if_bge.c revision 1.224 1 /* $NetBSD: if_bge.c,v 1.224 2013/03/23 19:40:43 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.224 2013/03/23 19:40:43 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5724,
440 "Broadcom BCM5724 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5750,
444 "Broadcom BCM5750 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5750M,
448 "Broadcom BCM5750M Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751,
452 "Broadcom BCM5751 Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5751F,
456 "Broadcom BCM5751F Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5751M,
460 "Broadcom BCM5751M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5752,
464 "Broadcom BCM5752 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5752M,
468 "Broadcom BCM5752M Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753,
472 "Broadcom BCM5753 Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5753F,
476 "Broadcom BCM5753F Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5753M,
480 "Broadcom BCM5753M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5754,
484 "Broadcom BCM5754 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5754M,
488 "Broadcom BCM5754M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5755,
492 "Broadcom BCM5755 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5755M,
496 "Broadcom BCM5755M Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5756,
500 "Broadcom BCM5756 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761,
504 "Broadcom BCM5761 Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761E,
508 "Broadcom BCM5761E Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5761S,
512 "Broadcom BCM5761S Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5761SE,
516 "Broadcom BCM5761SE Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5764,
520 "Broadcom BCM5764 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5780,
524 "Broadcom BCM5780 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5780S,
528 "Broadcom BCM5780S Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5781,
532 "Broadcom BCM5781 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5782,
536 "Broadcom BCM5782 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5784M,
540 "BCM5784M NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5785F,
544 "BCM5785F NetLink 10/100 Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5785G,
548 "BCM5785G NetLink 1000baseT Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5786,
552 "Broadcom BCM5786 Gigabit Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787,
556 "Broadcom BCM5787 Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5787F,
560 "Broadcom BCM5787F 10/100 Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5787M,
564 "Broadcom BCM5787M Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5788,
568 "Broadcom BCM5788 Gigabit Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5789,
572 "Broadcom BCM5789 Gigabit Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5901,
576 "Broadcom BCM5901 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5901A2,
580 "Broadcom BCM5901A2 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5903M,
584 "Broadcom BCM5903M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM5906,
588 "Broadcom BCM5906 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM5906M,
592 "Broadcom BCM5906M Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57760,
596 "Broadcom BCM57760 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57761,
600 "Broadcom BCM57761 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57762,
604 "Broadcom BCM57762 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57765,
608 "Broadcom BCM57765 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57766,
612 "Broadcom BCM57766 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57780,
616 "Broadcom BCM57780 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57781,
620 "Broadcom BCM57781 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57782,
624 "Broadcom BCM57782 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57785,
628 "Broadcom BCM57785 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57786,
632 "Broadcom BCM57786 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57788,
636 "Broadcom BCM57788 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57790,
640 "Broadcom BCM57790 Fast Ethernet",
641 },
642 { PCI_VENDOR_BROADCOM,
643 PCI_PRODUCT_BROADCOM_BCM57791,
644 "Broadcom BCM57791 Fast Ethernet",
645 },
646 { PCI_VENDOR_BROADCOM,
647 PCI_PRODUCT_BROADCOM_BCM57795,
648 "Broadcom BCM57795 Fast Ethernet",
649 },
650 { PCI_VENDOR_SCHNEIDERKOCH,
651 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
652 "SysKonnect SK-9Dx1 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_3COM,
655 PCI_PRODUCT_3COM_3C996,
656 "3Com 3c996 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PW008GE4,
660 "Fujitsu PW008GE4 Gigabit Ethernet",
661 },
662 { PCI_VENDOR_FUJITSU4,
663 PCI_PRODUCT_FUJITSU4_PW008GE5,
664 "Fujitsu PW008GE5 Gigabit Ethernet",
665 },
666 { PCI_VENDOR_FUJITSU4,
667 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
668 "Fujitsu Primepower 250/450 Gigabit Ethernet",
669 },
670 { 0,
671 0,
672 NULL },
673 };
674
675 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
676 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
677 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
678 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
679 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
680 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
681 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
682 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
683
684 static const struct bge_revision {
685 uint32_t br_chipid;
686 const char *br_name;
687 } bge_revisions[] = {
688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 /* 5754 and 5787 share the same ASIC ID */
744 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754
755 { 0, NULL }
756 };
757
758 /*
759 * Some defaults for major revisions, so that newer steppings
760 * that we don't know about have a shot at working.
761 */
762 static const struct bge_revision bge_majorrevs[] = {
763 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 /* 5754 and 5787 share the same ASIC ID */
778 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
786
787 { 0, NULL }
788 };
789
790 static int bge_allow_asf = 1;
791
792 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
793 bge_probe, bge_attach, NULL, NULL);
794
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 pcireg_t val;
799
800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 return 0;
803
804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 return val;
808 }
809
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818
819 /*
820 * PCI Express only
821 */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 pcireg_t val;
826
827 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 + PCI_PCIE_DCSR);
829 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
830 switch (sc->bge_expmrq) {
831 case 2048:
832 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 break;
834 case 4096:
835 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 break;
837 default:
838 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 break;
840 }
841 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 + PCI_PCIE_DCSR, val);
843 }
844
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 CSR_WRITE_4(sc, off, val);
865 }
866
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872
873 CSR_WRITE_4(sc, off, val);
874 }
875
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881
882 CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884
885 /*
886 * Clear all stale locks and select the lock for this driver instance.
887 */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 struct pci_attach_args *pa = &(sc->bge_pa);
892 uint32_t bit, regbase;
893 int i;
894
895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 regbase = BGE_APE_LOCK_GRANT;
897 else
898 regbase = BGE_APE_PER_LOCK_GRANT;
899
900 /* Clear any stale locks. */
901 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 switch (i) {
903 case BGE_APE_LOCK_PHY0:
904 case BGE_APE_LOCK_PHY1:
905 case BGE_APE_LOCK_PHY2:
906 case BGE_APE_LOCK_PHY3:
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 break;
909 default:
910 if (pa->pa_function != 0)
911 bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 else
913 bit = (1 << pa->pa_function);
914 }
915 APE_WRITE_4(sc, regbase + 4 * i, bit);
916 }
917
918 /* Select the PHY lock based on the device's function number. */
919 switch (pa->pa_function) {
920 case 0:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 break;
923 case 1:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 break;
926 case 2:
927 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 break;
929 case 3:
930 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 break;
932 default:
933 printf("%s: PHY lock not supported on function\n",
934 device_xname(sc->bge_dev));
935 break;
936 }
937 }
938
939 /*
940 * Check for APE firmware, set flags, and print version info.
941 */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 const char *fwtype;
946 uint32_t apedata, features;
947
948 /* Check for a valid APE signature in shared memory. */
949 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 return;
953 }
954
955 /* Check if APE firmware is running. */
956 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 printf("%s: APE signature found but FW status not ready! "
959 "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 return;
961 }
962
963 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964
965 /* Fetch the APE firwmare type and version. */
966 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 fwtype = "NCSI";
971 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 fwtype = "DASH";
974 } else
975 fwtype = "UNKN";
976
977 /* Print the APE firmware version. */
978 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 struct pci_attach_args *pa = &(sc->bge_pa);
989 uint32_t bit, gnt, req, status;
990 int i, off;
991
992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 return (0);
994
995 /* Lock request/grant registers have different bases. */
996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 req = BGE_APE_LOCK_REQ;
998 gnt = BGE_APE_LOCK_GRANT;
999 } else {
1000 req = BGE_APE_PER_LOCK_REQ;
1001 gnt = BGE_APE_PER_LOCK_GRANT;
1002 }
1003
1004 off = 4 * locknum;
1005
1006 switch (locknum) {
1007 case BGE_APE_LOCK_GPIO:
1008 /* Lock required when using GPIO. */
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 return (0);
1011 if (pa->pa_function == 0)
1012 bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 else
1014 bit = (1 << pa->pa_function);
1015 break;
1016 case BGE_APE_LOCK_GRC:
1017 /* Lock required to reset the device. */
1018 if (pa->pa_function == 0)
1019 bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 else
1021 bit = (1 << pa->pa_function);
1022 break;
1023 case BGE_APE_LOCK_MEM:
1024 /* Lock required when accessing certain APE memory. */
1025 if (pa->pa_function == 0)
1026 bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 else
1028 bit = (1 << pa->pa_function);
1029 break;
1030 case BGE_APE_LOCK_PHY0:
1031 case BGE_APE_LOCK_PHY1:
1032 case BGE_APE_LOCK_PHY2:
1033 case BGE_APE_LOCK_PHY3:
1034 /* Lock required when accessing PHYs. */
1035 bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 break;
1037 default:
1038 return (EINVAL);
1039 }
1040
1041 /* Request a lock. */
1042 APE_WRITE_4_FLUSH(sc, req + off, bit);
1043
1044 /* Wait up to 1 second to acquire lock. */
1045 for (i = 0; i < 20000; i++) {
1046 status = APE_READ_4(sc, gnt + off);
1047 if (status == bit)
1048 break;
1049 DELAY(50);
1050 }
1051
1052 /* Handle any errors. */
1053 if (status != bit) {
1054 printf("%s: APE lock %d request failed! "
1055 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 device_xname(sc->bge_dev),
1057 locknum, req + off, bit & 0xFFFF, gnt + off,
1058 status & 0xFFFF);
1059 /* Revoke the lock request. */
1060 APE_WRITE_4(sc, gnt + off, bit);
1061 return (EBUSY);
1062 }
1063
1064 return (0);
1065 }
1066
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 struct pci_attach_args *pa = &(sc->bge_pa);
1071 uint32_t bit, gnt;
1072 int off;
1073
1074 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 return;
1076
1077 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 gnt = BGE_APE_LOCK_GRANT;
1079 else
1080 gnt = BGE_APE_PER_LOCK_GRANT;
1081
1082 off = 4 * locknum;
1083
1084 switch (locknum) {
1085 case BGE_APE_LOCK_GPIO:
1086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 return;
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_GRC:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_MEM:
1100 if (pa->pa_function == 0)
1101 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 else
1103 bit = (1 << pa->pa_function);
1104 break;
1105 case BGE_APE_LOCK_PHY0:
1106 case BGE_APE_LOCK_PHY1:
1107 case BGE_APE_LOCK_PHY2:
1108 case BGE_APE_LOCK_PHY3:
1109 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 break;
1111 default:
1112 return;
1113 }
1114
1115 /* Write and flush for consecutive bge_ape_lock() */
1116 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118
1119 /*
1120 * Send an event to the APE firmware.
1121 */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 uint32_t apedata;
1126 int i;
1127
1128 /* NCSI does not support APE events. */
1129 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 return;
1131
1132 /* Wait up to 1ms for APE to service previous event. */
1133 for (i = 10; i > 0; i--) {
1134 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 break;
1136 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 break;
1143 }
1144 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 DELAY(100);
1146 }
1147 if (i == 0) {
1148 printf("%s: APE event 0x%08x send timed out\n",
1149 device_xname(sc->bge_dev), event);
1150 }
1151 }
1152
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 uint32_t apedata, event;
1157
1158 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 return;
1160
1161 switch (kind) {
1162 case BGE_RESET_START:
1163 /* If this is the first load, clear the load counter. */
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 else {
1168 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 }
1171 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 BGE_APE_HOST_SEG_SIG_MAGIC);
1173 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 BGE_APE_HOST_SEG_LEN_MAGIC);
1175
1176 /* Add some version info if bge(4) supports it. */
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_START);
1185 event = BGE_APE_EVENT_STATUS_STATE_START;
1186 break;
1187 case BGE_RESET_SHUTDOWN:
1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 break;
1192 case BGE_RESET_SUSPEND:
1193 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 break;
1195 default:
1196 return;
1197 }
1198
1199 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 uint32_t access, byte = 0;
1207 int i;
1208
1209 /* Lock. */
1210 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 for (i = 0; i < 8000; i++) {
1212 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 break;
1214 DELAY(20);
1215 }
1216 if (i == 8000)
1217 return 1;
1218
1219 /* Enable access. */
1220 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222
1223 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 DELAY(10);
1227 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 DELAY(10);
1229 break;
1230 }
1231 }
1232
1233 if (i == BGE_TIMEOUT * 10) {
1234 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 return 1;
1236 }
1237
1238 /* Get result. */
1239 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240
1241 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242
1243 /* Disable access. */
1244 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245
1246 /* Unlock. */
1247 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Read a sequence of bytes from NVRAM.
1254 */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 int error = 0, i;
1259 uint8_t byte = 0;
1260
1261 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 return 1;
1263
1264 for (i = 0; i < cnt; i++) {
1265 error = bge_nvram_getbyte(sc, off + i, &byte);
1266 if (error)
1267 break;
1268 *(dest + i) = byte;
1269 }
1270
1271 return (error ? 1 : 0);
1272 }
1273
1274 /*
1275 * Read a byte of data stored in the EEPROM at address 'addr.' The
1276 * BCM570x supports both the traditional bitbang interface and an
1277 * auto access interface for reading the EEPROM. We use the auto
1278 * access method.
1279 */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 int i;
1284 uint32_t byte = 0;
1285
1286 /*
1287 * Enable use of auto EEPROM access so we can avoid
1288 * having to use the bitbang method.
1289 */
1290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291
1292 /* Reset the EEPROM, load the clock period. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 DELAY(20);
1296
1297 /* Issue the read EEPROM command. */
1298 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299
1300 /* Wait for completion */
1301 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 DELAY(10);
1303 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 break;
1305 }
1306
1307 if (i == BGE_TIMEOUT * 10) {
1308 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 return 1;
1310 }
1311
1312 /* Get result. */
1313 byte = CSR_READ_4(sc, BGE_EE_DATA);
1314
1315 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * Read a sequence of bytes from the EEPROM.
1322 */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 int error = 0, i;
1327 uint8_t byte = 0;
1328 char *dest = destv;
1329
1330 for (i = 0; i < cnt; i++) {
1331 error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 if (error)
1333 break;
1334 *(dest + i) = byte;
1335 }
1336
1337 return (error ? 1 : 0);
1338 }
1339
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 struct bge_softc *sc = device_private(dev);
1344 uint32_t val;
1345 uint32_t autopoll;
1346 int i;
1347
1348 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 return 0;
1350
1351 /* Reading with autopolling on may trigger PCI errors */
1352 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 DELAY(80);
1357 }
1358
1359 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 BGE_MIPHY(phy) | BGE_MIREG(reg));
1361
1362 for (i = 0; i < BGE_TIMEOUT; i++) {
1363 delay(10);
1364 val = CSR_READ_4(sc, BGE_MI_COMM);
1365 if (!(val & BGE_MICOMM_BUSY)) {
1366 DELAY(5);
1367 val = CSR_READ_4(sc, BGE_MI_COMM);
1368 break;
1369 }
1370 }
1371
1372 if (i == BGE_TIMEOUT) {
1373 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 val = 0;
1375 goto done;
1376 }
1377
1378 done:
1379 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 DELAY(80);
1383 }
1384
1385 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386
1387 if (val & BGE_MICOMM_READFAIL)
1388 return 0;
1389
1390 return (val & 0xFFFF);
1391 }
1392
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 struct bge_softc *sc = device_private(dev);
1397 uint32_t autopoll;
1398 int i;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 return;
1406
1407 /* Reading with autopolling on may trigger PCI errors */
1408 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 DELAY(80);
1413 }
1414
1415 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417
1418 for (i = 0; i < BGE_TIMEOUT; i++) {
1419 delay(10);
1420 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 delay(5);
1422 CSR_READ_4(sc, BGE_MI_COMM);
1423 break;
1424 }
1425 }
1426
1427 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 delay(80);
1431 }
1432
1433 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434
1435 if (i == BGE_TIMEOUT)
1436 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 struct bge_softc *sc = ifp->if_softc;
1443 struct mii_data *mii = &sc->bge_mii;
1444 uint32_t mac_mode, rx_mode, tx_mode;
1445
1446 /*
1447 * Get flow control negotiation result.
1448 */
1449 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1451 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 mii->mii_media_active &= ~IFM_ETH_FMASK;
1453 }
1454
1455 /* Set the port mode (MII/GMII) to match the link speed. */
1456 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1457 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1458 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1459 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1460 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1461 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1462 mac_mode |= BGE_PORTMODE_GMII;
1463 else
1464 mac_mode |= BGE_PORTMODE_MII;
1465
1466 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1467 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1468 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1469 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1470 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1471 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1472 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1473 } else
1474 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1475
1476 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1477 DELAY(40);
1478 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1479 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1480 }
1481
1482 /*
1483 * Update rx threshold levels to values in a particular slot
1484 * of the interrupt-mitigation table bge_rx_threshes.
1485 */
1486 static void
1487 bge_set_thresh(struct ifnet *ifp, int lvl)
1488 {
1489 struct bge_softc *sc = ifp->if_softc;
1490 int s;
1491
1492 /* For now, just save the new Rx-intr thresholds and record
1493 * that a threshold update is pending. Updating the hardware
1494 * registers here (even at splhigh()) is observed to
1495 * occasionaly cause glitches where Rx-interrupts are not
1496 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1497 */
1498 s = splnet();
1499 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1500 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1501 sc->bge_pending_rxintr_change = 1;
1502 splx(s);
1503 }
1504
1505
1506 /*
1507 * Update Rx thresholds of all bge devices
1508 */
1509 static void
1510 bge_update_all_threshes(int lvl)
1511 {
1512 struct ifnet *ifp;
1513 const char * const namebuf = "bge";
1514 int namelen;
1515
1516 if (lvl < 0)
1517 lvl = 0;
1518 else if (lvl >= NBGE_RX_THRESH)
1519 lvl = NBGE_RX_THRESH - 1;
1520
1521 namelen = strlen(namebuf);
1522 /*
1523 * Now search all the interfaces for this name/number
1524 */
1525 IFNET_FOREACH(ifp) {
1526 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1527 continue;
1528 /* We got a match: update if doing auto-threshold-tuning */
1529 if (bge_auto_thresh)
1530 bge_set_thresh(ifp, lvl);
1531 }
1532 }
1533
1534 /*
1535 * Handle events that have triggered interrupts.
1536 */
1537 static void
1538 bge_handle_events(struct bge_softc *sc)
1539 {
1540
1541 return;
1542 }
1543
1544 /*
1545 * Memory management for jumbo frames.
1546 */
1547
1548 static int
1549 bge_alloc_jumbo_mem(struct bge_softc *sc)
1550 {
1551 char *ptr, *kva;
1552 bus_dma_segment_t seg;
1553 int i, rseg, state, error;
1554 struct bge_jpool_entry *entry;
1555
1556 state = error = 0;
1557
1558 /* Grab a big chunk o' storage. */
1559 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1560 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1561 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1562 return ENOBUFS;
1563 }
1564
1565 state = 1;
1566 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1567 BUS_DMA_NOWAIT)) {
1568 aprint_error_dev(sc->bge_dev,
1569 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1570 error = ENOBUFS;
1571 goto out;
1572 }
1573
1574 state = 2;
1575 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1576 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1577 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1578 error = ENOBUFS;
1579 goto out;
1580 }
1581
1582 state = 3;
1583 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1584 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1585 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1586 error = ENOBUFS;
1587 goto out;
1588 }
1589
1590 state = 4;
1591 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1592 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1593
1594 SLIST_INIT(&sc->bge_jfree_listhead);
1595 SLIST_INIT(&sc->bge_jinuse_listhead);
1596
1597 /*
1598 * Now divide it up into 9K pieces and save the addresses
1599 * in an array.
1600 */
1601 ptr = sc->bge_cdata.bge_jumbo_buf;
1602 for (i = 0; i < BGE_JSLOTS; i++) {
1603 sc->bge_cdata.bge_jslots[i] = ptr;
1604 ptr += BGE_JLEN;
1605 entry = malloc(sizeof(struct bge_jpool_entry),
1606 M_DEVBUF, M_NOWAIT);
1607 if (entry == NULL) {
1608 aprint_error_dev(sc->bge_dev,
1609 "no memory for jumbo buffer queue!\n");
1610 error = ENOBUFS;
1611 goto out;
1612 }
1613 entry->slot = i;
1614 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1615 entry, jpool_entries);
1616 }
1617 out:
1618 if (error != 0) {
1619 switch (state) {
1620 case 4:
1621 bus_dmamap_unload(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_jumbo_map);
1623 case 3:
1624 bus_dmamap_destroy(sc->bge_dmatag,
1625 sc->bge_cdata.bge_rx_jumbo_map);
1626 case 2:
1627 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1628 case 1:
1629 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1630 break;
1631 default:
1632 break;
1633 }
1634 }
1635
1636 return error;
1637 }
1638
1639 /*
1640 * Allocate a jumbo buffer.
1641 */
1642 static void *
1643 bge_jalloc(struct bge_softc *sc)
1644 {
1645 struct bge_jpool_entry *entry;
1646
1647 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1648
1649 if (entry == NULL) {
1650 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1651 return NULL;
1652 }
1653
1654 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1655 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1656 return (sc->bge_cdata.bge_jslots[entry->slot]);
1657 }
1658
1659 /*
1660 * Release a jumbo buffer.
1661 */
1662 static void
1663 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1664 {
1665 struct bge_jpool_entry *entry;
1666 struct bge_softc *sc;
1667 int i, s;
1668
1669 /* Extract the softc struct pointer. */
1670 sc = (struct bge_softc *)arg;
1671
1672 if (sc == NULL)
1673 panic("bge_jfree: can't find softc pointer!");
1674
1675 /* calculate the slot this buffer belongs to */
1676
1677 i = ((char *)buf
1678 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1679
1680 if ((i < 0) || (i >= BGE_JSLOTS))
1681 panic("bge_jfree: asked to free buffer that we don't manage!");
1682
1683 s = splvm();
1684 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1685 if (entry == NULL)
1686 panic("bge_jfree: buffer not in use!");
1687 entry->slot = i;
1688 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1689 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1690
1691 if (__predict_true(m != NULL))
1692 pool_cache_put(mb_cache, m);
1693 splx(s);
1694 }
1695
1696
1697 /*
1698 * Initialize a standard receive ring descriptor.
1699 */
1700 static int
1701 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1702 bus_dmamap_t dmamap)
1703 {
1704 struct mbuf *m_new = NULL;
1705 struct bge_rx_bd *r;
1706 int error;
1707
1708 if (dmamap == NULL) {
1709 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1710 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1711 if (error != 0)
1712 return error;
1713 }
1714
1715 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1716
1717 if (m == NULL) {
1718 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1719 if (m_new == NULL)
1720 return ENOBUFS;
1721
1722 MCLGET(m_new, M_DONTWAIT);
1723 if (!(m_new->m_flags & M_EXT)) {
1724 m_freem(m_new);
1725 return ENOBUFS;
1726 }
1727 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1728
1729 } else {
1730 m_new = m;
1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732 m_new->m_data = m_new->m_ext.ext_buf;
1733 }
1734 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1735 m_adj(m_new, ETHER_ALIGN);
1736 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1737 BUS_DMA_READ|BUS_DMA_NOWAIT))
1738 return ENOBUFS;
1739 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1740 BUS_DMASYNC_PREREAD);
1741
1742 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1743 r = &sc->bge_rdata->bge_rx_std_ring[i];
1744 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1745 r->bge_flags = BGE_RXBDFLAG_END;
1746 r->bge_len = m_new->m_len;
1747 r->bge_idx = i;
1748
1749 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1750 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1751 i * sizeof (struct bge_rx_bd),
1752 sizeof (struct bge_rx_bd),
1753 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * Initialize a jumbo receive ring descriptor. This allocates
1760 * a jumbo buffer from the pool managed internally by the driver.
1761 */
1762 static int
1763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1764 {
1765 struct mbuf *m_new = NULL;
1766 struct bge_rx_bd *r;
1767 void *buf = NULL;
1768
1769 if (m == NULL) {
1770
1771 /* Allocate the mbuf. */
1772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1773 if (m_new == NULL)
1774 return ENOBUFS;
1775
1776 /* Allocate the jumbo buffer */
1777 buf = bge_jalloc(sc);
1778 if (buf == NULL) {
1779 m_freem(m_new);
1780 aprint_error_dev(sc->bge_dev,
1781 "jumbo allocation failed -- packet dropped!\n");
1782 return ENOBUFS;
1783 }
1784
1785 /* Attach the buffer to the mbuf. */
1786 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1787 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1788 bge_jfree, sc);
1789 m_new->m_flags |= M_EXT_RW;
1790 } else {
1791 m_new = m;
1792 buf = m_new->m_data = m_new->m_ext.ext_buf;
1793 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1794 }
1795 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1796 m_adj(m_new, ETHER_ALIGN);
1797 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1798 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1799 BUS_DMASYNC_PREREAD);
1800 /* Set up the descriptor. */
1801 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1802 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1803 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1804 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1805 r->bge_len = m_new->m_len;
1806 r->bge_idx = i;
1807
1808 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1809 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1810 i * sizeof (struct bge_rx_bd),
1811 sizeof (struct bge_rx_bd),
1812 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1813
1814 return 0;
1815 }
1816
1817 /*
1818 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1819 * that's 1MB or memory, which is a lot. For now, we fill only the first
1820 * 256 ring entries and hope that our CPU is fast enough to keep up with
1821 * the NIC.
1822 */
1823 static int
1824 bge_init_rx_ring_std(struct bge_softc *sc)
1825 {
1826 int i;
1827
1828 if (sc->bge_flags & BGE_RXRING_VALID)
1829 return 0;
1830
1831 for (i = 0; i < BGE_SSLOTS; i++) {
1832 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1833 return ENOBUFS;
1834 }
1835
1836 sc->bge_std = i - 1;
1837 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1838
1839 sc->bge_flags |= BGE_RXRING_VALID;
1840
1841 return 0;
1842 }
1843
1844 static void
1845 bge_free_rx_ring_std(struct bge_softc *sc)
1846 {
1847 int i;
1848
1849 if (!(sc->bge_flags & BGE_RXRING_VALID))
1850 return;
1851
1852 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1853 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1854 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1855 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1856 bus_dmamap_destroy(sc->bge_dmatag,
1857 sc->bge_cdata.bge_rx_std_map[i]);
1858 }
1859 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1860 sizeof(struct bge_rx_bd));
1861 }
1862
1863 sc->bge_flags &= ~BGE_RXRING_VALID;
1864 }
1865
1866 static int
1867 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1868 {
1869 int i;
1870 volatile struct bge_rcb *rcb;
1871
1872 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1873 return 0;
1874
1875 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1876 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1877 return ENOBUFS;
1878 }
1879
1880 sc->bge_jumbo = i - 1;
1881 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1882
1883 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1884 rcb->bge_maxlen_flags = 0;
1885 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1886
1887 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1888
1889 return 0;
1890 }
1891
1892 static void
1893 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1894 {
1895 int i;
1896
1897 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1898 return;
1899
1900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1901 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1902 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1903 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1904 }
1905 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1906 sizeof(struct bge_rx_bd));
1907 }
1908
1909 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1910 }
1911
1912 static void
1913 bge_free_tx_ring(struct bge_softc *sc)
1914 {
1915 int i;
1916 struct txdmamap_pool_entry *dma;
1917
1918 if (!(sc->bge_flags & BGE_TXRING_VALID))
1919 return;
1920
1921 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1922 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1923 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1924 sc->bge_cdata.bge_tx_chain[i] = NULL;
1925 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1926 link);
1927 sc->txdma[i] = 0;
1928 }
1929 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1930 sizeof(struct bge_tx_bd));
1931 }
1932
1933 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1934 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1935 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1936 free(dma, M_DEVBUF);
1937 }
1938
1939 sc->bge_flags &= ~BGE_TXRING_VALID;
1940 }
1941
1942 static int
1943 bge_init_tx_ring(struct bge_softc *sc)
1944 {
1945 int i;
1946 bus_dmamap_t dmamap;
1947 struct txdmamap_pool_entry *dma;
1948
1949 if (sc->bge_flags & BGE_TXRING_VALID)
1950 return 0;
1951
1952 sc->bge_txcnt = 0;
1953 sc->bge_tx_saved_considx = 0;
1954
1955 /* Initialize transmit producer index for host-memory send ring. */
1956 sc->bge_tx_prodidx = 0;
1957 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1958 /* 5700 b2 errata */
1959 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1960 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1961
1962 /* NIC-memory send ring not used; initialize to zero. */
1963 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1964 /* 5700 b2 errata */
1965 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1966 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1967
1968 SLIST_INIT(&sc->txdma_list);
1969 for (i = 0; i < BGE_RSLOTS; i++) {
1970 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1971 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1972 &dmamap))
1973 return ENOBUFS;
1974 if (dmamap == NULL)
1975 panic("dmamap NULL in bge_init_tx_ring");
1976 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1977 if (dma == NULL) {
1978 aprint_error_dev(sc->bge_dev,
1979 "can't alloc txdmamap_pool_entry\n");
1980 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1981 return ENOMEM;
1982 }
1983 dma->dmamap = dmamap;
1984 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1985 }
1986
1987 sc->bge_flags |= BGE_TXRING_VALID;
1988
1989 return 0;
1990 }
1991
1992 static void
1993 bge_setmulti(struct bge_softc *sc)
1994 {
1995 struct ethercom *ac = &sc->ethercom;
1996 struct ifnet *ifp = &ac->ec_if;
1997 struct ether_multi *enm;
1998 struct ether_multistep step;
1999 uint32_t hashes[4] = { 0, 0, 0, 0 };
2000 uint32_t h;
2001 int i;
2002
2003 if (ifp->if_flags & IFF_PROMISC)
2004 goto allmulti;
2005
2006 /* Now program new ones. */
2007 ETHER_FIRST_MULTI(step, ac, enm);
2008 while (enm != NULL) {
2009 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2010 /*
2011 * We must listen to a range of multicast addresses.
2012 * For now, just accept all multicasts, rather than
2013 * trying to set only those filter bits needed to match
2014 * the range. (At this time, the only use of address
2015 * ranges is for IP multicast routing, for which the
2016 * range is big enough to require all bits set.)
2017 */
2018 goto allmulti;
2019 }
2020
2021 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022
2023 /* Just want the 7 least-significant bits. */
2024 h &= 0x7f;
2025
2026 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2027 ETHER_NEXT_MULTI(step, enm);
2028 }
2029
2030 ifp->if_flags &= ~IFF_ALLMULTI;
2031 goto setit;
2032
2033 allmulti:
2034 ifp->if_flags |= IFF_ALLMULTI;
2035 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2036
2037 setit:
2038 for (i = 0; i < 4; i++)
2039 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2040 }
2041
2042 static void
2043 bge_sig_pre_reset(struct bge_softc *sc, int type)
2044 {
2045
2046 /*
2047 * Some chips don't like this so only do this if ASF is enabled
2048 */
2049 if (sc->bge_asf_mode)
2050 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2051
2052 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2053 switch (type) {
2054 case BGE_RESET_START:
2055 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2056 BGE_FW_DRV_STATE_START);
2057 break;
2058 case BGE_RESET_SHUTDOWN:
2059 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2060 BGE_FW_DRV_STATE_UNLOAD);
2061 break;
2062 case BGE_RESET_SUSPEND:
2063 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2064 BGE_FW_DRV_STATE_SUSPEND);
2065 break;
2066 }
2067 }
2068
2069 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2070 bge_ape_driver_state_change(sc, type);
2071 }
2072
2073 static void
2074 bge_sig_post_reset(struct bge_softc *sc, int type)
2075 {
2076
2077 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2078 switch (type) {
2079 case BGE_RESET_START:
2080 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2081 BGE_FW_DRV_STATE_START_DONE);
2082 /* START DONE */
2083 break;
2084 case BGE_RESET_SHUTDOWN:
2085 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2086 BGE_FW_DRV_STATE_UNLOAD_DONE);
2087 break;
2088 }
2089 }
2090
2091 if (type == BGE_RESET_SHUTDOWN)
2092 bge_ape_driver_state_change(sc, type);
2093 }
2094
2095 static void
2096 bge_sig_legacy(struct bge_softc *sc, int type)
2097 {
2098
2099 if (sc->bge_asf_mode) {
2100 switch (type) {
2101 case BGE_RESET_START:
2102 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2103 BGE_FW_DRV_STATE_START);
2104 break;
2105 case BGE_RESET_SHUTDOWN:
2106 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2107 BGE_FW_DRV_STATE_UNLOAD);
2108 break;
2109 }
2110 }
2111 }
2112
2113 static void
2114 bge_wait_for_event_ack(struct bge_softc *sc)
2115 {
2116 int i;
2117
2118 /* wait up to 2500usec */
2119 for (i = 0; i < 250; i++) {
2120 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2121 BGE_RX_CPU_DRV_EVENT))
2122 break;
2123 DELAY(10);
2124 }
2125 }
2126
2127 static void
2128 bge_stop_fw(struct bge_softc *sc)
2129 {
2130
2131 if (sc->bge_asf_mode) {
2132 bge_wait_for_event_ack(sc);
2133
2134 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2135 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2136 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2137
2138 bge_wait_for_event_ack(sc);
2139 }
2140 }
2141
2142 static int
2143 bge_poll_fw(struct bge_softc *sc)
2144 {
2145 uint32_t val;
2146 int i;
2147
2148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2149 for (i = 0; i < BGE_TIMEOUT; i++) {
2150 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2151 if (val & BGE_VCPU_STATUS_INIT_DONE)
2152 break;
2153 DELAY(100);
2154 }
2155 if (i >= BGE_TIMEOUT) {
2156 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2157 return -1;
2158 }
2159 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2160 /*
2161 * Poll the value location we just wrote until
2162 * we see the 1's complement of the magic number.
2163 * This indicates that the firmware initialization
2164 * is complete.
2165 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2166 */
2167 for (i = 0; i < BGE_TIMEOUT; i++) {
2168 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2169 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2170 break;
2171 DELAY(10);
2172 }
2173
2174 if (i >= BGE_TIMEOUT) {
2175 aprint_error_dev(sc->bge_dev,
2176 "firmware handshake timed out, val = %x\n", val);
2177 return -1;
2178 }
2179 }
2180
2181 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2182 /* tg3 says we have to wait extra time */
2183 delay(10 * 1000);
2184 }
2185
2186 return 0;
2187 }
2188
2189 int
2190 bge_phy_addr(struct bge_softc *sc)
2191 {
2192 struct pci_attach_args *pa = &(sc->bge_pa);
2193 int phy_addr = 1;
2194
2195 /*
2196 * PHY address mapping for various devices.
2197 *
2198 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2199 * ---------+-------+-------+-------+-------+
2200 * BCM57XX | 1 | X | X | X |
2201 * BCM5704 | 1 | X | 1 | X |
2202 * BCM5717 | 1 | 8 | 2 | 9 |
2203 * BCM5719 | 1 | 8 | 2 | 9 |
2204 * BCM5720 | 1 | 8 | 2 | 9 |
2205 *
2206 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2207 * ---------+-------+-------+-------+-------+
2208 * BCM57XX | X | X | X | X |
2209 * BCM5704 | X | X | X | X |
2210 * BCM5717 | X | X | X | X |
2211 * BCM5719 | 3 | 10 | 4 | 11 |
2212 * BCM5720 | X | X | X | X |
2213 *
2214 * Other addresses may respond but they are not
2215 * IEEE compliant PHYs and should be ignored.
2216 */
2217 switch (BGE_ASICREV(sc->bge_chipid)) {
2218 case BGE_ASICREV_BCM5717:
2219 case BGE_ASICREV_BCM5719:
2220 case BGE_ASICREV_BCM5720:
2221 phy_addr = pa->pa_function;
2222 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2223 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2224 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2225 } else {
2226 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2227 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2228 }
2229 }
2230
2231 return phy_addr;
2232 }
2233
2234 /*
2235 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2236 * self-test results.
2237 */
2238 static int
2239 bge_chipinit(struct bge_softc *sc)
2240 {
2241 uint32_t dma_rw_ctl, mode_ctl, reg;
2242 int i;
2243
2244 /* Set endianness before we access any non-PCI registers. */
2245 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2246 BGE_INIT);
2247
2248 /*
2249 * Clear the MAC statistics block in the NIC's
2250 * internal memory.
2251 */
2252 for (i = BGE_STATS_BLOCK;
2253 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2254 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2255
2256 for (i = BGE_STATUS_BLOCK;
2257 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2258 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2259
2260 /* 5717 workaround from tg3 */
2261 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2262 /* Save */
2263 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2264
2265 /* Temporary modify MODE_CTL to control TLP */
2266 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2267 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2268
2269 /* Control TLP */
2270 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2271 BGE_TLP_PHYCTL1);
2272 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2273 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2274
2275 /* Restore */
2276 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2277 }
2278
2279 /* XXX Should we use 57765_FAMILY? */
2280 if (BGE_IS_57765_PLUS(sc)) {
2281 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL,
2288 reg | BGE_MODECTL_PCIE_TLPADDR1);
2289
2290 /* Control TLP */
2291 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2292 BGE_TLP_PHYCTL5);
2293 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2294 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2295
2296 /* Restore */
2297 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2298 }
2299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2300 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2301 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2302 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2303
2304 /* Save */
2305 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2306
2307 /* Temporary modify MODE_CTL to control TLP */
2308 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2309 CSR_WRITE_4(sc, BGE_MODE_CTL,
2310 reg | BGE_MODECTL_PCIE_TLPADDR0);
2311
2312 /* Control TLP */
2313 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2314 BGE_TLP_FTSMAX);
2315 reg &= ~BGE_TLP_FTSMAX_MSK;
2316 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2317 reg | BGE_TLP_FTSMAX_VAL);
2318
2319 /* Restore */
2320 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 }
2322
2323 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2324 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2325 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2326 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2327 }
2328
2329 /* Set up the PCI DMA control register. */
2330 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2331 if (sc->bge_flags & BGE_PCIE) {
2332 /* Read watermark not used, 128 bytes for write. */
2333 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2334 device_xname(sc->bge_dev)));
2335 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2336 } else if (sc->bge_flags & BGE_PCIX) {
2337 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2338 device_xname(sc->bge_dev)));
2339 /* PCI-X bus */
2340 if (BGE_IS_5714_FAMILY(sc)) {
2341 /* 256 bytes for read and write. */
2342 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2343 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2344
2345 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2346 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2347 else
2348 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2349 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2350 /* 1536 bytes for read, 384 bytes for write. */
2351 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2352 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2353 } else {
2354 /* 384 bytes for read and write. */
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2356 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2357 (0x0F);
2358 }
2359
2360 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2361 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2362 uint32_t tmp;
2363
2364 /* Set ONEDMA_ATONCE for hardware workaround. */
2365 tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2366 BGE_PCI_CLKCTL) & 0x1f;
2367 if (tmp == 6 || tmp == 7)
2368 dma_rw_ctl |=
2369 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2370
2371 /* Set PCI-X DMA write workaround. */
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2373 }
2374 } else {
2375 /* Conventional PCI bus: 256 bytes for read and write. */
2376 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2377 device_xname(sc->bge_dev)));
2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2380
2381 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2382 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2383 dma_rw_ctl |= 0x0F;
2384 }
2385
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2387 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2388 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2389 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2390
2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2393 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2394
2395 if (BGE_IS_5717_PLUS(sc)) {
2396 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2397 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2398 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2399
2400 /*
2401 * Enable HW workaround for controllers that misinterpret
2402 * a status tag update and leave interrupts permanently
2403 * disabled.
2404 */
2405 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2406 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2407 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2408 }
2409
2410 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2411 dma_rw_ctl);
2412
2413 /*
2414 * Set up general mode register.
2415 */
2416 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2417 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2418 /* Retain Host-2-BMC settings written by APE firmware. */
2419 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2420 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2421 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2422 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2423 }
2424 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2425 BGE_MODECTL_TX_NO_PHDR_CSUM;
2426
2427 /*
2428 * BCM5701 B5 have a bug causing data corruption when using
2429 * 64-bit DMA reads, which can be terminated early and then
2430 * completed later as 32-bit accesses, in combination with
2431 * certain bridges.
2432 */
2433 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2434 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2435 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2436
2437 /*
2438 * Tell the firmware the driver is running
2439 */
2440 if (sc->bge_asf_mode & ASF_STACKUP)
2441 mode_ctl |= BGE_MODECTL_STACKUP;
2442
2443 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2444
2445 /*
2446 * Disable memory write invalidate. Apparently it is not supported
2447 * properly by these devices.
2448 */
2449 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2450 PCI_COMMAND_INVALIDATE_ENABLE);
2451
2452 #ifdef __brokenalpha__
2453 /*
2454 * Must insure that we do not cross an 8K (bytes) boundary
2455 * for DMA reads. Our highest limit is 1K bytes. This is a
2456 * restriction on some ALPHA platforms with early revision
2457 * 21174 PCI chipsets, such as the AlphaPC 164lx
2458 */
2459 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2460 #endif
2461
2462 /* Set the timer prescaler (always 66MHz) */
2463 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2464
2465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2466 DELAY(40); /* XXX */
2467
2468 /* Put PHY into ready state */
2469 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2470 DELAY(40);
2471 }
2472
2473 return 0;
2474 }
2475
2476 static int
2477 bge_blockinit(struct bge_softc *sc)
2478 {
2479 volatile struct bge_rcb *rcb;
2480 bus_size_t rcb_addr;
2481 struct ifnet *ifp = &sc->ethercom.ec_if;
2482 bge_hostaddr taddr;
2483 uint32_t dmactl, val;
2484 int i, limit;
2485
2486 /*
2487 * Initialize the memory window pointer register so that
2488 * we can access the first 32K of internal NIC RAM. This will
2489 * allow us to set up the TX send ring RCBs and the RX return
2490 * ring RCBs, plus other things which live in NIC memory.
2491 */
2492 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2493
2494 /* Step 33: Configure mbuf memory pool */
2495 if (!BGE_IS_5705_PLUS(sc)) {
2496 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2497 BGE_BUFFPOOL_1);
2498
2499 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2500 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2501 else
2502 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2503
2504 /* Configure DMA resource pool */
2505 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 BGE_DMA_DESCRIPTORS);
2507 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 }
2509
2510 /* Step 35: Configure mbuf pool watermarks */
2511 /* new broadcom docs strongly recommend these: */
2512 if (BGE_IS_5717_PLUS(sc)) {
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2514 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2515 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2516 } else if (BGE_IS_5705_PLUS(sc)) {
2517 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2518
2519 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2521 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2522 } else {
2523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2525 }
2526 } else {
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 }
2531
2532 /* Step 36: Configure DMA resource watermarks */
2533 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2534 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2535
2536 /* Step 38: Enable buffer manager */
2537 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2538 /*
2539 * Change the arbitration algorithm of TXMBUF read request to
2540 * round-robin instead of priority based for BCM5719. When
2541 * TXFIFO is almost empty, RDMA will hold its request until
2542 * TXFIFO is not almost empty.
2543 */
2544 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2545 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2546 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2547 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2548 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2549 val |= BGE_BMANMODE_LOMBUF_ATTN;
2550 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2551
2552 /* Step 39: Poll for buffer manager start indication */
2553 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2554 DELAY(10);
2555 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2556 break;
2557 }
2558
2559 if (i == BGE_TIMEOUT * 2) {
2560 aprint_error_dev(sc->bge_dev,
2561 "buffer manager failed to start\n");
2562 return ENXIO;
2563 }
2564
2565 /* Step 40: Enable flow-through queues */
2566 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2567 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2568
2569 /* Wait until queue initialization is complete */
2570 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2571 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2572 break;
2573 DELAY(10);
2574 }
2575
2576 if (i == BGE_TIMEOUT * 2) {
2577 aprint_error_dev(sc->bge_dev,
2578 "flow-through queue init failed\n");
2579 return ENXIO;
2580 }
2581
2582 /*
2583 * Summary of rings supported by the controller:
2584 *
2585 * Standard Receive Producer Ring
2586 * - This ring is used to feed receive buffers for "standard"
2587 * sized frames (typically 1536 bytes) to the controller.
2588 *
2589 * Jumbo Receive Producer Ring
2590 * - This ring is used to feed receive buffers for jumbo sized
2591 * frames (i.e. anything bigger than the "standard" frames)
2592 * to the controller.
2593 *
2594 * Mini Receive Producer Ring
2595 * - This ring is used to feed receive buffers for "mini"
2596 * sized frames to the controller.
2597 * - This feature required external memory for the controller
2598 * but was never used in a production system. Should always
2599 * be disabled.
2600 *
2601 * Receive Return Ring
2602 * - After the controller has placed an incoming frame into a
2603 * receive buffer that buffer is moved into a receive return
2604 * ring. The driver is then responsible to passing the
2605 * buffer up to the stack. Many versions of the controller
2606 * support multiple RR rings.
2607 *
2608 * Send Ring
2609 * - This ring is used for outgoing frames. Many versions of
2610 * the controller support multiple send rings.
2611 */
2612
2613 /* Step 41: Initialize the standard RX ring control block */
2614 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2615 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2616 if (BGE_IS_5717_PLUS(sc)) {
2617 /*
2618 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2619 * Bits 15-2 : Maximum RX frame size
2620 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2621 * Bit 0 : Reserved
2622 */
2623 rcb->bge_maxlen_flags =
2624 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2625 } else if (BGE_IS_5705_PLUS(sc)) {
2626 /*
2627 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2628 * Bits 15-2 : Reserved (should be 0)
2629 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2630 * Bit 0 : Reserved
2631 */
2632 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2633 } else {
2634 /*
2635 * Ring size is always XXX entries
2636 * Bits 31-16: Maximum RX frame size
2637 * Bits 15-2 : Reserved (should be 0)
2638 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2639 * Bit 0 : Reserved
2640 */
2641 rcb->bge_maxlen_flags =
2642 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2643 }
2644 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2646 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2647 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2648 else
2649 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2650 /* Write the standard receive producer ring control block. */
2651 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2652 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2653 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2654 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2655
2656 /* Reset the standard receive producer ring producer index. */
2657 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2658
2659 /*
2660 * Step 42: Initialize the jumbo RX ring control block
2661 * We set the 'ring disabled' bit in the flags
2662 * field until we're actually ready to start
2663 * using this ring (i.e. once we set the MTU
2664 * high enough to require it).
2665 */
2666 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2667 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2668 BGE_HOSTADDR(rcb->bge_hostaddr,
2669 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2670 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2671 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2672 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2674 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2675 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2676 else
2677 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2678 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2679 rcb->bge_hostaddr.bge_addr_hi);
2680 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2681 rcb->bge_hostaddr.bge_addr_lo);
2682 /* Program the jumbo receive producer ring RCB parameters. */
2683 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2684 rcb->bge_maxlen_flags);
2685 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2686 /* Reset the jumbo receive producer ring producer index. */
2687 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2688 }
2689
2690 /* Disable the mini receive producer ring RCB. */
2691 if (BGE_IS_5700_FAMILY(sc)) {
2692 /* Set up dummy disabled mini ring RCB */
2693 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2694 rcb->bge_maxlen_flags =
2695 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2696 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2697 rcb->bge_maxlen_flags);
2698 /* Reset the mini receive producer ring producer index. */
2699 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2700
2701 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2702 offsetof(struct bge_ring_data, bge_info),
2703 sizeof (struct bge_gib),
2704 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2705 }
2706
2707 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2708 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2709 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2710 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2711 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2712 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2713 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2714 }
2715 /*
2716 * The BD ring replenish thresholds control how often the
2717 * hardware fetches new BD's from the producer rings in host
2718 * memory. Setting the value too low on a busy system can
2719 * starve the hardware and recue the throughpout.
2720 *
2721 * Set the BD ring replenish thresholds. The recommended
2722 * values are 1/8th the number of descriptors allocated to
2723 * each ring, but since we try to avoid filling the entire
2724 * ring we set these to the minimal value of 8. This needs to
2725 * be done on several of the supported chip revisions anyway,
2726 * to work around HW bugs.
2727 */
2728 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2729 if (BGE_IS_JUMBO_CAPABLE(sc))
2730 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2731
2732 if (BGE_IS_5717_PLUS(sc)) {
2733 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2734 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2735 }
2736
2737 /*
2738 * Disable all send rings by setting the 'ring disabled' bit
2739 * in the flags field of all the TX send ring control blocks,
2740 * located in NIC memory.
2741 */
2742 if (BGE_IS_5700_FAMILY(sc)) {
2743 /* 5700 to 5704 had 16 send rings. */
2744 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2745 } else
2746 limit = 1;
2747 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2748 for (i = 0; i < limit; i++) {
2749 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2750 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2751 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2752 rcb_addr += sizeof(struct bge_rcb);
2753 }
2754
2755 /* Configure send ring RCB 0 (we use only the first ring) */
2756 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2757 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2758 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2759 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2760 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2761 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2762 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2763 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2764 else
2765 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2766 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2767 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2768 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2769
2770 /*
2771 * Disable all receive return rings by setting the
2772 * 'ring diabled' bit in the flags field of all the receive
2773 * return ring control blocks, located in NIC memory.
2774 */
2775 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2776 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2777 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2778 /* Should be 17, use 16 until we get an SRAM map. */
2779 limit = 16;
2780 } else if (BGE_IS_5700_FAMILY(sc))
2781 limit = BGE_RX_RINGS_MAX;
2782 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2783 BGE_IS_57765_PLUS(sc))
2784 limit = 4;
2785 else
2786 limit = 1;
2787 /* Disable all receive return rings */
2788 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2789 for (i = 0; i < limit; i++) {
2790 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2791 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2792 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2793 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2794 BGE_RCB_FLAG_RING_DISABLED));
2795 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2796 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2797 (i * (sizeof(uint64_t))), 0);
2798 rcb_addr += sizeof(struct bge_rcb);
2799 }
2800
2801 /*
2802 * Set up receive return ring 0. Note that the NIC address
2803 * for RX return rings is 0x0. The return rings live entirely
2804 * within the host, so the nicaddr field in the RCB isn't used.
2805 */
2806 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2807 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2808 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2809 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2810 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2811 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2812 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2813
2814 /* Set random backoff seed for TX */
2815 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2816 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2817 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2818 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2819 BGE_TX_BACKOFF_SEED_MASK);
2820
2821 /* Set inter-packet gap */
2822 val = 0x2620;
2823 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2824 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2825 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2826 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2827
2828 /*
2829 * Specify which ring to use for packets that don't match
2830 * any RX rules.
2831 */
2832 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2833
2834 /*
2835 * Configure number of RX lists. One interrupt distribution
2836 * list, sixteen active lists, one bad frames class.
2837 */
2838 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2839
2840 /* Inialize RX list placement stats mask. */
2841 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2842 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2843
2844 /* Disable host coalescing until we get it set up */
2845 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2846
2847 /* Poll to make sure it's shut down. */
2848 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2849 DELAY(10);
2850 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2851 break;
2852 }
2853
2854 if (i == BGE_TIMEOUT * 2) {
2855 aprint_error_dev(sc->bge_dev,
2856 "host coalescing engine failed to idle\n");
2857 return ENXIO;
2858 }
2859
2860 /* Set up host coalescing defaults */
2861 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2862 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2863 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2864 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2865 if (!(BGE_IS_5705_PLUS(sc))) {
2866 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2867 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2868 }
2869 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2870 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2871
2872 /* Set up address of statistics block */
2873 if (BGE_IS_5700_FAMILY(sc)) {
2874 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2875 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2876 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2877 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2878 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2879 }
2880
2881 /* Set up address of status block */
2882 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2883 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2884 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2885 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2886 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2887 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2888
2889 /* Set up status block size. */
2890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2891 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2892 val = BGE_STATBLKSZ_FULL;
2893 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2894 } else {
2895 val = BGE_STATBLKSZ_32BYTE;
2896 bzero(&sc->bge_rdata->bge_status_block, 32);
2897 }
2898
2899 /* Turn on host coalescing state machine */
2900 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2901
2902 /* Turn on RX BD completion state machine and enable attentions */
2903 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2904 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2905
2906 /* Turn on RX list placement state machine */
2907 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2908
2909 /* Turn on RX list selector state machine. */
2910 if (!(BGE_IS_5705_PLUS(sc)))
2911 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2912
2913 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2914 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2915 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2916 BGE_MACMODE_FRMHDR_DMA_ENB;
2917
2918 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2919 val |= BGE_PORTMODE_TBI;
2920 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2921 val |= BGE_PORTMODE_GMII;
2922 else
2923 val |= BGE_PORTMODE_MII;
2924
2925 /* Allow APE to send/receive frames. */
2926 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2927 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2928
2929 /* Turn on DMA, clear stats */
2930 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2931 DELAY(40);
2932
2933 /* Set misc. local control, enable interrupts on attentions */
2934 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2935 if (BGE_IS_5717_PLUS(sc)) {
2936 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2937 DELAY(100);
2938 }
2939
2940 /* Turn on DMA completion state machine */
2941 if (!(BGE_IS_5705_PLUS(sc)))
2942 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2943
2944 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2945
2946 /* Enable host coalescing bug fix. */
2947 if (BGE_IS_5755_PLUS(sc))
2948 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2949
2950 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2951 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2952
2953 /* Turn on write DMA state machine */
2954 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2955 DELAY(40);
2956
2957 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2958
2959 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2960 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2961
2962 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2963 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2964 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2965 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2966 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2967 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2968
2969 if (sc->bge_flags & BGE_PCIE)
2970 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2971 if (sc->bge_flags & BGE_TSO)
2972 val |= BGE_RDMAMODE_TSO4_ENABLE;
2973
2974 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2975 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2976 BGE_RDMAMODE_H2BNC_VLAN_DET;
2977 /*
2978 * Allow multiple outstanding read requests from
2979 * non-LSO read DMA engine.
2980 */
2981 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2982 }
2983
2984 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2985 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2986 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2987 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2988 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2989 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2990 /*
2991 * Adjust tx margin to prevent TX data corruption and
2992 * fix internal FIFO overflow.
2993 */
2994 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2995 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2996 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2997 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2998 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2999 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3000 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3001 }
3002 /*
3003 * Enable fix for read DMA FIFO overruns.
3004 * The fix is to limit the number of RX BDs
3005 * the hardware would fetch at a fime.
3006 */
3007 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3008 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3009 }
3010
3011 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3012 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3013 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3014 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3015 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3016 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3017 /*
3018 * Allow 4KB burst length reads for non-LSO frames.
3019 * Enable 512B burst length reads for buffer descriptors.
3020 */
3021 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3022 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3023 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3024 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3025 }
3026
3027 /* Turn on read DMA state machine */
3028 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3029 delay(40);
3030
3031 /* Turn on RX data completion state machine */
3032 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3033
3034 /* Turn on RX BD initiator state machine */
3035 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3036
3037 /* Turn on RX data and RX BD initiator state machine */
3038 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3039
3040 /* Turn on Mbuf cluster free state machine */
3041 if (!BGE_IS_5705_PLUS(sc))
3042 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3043
3044 /* Turn on send BD completion state machine */
3045 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3046
3047 /* Turn on send data completion state machine */
3048 val = BGE_SDCMODE_ENABLE;
3049 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3050 val |= BGE_SDCMODE_CDELAY;
3051 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3052
3053 /* Turn on send data initiator state machine */
3054 if (sc->bge_flags & BGE_TSO) {
3055 /* XXX: magic value from Linux driver */
3056 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3057 BGE_SDIMODE_HW_LSO_PRE_DMA);
3058 } else
3059 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3060
3061 /* Turn on send BD initiator state machine */
3062 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3063
3064 /* Turn on send BD selector state machine */
3065 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3066
3067 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3068 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3069 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3070
3071 /* ack/clear link change events */
3072 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3073 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3074 BGE_MACSTAT_LINK_CHANGED);
3075 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3076
3077 /*
3078 * Enable attention when the link has changed state for
3079 * devices that use auto polling.
3080 */
3081 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3082 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3083 } else {
3084 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3085 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3087 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3088 BGE_EVTENB_MI_INTERRUPT);
3089 }
3090
3091 /*
3092 * Clear any pending link state attention.
3093 * Otherwise some link state change events may be lost until attention
3094 * is cleared by bge_intr() -> bge_link_upd() sequence.
3095 * It's not necessary on newer BCM chips - perhaps enabling link
3096 * state change attentions implies clearing pending attention.
3097 */
3098 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3099 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3100 BGE_MACSTAT_LINK_CHANGED);
3101
3102 /* Enable link state change attentions. */
3103 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3104
3105 return 0;
3106 }
3107
3108 static const struct bge_revision *
3109 bge_lookup_rev(uint32_t chipid)
3110 {
3111 const struct bge_revision *br;
3112
3113 for (br = bge_revisions; br->br_name != NULL; br++) {
3114 if (br->br_chipid == chipid)
3115 return br;
3116 }
3117
3118 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3119 if (br->br_chipid == BGE_ASICREV(chipid))
3120 return br;
3121 }
3122
3123 return NULL;
3124 }
3125
3126 static const struct bge_product *
3127 bge_lookup(const struct pci_attach_args *pa)
3128 {
3129 const struct bge_product *bp;
3130
3131 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3132 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3133 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3134 return bp;
3135 }
3136
3137 return NULL;
3138 }
3139
3140 static uint32_t
3141 bge_chipid(const struct pci_attach_args *pa)
3142 {
3143 uint32_t id;
3144
3145 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3146 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3147
3148 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3149 switch (PCI_PRODUCT(pa->pa_id)) {
3150 case PCI_PRODUCT_BROADCOM_BCM5717:
3151 case PCI_PRODUCT_BROADCOM_BCM5718:
3152 case PCI_PRODUCT_BROADCOM_BCM5719:
3153 case PCI_PRODUCT_BROADCOM_BCM5720:
3154 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3155 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3156 BGE_PCI_GEN2_PRODID_ASICREV);
3157 break;
3158 case PCI_PRODUCT_BROADCOM_BCM57761:
3159 case PCI_PRODUCT_BROADCOM_BCM57762:
3160 case PCI_PRODUCT_BROADCOM_BCM57765:
3161 case PCI_PRODUCT_BROADCOM_BCM57766:
3162 case PCI_PRODUCT_BROADCOM_BCM57781:
3163 case PCI_PRODUCT_BROADCOM_BCM57785:
3164 case PCI_PRODUCT_BROADCOM_BCM57791:
3165 case PCI_PRODUCT_BROADCOM_BCM57795:
3166 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3167 BGE_PCI_GEN15_PRODID_ASICREV);
3168 break;
3169 default:
3170 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3171 BGE_PCI_PRODID_ASICREV);
3172 break;
3173 }
3174 }
3175
3176 return id;
3177 }
3178
3179 /*
3180 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3181 * against our list and return its name if we find a match. Note
3182 * that since the Broadcom controller contains VPD support, we
3183 * can get the device name string from the controller itself instead
3184 * of the compiled-in string. This is a little slow, but it guarantees
3185 * we'll always announce the right product name.
3186 */
3187 static int
3188 bge_probe(device_t parent, cfdata_t match, void *aux)
3189 {
3190 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3191
3192 if (bge_lookup(pa) != NULL)
3193 return 1;
3194
3195 return 0;
3196 }
3197
3198 static void
3199 bge_attach(device_t parent, device_t self, void *aux)
3200 {
3201 struct bge_softc *sc = device_private(self);
3202 struct pci_attach_args *pa = aux;
3203 prop_dictionary_t dict;
3204 const struct bge_product *bp;
3205 const struct bge_revision *br;
3206 pci_chipset_tag_t pc;
3207 pci_intr_handle_t ih;
3208 const char *intrstr = NULL;
3209 bus_dma_segment_t seg;
3210 int rseg;
3211 uint32_t hwcfg = 0;
3212 uint32_t command;
3213 struct ifnet *ifp;
3214 uint32_t misccfg;
3215 void * kva;
3216 u_char eaddr[ETHER_ADDR_LEN];
3217 pcireg_t memtype, subid, reg;
3218 bus_addr_t memaddr;
3219 bus_size_t memsize, apesize;
3220 uint32_t pm_ctl;
3221 bool no_seeprom;
3222 int capmask;
3223
3224 bp = bge_lookup(pa);
3225 KASSERT(bp != NULL);
3226
3227 sc->sc_pc = pa->pa_pc;
3228 sc->sc_pcitag = pa->pa_tag;
3229 sc->bge_dev = self;
3230
3231 sc->bge_pa = *pa;
3232 pc = sc->sc_pc;
3233 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3234
3235 aprint_naive(": Ethernet controller\n");
3236 aprint_normal(": %s\n", bp->bp_name);
3237
3238 /*
3239 * Map control/status registers.
3240 */
3241 DPRINTFN(5, ("Map control/status regs\n"));
3242 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3243 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3244 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3245 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3246
3247 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3248 aprint_error_dev(sc->bge_dev,
3249 "failed to enable memory mapping!\n");
3250 return;
3251 }
3252
3253 DPRINTFN(5, ("pci_mem_find\n"));
3254 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3255 switch (memtype) {
3256 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3257 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3258 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3259 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3260 &memaddr, &memsize) == 0)
3261 break;
3262 default:
3263 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3264 return;
3265 }
3266
3267 DPRINTFN(5, ("pci_intr_map\n"));
3268 if (pci_intr_map(pa, &ih)) {
3269 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3270 return;
3271 }
3272
3273 DPRINTFN(5, ("pci_intr_string\n"));
3274 intrstr = pci_intr_string(pc, ih);
3275
3276 DPRINTFN(5, ("pci_intr_establish\n"));
3277 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3278
3279 if (sc->bge_intrhand == NULL) {
3280 aprint_error_dev(sc->bge_dev,
3281 "couldn't establish interrupt%s%s\n",
3282 intrstr ? " at " : "", intrstr ? intrstr : "");
3283 return;
3284 }
3285 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3286
3287 /* Save various chip information. */
3288 sc->bge_chipid = bge_chipid(pa);
3289 sc->bge_phy_addr = bge_phy_addr(sc);
3290
3291 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3292 &sc->bge_pciecap, NULL) != 0)
3293 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3294 /* PCIe */
3295 sc->bge_flags |= BGE_PCIE;
3296 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3297 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3298 sc->bge_expmrq = 2048;
3299 else
3300 sc->bge_expmrq = 4096;
3301 bge_set_max_readrq(sc);
3302 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3303 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3304 /* PCI-X */
3305 sc->bge_flags |= BGE_PCIX;
3306 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3307 &sc->bge_pcixcap, NULL) == 0)
3308 aprint_error_dev(sc->bge_dev,
3309 "unable to find PCIX capability\n");
3310 }
3311
3312 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3313 /*
3314 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3315 * can clobber the chip's PCI config-space power control
3316 * registers, leaving the card in D3 powersave state. We do
3317 * not have memory-mapped registers in this state, so force
3318 * device into D0 state before starting initialization.
3319 */
3320 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3321 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3322 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3323 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3324 DELAY(1000); /* 27 usec is allegedly sufficent */
3325 }
3326
3327 /* Save chipset family. */
3328 switch (BGE_ASICREV(sc->bge_chipid)) {
3329 case BGE_ASICREV_BCM57765:
3330 case BGE_ASICREV_BCM57766:
3331 sc->bge_flags |= BGE_57765_PLUS;
3332 /* FALLTHROUGH */
3333 case BGE_ASICREV_BCM5717:
3334 case BGE_ASICREV_BCM5719:
3335 case BGE_ASICREV_BCM5720:
3336 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3337 BGE_5705_PLUS;
3338 break;
3339 case BGE_ASICREV_BCM5755:
3340 case BGE_ASICREV_BCM5761:
3341 case BGE_ASICREV_BCM5784:
3342 case BGE_ASICREV_BCM5785:
3343 case BGE_ASICREV_BCM5787:
3344 case BGE_ASICREV_BCM57780:
3345 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3346 break;
3347 case BGE_ASICREV_BCM5700:
3348 case BGE_ASICREV_BCM5701:
3349 case BGE_ASICREV_BCM5703:
3350 case BGE_ASICREV_BCM5704:
3351 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3352 break;
3353 case BGE_ASICREV_BCM5714_A0:
3354 case BGE_ASICREV_BCM5780:
3355 case BGE_ASICREV_BCM5714:
3356 sc->bge_flags |= BGE_5714_FAMILY;
3357 /* FALLTHROUGH */
3358 case BGE_ASICREV_BCM5750:
3359 case BGE_ASICREV_BCM5752:
3360 case BGE_ASICREV_BCM5906:
3361 sc->bge_flags |= BGE_575X_PLUS;
3362 /* FALLTHROUGH */
3363 case BGE_ASICREV_BCM5705:
3364 sc->bge_flags |= BGE_5705_PLUS;
3365 break;
3366 }
3367
3368 /* Identify chips with APE processor. */
3369 switch (BGE_ASICREV(sc->bge_chipid)) {
3370 case BGE_ASICREV_BCM5717:
3371 case BGE_ASICREV_BCM5719:
3372 case BGE_ASICREV_BCM5720:
3373 case BGE_ASICREV_BCM5761:
3374 sc->bge_flags |= BGE_APE;
3375 break;
3376 }
3377
3378 /* Chips with APE need BAR2 access for APE registers/memory. */
3379 if ((sc->bge_flags & BGE_APE) != 0) {
3380 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3381 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3382 &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3383 aprint_error_dev(sc->bge_dev,
3384 "couldn't map BAR2 memory\n");
3385 return;
3386 }
3387
3388 /* Enable APE register/memory access by host driver. */
3389 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3390 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3391 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3392 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3393 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3394
3395 bge_ape_lock_init(sc);
3396 bge_ape_read_fw_ver(sc);
3397 }
3398
3399 /* Identify the chips that use an CPMU. */
3400 if (BGE_IS_5717_PLUS(sc) ||
3401 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3402 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3403 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3404 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3405 sc->bge_flags |= BGE_CPMU_PRESENT;
3406
3407 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3408 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3409 else
3410 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3411
3412 /*
3413 * When using the BCM5701 in PCI-X mode, data corruption has
3414 * been observed in the first few bytes of some received packets.
3415 * Aligning the packet buffer in memory eliminates the corruption.
3416 * Unfortunately, this misaligns the packet payloads. On platforms
3417 * which do not support unaligned accesses, we will realign the
3418 * payloads by copying the received packets.
3419 */
3420 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3421 sc->bge_flags & BGE_PCIX)
3422 sc->bge_flags |= BGE_RX_ALIGNBUG;
3423
3424 if (BGE_IS_5700_FAMILY(sc))
3425 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3426
3427 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3428 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3429
3430 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3431 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3432 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3433 sc->bge_flags |= BGE_IS_5788;
3434
3435 /*
3436 * Some controllers seem to require a special firmware to use
3437 * TSO. But the firmware is not available to FreeBSD and Linux
3438 * claims that the TSO performed by the firmware is slower than
3439 * hardware based TSO. Moreover the firmware based TSO has one
3440 * known bug which can't handle TSO if ethernet header + IP/TCP
3441 * header is greater than 80 bytes. The workaround for the TSO
3442 * bug exist but it seems it's too expensive than not using
3443 * TSO at all. Some hardwares also have the TSO bug so limit
3444 * the TSO to the controllers that are not affected TSO issues
3445 * (e.g. 5755 or higher).
3446 */
3447 if (BGE_IS_5755_PLUS(sc)) {
3448 /*
3449 * BCM5754 and BCM5787 shares the same ASIC id so
3450 * explicit device id check is required.
3451 */
3452 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3453 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3454 sc->bge_flags |= BGE_TSO;
3455 }
3456
3457 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3458 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3459 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3460 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3461 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3462 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3463 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3464 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3465 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3466 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3467 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3468 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3469 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3470 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3471 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3472 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3473 capmask &= ~BMSR_EXTSTAT;
3474 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3475 }
3476
3477 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3478 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3479 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3480 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3481 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3482
3483 /* Set various PHY bug flags. */
3484 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3485 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3486 sc->bge_flags |= BGE_PHY_CRC_BUG;
3487 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3488 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3489 sc->bge_flags |= BGE_PHY_ADC_BUG;
3490 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3491 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3492 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3493 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3494 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3495 sc->bge_flags |= BGE_PHY_NO_3LED;
3496 if (BGE_IS_5705_PLUS(sc) &&
3497 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3498 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3499 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3500 !BGE_IS_5717_PLUS(sc)) {
3501 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3503 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3504 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3505 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3506 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3507 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3508 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3509 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3510 } else
3511 sc->bge_flags |= BGE_PHY_BER_BUG;
3512 }
3513
3514 /*
3515 * SEEPROM check.
3516 * First check if firmware knows we do not have SEEPROM.
3517 */
3518 if (prop_dictionary_get_bool(device_properties(self),
3519 "without-seeprom", &no_seeprom) && no_seeprom)
3520 sc->bge_flags |= BGE_NO_EEPROM;
3521
3522 /* Now check the 'ROM failed' bit on the RX CPU */
3523 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3524 sc->bge_flags |= BGE_NO_EEPROM;
3525
3526 sc->bge_asf_mode = 0;
3527 /* No ASF if APE present. */
3528 if ((sc->bge_flags & BGE_APE) == 0) {
3529 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3530 BGE_SRAM_DATA_SIG_MAGIC)) {
3531 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3532 BGE_HWCFG_ASF) {
3533 sc->bge_asf_mode |= ASF_ENABLE;
3534 sc->bge_asf_mode |= ASF_STACKUP;
3535 if (BGE_IS_575X_PLUS(sc))
3536 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3537 }
3538 }
3539 }
3540
3541 bge_stop_fw(sc);
3542 bge_sig_pre_reset(sc, BGE_RESET_START);
3543 if (bge_reset(sc))
3544 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3545
3546 bge_sig_legacy(sc, BGE_RESET_START);
3547 bge_sig_post_reset(sc, BGE_RESET_START);
3548
3549 if (bge_chipinit(sc)) {
3550 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3551 bge_release_resources(sc);
3552 return;
3553 }
3554
3555 /*
3556 * Get station address from the EEPROM.
3557 */
3558 if (bge_get_eaddr(sc, eaddr)) {
3559 aprint_error_dev(sc->bge_dev,
3560 "failed to read station address\n");
3561 bge_release_resources(sc);
3562 return;
3563 }
3564
3565 br = bge_lookup_rev(sc->bge_chipid);
3566
3567 if (br == NULL) {
3568 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3569 sc->bge_chipid);
3570 } else {
3571 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3572 br->br_name, sc->bge_chipid);
3573 }
3574 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3575
3576 /* Allocate the general information block and ring buffers. */
3577 if (pci_dma64_available(pa))
3578 sc->bge_dmatag = pa->pa_dmat64;
3579 else
3580 sc->bge_dmatag = pa->pa_dmat;
3581 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3582 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3583 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3584 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3585 return;
3586 }
3587 DPRINTFN(5, ("bus_dmamem_map\n"));
3588 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3589 sizeof(struct bge_ring_data), &kva,
3590 BUS_DMA_NOWAIT)) {
3591 aprint_error_dev(sc->bge_dev,
3592 "can't map DMA buffers (%zu bytes)\n",
3593 sizeof(struct bge_ring_data));
3594 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3595 return;
3596 }
3597 DPRINTFN(5, ("bus_dmamem_create\n"));
3598 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3599 sizeof(struct bge_ring_data), 0,
3600 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3601 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3602 bus_dmamem_unmap(sc->bge_dmatag, kva,
3603 sizeof(struct bge_ring_data));
3604 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3605 return;
3606 }
3607 DPRINTFN(5, ("bus_dmamem_load\n"));
3608 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3609 sizeof(struct bge_ring_data), NULL,
3610 BUS_DMA_NOWAIT)) {
3611 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3612 bus_dmamem_unmap(sc->bge_dmatag, kva,
3613 sizeof(struct bge_ring_data));
3614 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3615 return;
3616 }
3617
3618 DPRINTFN(5, ("bzero\n"));
3619 sc->bge_rdata = (struct bge_ring_data *)kva;
3620
3621 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3622
3623 /* Try to allocate memory for jumbo buffers. */
3624 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3625 if (bge_alloc_jumbo_mem(sc)) {
3626 aprint_error_dev(sc->bge_dev,
3627 "jumbo buffer allocation failed\n");
3628 } else
3629 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3630 }
3631
3632 /* Set default tuneable values. */
3633 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3634 sc->bge_rx_coal_ticks = 150;
3635 sc->bge_rx_max_coal_bds = 64;
3636 sc->bge_tx_coal_ticks = 300;
3637 sc->bge_tx_max_coal_bds = 400;
3638 if (BGE_IS_5705_PLUS(sc)) {
3639 sc->bge_tx_coal_ticks = (12 * 5);
3640 sc->bge_tx_max_coal_bds = (12 * 5);
3641 aprint_verbose_dev(sc->bge_dev,
3642 "setting short Tx thresholds\n");
3643 }
3644
3645 if (BGE_IS_5717_PLUS(sc))
3646 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3647 else if (BGE_IS_5705_PLUS(sc))
3648 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3649 else
3650 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3651
3652 /* Set up ifnet structure */
3653 ifp = &sc->ethercom.ec_if;
3654 ifp->if_softc = sc;
3655 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3656 ifp->if_ioctl = bge_ioctl;
3657 ifp->if_stop = bge_stop;
3658 ifp->if_start = bge_start;
3659 ifp->if_init = bge_init;
3660 ifp->if_watchdog = bge_watchdog;
3661 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3662 IFQ_SET_READY(&ifp->if_snd);
3663 DPRINTFN(5, ("strcpy if_xname\n"));
3664 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3665
3666 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3667 sc->ethercom.ec_if.if_capabilities |=
3668 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3669 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3670 sc->ethercom.ec_if.if_capabilities |=
3671 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3672 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3673 #endif
3674 sc->ethercom.ec_capabilities |=
3675 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3676
3677 if (sc->bge_flags & BGE_TSO)
3678 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3679
3680 /*
3681 * Do MII setup.
3682 */
3683 DPRINTFN(5, ("mii setup\n"));
3684 sc->bge_mii.mii_ifp = ifp;
3685 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3686 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3687 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3688
3689 /*
3690 * Figure out what sort of media we have by checking the hardware
3691 * config word in the first 32k of NIC internal memory, or fall back to
3692 * the config word in the EEPROM. Note: on some BCM5700 cards,
3693 * this value appears to be unset. If that's the case, we have to rely
3694 * on identifying the NIC by its PCI subsystem ID, as we do below for
3695 * the SysKonnect SK-9D41.
3696 */
3697 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3698 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3699 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3700 bge_read_eeprom(sc, (void *)&hwcfg,
3701 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3702 hwcfg = be32toh(hwcfg);
3703 }
3704 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3705 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3706 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3707 if (BGE_IS_5714_FAMILY(sc))
3708 sc->bge_flags |= BGE_PHY_FIBER_MII;
3709 else
3710 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3711 }
3712
3713 /* set phyflags and chipid before mii_attach() */
3714 dict = device_properties(self);
3715 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3716 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3717
3718 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3719 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3720 bge_ifmedia_sts);
3721 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3722 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3723 0, NULL);
3724 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3725 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3726 /* Pretend the user requested this setting */
3727 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3728 } else {
3729 /*
3730 * Do transceiver setup and tell the firmware the
3731 * driver is down so we can try to get access the
3732 * probe if ASF is running. Retry a couple of times
3733 * if we get a conflict with the ASF firmware accessing
3734 * the PHY.
3735 */
3736 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3737 bge_asf_driver_up(sc);
3738
3739 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3740 bge_ifmedia_sts);
3741 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3742 sc->bge_phy_addr, MII_OFFSET_ANY,
3743 MIIF_DOPAUSE);
3744
3745 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3746 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3747 ifmedia_add(&sc->bge_mii.mii_media,
3748 IFM_ETHER|IFM_MANUAL, 0, NULL);
3749 ifmedia_set(&sc->bge_mii.mii_media,
3750 IFM_ETHER|IFM_MANUAL);
3751 } else
3752 ifmedia_set(&sc->bge_mii.mii_media,
3753 IFM_ETHER|IFM_AUTO);
3754
3755 /*
3756 * Now tell the firmware we are going up after probing the PHY
3757 */
3758 if (sc->bge_asf_mode & ASF_STACKUP)
3759 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3760 }
3761
3762 /*
3763 * Call MI attach routine.
3764 */
3765 DPRINTFN(5, ("if_attach\n"));
3766 if_attach(ifp);
3767 DPRINTFN(5, ("ether_ifattach\n"));
3768 ether_ifattach(ifp, eaddr);
3769 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3770 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3771 RND_TYPE_NET, 0);
3772 #ifdef BGE_EVENT_COUNTERS
3773 /*
3774 * Attach event counters.
3775 */
3776 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3777 NULL, device_xname(sc->bge_dev), "intr");
3778 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3779 NULL, device_xname(sc->bge_dev), "tx_xoff");
3780 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3781 NULL, device_xname(sc->bge_dev), "tx_xon");
3782 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3783 NULL, device_xname(sc->bge_dev), "rx_xoff");
3784 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3785 NULL, device_xname(sc->bge_dev), "rx_xon");
3786 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3787 NULL, device_xname(sc->bge_dev), "rx_macctl");
3788 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3789 NULL, device_xname(sc->bge_dev), "xoffentered");
3790 #endif /* BGE_EVENT_COUNTERS */
3791 DPRINTFN(5, ("callout_init\n"));
3792 callout_init(&sc->bge_timeout, 0);
3793
3794 if (pmf_device_register(self, NULL, NULL))
3795 pmf_class_network_register(self, ifp);
3796 else
3797 aprint_error_dev(self, "couldn't establish power handler\n");
3798
3799 bge_sysctl_init(sc);
3800
3801 #ifdef BGE_DEBUG
3802 bge_debug_info(sc);
3803 #endif
3804 }
3805
3806 static void
3807 bge_release_resources(struct bge_softc *sc)
3808 {
3809 if (sc->bge_vpd_prodname != NULL)
3810 free(sc->bge_vpd_prodname, M_DEVBUF);
3811
3812 if (sc->bge_vpd_readonly != NULL)
3813 free(sc->bge_vpd_readonly, M_DEVBUF);
3814 }
3815
3816 static int
3817 bge_reset(struct bge_softc *sc)
3818 {
3819 uint32_t cachesize, command;
3820 uint32_t reset, mac_mode, mac_mode_mask;
3821 pcireg_t devctl, reg;
3822 int i, val;
3823 void (*write_op)(struct bge_softc *, int, int);
3824
3825 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3826 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3827 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3828 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3829
3830 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3831 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3832 if (sc->bge_flags & BGE_PCIE)
3833 write_op = bge_writemem_direct;
3834 else
3835 write_op = bge_writemem_ind;
3836 } else
3837 write_op = bge_writereg_ind;
3838
3839 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3840 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3841 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3842 for (i = 0; i < 8000; i++) {
3843 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3844 BGE_NVRAMSWARB_GNT1)
3845 break;
3846 DELAY(20);
3847 }
3848 if (i == 8000) {
3849 printf("%s: NVRAM lock timedout!\n",
3850 device_xname(sc->bge_dev));
3851 }
3852 }
3853 /* Take APE lock when performing reset. */
3854 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3855
3856 /* Save some important PCI state. */
3857 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3858 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3859
3860 /* Step 5b-5d: */
3861 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3862 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3863 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3864
3865 /* XXX ???: Disable fastboot on controllers that support it. */
3866 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3867 BGE_IS_5755_PLUS(sc))
3868 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3869
3870 /*
3871 * Step 6: Write the magic number to SRAM at offset 0xB50.
3872 * When firmware finishes its initialization it will
3873 * write ~BGE_MAGIC_NUMBER to the same location.
3874 */
3875 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3876
3877 /* Step 7: */
3878 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3879 /*
3880 * XXX: from FreeBSD/Linux; no documentation
3881 */
3882 if (sc->bge_flags & BGE_PCIE) {
3883 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3884 !BGE_IS_57765_PLUS(sc) &&
3885 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3886 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3887 /* PCI Express 1.0 system */
3888 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3889 BGE_PHY_PCIE_SCRAM_MODE);
3890 }
3891 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3892 /*
3893 * Prevent PCI Express link training
3894 * during global reset.
3895 */
3896 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3897 reset |= (1 << 29);
3898 }
3899 }
3900
3901 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3902 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3903 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3904 i | BGE_VCPU_STATUS_DRV_RESET);
3905 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3906 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3907 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3908 }
3909
3910 /*
3911 * Set GPHY Power Down Override to leave GPHY
3912 * powered up in D0 uninitialized.
3913 */
3914 if (BGE_IS_5705_PLUS(sc) &&
3915 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3916 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3917
3918 /* Issue global reset */
3919 write_op(sc, BGE_MISC_CFG, reset);
3920
3921 /* Step 8: wait for complete */
3922 if (sc->bge_flags & BGE_PCIE)
3923 delay(100*1000); /* too big */
3924 else
3925 delay(1000);
3926
3927 if (sc->bge_flags & BGE_PCIE) {
3928 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3929 DELAY(500000);
3930 /* XXX: Magic Numbers */
3931 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3932 BGE_PCI_UNKNOWN0);
3933 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3934 BGE_PCI_UNKNOWN0,
3935 reg | (1 << 15));
3936 }
3937 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3938 sc->bge_pciecap + PCI_PCIE_DCSR);
3939 /* Clear enable no snoop and disable relaxed ordering. */
3940 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3941 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3942
3943 /* Set PCIE max payload size to 128 for older PCIe devices */
3944 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3945 devctl &= ~(0x00e0);
3946 /* Clear device status register. Write 1b to clear */
3947 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3948 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3949 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3950 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3951 bge_set_max_readrq(sc);
3952 }
3953
3954 /* From Linux: dummy read to flush PCI posted writes */
3955 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3956
3957 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3958 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3959 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3960 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3961 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3962 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3963 (sc->bge_flags & BGE_PCIX) != 0)
3964 val |= BGE_PCISTATE_RETRY_SAME_DMA;
3965 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3966 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3967 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3968 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3969 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3970 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3971 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3972
3973 /* Step 11: disable PCI-X Relaxed Ordering. */
3974 if (sc->bge_flags & BGE_PCIX) {
3975 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3976 + PCI_PCIX_CMD);
3977 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3978 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3979 }
3980
3981 /* Step 12: Enable memory arbiter. */
3982 if (BGE_IS_5714_FAMILY(sc)) {
3983 val = CSR_READ_4(sc, BGE_MARB_MODE);
3984 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3985 } else
3986 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3987
3988 /* XXX 5721, 5751 and 5752 */
3989 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3990 /* Step 19: */
3991 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3992 /* Step 20: */
3993 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3994 }
3995
3996 /* Step 28: Fix up byte swapping */
3997 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3998
3999 /*
4000 * Wait for the bootcode to complete initialization.
4001 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4002 * Section 7".
4003 */
4004 if (BGE_IS_5717_PLUS(sc)) {
4005 for (i = 0; i < 1000*1000; i++) {
4006 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4007 if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4008 break;
4009 DELAY(10);
4010 }
4011 }
4012
4013 /* Step 21: 5822 B0 errata */
4014 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4015 pcireg_t msidata;
4016
4017 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4018 BGE_PCI_MSI_DATA);
4019 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4020 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4021 msidata);
4022 }
4023
4024 /*
4025 * Step 18: wirte mac mode
4026 * XXX Write 0x0c for 5703S and 5704S
4027 */
4028 val = CSR_READ_4(sc, BGE_MAC_MODE);
4029 val = (val & ~mac_mode_mask) | mac_mode;
4030 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4031 DELAY(40);
4032
4033 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4034
4035 /* Step 17: Poll until the firmware initialization is complete */
4036 bge_poll_fw(sc);
4037
4038 /*
4039 * The 5704 in TBI mode apparently needs some special
4040 * adjustment to insure the SERDES drive level is set
4041 * to 1.2V.
4042 */
4043 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4044 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4045 uint32_t serdescfg;
4046
4047 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4048 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4049 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4050 }
4051
4052 if (sc->bge_flags & BGE_PCIE &&
4053 !BGE_IS_57765_PLUS(sc) &&
4054 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4055 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4056 uint32_t v;
4057
4058 /* Enable PCI Express bug fix */
4059 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4060 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4061 v | BGE_TLP_DATA_FIFO_PROTECT);
4062 }
4063
4064 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4065 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4066 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4067
4068 return 0;
4069 }
4070
4071 /*
4072 * Frame reception handling. This is called if there's a frame
4073 * on the receive return list.
4074 *
4075 * Note: we have to be able to handle two possibilities here:
4076 * 1) the frame is from the jumbo receive ring
4077 * 2) the frame is from the standard receive ring
4078 */
4079
4080 static void
4081 bge_rxeof(struct bge_softc *sc)
4082 {
4083 struct ifnet *ifp;
4084 uint16_t rx_prod, rx_cons;
4085 int stdcnt = 0, jumbocnt = 0;
4086 bus_dmamap_t dmamap;
4087 bus_addr_t offset, toff;
4088 bus_size_t tlen;
4089 int tosync;
4090
4091 rx_cons = sc->bge_rx_saved_considx;
4092 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4093
4094 /* Nothing to do */
4095 if (rx_cons == rx_prod)
4096 return;
4097
4098 ifp = &sc->ethercom.ec_if;
4099
4100 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4101 offsetof(struct bge_ring_data, bge_status_block),
4102 sizeof (struct bge_status_block),
4103 BUS_DMASYNC_POSTREAD);
4104
4105 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4106 tosync = rx_prod - rx_cons;
4107
4108 if (tosync != 0)
4109 rnd_add_uint32(&sc->rnd_source, tosync);
4110
4111 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4112
4113 if (tosync < 0) {
4114 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4115 sizeof (struct bge_rx_bd);
4116 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4117 toff, tlen, BUS_DMASYNC_POSTREAD);
4118 tosync = -tosync;
4119 }
4120
4121 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4122 offset, tosync * sizeof (struct bge_rx_bd),
4123 BUS_DMASYNC_POSTREAD);
4124
4125 while (rx_cons != rx_prod) {
4126 struct bge_rx_bd *cur_rx;
4127 uint32_t rxidx;
4128 struct mbuf *m = NULL;
4129
4130 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4131
4132 rxidx = cur_rx->bge_idx;
4133 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4134
4135 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4136 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4137 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4138 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4139 jumbocnt++;
4140 bus_dmamap_sync(sc->bge_dmatag,
4141 sc->bge_cdata.bge_rx_jumbo_map,
4142 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4143 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4144 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4145 ifp->if_ierrors++;
4146 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4147 continue;
4148 }
4149 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4150 NULL)== ENOBUFS) {
4151 ifp->if_ierrors++;
4152 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4153 continue;
4154 }
4155 } else {
4156 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4157 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4158
4159 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4160 stdcnt++;
4161 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4162 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4163 if (dmamap == NULL) {
4164 ifp->if_ierrors++;
4165 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4166 continue;
4167 }
4168 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4169 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4170 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4171 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4172 ifp->if_ierrors++;
4173 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4174 continue;
4175 }
4176 if (bge_newbuf_std(sc, sc->bge_std,
4177 NULL, dmamap) == ENOBUFS) {
4178 ifp->if_ierrors++;
4179 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4180 continue;
4181 }
4182 }
4183
4184 ifp->if_ipackets++;
4185 #ifndef __NO_STRICT_ALIGNMENT
4186 /*
4187 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4188 * the Rx buffer has the layer-2 header unaligned.
4189 * If our CPU requires alignment, re-align by copying.
4190 */
4191 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4192 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4193 cur_rx->bge_len);
4194 m->m_data += ETHER_ALIGN;
4195 }
4196 #endif
4197
4198 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4199 m->m_pkthdr.rcvif = ifp;
4200
4201 /*
4202 * Handle BPF listeners. Let the BPF user see the packet.
4203 */
4204 bpf_mtap(ifp, m);
4205
4206 bge_rxcsum(sc, cur_rx, m);
4207
4208 /*
4209 * If we received a packet with a vlan tag, pass it
4210 * to vlan_input() instead of ether_input().
4211 */
4212 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4213 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4214 }
4215
4216 (*ifp->if_input)(ifp, m);
4217 }
4218
4219 sc->bge_rx_saved_considx = rx_cons;
4220 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4221 if (stdcnt)
4222 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4223 if (jumbocnt)
4224 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4225 }
4226
4227 static void
4228 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4229 {
4230
4231 if (BGE_IS_5717_PLUS(sc)) {
4232 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4233 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4234 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4235 if ((cur_rx->bge_error_flag &
4236 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4237 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4238 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4239 m->m_pkthdr.csum_data =
4240 cur_rx->bge_tcp_udp_csum;
4241 m->m_pkthdr.csum_flags |=
4242 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4243 M_CSUM_DATA);
4244 }
4245 }
4246 } else {
4247 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4248 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4249 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4250 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4251 /*
4252 * Rx transport checksum-offload may also
4253 * have bugs with packets which, when transmitted,
4254 * were `runts' requiring padding.
4255 */
4256 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4257 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4258 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4259 m->m_pkthdr.csum_data =
4260 cur_rx->bge_tcp_udp_csum;
4261 m->m_pkthdr.csum_flags |=
4262 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4263 M_CSUM_DATA);
4264 }
4265 }
4266 }
4267
4268 static void
4269 bge_txeof(struct bge_softc *sc)
4270 {
4271 struct bge_tx_bd *cur_tx = NULL;
4272 struct ifnet *ifp;
4273 struct txdmamap_pool_entry *dma;
4274 bus_addr_t offset, toff;
4275 bus_size_t tlen;
4276 int tosync;
4277 struct mbuf *m;
4278
4279 ifp = &sc->ethercom.ec_if;
4280
4281 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4282 offsetof(struct bge_ring_data, bge_status_block),
4283 sizeof (struct bge_status_block),
4284 BUS_DMASYNC_POSTREAD);
4285
4286 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4287 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4288 sc->bge_tx_saved_considx;
4289
4290 if (tosync != 0)
4291 rnd_add_uint32(&sc->rnd_source, tosync);
4292
4293 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4294
4295 if (tosync < 0) {
4296 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4297 sizeof (struct bge_tx_bd);
4298 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4299 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4300 tosync = -tosync;
4301 }
4302
4303 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4304 offset, tosync * sizeof (struct bge_tx_bd),
4305 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4306
4307 /*
4308 * Go through our tx ring and free mbufs for those
4309 * frames that have been sent.
4310 */
4311 while (sc->bge_tx_saved_considx !=
4312 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4313 uint32_t idx = 0;
4314
4315 idx = sc->bge_tx_saved_considx;
4316 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4317 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4318 ifp->if_opackets++;
4319 m = sc->bge_cdata.bge_tx_chain[idx];
4320 if (m != NULL) {
4321 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4322 dma = sc->txdma[idx];
4323 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4324 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4325 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4326 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4327 sc->txdma[idx] = NULL;
4328
4329 m_freem(m);
4330 }
4331 sc->bge_txcnt--;
4332 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4333 ifp->if_timer = 0;
4334 }
4335
4336 if (cur_tx != NULL)
4337 ifp->if_flags &= ~IFF_OACTIVE;
4338 }
4339
4340 static int
4341 bge_intr(void *xsc)
4342 {
4343 struct bge_softc *sc;
4344 struct ifnet *ifp;
4345 uint32_t statusword;
4346
4347 sc = xsc;
4348 ifp = &sc->ethercom.ec_if;
4349
4350 /* It is possible for the interrupt to arrive before
4351 * the status block is updated prior to the interrupt.
4352 * Reading the PCI State register will confirm whether the
4353 * interrupt is ours and will flush the status block.
4354 */
4355
4356 /* read status word from status block */
4357 statusword = sc->bge_rdata->bge_status_block.bge_status;
4358
4359 if ((statusword & BGE_STATFLAG_UPDATED) ||
4360 (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
4361 BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4362 /* Ack interrupt and stop others from occuring. */
4363 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4364
4365 BGE_EVCNT_INCR(sc->bge_ev_intr);
4366
4367 /* clear status word */
4368 sc->bge_rdata->bge_status_block.bge_status = 0;
4369
4370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4371 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4372 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4373 bge_link_upd(sc);
4374
4375 if (ifp->if_flags & IFF_RUNNING) {
4376 /* Check RX return ring producer/consumer */
4377 bge_rxeof(sc);
4378
4379 /* Check TX ring producer/consumer */
4380 bge_txeof(sc);
4381 }
4382
4383 if (sc->bge_pending_rxintr_change) {
4384 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4385 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4386 uint32_t junk;
4387
4388 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4389 DELAY(10);
4390 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4391
4392 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4393 DELAY(10);
4394 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4395
4396 sc->bge_pending_rxintr_change = 0;
4397 }
4398 bge_handle_events(sc);
4399
4400 /* Re-enable interrupts. */
4401 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4402
4403 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4404 bge_start(ifp);
4405
4406 return 1;
4407 } else
4408 return 0;
4409 }
4410
4411 static void
4412 bge_asf_driver_up(struct bge_softc *sc)
4413 {
4414 if (sc->bge_asf_mode & ASF_STACKUP) {
4415 /* Send ASF heartbeat aprox. every 2s */
4416 if (sc->bge_asf_count)
4417 sc->bge_asf_count --;
4418 else {
4419 sc->bge_asf_count = 2;
4420
4421 bge_wait_for_event_ack(sc);
4422
4423 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4424 BGE_FW_CMD_DRV_ALIVE);
4425 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4426 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4427 BGE_FW_HB_TIMEOUT_SEC);
4428 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4429 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4430 BGE_RX_CPU_DRV_EVENT);
4431 }
4432 }
4433 }
4434
4435 static void
4436 bge_tick(void *xsc)
4437 {
4438 struct bge_softc *sc = xsc;
4439 struct mii_data *mii = &sc->bge_mii;
4440 int s;
4441
4442 s = splnet();
4443
4444 if (BGE_IS_5705_PLUS(sc))
4445 bge_stats_update_regs(sc);
4446 else
4447 bge_stats_update(sc);
4448
4449 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4450 /*
4451 * Since in TBI mode auto-polling can't be used we should poll
4452 * link status manually. Here we register pending link event
4453 * and trigger interrupt.
4454 */
4455 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4456 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4457 } else {
4458 /*
4459 * Do not touch PHY if we have link up. This could break
4460 * IPMI/ASF mode or produce extra input errors.
4461 * (extra input errors was reported for bcm5701 & bcm5704).
4462 */
4463 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4464 mii_tick(mii);
4465 }
4466
4467 bge_asf_driver_up(sc);
4468
4469 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4470
4471 splx(s);
4472 }
4473
4474 static void
4475 bge_stats_update_regs(struct bge_softc *sc)
4476 {
4477 struct ifnet *ifp = &sc->ethercom.ec_if;
4478
4479 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4480 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4481
4482 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4483 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4484 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4485 }
4486
4487 static void
4488 bge_stats_update(struct bge_softc *sc)
4489 {
4490 struct ifnet *ifp = &sc->ethercom.ec_if;
4491 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4492
4493 #define READ_STAT(sc, stats, stat) \
4494 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4495
4496 ifp->if_collisions +=
4497 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4498 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4499 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4500 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4501 ifp->if_collisions;
4502
4503 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4504 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4505 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4506 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4507 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4508 READ_STAT(sc, stats,
4509 xoffPauseFramesReceived.bge_addr_lo));
4510 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4511 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4512 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4513 READ_STAT(sc, stats,
4514 macControlFramesReceived.bge_addr_lo));
4515 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4516 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4517
4518 #undef READ_STAT
4519
4520 #ifdef notdef
4521 ifp->if_collisions +=
4522 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4523 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4524 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4525 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4526 ifp->if_collisions;
4527 #endif
4528 }
4529
4530 /*
4531 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4532 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4533 * but when such padded frames employ the bge IP/TCP checksum offload,
4534 * the hardware checksum assist gives incorrect results (possibly
4535 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4536 * If we pad such runts with zeros, the onboard checksum comes out correct.
4537 */
4538 static inline int
4539 bge_cksum_pad(struct mbuf *pkt)
4540 {
4541 struct mbuf *last = NULL;
4542 int padlen;
4543
4544 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4545
4546 /* if there's only the packet-header and we can pad there, use it. */
4547 if (pkt->m_pkthdr.len == pkt->m_len &&
4548 M_TRAILINGSPACE(pkt) >= padlen) {
4549 last = pkt;
4550 } else {
4551 /*
4552 * Walk packet chain to find last mbuf. We will either
4553 * pad there, or append a new mbuf and pad it
4554 * (thus perhaps avoiding the bcm5700 dma-min bug).
4555 */
4556 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4557 continue; /* do nothing */
4558 }
4559
4560 /* `last' now points to last in chain. */
4561 if (M_TRAILINGSPACE(last) < padlen) {
4562 /* Allocate new empty mbuf, pad it. Compact later. */
4563 struct mbuf *n;
4564 MGET(n, M_DONTWAIT, MT_DATA);
4565 if (n == NULL)
4566 return ENOBUFS;
4567 n->m_len = 0;
4568 last->m_next = n;
4569 last = n;
4570 }
4571 }
4572
4573 KDASSERT(!M_READONLY(last));
4574 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4575
4576 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4577 memset(mtod(last, char *) + last->m_len, 0, padlen);
4578 last->m_len += padlen;
4579 pkt->m_pkthdr.len += padlen;
4580 return 0;
4581 }
4582
4583 /*
4584 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4585 */
4586 static inline int
4587 bge_compact_dma_runt(struct mbuf *pkt)
4588 {
4589 struct mbuf *m, *prev;
4590 int totlen, prevlen;
4591
4592 prev = NULL;
4593 totlen = 0;
4594 prevlen = -1;
4595
4596 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4597 int mlen = m->m_len;
4598 int shortfall = 8 - mlen ;
4599
4600 totlen += mlen;
4601 if (mlen == 0)
4602 continue;
4603 if (mlen >= 8)
4604 continue;
4605
4606 /* If we get here, mbuf data is too small for DMA engine.
4607 * Try to fix by shuffling data to prev or next in chain.
4608 * If that fails, do a compacting deep-copy of the whole chain.
4609 */
4610
4611 /* Internal frag. If fits in prev, copy it there. */
4612 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4613 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4614 prev->m_len += mlen;
4615 m->m_len = 0;
4616 /* XXX stitch chain */
4617 prev->m_next = m_free(m);
4618 m = prev;
4619 continue;
4620 }
4621 else if (m->m_next != NULL &&
4622 M_TRAILINGSPACE(m) >= shortfall &&
4623 m->m_next->m_len >= (8 + shortfall)) {
4624 /* m is writable and have enough data in next, pull up. */
4625
4626 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4627 shortfall);
4628 m->m_len += shortfall;
4629 m->m_next->m_len -= shortfall;
4630 m->m_next->m_data += shortfall;
4631 }
4632 else if (m->m_next == NULL || 1) {
4633 /* Got a runt at the very end of the packet.
4634 * borrow data from the tail of the preceding mbuf and
4635 * update its length in-place. (The original data is still
4636 * valid, so we can do this even if prev is not writable.)
4637 */
4638
4639 /* if we'd make prev a runt, just move all of its data. */
4640 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4641 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4642
4643 if ((prev->m_len - shortfall) < 8)
4644 shortfall = prev->m_len;
4645
4646 #ifdef notyet /* just do the safe slow thing for now */
4647 if (!M_READONLY(m)) {
4648 if (M_LEADINGSPACE(m) < shorfall) {
4649 void *m_dat;
4650 m_dat = (m->m_flags & M_PKTHDR) ?
4651 m->m_pktdat : m->dat;
4652 memmove(m_dat, mtod(m, void*), m->m_len);
4653 m->m_data = m_dat;
4654 }
4655 } else
4656 #endif /* just do the safe slow thing */
4657 {
4658 struct mbuf * n = NULL;
4659 int newprevlen = prev->m_len - shortfall;
4660
4661 MGET(n, M_NOWAIT, MT_DATA);
4662 if (n == NULL)
4663 return ENOBUFS;
4664 KASSERT(m->m_len + shortfall < MLEN
4665 /*,
4666 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4667
4668 /* first copy the data we're stealing from prev */
4669 memcpy(n->m_data, prev->m_data + newprevlen,
4670 shortfall);
4671
4672 /* update prev->m_len accordingly */
4673 prev->m_len -= shortfall;
4674
4675 /* copy data from runt m */
4676 memcpy(n->m_data + shortfall, m->m_data,
4677 m->m_len);
4678
4679 /* n holds what we stole from prev, plus m */
4680 n->m_len = shortfall + m->m_len;
4681
4682 /* stitch n into chain and free m */
4683 n->m_next = m->m_next;
4684 prev->m_next = n;
4685 /* KASSERT(m->m_next == NULL); */
4686 m->m_next = NULL;
4687 m_free(m);
4688 m = n; /* for continuing loop */
4689 }
4690 }
4691 prevlen = m->m_len;
4692 }
4693 return 0;
4694 }
4695
4696 /*
4697 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4698 * pointers to descriptors.
4699 */
4700 static int
4701 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4702 {
4703 struct bge_tx_bd *f = NULL;
4704 uint32_t frag, cur;
4705 uint16_t csum_flags = 0;
4706 uint16_t txbd_tso_flags = 0;
4707 struct txdmamap_pool_entry *dma;
4708 bus_dmamap_t dmamap;
4709 int i = 0;
4710 struct m_tag *mtag;
4711 int use_tso, maxsegsize, error;
4712
4713 cur = frag = *txidx;
4714
4715 if (m_head->m_pkthdr.csum_flags) {
4716 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4717 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4718 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4719 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4720 }
4721
4722 /*
4723 * If we were asked to do an outboard checksum, and the NIC
4724 * has the bug where it sometimes adds in the Ethernet padding,
4725 * explicitly pad with zeros so the cksum will be correct either way.
4726 * (For now, do this for all chip versions, until newer
4727 * are confirmed to not require the workaround.)
4728 */
4729 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4730 #ifdef notyet
4731 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4732 #endif
4733 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4734 goto check_dma_bug;
4735
4736 if (bge_cksum_pad(m_head) != 0)
4737 return ENOBUFS;
4738
4739 check_dma_bug:
4740 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4741 goto doit;
4742
4743 /*
4744 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4745 * less than eight bytes. If we encounter a teeny mbuf
4746 * at the end of a chain, we can pad. Otherwise, copy.
4747 */
4748 if (bge_compact_dma_runt(m_head) != 0)
4749 return ENOBUFS;
4750
4751 doit:
4752 dma = SLIST_FIRST(&sc->txdma_list);
4753 if (dma == NULL)
4754 return ENOBUFS;
4755 dmamap = dma->dmamap;
4756
4757 /*
4758 * Set up any necessary TSO state before we start packing...
4759 */
4760 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4761 if (!use_tso) {
4762 maxsegsize = 0;
4763 } else { /* TSO setup */
4764 unsigned mss;
4765 struct ether_header *eh;
4766 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4767 struct mbuf * m0 = m_head;
4768 struct ip *ip;
4769 struct tcphdr *th;
4770 int iphl, hlen;
4771
4772 /*
4773 * XXX It would be nice if the mbuf pkthdr had offset
4774 * fields for the protocol headers.
4775 */
4776
4777 eh = mtod(m0, struct ether_header *);
4778 switch (htons(eh->ether_type)) {
4779 case ETHERTYPE_IP:
4780 offset = ETHER_HDR_LEN;
4781 break;
4782
4783 case ETHERTYPE_VLAN:
4784 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4785 break;
4786
4787 default:
4788 /*
4789 * Don't support this protocol or encapsulation.
4790 */
4791 return ENOBUFS;
4792 }
4793
4794 /*
4795 * TCP/IP headers are in the first mbuf; we can do
4796 * this the easy way.
4797 */
4798 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4799 hlen = iphl + offset;
4800 if (__predict_false(m0->m_len <
4801 (hlen + sizeof(struct tcphdr)))) {
4802
4803 aprint_debug_dev(sc->bge_dev,
4804 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4805 "not handled yet\n",
4806 m0->m_len, hlen+ sizeof(struct tcphdr));
4807 #ifdef NOTYET
4808 /*
4809 * XXX jonathan (at) NetBSD.org: untested.
4810 * how to force this branch to be taken?
4811 */
4812 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4813
4814 m_copydata(m0, offset, sizeof(ip), &ip);
4815 m_copydata(m0, hlen, sizeof(th), &th);
4816
4817 ip.ip_len = 0;
4818
4819 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4820 sizeof(ip.ip_len), &ip.ip_len);
4821
4822 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4823 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4824
4825 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4826 sizeof(th.th_sum), &th.th_sum);
4827
4828 hlen += th.th_off << 2;
4829 iptcp_opt_words = hlen;
4830 #else
4831 /*
4832 * if_wm "hard" case not yet supported, can we not
4833 * mandate it out of existence?
4834 */
4835 (void) ip; (void)th; (void) ip_tcp_hlen;
4836
4837 return ENOBUFS;
4838 #endif
4839 } else {
4840 ip = (struct ip *) (mtod(m0, char *) + offset);
4841 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4842 ip_tcp_hlen = iphl + (th->th_off << 2);
4843
4844 /* Total IP/TCP options, in 32-bit words */
4845 iptcp_opt_words = (ip_tcp_hlen
4846 - sizeof(struct tcphdr)
4847 - sizeof(struct ip)) >> 2;
4848 }
4849 if (BGE_IS_575X_PLUS(sc)) {
4850 th->th_sum = 0;
4851 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4852 } else {
4853 /*
4854 * XXX jonathan (at) NetBSD.org: 5705 untested.
4855 * Requires TSO firmware patch for 5701/5703/5704.
4856 */
4857 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4858 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4859 }
4860
4861 mss = m_head->m_pkthdr.segsz;
4862 txbd_tso_flags |=
4863 BGE_TXBDFLAG_CPU_PRE_DMA |
4864 BGE_TXBDFLAG_CPU_POST_DMA;
4865
4866 /*
4867 * Our NIC TSO-assist assumes TSO has standard, optionless
4868 * IPv4 and TCP headers, which total 40 bytes. By default,
4869 * the NIC copies 40 bytes of IP/TCP header from the
4870 * supplied header into the IP/TCP header portion of
4871 * each post-TSO-segment. If the supplied packet has IP or
4872 * TCP options, we need to tell the NIC to copy those extra
4873 * bytes into each post-TSO header, in addition to the normal
4874 * 40-byte IP/TCP header (and to leave space accordingly).
4875 * Unfortunately, the driver encoding of option length
4876 * varies across different ASIC families.
4877 */
4878 tcp_seg_flags = 0;
4879 if (iptcp_opt_words) {
4880 if (BGE_IS_5705_PLUS(sc)) {
4881 tcp_seg_flags =
4882 iptcp_opt_words << 11;
4883 } else {
4884 txbd_tso_flags |=
4885 iptcp_opt_words << 12;
4886 }
4887 }
4888 maxsegsize = mss | tcp_seg_flags;
4889 ip->ip_len = htons(mss + ip_tcp_hlen);
4890
4891 } /* TSO setup */
4892
4893 /*
4894 * Start packing the mbufs in this chain into
4895 * the fragment pointers. Stop when we run out
4896 * of fragments or hit the end of the mbuf chain.
4897 */
4898 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4899 BUS_DMA_NOWAIT);
4900 if (error)
4901 return ENOBUFS;
4902 /*
4903 * Sanity check: avoid coming within 16 descriptors
4904 * of the end of the ring.
4905 */
4906 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4907 BGE_TSO_PRINTF(("%s: "
4908 " dmamap_load_mbuf too close to ring wrap\n",
4909 device_xname(sc->bge_dev)));
4910 goto fail_unload;
4911 }
4912
4913 mtag = sc->ethercom.ec_nvlans ?
4914 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4915
4916
4917 /* Iterate over dmap-map fragments. */
4918 for (i = 0; i < dmamap->dm_nsegs; i++) {
4919 f = &sc->bge_rdata->bge_tx_ring[frag];
4920 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4921 break;
4922
4923 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4924 f->bge_len = dmamap->dm_segs[i].ds_len;
4925
4926 /*
4927 * For 5751 and follow-ons, for TSO we must turn
4928 * off checksum-assist flag in the tx-descr, and
4929 * supply the ASIC-revision-specific encoding
4930 * of TSO flags and segsize.
4931 */
4932 if (use_tso) {
4933 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4934 f->bge_rsvd = maxsegsize;
4935 f->bge_flags = csum_flags | txbd_tso_flags;
4936 } else {
4937 f->bge_rsvd = 0;
4938 f->bge_flags =
4939 (csum_flags | txbd_tso_flags) & 0x0fff;
4940 }
4941 } else {
4942 f->bge_rsvd = 0;
4943 f->bge_flags = csum_flags;
4944 }
4945
4946 if (mtag != NULL) {
4947 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4948 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4949 } else {
4950 f->bge_vlan_tag = 0;
4951 }
4952 cur = frag;
4953 BGE_INC(frag, BGE_TX_RING_CNT);
4954 }
4955
4956 if (i < dmamap->dm_nsegs) {
4957 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4958 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4959 goto fail_unload;
4960 }
4961
4962 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4963 BUS_DMASYNC_PREWRITE);
4964
4965 if (frag == sc->bge_tx_saved_considx) {
4966 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4967 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4968
4969 goto fail_unload;
4970 }
4971
4972 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4973 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4974 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4975 sc->txdma[cur] = dma;
4976 sc->bge_txcnt += dmamap->dm_nsegs;
4977
4978 *txidx = frag;
4979
4980 return 0;
4981
4982 fail_unload:
4983 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4984
4985 return ENOBUFS;
4986 }
4987
4988 /*
4989 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4990 * to the mbuf data regions directly in the transmit descriptors.
4991 */
4992 static void
4993 bge_start(struct ifnet *ifp)
4994 {
4995 struct bge_softc *sc;
4996 struct mbuf *m_head = NULL;
4997 uint32_t prodidx;
4998 int pkts = 0;
4999
5000 sc = ifp->if_softc;
5001
5002 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5003 return;
5004
5005 prodidx = sc->bge_tx_prodidx;
5006
5007 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5008 IFQ_POLL(&ifp->if_snd, m_head);
5009 if (m_head == NULL)
5010 break;
5011
5012 #if 0
5013 /*
5014 * XXX
5015 * safety overkill. If this is a fragmented packet chain
5016 * with delayed TCP/UDP checksums, then only encapsulate
5017 * it if we have enough descriptors to handle the entire
5018 * chain at once.
5019 * (paranoia -- may not actually be needed)
5020 */
5021 if (m_head->m_flags & M_FIRSTFRAG &&
5022 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5023 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5024 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5025 ifp->if_flags |= IFF_OACTIVE;
5026 break;
5027 }
5028 }
5029 #endif
5030
5031 /*
5032 * Pack the data into the transmit ring. If we
5033 * don't have room, set the OACTIVE flag and wait
5034 * for the NIC to drain the ring.
5035 */
5036 if (bge_encap(sc, m_head, &prodidx)) {
5037 ifp->if_flags |= IFF_OACTIVE;
5038 break;
5039 }
5040
5041 /* now we are committed to transmit the packet */
5042 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5043 pkts++;
5044
5045 /*
5046 * If there's a BPF listener, bounce a copy of this frame
5047 * to him.
5048 */
5049 bpf_mtap(ifp, m_head);
5050 }
5051 if (pkts == 0)
5052 return;
5053
5054 /* Transmit */
5055 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5056 /* 5700 b2 errata */
5057 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5058 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5059
5060 sc->bge_tx_prodidx = prodidx;
5061
5062 /*
5063 * Set a timeout in case the chip goes out to lunch.
5064 */
5065 ifp->if_timer = 5;
5066 }
5067
5068 static int
5069 bge_init(struct ifnet *ifp)
5070 {
5071 struct bge_softc *sc = ifp->if_softc;
5072 const uint16_t *m;
5073 uint32_t mode;
5074 int s, error = 0;
5075
5076 s = splnet();
5077
5078 ifp = &sc->ethercom.ec_if;
5079
5080 /* Cancel pending I/O and flush buffers. */
5081 bge_stop(ifp, 0);
5082
5083 bge_stop_fw(sc);
5084 bge_sig_pre_reset(sc, BGE_RESET_START);
5085 bge_reset(sc);
5086 bge_sig_legacy(sc, BGE_RESET_START);
5087 bge_sig_post_reset(sc, BGE_RESET_START);
5088
5089 bge_chipinit(sc);
5090
5091 /*
5092 * Init the various state machines, ring
5093 * control blocks and firmware.
5094 */
5095 error = bge_blockinit(sc);
5096 if (error != 0) {
5097 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5098 error);
5099 splx(s);
5100 return error;
5101 }
5102
5103 ifp = &sc->ethercom.ec_if;
5104
5105 /* Specify MTU. */
5106 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5107 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5108
5109 /* Load our MAC address. */
5110 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5111 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5112 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5113
5114 /* Enable or disable promiscuous mode as needed. */
5115 if (ifp->if_flags & IFF_PROMISC)
5116 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5117 else
5118 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5119
5120 /* Program multicast filter. */
5121 bge_setmulti(sc);
5122
5123 /* Init RX ring. */
5124 bge_init_rx_ring_std(sc);
5125
5126 /*
5127 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5128 * memory to insure that the chip has in fact read the first
5129 * entry of the ring.
5130 */
5131 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5132 uint32_t v, i;
5133 for (i = 0; i < 10; i++) {
5134 DELAY(20);
5135 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5136 if (v == (MCLBYTES - ETHER_ALIGN))
5137 break;
5138 }
5139 if (i == 10)
5140 aprint_error_dev(sc->bge_dev,
5141 "5705 A0 chip failed to load RX ring\n");
5142 }
5143
5144 /* Init jumbo RX ring. */
5145 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5146 bge_init_rx_ring_jumbo(sc);
5147
5148 /* Init our RX return ring index */
5149 sc->bge_rx_saved_considx = 0;
5150
5151 /* Init TX ring. */
5152 bge_init_tx_ring(sc);
5153
5154 /* Enable TX MAC state machine lockup fix. */
5155 mode = CSR_READ_4(sc, BGE_TX_MODE);
5156 if (BGE_IS_5755_PLUS(sc) ||
5157 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5158 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5159 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5160 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5161 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5162 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5163 }
5164
5165 /* Turn on transmitter */
5166 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5167 DELAY(100);
5168
5169 /* Turn on receiver */
5170 mode = CSR_READ_4(sc, BGE_RX_MODE);
5171 if (BGE_IS_5755_PLUS(sc))
5172 mode |= BGE_RXMODE_IPV6_ENABLE;
5173 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5174 DELAY(10);
5175
5176 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5177
5178 /* Tell firmware we're alive. */
5179 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5180
5181 /* Enable host interrupts. */
5182 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5183 BGE_PCIMISCCTL_CLEAR_INTA);
5184 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5185 BGE_PCIMISCCTL_MASK_PCI_INTR);
5186 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5187
5188 if ((error = bge_ifmedia_upd(ifp)) != 0)
5189 goto out;
5190
5191 ifp->if_flags |= IFF_RUNNING;
5192 ifp->if_flags &= ~IFF_OACTIVE;
5193
5194 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5195
5196 out:
5197 sc->bge_if_flags = ifp->if_flags;
5198 splx(s);
5199
5200 return error;
5201 }
5202
5203 /*
5204 * Set media options.
5205 */
5206 static int
5207 bge_ifmedia_upd(struct ifnet *ifp)
5208 {
5209 struct bge_softc *sc = ifp->if_softc;
5210 struct mii_data *mii = &sc->bge_mii;
5211 struct ifmedia *ifm = &sc->bge_ifmedia;
5212 int rc;
5213
5214 /* If this is a 1000baseX NIC, enable the TBI port. */
5215 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5216 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5217 return EINVAL;
5218 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5219 case IFM_AUTO:
5220 /*
5221 * The BCM5704 ASIC appears to have a special
5222 * mechanism for programming the autoneg
5223 * advertisement registers in TBI mode.
5224 */
5225 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5226 uint32_t sgdig;
5227 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5228 if (sgdig & BGE_SGDIGSTS_DONE) {
5229 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5230 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5231 sgdig |= BGE_SGDIGCFG_AUTO |
5232 BGE_SGDIGCFG_PAUSE_CAP |
5233 BGE_SGDIGCFG_ASYM_PAUSE;
5234 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5235 sgdig | BGE_SGDIGCFG_SEND);
5236 DELAY(5);
5237 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5238 sgdig);
5239 }
5240 }
5241 break;
5242 case IFM_1000_SX:
5243 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5244 BGE_CLRBIT(sc, BGE_MAC_MODE,
5245 BGE_MACMODE_HALF_DUPLEX);
5246 } else {
5247 BGE_SETBIT(sc, BGE_MAC_MODE,
5248 BGE_MACMODE_HALF_DUPLEX);
5249 }
5250 DELAY(40);
5251 break;
5252 default:
5253 return EINVAL;
5254 }
5255 /* XXX 802.3x flow control for 1000BASE-SX */
5256 return 0;
5257 }
5258
5259 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5260 if ((rc = mii_mediachg(mii)) == ENXIO)
5261 return 0;
5262
5263 /*
5264 * Force an interrupt so that we will call bge_link_upd
5265 * if needed and clear any pending link state attention.
5266 * Without this we are not getting any further interrupts
5267 * for link state changes and thus will not UP the link and
5268 * not be able to send in bge_start. The only way to get
5269 * things working was to receive a packet and get a RX intr.
5270 */
5271 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5272 sc->bge_flags & BGE_IS_5788)
5273 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5274 else
5275 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5276
5277 return rc;
5278 }
5279
5280 /*
5281 * Report current media status.
5282 */
5283 static void
5284 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5285 {
5286 struct bge_softc *sc = ifp->if_softc;
5287 struct mii_data *mii = &sc->bge_mii;
5288
5289 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5290 ifmr->ifm_status = IFM_AVALID;
5291 ifmr->ifm_active = IFM_ETHER;
5292 if (CSR_READ_4(sc, BGE_MAC_STS) &
5293 BGE_MACSTAT_TBI_PCS_SYNCHED)
5294 ifmr->ifm_status |= IFM_ACTIVE;
5295 ifmr->ifm_active |= IFM_1000_SX;
5296 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5297 ifmr->ifm_active |= IFM_HDX;
5298 else
5299 ifmr->ifm_active |= IFM_FDX;
5300 return;
5301 }
5302
5303 mii_pollstat(mii);
5304 ifmr->ifm_status = mii->mii_media_status;
5305 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5306 sc->bge_flowflags;
5307 }
5308
5309 static int
5310 bge_ifflags_cb(struct ethercom *ec)
5311 {
5312 struct ifnet *ifp = &ec->ec_if;
5313 struct bge_softc *sc = ifp->if_softc;
5314 int change = ifp->if_flags ^ sc->bge_if_flags;
5315
5316 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5317 return ENETRESET;
5318 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5319 return 0;
5320
5321 if ((ifp->if_flags & IFF_PROMISC) == 0)
5322 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5323 else
5324 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5325
5326 bge_setmulti(sc);
5327
5328 sc->bge_if_flags = ifp->if_flags;
5329 return 0;
5330 }
5331
5332 static int
5333 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5334 {
5335 struct bge_softc *sc = ifp->if_softc;
5336 struct ifreq *ifr = (struct ifreq *) data;
5337 int s, error = 0;
5338 struct mii_data *mii;
5339
5340 s = splnet();
5341
5342 switch (command) {
5343 case SIOCSIFMEDIA:
5344 /* XXX Flow control is not supported for 1000BASE-SX */
5345 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5346 ifr->ifr_media &= ~IFM_ETH_FMASK;
5347 sc->bge_flowflags = 0;
5348 }
5349
5350 /* Flow control requires full-duplex mode. */
5351 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5352 (ifr->ifr_media & IFM_FDX) == 0) {
5353 ifr->ifr_media &= ~IFM_ETH_FMASK;
5354 }
5355 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5356 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5357 /* We can do both TXPAUSE and RXPAUSE. */
5358 ifr->ifr_media |=
5359 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5360 }
5361 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5362 }
5363 /* FALLTHROUGH */
5364 case SIOCGIFMEDIA:
5365 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5366 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5367 command);
5368 } else {
5369 mii = &sc->bge_mii;
5370 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5371 command);
5372 }
5373 break;
5374 default:
5375 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5376 break;
5377
5378 error = 0;
5379
5380 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5381 ;
5382 else if (ifp->if_flags & IFF_RUNNING)
5383 bge_setmulti(sc);
5384 break;
5385 }
5386
5387 splx(s);
5388
5389 return error;
5390 }
5391
5392 static void
5393 bge_watchdog(struct ifnet *ifp)
5394 {
5395 struct bge_softc *sc;
5396
5397 sc = ifp->if_softc;
5398
5399 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5400
5401 ifp->if_flags &= ~IFF_RUNNING;
5402 bge_init(ifp);
5403
5404 ifp->if_oerrors++;
5405 }
5406
5407 static void
5408 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5409 {
5410 int i;
5411
5412 BGE_CLRBIT_FLUSH(sc, reg, bit);
5413
5414 for (i = 0; i < 1000; i++) {
5415 delay(100);
5416 if ((CSR_READ_4(sc, reg) & bit) == 0)
5417 return;
5418 }
5419
5420 /*
5421 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5422 * on some environment (and once after boot?)
5423 */
5424 if (reg != BGE_SRS_MODE)
5425 aprint_error_dev(sc->bge_dev,
5426 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5427 (u_long)reg, bit);
5428 }
5429
5430 /*
5431 * Stop the adapter and free any mbufs allocated to the
5432 * RX and TX lists.
5433 */
5434 static void
5435 bge_stop(struct ifnet *ifp, int disable)
5436 {
5437 struct bge_softc *sc = ifp->if_softc;
5438
5439 callout_stop(&sc->bge_timeout);
5440
5441 /* Disable host interrupts. */
5442 PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5443 BGE_PCIMISCCTL_MASK_PCI_INTR);
5444 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5445
5446 /*
5447 * Tell firmware we're shutting down.
5448 */
5449 bge_stop_fw(sc);
5450 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5451
5452 /*
5453 * Disable all of the receiver blocks.
5454 */
5455 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5456 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5457 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5458 if (BGE_IS_5700_FAMILY(sc))
5459 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5460 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5461 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5462 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5463
5464 /*
5465 * Disable all of the transmit blocks.
5466 */
5467 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5468 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5469 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5470 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5471 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5472 if (BGE_IS_5700_FAMILY(sc))
5473 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5474 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5475
5476 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5477 delay(40);
5478
5479 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5480
5481 /*
5482 * Shut down all of the memory managers and related
5483 * state machines.
5484 */
5485 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5486 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5487 if (BGE_IS_5700_FAMILY(sc))
5488 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5489
5490 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5491 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5492
5493 if (BGE_IS_5700_FAMILY(sc)) {
5494 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5495 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5496 }
5497
5498 bge_reset(sc);
5499 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5500 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5501
5502 /*
5503 * Keep the ASF firmware running if up.
5504 */
5505 if (sc->bge_asf_mode & ASF_STACKUP)
5506 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5507 else
5508 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5509
5510 /* Free the RX lists. */
5511 bge_free_rx_ring_std(sc);
5512
5513 /* Free jumbo RX list. */
5514 if (BGE_IS_JUMBO_CAPABLE(sc))
5515 bge_free_rx_ring_jumbo(sc);
5516
5517 /* Free TX buffers. */
5518 bge_free_tx_ring(sc);
5519
5520 /*
5521 * Isolate/power down the PHY.
5522 */
5523 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5524 mii_down(&sc->bge_mii);
5525
5526 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5527
5528 /* Clear MAC's link state (PHY may still have link UP). */
5529 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5530
5531 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5532 }
5533
5534 static void
5535 bge_link_upd(struct bge_softc *sc)
5536 {
5537 struct ifnet *ifp = &sc->ethercom.ec_if;
5538 struct mii_data *mii = &sc->bge_mii;
5539 uint32_t status;
5540 int link;
5541
5542 /* Clear 'pending link event' flag */
5543 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5544
5545 /*
5546 * Process link state changes.
5547 * Grrr. The link status word in the status block does
5548 * not work correctly on the BCM5700 rev AX and BX chips,
5549 * according to all available information. Hence, we have
5550 * to enable MII interrupts in order to properly obtain
5551 * async link changes. Unfortunately, this also means that
5552 * we have to read the MAC status register to detect link
5553 * changes, thereby adding an additional register access to
5554 * the interrupt handler.
5555 */
5556
5557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5558 status = CSR_READ_4(sc, BGE_MAC_STS);
5559 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5560 mii_pollstat(mii);
5561
5562 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5563 mii->mii_media_status & IFM_ACTIVE &&
5564 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5565 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5566 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5567 (!(mii->mii_media_status & IFM_ACTIVE) ||
5568 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5569 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5570
5571 /* Clear the interrupt */
5572 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5573 BGE_EVTENB_MI_INTERRUPT);
5574 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5575 BRGPHY_MII_ISR);
5576 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5577 BRGPHY_MII_IMR, BRGPHY_INTRS);
5578 }
5579 return;
5580 }
5581
5582 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5583 status = CSR_READ_4(sc, BGE_MAC_STS);
5584 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5585 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5586 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5587 if (BGE_ASICREV(sc->bge_chipid)
5588 == BGE_ASICREV_BCM5704) {
5589 BGE_CLRBIT(sc, BGE_MAC_MODE,
5590 BGE_MACMODE_TBI_SEND_CFGS);
5591 DELAY(40);
5592 }
5593 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5594 if_link_state_change(ifp, LINK_STATE_UP);
5595 }
5596 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5597 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5598 if_link_state_change(ifp, LINK_STATE_DOWN);
5599 }
5600 /*
5601 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5602 * This should not happen since mii callouts are locked now, but
5603 * we keep this check for debug.
5604 */
5605 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5606 /*
5607 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5608 * bit in status word always set. Workaround this bug by
5609 * reading PHY link status directly.
5610 */
5611 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5612 BGE_STS_LINK : 0;
5613
5614 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5615 mii_pollstat(mii);
5616
5617 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5618 mii->mii_media_status & IFM_ACTIVE &&
5619 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5620 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5621 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5622 (!(mii->mii_media_status & IFM_ACTIVE) ||
5623 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5624 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5625 }
5626 }
5627
5628 /* Clear the attention */
5629 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5630 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5631 BGE_MACSTAT_LINK_CHANGED);
5632 }
5633
5634 static int
5635 bge_sysctl_verify(SYSCTLFN_ARGS)
5636 {
5637 int error, t;
5638 struct sysctlnode node;
5639
5640 node = *rnode;
5641 t = *(int*)rnode->sysctl_data;
5642 node.sysctl_data = &t;
5643 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5644 if (error || newp == NULL)
5645 return error;
5646
5647 #if 0
5648 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5649 node.sysctl_num, rnode->sysctl_num));
5650 #endif
5651
5652 if (node.sysctl_num == bge_rxthresh_nodenum) {
5653 if (t < 0 || t >= NBGE_RX_THRESH)
5654 return EINVAL;
5655 bge_update_all_threshes(t);
5656 } else
5657 return EINVAL;
5658
5659 *(int*)rnode->sysctl_data = t;
5660
5661 return 0;
5662 }
5663
5664 /*
5665 * Set up sysctl(3) MIB, hw.bge.*.
5666 */
5667 static void
5668 bge_sysctl_init(struct bge_softc *sc)
5669 {
5670 int rc, bge_root_num;
5671 const struct sysctlnode *node;
5672
5673 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5674 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5675 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5676 goto out;
5677 }
5678
5679 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5680 0, CTLTYPE_NODE, "bge",
5681 SYSCTL_DESCR("BGE interface controls"),
5682 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5683 goto out;
5684 }
5685
5686 bge_root_num = node->sysctl_num;
5687
5688 /* BGE Rx interrupt mitigation level */
5689 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5690 CTLFLAG_READWRITE,
5691 CTLTYPE_INT, "rx_lvl",
5692 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5693 bge_sysctl_verify, 0,
5694 &bge_rx_thresh_lvl,
5695 0, CTL_HW, bge_root_num, CTL_CREATE,
5696 CTL_EOL)) != 0) {
5697 goto out;
5698 }
5699
5700 bge_rxthresh_nodenum = node->sysctl_num;
5701
5702 return;
5703
5704 out:
5705 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5706 }
5707
5708 #ifdef BGE_DEBUG
5709 void
5710 bge_debug_info(struct bge_softc *sc)
5711 {
5712
5713 printf("Hardware Flags:\n");
5714 if (BGE_IS_57765_PLUS(sc))
5715 printf(" - 57765 Plus\n");
5716 if (BGE_IS_5717_PLUS(sc))
5717 printf(" - 5717 Plus\n");
5718 if (BGE_IS_5755_PLUS(sc))
5719 printf(" - 5755 Plus\n");
5720 if (BGE_IS_575X_PLUS(sc))
5721 printf(" - 575X Plus\n");
5722 if (BGE_IS_5705_PLUS(sc))
5723 printf(" - 5705 Plus\n");
5724 if (BGE_IS_5714_FAMILY(sc))
5725 printf(" - 5714 Family\n");
5726 if (BGE_IS_5700_FAMILY(sc))
5727 printf(" - 5700 Family\n");
5728 if (sc->bge_flags & BGE_IS_5788)
5729 printf(" - 5788\n");
5730 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5731 printf(" - Supports Jumbo Frames\n");
5732 if (sc->bge_flags & BGE_NO_EEPROM)
5733 printf(" - No EEPROM\n");
5734 if (sc->bge_flags & BGE_PCIX)
5735 printf(" - PCI-X Bus\n");
5736 if (sc->bge_flags & BGE_PCIE)
5737 printf(" - PCI Express Bus\n");
5738 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5739 printf(" - RX Alignment Bug\n");
5740 if (sc->bge_flags & BGE_APE)
5741 printf(" - APE\n");
5742 if (sc->bge_flags & BGE_CPMU_PRESENT)
5743 printf(" - CPMU\n");
5744 if (sc->bge_flags & BGE_TSO)
5745 printf(" - TSO\n");
5746
5747 if (sc->bge_flags & BGE_PHY_NO_3LED)
5748 printf(" - No 3 LEDs\n");
5749 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5750 printf(" - CRC bug\n");
5751 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5752 printf(" - ADC bug\n");
5753 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5754 printf(" - 5704 A0 bug\n");
5755 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5756 printf(" - jitter bug\n");
5757 if (sc->bge_flags & BGE_PHY_BER_BUG)
5758 printf(" - BER bug\n");
5759 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5760 printf(" - adjust trim\n");
5761 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5762 printf(" - no wirespeed\n");
5763 }
5764 #endif /* BGE_DEBUG */
5765
5766 static int
5767 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5768 {
5769 prop_dictionary_t dict;
5770 prop_data_t ea;
5771
5772 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5773 return 1;
5774
5775 dict = device_properties(sc->bge_dev);
5776 ea = prop_dictionary_get(dict, "mac-address");
5777 if (ea != NULL) {
5778 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5779 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5780 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5781 return 0;
5782 }
5783
5784 return 1;
5785 }
5786
5787 static int
5788 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5789 {
5790 uint32_t mac_addr;
5791
5792 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5793 if ((mac_addr >> 16) == 0x484b) {
5794 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5795 ether_addr[1] = (uint8_t)mac_addr;
5796 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5797 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5798 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5799 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5800 ether_addr[5] = (uint8_t)mac_addr;
5801 return 0;
5802 }
5803 return 1;
5804 }
5805
5806 static int
5807 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5808 {
5809 int mac_offset = BGE_EE_MAC_OFFSET;
5810
5811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5812 mac_offset = BGE_EE_MAC_OFFSET_5906;
5813
5814 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5815 ETHER_ADDR_LEN));
5816 }
5817
5818 static int
5819 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5820 {
5821
5822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5823 return 1;
5824
5825 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5826 ETHER_ADDR_LEN));
5827 }
5828
5829 static int
5830 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5831 {
5832 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5833 /* NOTE: Order is critical */
5834 bge_get_eaddr_fw,
5835 bge_get_eaddr_mem,
5836 bge_get_eaddr_nvram,
5837 bge_get_eaddr_eeprom,
5838 NULL
5839 };
5840 const bge_eaddr_fcn_t *func;
5841
5842 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5843 if ((*func)(sc, eaddr) == 0)
5844 break;
5845 }
5846 return (*func == NULL ? ENXIO : 0);
5847 }
5848