
5701 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5702 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5703 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5704 return 0;
5705 }
5706
5707 return 1;
5708 }
5709
5710 static int
5711 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5712 {
5713 uint32_t mac_addr;
5714
5715 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5716 if ((mac_addr >> 16) == 0x484b) {
5717 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5718 ether_addr[1] = (uint8_t)mac_addr;
5719 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5720 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5721 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5722 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5723 ether_addr[5] = (uint8_t)mac_addr;
5724 return 0;
5725 }
5726 return 1;
5727 }
5728
5729 static int
5730 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5731 {
5732 int mac_offset = BGE_EE_MAC_OFFSET;
5733
5734 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5735 mac_offset = BGE_EE_MAC_OFFSET_5906;
5736
5737 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5738 ETHER_ADDR_LEN));
5739 }
5740
5741 static int
5742 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5743 {
5744
5745 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5746 return 1;
5747
5748 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5749 ETHER_ADDR_LEN));
5750 }
5751
5752 static int
5753 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5754 {
5755 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5756 /* NOTE: Order is critical */
5757 bge_get_eaddr_fw,
5758 bge_get_eaddr_mem,
5759 bge_get_eaddr_nvram,
5760 bge_get_eaddr_eeprom,
5761 NULL
5762 };
5763 const bge_eaddr_fcn_t *func;
5764
5765 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5766 if ((*func)(sc, eaddr) == 0)
5767 break;
5768 }
5769 return (*func == NULL ? ENXIO : 0);
5770 }
5771