Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.226
      1 /*	$NetBSD: if_bge.c,v 1.226 2013/03/24 19:16:10 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.226 2013/03/24 19:16:10 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
    188 static int bge_probe(device_t, cfdata_t, void *);
    189 static void bge_attach(device_t, device_t, void *);
    190 static void bge_release_resources(struct bge_softc *);
    191 
    192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    197 
    198 static void bge_txeof(struct bge_softc *);
    199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    200 static void bge_rxeof(struct bge_softc *);
    201 
    202 static void bge_asf_driver_up (struct bge_softc *);
    203 static void bge_tick(void *);
    204 static void bge_stats_update(struct bge_softc *);
    205 static void bge_stats_update_regs(struct bge_softc *);
    206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    207 
    208 static int bge_intr(void *);
    209 static void bge_start(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_phy_addr(struct bge_softc *);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writembx_flush(struct bge_softc *, int, int);
    249 static void bge_writemem_direct(struct bge_softc *, int, int);
    250 static void bge_writereg_ind(struct bge_softc *, int, int);
    251 static void bge_set_max_readrq(struct bge_softc *);
    252 
    253 static int bge_miibus_readreg(device_t, int, int);
    254 static void bge_miibus_writereg(device_t, int, int, int);
    255 static void bge_miibus_statchg(struct ifnet *);
    256 
    257 #define BGE_RESET_SHUTDOWN	0
    258 #define	BGE_RESET_START		1
    259 #define	BGE_RESET_SUSPEND	2
    260 static void bge_sig_post_reset(struct bge_softc *, int);
    261 static void bge_sig_legacy(struct bge_softc *, int);
    262 static void bge_sig_pre_reset(struct bge_softc *, int);
    263 static void bge_wait_for_event_ack(struct bge_softc *);
    264 static void bge_stop_fw(struct bge_softc *);
    265 static int bge_reset(struct bge_softc *);
    266 static void bge_link_upd(struct bge_softc *);
    267 static void bge_sysctl_init(struct bge_softc *);
    268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    269 
    270 static void bge_ape_lock_init(struct bge_softc *);
    271 static void bge_ape_read_fw_ver(struct bge_softc *);
    272 static int bge_ape_lock(struct bge_softc *, int);
    273 static void bge_ape_unlock(struct bge_softc *, int);
    274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    275 static void bge_ape_driver_state_change(struct bge_softc *, int);
    276 
    277 #ifdef BGE_DEBUG
    278 #define DPRINTF(x)	if (bgedebug) printf x
    279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    281 int	bgedebug = 0;
    282 int	bge_tso_debug = 0;
    283 void		bge_debug_info(struct bge_softc *);
    284 #else
    285 #define DPRINTF(x)
    286 #define DPRINTFN(n,x)
    287 #define BGE_TSO_PRINTF(x)
    288 #endif
    289 
    290 #ifdef BGE_EVENT_COUNTERS
    291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    294 #else
    295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    298 #endif
    299 
    300 static const struct bge_product {
    301 	pci_vendor_id_t		bp_vendor;
    302 	pci_product_id_t	bp_product;
    303 	const char		*bp_name;
    304 } bge_products[] = {
    305 	/*
    306 	 * The BCM5700 documentation seems to indicate that the hardware
    307 	 * still has the Alteon vendor ID burned into it, though it
    308 	 * should always be overridden by the value in the EEPROM.  We'll
    309 	 * check for it anyway.
    310 	 */
    311 	{ PCI_VENDOR_ALTEON,
    312 	  PCI_PRODUCT_ALTEON_BCM5700,
    313 	  "Broadcom BCM5700 Gigabit Ethernet",
    314 	  },
    315 	{ PCI_VENDOR_ALTEON,
    316 	  PCI_PRODUCT_ALTEON_BCM5701,
    317 	  "Broadcom BCM5701 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_ALTIMA,
    320 	  PCI_PRODUCT_ALTIMA_AC1000,
    321 	  "Altima AC1000 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_ALTIMA,
    324 	  PCI_PRODUCT_ALTIMA_AC1001,
    325 	  "Altima AC1001 Gigabit Ethernet",
    326 	   },
    327 	{ PCI_VENDOR_ALTIMA,
    328 	  PCI_PRODUCT_ALTIMA_AC1003,
    329 	  "Altima AC1003 Gigabit Ethernet",
    330 	   },
    331 	{ PCI_VENDOR_ALTIMA,
    332 	  PCI_PRODUCT_ALTIMA_AC9100,
    333 	  "Altima AC9100 Gigabit Ethernet",
    334 	  },
    335 	{ PCI_VENDOR_APPLE,
    336 	  PCI_PRODUCT_APPLE_BCM5701,
    337 	  "APPLE BCM5701 Gigabit Ethernet",
    338 	  },
    339 	{ PCI_VENDOR_BROADCOM,
    340 	  PCI_PRODUCT_BROADCOM_BCM5700,
    341 	  "Broadcom BCM5700 Gigabit Ethernet",
    342 	  },
    343 	{ PCI_VENDOR_BROADCOM,
    344 	  PCI_PRODUCT_BROADCOM_BCM5701,
    345 	  "Broadcom BCM5701 Gigabit Ethernet",
    346 	  },
    347 	{ PCI_VENDOR_BROADCOM,
    348 	  PCI_PRODUCT_BROADCOM_BCM5702,
    349 	  "Broadcom BCM5702 Gigabit Ethernet",
    350 	  },
    351 	{ PCI_VENDOR_BROADCOM,
    352 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    353 	  "Broadcom BCM5702X Gigabit Ethernet" },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5703,
    356 	  "Broadcom BCM5703 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    360 	  "Broadcom BCM5703X Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    364 	  "Broadcom BCM5703 Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    368 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    372 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5705,
    376 	  "Broadcom BCM5705 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    380 	  "Broadcom BCM5705F Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    384 	  "Broadcom BCM5705K Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    388 	  "Broadcom BCM5705M Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    392 	  "Broadcom BCM5705M Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5714,
    396 	  "Broadcom BCM5714 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    400 	  "Broadcom BCM5714S Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5715,
    404 	  "Broadcom BCM5715 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    408 	  "Broadcom BCM5715S Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5717,
    412 	  "Broadcom BCM5717 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5718,
    416 	  "Broadcom BCM5718 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5719,
    420 	  "Broadcom BCM5719 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5720,
    424 	  "Broadcom BCM5720 Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5721,
    428 	  "Broadcom BCM5721 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5722,
    432 	  "Broadcom BCM5722 Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5723,
    436 	  "Broadcom BCM5723 Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5724,
    440 	  "Broadcom BCM5724 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5750,
    444 	  "Broadcom BCM5750 Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    448 	  "Broadcom BCM5750M Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5751,
    452 	  "Broadcom BCM5751 Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    456 	  "Broadcom BCM5751F Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    460 	  "Broadcom BCM5751M Gigabit Ethernet",
    461 	  },
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5752,
    464 	  "Broadcom BCM5752 Gigabit Ethernet",
    465 	  },
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    468 	  "Broadcom BCM5752M Gigabit Ethernet",
    469 	  },
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5753,
    472 	  "Broadcom BCM5753 Gigabit Ethernet",
    473 	  },
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    476 	  "Broadcom BCM5753F Gigabit Ethernet",
    477 	  },
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    480 	  "Broadcom BCM5753M Gigabit Ethernet",
    481 	  },
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5754,
    484 	  "Broadcom BCM5754 Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    488 	  "Broadcom BCM5754M Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5755,
    492 	  "Broadcom BCM5755 Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    496 	  "Broadcom BCM5755M Gigabit Ethernet",
    497 	},
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5756,
    500 	  "Broadcom BCM5756 Gigabit Ethernet",
    501 	},
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5761,
    504 	  "Broadcom BCM5761 Gigabit Ethernet",
    505 	},
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    508 	  "Broadcom BCM5761E Gigabit Ethernet",
    509 	},
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    512 	  "Broadcom BCM5761S Gigabit Ethernet",
    513 	},
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    516 	  "Broadcom BCM5761SE Gigabit Ethernet",
    517 	},
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5764,
    520 	  "Broadcom BCM5764 Gigabit Ethernet",
    521 	  },
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5780,
    524 	  "Broadcom BCM5780 Gigabit Ethernet",
    525 	  },
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    528 	  "Broadcom BCM5780S Gigabit Ethernet",
    529 	  },
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5781,
    532 	  "Broadcom BCM5781 Gigabit Ethernet",
    533 	  },
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5782,
    536 	  "Broadcom BCM5782 Gigabit Ethernet",
    537 	},
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    540 	  "BCM5784M NetLink 1000baseT Ethernet",
    541 	},
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    544 	  "BCM5785F NetLink 10/100 Ethernet",
    545 	},
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    548 	  "BCM5785G NetLink 1000baseT Ethernet",
    549 	},
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5786,
    552 	  "Broadcom BCM5786 Gigabit Ethernet",
    553 	},
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5787,
    556 	  "Broadcom BCM5787 Gigabit Ethernet",
    557 	},
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    560 	  "Broadcom BCM5787F 10/100 Ethernet",
    561 	},
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    564 	  "Broadcom BCM5787M Gigabit Ethernet",
    565 	},
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM5788,
    568 	  "Broadcom BCM5788 Gigabit Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM5789,
    572 	  "Broadcom BCM5789 Gigabit Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM5901,
    576 	  "Broadcom BCM5901 Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    580 	  "Broadcom BCM5901A2 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    584 	  "Broadcom BCM5903M Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM5906,
    588 	  "Broadcom BCM5906 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    592 	  "Broadcom BCM5906M Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57760,
    596 	  "Broadcom BCM57760 Fast Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_BROADCOM,
    599 	  PCI_PRODUCT_BROADCOM_BCM57761,
    600 	  "Broadcom BCM57761 Fast Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_BROADCOM,
    603 	  PCI_PRODUCT_BROADCOM_BCM57762,
    604 	  "Broadcom BCM57762 Gigabit Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_BROADCOM,
    607 	  PCI_PRODUCT_BROADCOM_BCM57765,
    608 	  "Broadcom BCM57765 Fast Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_BROADCOM,
    611 	  PCI_PRODUCT_BROADCOM_BCM57766,
    612 	  "Broadcom BCM57766 Fast Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_BROADCOM,
    615 	  PCI_PRODUCT_BROADCOM_BCM57780,
    616 	  "Broadcom BCM57780 Fast Ethernet",
    617 	  },
    618 	{ PCI_VENDOR_BROADCOM,
    619 	  PCI_PRODUCT_BROADCOM_BCM57781,
    620 	  "Broadcom BCM57781 Fast Ethernet",
    621 	  },
    622 	{ PCI_VENDOR_BROADCOM,
    623 	  PCI_PRODUCT_BROADCOM_BCM57782,
    624 	  "Broadcom BCM57782 Fast Ethernet",
    625 	  },
    626 	{ PCI_VENDOR_BROADCOM,
    627 	  PCI_PRODUCT_BROADCOM_BCM57785,
    628 	  "Broadcom BCM57785 Fast Ethernet",
    629 	  },
    630 	{ PCI_VENDOR_BROADCOM,
    631 	  PCI_PRODUCT_BROADCOM_BCM57786,
    632 	  "Broadcom BCM57786 Fast Ethernet",
    633 	  },
    634 	{ PCI_VENDOR_BROADCOM,
    635 	  PCI_PRODUCT_BROADCOM_BCM57788,
    636 	  "Broadcom BCM57788 Fast Ethernet",
    637 	  },
    638 	{ PCI_VENDOR_BROADCOM,
    639 	  PCI_PRODUCT_BROADCOM_BCM57790,
    640 	  "Broadcom BCM57790 Fast Ethernet",
    641 	  },
    642 	{ PCI_VENDOR_BROADCOM,
    643 	  PCI_PRODUCT_BROADCOM_BCM57791,
    644 	  "Broadcom BCM57791 Fast Ethernet",
    645 	  },
    646 	{ PCI_VENDOR_BROADCOM,
    647 	  PCI_PRODUCT_BROADCOM_BCM57795,
    648 	  "Broadcom BCM57795 Fast Ethernet",
    649 	  },
    650 	{ PCI_VENDOR_SCHNEIDERKOCH,
    651 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    652 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    653 	  },
    654 	{ PCI_VENDOR_3COM,
    655 	  PCI_PRODUCT_3COM_3C996,
    656 	  "3Com 3c996 Gigabit Ethernet",
    657 	  },
    658 	{ PCI_VENDOR_FUJITSU4,
    659 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    660 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    661 	  },
    662 	{ PCI_VENDOR_FUJITSU4,
    663 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    664 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    665 	  },
    666 	{ PCI_VENDOR_FUJITSU4,
    667 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    668 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    669 	  },
    670 	{ 0,
    671 	  0,
    672 	  NULL },
    673 };
    674 
    675 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    676 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    677 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
    678 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    679 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
    680 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
    681 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    682 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    683 
    684 static const struct bge_revision {
    685 	uint32_t		br_chipid;
    686 	const char		*br_name;
    687 } bge_revisions[] = {
    688 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    689 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    690 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    691 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    692 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    693 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    694 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    695 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    696 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    697 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    698 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    699 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    700 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    701 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    702 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    703 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    704 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    705 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    706 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    707 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    708 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    709 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    710 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    711 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    712 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    713 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    714 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    715 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    716 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    717 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    718 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    719 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    720 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    721 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    722 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    723 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    724 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    725 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    726 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    727 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    728 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    729 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    730 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    731 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    732 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    733 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    734 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    735 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    736 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    737 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    738 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    739 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    740 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    741 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    742 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    743 	/* 5754 and 5787 share the same ASIC ID */
    744 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    745 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    746 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    747 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    748 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    749 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    750 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    751 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    752 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    753 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    754 
    755 	{ 0, NULL }
    756 };
    757 
    758 /*
    759  * Some defaults for major revisions, so that newer steppings
    760  * that we don't know about have a shot at working.
    761  */
    762 static const struct bge_revision bge_majorrevs[] = {
    763 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    764 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    765 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    766 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    767 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    768 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    769 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    770 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    771 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    772 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    773 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    774 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    775 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    776 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    777 	/* 5754 and 5787 share the same ASIC ID */
    778 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    779 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    780 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    781 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    782 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    783 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    784 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    785 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    786 
    787 	{ 0, NULL }
    788 };
    789 
    790 static int bge_allow_asf = 1;
    791 
    792 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
    793     bge_probe, bge_attach, NULL, NULL);
    794 
    795 static uint32_t
    796 bge_readmem_ind(struct bge_softc *sc, int off)
    797 {
    798 	pcireg_t val;
    799 
    800 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    801 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    802 		return 0;
    803 
    804 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    805 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    806 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    807 	return val;
    808 }
    809 
    810 static void
    811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    812 {
    813 
    814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    817 }
    818 
    819 /*
    820  * PCI Express only
    821  */
    822 static void
    823 bge_set_max_readrq(struct bge_softc *sc)
    824 {
    825 	pcireg_t val;
    826 
    827 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    828 	    + PCI_PCIE_DCSR);
    829 	val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    830 	switch (sc->bge_expmrq) {
    831 	case 2048:
    832 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    833 		break;
    834 	case 4096:
    835 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    836 		break;
    837 	default:
    838 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    839 		break;
    840 	}
    841 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    842 	    + PCI_PCIE_DCSR, val);
    843 }
    844 
    845 #ifdef notdef
    846 static uint32_t
    847 bge_readreg_ind(struct bge_softc *sc, int off)
    848 {
    849 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    850 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    851 }
    852 #endif
    853 
    854 static void
    855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    856 {
    857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    859 }
    860 
    861 static void
    862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    863 {
    864 	CSR_WRITE_4(sc, off, val);
    865 }
    866 
    867 static void
    868 bge_writembx(struct bge_softc *sc, int off, int val)
    869 {
    870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    871 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    872 
    873 	CSR_WRITE_4(sc, off, val);
    874 }
    875 
    876 static void
    877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    878 {
    879 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    880 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    881 
    882 	CSR_WRITE_4_FLUSH(sc, off, val);
    883 }
    884 
    885 /*
    886  * Clear all stale locks and select the lock for this driver instance.
    887  */
    888 void
    889 bge_ape_lock_init(struct bge_softc *sc)
    890 {
    891 	struct pci_attach_args *pa = &(sc->bge_pa);
    892 	uint32_t bit, regbase;
    893 	int i;
    894 
    895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    896 		regbase = BGE_APE_LOCK_GRANT;
    897 	else
    898 		regbase = BGE_APE_PER_LOCK_GRANT;
    899 
    900 	/* Clear any stale locks. */
    901 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    902 		switch (i) {
    903 		case BGE_APE_LOCK_PHY0:
    904 		case BGE_APE_LOCK_PHY1:
    905 		case BGE_APE_LOCK_PHY2:
    906 		case BGE_APE_LOCK_PHY3:
    907 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    908 			break;
    909 		default:
    910 			if (pa->pa_function != 0)
    911 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    912 			else
    913 				bit = (1 << pa->pa_function);
    914 		}
    915 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    916 	}
    917 
    918 	/* Select the PHY lock based on the device's function number. */
    919 	switch (pa->pa_function) {
    920 	case 0:
    921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    922 		break;
    923 	case 1:
    924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    925 		break;
    926 	case 2:
    927 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    928 		break;
    929 	case 3:
    930 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    931 		break;
    932 	default:
    933 		printf("%s: PHY lock not supported on function\n",
    934 		    device_xname(sc->bge_dev));
    935 		break;
    936 	}
    937 }
    938 
    939 /*
    940  * Check for APE firmware, set flags, and print version info.
    941  */
    942 void
    943 bge_ape_read_fw_ver(struct bge_softc *sc)
    944 {
    945 	const char *fwtype;
    946 	uint32_t apedata, features;
    947 
    948 	/* Check for a valid APE signature in shared memory. */
    949 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    950 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    951 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    952 		return;
    953 	}
    954 
    955 	/* Check if APE firmware is running. */
    956 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    957 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    958 		printf("%s: APE signature found but FW status not ready! "
    959 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    960 		return;
    961 	}
    962 
    963 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    964 
    965 	/* Fetch the APE firwmare type and version. */
    966 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    967 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    968 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    969 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    970 		fwtype = "NCSI";
    971 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    972 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    973 		fwtype = "DASH";
    974 	} else
    975 		fwtype = "UNKN";
    976 
    977 	/* Print the APE firmware version. */
    978 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
    979 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    980 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    982 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    983 }
    984 
    985 int
    986 bge_ape_lock(struct bge_softc *sc, int locknum)
    987 {
    988 	struct pci_attach_args *pa = &(sc->bge_pa);
    989 	uint32_t bit, gnt, req, status;
    990 	int i, off;
    991 
    992 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    993 		return (0);
    994 
    995 	/* Lock request/grant registers have different bases. */
    996 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    997 		req = BGE_APE_LOCK_REQ;
    998 		gnt = BGE_APE_LOCK_GRANT;
    999 	} else {
   1000 		req = BGE_APE_PER_LOCK_REQ;
   1001 		gnt = BGE_APE_PER_LOCK_GRANT;
   1002 	}
   1003 
   1004 	off = 4 * locknum;
   1005 
   1006 	switch (locknum) {
   1007 	case BGE_APE_LOCK_GPIO:
   1008 		/* Lock required when using GPIO. */
   1009 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1010 			return (0);
   1011 		if (pa->pa_function == 0)
   1012 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1013 		else
   1014 			bit = (1 << pa->pa_function);
   1015 		break;
   1016 	case BGE_APE_LOCK_GRC:
   1017 		/* Lock required to reset the device. */
   1018 		if (pa->pa_function == 0)
   1019 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1020 		else
   1021 			bit = (1 << pa->pa_function);
   1022 		break;
   1023 	case BGE_APE_LOCK_MEM:
   1024 		/* Lock required when accessing certain APE memory. */
   1025 		if (pa->pa_function == 0)
   1026 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1027 		else
   1028 			bit = (1 << pa->pa_function);
   1029 		break;
   1030 	case BGE_APE_LOCK_PHY0:
   1031 	case BGE_APE_LOCK_PHY1:
   1032 	case BGE_APE_LOCK_PHY2:
   1033 	case BGE_APE_LOCK_PHY3:
   1034 		/* Lock required when accessing PHYs. */
   1035 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1036 		break;
   1037 	default:
   1038 		return (EINVAL);
   1039 	}
   1040 
   1041 	/* Request a lock. */
   1042 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1043 
   1044 	/* Wait up to 1 second to acquire lock. */
   1045 	for (i = 0; i < 20000; i++) {
   1046 		status = APE_READ_4(sc, gnt + off);
   1047 		if (status == bit)
   1048 			break;
   1049 		DELAY(50);
   1050 	}
   1051 
   1052 	/* Handle any errors. */
   1053 	if (status != bit) {
   1054 		printf("%s: APE lock %d request failed! "
   1055 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1056 		    device_xname(sc->bge_dev),
   1057 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1058 		    status & 0xFFFF);
   1059 		/* Revoke the lock request. */
   1060 		APE_WRITE_4(sc, gnt + off, bit);
   1061 		return (EBUSY);
   1062 	}
   1063 
   1064 	return (0);
   1065 }
   1066 
   1067 void
   1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1069 {
   1070 	struct pci_attach_args *pa = &(sc->bge_pa);
   1071 	uint32_t bit, gnt;
   1072 	int off;
   1073 
   1074 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1075 		return;
   1076 
   1077 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1078 		gnt = BGE_APE_LOCK_GRANT;
   1079 	else
   1080 		gnt = BGE_APE_PER_LOCK_GRANT;
   1081 
   1082 	off = 4 * locknum;
   1083 
   1084 	switch (locknum) {
   1085 	case BGE_APE_LOCK_GPIO:
   1086 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1087 			return;
   1088 		if (pa->pa_function == 0)
   1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1090 		else
   1091 			bit = (1 << pa->pa_function);
   1092 		break;
   1093 	case BGE_APE_LOCK_GRC:
   1094 		if (pa->pa_function == 0)
   1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1096 		else
   1097 			bit = (1 << pa->pa_function);
   1098 		break;
   1099 	case BGE_APE_LOCK_MEM:
   1100 		if (pa->pa_function == 0)
   1101 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1102 		else
   1103 			bit = (1 << pa->pa_function);
   1104 		break;
   1105 	case BGE_APE_LOCK_PHY0:
   1106 	case BGE_APE_LOCK_PHY1:
   1107 	case BGE_APE_LOCK_PHY2:
   1108 	case BGE_APE_LOCK_PHY3:
   1109 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1110 		break;
   1111 	default:
   1112 		return;
   1113 	}
   1114 
   1115 	/* Write and flush for consecutive bge_ape_lock() */
   1116 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1117 }
   1118 
   1119 /*
   1120  * Send an event to the APE firmware.
   1121  */
   1122 void
   1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1124 {
   1125 	uint32_t apedata;
   1126 	int i;
   1127 
   1128 	/* NCSI does not support APE events. */
   1129 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1130 		return;
   1131 
   1132 	/* Wait up to 1ms for APE to service previous event. */
   1133 	for (i = 10; i > 0; i--) {
   1134 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1135 			break;
   1136 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1137 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1138 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1139 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1140 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1141 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1142 			break;
   1143 		}
   1144 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1145 		DELAY(100);
   1146 	}
   1147 	if (i == 0) {
   1148 		printf("%s: APE event 0x%08x send timed out\n",
   1149 		    device_xname(sc->bge_dev), event);
   1150 	}
   1151 }
   1152 
   1153 void
   1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1155 {
   1156 	uint32_t apedata, event;
   1157 
   1158 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1159 		return;
   1160 
   1161 	switch (kind) {
   1162 	case BGE_RESET_START:
   1163 		/* If this is the first load, clear the load counter. */
   1164 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1165 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1166 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1167 		else {
   1168 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1169 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1170 		}
   1171 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1172 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1173 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1174 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1175 
   1176 		/* Add some version info if bge(4) supports it. */
   1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1178 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1179 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1180 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1181 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1182 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1183 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1184 		    BGE_APE_HOST_DRVR_STATE_START);
   1185 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1186 		break;
   1187 	case BGE_RESET_SHUTDOWN:
   1188 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1189 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1190 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1191 		break;
   1192 	case BGE_RESET_SUSPEND:
   1193 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1194 		break;
   1195 	default:
   1196 		return;
   1197 	}
   1198 
   1199 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1200 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1201 }
   1202 
   1203 static uint8_t
   1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1205 {
   1206 	uint32_t access, byte = 0;
   1207 	int i;
   1208 
   1209 	/* Lock. */
   1210 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1211 	for (i = 0; i < 8000; i++) {
   1212 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1213 			break;
   1214 		DELAY(20);
   1215 	}
   1216 	if (i == 8000)
   1217 		return 1;
   1218 
   1219 	/* Enable access. */
   1220 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1221 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1222 
   1223 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1224 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1225 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1226 		DELAY(10);
   1227 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1228 			DELAY(10);
   1229 			break;
   1230 		}
   1231 	}
   1232 
   1233 	if (i == BGE_TIMEOUT * 10) {
   1234 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1235 		return 1;
   1236 	}
   1237 
   1238 	/* Get result. */
   1239 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1240 
   1241 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1242 
   1243 	/* Disable access. */
   1244 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1245 
   1246 	/* Unlock. */
   1247 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1248 
   1249 	return 0;
   1250 }
   1251 
   1252 /*
   1253  * Read a sequence of bytes from NVRAM.
   1254  */
   1255 static int
   1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1257 {
   1258 	int error = 0, i;
   1259 	uint8_t byte = 0;
   1260 
   1261 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1262 		return 1;
   1263 
   1264 	for (i = 0; i < cnt; i++) {
   1265 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1266 		if (error)
   1267 			break;
   1268 		*(dest + i) = byte;
   1269 	}
   1270 
   1271 	return (error ? 1 : 0);
   1272 }
   1273 
   1274 /*
   1275  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1276  * BCM570x supports both the traditional bitbang interface and an
   1277  * auto access interface for reading the EEPROM. We use the auto
   1278  * access method.
   1279  */
   1280 static uint8_t
   1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1282 {
   1283 	int i;
   1284 	uint32_t byte = 0;
   1285 
   1286 	/*
   1287 	 * Enable use of auto EEPROM access so we can avoid
   1288 	 * having to use the bitbang method.
   1289 	 */
   1290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1291 
   1292 	/* Reset the EEPROM, load the clock period. */
   1293 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1294 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1295 	DELAY(20);
   1296 
   1297 	/* Issue the read EEPROM command. */
   1298 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1299 
   1300 	/* Wait for completion */
   1301 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1302 		DELAY(10);
   1303 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1304 			break;
   1305 	}
   1306 
   1307 	if (i == BGE_TIMEOUT * 10) {
   1308 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1309 		return 1;
   1310 	}
   1311 
   1312 	/* Get result. */
   1313 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1314 
   1315 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1316 
   1317 	return 0;
   1318 }
   1319 
   1320 /*
   1321  * Read a sequence of bytes from the EEPROM.
   1322  */
   1323 static int
   1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1325 {
   1326 	int error = 0, i;
   1327 	uint8_t byte = 0;
   1328 	char *dest = destv;
   1329 
   1330 	for (i = 0; i < cnt; i++) {
   1331 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1332 		if (error)
   1333 			break;
   1334 		*(dest + i) = byte;
   1335 	}
   1336 
   1337 	return (error ? 1 : 0);
   1338 }
   1339 
   1340 static int
   1341 bge_miibus_readreg(device_t dev, int phy, int reg)
   1342 {
   1343 	struct bge_softc *sc = device_private(dev);
   1344 	uint32_t val;
   1345 	uint32_t autopoll;
   1346 	int i;
   1347 
   1348 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1349 		return 0;
   1350 
   1351 	/* Reading with autopolling on may trigger PCI errors */
   1352 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1353 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1354 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1355 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1356 		DELAY(80);
   1357 	}
   1358 
   1359 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1360 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1361 
   1362 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1363 		delay(10);
   1364 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1365 		if (!(val & BGE_MICOMM_BUSY)) {
   1366 			DELAY(5);
   1367 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1368 			break;
   1369 		}
   1370 	}
   1371 
   1372 	if (i == BGE_TIMEOUT) {
   1373 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1374 		val = 0;
   1375 		goto done;
   1376 	}
   1377 
   1378 done:
   1379 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1380 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1381 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1382 		DELAY(80);
   1383 	}
   1384 
   1385 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1386 
   1387 	if (val & BGE_MICOMM_READFAIL)
   1388 		return 0;
   1389 
   1390 	return (val & 0xFFFF);
   1391 }
   1392 
   1393 static void
   1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1395 {
   1396 	struct bge_softc *sc = device_private(dev);
   1397 	uint32_t autopoll;
   1398 	int i;
   1399 
   1400 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1401 		return;
   1402 
   1403 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1404 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1405 		return;
   1406 
   1407 	/* Reading with autopolling on may trigger PCI errors */
   1408 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1409 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1410 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1411 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1412 		DELAY(80);
   1413 	}
   1414 
   1415 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1416 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1417 
   1418 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1419 		delay(10);
   1420 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1421 			delay(5);
   1422 			CSR_READ_4(sc, BGE_MI_COMM);
   1423 			break;
   1424 		}
   1425 	}
   1426 
   1427 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1428 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1429 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1430 		delay(80);
   1431 	}
   1432 
   1433 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1434 
   1435 	if (i == BGE_TIMEOUT)
   1436 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1437 }
   1438 
   1439 static void
   1440 bge_miibus_statchg(struct ifnet *ifp)
   1441 {
   1442 	struct bge_softc *sc = ifp->if_softc;
   1443 	struct mii_data *mii = &sc->bge_mii;
   1444 	uint32_t mac_mode, rx_mode, tx_mode;
   1445 
   1446 	/*
   1447 	 * Get flow control negotiation result.
   1448 	 */
   1449 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1450 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1451 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1452 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1453 	}
   1454 
   1455 	/* Set the port mode (MII/GMII) to match the link speed. */
   1456 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1457 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1458 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1459 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1460 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1461 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1462 		mac_mode |= BGE_PORTMODE_GMII;
   1463 	else
   1464 		mac_mode |= BGE_PORTMODE_MII;
   1465 
   1466 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1467 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1468 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1469 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1470 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1471 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1472 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1473 	} else
   1474 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1475 
   1476 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1477 	DELAY(40);
   1478 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1479 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1480 }
   1481 
   1482 /*
   1483  * Update rx threshold levels to values in a particular slot
   1484  * of the interrupt-mitigation table bge_rx_threshes.
   1485  */
   1486 static void
   1487 bge_set_thresh(struct ifnet *ifp, int lvl)
   1488 {
   1489 	struct bge_softc *sc = ifp->if_softc;
   1490 	int s;
   1491 
   1492 	/* For now, just save the new Rx-intr thresholds and record
   1493 	 * that a threshold update is pending.  Updating the hardware
   1494 	 * registers here (even at splhigh()) is observed to
   1495 	 * occasionaly cause glitches where Rx-interrupts are not
   1496 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1497 	 */
   1498 	s = splnet();
   1499 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1500 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1501 	sc->bge_pending_rxintr_change = 1;
   1502 	splx(s);
   1503 }
   1504 
   1505 
   1506 /*
   1507  * Update Rx thresholds of all bge devices
   1508  */
   1509 static void
   1510 bge_update_all_threshes(int lvl)
   1511 {
   1512 	struct ifnet *ifp;
   1513 	const char * const namebuf = "bge";
   1514 	int namelen;
   1515 
   1516 	if (lvl < 0)
   1517 		lvl = 0;
   1518 	else if (lvl >= NBGE_RX_THRESH)
   1519 		lvl = NBGE_RX_THRESH - 1;
   1520 
   1521 	namelen = strlen(namebuf);
   1522 	/*
   1523 	 * Now search all the interfaces for this name/number
   1524 	 */
   1525 	IFNET_FOREACH(ifp) {
   1526 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1527 		      continue;
   1528 		/* We got a match: update if doing auto-threshold-tuning */
   1529 		if (bge_auto_thresh)
   1530 			bge_set_thresh(ifp, lvl);
   1531 	}
   1532 }
   1533 
   1534 /*
   1535  * Handle events that have triggered interrupts.
   1536  */
   1537 static void
   1538 bge_handle_events(struct bge_softc *sc)
   1539 {
   1540 
   1541 	return;
   1542 }
   1543 
   1544 /*
   1545  * Memory management for jumbo frames.
   1546  */
   1547 
   1548 static int
   1549 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1550 {
   1551 	char *ptr, *kva;
   1552 	bus_dma_segment_t	seg;
   1553 	int		i, rseg, state, error;
   1554 	struct bge_jpool_entry   *entry;
   1555 
   1556 	state = error = 0;
   1557 
   1558 	/* Grab a big chunk o' storage. */
   1559 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1560 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1561 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1562 		return ENOBUFS;
   1563 	}
   1564 
   1565 	state = 1;
   1566 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1567 	    BUS_DMA_NOWAIT)) {
   1568 		aprint_error_dev(sc->bge_dev,
   1569 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1570 		error = ENOBUFS;
   1571 		goto out;
   1572 	}
   1573 
   1574 	state = 2;
   1575 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1576 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1577 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1578 		error = ENOBUFS;
   1579 		goto out;
   1580 	}
   1581 
   1582 	state = 3;
   1583 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1584 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1585 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1586 		error = ENOBUFS;
   1587 		goto out;
   1588 	}
   1589 
   1590 	state = 4;
   1591 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1592 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1593 
   1594 	SLIST_INIT(&sc->bge_jfree_listhead);
   1595 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1596 
   1597 	/*
   1598 	 * Now divide it up into 9K pieces and save the addresses
   1599 	 * in an array.
   1600 	 */
   1601 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1602 	for (i = 0; i < BGE_JSLOTS; i++) {
   1603 		sc->bge_cdata.bge_jslots[i] = ptr;
   1604 		ptr += BGE_JLEN;
   1605 		entry = malloc(sizeof(struct bge_jpool_entry),
   1606 		    M_DEVBUF, M_NOWAIT);
   1607 		if (entry == NULL) {
   1608 			aprint_error_dev(sc->bge_dev,
   1609 			    "no memory for jumbo buffer queue!\n");
   1610 			error = ENOBUFS;
   1611 			goto out;
   1612 		}
   1613 		entry->slot = i;
   1614 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1615 				 entry, jpool_entries);
   1616 	}
   1617 out:
   1618 	if (error != 0) {
   1619 		switch (state) {
   1620 		case 4:
   1621 			bus_dmamap_unload(sc->bge_dmatag,
   1622 			    sc->bge_cdata.bge_rx_jumbo_map);
   1623 		case 3:
   1624 			bus_dmamap_destroy(sc->bge_dmatag,
   1625 			    sc->bge_cdata.bge_rx_jumbo_map);
   1626 		case 2:
   1627 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1628 		case 1:
   1629 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1630 			break;
   1631 		default:
   1632 			break;
   1633 		}
   1634 	}
   1635 
   1636 	return error;
   1637 }
   1638 
   1639 /*
   1640  * Allocate a jumbo buffer.
   1641  */
   1642 static void *
   1643 bge_jalloc(struct bge_softc *sc)
   1644 {
   1645 	struct bge_jpool_entry   *entry;
   1646 
   1647 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1648 
   1649 	if (entry == NULL) {
   1650 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1651 		return NULL;
   1652 	}
   1653 
   1654 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1655 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1656 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1657 }
   1658 
   1659 /*
   1660  * Release a jumbo buffer.
   1661  */
   1662 static void
   1663 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1664 {
   1665 	struct bge_jpool_entry *entry;
   1666 	struct bge_softc *sc;
   1667 	int i, s;
   1668 
   1669 	/* Extract the softc struct pointer. */
   1670 	sc = (struct bge_softc *)arg;
   1671 
   1672 	if (sc == NULL)
   1673 		panic("bge_jfree: can't find softc pointer!");
   1674 
   1675 	/* calculate the slot this buffer belongs to */
   1676 
   1677 	i = ((char *)buf
   1678 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1679 
   1680 	if ((i < 0) || (i >= BGE_JSLOTS))
   1681 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1682 
   1683 	s = splvm();
   1684 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1685 	if (entry == NULL)
   1686 		panic("bge_jfree: buffer not in use!");
   1687 	entry->slot = i;
   1688 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1689 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1690 
   1691 	if (__predict_true(m != NULL))
   1692   		pool_cache_put(mb_cache, m);
   1693 	splx(s);
   1694 }
   1695 
   1696 
   1697 /*
   1698  * Initialize a standard receive ring descriptor.
   1699  */
   1700 static int
   1701 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1702     bus_dmamap_t dmamap)
   1703 {
   1704 	struct mbuf		*m_new = NULL;
   1705 	struct bge_rx_bd	*r;
   1706 	int			error;
   1707 
   1708 	if (dmamap == NULL) {
   1709 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1710 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1711 		if (error != 0)
   1712 			return error;
   1713 	}
   1714 
   1715 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1716 
   1717 	if (m == NULL) {
   1718 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1719 		if (m_new == NULL)
   1720 			return ENOBUFS;
   1721 
   1722 		MCLGET(m_new, M_DONTWAIT);
   1723 		if (!(m_new->m_flags & M_EXT)) {
   1724 			m_freem(m_new);
   1725 			return ENOBUFS;
   1726 		}
   1727 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1728 
   1729 	} else {
   1730 		m_new = m;
   1731 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1732 		m_new->m_data = m_new->m_ext.ext_buf;
   1733 	}
   1734 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1735 	    m_adj(m_new, ETHER_ALIGN);
   1736 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1737 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1738 		return ENOBUFS;
   1739 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1740 	    BUS_DMASYNC_PREREAD);
   1741 
   1742 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1743 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1744 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1745 	r->bge_flags = BGE_RXBDFLAG_END;
   1746 	r->bge_len = m_new->m_len;
   1747 	r->bge_idx = i;
   1748 
   1749 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1750 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1751 		i * sizeof (struct bge_rx_bd),
   1752 	    sizeof (struct bge_rx_bd),
   1753 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1754 
   1755 	return 0;
   1756 }
   1757 
   1758 /*
   1759  * Initialize a jumbo receive ring descriptor. This allocates
   1760  * a jumbo buffer from the pool managed internally by the driver.
   1761  */
   1762 static int
   1763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1764 {
   1765 	struct mbuf *m_new = NULL;
   1766 	struct bge_rx_bd *r;
   1767 	void *buf = NULL;
   1768 
   1769 	if (m == NULL) {
   1770 
   1771 		/* Allocate the mbuf. */
   1772 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1773 		if (m_new == NULL)
   1774 			return ENOBUFS;
   1775 
   1776 		/* Allocate the jumbo buffer */
   1777 		buf = bge_jalloc(sc);
   1778 		if (buf == NULL) {
   1779 			m_freem(m_new);
   1780 			aprint_error_dev(sc->bge_dev,
   1781 			    "jumbo allocation failed -- packet dropped!\n");
   1782 			return ENOBUFS;
   1783 		}
   1784 
   1785 		/* Attach the buffer to the mbuf. */
   1786 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1787 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1788 		    bge_jfree, sc);
   1789 		m_new->m_flags |= M_EXT_RW;
   1790 	} else {
   1791 		m_new = m;
   1792 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1793 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1794 	}
   1795 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1796 	    m_adj(m_new, ETHER_ALIGN);
   1797 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1798 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1799 	    BUS_DMASYNC_PREREAD);
   1800 	/* Set up the descriptor. */
   1801 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1802 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1803 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1804 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1805 	r->bge_len = m_new->m_len;
   1806 	r->bge_idx = i;
   1807 
   1808 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1809 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1810 		i * sizeof (struct bge_rx_bd),
   1811 	    sizeof (struct bge_rx_bd),
   1812 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1813 
   1814 	return 0;
   1815 }
   1816 
   1817 /*
   1818  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1819  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1820  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1821  * the NIC.
   1822  */
   1823 static int
   1824 bge_init_rx_ring_std(struct bge_softc *sc)
   1825 {
   1826 	int i;
   1827 
   1828 	if (sc->bge_flags & BGE_RXRING_VALID)
   1829 		return 0;
   1830 
   1831 	for (i = 0; i < BGE_SSLOTS; i++) {
   1832 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1833 			return ENOBUFS;
   1834 	}
   1835 
   1836 	sc->bge_std = i - 1;
   1837 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1838 
   1839 	sc->bge_flags |= BGE_RXRING_VALID;
   1840 
   1841 	return 0;
   1842 }
   1843 
   1844 static void
   1845 bge_free_rx_ring_std(struct bge_softc *sc)
   1846 {
   1847 	int i;
   1848 
   1849 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1850 		return;
   1851 
   1852 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1853 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1854 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1855 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1856 			bus_dmamap_destroy(sc->bge_dmatag,
   1857 			    sc->bge_cdata.bge_rx_std_map[i]);
   1858 		}
   1859 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1860 		    sizeof(struct bge_rx_bd));
   1861 	}
   1862 
   1863 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1864 }
   1865 
   1866 static int
   1867 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1868 {
   1869 	int i;
   1870 	volatile struct bge_rcb *rcb;
   1871 
   1872 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1873 		return 0;
   1874 
   1875 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1876 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1877 			return ENOBUFS;
   1878 	}
   1879 
   1880 	sc->bge_jumbo = i - 1;
   1881 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1882 
   1883 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1884 	rcb->bge_maxlen_flags = 0;
   1885 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1886 
   1887 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1888 
   1889 	return 0;
   1890 }
   1891 
   1892 static void
   1893 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1894 {
   1895 	int i;
   1896 
   1897 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1898 		return;
   1899 
   1900 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1901 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1902 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1903 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1904 		}
   1905 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1906 		    sizeof(struct bge_rx_bd));
   1907 	}
   1908 
   1909 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1910 }
   1911 
   1912 static void
   1913 bge_free_tx_ring(struct bge_softc *sc)
   1914 {
   1915 	int i;
   1916 	struct txdmamap_pool_entry *dma;
   1917 
   1918 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1919 		return;
   1920 
   1921 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1922 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1923 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1924 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1925 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1926 					    link);
   1927 			sc->txdma[i] = 0;
   1928 		}
   1929 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1930 		    sizeof(struct bge_tx_bd));
   1931 	}
   1932 
   1933 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1934 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1935 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1936 		free(dma, M_DEVBUF);
   1937 	}
   1938 
   1939 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1940 }
   1941 
   1942 static int
   1943 bge_init_tx_ring(struct bge_softc *sc)
   1944 {
   1945 	int i;
   1946 	bus_dmamap_t dmamap;
   1947 	struct txdmamap_pool_entry *dma;
   1948 
   1949 	if (sc->bge_flags & BGE_TXRING_VALID)
   1950 		return 0;
   1951 
   1952 	sc->bge_txcnt = 0;
   1953 	sc->bge_tx_saved_considx = 0;
   1954 
   1955 	/* Initialize transmit producer index for host-memory send ring. */
   1956 	sc->bge_tx_prodidx = 0;
   1957 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1958 	/* 5700 b2 errata */
   1959 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1960 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1961 
   1962 	/* NIC-memory send ring not used; initialize to zero. */
   1963 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1964 	/* 5700 b2 errata */
   1965 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1966 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1967 
   1968 	SLIST_INIT(&sc->txdma_list);
   1969 	for (i = 0; i < BGE_RSLOTS; i++) {
   1970 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1971 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1972 		    &dmamap))
   1973 			return ENOBUFS;
   1974 		if (dmamap == NULL)
   1975 			panic("dmamap NULL in bge_init_tx_ring");
   1976 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1977 		if (dma == NULL) {
   1978 			aprint_error_dev(sc->bge_dev,
   1979 			    "can't alloc txdmamap_pool_entry\n");
   1980 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1981 			return ENOMEM;
   1982 		}
   1983 		dma->dmamap = dmamap;
   1984 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1985 	}
   1986 
   1987 	sc->bge_flags |= BGE_TXRING_VALID;
   1988 
   1989 	return 0;
   1990 }
   1991 
   1992 static void
   1993 bge_setmulti(struct bge_softc *sc)
   1994 {
   1995 	struct ethercom		*ac = &sc->ethercom;
   1996 	struct ifnet		*ifp = &ac->ec_if;
   1997 	struct ether_multi	*enm;
   1998 	struct ether_multistep  step;
   1999 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2000 	uint32_t		h;
   2001 	int			i;
   2002 
   2003 	if (ifp->if_flags & IFF_PROMISC)
   2004 		goto allmulti;
   2005 
   2006 	/* Now program new ones. */
   2007 	ETHER_FIRST_MULTI(step, ac, enm);
   2008 	while (enm != NULL) {
   2009 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2010 			/*
   2011 			 * We must listen to a range of multicast addresses.
   2012 			 * For now, just accept all multicasts, rather than
   2013 			 * trying to set only those filter bits needed to match
   2014 			 * the range.  (At this time, the only use of address
   2015 			 * ranges is for IP multicast routing, for which the
   2016 			 * range is big enough to require all bits set.)
   2017 			 */
   2018 			goto allmulti;
   2019 		}
   2020 
   2021 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2022 
   2023 		/* Just want the 7 least-significant bits. */
   2024 		h &= 0x7f;
   2025 
   2026 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2027 		ETHER_NEXT_MULTI(step, enm);
   2028 	}
   2029 
   2030 	ifp->if_flags &= ~IFF_ALLMULTI;
   2031 	goto setit;
   2032 
   2033  allmulti:
   2034 	ifp->if_flags |= IFF_ALLMULTI;
   2035 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2036 
   2037  setit:
   2038 	for (i = 0; i < 4; i++)
   2039 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2040 }
   2041 
   2042 static void
   2043 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2044 {
   2045 
   2046 	/*
   2047 	 * Some chips don't like this so only do this if ASF is enabled
   2048 	 */
   2049 	if (sc->bge_asf_mode)
   2050 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2051 
   2052 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2053 		switch (type) {
   2054 		case BGE_RESET_START:
   2055 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2056 			    BGE_FW_DRV_STATE_START);
   2057 			break;
   2058 		case BGE_RESET_SHUTDOWN:
   2059 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2060 			    BGE_FW_DRV_STATE_UNLOAD);
   2061 			break;
   2062 		case BGE_RESET_SUSPEND:
   2063 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2064 			    BGE_FW_DRV_STATE_SUSPEND);
   2065 			break;
   2066 		}
   2067 	}
   2068 
   2069 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2070 		bge_ape_driver_state_change(sc, type);
   2071 }
   2072 
   2073 static void
   2074 bge_sig_post_reset(struct bge_softc *sc, int type)
   2075 {
   2076 
   2077 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2078 		switch (type) {
   2079 		case BGE_RESET_START:
   2080 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2081 			    BGE_FW_DRV_STATE_START_DONE);
   2082 			/* START DONE */
   2083 			break;
   2084 		case BGE_RESET_SHUTDOWN:
   2085 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2086 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2087 			break;
   2088 		}
   2089 	}
   2090 
   2091 	if (type == BGE_RESET_SHUTDOWN)
   2092 		bge_ape_driver_state_change(sc, type);
   2093 }
   2094 
   2095 static void
   2096 bge_sig_legacy(struct bge_softc *sc, int type)
   2097 {
   2098 
   2099 	if (sc->bge_asf_mode) {
   2100 		switch (type) {
   2101 		case BGE_RESET_START:
   2102 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2103 			    BGE_FW_DRV_STATE_START);
   2104 			break;
   2105 		case BGE_RESET_SHUTDOWN:
   2106 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2107 			    BGE_FW_DRV_STATE_UNLOAD);
   2108 			break;
   2109 		}
   2110 	}
   2111 }
   2112 
   2113 static void
   2114 bge_wait_for_event_ack(struct bge_softc *sc)
   2115 {
   2116 	int i;
   2117 
   2118 	/* wait up to 2500usec */
   2119 	for (i = 0; i < 250; i++) {
   2120 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2121 			BGE_RX_CPU_DRV_EVENT))
   2122 			break;
   2123 		DELAY(10);
   2124 	}
   2125 }
   2126 
   2127 static void
   2128 bge_stop_fw(struct bge_softc *sc)
   2129 {
   2130 
   2131 	if (sc->bge_asf_mode) {
   2132 		bge_wait_for_event_ack(sc);
   2133 
   2134 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2135 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2136 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2137 
   2138 		bge_wait_for_event_ack(sc);
   2139 	}
   2140 }
   2141 
   2142 static int
   2143 bge_poll_fw(struct bge_softc *sc)
   2144 {
   2145 	uint32_t val;
   2146 	int i;
   2147 
   2148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2149 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2150 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2151 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2152 				break;
   2153 			DELAY(100);
   2154 		}
   2155 		if (i >= BGE_TIMEOUT) {
   2156 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2157 			return -1;
   2158 		}
   2159 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   2160 		/*
   2161 		 * Poll the value location we just wrote until
   2162 		 * we see the 1's complement of the magic number.
   2163 		 * This indicates that the firmware initialization
   2164 		 * is complete.
   2165 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2166 		 */
   2167 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2168 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2169 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2170 				break;
   2171 			DELAY(10);
   2172 		}
   2173 
   2174 		if (i >= BGE_TIMEOUT) {
   2175 			aprint_error_dev(sc->bge_dev,
   2176 			    "firmware handshake timed out, val = %x\n", val);
   2177 			return -1;
   2178 		}
   2179 	}
   2180 
   2181 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2182 		/* tg3 says we have to wait extra time */
   2183 		delay(10 * 1000);
   2184 	}
   2185 
   2186 	return 0;
   2187 }
   2188 
   2189 int
   2190 bge_phy_addr(struct bge_softc *sc)
   2191 {
   2192 	struct pci_attach_args *pa = &(sc->bge_pa);
   2193 	int phy_addr = 1;
   2194 
   2195 	/*
   2196 	 * PHY address mapping for various devices.
   2197 	 *
   2198 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2199 	 * ---------+-------+-------+-------+-------+
   2200 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2201 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2202 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2203 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2204 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2205 	 *
   2206 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2207 	 * ---------+-------+-------+-------+-------+
   2208 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2209 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2210 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2211 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2212 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2213 	 *
   2214 	 * Other addresses may respond but they are not
   2215 	 * IEEE compliant PHYs and should be ignored.
   2216 	 */
   2217 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2218 	case BGE_ASICREV_BCM5717:
   2219 	case BGE_ASICREV_BCM5719:
   2220 	case BGE_ASICREV_BCM5720:
   2221 		phy_addr = pa->pa_function;
   2222 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2223 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2224 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2225 		} else {
   2226 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2227 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2228 		}
   2229 	}
   2230 
   2231 	return phy_addr;
   2232 }
   2233 
   2234 /*
   2235  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2236  * self-test results.
   2237  */
   2238 static int
   2239 bge_chipinit(struct bge_softc *sc)
   2240 {
   2241 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2242 	int i;
   2243 
   2244 	/* Set endianness before we access any non-PCI registers. */
   2245 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2246 	    BGE_INIT);
   2247 
   2248 	/*
   2249 	 * Clear the MAC statistics block in the NIC's
   2250 	 * internal memory.
   2251 	 */
   2252 	for (i = BGE_STATS_BLOCK;
   2253 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2254 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2255 
   2256 	for (i = BGE_STATUS_BLOCK;
   2257 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2258 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2259 
   2260 	/* 5717 workaround from tg3 */
   2261 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2262 		/* Save */
   2263 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2264 
   2265 		/* Temporary modify MODE_CTL to control TLP */
   2266 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2267 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2268 
   2269 		/* Control TLP */
   2270 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2271 		    BGE_TLP_PHYCTL1);
   2272 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2273 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2274 
   2275 		/* Restore */
   2276 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2277 	}
   2278 
   2279 	/* XXX Should we use 57765_FAMILY? */
   2280 	if (BGE_IS_57765_PLUS(sc)) {
   2281 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2282 			/* Save */
   2283 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2284 
   2285 			/* Temporary modify MODE_CTL to control TLP */
   2286 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2287 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2288 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2289 
   2290 			/* Control TLP */
   2291 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2292 			    BGE_TLP_PHYCTL5);
   2293 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2294 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2295 
   2296 			/* Restore */
   2297 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2298 		}
   2299 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2300 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2301 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2302 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2303 
   2304 			/* Save */
   2305 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2306 
   2307 			/* Temporary modify MODE_CTL to control TLP */
   2308 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2309 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2310 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2311 
   2312 			/* Control TLP */
   2313 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2314 			    BGE_TLP_FTSMAX);
   2315 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2316 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2317 			    reg | BGE_TLP_FTSMAX_VAL);
   2318 
   2319 			/* Restore */
   2320 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2321 		}
   2322 
   2323 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2324 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2325 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2326 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2327 	}
   2328 
   2329 	/* Set up the PCI DMA control register. */
   2330 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2331 	if (sc->bge_flags & BGE_PCIE) {
   2332 		/* Read watermark not used, 128 bytes for write. */
   2333 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2334 		    device_xname(sc->bge_dev)));
   2335 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2336 	} else if (sc->bge_flags & BGE_PCIX) {
   2337 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2338 		    device_xname(sc->bge_dev)));
   2339 		/* PCI-X bus */
   2340 		if (BGE_IS_5714_FAMILY(sc)) {
   2341 			/* 256 bytes for read and write. */
   2342 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2343 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2344 
   2345 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2346 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2347 			else
   2348 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2349 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2350 			/* 1536 bytes for read, 384 bytes for write. */
   2351 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2352 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2353 		} else {
   2354 			/* 384 bytes for read and write. */
   2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2356 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2357 			    (0x0F);
   2358 		}
   2359 
   2360 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2361 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2362 			uint32_t tmp;
   2363 
   2364 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2365 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2366 			if (tmp == 6 || tmp == 7)
   2367 				dma_rw_ctl |=
   2368 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2369 
   2370 			/* Set PCI-X DMA write workaround. */
   2371 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2372 		}
   2373 	} else {
   2374 		/* Conventional PCI bus: 256 bytes for read and write. */
   2375 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2376 		    device_xname(sc->bge_dev)));
   2377 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2378 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2379 
   2380 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2381 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2382 			dma_rw_ctl |= 0x0F;
   2383 	}
   2384 
   2385 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2386 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2387 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2388 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2389 
   2390 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2391 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2392 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2393 
   2394 	if (BGE_IS_5717_PLUS(sc)) {
   2395 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2396 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2397 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2398 
   2399 		/*
   2400 		 * Enable HW workaround for controllers that misinterpret
   2401 		 * a status tag update and leave interrupts permanently
   2402 		 * disabled.
   2403 		 */
   2404 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2405 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   2406 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2407 	}
   2408 
   2409 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2410 	    dma_rw_ctl);
   2411 
   2412 	/*
   2413 	 * Set up general mode register.
   2414 	 */
   2415 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2416 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2417 		/* Retain Host-2-BMC settings written by APE firmware. */
   2418 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2419 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2420 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2421 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2422 	}
   2423 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2424 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2425 
   2426 	/*
   2427 	 * BCM5701 B5 have a bug causing data corruption when using
   2428 	 * 64-bit DMA reads, which can be terminated early and then
   2429 	 * completed later as 32-bit accesses, in combination with
   2430 	 * certain bridges.
   2431 	 */
   2432 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2433 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2434 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2435 
   2436 	/*
   2437 	 * Tell the firmware the driver is running
   2438 	 */
   2439 	if (sc->bge_asf_mode & ASF_STACKUP)
   2440 		mode_ctl |= BGE_MODECTL_STACKUP;
   2441 
   2442 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2443 
   2444 	/*
   2445 	 * Disable memory write invalidate.  Apparently it is not supported
   2446 	 * properly by these devices.
   2447 	 */
   2448 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2449 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2450 
   2451 #ifdef __brokenalpha__
   2452 	/*
   2453 	 * Must insure that we do not cross an 8K (bytes) boundary
   2454 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2455 	 * restriction on some ALPHA platforms with early revision
   2456 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2457 	 */
   2458 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2459 #endif
   2460 
   2461 	/* Set the timer prescaler (always 66MHz) */
   2462 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2463 
   2464 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2465 		DELAY(40);	/* XXX */
   2466 
   2467 		/* Put PHY into ready state */
   2468 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2469 		DELAY(40);
   2470 	}
   2471 
   2472 	return 0;
   2473 }
   2474 
   2475 static int
   2476 bge_blockinit(struct bge_softc *sc)
   2477 {
   2478 	volatile struct bge_rcb	 *rcb;
   2479 	bus_size_t rcb_addr;
   2480 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2481 	bge_hostaddr taddr;
   2482 	uint32_t	dmactl, val;
   2483 	int		i, limit;
   2484 
   2485 	/*
   2486 	 * Initialize the memory window pointer register so that
   2487 	 * we can access the first 32K of internal NIC RAM. This will
   2488 	 * allow us to set up the TX send ring RCBs and the RX return
   2489 	 * ring RCBs, plus other things which live in NIC memory.
   2490 	 */
   2491 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2492 
   2493 	/* Step 33: Configure mbuf memory pool */
   2494 	if (!BGE_IS_5705_PLUS(sc)) {
   2495 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2496 		    BGE_BUFFPOOL_1);
   2497 
   2498 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2499 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2500 		else
   2501 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2502 
   2503 		/* Configure DMA resource pool */
   2504 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2505 		    BGE_DMA_DESCRIPTORS);
   2506 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2507 	}
   2508 
   2509 	/* Step 35: Configure mbuf pool watermarks */
   2510 	/* new broadcom docs strongly recommend these: */
   2511 	if (BGE_IS_5717_PLUS(sc)) {
   2512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2515 	} else if (BGE_IS_5705_PLUS(sc)) {
   2516 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2517 
   2518 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2519 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2520 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2521 		} else {
   2522 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2523 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2524 		}
   2525 	} else {
   2526 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2527 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2528 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2529 	}
   2530 
   2531 	/* Step 36: Configure DMA resource watermarks */
   2532 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2533 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2534 
   2535 	/* Step 38: Enable buffer manager */
   2536 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2537 	/*
   2538 	 * Change the arbitration algorithm of TXMBUF read request to
   2539 	 * round-robin instead of priority based for BCM5719.  When
   2540 	 * TXFIFO is almost empty, RDMA will hold its request until
   2541 	 * TXFIFO is not almost empty.
   2542 	 */
   2543 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2544 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2545 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2546 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2547 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2548 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2549 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2550 
   2551 	/* Step 39: Poll for buffer manager start indication */
   2552 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2553 		DELAY(10);
   2554 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2555 			break;
   2556 	}
   2557 
   2558 	if (i == BGE_TIMEOUT * 2) {
   2559 		aprint_error_dev(sc->bge_dev,
   2560 		    "buffer manager failed to start\n");
   2561 		return ENXIO;
   2562 	}
   2563 
   2564 	/* Step 40: Enable flow-through queues */
   2565 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2566 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2567 
   2568 	/* Wait until queue initialization is complete */
   2569 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2570 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2571 			break;
   2572 		DELAY(10);
   2573 	}
   2574 
   2575 	if (i == BGE_TIMEOUT * 2) {
   2576 		aprint_error_dev(sc->bge_dev,
   2577 		    "flow-through queue init failed\n");
   2578 		return ENXIO;
   2579 	}
   2580 
   2581 	/*
   2582 	 * Summary of rings supported by the controller:
   2583 	 *
   2584 	 * Standard Receive Producer Ring
   2585 	 * - This ring is used to feed receive buffers for "standard"
   2586 	 *   sized frames (typically 1536 bytes) to the controller.
   2587 	 *
   2588 	 * Jumbo Receive Producer Ring
   2589 	 * - This ring is used to feed receive buffers for jumbo sized
   2590 	 *   frames (i.e. anything bigger than the "standard" frames)
   2591 	 *   to the controller.
   2592 	 *
   2593 	 * Mini Receive Producer Ring
   2594 	 * - This ring is used to feed receive buffers for "mini"
   2595 	 *   sized frames to the controller.
   2596 	 * - This feature required external memory for the controller
   2597 	 *   but was never used in a production system.  Should always
   2598 	 *   be disabled.
   2599 	 *
   2600 	 * Receive Return Ring
   2601 	 * - After the controller has placed an incoming frame into a
   2602 	 *   receive buffer that buffer is moved into a receive return
   2603 	 *   ring.  The driver is then responsible to passing the
   2604 	 *   buffer up to the stack.  Many versions of the controller
   2605 	 *   support multiple RR rings.
   2606 	 *
   2607 	 * Send Ring
   2608 	 * - This ring is used for outgoing frames.  Many versions of
   2609 	 *   the controller support multiple send rings.
   2610 	 */
   2611 
   2612 	/* Step 41: Initialize the standard RX ring control block */
   2613 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2614 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2615 	if (BGE_IS_5717_PLUS(sc)) {
   2616 		/*
   2617 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2618 		 * Bits 15-2 : Maximum RX frame size
   2619 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2620 		 * Bit 0     : Reserved
   2621 		 */
   2622 		rcb->bge_maxlen_flags =
   2623 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2624 	} else if (BGE_IS_5705_PLUS(sc)) {
   2625 		/*
   2626 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2627 		 * Bits 15-2 : Reserved (should be 0)
   2628 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2629 		 * Bit 0     : Reserved
   2630 		 */
   2631 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2632 	} else {
   2633 		/*
   2634 		 * Ring size is always XXX entries
   2635 		 * Bits 31-16: Maximum RX frame size
   2636 		 * Bits 15-2 : Reserved (should be 0)
   2637 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2638 		 * Bit 0     : Reserved
   2639 		 */
   2640 		rcb->bge_maxlen_flags =
   2641 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2642 	}
   2643 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2646 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2647 	else
   2648 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2649 	/* Write the standard receive producer ring control block. */
   2650 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2651 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2652 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2653 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2654 
   2655 	/* Reset the standard receive producer ring producer index. */
   2656 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2657 
   2658 	/*
   2659 	 * Step 42: Initialize the jumbo RX ring control block
   2660 	 * We set the 'ring disabled' bit in the flags
   2661 	 * field until we're actually ready to start
   2662 	 * using this ring (i.e. once we set the MTU
   2663 	 * high enough to require it).
   2664 	 */
   2665 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2666 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2667 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2668 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2669 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2670 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2671 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2672 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2673 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2674 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2675 		else
   2676 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2677 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2678 		    rcb->bge_hostaddr.bge_addr_hi);
   2679 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2680 		    rcb->bge_hostaddr.bge_addr_lo);
   2681 		/* Program the jumbo receive producer ring RCB parameters. */
   2682 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2683 		    rcb->bge_maxlen_flags);
   2684 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2685 		/* Reset the jumbo receive producer ring producer index. */
   2686 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2687 	}
   2688 
   2689 	/* Disable the mini receive producer ring RCB. */
   2690 	if (BGE_IS_5700_FAMILY(sc)) {
   2691 		/* Set up dummy disabled mini ring RCB */
   2692 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2693 		rcb->bge_maxlen_flags =
   2694 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2695 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2696 		    rcb->bge_maxlen_flags);
   2697 		/* Reset the mini receive producer ring producer index. */
   2698 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2699 
   2700 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2701 		    offsetof(struct bge_ring_data, bge_info),
   2702 		    sizeof (struct bge_gib),
   2703 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2704 	}
   2705 
   2706 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2707 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2708 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2709 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2710 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2711 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2712 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2713 	}
   2714 	/*
   2715 	 * The BD ring replenish thresholds control how often the
   2716 	 * hardware fetches new BD's from the producer rings in host
   2717 	 * memory.  Setting the value too low on a busy system can
   2718 	 * starve the hardware and recue the throughpout.
   2719 	 *
   2720 	 * Set the BD ring replenish thresholds. The recommended
   2721 	 * values are 1/8th the number of descriptors allocated to
   2722 	 * each ring, but since we try to avoid filling the entire
   2723 	 * ring we set these to the minimal value of 8.  This needs to
   2724 	 * be done on several of the supported chip revisions anyway,
   2725 	 * to work around HW bugs.
   2726 	 */
   2727 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2728 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2729 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2730 
   2731 	if (BGE_IS_5717_PLUS(sc)) {
   2732 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2733 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2734 	}
   2735 
   2736 	/*
   2737 	 * Disable all send rings by setting the 'ring disabled' bit
   2738 	 * in the flags field of all the TX send ring control blocks,
   2739 	 * located in NIC memory.
   2740 	 */
   2741 	if (BGE_IS_5700_FAMILY(sc)) {
   2742 		/* 5700 to 5704 had 16 send rings. */
   2743 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2744 	} else
   2745 		limit = 1;
   2746 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2747 	for (i = 0; i < limit; i++) {
   2748 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2749 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2750 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2751 		rcb_addr += sizeof(struct bge_rcb);
   2752 	}
   2753 
   2754 	/* Configure send ring RCB 0 (we use only the first ring) */
   2755 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2756 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2757 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2758 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2759 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2760 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2761 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2762 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2763 	else
   2764 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2765 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2766 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2767 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2768 
   2769 	/*
   2770 	 * Disable all receive return rings by setting the
   2771 	 * 'ring diabled' bit in the flags field of all the receive
   2772 	 * return ring control blocks, located in NIC memory.
   2773 	 */
   2774 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2775 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2776 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2777 		/* Should be 17, use 16 until we get an SRAM map. */
   2778 		limit = 16;
   2779 	} else if (BGE_IS_5700_FAMILY(sc))
   2780 		limit = BGE_RX_RINGS_MAX;
   2781 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2782 	    BGE_IS_57765_PLUS(sc))
   2783 		limit = 4;
   2784 	else
   2785 		limit = 1;
   2786 	/* Disable all receive return rings */
   2787 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2788 	for (i = 0; i < limit; i++) {
   2789 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2790 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2791 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2792 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2793 			BGE_RCB_FLAG_RING_DISABLED));
   2794 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2795 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2796 		    (i * (sizeof(uint64_t))), 0);
   2797 		rcb_addr += sizeof(struct bge_rcb);
   2798 	}
   2799 
   2800 	/*
   2801 	 * Set up receive return ring 0.  Note that the NIC address
   2802 	 * for RX return rings is 0x0.  The return rings live entirely
   2803 	 * within the host, so the nicaddr field in the RCB isn't used.
   2804 	 */
   2805 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2806 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2807 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2808 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2809 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2810 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2811 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2812 
   2813 	/* Set random backoff seed for TX */
   2814 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2815 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2816 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2817 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2818 	    BGE_TX_BACKOFF_SEED_MASK);
   2819 
   2820 	/* Set inter-packet gap */
   2821 	val = 0x2620;
   2822 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2823 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2824 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2825 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2826 
   2827 	/*
   2828 	 * Specify which ring to use for packets that don't match
   2829 	 * any RX rules.
   2830 	 */
   2831 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2832 
   2833 	/*
   2834 	 * Configure number of RX lists. One interrupt distribution
   2835 	 * list, sixteen active lists, one bad frames class.
   2836 	 */
   2837 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2838 
   2839 	/* Inialize RX list placement stats mask. */
   2840 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2841 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2842 
   2843 	/* Disable host coalescing until we get it set up */
   2844 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2845 
   2846 	/* Poll to make sure it's shut down. */
   2847 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2848 		DELAY(10);
   2849 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2850 			break;
   2851 	}
   2852 
   2853 	if (i == BGE_TIMEOUT * 2) {
   2854 		aprint_error_dev(sc->bge_dev,
   2855 		    "host coalescing engine failed to idle\n");
   2856 		return ENXIO;
   2857 	}
   2858 
   2859 	/* Set up host coalescing defaults */
   2860 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2861 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2862 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2863 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2864 	if (!(BGE_IS_5705_PLUS(sc))) {
   2865 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2866 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2867 	}
   2868 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2869 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2870 
   2871 	/* Set up address of statistics block */
   2872 	if (BGE_IS_5700_FAMILY(sc)) {
   2873 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2874 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2875 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2876 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2877 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2878 	}
   2879 
   2880 	/* Set up address of status block */
   2881 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2882 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2883 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2884 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2885 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2886 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2887 
   2888 	/* Set up status block size. */
   2889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2890 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2891 		val = BGE_STATBLKSZ_FULL;
   2892 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2893 	} else {
   2894 		val = BGE_STATBLKSZ_32BYTE;
   2895 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2896 	}
   2897 
   2898 	/* Turn on host coalescing state machine */
   2899 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2900 
   2901 	/* Turn on RX BD completion state machine and enable attentions */
   2902 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2903 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2904 
   2905 	/* Turn on RX list placement state machine */
   2906 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2907 
   2908 	/* Turn on RX list selector state machine. */
   2909 	if (!(BGE_IS_5705_PLUS(sc)))
   2910 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2911 
   2912 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2913 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2914 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2915 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2916 
   2917 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2918 		val |= BGE_PORTMODE_TBI;
   2919 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2920 		val |= BGE_PORTMODE_GMII;
   2921 	else
   2922 		val |= BGE_PORTMODE_MII;
   2923 
   2924 	/* Allow APE to send/receive frames. */
   2925 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2926 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2927 
   2928 	/* Turn on DMA, clear stats */
   2929 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2930 	DELAY(40);
   2931 
   2932 	/* Set misc. local control, enable interrupts on attentions */
   2933 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2934 	if (BGE_IS_5717_PLUS(sc)) {
   2935 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2936 		DELAY(100);
   2937 	}
   2938 
   2939 	/* Turn on DMA completion state machine */
   2940 	if (!(BGE_IS_5705_PLUS(sc)))
   2941 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2942 
   2943 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2944 
   2945 	/* Enable host coalescing bug fix. */
   2946 	if (BGE_IS_5755_PLUS(sc))
   2947 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2948 
   2949 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2950 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2951 
   2952 	/* Turn on write DMA state machine */
   2953 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2954 	DELAY(40);
   2955 
   2956 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2957 
   2958 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2959 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2960 
   2961 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2962 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2963 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2964 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2965 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2966 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2967 
   2968 	if (sc->bge_flags & BGE_PCIE)
   2969 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2970 	if (sc->bge_flags & BGE_TSO)
   2971 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2972 
   2973 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2974 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2975 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2976 		/*
   2977 		 * Allow multiple outstanding read requests from
   2978 		 * non-LSO read DMA engine.
   2979 		 */
   2980 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2981 	}
   2982 
   2983 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2984 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2985 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2986 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2987 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
   2988 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   2989 		/*
   2990 		 * Adjust tx margin to prevent TX data corruption and
   2991 		 * fix internal FIFO overflow.
   2992 		 */
   2993 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   2994 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2995 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2996 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2997 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2998 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2999 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3000 		}
   3001 		/*
   3002 		 * Enable fix for read DMA FIFO overruns.
   3003 		 * The fix is to limit the number of RX BDs
   3004 		 * the hardware would fetch at a fime.
   3005 		 */
   3006 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3007 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3008 	}
   3009 
   3010 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3011 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3012 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3013 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3014 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3015 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3016 		/*
   3017 		 * Allow 4KB burst length reads for non-LSO frames.
   3018 		 * Enable 512B burst length reads for buffer descriptors.
   3019 		 */
   3020 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3021 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3022 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3023 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3024 	}
   3025 
   3026 	/* Turn on read DMA state machine */
   3027 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3028 	delay(40);
   3029 
   3030 	/* Turn on RX data completion state machine */
   3031 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3032 
   3033 	/* Turn on RX data and RX BD initiator state machine */
   3034 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3035 
   3036 	/* Turn on Mbuf cluster free state machine */
   3037 	if (!BGE_IS_5705_PLUS(sc))
   3038 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3039 
   3040 	/* Turn on send data completion state machine */
   3041 	val = BGE_SDCMODE_ENABLE;
   3042 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3043 		val |= BGE_SDCMODE_CDELAY;
   3044 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3045 
   3046 	/* Turn on send BD completion state machine */
   3047 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3048 
   3049 	/* Turn on RX BD initiator state machine */
   3050 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3051 
   3052 	/* Turn on send data initiator state machine */
   3053 	if (sc->bge_flags & BGE_TSO) {
   3054 		/* XXX: magic value from Linux driver */
   3055 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3056 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3057 	} else
   3058 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3059 
   3060 	/* Turn on send BD initiator state machine */
   3061 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3062 
   3063 	/* Turn on send BD selector state machine */
   3064 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3065 
   3066 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3067 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3068 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3069 
   3070 	/* ack/clear link change events */
   3071 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3072 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3073 	    BGE_MACSTAT_LINK_CHANGED);
   3074 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3075 
   3076 	/*
   3077 	 * Enable attention when the link has changed state for
   3078 	 * devices that use auto polling.
   3079 	 */
   3080 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3081 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3082 	} else {
   3083 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3084 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   3085 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3086 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3087 			    BGE_EVTENB_MI_INTERRUPT);
   3088 	}
   3089 
   3090 	/*
   3091 	 * Clear any pending link state attention.
   3092 	 * Otherwise some link state change events may be lost until attention
   3093 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3094 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3095 	 * state change attentions implies clearing pending attention.
   3096 	 */
   3097 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3098 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3099 	    BGE_MACSTAT_LINK_CHANGED);
   3100 
   3101 	/* Enable link state change attentions. */
   3102 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3103 
   3104 	return 0;
   3105 }
   3106 
   3107 static const struct bge_revision *
   3108 bge_lookup_rev(uint32_t chipid)
   3109 {
   3110 	const struct bge_revision *br;
   3111 
   3112 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3113 		if (br->br_chipid == chipid)
   3114 			return br;
   3115 	}
   3116 
   3117 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3118 		if (br->br_chipid == BGE_ASICREV(chipid))
   3119 			return br;
   3120 	}
   3121 
   3122 	return NULL;
   3123 }
   3124 
   3125 static const struct bge_product *
   3126 bge_lookup(const struct pci_attach_args *pa)
   3127 {
   3128 	const struct bge_product *bp;
   3129 
   3130 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3131 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3132 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3133 			return bp;
   3134 	}
   3135 
   3136 	return NULL;
   3137 }
   3138 
   3139 static uint32_t
   3140 bge_chipid(const struct pci_attach_args *pa)
   3141 {
   3142 	uint32_t id;
   3143 
   3144 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3145 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3146 
   3147 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3148 		switch (PCI_PRODUCT(pa->pa_id)) {
   3149 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3150 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3151 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3152 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3153 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3154 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3155 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3156 			break;
   3157 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3158 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3159 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3160 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3161 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3162 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3163 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3164 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3165 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3166 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3167 			break;
   3168 		default:
   3169 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3170 			    BGE_PCI_PRODID_ASICREV);
   3171 			break;
   3172 		}
   3173 	}
   3174 
   3175 	return id;
   3176 }
   3177 
   3178 /*
   3179  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3180  * against our list and return its name if we find a match. Note
   3181  * that since the Broadcom controller contains VPD support, we
   3182  * can get the device name string from the controller itself instead
   3183  * of the compiled-in string. This is a little slow, but it guarantees
   3184  * we'll always announce the right product name.
   3185  */
   3186 static int
   3187 bge_probe(device_t parent, cfdata_t match, void *aux)
   3188 {
   3189 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3190 
   3191 	if (bge_lookup(pa) != NULL)
   3192 		return 1;
   3193 
   3194 	return 0;
   3195 }
   3196 
   3197 static void
   3198 bge_attach(device_t parent, device_t self, void *aux)
   3199 {
   3200 	struct bge_softc	*sc = device_private(self);
   3201 	struct pci_attach_args	*pa = aux;
   3202 	prop_dictionary_t dict;
   3203 	const struct bge_product *bp;
   3204 	const struct bge_revision *br;
   3205 	pci_chipset_tag_t	pc;
   3206 	pci_intr_handle_t	ih;
   3207 	const char		*intrstr = NULL;
   3208 	bus_dma_segment_t	seg;
   3209 	int			rseg;
   3210 	uint32_t		hwcfg = 0;
   3211 	uint32_t		command;
   3212 	struct ifnet		*ifp;
   3213 	uint32_t		misccfg;
   3214 	void *			kva;
   3215 	u_char			eaddr[ETHER_ADDR_LEN];
   3216 	pcireg_t		memtype, subid, reg;
   3217 	bus_addr_t		memaddr;
   3218 	bus_size_t		memsize, apesize;
   3219 	uint32_t		pm_ctl;
   3220 	bool			no_seeprom;
   3221 	int			capmask;
   3222 
   3223 	bp = bge_lookup(pa);
   3224 	KASSERT(bp != NULL);
   3225 
   3226 	sc->sc_pc = pa->pa_pc;
   3227 	sc->sc_pcitag = pa->pa_tag;
   3228 	sc->bge_dev = self;
   3229 
   3230 	sc->bge_pa = *pa;
   3231 	pc = sc->sc_pc;
   3232 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3233 
   3234 	aprint_naive(": Ethernet controller\n");
   3235 	aprint_normal(": %s\n", bp->bp_name);
   3236 
   3237 	/*
   3238 	 * Map control/status registers.
   3239 	 */
   3240 	DPRINTFN(5, ("Map control/status regs\n"));
   3241 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3242 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3243 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3244 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3245 
   3246 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3247 		aprint_error_dev(sc->bge_dev,
   3248 		    "failed to enable memory mapping!\n");
   3249 		return;
   3250 	}
   3251 
   3252 	DPRINTFN(5, ("pci_mem_find\n"));
   3253 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3254 	switch (memtype) {
   3255 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3256 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3257 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3258 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3259 		    &memaddr, &memsize) == 0)
   3260 			break;
   3261 	default:
   3262 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3263 		return;
   3264 	}
   3265 
   3266 	DPRINTFN(5, ("pci_intr_map\n"));
   3267 	if (pci_intr_map(pa, &ih)) {
   3268 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3269 		return;
   3270 	}
   3271 
   3272 	DPRINTFN(5, ("pci_intr_string\n"));
   3273 	intrstr = pci_intr_string(pc, ih);
   3274 
   3275 	DPRINTFN(5, ("pci_intr_establish\n"));
   3276 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3277 
   3278 	if (sc->bge_intrhand == NULL) {
   3279 		aprint_error_dev(sc->bge_dev,
   3280 		    "couldn't establish interrupt%s%s\n",
   3281 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3282 		return;
   3283 	}
   3284 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3285 
   3286 	/* Save various chip information. */
   3287 	sc->bge_chipid = bge_chipid(pa);
   3288 	sc->bge_phy_addr = bge_phy_addr(sc);
   3289 
   3290 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3291 	        &sc->bge_pciecap, NULL) != 0)
   3292 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3293 		/* PCIe */
   3294 		sc->bge_flags |= BGE_PCIE;
   3295 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3296 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3297 			sc->bge_expmrq = 2048;
   3298 		else
   3299 			sc->bge_expmrq = 4096;
   3300 		bge_set_max_readrq(sc);
   3301 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3302 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3303 		/* PCI-X */
   3304 		sc->bge_flags |= BGE_PCIX;
   3305 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3306 			&sc->bge_pcixcap, NULL) == 0)
   3307 			aprint_error_dev(sc->bge_dev,
   3308 			    "unable to find PCIX capability\n");
   3309 	}
   3310 
   3311 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3312 		/*
   3313 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3314 		 * can clobber the chip's PCI config-space power control
   3315 		 * registers, leaving the card in D3 powersave state. We do
   3316 		 * not have memory-mapped registers in this state, so force
   3317 		 * device into D0 state before starting initialization.
   3318 		 */
   3319 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3320 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3321 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3322 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3323 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3324 	}
   3325 
   3326 	/* Save chipset family. */
   3327 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3328 	case BGE_ASICREV_BCM57765:
   3329 	case BGE_ASICREV_BCM57766:
   3330 		sc->bge_flags |= BGE_57765_PLUS;
   3331 		/* FALLTHROUGH */
   3332 	case BGE_ASICREV_BCM5717:
   3333 	case BGE_ASICREV_BCM5719:
   3334 	case BGE_ASICREV_BCM5720:
   3335 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
   3336 		    BGE_5705_PLUS;
   3337 		break;
   3338 	case BGE_ASICREV_BCM5755:
   3339 	case BGE_ASICREV_BCM5761:
   3340 	case BGE_ASICREV_BCM5784:
   3341 	case BGE_ASICREV_BCM5785:
   3342 	case BGE_ASICREV_BCM5787:
   3343 	case BGE_ASICREV_BCM57780:
   3344 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
   3345 		break;
   3346 	case BGE_ASICREV_BCM5700:
   3347 	case BGE_ASICREV_BCM5701:
   3348 	case BGE_ASICREV_BCM5703:
   3349 	case BGE_ASICREV_BCM5704:
   3350 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
   3351 		break;
   3352 	case BGE_ASICREV_BCM5714_A0:
   3353 	case BGE_ASICREV_BCM5780:
   3354 	case BGE_ASICREV_BCM5714:
   3355 		sc->bge_flags |= BGE_5714_FAMILY;
   3356 		/* FALLTHROUGH */
   3357 	case BGE_ASICREV_BCM5750:
   3358 	case BGE_ASICREV_BCM5752:
   3359 	case BGE_ASICREV_BCM5906:
   3360 		sc->bge_flags |= BGE_575X_PLUS;
   3361 		/* FALLTHROUGH */
   3362 	case BGE_ASICREV_BCM5705:
   3363 		sc->bge_flags |= BGE_5705_PLUS;
   3364 		break;
   3365 	}
   3366 
   3367 	/* Identify chips with APE processor. */
   3368 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3369 	case BGE_ASICREV_BCM5717:
   3370 	case BGE_ASICREV_BCM5719:
   3371 	case BGE_ASICREV_BCM5720:
   3372 	case BGE_ASICREV_BCM5761:
   3373 		sc->bge_flags |= BGE_APE;
   3374 		break;
   3375 	}
   3376 
   3377 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3378 	if ((sc->bge_flags & BGE_APE) != 0) {
   3379 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3380 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3381 		    &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
   3382 			aprint_error_dev(sc->bge_dev,
   3383 			    "couldn't map BAR2 memory\n");
   3384 			return;
   3385 		}
   3386 
   3387 		/* Enable APE register/memory access by host driver. */
   3388 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3389 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3390 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3391 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3392 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3393 
   3394 		bge_ape_lock_init(sc);
   3395 		bge_ape_read_fw_ver(sc);
   3396 	}
   3397 
   3398 	/* Identify the chips that use an CPMU. */
   3399 	if (BGE_IS_5717_PLUS(sc) ||
   3400 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3401 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3402 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3403 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3404 		sc->bge_flags |= BGE_CPMU_PRESENT;
   3405 
   3406 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
   3407 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
   3408 	else
   3409 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
   3410 
   3411 	/*
   3412 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3413 	 * been observed in the first few bytes of some received packets.
   3414 	 * Aligning the packet buffer in memory eliminates the corruption.
   3415 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3416 	 * which do not support unaligned accesses, we will realign the
   3417 	 * payloads by copying the received packets.
   3418 	 */
   3419 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3420 	    sc->bge_flags & BGE_PCIX)
   3421 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   3422 
   3423 	if (BGE_IS_5700_FAMILY(sc))
   3424 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   3425 
   3426 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3427 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3428 
   3429 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3430 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3431 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3432 		sc->bge_flags |= BGE_IS_5788;
   3433 
   3434 	/*
   3435 	 * Some controllers seem to require a special firmware to use
   3436 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3437 	 * claims that the TSO performed by the firmware is slower than
   3438 	 * hardware based TSO. Moreover the firmware based TSO has one
   3439 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3440 	 * header is greater than 80 bytes. The workaround for the TSO
   3441 	 * bug exist but it seems it's too expensive than not using
   3442 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3443 	 * the TSO to the controllers that are not affected TSO issues
   3444 	 * (e.g. 5755 or higher).
   3445 	 */
   3446 	if (BGE_IS_5755_PLUS(sc)) {
   3447 		/*
   3448 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3449 		 * explicit device id check is required.
   3450 		 */
   3451 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3452 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3453 			sc->bge_flags |= BGE_TSO;
   3454 	}
   3455 
   3456 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3457 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3458 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3459 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3460 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3461 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3462 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3463 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3464 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3465 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3466 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3467 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3468 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3469 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3470 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3471 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3472 		capmask &= ~BMSR_EXTSTAT;
   3473 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3474 	}
   3475 
   3476 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3477 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3478 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3479 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3480 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3481 
   3482 	/* Set various PHY bug flags. */
   3483 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3484 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3485 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   3486 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3487 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3488 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   3489 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3490 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   3491 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3492 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3493 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3494 		sc->bge_flags |= BGE_PHY_NO_3LED;
   3495 	if (BGE_IS_5705_PLUS(sc) &&
   3496 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3497 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3498 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3499 	    !BGE_IS_5717_PLUS(sc)) {
   3500 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3501 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3502 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3503 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3504 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3505 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3506 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   3507 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3508 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   3509 		} else
   3510 			sc->bge_flags |= BGE_PHY_BER_BUG;
   3511 	}
   3512 
   3513 	/*
   3514 	 * SEEPROM check.
   3515 	 * First check if firmware knows we do not have SEEPROM.
   3516 	 */
   3517 	if (prop_dictionary_get_bool(device_properties(self),
   3518 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3519 	 	sc->bge_flags |= BGE_NO_EEPROM;
   3520 
   3521 	/* Now check the 'ROM failed' bit on the RX CPU */
   3522 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3523 		sc->bge_flags |= BGE_NO_EEPROM;
   3524 
   3525 	sc->bge_asf_mode = 0;
   3526 	/* No ASF if APE present. */
   3527 	if ((sc->bge_flags & BGE_APE) == 0) {
   3528 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3529 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3530 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3531 			    BGE_HWCFG_ASF) {
   3532 				sc->bge_asf_mode |= ASF_ENABLE;
   3533 				sc->bge_asf_mode |= ASF_STACKUP;
   3534 				if (BGE_IS_575X_PLUS(sc))
   3535 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3536 			}
   3537 		}
   3538 	}
   3539 
   3540 	bge_stop_fw(sc);
   3541 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3542 	if (bge_reset(sc))
   3543 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3544 
   3545 	bge_sig_legacy(sc, BGE_RESET_START);
   3546 	bge_sig_post_reset(sc, BGE_RESET_START);
   3547 
   3548 	if (bge_chipinit(sc)) {
   3549 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3550 		bge_release_resources(sc);
   3551 		return;
   3552 	}
   3553 
   3554 	/*
   3555 	 * Get station address from the EEPROM.
   3556 	 */
   3557 	if (bge_get_eaddr(sc, eaddr)) {
   3558 		aprint_error_dev(sc->bge_dev,
   3559 		    "failed to read station address\n");
   3560 		bge_release_resources(sc);
   3561 		return;
   3562 	}
   3563 
   3564 	br = bge_lookup_rev(sc->bge_chipid);
   3565 
   3566 	if (br == NULL) {
   3567 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3568 		    sc->bge_chipid);
   3569 	} else {
   3570 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3571 		    br->br_name, sc->bge_chipid);
   3572 	}
   3573 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3574 
   3575 	/* Allocate the general information block and ring buffers. */
   3576 	if (pci_dma64_available(pa))
   3577 		sc->bge_dmatag = pa->pa_dmat64;
   3578 	else
   3579 		sc->bge_dmatag = pa->pa_dmat;
   3580 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3581 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3582 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   3583 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3584 		return;
   3585 	}
   3586 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3587 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   3588 			   sizeof(struct bge_ring_data), &kva,
   3589 			   BUS_DMA_NOWAIT)) {
   3590 		aprint_error_dev(sc->bge_dev,
   3591 		    "can't map DMA buffers (%zu bytes)\n",
   3592 		    sizeof(struct bge_ring_data));
   3593 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3594 		return;
   3595 	}
   3596 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3597 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3598 	    sizeof(struct bge_ring_data), 0,
   3599 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3600 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3601 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3602 				 sizeof(struct bge_ring_data));
   3603 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3604 		return;
   3605 	}
   3606 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3607 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3608 			    sizeof(struct bge_ring_data), NULL,
   3609 			    BUS_DMA_NOWAIT)) {
   3610 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3611 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3612 				 sizeof(struct bge_ring_data));
   3613 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   3614 		return;
   3615 	}
   3616 
   3617 	DPRINTFN(5, ("bzero\n"));
   3618 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3619 
   3620 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3621 
   3622 	/* Try to allocate memory for jumbo buffers. */
   3623 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3624 		if (bge_alloc_jumbo_mem(sc)) {
   3625 			aprint_error_dev(sc->bge_dev,
   3626 			    "jumbo buffer allocation failed\n");
   3627 		} else
   3628 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3629 	}
   3630 
   3631 	/* Set default tuneable values. */
   3632 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3633 	sc->bge_rx_coal_ticks = 150;
   3634 	sc->bge_rx_max_coal_bds = 64;
   3635 	sc->bge_tx_coal_ticks = 300;
   3636 	sc->bge_tx_max_coal_bds = 400;
   3637 	if (BGE_IS_5705_PLUS(sc)) {
   3638 		sc->bge_tx_coal_ticks = (12 * 5);
   3639 		sc->bge_tx_max_coal_bds = (12 * 5);
   3640 			aprint_verbose_dev(sc->bge_dev,
   3641 			    "setting short Tx thresholds\n");
   3642 	}
   3643 
   3644 	if (BGE_IS_5717_PLUS(sc))
   3645 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3646 	else if (BGE_IS_5705_PLUS(sc))
   3647 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3648 	else
   3649 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3650 
   3651 	/* Set up ifnet structure */
   3652 	ifp = &sc->ethercom.ec_if;
   3653 	ifp->if_softc = sc;
   3654 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3655 	ifp->if_ioctl = bge_ioctl;
   3656 	ifp->if_stop = bge_stop;
   3657 	ifp->if_start = bge_start;
   3658 	ifp->if_init = bge_init;
   3659 	ifp->if_watchdog = bge_watchdog;
   3660 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3661 	IFQ_SET_READY(&ifp->if_snd);
   3662 	DPRINTFN(5, ("strcpy if_xname\n"));
   3663 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3664 
   3665 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3666 		sc->ethercom.ec_if.if_capabilities |=
   3667 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3668 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3669 		sc->ethercom.ec_if.if_capabilities |=
   3670 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3671 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3672 #endif
   3673 	sc->ethercom.ec_capabilities |=
   3674 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3675 
   3676 	if (sc->bge_flags & BGE_TSO)
   3677 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3678 
   3679 	/*
   3680 	 * Do MII setup.
   3681 	 */
   3682 	DPRINTFN(5, ("mii setup\n"));
   3683 	sc->bge_mii.mii_ifp = ifp;
   3684 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3685 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3686 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3687 
   3688 	/*
   3689 	 * Figure out what sort of media we have by checking the hardware
   3690 	 * config word in the first 32k of NIC internal memory, or fall back to
   3691 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   3692 	 * this value appears to be unset. If that's the case, we have to rely
   3693 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3694 	 * the SysKonnect SK-9D41.
   3695 	 */
   3696 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
   3697 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3698 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3699 		bge_read_eeprom(sc, (void *)&hwcfg,
   3700 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3701 		hwcfg = be32toh(hwcfg);
   3702 	}
   3703 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3704 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3705 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3706 		if (BGE_IS_5714_FAMILY(sc))
   3707 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3708 		else
   3709 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3710 	}
   3711 
   3712 	/* set phyflags and chipid before mii_attach() */
   3713 	dict = device_properties(self);
   3714 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3715 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3716 
   3717 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3718 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3719 		    bge_ifmedia_sts);
   3720 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3721 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3722 			    0, NULL);
   3723 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3724 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3725 		/* Pretend the user requested this setting */
   3726 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3727 	} else {
   3728 		/*
   3729 		 * Do transceiver setup and tell the firmware the
   3730 		 * driver is down so we can try to get access the
   3731 		 * probe if ASF is running.  Retry a couple of times
   3732 		 * if we get a conflict with the ASF firmware accessing
   3733 		 * the PHY.
   3734 		 */
   3735 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3736 		bge_asf_driver_up(sc);
   3737 
   3738 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3739 			     bge_ifmedia_sts);
   3740 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
   3741 			   sc->bge_phy_addr, MII_OFFSET_ANY,
   3742 			   MIIF_DOPAUSE);
   3743 
   3744 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3745 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3746 			ifmedia_add(&sc->bge_mii.mii_media,
   3747 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3748 			ifmedia_set(&sc->bge_mii.mii_media,
   3749 				    IFM_ETHER|IFM_MANUAL);
   3750 		} else
   3751 			ifmedia_set(&sc->bge_mii.mii_media,
   3752 				    IFM_ETHER|IFM_AUTO);
   3753 
   3754 		/*
   3755 		 * Now tell the firmware we are going up after probing the PHY
   3756 		 */
   3757 		if (sc->bge_asf_mode & ASF_STACKUP)
   3758 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3759 	}
   3760 
   3761 	/*
   3762 	 * Call MI attach routine.
   3763 	 */
   3764 	DPRINTFN(5, ("if_attach\n"));
   3765 	if_attach(ifp);
   3766 	DPRINTFN(5, ("ether_ifattach\n"));
   3767 	ether_ifattach(ifp, eaddr);
   3768 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3769 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3770 		RND_TYPE_NET, 0);
   3771 #ifdef BGE_EVENT_COUNTERS
   3772 	/*
   3773 	 * Attach event counters.
   3774 	 */
   3775 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3776 	    NULL, device_xname(sc->bge_dev), "intr");
   3777 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3778 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3779 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3780 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3781 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3782 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3783 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3784 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3785 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3786 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3787 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3788 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3789 #endif /* BGE_EVENT_COUNTERS */
   3790 	DPRINTFN(5, ("callout_init\n"));
   3791 	callout_init(&sc->bge_timeout, 0);
   3792 
   3793 	if (pmf_device_register(self, NULL, NULL))
   3794 		pmf_class_network_register(self, ifp);
   3795 	else
   3796 		aprint_error_dev(self, "couldn't establish power handler\n");
   3797 
   3798 	bge_sysctl_init(sc);
   3799 
   3800 #ifdef BGE_DEBUG
   3801 	bge_debug_info(sc);
   3802 #endif
   3803 }
   3804 
   3805 static void
   3806 bge_release_resources(struct bge_softc *sc)
   3807 {
   3808 	if (sc->bge_vpd_prodname != NULL)
   3809 		free(sc->bge_vpd_prodname, M_DEVBUF);
   3810 
   3811 	if (sc->bge_vpd_readonly != NULL)
   3812 		free(sc->bge_vpd_readonly, M_DEVBUF);
   3813 }
   3814 
   3815 static int
   3816 bge_reset(struct bge_softc *sc)
   3817 {
   3818 	uint32_t cachesize, command;
   3819 	uint32_t reset, mac_mode, mac_mode_mask;
   3820 	pcireg_t devctl, reg;
   3821 	int i, val;
   3822 	void (*write_op)(struct bge_softc *, int, int);
   3823 
   3824 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   3825 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3826 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3827 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   3828 
   3829 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3830 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3831 	    	if (sc->bge_flags & BGE_PCIE)
   3832 			write_op = bge_writemem_direct;
   3833 		else
   3834 			write_op = bge_writemem_ind;
   3835 	} else
   3836 		write_op = bge_writereg_ind;
   3837 
   3838 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   3839 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   3840 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   3841 		for (i = 0; i < 8000; i++) {
   3842 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   3843 			    BGE_NVRAMSWARB_GNT1)
   3844 				break;
   3845 			DELAY(20);
   3846 		}
   3847 		if (i == 8000) {
   3848 			printf("%s: NVRAM lock timedout!\n",
   3849 			    device_xname(sc->bge_dev));
   3850 		}
   3851 	}
   3852 	/* Take APE lock when performing reset. */
   3853 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   3854 
   3855 	/* Save some important PCI state. */
   3856 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3857 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3858 
   3859 	/* Step 5b-5d: */
   3860 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3861 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3862 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3863 
   3864 	/* XXX ???: Disable fastboot on controllers that support it. */
   3865 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3866 	    BGE_IS_5755_PLUS(sc))
   3867 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3868 
   3869 	/*
   3870 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3871 	 * When firmware finishes its initialization it will
   3872 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3873 	 */
   3874 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   3875 
   3876 	/* Step 7: */
   3877 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   3878 	/*
   3879 	 * XXX: from FreeBSD/Linux; no documentation
   3880 	 */
   3881 	if (sc->bge_flags & BGE_PCIE) {
   3882 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   3883 		    !BGE_IS_57765_PLUS(sc) &&
   3884 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   3885 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   3886 			/* PCI Express 1.0 system */
   3887 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   3888 			    BGE_PHY_PCIE_SCRAM_MODE);
   3889 		}
   3890 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3891 			/*
   3892 			 * Prevent PCI Express link training
   3893 			 * during global reset.
   3894 			 */
   3895 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3896 			reset |= (1 << 29);
   3897 		}
   3898 	}
   3899 
   3900 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3901 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3902 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3903 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3904 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3905 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3906 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3907 	}
   3908 
   3909 	/*
   3910 	 * Set GPHY Power Down Override to leave GPHY
   3911 	 * powered up in D0 uninitialized.
   3912 	 */
   3913 	if (BGE_IS_5705_PLUS(sc) &&
   3914 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   3915 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   3916 
   3917 	/* Issue global reset */
   3918 	write_op(sc, BGE_MISC_CFG, reset);
   3919 
   3920 	/* Step 8: wait for complete */
   3921 	if (sc->bge_flags & BGE_PCIE)
   3922 		delay(100*1000); /* too big */
   3923 	else
   3924 		delay(1000);
   3925 
   3926 	if (sc->bge_flags & BGE_PCIE) {
   3927 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3928 			DELAY(500000);
   3929 			/* XXX: Magic Numbers */
   3930 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3931 			    BGE_PCI_UNKNOWN0);
   3932 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3933 			    BGE_PCI_UNKNOWN0,
   3934 			    reg | (1 << 15));
   3935 		}
   3936 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3937 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   3938 		/* Clear enable no snoop and disable relaxed ordering. */
   3939 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   3940 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   3941 
   3942 		/* Set PCIE max payload size to 128 for older PCIe devices */
   3943 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   3944 			devctl &= ~(0x00e0);
   3945 		/* Clear device status register. Write 1b to clear */
   3946 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   3947 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   3948 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3949 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   3950 		bge_set_max_readrq(sc);
   3951 	}
   3952 
   3953 	/* From Linux: dummy read to flush PCI posted writes */
   3954 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3955 
   3956 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   3957 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3958 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3959 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3960 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   3961 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   3962 	    (sc->bge_flags & BGE_PCIX) != 0)
   3963 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   3964 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3965 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3966 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3967 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3968 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   3969 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   3970 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   3971 
   3972 	/* Step 11: disable PCI-X Relaxed Ordering. */
   3973 	if (sc->bge_flags & BGE_PCIX) {
   3974 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3975 		    + PCI_PCIX_CMD);
   3976 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   3977 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   3978 	}
   3979 
   3980 	/* Step 12: Enable memory arbiter. */
   3981 	if (BGE_IS_5714_FAMILY(sc)) {
   3982 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   3983 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   3984 	} else
   3985 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3986 
   3987 	/* XXX 5721, 5751 and 5752 */
   3988 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   3989 		/* Step 19: */
   3990 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   3991 		/* Step 20: */
   3992 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   3993 	}
   3994 
   3995 	/* Step 28: Fix up byte swapping */
   3996 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   3997 
   3998 	/*
   3999 	 * Wait for the bootcode to complete initialization.
   4000 	 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
   4001 	 * Section 7".
   4002 	 */
   4003 	if (BGE_IS_5717_PLUS(sc)) {
   4004 		for (i = 0; i < 1000*1000; i++) {
   4005 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   4006 			if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
   4007 				break;
   4008 			DELAY(10);
   4009 		}
   4010 	}
   4011 
   4012 	/* Step 21: 5822 B0 errata */
   4013 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4014 		pcireg_t msidata;
   4015 
   4016 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4017 		    BGE_PCI_MSI_DATA);
   4018 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4019 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4020 		    msidata);
   4021 	}
   4022 
   4023 	/*
   4024 	 * Step 18: wirte mac mode
   4025 	 * XXX Write 0x0c for 5703S and 5704S
   4026 	 */
   4027 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4028 	val = (val & ~mac_mode_mask) | mac_mode;
   4029 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4030 	DELAY(40);
   4031 
   4032 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4033 
   4034 	/* Step 17: Poll until the firmware initialization is complete */
   4035 	bge_poll_fw(sc);
   4036 
   4037 	/*
   4038 	 * The 5704 in TBI mode apparently needs some special
   4039 	 * adjustment to insure the SERDES drive level is set
   4040 	 * to 1.2V.
   4041 	 */
   4042 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   4043 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4044 		uint32_t serdescfg;
   4045 
   4046 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4047 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4048 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4049 	}
   4050 
   4051 	if (sc->bge_flags & BGE_PCIE &&
   4052 	    !BGE_IS_57765_PLUS(sc) &&
   4053 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4054 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4055 		uint32_t v;
   4056 
   4057 		/* Enable PCI Express bug fix */
   4058 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4059 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4060 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4061 	}
   4062 
   4063 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4064 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4065 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4066 
   4067 	return 0;
   4068 }
   4069 
   4070 /*
   4071  * Frame reception handling. This is called if there's a frame
   4072  * on the receive return list.
   4073  *
   4074  * Note: we have to be able to handle two possibilities here:
   4075  * 1) the frame is from the jumbo receive ring
   4076  * 2) the frame is from the standard receive ring
   4077  */
   4078 
   4079 static void
   4080 bge_rxeof(struct bge_softc *sc)
   4081 {
   4082 	struct ifnet *ifp;
   4083 	uint16_t rx_prod, rx_cons;
   4084 	int stdcnt = 0, jumbocnt = 0;
   4085 	bus_dmamap_t dmamap;
   4086 	bus_addr_t offset, toff;
   4087 	bus_size_t tlen;
   4088 	int tosync;
   4089 
   4090 	rx_cons = sc->bge_rx_saved_considx;
   4091 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4092 
   4093 	/* Nothing to do */
   4094 	if (rx_cons == rx_prod)
   4095 		return;
   4096 
   4097 	ifp = &sc->ethercom.ec_if;
   4098 
   4099 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4100 	    offsetof(struct bge_ring_data, bge_status_block),
   4101 	    sizeof (struct bge_status_block),
   4102 	    BUS_DMASYNC_POSTREAD);
   4103 
   4104 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4105 	tosync = rx_prod - rx_cons;
   4106 
   4107 	if (tosync != 0)
   4108 		rnd_add_uint32(&sc->rnd_source, tosync);
   4109 
   4110 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4111 
   4112 	if (tosync < 0) {
   4113 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4114 		    sizeof (struct bge_rx_bd);
   4115 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4116 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4117 		tosync = -tosync;
   4118 	}
   4119 
   4120 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4121 	    offset, tosync * sizeof (struct bge_rx_bd),
   4122 	    BUS_DMASYNC_POSTREAD);
   4123 
   4124 	while (rx_cons != rx_prod) {
   4125 		struct bge_rx_bd	*cur_rx;
   4126 		uint32_t		rxidx;
   4127 		struct mbuf		*m = NULL;
   4128 
   4129 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4130 
   4131 		rxidx = cur_rx->bge_idx;
   4132 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4133 
   4134 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4135 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4136 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4137 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4138 			jumbocnt++;
   4139 			bus_dmamap_sync(sc->bge_dmatag,
   4140 			    sc->bge_cdata.bge_rx_jumbo_map,
   4141 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4142 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4143 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4144 				ifp->if_ierrors++;
   4145 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4146 				continue;
   4147 			}
   4148 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4149 					     NULL)== ENOBUFS) {
   4150 				ifp->if_ierrors++;
   4151 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4152 				continue;
   4153 			}
   4154 		} else {
   4155 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4156 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4157 
   4158 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4159 			stdcnt++;
   4160 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4161 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4162 			if (dmamap == NULL) {
   4163 				ifp->if_ierrors++;
   4164 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4165 				continue;
   4166 			}
   4167 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4168 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4169 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4170 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4171 				ifp->if_ierrors++;
   4172 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4173 				continue;
   4174 			}
   4175 			if (bge_newbuf_std(sc, sc->bge_std,
   4176 			    NULL, dmamap) == ENOBUFS) {
   4177 				ifp->if_ierrors++;
   4178 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4179 				continue;
   4180 			}
   4181 		}
   4182 
   4183 		ifp->if_ipackets++;
   4184 #ifndef __NO_STRICT_ALIGNMENT
   4185 		/*
   4186 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4187 		 * the Rx buffer has the layer-2 header unaligned.
   4188 		 * If our CPU requires alignment, re-align by copying.
   4189 		 */
   4190 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   4191 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4192 				cur_rx->bge_len);
   4193 			m->m_data += ETHER_ALIGN;
   4194 		}
   4195 #endif
   4196 
   4197 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4198 		m->m_pkthdr.rcvif = ifp;
   4199 
   4200 		/*
   4201 		 * Handle BPF listeners. Let the BPF user see the packet.
   4202 		 */
   4203 		bpf_mtap(ifp, m);
   4204 
   4205 		bge_rxcsum(sc, cur_rx, m);
   4206 
   4207 		/*
   4208 		 * If we received a packet with a vlan tag, pass it
   4209 		 * to vlan_input() instead of ether_input().
   4210 		 */
   4211 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4212 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4213 		}
   4214 
   4215 		(*ifp->if_input)(ifp, m);
   4216 	}
   4217 
   4218 	sc->bge_rx_saved_considx = rx_cons;
   4219 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4220 	if (stdcnt)
   4221 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4222 	if (jumbocnt)
   4223 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4224 }
   4225 
   4226 static void
   4227 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4228 {
   4229 
   4230 	if (BGE_IS_5717_PLUS(sc)) {
   4231 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4232 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4233 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4234 			if ((cur_rx->bge_error_flag &
   4235 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4236 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4237 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4238 				m->m_pkthdr.csum_data =
   4239 				    cur_rx->bge_tcp_udp_csum;
   4240 				m->m_pkthdr.csum_flags |=
   4241 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4242 					M_CSUM_DATA);
   4243 			}
   4244 		}
   4245 	} else {
   4246 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4247 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4248 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4249 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4250 		/*
   4251 		 * Rx transport checksum-offload may also
   4252 		 * have bugs with packets which, when transmitted,
   4253 		 * were `runts' requiring padding.
   4254 		 */
   4255 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4256 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4257 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4258 			m->m_pkthdr.csum_data =
   4259 			    cur_rx->bge_tcp_udp_csum;
   4260 			m->m_pkthdr.csum_flags |=
   4261 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4262 				M_CSUM_DATA);
   4263 		}
   4264 	}
   4265 }
   4266 
   4267 static void
   4268 bge_txeof(struct bge_softc *sc)
   4269 {
   4270 	struct bge_tx_bd *cur_tx = NULL;
   4271 	struct ifnet *ifp;
   4272 	struct txdmamap_pool_entry *dma;
   4273 	bus_addr_t offset, toff;
   4274 	bus_size_t tlen;
   4275 	int tosync;
   4276 	struct mbuf *m;
   4277 
   4278 	ifp = &sc->ethercom.ec_if;
   4279 
   4280 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4281 	    offsetof(struct bge_ring_data, bge_status_block),
   4282 	    sizeof (struct bge_status_block),
   4283 	    BUS_DMASYNC_POSTREAD);
   4284 
   4285 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4286 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4287 	    sc->bge_tx_saved_considx;
   4288 
   4289 	if (tosync != 0)
   4290 		rnd_add_uint32(&sc->rnd_source, tosync);
   4291 
   4292 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4293 
   4294 	if (tosync < 0) {
   4295 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4296 		    sizeof (struct bge_tx_bd);
   4297 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4298 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4299 		tosync = -tosync;
   4300 	}
   4301 
   4302 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4303 	    offset, tosync * sizeof (struct bge_tx_bd),
   4304 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4305 
   4306 	/*
   4307 	 * Go through our tx ring and free mbufs for those
   4308 	 * frames that have been sent.
   4309 	 */
   4310 	while (sc->bge_tx_saved_considx !=
   4311 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4312 		uint32_t		idx = 0;
   4313 
   4314 		idx = sc->bge_tx_saved_considx;
   4315 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4316 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4317 			ifp->if_opackets++;
   4318 		m = sc->bge_cdata.bge_tx_chain[idx];
   4319 		if (m != NULL) {
   4320 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4321 			dma = sc->txdma[idx];
   4322 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4323 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4324 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4325 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4326 			sc->txdma[idx] = NULL;
   4327 
   4328 			m_freem(m);
   4329 		}
   4330 		sc->bge_txcnt--;
   4331 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4332 		ifp->if_timer = 0;
   4333 	}
   4334 
   4335 	if (cur_tx != NULL)
   4336 		ifp->if_flags &= ~IFF_OACTIVE;
   4337 }
   4338 
   4339 static int
   4340 bge_intr(void *xsc)
   4341 {
   4342 	struct bge_softc *sc;
   4343 	struct ifnet *ifp;
   4344 	uint32_t statusword;
   4345 
   4346 	sc = xsc;
   4347 	ifp = &sc->ethercom.ec_if;
   4348 
   4349 	/* It is possible for the interrupt to arrive before
   4350 	 * the status block is updated prior to the interrupt.
   4351 	 * Reading the PCI State register will confirm whether the
   4352 	 * interrupt is ours and will flush the status block.
   4353 	 */
   4354 
   4355 	/* read status word from status block */
   4356 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4357 
   4358 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4359 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   4360 		/* Ack interrupt and stop others from occuring. */
   4361 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4362 
   4363 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4364 
   4365 		/* clear status word */
   4366 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4367 
   4368 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4369 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4370 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4371 			bge_link_upd(sc);
   4372 
   4373 		if (ifp->if_flags & IFF_RUNNING) {
   4374 			/* Check RX return ring producer/consumer */
   4375 			bge_rxeof(sc);
   4376 
   4377 			/* Check TX ring producer/consumer */
   4378 			bge_txeof(sc);
   4379 		}
   4380 
   4381 		if (sc->bge_pending_rxintr_change) {
   4382 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4383 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4384 			uint32_t junk;
   4385 
   4386 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4387 			DELAY(10);
   4388 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4389 
   4390 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4391 			DELAY(10);
   4392 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4393 
   4394 			sc->bge_pending_rxintr_change = 0;
   4395 		}
   4396 		bge_handle_events(sc);
   4397 
   4398 		/* Re-enable interrupts. */
   4399 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4400 
   4401 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4402 			bge_start(ifp);
   4403 
   4404 		return 1;
   4405 	} else
   4406 		return 0;
   4407 }
   4408 
   4409 static void
   4410 bge_asf_driver_up(struct bge_softc *sc)
   4411 {
   4412 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4413 		/* Send ASF heartbeat aprox. every 2s */
   4414 		if (sc->bge_asf_count)
   4415 			sc->bge_asf_count --;
   4416 		else {
   4417 			sc->bge_asf_count = 2;
   4418 
   4419 			bge_wait_for_event_ack(sc);
   4420 
   4421 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4422 			    BGE_FW_CMD_DRV_ALIVE);
   4423 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4424 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4425 			    BGE_FW_HB_TIMEOUT_SEC);
   4426 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4427 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4428 			    BGE_RX_CPU_DRV_EVENT);
   4429 		}
   4430 	}
   4431 }
   4432 
   4433 static void
   4434 bge_tick(void *xsc)
   4435 {
   4436 	struct bge_softc *sc = xsc;
   4437 	struct mii_data *mii = &sc->bge_mii;
   4438 	int s;
   4439 
   4440 	s = splnet();
   4441 
   4442 	if (BGE_IS_5705_PLUS(sc))
   4443 		bge_stats_update_regs(sc);
   4444 	else
   4445 		bge_stats_update(sc);
   4446 
   4447 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4448 		/*
   4449 		 * Since in TBI mode auto-polling can't be used we should poll
   4450 		 * link status manually. Here we register pending link event
   4451 		 * and trigger interrupt.
   4452 		 */
   4453 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4454 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4455 	} else {
   4456 		/*
   4457 		 * Do not touch PHY if we have link up. This could break
   4458 		 * IPMI/ASF mode or produce extra input errors.
   4459 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4460 		 */
   4461 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4462 			mii_tick(mii);
   4463 	}
   4464 
   4465 	bge_asf_driver_up(sc);
   4466 
   4467 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4468 
   4469 	splx(s);
   4470 }
   4471 
   4472 static void
   4473 bge_stats_update_regs(struct bge_softc *sc)
   4474 {
   4475 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4476 
   4477 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4478 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4479 
   4480 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4481 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4482 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4483 }
   4484 
   4485 static void
   4486 bge_stats_update(struct bge_softc *sc)
   4487 {
   4488 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4489 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4490 
   4491 #define READ_STAT(sc, stats, stat) \
   4492 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4493 
   4494 	ifp->if_collisions +=
   4495 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4496 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4497 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4498 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4499 	  ifp->if_collisions;
   4500 
   4501 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4502 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4503 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4504 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4505 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4506 		      READ_STAT(sc, stats,
   4507 		      		xoffPauseFramesReceived.bge_addr_lo));
   4508 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4509 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4510 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4511 		      READ_STAT(sc, stats,
   4512 		      		macControlFramesReceived.bge_addr_lo));
   4513 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4514 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4515 
   4516 #undef READ_STAT
   4517 
   4518 #ifdef notdef
   4519 	ifp->if_collisions +=
   4520 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4521 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4522 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4523 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4524 	   ifp->if_collisions;
   4525 #endif
   4526 }
   4527 
   4528 /*
   4529  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4530  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4531  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4532  * the hardware checksum assist gives incorrect results (possibly
   4533  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4534  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4535  */
   4536 static inline int
   4537 bge_cksum_pad(struct mbuf *pkt)
   4538 {
   4539 	struct mbuf *last = NULL;
   4540 	int padlen;
   4541 
   4542 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4543 
   4544 	/* if there's only the packet-header and we can pad there, use it. */
   4545 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4546 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4547 		last = pkt;
   4548 	} else {
   4549 		/*
   4550 		 * Walk packet chain to find last mbuf. We will either
   4551 		 * pad there, or append a new mbuf and pad it
   4552 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4553 		 */
   4554 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4555 	      	       continue; /* do nothing */
   4556 		}
   4557 
   4558 		/* `last' now points to last in chain. */
   4559 		if (M_TRAILINGSPACE(last) < padlen) {
   4560 			/* Allocate new empty mbuf, pad it. Compact later. */
   4561 			struct mbuf *n;
   4562 			MGET(n, M_DONTWAIT, MT_DATA);
   4563 			if (n == NULL)
   4564 				return ENOBUFS;
   4565 			n->m_len = 0;
   4566 			last->m_next = n;
   4567 			last = n;
   4568 		}
   4569 	}
   4570 
   4571 	KDASSERT(!M_READONLY(last));
   4572 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4573 
   4574 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4575 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4576 	last->m_len += padlen;
   4577 	pkt->m_pkthdr.len += padlen;
   4578 	return 0;
   4579 }
   4580 
   4581 /*
   4582  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4583  */
   4584 static inline int
   4585 bge_compact_dma_runt(struct mbuf *pkt)
   4586 {
   4587 	struct mbuf	*m, *prev;
   4588 	int 		totlen, prevlen;
   4589 
   4590 	prev = NULL;
   4591 	totlen = 0;
   4592 	prevlen = -1;
   4593 
   4594 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4595 		int mlen = m->m_len;
   4596 		int shortfall = 8 - mlen ;
   4597 
   4598 		totlen += mlen;
   4599 		if (mlen == 0)
   4600 			continue;
   4601 		if (mlen >= 8)
   4602 			continue;
   4603 
   4604 		/* If we get here, mbuf data is too small for DMA engine.
   4605 		 * Try to fix by shuffling data to prev or next in chain.
   4606 		 * If that fails, do a compacting deep-copy of the whole chain.
   4607 		 */
   4608 
   4609 		/* Internal frag. If fits in prev, copy it there. */
   4610 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4611 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4612 			prev->m_len += mlen;
   4613 			m->m_len = 0;
   4614 			/* XXX stitch chain */
   4615 			prev->m_next = m_free(m);
   4616 			m = prev;
   4617 			continue;
   4618 		}
   4619 		else if (m->m_next != NULL &&
   4620 			     M_TRAILINGSPACE(m) >= shortfall &&
   4621 			     m->m_next->m_len >= (8 + shortfall)) {
   4622 		    /* m is writable and have enough data in next, pull up. */
   4623 
   4624 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4625 			    shortfall);
   4626 			m->m_len += shortfall;
   4627 			m->m_next->m_len -= shortfall;
   4628 			m->m_next->m_data += shortfall;
   4629 		}
   4630 		else if (m->m_next == NULL || 1) {
   4631 		  	/* Got a runt at the very end of the packet.
   4632 			 * borrow data from the tail of the preceding mbuf and
   4633 			 * update its length in-place. (The original data is still
   4634 			 * valid, so we can do this even if prev is not writable.)
   4635 			 */
   4636 
   4637 			/* if we'd make prev a runt, just move all of its data. */
   4638 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4639 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4640 
   4641 			if ((prev->m_len - shortfall) < 8)
   4642 				shortfall = prev->m_len;
   4643 
   4644 #ifdef notyet	/* just do the safe slow thing for now */
   4645 			if (!M_READONLY(m)) {
   4646 				if (M_LEADINGSPACE(m) < shorfall) {
   4647 					void *m_dat;
   4648 					m_dat = (m->m_flags & M_PKTHDR) ?
   4649 					  m->m_pktdat : m->dat;
   4650 					memmove(m_dat, mtod(m, void*), m->m_len);
   4651 					m->m_data = m_dat;
   4652 				    }
   4653 			} else
   4654 #endif	/* just do the safe slow thing */
   4655 			{
   4656 				struct mbuf * n = NULL;
   4657 				int newprevlen = prev->m_len - shortfall;
   4658 
   4659 				MGET(n, M_NOWAIT, MT_DATA);
   4660 				if (n == NULL)
   4661 				   return ENOBUFS;
   4662 				KASSERT(m->m_len + shortfall < MLEN
   4663 					/*,
   4664 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4665 
   4666 				/* first copy the data we're stealing from prev */
   4667 				memcpy(n->m_data, prev->m_data + newprevlen,
   4668 				    shortfall);
   4669 
   4670 				/* update prev->m_len accordingly */
   4671 				prev->m_len -= shortfall;
   4672 
   4673 				/* copy data from runt m */
   4674 				memcpy(n->m_data + shortfall, m->m_data,
   4675 				    m->m_len);
   4676 
   4677 				/* n holds what we stole from prev, plus m */
   4678 				n->m_len = shortfall + m->m_len;
   4679 
   4680 				/* stitch n into chain and free m */
   4681 				n->m_next = m->m_next;
   4682 				prev->m_next = n;
   4683 				/* KASSERT(m->m_next == NULL); */
   4684 				m->m_next = NULL;
   4685 				m_free(m);
   4686 				m = n;	/* for continuing loop */
   4687 			}
   4688 		}
   4689 		prevlen = m->m_len;
   4690 	}
   4691 	return 0;
   4692 }
   4693 
   4694 /*
   4695  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4696  * pointers to descriptors.
   4697  */
   4698 static int
   4699 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4700 {
   4701 	struct bge_tx_bd	*f = NULL;
   4702 	uint32_t		frag, cur;
   4703 	uint16_t		csum_flags = 0;
   4704 	uint16_t		txbd_tso_flags = 0;
   4705 	struct txdmamap_pool_entry *dma;
   4706 	bus_dmamap_t dmamap;
   4707 	int			i = 0;
   4708 	struct m_tag		*mtag;
   4709 	int			use_tso, maxsegsize, error;
   4710 
   4711 	cur = frag = *txidx;
   4712 
   4713 	if (m_head->m_pkthdr.csum_flags) {
   4714 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4715 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4716 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4717 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4718 	}
   4719 
   4720 	/*
   4721 	 * If we were asked to do an outboard checksum, and the NIC
   4722 	 * has the bug where it sometimes adds in the Ethernet padding,
   4723 	 * explicitly pad with zeros so the cksum will be correct either way.
   4724 	 * (For now, do this for all chip versions, until newer
   4725 	 * are confirmed to not require the workaround.)
   4726 	 */
   4727 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4728 #ifdef notyet
   4729 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4730 #endif
   4731 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4732 		goto check_dma_bug;
   4733 
   4734 	if (bge_cksum_pad(m_head) != 0)
   4735 	    return ENOBUFS;
   4736 
   4737 check_dma_bug:
   4738 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4739 		goto doit;
   4740 
   4741 	/*
   4742 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4743 	 * less than eight bytes.  If we encounter a teeny mbuf
   4744 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4745 	 */
   4746 	if (bge_compact_dma_runt(m_head) != 0)
   4747 		return ENOBUFS;
   4748 
   4749 doit:
   4750 	dma = SLIST_FIRST(&sc->txdma_list);
   4751 	if (dma == NULL)
   4752 		return ENOBUFS;
   4753 	dmamap = dma->dmamap;
   4754 
   4755 	/*
   4756 	 * Set up any necessary TSO state before we start packing...
   4757 	 */
   4758 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4759 	if (!use_tso) {
   4760 		maxsegsize = 0;
   4761 	} else {	/* TSO setup */
   4762 		unsigned  mss;
   4763 		struct ether_header *eh;
   4764 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4765 		struct mbuf * m0 = m_head;
   4766 		struct ip *ip;
   4767 		struct tcphdr *th;
   4768 		int iphl, hlen;
   4769 
   4770 		/*
   4771 		 * XXX It would be nice if the mbuf pkthdr had offset
   4772 		 * fields for the protocol headers.
   4773 		 */
   4774 
   4775 		eh = mtod(m0, struct ether_header *);
   4776 		switch (htons(eh->ether_type)) {
   4777 		case ETHERTYPE_IP:
   4778 			offset = ETHER_HDR_LEN;
   4779 			break;
   4780 
   4781 		case ETHERTYPE_VLAN:
   4782 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4783 			break;
   4784 
   4785 		default:
   4786 			/*
   4787 			 * Don't support this protocol or encapsulation.
   4788 			 */
   4789 			return ENOBUFS;
   4790 		}
   4791 
   4792 		/*
   4793 		 * TCP/IP headers are in the first mbuf; we can do
   4794 		 * this the easy way.
   4795 		 */
   4796 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4797 		hlen = iphl + offset;
   4798 		if (__predict_false(m0->m_len <
   4799 				    (hlen + sizeof(struct tcphdr)))) {
   4800 
   4801 			aprint_debug_dev(sc->bge_dev,
   4802 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4803 			    "not handled yet\n",
   4804 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4805 #ifdef NOTYET
   4806 			/*
   4807 			 * XXX jonathan (at) NetBSD.org: untested.
   4808 			 * how to force  this branch to be taken?
   4809 			 */
   4810 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4811 
   4812 			m_copydata(m0, offset, sizeof(ip), &ip);
   4813 			m_copydata(m0, hlen, sizeof(th), &th);
   4814 
   4815 			ip.ip_len = 0;
   4816 
   4817 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4818 			    sizeof(ip.ip_len), &ip.ip_len);
   4819 
   4820 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4821 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4822 
   4823 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4824 			    sizeof(th.th_sum), &th.th_sum);
   4825 
   4826 			hlen += th.th_off << 2;
   4827 			iptcp_opt_words	= hlen;
   4828 #else
   4829 			/*
   4830 			 * if_wm "hard" case not yet supported, can we not
   4831 			 * mandate it out of existence?
   4832 			 */
   4833 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4834 
   4835 			return ENOBUFS;
   4836 #endif
   4837 		} else {
   4838 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4839 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4840 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4841 
   4842 			/* Total IP/TCP options, in 32-bit words */
   4843 			iptcp_opt_words = (ip_tcp_hlen
   4844 					   - sizeof(struct tcphdr)
   4845 					   - sizeof(struct ip)) >> 2;
   4846 		}
   4847 		if (BGE_IS_575X_PLUS(sc)) {
   4848 			th->th_sum = 0;
   4849 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4850 		} else {
   4851 			/*
   4852 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4853 			 * Requires TSO firmware patch for 5701/5703/5704.
   4854 			 */
   4855 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4856 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4857 		}
   4858 
   4859 		mss = m_head->m_pkthdr.segsz;
   4860 		txbd_tso_flags |=
   4861 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4862 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4863 
   4864 		/*
   4865 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4866 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4867 		 * the NIC copies 40 bytes of IP/TCP header from the
   4868 		 * supplied header into the IP/TCP header portion of
   4869 		 * each post-TSO-segment. If the supplied packet has IP or
   4870 		 * TCP options, we need to tell the NIC to copy those extra
   4871 		 * bytes into each  post-TSO header, in addition to the normal
   4872 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4873 		 * Unfortunately, the driver encoding of option length
   4874 		 * varies across different ASIC families.
   4875 		 */
   4876 		tcp_seg_flags = 0;
   4877 		if (iptcp_opt_words) {
   4878 			if (BGE_IS_5705_PLUS(sc)) {
   4879 				tcp_seg_flags =
   4880 					iptcp_opt_words << 11;
   4881 			} else {
   4882 				txbd_tso_flags |=
   4883 					iptcp_opt_words << 12;
   4884 			}
   4885 		}
   4886 		maxsegsize = mss | tcp_seg_flags;
   4887 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4888 
   4889 	}	/* TSO setup */
   4890 
   4891 	/*
   4892 	 * Start packing the mbufs in this chain into
   4893 	 * the fragment pointers. Stop when we run out
   4894 	 * of fragments or hit the end of the mbuf chain.
   4895 	 */
   4896 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4897 	    BUS_DMA_NOWAIT);
   4898 	if (error)
   4899 		return ENOBUFS;
   4900 	/*
   4901 	 * Sanity check: avoid coming within 16 descriptors
   4902 	 * of the end of the ring.
   4903 	 */
   4904 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4905 		BGE_TSO_PRINTF(("%s: "
   4906 		    " dmamap_load_mbuf too close to ring wrap\n",
   4907 		    device_xname(sc->bge_dev)));
   4908 		goto fail_unload;
   4909 	}
   4910 
   4911 	mtag = sc->ethercom.ec_nvlans ?
   4912 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4913 
   4914 
   4915 	/* Iterate over dmap-map fragments. */
   4916 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4917 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4918 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4919 			break;
   4920 
   4921 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4922 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4923 
   4924 		/*
   4925 		 * For 5751 and follow-ons, for TSO we must turn
   4926 		 * off checksum-assist flag in the tx-descr, and
   4927 		 * supply the ASIC-revision-specific encoding
   4928 		 * of TSO flags and segsize.
   4929 		 */
   4930 		if (use_tso) {
   4931 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   4932 				f->bge_rsvd = maxsegsize;
   4933 				f->bge_flags = csum_flags | txbd_tso_flags;
   4934 			} else {
   4935 				f->bge_rsvd = 0;
   4936 				f->bge_flags =
   4937 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   4938 			}
   4939 		} else {
   4940 			f->bge_rsvd = 0;
   4941 			f->bge_flags = csum_flags;
   4942 		}
   4943 
   4944 		if (mtag != NULL) {
   4945 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   4946 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   4947 		} else {
   4948 			f->bge_vlan_tag = 0;
   4949 		}
   4950 		cur = frag;
   4951 		BGE_INC(frag, BGE_TX_RING_CNT);
   4952 	}
   4953 
   4954 	if (i < dmamap->dm_nsegs) {
   4955 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   4956 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   4957 		goto fail_unload;
   4958 	}
   4959 
   4960 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   4961 	    BUS_DMASYNC_PREWRITE);
   4962 
   4963 	if (frag == sc->bge_tx_saved_considx) {
   4964 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   4965 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   4966 
   4967 		goto fail_unload;
   4968 	}
   4969 
   4970 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   4971 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   4972 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   4973 	sc->txdma[cur] = dma;
   4974 	sc->bge_txcnt += dmamap->dm_nsegs;
   4975 
   4976 	*txidx = frag;
   4977 
   4978 	return 0;
   4979 
   4980 fail_unload:
   4981 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4982 
   4983 	return ENOBUFS;
   4984 }
   4985 
   4986 /*
   4987  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   4988  * to the mbuf data regions directly in the transmit descriptors.
   4989  */
   4990 static void
   4991 bge_start(struct ifnet *ifp)
   4992 {
   4993 	struct bge_softc *sc;
   4994 	struct mbuf *m_head = NULL;
   4995 	uint32_t prodidx;
   4996 	int pkts = 0;
   4997 
   4998 	sc = ifp->if_softc;
   4999 
   5000 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5001 		return;
   5002 
   5003 	prodidx = sc->bge_tx_prodidx;
   5004 
   5005 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5006 		IFQ_POLL(&ifp->if_snd, m_head);
   5007 		if (m_head == NULL)
   5008 			break;
   5009 
   5010 #if 0
   5011 		/*
   5012 		 * XXX
   5013 		 * safety overkill.  If this is a fragmented packet chain
   5014 		 * with delayed TCP/UDP checksums, then only encapsulate
   5015 		 * it if we have enough descriptors to handle the entire
   5016 		 * chain at once.
   5017 		 * (paranoia -- may not actually be needed)
   5018 		 */
   5019 		if (m_head->m_flags & M_FIRSTFRAG &&
   5020 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5021 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5022 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5023 				ifp->if_flags |= IFF_OACTIVE;
   5024 				break;
   5025 			}
   5026 		}
   5027 #endif
   5028 
   5029 		/*
   5030 		 * Pack the data into the transmit ring. If we
   5031 		 * don't have room, set the OACTIVE flag and wait
   5032 		 * for the NIC to drain the ring.
   5033 		 */
   5034 		if (bge_encap(sc, m_head, &prodidx)) {
   5035 			ifp->if_flags |= IFF_OACTIVE;
   5036 			break;
   5037 		}
   5038 
   5039 		/* now we are committed to transmit the packet */
   5040 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5041 		pkts++;
   5042 
   5043 		/*
   5044 		 * If there's a BPF listener, bounce a copy of this frame
   5045 		 * to him.
   5046 		 */
   5047 		bpf_mtap(ifp, m_head);
   5048 	}
   5049 	if (pkts == 0)
   5050 		return;
   5051 
   5052 	/* Transmit */
   5053 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5054 	/* 5700 b2 errata */
   5055 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5056 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5057 
   5058 	sc->bge_tx_prodidx = prodidx;
   5059 
   5060 	/*
   5061 	 * Set a timeout in case the chip goes out to lunch.
   5062 	 */
   5063 	ifp->if_timer = 5;
   5064 }
   5065 
   5066 static int
   5067 bge_init(struct ifnet *ifp)
   5068 {
   5069 	struct bge_softc *sc = ifp->if_softc;
   5070 	const uint16_t *m;
   5071 	uint32_t mode;
   5072 	int s, error = 0;
   5073 
   5074 	s = splnet();
   5075 
   5076 	ifp = &sc->ethercom.ec_if;
   5077 
   5078 	/* Cancel pending I/O and flush buffers. */
   5079 	bge_stop(ifp, 0);
   5080 
   5081 	bge_stop_fw(sc);
   5082 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5083 	bge_reset(sc);
   5084 	bge_sig_legacy(sc, BGE_RESET_START);
   5085 	bge_sig_post_reset(sc, BGE_RESET_START);
   5086 
   5087 	bge_chipinit(sc);
   5088 
   5089 	/*
   5090 	 * Init the various state machines, ring
   5091 	 * control blocks and firmware.
   5092 	 */
   5093 	error = bge_blockinit(sc);
   5094 	if (error != 0) {
   5095 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5096 		    error);
   5097 		splx(s);
   5098 		return error;
   5099 	}
   5100 
   5101 	ifp = &sc->ethercom.ec_if;
   5102 
   5103 	/* Specify MTU. */
   5104 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5105 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5106 
   5107 	/* Load our MAC address. */
   5108 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5109 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5110 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5111 
   5112 	/* Enable or disable promiscuous mode as needed. */
   5113 	if (ifp->if_flags & IFF_PROMISC)
   5114 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5115 	else
   5116 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5117 
   5118 	/* Program multicast filter. */
   5119 	bge_setmulti(sc);
   5120 
   5121 	/* Init RX ring. */
   5122 	bge_init_rx_ring_std(sc);
   5123 
   5124 	/*
   5125 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5126 	 * memory to insure that the chip has in fact read the first
   5127 	 * entry of the ring.
   5128 	 */
   5129 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5130 		uint32_t		v, i;
   5131 		for (i = 0; i < 10; i++) {
   5132 			DELAY(20);
   5133 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5134 			if (v == (MCLBYTES - ETHER_ALIGN))
   5135 				break;
   5136 		}
   5137 		if (i == 10)
   5138 			aprint_error_dev(sc->bge_dev,
   5139 			    "5705 A0 chip failed to load RX ring\n");
   5140 	}
   5141 
   5142 	/* Init jumbo RX ring. */
   5143 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5144 		bge_init_rx_ring_jumbo(sc);
   5145 
   5146 	/* Init our RX return ring index */
   5147 	sc->bge_rx_saved_considx = 0;
   5148 
   5149 	/* Init TX ring. */
   5150 	bge_init_tx_ring(sc);
   5151 
   5152 	/* Enable TX MAC state machine lockup fix. */
   5153 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5154 	if (BGE_IS_5755_PLUS(sc) ||
   5155 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5156 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5157 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5158 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5159 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5160 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5161 	}
   5162 
   5163 	/* Turn on transmitter */
   5164 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5165 	DELAY(100);
   5166 
   5167 	/* Turn on receiver */
   5168 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5169 	if (BGE_IS_5755_PLUS(sc))
   5170 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5171 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5172 	DELAY(10);
   5173 
   5174 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   5175 
   5176 	/* Tell firmware we're alive. */
   5177 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5178 
   5179 	/* Enable host interrupts. */
   5180 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5181 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5182 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5183 
   5184 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5185 		goto out;
   5186 
   5187 	ifp->if_flags |= IFF_RUNNING;
   5188 	ifp->if_flags &= ~IFF_OACTIVE;
   5189 
   5190 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5191 
   5192 out:
   5193 	sc->bge_if_flags = ifp->if_flags;
   5194 	splx(s);
   5195 
   5196 	return error;
   5197 }
   5198 
   5199 /*
   5200  * Set media options.
   5201  */
   5202 static int
   5203 bge_ifmedia_upd(struct ifnet *ifp)
   5204 {
   5205 	struct bge_softc *sc = ifp->if_softc;
   5206 	struct mii_data *mii = &sc->bge_mii;
   5207 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5208 	int rc;
   5209 
   5210 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5211 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5212 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5213 			return EINVAL;
   5214 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5215 		case IFM_AUTO:
   5216 			/*
   5217 			 * The BCM5704 ASIC appears to have a special
   5218 			 * mechanism for programming the autoneg
   5219 			 * advertisement registers in TBI mode.
   5220 			 */
   5221 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5222 				uint32_t sgdig;
   5223 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5224 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5225 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5226 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5227 					sgdig |= BGE_SGDIGCFG_AUTO |
   5228 					    BGE_SGDIGCFG_PAUSE_CAP |
   5229 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5230 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5231 					    sgdig | BGE_SGDIGCFG_SEND);
   5232 					DELAY(5);
   5233 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5234 					    sgdig);
   5235 				}
   5236 			}
   5237 			break;
   5238 		case IFM_1000_SX:
   5239 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5240 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5241 				    BGE_MACMODE_HALF_DUPLEX);
   5242 			} else {
   5243 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5244 				    BGE_MACMODE_HALF_DUPLEX);
   5245 			}
   5246 			DELAY(40);
   5247 			break;
   5248 		default:
   5249 			return EINVAL;
   5250 		}
   5251 		/* XXX 802.3x flow control for 1000BASE-SX */
   5252 		return 0;
   5253 	}
   5254 
   5255 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5256 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5257 		return 0;
   5258 
   5259 	/*
   5260 	 * Force an interrupt so that we will call bge_link_upd
   5261 	 * if needed and clear any pending link state attention.
   5262 	 * Without this we are not getting any further interrupts
   5263 	 * for link state changes and thus will not UP the link and
   5264 	 * not be able to send in bge_start. The only way to get
   5265 	 * things working was to receive a packet and get a RX intr.
   5266 	 */
   5267 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5268 	    sc->bge_flags & BGE_IS_5788)
   5269 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5270 	else
   5271 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5272 
   5273 	return rc;
   5274 }
   5275 
   5276 /*
   5277  * Report current media status.
   5278  */
   5279 static void
   5280 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5281 {
   5282 	struct bge_softc *sc = ifp->if_softc;
   5283 	struct mii_data *mii = &sc->bge_mii;
   5284 
   5285 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5286 		ifmr->ifm_status = IFM_AVALID;
   5287 		ifmr->ifm_active = IFM_ETHER;
   5288 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5289 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5290 			ifmr->ifm_status |= IFM_ACTIVE;
   5291 		ifmr->ifm_active |= IFM_1000_SX;
   5292 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5293 			ifmr->ifm_active |= IFM_HDX;
   5294 		else
   5295 			ifmr->ifm_active |= IFM_FDX;
   5296 		return;
   5297 	}
   5298 
   5299 	mii_pollstat(mii);
   5300 	ifmr->ifm_status = mii->mii_media_status;
   5301 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5302 	    sc->bge_flowflags;
   5303 }
   5304 
   5305 static int
   5306 bge_ifflags_cb(struct ethercom *ec)
   5307 {
   5308 	struct ifnet *ifp = &ec->ec_if;
   5309 	struct bge_softc *sc = ifp->if_softc;
   5310 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5311 
   5312 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5313 		return ENETRESET;
   5314 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5315 		return 0;
   5316 
   5317 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5318 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5319 	else
   5320 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5321 
   5322 	bge_setmulti(sc);
   5323 
   5324 	sc->bge_if_flags = ifp->if_flags;
   5325 	return 0;
   5326 }
   5327 
   5328 static int
   5329 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5330 {
   5331 	struct bge_softc *sc = ifp->if_softc;
   5332 	struct ifreq *ifr = (struct ifreq *) data;
   5333 	int s, error = 0;
   5334 	struct mii_data *mii;
   5335 
   5336 	s = splnet();
   5337 
   5338 	switch (command) {
   5339 	case SIOCSIFMEDIA:
   5340 		/* XXX Flow control is not supported for 1000BASE-SX */
   5341 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5342 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5343 			sc->bge_flowflags = 0;
   5344 		}
   5345 
   5346 		/* Flow control requires full-duplex mode. */
   5347 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5348 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5349 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5350 		}
   5351 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5352 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5353 				/* We can do both TXPAUSE and RXPAUSE. */
   5354 				ifr->ifr_media |=
   5355 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5356 			}
   5357 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5358 		}
   5359 		/* FALLTHROUGH */
   5360 	case SIOCGIFMEDIA:
   5361 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5362 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5363 			    command);
   5364 		} else {
   5365 			mii = &sc->bge_mii;
   5366 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5367 			    command);
   5368 		}
   5369 		break;
   5370 	default:
   5371 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5372 			break;
   5373 
   5374 		error = 0;
   5375 
   5376 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5377 			;
   5378 		else if (ifp->if_flags & IFF_RUNNING)
   5379 			bge_setmulti(sc);
   5380 		break;
   5381 	}
   5382 
   5383 	splx(s);
   5384 
   5385 	return error;
   5386 }
   5387 
   5388 static void
   5389 bge_watchdog(struct ifnet *ifp)
   5390 {
   5391 	struct bge_softc *sc;
   5392 
   5393 	sc = ifp->if_softc;
   5394 
   5395 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5396 
   5397 	ifp->if_flags &= ~IFF_RUNNING;
   5398 	bge_init(ifp);
   5399 
   5400 	ifp->if_oerrors++;
   5401 }
   5402 
   5403 static void
   5404 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5405 {
   5406 	int i;
   5407 
   5408 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5409 
   5410 	for (i = 0; i < 1000; i++) {
   5411 		delay(100);
   5412 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5413 			return;
   5414 	}
   5415 
   5416 	/*
   5417 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5418 	 * on some environment (and once after boot?)
   5419 	 */
   5420 	if (reg != BGE_SRS_MODE)
   5421 		aprint_error_dev(sc->bge_dev,
   5422 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5423 		    (u_long)reg, bit);
   5424 }
   5425 
   5426 /*
   5427  * Stop the adapter and free any mbufs allocated to the
   5428  * RX and TX lists.
   5429  */
   5430 static void
   5431 bge_stop(struct ifnet *ifp, int disable)
   5432 {
   5433 	struct bge_softc *sc = ifp->if_softc;
   5434 
   5435 	callout_stop(&sc->bge_timeout);
   5436 
   5437 	/* Disable host interrupts. */
   5438 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5439 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5440 
   5441 	/*
   5442 	 * Tell firmware we're shutting down.
   5443 	 */
   5444 	bge_stop_fw(sc);
   5445 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5446 
   5447 	/*
   5448 	 * Disable all of the receiver blocks.
   5449 	 */
   5450 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5451 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5452 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5453 	if (BGE_IS_5700_FAMILY(sc))
   5454 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5455 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5456 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5457 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5458 
   5459 	/*
   5460 	 * Disable all of the transmit blocks.
   5461 	 */
   5462 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5463 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5464 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5465 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5466 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5467 	if (BGE_IS_5700_FAMILY(sc))
   5468 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5469 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5470 
   5471 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5472 	delay(40);
   5473 
   5474 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5475 
   5476 	/*
   5477 	 * Shut down all of the memory managers and related
   5478 	 * state machines.
   5479 	 */
   5480 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5481 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5482 	if (BGE_IS_5700_FAMILY(sc))
   5483 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5484 
   5485 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5486 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5487 
   5488 	if (BGE_IS_5700_FAMILY(sc)) {
   5489 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5490 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5491 	}
   5492 
   5493 	bge_reset(sc);
   5494 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5495 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5496 
   5497 	/*
   5498 	 * Keep the ASF firmware running if up.
   5499 	 */
   5500 	if (sc->bge_asf_mode & ASF_STACKUP)
   5501 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5502 	else
   5503 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5504 
   5505 	/* Free the RX lists. */
   5506 	bge_free_rx_ring_std(sc);
   5507 
   5508 	/* Free jumbo RX list. */
   5509 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5510 		bge_free_rx_ring_jumbo(sc);
   5511 
   5512 	/* Free TX buffers. */
   5513 	bge_free_tx_ring(sc);
   5514 
   5515 	/*
   5516 	 * Isolate/power down the PHY.
   5517 	 */
   5518 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   5519 		mii_down(&sc->bge_mii);
   5520 
   5521 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5522 
   5523 	/* Clear MAC's link state (PHY may still have link UP). */
   5524 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5525 
   5526 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5527 }
   5528 
   5529 static void
   5530 bge_link_upd(struct bge_softc *sc)
   5531 {
   5532 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5533 	struct mii_data *mii = &sc->bge_mii;
   5534 	uint32_t status;
   5535 	int link;
   5536 
   5537 	/* Clear 'pending link event' flag */
   5538 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5539 
   5540 	/*
   5541 	 * Process link state changes.
   5542 	 * Grrr. The link status word in the status block does
   5543 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5544 	 * according to all available information. Hence, we have
   5545 	 * to enable MII interrupts in order to properly obtain
   5546 	 * async link changes. Unfortunately, this also means that
   5547 	 * we have to read the MAC status register to detect link
   5548 	 * changes, thereby adding an additional register access to
   5549 	 * the interrupt handler.
   5550 	 */
   5551 
   5552 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5553 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5554 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5555 			mii_pollstat(mii);
   5556 
   5557 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5558 			    mii->mii_media_status & IFM_ACTIVE &&
   5559 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5560 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5561 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5562 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5563 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5564 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5565 
   5566 			/* Clear the interrupt */
   5567 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5568 			    BGE_EVTENB_MI_INTERRUPT);
   5569 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5570 			    BRGPHY_MII_ISR);
   5571 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5572 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5573 		}
   5574 		return;
   5575 	}
   5576 
   5577 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5578 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5579 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5580 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5581 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5582 				if (BGE_ASICREV(sc->bge_chipid)
   5583 				    == BGE_ASICREV_BCM5704) {
   5584 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5585 					    BGE_MACMODE_TBI_SEND_CFGS);
   5586 					DELAY(40);
   5587 				}
   5588 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5589 				if_link_state_change(ifp, LINK_STATE_UP);
   5590 			}
   5591 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5592 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5593 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5594 		}
   5595 	/*
   5596 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   5597 	 * This should not happen since mii callouts are locked now, but
   5598 	 * we keep this check for debug.
   5599 	 */
   5600 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5601 		/*
   5602 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5603 		 * bit in status word always set. Workaround this bug by
   5604 		 * reading PHY link status directly.
   5605 		 */
   5606 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5607 		    BGE_STS_LINK : 0;
   5608 
   5609 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5610 			mii_pollstat(mii);
   5611 
   5612 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5613 			    mii->mii_media_status & IFM_ACTIVE &&
   5614 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5615 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5616 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5617 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5618 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5619 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5620 		}
   5621 	}
   5622 
   5623 	/* Clear the attention */
   5624 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5625 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5626 	    BGE_MACSTAT_LINK_CHANGED);
   5627 }
   5628 
   5629 static int
   5630 bge_sysctl_verify(SYSCTLFN_ARGS)
   5631 {
   5632 	int error, t;
   5633 	struct sysctlnode node;
   5634 
   5635 	node = *rnode;
   5636 	t = *(int*)rnode->sysctl_data;
   5637 	node.sysctl_data = &t;
   5638 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5639 	if (error || newp == NULL)
   5640 		return error;
   5641 
   5642 #if 0
   5643 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5644 	    node.sysctl_num, rnode->sysctl_num));
   5645 #endif
   5646 
   5647 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5648 		if (t < 0 || t >= NBGE_RX_THRESH)
   5649 			return EINVAL;
   5650 		bge_update_all_threshes(t);
   5651 	} else
   5652 		return EINVAL;
   5653 
   5654 	*(int*)rnode->sysctl_data = t;
   5655 
   5656 	return 0;
   5657 }
   5658 
   5659 /*
   5660  * Set up sysctl(3) MIB, hw.bge.*.
   5661  */
   5662 static void
   5663 bge_sysctl_init(struct bge_softc *sc)
   5664 {
   5665 	int rc, bge_root_num;
   5666 	const struct sysctlnode *node;
   5667 
   5668 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5669 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5670 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5671 		goto out;
   5672 	}
   5673 
   5674 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5675 	    0, CTLTYPE_NODE, "bge",
   5676 	    SYSCTL_DESCR("BGE interface controls"),
   5677 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5678 		goto out;
   5679 	}
   5680 
   5681 	bge_root_num = node->sysctl_num;
   5682 
   5683 	/* BGE Rx interrupt mitigation level */
   5684 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5685 	    CTLFLAG_READWRITE,
   5686 	    CTLTYPE_INT, "rx_lvl",
   5687 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5688 	    bge_sysctl_verify, 0,
   5689 	    &bge_rx_thresh_lvl,
   5690 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5691 	    CTL_EOL)) != 0) {
   5692 		goto out;
   5693 	}
   5694 
   5695 	bge_rxthresh_nodenum = node->sysctl_num;
   5696 
   5697 	return;
   5698 
   5699 out:
   5700 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5701 }
   5702 
   5703 #ifdef BGE_DEBUG
   5704 void
   5705 bge_debug_info(struct bge_softc *sc)
   5706 {
   5707 
   5708 	printf("Hardware Flags:\n");
   5709 	if (BGE_IS_57765_PLUS(sc))
   5710 		printf(" - 57765 Plus\n");
   5711 	if (BGE_IS_5717_PLUS(sc))
   5712 		printf(" - 5717 Plus\n");
   5713 	if (BGE_IS_5755_PLUS(sc))
   5714 		printf(" - 5755 Plus\n");
   5715 	if (BGE_IS_575X_PLUS(sc))
   5716 		printf(" - 575X Plus\n");
   5717 	if (BGE_IS_5705_PLUS(sc))
   5718 		printf(" - 5705 Plus\n");
   5719 	if (BGE_IS_5714_FAMILY(sc))
   5720 		printf(" - 5714 Family\n");
   5721 	if (BGE_IS_5700_FAMILY(sc))
   5722 		printf(" - 5700 Family\n");
   5723 	if (sc->bge_flags & BGE_IS_5788)
   5724 		printf(" - 5788\n");
   5725 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5726 		printf(" - Supports Jumbo Frames\n");
   5727 	if (sc->bge_flags & BGE_NO_EEPROM)
   5728 		printf(" - No EEPROM\n");
   5729 	if (sc->bge_flags & BGE_PCIX)
   5730 		printf(" - PCI-X Bus\n");
   5731 	if (sc->bge_flags & BGE_PCIE)
   5732 		printf(" - PCI Express Bus\n");
   5733 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5734 		printf(" - RX Alignment Bug\n");
   5735 	if (sc->bge_flags & BGE_APE)
   5736 		printf(" - APE\n");
   5737 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5738 		printf(" - CPMU\n");
   5739 	if (sc->bge_flags & BGE_TSO)
   5740 		printf(" - TSO\n");
   5741 
   5742 	if (sc->bge_flags & BGE_PHY_NO_3LED)
   5743 		printf(" - No 3 LEDs\n");
   5744 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
   5745 		printf(" - CRC bug\n");
   5746 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
   5747 		printf(" - ADC bug\n");
   5748 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
   5749 		printf(" - 5704 A0 bug\n");
   5750 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
   5751 		printf(" - jitter bug\n");
   5752 	if (sc->bge_flags & BGE_PHY_BER_BUG)
   5753 		printf(" - BER bug\n");
   5754 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
   5755 		printf(" - adjust trim\n");
   5756 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
   5757 		printf(" - no wirespeed\n");
   5758 }
   5759 #endif /* BGE_DEBUG */
   5760 
   5761 static int
   5762 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5763 {
   5764 	prop_dictionary_t dict;
   5765 	prop_data_t ea;
   5766 
   5767 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5768 		return 1;
   5769 
   5770 	dict = device_properties(sc->bge_dev);
   5771 	ea = prop_dictionary_get(dict, "mac-address");
   5772 	if (ea != NULL) {
   5773 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5774 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5775 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5776 		return 0;
   5777 	}
   5778 
   5779 	return 1;
   5780 }
   5781 
   5782 static int
   5783 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5784 {
   5785 	uint32_t mac_addr;
   5786 
   5787 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5788 	if ((mac_addr >> 16) == 0x484b) {
   5789 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5790 		ether_addr[1] = (uint8_t)mac_addr;
   5791 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5792 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5793 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5794 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5795 		ether_addr[5] = (uint8_t)mac_addr;
   5796 		return 0;
   5797 	}
   5798 	return 1;
   5799 }
   5800 
   5801 static int
   5802 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5803 {
   5804 	int mac_offset = BGE_EE_MAC_OFFSET;
   5805 
   5806 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5807 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5808 
   5809 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5810 	    ETHER_ADDR_LEN));
   5811 }
   5812 
   5813 static int
   5814 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5815 {
   5816 
   5817 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5818 		return 1;
   5819 
   5820 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5821 	   ETHER_ADDR_LEN));
   5822 }
   5823 
   5824 static int
   5825 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5826 {
   5827 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5828 		/* NOTE: Order is critical */
   5829 		bge_get_eaddr_fw,
   5830 		bge_get_eaddr_mem,
   5831 		bge_get_eaddr_nvram,
   5832 		bge_get_eaddr_eeprom,
   5833 		NULL
   5834 	};
   5835 	const bge_eaddr_fcn_t *func;
   5836 
   5837 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5838 		if ((*func)(sc, eaddr) == 0)
   5839 			break;
   5840 	}
   5841 	return (*func == NULL ? ENXIO : 0);
   5842 }
   5843