if_bge.c revision 1.226 1 /* $NetBSD: if_bge.c,v 1.226 2013/03/24 19:16:10 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.226 2013/03/24 19:16:10 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5724,
440 "Broadcom BCM5724 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5750,
444 "Broadcom BCM5750 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5750M,
448 "Broadcom BCM5750M Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751,
452 "Broadcom BCM5751 Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5751F,
456 "Broadcom BCM5751F Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5751M,
460 "Broadcom BCM5751M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5752,
464 "Broadcom BCM5752 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5752M,
468 "Broadcom BCM5752M Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753,
472 "Broadcom BCM5753 Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5753F,
476 "Broadcom BCM5753F Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5753M,
480 "Broadcom BCM5753M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5754,
484 "Broadcom BCM5754 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5754M,
488 "Broadcom BCM5754M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5755,
492 "Broadcom BCM5755 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5755M,
496 "Broadcom BCM5755M Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5756,
500 "Broadcom BCM5756 Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761,
504 "Broadcom BCM5761 Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761E,
508 "Broadcom BCM5761E Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5761S,
512 "Broadcom BCM5761S Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5761SE,
516 "Broadcom BCM5761SE Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5764,
520 "Broadcom BCM5764 Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5780,
524 "Broadcom BCM5780 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5780S,
528 "Broadcom BCM5780S Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5781,
532 "Broadcom BCM5781 Gigabit Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5782,
536 "Broadcom BCM5782 Gigabit Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5784M,
540 "BCM5784M NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5785F,
544 "BCM5785F NetLink 10/100 Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5785G,
548 "BCM5785G NetLink 1000baseT Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5786,
552 "Broadcom BCM5786 Gigabit Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787,
556 "Broadcom BCM5787 Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5787F,
560 "Broadcom BCM5787F 10/100 Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5787M,
564 "Broadcom BCM5787M Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5788,
568 "Broadcom BCM5788 Gigabit Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5789,
572 "Broadcom BCM5789 Gigabit Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5901,
576 "Broadcom BCM5901 Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5901A2,
580 "Broadcom BCM5901A2 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5903M,
584 "Broadcom BCM5903M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM5906,
588 "Broadcom BCM5906 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM5906M,
592 "Broadcom BCM5906M Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57760,
596 "Broadcom BCM57760 Fast Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57761,
600 "Broadcom BCM57761 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57762,
604 "Broadcom BCM57762 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57765,
608 "Broadcom BCM57765 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57766,
612 "Broadcom BCM57766 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57780,
616 "Broadcom BCM57780 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57781,
620 "Broadcom BCM57781 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57782,
624 "Broadcom BCM57782 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57785,
628 "Broadcom BCM57785 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57786,
632 "Broadcom BCM57786 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57788,
636 "Broadcom BCM57788 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57790,
640 "Broadcom BCM57790 Fast Ethernet",
641 },
642 { PCI_VENDOR_BROADCOM,
643 PCI_PRODUCT_BROADCOM_BCM57791,
644 "Broadcom BCM57791 Fast Ethernet",
645 },
646 { PCI_VENDOR_BROADCOM,
647 PCI_PRODUCT_BROADCOM_BCM57795,
648 "Broadcom BCM57795 Fast Ethernet",
649 },
650 { PCI_VENDOR_SCHNEIDERKOCH,
651 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
652 "SysKonnect SK-9Dx1 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_3COM,
655 PCI_PRODUCT_3COM_3C996,
656 "3Com 3c996 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PW008GE4,
660 "Fujitsu PW008GE4 Gigabit Ethernet",
661 },
662 { PCI_VENDOR_FUJITSU4,
663 PCI_PRODUCT_FUJITSU4_PW008GE5,
664 "Fujitsu PW008GE5 Gigabit Ethernet",
665 },
666 { PCI_VENDOR_FUJITSU4,
667 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
668 "Fujitsu Primepower 250/450 Gigabit Ethernet",
669 },
670 { 0,
671 0,
672 NULL },
673 };
674
675 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
676 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
677 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
678 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
679 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
680 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
681 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
682 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
683
684 static const struct bge_revision {
685 uint32_t br_chipid;
686 const char *br_name;
687 } bge_revisions[] = {
688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 /* 5754 and 5787 share the same ASIC ID */
744 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754
755 { 0, NULL }
756 };
757
758 /*
759 * Some defaults for major revisions, so that newer steppings
760 * that we don't know about have a shot at working.
761 */
762 static const struct bge_revision bge_majorrevs[] = {
763 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 /* 5754 and 5787 share the same ASIC ID */
778 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
786
787 { 0, NULL }
788 };
789
790 static int bge_allow_asf = 1;
791
792 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
793 bge_probe, bge_attach, NULL, NULL);
794
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 pcireg_t val;
799
800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 return 0;
803
804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 return val;
808 }
809
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818
819 /*
820 * PCI Express only
821 */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 pcireg_t val;
826
827 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 + PCI_PCIE_DCSR);
829 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
830 switch (sc->bge_expmrq) {
831 case 2048:
832 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 break;
834 case 4096:
835 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 break;
837 default:
838 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 break;
840 }
841 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 + PCI_PCIE_DCSR, val);
843 }
844
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 CSR_WRITE_4(sc, off, val);
865 }
866
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872
873 CSR_WRITE_4(sc, off, val);
874 }
875
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881
882 CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884
885 /*
886 * Clear all stale locks and select the lock for this driver instance.
887 */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 struct pci_attach_args *pa = &(sc->bge_pa);
892 uint32_t bit, regbase;
893 int i;
894
895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 regbase = BGE_APE_LOCK_GRANT;
897 else
898 regbase = BGE_APE_PER_LOCK_GRANT;
899
900 /* Clear any stale locks. */
901 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 switch (i) {
903 case BGE_APE_LOCK_PHY0:
904 case BGE_APE_LOCK_PHY1:
905 case BGE_APE_LOCK_PHY2:
906 case BGE_APE_LOCK_PHY3:
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 break;
909 default:
910 if (pa->pa_function != 0)
911 bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 else
913 bit = (1 << pa->pa_function);
914 }
915 APE_WRITE_4(sc, regbase + 4 * i, bit);
916 }
917
918 /* Select the PHY lock based on the device's function number. */
919 switch (pa->pa_function) {
920 case 0:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 break;
923 case 1:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 break;
926 case 2:
927 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 break;
929 case 3:
930 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 break;
932 default:
933 printf("%s: PHY lock not supported on function\n",
934 device_xname(sc->bge_dev));
935 break;
936 }
937 }
938
939 /*
940 * Check for APE firmware, set flags, and print version info.
941 */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 const char *fwtype;
946 uint32_t apedata, features;
947
948 /* Check for a valid APE signature in shared memory. */
949 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 return;
953 }
954
955 /* Check if APE firmware is running. */
956 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 printf("%s: APE signature found but FW status not ready! "
959 "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 return;
961 }
962
963 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964
965 /* Fetch the APE firwmare type and version. */
966 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 fwtype = "NCSI";
971 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 fwtype = "DASH";
974 } else
975 fwtype = "UNKN";
976
977 /* Print the APE firmware version. */
978 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 struct pci_attach_args *pa = &(sc->bge_pa);
989 uint32_t bit, gnt, req, status;
990 int i, off;
991
992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 return (0);
994
995 /* Lock request/grant registers have different bases. */
996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 req = BGE_APE_LOCK_REQ;
998 gnt = BGE_APE_LOCK_GRANT;
999 } else {
1000 req = BGE_APE_PER_LOCK_REQ;
1001 gnt = BGE_APE_PER_LOCK_GRANT;
1002 }
1003
1004 off = 4 * locknum;
1005
1006 switch (locknum) {
1007 case BGE_APE_LOCK_GPIO:
1008 /* Lock required when using GPIO. */
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 return (0);
1011 if (pa->pa_function == 0)
1012 bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 else
1014 bit = (1 << pa->pa_function);
1015 break;
1016 case BGE_APE_LOCK_GRC:
1017 /* Lock required to reset the device. */
1018 if (pa->pa_function == 0)
1019 bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 else
1021 bit = (1 << pa->pa_function);
1022 break;
1023 case BGE_APE_LOCK_MEM:
1024 /* Lock required when accessing certain APE memory. */
1025 if (pa->pa_function == 0)
1026 bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 else
1028 bit = (1 << pa->pa_function);
1029 break;
1030 case BGE_APE_LOCK_PHY0:
1031 case BGE_APE_LOCK_PHY1:
1032 case BGE_APE_LOCK_PHY2:
1033 case BGE_APE_LOCK_PHY3:
1034 /* Lock required when accessing PHYs. */
1035 bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 break;
1037 default:
1038 return (EINVAL);
1039 }
1040
1041 /* Request a lock. */
1042 APE_WRITE_4_FLUSH(sc, req + off, bit);
1043
1044 /* Wait up to 1 second to acquire lock. */
1045 for (i = 0; i < 20000; i++) {
1046 status = APE_READ_4(sc, gnt + off);
1047 if (status == bit)
1048 break;
1049 DELAY(50);
1050 }
1051
1052 /* Handle any errors. */
1053 if (status != bit) {
1054 printf("%s: APE lock %d request failed! "
1055 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 device_xname(sc->bge_dev),
1057 locknum, req + off, bit & 0xFFFF, gnt + off,
1058 status & 0xFFFF);
1059 /* Revoke the lock request. */
1060 APE_WRITE_4(sc, gnt + off, bit);
1061 return (EBUSY);
1062 }
1063
1064 return (0);
1065 }
1066
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 struct pci_attach_args *pa = &(sc->bge_pa);
1071 uint32_t bit, gnt;
1072 int off;
1073
1074 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 return;
1076
1077 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 gnt = BGE_APE_LOCK_GRANT;
1079 else
1080 gnt = BGE_APE_PER_LOCK_GRANT;
1081
1082 off = 4 * locknum;
1083
1084 switch (locknum) {
1085 case BGE_APE_LOCK_GPIO:
1086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 return;
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_GRC:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_MEM:
1100 if (pa->pa_function == 0)
1101 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 else
1103 bit = (1 << pa->pa_function);
1104 break;
1105 case BGE_APE_LOCK_PHY0:
1106 case BGE_APE_LOCK_PHY1:
1107 case BGE_APE_LOCK_PHY2:
1108 case BGE_APE_LOCK_PHY3:
1109 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 break;
1111 default:
1112 return;
1113 }
1114
1115 /* Write and flush for consecutive bge_ape_lock() */
1116 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118
1119 /*
1120 * Send an event to the APE firmware.
1121 */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 uint32_t apedata;
1126 int i;
1127
1128 /* NCSI does not support APE events. */
1129 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 return;
1131
1132 /* Wait up to 1ms for APE to service previous event. */
1133 for (i = 10; i > 0; i--) {
1134 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 break;
1136 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 break;
1143 }
1144 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 DELAY(100);
1146 }
1147 if (i == 0) {
1148 printf("%s: APE event 0x%08x send timed out\n",
1149 device_xname(sc->bge_dev), event);
1150 }
1151 }
1152
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 uint32_t apedata, event;
1157
1158 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 return;
1160
1161 switch (kind) {
1162 case BGE_RESET_START:
1163 /* If this is the first load, clear the load counter. */
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 else {
1168 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 }
1171 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 BGE_APE_HOST_SEG_SIG_MAGIC);
1173 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 BGE_APE_HOST_SEG_LEN_MAGIC);
1175
1176 /* Add some version info if bge(4) supports it. */
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_START);
1185 event = BGE_APE_EVENT_STATUS_STATE_START;
1186 break;
1187 case BGE_RESET_SHUTDOWN:
1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 break;
1192 case BGE_RESET_SUSPEND:
1193 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 break;
1195 default:
1196 return;
1197 }
1198
1199 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 uint32_t access, byte = 0;
1207 int i;
1208
1209 /* Lock. */
1210 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 for (i = 0; i < 8000; i++) {
1212 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 break;
1214 DELAY(20);
1215 }
1216 if (i == 8000)
1217 return 1;
1218
1219 /* Enable access. */
1220 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222
1223 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 DELAY(10);
1227 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 DELAY(10);
1229 break;
1230 }
1231 }
1232
1233 if (i == BGE_TIMEOUT * 10) {
1234 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 return 1;
1236 }
1237
1238 /* Get result. */
1239 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240
1241 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242
1243 /* Disable access. */
1244 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245
1246 /* Unlock. */
1247 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Read a sequence of bytes from NVRAM.
1254 */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 int error = 0, i;
1259 uint8_t byte = 0;
1260
1261 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 return 1;
1263
1264 for (i = 0; i < cnt; i++) {
1265 error = bge_nvram_getbyte(sc, off + i, &byte);
1266 if (error)
1267 break;
1268 *(dest + i) = byte;
1269 }
1270
1271 return (error ? 1 : 0);
1272 }
1273
1274 /*
1275 * Read a byte of data stored in the EEPROM at address 'addr.' The
1276 * BCM570x supports both the traditional bitbang interface and an
1277 * auto access interface for reading the EEPROM. We use the auto
1278 * access method.
1279 */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 int i;
1284 uint32_t byte = 0;
1285
1286 /*
1287 * Enable use of auto EEPROM access so we can avoid
1288 * having to use the bitbang method.
1289 */
1290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291
1292 /* Reset the EEPROM, load the clock period. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 DELAY(20);
1296
1297 /* Issue the read EEPROM command. */
1298 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299
1300 /* Wait for completion */
1301 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 DELAY(10);
1303 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 break;
1305 }
1306
1307 if (i == BGE_TIMEOUT * 10) {
1308 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 return 1;
1310 }
1311
1312 /* Get result. */
1313 byte = CSR_READ_4(sc, BGE_EE_DATA);
1314
1315 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * Read a sequence of bytes from the EEPROM.
1322 */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 int error = 0, i;
1327 uint8_t byte = 0;
1328 char *dest = destv;
1329
1330 for (i = 0; i < cnt; i++) {
1331 error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 if (error)
1333 break;
1334 *(dest + i) = byte;
1335 }
1336
1337 return (error ? 1 : 0);
1338 }
1339
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 struct bge_softc *sc = device_private(dev);
1344 uint32_t val;
1345 uint32_t autopoll;
1346 int i;
1347
1348 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 return 0;
1350
1351 /* Reading with autopolling on may trigger PCI errors */
1352 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 DELAY(80);
1357 }
1358
1359 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 BGE_MIPHY(phy) | BGE_MIREG(reg));
1361
1362 for (i = 0; i < BGE_TIMEOUT; i++) {
1363 delay(10);
1364 val = CSR_READ_4(sc, BGE_MI_COMM);
1365 if (!(val & BGE_MICOMM_BUSY)) {
1366 DELAY(5);
1367 val = CSR_READ_4(sc, BGE_MI_COMM);
1368 break;
1369 }
1370 }
1371
1372 if (i == BGE_TIMEOUT) {
1373 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 val = 0;
1375 goto done;
1376 }
1377
1378 done:
1379 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 DELAY(80);
1383 }
1384
1385 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386
1387 if (val & BGE_MICOMM_READFAIL)
1388 return 0;
1389
1390 return (val & 0xFFFF);
1391 }
1392
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 struct bge_softc *sc = device_private(dev);
1397 uint32_t autopoll;
1398 int i;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 return;
1406
1407 /* Reading with autopolling on may trigger PCI errors */
1408 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 DELAY(80);
1413 }
1414
1415 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417
1418 for (i = 0; i < BGE_TIMEOUT; i++) {
1419 delay(10);
1420 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 delay(5);
1422 CSR_READ_4(sc, BGE_MI_COMM);
1423 break;
1424 }
1425 }
1426
1427 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 delay(80);
1431 }
1432
1433 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434
1435 if (i == BGE_TIMEOUT)
1436 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 struct bge_softc *sc = ifp->if_softc;
1443 struct mii_data *mii = &sc->bge_mii;
1444 uint32_t mac_mode, rx_mode, tx_mode;
1445
1446 /*
1447 * Get flow control negotiation result.
1448 */
1449 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1451 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 mii->mii_media_active &= ~IFM_ETH_FMASK;
1453 }
1454
1455 /* Set the port mode (MII/GMII) to match the link speed. */
1456 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1457 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1458 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1459 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1460 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1461 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1462 mac_mode |= BGE_PORTMODE_GMII;
1463 else
1464 mac_mode |= BGE_PORTMODE_MII;
1465
1466 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1467 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1468 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1469 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1470 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1471 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1472 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1473 } else
1474 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1475
1476 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1477 DELAY(40);
1478 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1479 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1480 }
1481
1482 /*
1483 * Update rx threshold levels to values in a particular slot
1484 * of the interrupt-mitigation table bge_rx_threshes.
1485 */
1486 static void
1487 bge_set_thresh(struct ifnet *ifp, int lvl)
1488 {
1489 struct bge_softc *sc = ifp->if_softc;
1490 int s;
1491
1492 /* For now, just save the new Rx-intr thresholds and record
1493 * that a threshold update is pending. Updating the hardware
1494 * registers here (even at splhigh()) is observed to
1495 * occasionaly cause glitches where Rx-interrupts are not
1496 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1497 */
1498 s = splnet();
1499 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1500 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1501 sc->bge_pending_rxintr_change = 1;
1502 splx(s);
1503 }
1504
1505
1506 /*
1507 * Update Rx thresholds of all bge devices
1508 */
1509 static void
1510 bge_update_all_threshes(int lvl)
1511 {
1512 struct ifnet *ifp;
1513 const char * const namebuf = "bge";
1514 int namelen;
1515
1516 if (lvl < 0)
1517 lvl = 0;
1518 else if (lvl >= NBGE_RX_THRESH)
1519 lvl = NBGE_RX_THRESH - 1;
1520
1521 namelen = strlen(namebuf);
1522 /*
1523 * Now search all the interfaces for this name/number
1524 */
1525 IFNET_FOREACH(ifp) {
1526 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1527 continue;
1528 /* We got a match: update if doing auto-threshold-tuning */
1529 if (bge_auto_thresh)
1530 bge_set_thresh(ifp, lvl);
1531 }
1532 }
1533
1534 /*
1535 * Handle events that have triggered interrupts.
1536 */
1537 static void
1538 bge_handle_events(struct bge_softc *sc)
1539 {
1540
1541 return;
1542 }
1543
1544 /*
1545 * Memory management for jumbo frames.
1546 */
1547
1548 static int
1549 bge_alloc_jumbo_mem(struct bge_softc *sc)
1550 {
1551 char *ptr, *kva;
1552 bus_dma_segment_t seg;
1553 int i, rseg, state, error;
1554 struct bge_jpool_entry *entry;
1555
1556 state = error = 0;
1557
1558 /* Grab a big chunk o' storage. */
1559 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1560 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1561 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1562 return ENOBUFS;
1563 }
1564
1565 state = 1;
1566 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1567 BUS_DMA_NOWAIT)) {
1568 aprint_error_dev(sc->bge_dev,
1569 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1570 error = ENOBUFS;
1571 goto out;
1572 }
1573
1574 state = 2;
1575 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1576 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1577 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1578 error = ENOBUFS;
1579 goto out;
1580 }
1581
1582 state = 3;
1583 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1584 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1585 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1586 error = ENOBUFS;
1587 goto out;
1588 }
1589
1590 state = 4;
1591 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1592 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1593
1594 SLIST_INIT(&sc->bge_jfree_listhead);
1595 SLIST_INIT(&sc->bge_jinuse_listhead);
1596
1597 /*
1598 * Now divide it up into 9K pieces and save the addresses
1599 * in an array.
1600 */
1601 ptr = sc->bge_cdata.bge_jumbo_buf;
1602 for (i = 0; i < BGE_JSLOTS; i++) {
1603 sc->bge_cdata.bge_jslots[i] = ptr;
1604 ptr += BGE_JLEN;
1605 entry = malloc(sizeof(struct bge_jpool_entry),
1606 M_DEVBUF, M_NOWAIT);
1607 if (entry == NULL) {
1608 aprint_error_dev(sc->bge_dev,
1609 "no memory for jumbo buffer queue!\n");
1610 error = ENOBUFS;
1611 goto out;
1612 }
1613 entry->slot = i;
1614 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1615 entry, jpool_entries);
1616 }
1617 out:
1618 if (error != 0) {
1619 switch (state) {
1620 case 4:
1621 bus_dmamap_unload(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_jumbo_map);
1623 case 3:
1624 bus_dmamap_destroy(sc->bge_dmatag,
1625 sc->bge_cdata.bge_rx_jumbo_map);
1626 case 2:
1627 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1628 case 1:
1629 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1630 break;
1631 default:
1632 break;
1633 }
1634 }
1635
1636 return error;
1637 }
1638
1639 /*
1640 * Allocate a jumbo buffer.
1641 */
1642 static void *
1643 bge_jalloc(struct bge_softc *sc)
1644 {
1645 struct bge_jpool_entry *entry;
1646
1647 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1648
1649 if (entry == NULL) {
1650 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1651 return NULL;
1652 }
1653
1654 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1655 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1656 return (sc->bge_cdata.bge_jslots[entry->slot]);
1657 }
1658
1659 /*
1660 * Release a jumbo buffer.
1661 */
1662 static void
1663 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1664 {
1665 struct bge_jpool_entry *entry;
1666 struct bge_softc *sc;
1667 int i, s;
1668
1669 /* Extract the softc struct pointer. */
1670 sc = (struct bge_softc *)arg;
1671
1672 if (sc == NULL)
1673 panic("bge_jfree: can't find softc pointer!");
1674
1675 /* calculate the slot this buffer belongs to */
1676
1677 i = ((char *)buf
1678 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1679
1680 if ((i < 0) || (i >= BGE_JSLOTS))
1681 panic("bge_jfree: asked to free buffer that we don't manage!");
1682
1683 s = splvm();
1684 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1685 if (entry == NULL)
1686 panic("bge_jfree: buffer not in use!");
1687 entry->slot = i;
1688 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1689 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1690
1691 if (__predict_true(m != NULL))
1692 pool_cache_put(mb_cache, m);
1693 splx(s);
1694 }
1695
1696
1697 /*
1698 * Initialize a standard receive ring descriptor.
1699 */
1700 static int
1701 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1702 bus_dmamap_t dmamap)
1703 {
1704 struct mbuf *m_new = NULL;
1705 struct bge_rx_bd *r;
1706 int error;
1707
1708 if (dmamap == NULL) {
1709 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1710 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1711 if (error != 0)
1712 return error;
1713 }
1714
1715 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1716
1717 if (m == NULL) {
1718 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1719 if (m_new == NULL)
1720 return ENOBUFS;
1721
1722 MCLGET(m_new, M_DONTWAIT);
1723 if (!(m_new->m_flags & M_EXT)) {
1724 m_freem(m_new);
1725 return ENOBUFS;
1726 }
1727 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1728
1729 } else {
1730 m_new = m;
1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732 m_new->m_data = m_new->m_ext.ext_buf;
1733 }
1734 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1735 m_adj(m_new, ETHER_ALIGN);
1736 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1737 BUS_DMA_READ|BUS_DMA_NOWAIT))
1738 return ENOBUFS;
1739 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1740 BUS_DMASYNC_PREREAD);
1741
1742 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1743 r = &sc->bge_rdata->bge_rx_std_ring[i];
1744 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1745 r->bge_flags = BGE_RXBDFLAG_END;
1746 r->bge_len = m_new->m_len;
1747 r->bge_idx = i;
1748
1749 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1750 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1751 i * sizeof (struct bge_rx_bd),
1752 sizeof (struct bge_rx_bd),
1753 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * Initialize a jumbo receive ring descriptor. This allocates
1760 * a jumbo buffer from the pool managed internally by the driver.
1761 */
1762 static int
1763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1764 {
1765 struct mbuf *m_new = NULL;
1766 struct bge_rx_bd *r;
1767 void *buf = NULL;
1768
1769 if (m == NULL) {
1770
1771 /* Allocate the mbuf. */
1772 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1773 if (m_new == NULL)
1774 return ENOBUFS;
1775
1776 /* Allocate the jumbo buffer */
1777 buf = bge_jalloc(sc);
1778 if (buf == NULL) {
1779 m_freem(m_new);
1780 aprint_error_dev(sc->bge_dev,
1781 "jumbo allocation failed -- packet dropped!\n");
1782 return ENOBUFS;
1783 }
1784
1785 /* Attach the buffer to the mbuf. */
1786 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1787 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1788 bge_jfree, sc);
1789 m_new->m_flags |= M_EXT_RW;
1790 } else {
1791 m_new = m;
1792 buf = m_new->m_data = m_new->m_ext.ext_buf;
1793 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1794 }
1795 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1796 m_adj(m_new, ETHER_ALIGN);
1797 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1798 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1799 BUS_DMASYNC_PREREAD);
1800 /* Set up the descriptor. */
1801 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1802 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1803 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1804 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1805 r->bge_len = m_new->m_len;
1806 r->bge_idx = i;
1807
1808 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1809 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1810 i * sizeof (struct bge_rx_bd),
1811 sizeof (struct bge_rx_bd),
1812 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1813
1814 return 0;
1815 }
1816
1817 /*
1818 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1819 * that's 1MB or memory, which is a lot. For now, we fill only the first
1820 * 256 ring entries and hope that our CPU is fast enough to keep up with
1821 * the NIC.
1822 */
1823 static int
1824 bge_init_rx_ring_std(struct bge_softc *sc)
1825 {
1826 int i;
1827
1828 if (sc->bge_flags & BGE_RXRING_VALID)
1829 return 0;
1830
1831 for (i = 0; i < BGE_SSLOTS; i++) {
1832 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1833 return ENOBUFS;
1834 }
1835
1836 sc->bge_std = i - 1;
1837 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1838
1839 sc->bge_flags |= BGE_RXRING_VALID;
1840
1841 return 0;
1842 }
1843
1844 static void
1845 bge_free_rx_ring_std(struct bge_softc *sc)
1846 {
1847 int i;
1848
1849 if (!(sc->bge_flags & BGE_RXRING_VALID))
1850 return;
1851
1852 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1853 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1854 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1855 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1856 bus_dmamap_destroy(sc->bge_dmatag,
1857 sc->bge_cdata.bge_rx_std_map[i]);
1858 }
1859 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1860 sizeof(struct bge_rx_bd));
1861 }
1862
1863 sc->bge_flags &= ~BGE_RXRING_VALID;
1864 }
1865
1866 static int
1867 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1868 {
1869 int i;
1870 volatile struct bge_rcb *rcb;
1871
1872 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1873 return 0;
1874
1875 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1876 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1877 return ENOBUFS;
1878 }
1879
1880 sc->bge_jumbo = i - 1;
1881 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1882
1883 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1884 rcb->bge_maxlen_flags = 0;
1885 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1886
1887 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1888
1889 return 0;
1890 }
1891
1892 static void
1893 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1894 {
1895 int i;
1896
1897 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1898 return;
1899
1900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1901 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1902 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1903 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1904 }
1905 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1906 sizeof(struct bge_rx_bd));
1907 }
1908
1909 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1910 }
1911
1912 static void
1913 bge_free_tx_ring(struct bge_softc *sc)
1914 {
1915 int i;
1916 struct txdmamap_pool_entry *dma;
1917
1918 if (!(sc->bge_flags & BGE_TXRING_VALID))
1919 return;
1920
1921 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1922 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1923 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1924 sc->bge_cdata.bge_tx_chain[i] = NULL;
1925 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1926 link);
1927 sc->txdma[i] = 0;
1928 }
1929 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1930 sizeof(struct bge_tx_bd));
1931 }
1932
1933 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1934 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1935 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1936 free(dma, M_DEVBUF);
1937 }
1938
1939 sc->bge_flags &= ~BGE_TXRING_VALID;
1940 }
1941
1942 static int
1943 bge_init_tx_ring(struct bge_softc *sc)
1944 {
1945 int i;
1946 bus_dmamap_t dmamap;
1947 struct txdmamap_pool_entry *dma;
1948
1949 if (sc->bge_flags & BGE_TXRING_VALID)
1950 return 0;
1951
1952 sc->bge_txcnt = 0;
1953 sc->bge_tx_saved_considx = 0;
1954
1955 /* Initialize transmit producer index for host-memory send ring. */
1956 sc->bge_tx_prodidx = 0;
1957 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1958 /* 5700 b2 errata */
1959 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1960 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1961
1962 /* NIC-memory send ring not used; initialize to zero. */
1963 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1964 /* 5700 b2 errata */
1965 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1966 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1967
1968 SLIST_INIT(&sc->txdma_list);
1969 for (i = 0; i < BGE_RSLOTS; i++) {
1970 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1971 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1972 &dmamap))
1973 return ENOBUFS;
1974 if (dmamap == NULL)
1975 panic("dmamap NULL in bge_init_tx_ring");
1976 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1977 if (dma == NULL) {
1978 aprint_error_dev(sc->bge_dev,
1979 "can't alloc txdmamap_pool_entry\n");
1980 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1981 return ENOMEM;
1982 }
1983 dma->dmamap = dmamap;
1984 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1985 }
1986
1987 sc->bge_flags |= BGE_TXRING_VALID;
1988
1989 return 0;
1990 }
1991
1992 static void
1993 bge_setmulti(struct bge_softc *sc)
1994 {
1995 struct ethercom *ac = &sc->ethercom;
1996 struct ifnet *ifp = &ac->ec_if;
1997 struct ether_multi *enm;
1998 struct ether_multistep step;
1999 uint32_t hashes[4] = { 0, 0, 0, 0 };
2000 uint32_t h;
2001 int i;
2002
2003 if (ifp->if_flags & IFF_PROMISC)
2004 goto allmulti;
2005
2006 /* Now program new ones. */
2007 ETHER_FIRST_MULTI(step, ac, enm);
2008 while (enm != NULL) {
2009 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2010 /*
2011 * We must listen to a range of multicast addresses.
2012 * For now, just accept all multicasts, rather than
2013 * trying to set only those filter bits needed to match
2014 * the range. (At this time, the only use of address
2015 * ranges is for IP multicast routing, for which the
2016 * range is big enough to require all bits set.)
2017 */
2018 goto allmulti;
2019 }
2020
2021 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022
2023 /* Just want the 7 least-significant bits. */
2024 h &= 0x7f;
2025
2026 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2027 ETHER_NEXT_MULTI(step, enm);
2028 }
2029
2030 ifp->if_flags &= ~IFF_ALLMULTI;
2031 goto setit;
2032
2033 allmulti:
2034 ifp->if_flags |= IFF_ALLMULTI;
2035 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2036
2037 setit:
2038 for (i = 0; i < 4; i++)
2039 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2040 }
2041
2042 static void
2043 bge_sig_pre_reset(struct bge_softc *sc, int type)
2044 {
2045
2046 /*
2047 * Some chips don't like this so only do this if ASF is enabled
2048 */
2049 if (sc->bge_asf_mode)
2050 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2051
2052 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2053 switch (type) {
2054 case BGE_RESET_START:
2055 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2056 BGE_FW_DRV_STATE_START);
2057 break;
2058 case BGE_RESET_SHUTDOWN:
2059 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2060 BGE_FW_DRV_STATE_UNLOAD);
2061 break;
2062 case BGE_RESET_SUSPEND:
2063 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2064 BGE_FW_DRV_STATE_SUSPEND);
2065 break;
2066 }
2067 }
2068
2069 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2070 bge_ape_driver_state_change(sc, type);
2071 }
2072
2073 static void
2074 bge_sig_post_reset(struct bge_softc *sc, int type)
2075 {
2076
2077 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2078 switch (type) {
2079 case BGE_RESET_START:
2080 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2081 BGE_FW_DRV_STATE_START_DONE);
2082 /* START DONE */
2083 break;
2084 case BGE_RESET_SHUTDOWN:
2085 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2086 BGE_FW_DRV_STATE_UNLOAD_DONE);
2087 break;
2088 }
2089 }
2090
2091 if (type == BGE_RESET_SHUTDOWN)
2092 bge_ape_driver_state_change(sc, type);
2093 }
2094
2095 static void
2096 bge_sig_legacy(struct bge_softc *sc, int type)
2097 {
2098
2099 if (sc->bge_asf_mode) {
2100 switch (type) {
2101 case BGE_RESET_START:
2102 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2103 BGE_FW_DRV_STATE_START);
2104 break;
2105 case BGE_RESET_SHUTDOWN:
2106 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2107 BGE_FW_DRV_STATE_UNLOAD);
2108 break;
2109 }
2110 }
2111 }
2112
2113 static void
2114 bge_wait_for_event_ack(struct bge_softc *sc)
2115 {
2116 int i;
2117
2118 /* wait up to 2500usec */
2119 for (i = 0; i < 250; i++) {
2120 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2121 BGE_RX_CPU_DRV_EVENT))
2122 break;
2123 DELAY(10);
2124 }
2125 }
2126
2127 static void
2128 bge_stop_fw(struct bge_softc *sc)
2129 {
2130
2131 if (sc->bge_asf_mode) {
2132 bge_wait_for_event_ack(sc);
2133
2134 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2135 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2136 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2137
2138 bge_wait_for_event_ack(sc);
2139 }
2140 }
2141
2142 static int
2143 bge_poll_fw(struct bge_softc *sc)
2144 {
2145 uint32_t val;
2146 int i;
2147
2148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2149 for (i = 0; i < BGE_TIMEOUT; i++) {
2150 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2151 if (val & BGE_VCPU_STATUS_INIT_DONE)
2152 break;
2153 DELAY(100);
2154 }
2155 if (i >= BGE_TIMEOUT) {
2156 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2157 return -1;
2158 }
2159 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2160 /*
2161 * Poll the value location we just wrote until
2162 * we see the 1's complement of the magic number.
2163 * This indicates that the firmware initialization
2164 * is complete.
2165 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2166 */
2167 for (i = 0; i < BGE_TIMEOUT; i++) {
2168 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2169 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2170 break;
2171 DELAY(10);
2172 }
2173
2174 if (i >= BGE_TIMEOUT) {
2175 aprint_error_dev(sc->bge_dev,
2176 "firmware handshake timed out, val = %x\n", val);
2177 return -1;
2178 }
2179 }
2180
2181 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2182 /* tg3 says we have to wait extra time */
2183 delay(10 * 1000);
2184 }
2185
2186 return 0;
2187 }
2188
2189 int
2190 bge_phy_addr(struct bge_softc *sc)
2191 {
2192 struct pci_attach_args *pa = &(sc->bge_pa);
2193 int phy_addr = 1;
2194
2195 /*
2196 * PHY address mapping for various devices.
2197 *
2198 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2199 * ---------+-------+-------+-------+-------+
2200 * BCM57XX | 1 | X | X | X |
2201 * BCM5704 | 1 | X | 1 | X |
2202 * BCM5717 | 1 | 8 | 2 | 9 |
2203 * BCM5719 | 1 | 8 | 2 | 9 |
2204 * BCM5720 | 1 | 8 | 2 | 9 |
2205 *
2206 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2207 * ---------+-------+-------+-------+-------+
2208 * BCM57XX | X | X | X | X |
2209 * BCM5704 | X | X | X | X |
2210 * BCM5717 | X | X | X | X |
2211 * BCM5719 | 3 | 10 | 4 | 11 |
2212 * BCM5720 | X | X | X | X |
2213 *
2214 * Other addresses may respond but they are not
2215 * IEEE compliant PHYs and should be ignored.
2216 */
2217 switch (BGE_ASICREV(sc->bge_chipid)) {
2218 case BGE_ASICREV_BCM5717:
2219 case BGE_ASICREV_BCM5719:
2220 case BGE_ASICREV_BCM5720:
2221 phy_addr = pa->pa_function;
2222 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2223 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2224 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2225 } else {
2226 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2227 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2228 }
2229 }
2230
2231 return phy_addr;
2232 }
2233
2234 /*
2235 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2236 * self-test results.
2237 */
2238 static int
2239 bge_chipinit(struct bge_softc *sc)
2240 {
2241 uint32_t dma_rw_ctl, mode_ctl, reg;
2242 int i;
2243
2244 /* Set endianness before we access any non-PCI registers. */
2245 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2246 BGE_INIT);
2247
2248 /*
2249 * Clear the MAC statistics block in the NIC's
2250 * internal memory.
2251 */
2252 for (i = BGE_STATS_BLOCK;
2253 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2254 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2255
2256 for (i = BGE_STATUS_BLOCK;
2257 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2258 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2259
2260 /* 5717 workaround from tg3 */
2261 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2262 /* Save */
2263 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2264
2265 /* Temporary modify MODE_CTL to control TLP */
2266 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2267 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2268
2269 /* Control TLP */
2270 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2271 BGE_TLP_PHYCTL1);
2272 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2273 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2274
2275 /* Restore */
2276 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2277 }
2278
2279 /* XXX Should we use 57765_FAMILY? */
2280 if (BGE_IS_57765_PLUS(sc)) {
2281 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL,
2288 reg | BGE_MODECTL_PCIE_TLPADDR1);
2289
2290 /* Control TLP */
2291 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2292 BGE_TLP_PHYCTL5);
2293 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2294 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2295
2296 /* Restore */
2297 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2298 }
2299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2300 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2301 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2302 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2303
2304 /* Save */
2305 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2306
2307 /* Temporary modify MODE_CTL to control TLP */
2308 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2309 CSR_WRITE_4(sc, BGE_MODE_CTL,
2310 reg | BGE_MODECTL_PCIE_TLPADDR0);
2311
2312 /* Control TLP */
2313 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2314 BGE_TLP_FTSMAX);
2315 reg &= ~BGE_TLP_FTSMAX_MSK;
2316 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2317 reg | BGE_TLP_FTSMAX_VAL);
2318
2319 /* Restore */
2320 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 }
2322
2323 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2324 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2325 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2326 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2327 }
2328
2329 /* Set up the PCI DMA control register. */
2330 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2331 if (sc->bge_flags & BGE_PCIE) {
2332 /* Read watermark not used, 128 bytes for write. */
2333 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2334 device_xname(sc->bge_dev)));
2335 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2336 } else if (sc->bge_flags & BGE_PCIX) {
2337 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2338 device_xname(sc->bge_dev)));
2339 /* PCI-X bus */
2340 if (BGE_IS_5714_FAMILY(sc)) {
2341 /* 256 bytes for read and write. */
2342 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2343 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2344
2345 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2346 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2347 else
2348 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2349 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2350 /* 1536 bytes for read, 384 bytes for write. */
2351 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2352 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2353 } else {
2354 /* 384 bytes for read and write. */
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2356 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2357 (0x0F);
2358 }
2359
2360 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2361 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2362 uint32_t tmp;
2363
2364 /* Set ONEDMA_ATONCE for hardware workaround. */
2365 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2366 if (tmp == 6 || tmp == 7)
2367 dma_rw_ctl |=
2368 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369
2370 /* Set PCI-X DMA write workaround. */
2371 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2372 }
2373 } else {
2374 /* Conventional PCI bus: 256 bytes for read and write. */
2375 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2376 device_xname(sc->bge_dev)));
2377 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2378 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2379
2380 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2381 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2382 dma_rw_ctl |= 0x0F;
2383 }
2384
2385 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2386 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2387 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2388 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2389
2390 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2391 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2392 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2393
2394 if (BGE_IS_5717_PLUS(sc)) {
2395 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2396 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2397 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2398
2399 /*
2400 * Enable HW workaround for controllers that misinterpret
2401 * a status tag update and leave interrupts permanently
2402 * disabled.
2403 */
2404 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2405 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2406 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2407 }
2408
2409 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2410 dma_rw_ctl);
2411
2412 /*
2413 * Set up general mode register.
2414 */
2415 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2417 /* Retain Host-2-BMC settings written by APE firmware. */
2418 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2419 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2420 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2421 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2422 }
2423 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2424 BGE_MODECTL_TX_NO_PHDR_CSUM;
2425
2426 /*
2427 * BCM5701 B5 have a bug causing data corruption when using
2428 * 64-bit DMA reads, which can be terminated early and then
2429 * completed later as 32-bit accesses, in combination with
2430 * certain bridges.
2431 */
2432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2433 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2434 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2435
2436 /*
2437 * Tell the firmware the driver is running
2438 */
2439 if (sc->bge_asf_mode & ASF_STACKUP)
2440 mode_ctl |= BGE_MODECTL_STACKUP;
2441
2442 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2443
2444 /*
2445 * Disable memory write invalidate. Apparently it is not supported
2446 * properly by these devices.
2447 */
2448 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2449 PCI_COMMAND_INVALIDATE_ENABLE);
2450
2451 #ifdef __brokenalpha__
2452 /*
2453 * Must insure that we do not cross an 8K (bytes) boundary
2454 * for DMA reads. Our highest limit is 1K bytes. This is a
2455 * restriction on some ALPHA platforms with early revision
2456 * 21174 PCI chipsets, such as the AlphaPC 164lx
2457 */
2458 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2459 #endif
2460
2461 /* Set the timer prescaler (always 66MHz) */
2462 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2463
2464 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2465 DELAY(40); /* XXX */
2466
2467 /* Put PHY into ready state */
2468 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2469 DELAY(40);
2470 }
2471
2472 return 0;
2473 }
2474
2475 static int
2476 bge_blockinit(struct bge_softc *sc)
2477 {
2478 volatile struct bge_rcb *rcb;
2479 bus_size_t rcb_addr;
2480 struct ifnet *ifp = &sc->ethercom.ec_if;
2481 bge_hostaddr taddr;
2482 uint32_t dmactl, val;
2483 int i, limit;
2484
2485 /*
2486 * Initialize the memory window pointer register so that
2487 * we can access the first 32K of internal NIC RAM. This will
2488 * allow us to set up the TX send ring RCBs and the RX return
2489 * ring RCBs, plus other things which live in NIC memory.
2490 */
2491 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2492
2493 /* Step 33: Configure mbuf memory pool */
2494 if (!BGE_IS_5705_PLUS(sc)) {
2495 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2496 BGE_BUFFPOOL_1);
2497
2498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2499 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2500 else
2501 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2502
2503 /* Configure DMA resource pool */
2504 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2505 BGE_DMA_DESCRIPTORS);
2506 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2507 }
2508
2509 /* Step 35: Configure mbuf pool watermarks */
2510 /* new broadcom docs strongly recommend these: */
2511 if (BGE_IS_5717_PLUS(sc)) {
2512 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2514 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2515 } else if (BGE_IS_5705_PLUS(sc)) {
2516 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2517
2518 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2519 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2521 } else {
2522 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2524 }
2525 } else {
2526 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2529 }
2530
2531 /* Step 36: Configure DMA resource watermarks */
2532 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2533 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2534
2535 /* Step 38: Enable buffer manager */
2536 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2537 /*
2538 * Change the arbitration algorithm of TXMBUF read request to
2539 * round-robin instead of priority based for BCM5719. When
2540 * TXFIFO is almost empty, RDMA will hold its request until
2541 * TXFIFO is not almost empty.
2542 */
2543 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2544 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2546 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2547 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2548 val |= BGE_BMANMODE_LOMBUF_ATTN;
2549 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2550
2551 /* Step 39: Poll for buffer manager start indication */
2552 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2553 DELAY(10);
2554 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2555 break;
2556 }
2557
2558 if (i == BGE_TIMEOUT * 2) {
2559 aprint_error_dev(sc->bge_dev,
2560 "buffer manager failed to start\n");
2561 return ENXIO;
2562 }
2563
2564 /* Step 40: Enable flow-through queues */
2565 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2566 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2567
2568 /* Wait until queue initialization is complete */
2569 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2570 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2571 break;
2572 DELAY(10);
2573 }
2574
2575 if (i == BGE_TIMEOUT * 2) {
2576 aprint_error_dev(sc->bge_dev,
2577 "flow-through queue init failed\n");
2578 return ENXIO;
2579 }
2580
2581 /*
2582 * Summary of rings supported by the controller:
2583 *
2584 * Standard Receive Producer Ring
2585 * - This ring is used to feed receive buffers for "standard"
2586 * sized frames (typically 1536 bytes) to the controller.
2587 *
2588 * Jumbo Receive Producer Ring
2589 * - This ring is used to feed receive buffers for jumbo sized
2590 * frames (i.e. anything bigger than the "standard" frames)
2591 * to the controller.
2592 *
2593 * Mini Receive Producer Ring
2594 * - This ring is used to feed receive buffers for "mini"
2595 * sized frames to the controller.
2596 * - This feature required external memory for the controller
2597 * but was never used in a production system. Should always
2598 * be disabled.
2599 *
2600 * Receive Return Ring
2601 * - After the controller has placed an incoming frame into a
2602 * receive buffer that buffer is moved into a receive return
2603 * ring. The driver is then responsible to passing the
2604 * buffer up to the stack. Many versions of the controller
2605 * support multiple RR rings.
2606 *
2607 * Send Ring
2608 * - This ring is used for outgoing frames. Many versions of
2609 * the controller support multiple send rings.
2610 */
2611
2612 /* Step 41: Initialize the standard RX ring control block */
2613 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2614 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2615 if (BGE_IS_5717_PLUS(sc)) {
2616 /*
2617 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2618 * Bits 15-2 : Maximum RX frame size
2619 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2620 * Bit 0 : Reserved
2621 */
2622 rcb->bge_maxlen_flags =
2623 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2624 } else if (BGE_IS_5705_PLUS(sc)) {
2625 /*
2626 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2627 * Bits 15-2 : Reserved (should be 0)
2628 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2629 * Bit 0 : Reserved
2630 */
2631 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2632 } else {
2633 /*
2634 * Ring size is always XXX entries
2635 * Bits 31-16: Maximum RX frame size
2636 * Bits 15-2 : Reserved (should be 0)
2637 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2638 * Bit 0 : Reserved
2639 */
2640 rcb->bge_maxlen_flags =
2641 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2642 }
2643 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2644 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2646 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2647 else
2648 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2649 /* Write the standard receive producer ring control block. */
2650 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2651 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2652 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2653 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2654
2655 /* Reset the standard receive producer ring producer index. */
2656 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2657
2658 /*
2659 * Step 42: Initialize the jumbo RX ring control block
2660 * We set the 'ring disabled' bit in the flags
2661 * field until we're actually ready to start
2662 * using this ring (i.e. once we set the MTU
2663 * high enough to require it).
2664 */
2665 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2666 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2667 BGE_HOSTADDR(rcb->bge_hostaddr,
2668 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2669 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2670 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2671 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2672 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2674 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2675 else
2676 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2677 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2678 rcb->bge_hostaddr.bge_addr_hi);
2679 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2680 rcb->bge_hostaddr.bge_addr_lo);
2681 /* Program the jumbo receive producer ring RCB parameters. */
2682 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2683 rcb->bge_maxlen_flags);
2684 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2685 /* Reset the jumbo receive producer ring producer index. */
2686 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2687 }
2688
2689 /* Disable the mini receive producer ring RCB. */
2690 if (BGE_IS_5700_FAMILY(sc)) {
2691 /* Set up dummy disabled mini ring RCB */
2692 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2693 rcb->bge_maxlen_flags =
2694 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2695 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2696 rcb->bge_maxlen_flags);
2697 /* Reset the mini receive producer ring producer index. */
2698 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2699
2700 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2701 offsetof(struct bge_ring_data, bge_info),
2702 sizeof (struct bge_gib),
2703 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2704 }
2705
2706 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2707 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2708 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2709 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2710 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2711 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2712 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2713 }
2714 /*
2715 * The BD ring replenish thresholds control how often the
2716 * hardware fetches new BD's from the producer rings in host
2717 * memory. Setting the value too low on a busy system can
2718 * starve the hardware and recue the throughpout.
2719 *
2720 * Set the BD ring replenish thresholds. The recommended
2721 * values are 1/8th the number of descriptors allocated to
2722 * each ring, but since we try to avoid filling the entire
2723 * ring we set these to the minimal value of 8. This needs to
2724 * be done on several of the supported chip revisions anyway,
2725 * to work around HW bugs.
2726 */
2727 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2728 if (BGE_IS_JUMBO_CAPABLE(sc))
2729 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2730
2731 if (BGE_IS_5717_PLUS(sc)) {
2732 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2733 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2734 }
2735
2736 /*
2737 * Disable all send rings by setting the 'ring disabled' bit
2738 * in the flags field of all the TX send ring control blocks,
2739 * located in NIC memory.
2740 */
2741 if (BGE_IS_5700_FAMILY(sc)) {
2742 /* 5700 to 5704 had 16 send rings. */
2743 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2744 } else
2745 limit = 1;
2746 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2747 for (i = 0; i < limit; i++) {
2748 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2749 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2750 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2751 rcb_addr += sizeof(struct bge_rcb);
2752 }
2753
2754 /* Configure send ring RCB 0 (we use only the first ring) */
2755 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2756 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2757 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2758 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2759 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2760 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2761 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2762 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2763 else
2764 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2765 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2766 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2767 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2768
2769 /*
2770 * Disable all receive return rings by setting the
2771 * 'ring diabled' bit in the flags field of all the receive
2772 * return ring control blocks, located in NIC memory.
2773 */
2774 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2775 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2776 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2777 /* Should be 17, use 16 until we get an SRAM map. */
2778 limit = 16;
2779 } else if (BGE_IS_5700_FAMILY(sc))
2780 limit = BGE_RX_RINGS_MAX;
2781 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2782 BGE_IS_57765_PLUS(sc))
2783 limit = 4;
2784 else
2785 limit = 1;
2786 /* Disable all receive return rings */
2787 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2788 for (i = 0; i < limit; i++) {
2789 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2790 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2791 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2792 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2793 BGE_RCB_FLAG_RING_DISABLED));
2794 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2795 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2796 (i * (sizeof(uint64_t))), 0);
2797 rcb_addr += sizeof(struct bge_rcb);
2798 }
2799
2800 /*
2801 * Set up receive return ring 0. Note that the NIC address
2802 * for RX return rings is 0x0. The return rings live entirely
2803 * within the host, so the nicaddr field in the RCB isn't used.
2804 */
2805 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2806 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2807 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2808 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2809 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2810 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2811 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2812
2813 /* Set random backoff seed for TX */
2814 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2815 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2816 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2817 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2818 BGE_TX_BACKOFF_SEED_MASK);
2819
2820 /* Set inter-packet gap */
2821 val = 0x2620;
2822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2823 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2824 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2825 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2826
2827 /*
2828 * Specify which ring to use for packets that don't match
2829 * any RX rules.
2830 */
2831 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2832
2833 /*
2834 * Configure number of RX lists. One interrupt distribution
2835 * list, sixteen active lists, one bad frames class.
2836 */
2837 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2838
2839 /* Inialize RX list placement stats mask. */
2840 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2841 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2842
2843 /* Disable host coalescing until we get it set up */
2844 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2845
2846 /* Poll to make sure it's shut down. */
2847 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2848 DELAY(10);
2849 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2850 break;
2851 }
2852
2853 if (i == BGE_TIMEOUT * 2) {
2854 aprint_error_dev(sc->bge_dev,
2855 "host coalescing engine failed to idle\n");
2856 return ENXIO;
2857 }
2858
2859 /* Set up host coalescing defaults */
2860 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2861 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2862 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2863 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2864 if (!(BGE_IS_5705_PLUS(sc))) {
2865 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2866 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2867 }
2868 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2869 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2870
2871 /* Set up address of statistics block */
2872 if (BGE_IS_5700_FAMILY(sc)) {
2873 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2874 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2875 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2876 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2877 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2878 }
2879
2880 /* Set up address of status block */
2881 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2882 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2883 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2884 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2885 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2886 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2887
2888 /* Set up status block size. */
2889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2890 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2891 val = BGE_STATBLKSZ_FULL;
2892 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2893 } else {
2894 val = BGE_STATBLKSZ_32BYTE;
2895 bzero(&sc->bge_rdata->bge_status_block, 32);
2896 }
2897
2898 /* Turn on host coalescing state machine */
2899 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2900
2901 /* Turn on RX BD completion state machine and enable attentions */
2902 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2903 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2904
2905 /* Turn on RX list placement state machine */
2906 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2907
2908 /* Turn on RX list selector state machine. */
2909 if (!(BGE_IS_5705_PLUS(sc)))
2910 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2911
2912 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2913 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2914 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2915 BGE_MACMODE_FRMHDR_DMA_ENB;
2916
2917 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2918 val |= BGE_PORTMODE_TBI;
2919 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2920 val |= BGE_PORTMODE_GMII;
2921 else
2922 val |= BGE_PORTMODE_MII;
2923
2924 /* Allow APE to send/receive frames. */
2925 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2926 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2927
2928 /* Turn on DMA, clear stats */
2929 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2930 DELAY(40);
2931
2932 /* Set misc. local control, enable interrupts on attentions */
2933 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2934 if (BGE_IS_5717_PLUS(sc)) {
2935 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2936 DELAY(100);
2937 }
2938
2939 /* Turn on DMA completion state machine */
2940 if (!(BGE_IS_5705_PLUS(sc)))
2941 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2942
2943 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2944
2945 /* Enable host coalescing bug fix. */
2946 if (BGE_IS_5755_PLUS(sc))
2947 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2948
2949 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2950 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2951
2952 /* Turn on write DMA state machine */
2953 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2954 DELAY(40);
2955
2956 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2957
2958 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2959 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2960
2961 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2962 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2963 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2964 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2965 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2966 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2967
2968 if (sc->bge_flags & BGE_PCIE)
2969 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2970 if (sc->bge_flags & BGE_TSO)
2971 val |= BGE_RDMAMODE_TSO4_ENABLE;
2972
2973 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2974 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2975 BGE_RDMAMODE_H2BNC_VLAN_DET;
2976 /*
2977 * Allow multiple outstanding read requests from
2978 * non-LSO read DMA engine.
2979 */
2980 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2981 }
2982
2983 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2984 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2985 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2986 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2987 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2988 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2989 /*
2990 * Adjust tx margin to prevent TX data corruption and
2991 * fix internal FIFO overflow.
2992 */
2993 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2994 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2995 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2996 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2997 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2998 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2999 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3000 }
3001 /*
3002 * Enable fix for read DMA FIFO overruns.
3003 * The fix is to limit the number of RX BDs
3004 * the hardware would fetch at a fime.
3005 */
3006 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3007 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3008 }
3009
3010 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3011 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3012 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3013 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3014 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3015 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3016 /*
3017 * Allow 4KB burst length reads for non-LSO frames.
3018 * Enable 512B burst length reads for buffer descriptors.
3019 */
3020 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3021 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3022 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3023 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3024 }
3025
3026 /* Turn on read DMA state machine */
3027 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3028 delay(40);
3029
3030 /* Turn on RX data completion state machine */
3031 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3032
3033 /* Turn on RX data and RX BD initiator state machine */
3034 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3035
3036 /* Turn on Mbuf cluster free state machine */
3037 if (!BGE_IS_5705_PLUS(sc))
3038 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3039
3040 /* Turn on send data completion state machine */
3041 val = BGE_SDCMODE_ENABLE;
3042 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3043 val |= BGE_SDCMODE_CDELAY;
3044 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3045
3046 /* Turn on send BD completion state machine */
3047 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3048
3049 /* Turn on RX BD initiator state machine */
3050 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3051
3052 /* Turn on send data initiator state machine */
3053 if (sc->bge_flags & BGE_TSO) {
3054 /* XXX: magic value from Linux driver */
3055 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3056 BGE_SDIMODE_HW_LSO_PRE_DMA);
3057 } else
3058 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3059
3060 /* Turn on send BD initiator state machine */
3061 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3062
3063 /* Turn on send BD selector state machine */
3064 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3065
3066 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3067 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3068 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3069
3070 /* ack/clear link change events */
3071 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3072 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3073 BGE_MACSTAT_LINK_CHANGED);
3074 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3075
3076 /*
3077 * Enable attention when the link has changed state for
3078 * devices that use auto polling.
3079 */
3080 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3081 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3082 } else {
3083 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3084 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3086 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3087 BGE_EVTENB_MI_INTERRUPT);
3088 }
3089
3090 /*
3091 * Clear any pending link state attention.
3092 * Otherwise some link state change events may be lost until attention
3093 * is cleared by bge_intr() -> bge_link_upd() sequence.
3094 * It's not necessary on newer BCM chips - perhaps enabling link
3095 * state change attentions implies clearing pending attention.
3096 */
3097 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3098 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3099 BGE_MACSTAT_LINK_CHANGED);
3100
3101 /* Enable link state change attentions. */
3102 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3103
3104 return 0;
3105 }
3106
3107 static const struct bge_revision *
3108 bge_lookup_rev(uint32_t chipid)
3109 {
3110 const struct bge_revision *br;
3111
3112 for (br = bge_revisions; br->br_name != NULL; br++) {
3113 if (br->br_chipid == chipid)
3114 return br;
3115 }
3116
3117 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3118 if (br->br_chipid == BGE_ASICREV(chipid))
3119 return br;
3120 }
3121
3122 return NULL;
3123 }
3124
3125 static const struct bge_product *
3126 bge_lookup(const struct pci_attach_args *pa)
3127 {
3128 const struct bge_product *bp;
3129
3130 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3131 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3132 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3133 return bp;
3134 }
3135
3136 return NULL;
3137 }
3138
3139 static uint32_t
3140 bge_chipid(const struct pci_attach_args *pa)
3141 {
3142 uint32_t id;
3143
3144 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3145 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3146
3147 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3148 switch (PCI_PRODUCT(pa->pa_id)) {
3149 case PCI_PRODUCT_BROADCOM_BCM5717:
3150 case PCI_PRODUCT_BROADCOM_BCM5718:
3151 case PCI_PRODUCT_BROADCOM_BCM5719:
3152 case PCI_PRODUCT_BROADCOM_BCM5720:
3153 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3154 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3155 BGE_PCI_GEN2_PRODID_ASICREV);
3156 break;
3157 case PCI_PRODUCT_BROADCOM_BCM57761:
3158 case PCI_PRODUCT_BROADCOM_BCM57762:
3159 case PCI_PRODUCT_BROADCOM_BCM57765:
3160 case PCI_PRODUCT_BROADCOM_BCM57766:
3161 case PCI_PRODUCT_BROADCOM_BCM57781:
3162 case PCI_PRODUCT_BROADCOM_BCM57785:
3163 case PCI_PRODUCT_BROADCOM_BCM57791:
3164 case PCI_PRODUCT_BROADCOM_BCM57795:
3165 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3166 BGE_PCI_GEN15_PRODID_ASICREV);
3167 break;
3168 default:
3169 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3170 BGE_PCI_PRODID_ASICREV);
3171 break;
3172 }
3173 }
3174
3175 return id;
3176 }
3177
3178 /*
3179 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3180 * against our list and return its name if we find a match. Note
3181 * that since the Broadcom controller contains VPD support, we
3182 * can get the device name string from the controller itself instead
3183 * of the compiled-in string. This is a little slow, but it guarantees
3184 * we'll always announce the right product name.
3185 */
3186 static int
3187 bge_probe(device_t parent, cfdata_t match, void *aux)
3188 {
3189 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3190
3191 if (bge_lookup(pa) != NULL)
3192 return 1;
3193
3194 return 0;
3195 }
3196
3197 static void
3198 bge_attach(device_t parent, device_t self, void *aux)
3199 {
3200 struct bge_softc *sc = device_private(self);
3201 struct pci_attach_args *pa = aux;
3202 prop_dictionary_t dict;
3203 const struct bge_product *bp;
3204 const struct bge_revision *br;
3205 pci_chipset_tag_t pc;
3206 pci_intr_handle_t ih;
3207 const char *intrstr = NULL;
3208 bus_dma_segment_t seg;
3209 int rseg;
3210 uint32_t hwcfg = 0;
3211 uint32_t command;
3212 struct ifnet *ifp;
3213 uint32_t misccfg;
3214 void * kva;
3215 u_char eaddr[ETHER_ADDR_LEN];
3216 pcireg_t memtype, subid, reg;
3217 bus_addr_t memaddr;
3218 bus_size_t memsize, apesize;
3219 uint32_t pm_ctl;
3220 bool no_seeprom;
3221 int capmask;
3222
3223 bp = bge_lookup(pa);
3224 KASSERT(bp != NULL);
3225
3226 sc->sc_pc = pa->pa_pc;
3227 sc->sc_pcitag = pa->pa_tag;
3228 sc->bge_dev = self;
3229
3230 sc->bge_pa = *pa;
3231 pc = sc->sc_pc;
3232 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3233
3234 aprint_naive(": Ethernet controller\n");
3235 aprint_normal(": %s\n", bp->bp_name);
3236
3237 /*
3238 * Map control/status registers.
3239 */
3240 DPRINTFN(5, ("Map control/status regs\n"));
3241 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3242 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3243 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3244 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3245
3246 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3247 aprint_error_dev(sc->bge_dev,
3248 "failed to enable memory mapping!\n");
3249 return;
3250 }
3251
3252 DPRINTFN(5, ("pci_mem_find\n"));
3253 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3254 switch (memtype) {
3255 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3256 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3257 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3258 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3259 &memaddr, &memsize) == 0)
3260 break;
3261 default:
3262 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3263 return;
3264 }
3265
3266 DPRINTFN(5, ("pci_intr_map\n"));
3267 if (pci_intr_map(pa, &ih)) {
3268 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3269 return;
3270 }
3271
3272 DPRINTFN(5, ("pci_intr_string\n"));
3273 intrstr = pci_intr_string(pc, ih);
3274
3275 DPRINTFN(5, ("pci_intr_establish\n"));
3276 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3277
3278 if (sc->bge_intrhand == NULL) {
3279 aprint_error_dev(sc->bge_dev,
3280 "couldn't establish interrupt%s%s\n",
3281 intrstr ? " at " : "", intrstr ? intrstr : "");
3282 return;
3283 }
3284 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3285
3286 /* Save various chip information. */
3287 sc->bge_chipid = bge_chipid(pa);
3288 sc->bge_phy_addr = bge_phy_addr(sc);
3289
3290 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3291 &sc->bge_pciecap, NULL) != 0)
3292 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3293 /* PCIe */
3294 sc->bge_flags |= BGE_PCIE;
3295 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3296 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3297 sc->bge_expmrq = 2048;
3298 else
3299 sc->bge_expmrq = 4096;
3300 bge_set_max_readrq(sc);
3301 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3302 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3303 /* PCI-X */
3304 sc->bge_flags |= BGE_PCIX;
3305 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3306 &sc->bge_pcixcap, NULL) == 0)
3307 aprint_error_dev(sc->bge_dev,
3308 "unable to find PCIX capability\n");
3309 }
3310
3311 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3312 /*
3313 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3314 * can clobber the chip's PCI config-space power control
3315 * registers, leaving the card in D3 powersave state. We do
3316 * not have memory-mapped registers in this state, so force
3317 * device into D0 state before starting initialization.
3318 */
3319 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3320 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3321 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3322 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3323 DELAY(1000); /* 27 usec is allegedly sufficent */
3324 }
3325
3326 /* Save chipset family. */
3327 switch (BGE_ASICREV(sc->bge_chipid)) {
3328 case BGE_ASICREV_BCM57765:
3329 case BGE_ASICREV_BCM57766:
3330 sc->bge_flags |= BGE_57765_PLUS;
3331 /* FALLTHROUGH */
3332 case BGE_ASICREV_BCM5717:
3333 case BGE_ASICREV_BCM5719:
3334 case BGE_ASICREV_BCM5720:
3335 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3336 BGE_5705_PLUS;
3337 break;
3338 case BGE_ASICREV_BCM5755:
3339 case BGE_ASICREV_BCM5761:
3340 case BGE_ASICREV_BCM5784:
3341 case BGE_ASICREV_BCM5785:
3342 case BGE_ASICREV_BCM5787:
3343 case BGE_ASICREV_BCM57780:
3344 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3345 break;
3346 case BGE_ASICREV_BCM5700:
3347 case BGE_ASICREV_BCM5701:
3348 case BGE_ASICREV_BCM5703:
3349 case BGE_ASICREV_BCM5704:
3350 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3351 break;
3352 case BGE_ASICREV_BCM5714_A0:
3353 case BGE_ASICREV_BCM5780:
3354 case BGE_ASICREV_BCM5714:
3355 sc->bge_flags |= BGE_5714_FAMILY;
3356 /* FALLTHROUGH */
3357 case BGE_ASICREV_BCM5750:
3358 case BGE_ASICREV_BCM5752:
3359 case BGE_ASICREV_BCM5906:
3360 sc->bge_flags |= BGE_575X_PLUS;
3361 /* FALLTHROUGH */
3362 case BGE_ASICREV_BCM5705:
3363 sc->bge_flags |= BGE_5705_PLUS;
3364 break;
3365 }
3366
3367 /* Identify chips with APE processor. */
3368 switch (BGE_ASICREV(sc->bge_chipid)) {
3369 case BGE_ASICREV_BCM5717:
3370 case BGE_ASICREV_BCM5719:
3371 case BGE_ASICREV_BCM5720:
3372 case BGE_ASICREV_BCM5761:
3373 sc->bge_flags |= BGE_APE;
3374 break;
3375 }
3376
3377 /* Chips with APE need BAR2 access for APE registers/memory. */
3378 if ((sc->bge_flags & BGE_APE) != 0) {
3379 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3380 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3381 &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3382 aprint_error_dev(sc->bge_dev,
3383 "couldn't map BAR2 memory\n");
3384 return;
3385 }
3386
3387 /* Enable APE register/memory access by host driver. */
3388 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3389 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3390 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3391 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3392 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3393
3394 bge_ape_lock_init(sc);
3395 bge_ape_read_fw_ver(sc);
3396 }
3397
3398 /* Identify the chips that use an CPMU. */
3399 if (BGE_IS_5717_PLUS(sc) ||
3400 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3401 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3402 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3403 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3404 sc->bge_flags |= BGE_CPMU_PRESENT;
3405
3406 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3407 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3408 else
3409 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3410
3411 /*
3412 * When using the BCM5701 in PCI-X mode, data corruption has
3413 * been observed in the first few bytes of some received packets.
3414 * Aligning the packet buffer in memory eliminates the corruption.
3415 * Unfortunately, this misaligns the packet payloads. On platforms
3416 * which do not support unaligned accesses, we will realign the
3417 * payloads by copying the received packets.
3418 */
3419 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3420 sc->bge_flags & BGE_PCIX)
3421 sc->bge_flags |= BGE_RX_ALIGNBUG;
3422
3423 if (BGE_IS_5700_FAMILY(sc))
3424 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3425
3426 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3427 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3428
3429 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3430 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3431 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3432 sc->bge_flags |= BGE_IS_5788;
3433
3434 /*
3435 * Some controllers seem to require a special firmware to use
3436 * TSO. But the firmware is not available to FreeBSD and Linux
3437 * claims that the TSO performed by the firmware is slower than
3438 * hardware based TSO. Moreover the firmware based TSO has one
3439 * known bug which can't handle TSO if ethernet header + IP/TCP
3440 * header is greater than 80 bytes. The workaround for the TSO
3441 * bug exist but it seems it's too expensive than not using
3442 * TSO at all. Some hardwares also have the TSO bug so limit
3443 * the TSO to the controllers that are not affected TSO issues
3444 * (e.g. 5755 or higher).
3445 */
3446 if (BGE_IS_5755_PLUS(sc)) {
3447 /*
3448 * BCM5754 and BCM5787 shares the same ASIC id so
3449 * explicit device id check is required.
3450 */
3451 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3452 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3453 sc->bge_flags |= BGE_TSO;
3454 }
3455
3456 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3457 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3458 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3459 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3460 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3461 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3462 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3463 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3464 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3465 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3466 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3467 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3468 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3469 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3470 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3471 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3472 capmask &= ~BMSR_EXTSTAT;
3473 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3474 }
3475
3476 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3477 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3478 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3479 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3480 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3481
3482 /* Set various PHY bug flags. */
3483 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3484 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3485 sc->bge_flags |= BGE_PHY_CRC_BUG;
3486 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3487 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3488 sc->bge_flags |= BGE_PHY_ADC_BUG;
3489 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3490 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3491 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3493 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3494 sc->bge_flags |= BGE_PHY_NO_3LED;
3495 if (BGE_IS_5705_PLUS(sc) &&
3496 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3497 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3498 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3499 !BGE_IS_5717_PLUS(sc)) {
3500 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3501 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3503 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3504 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3505 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3506 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3507 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3508 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3509 } else
3510 sc->bge_flags |= BGE_PHY_BER_BUG;
3511 }
3512
3513 /*
3514 * SEEPROM check.
3515 * First check if firmware knows we do not have SEEPROM.
3516 */
3517 if (prop_dictionary_get_bool(device_properties(self),
3518 "without-seeprom", &no_seeprom) && no_seeprom)
3519 sc->bge_flags |= BGE_NO_EEPROM;
3520
3521 /* Now check the 'ROM failed' bit on the RX CPU */
3522 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3523 sc->bge_flags |= BGE_NO_EEPROM;
3524
3525 sc->bge_asf_mode = 0;
3526 /* No ASF if APE present. */
3527 if ((sc->bge_flags & BGE_APE) == 0) {
3528 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3529 BGE_SRAM_DATA_SIG_MAGIC)) {
3530 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3531 BGE_HWCFG_ASF) {
3532 sc->bge_asf_mode |= ASF_ENABLE;
3533 sc->bge_asf_mode |= ASF_STACKUP;
3534 if (BGE_IS_575X_PLUS(sc))
3535 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3536 }
3537 }
3538 }
3539
3540 bge_stop_fw(sc);
3541 bge_sig_pre_reset(sc, BGE_RESET_START);
3542 if (bge_reset(sc))
3543 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3544
3545 bge_sig_legacy(sc, BGE_RESET_START);
3546 bge_sig_post_reset(sc, BGE_RESET_START);
3547
3548 if (bge_chipinit(sc)) {
3549 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3550 bge_release_resources(sc);
3551 return;
3552 }
3553
3554 /*
3555 * Get station address from the EEPROM.
3556 */
3557 if (bge_get_eaddr(sc, eaddr)) {
3558 aprint_error_dev(sc->bge_dev,
3559 "failed to read station address\n");
3560 bge_release_resources(sc);
3561 return;
3562 }
3563
3564 br = bge_lookup_rev(sc->bge_chipid);
3565
3566 if (br == NULL) {
3567 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3568 sc->bge_chipid);
3569 } else {
3570 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3571 br->br_name, sc->bge_chipid);
3572 }
3573 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3574
3575 /* Allocate the general information block and ring buffers. */
3576 if (pci_dma64_available(pa))
3577 sc->bge_dmatag = pa->pa_dmat64;
3578 else
3579 sc->bge_dmatag = pa->pa_dmat;
3580 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3581 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3582 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3583 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3584 return;
3585 }
3586 DPRINTFN(5, ("bus_dmamem_map\n"));
3587 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3588 sizeof(struct bge_ring_data), &kva,
3589 BUS_DMA_NOWAIT)) {
3590 aprint_error_dev(sc->bge_dev,
3591 "can't map DMA buffers (%zu bytes)\n",
3592 sizeof(struct bge_ring_data));
3593 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3594 return;
3595 }
3596 DPRINTFN(5, ("bus_dmamem_create\n"));
3597 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3598 sizeof(struct bge_ring_data), 0,
3599 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3600 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3601 bus_dmamem_unmap(sc->bge_dmatag, kva,
3602 sizeof(struct bge_ring_data));
3603 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3604 return;
3605 }
3606 DPRINTFN(5, ("bus_dmamem_load\n"));
3607 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3608 sizeof(struct bge_ring_data), NULL,
3609 BUS_DMA_NOWAIT)) {
3610 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3611 bus_dmamem_unmap(sc->bge_dmatag, kva,
3612 sizeof(struct bge_ring_data));
3613 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3614 return;
3615 }
3616
3617 DPRINTFN(5, ("bzero\n"));
3618 sc->bge_rdata = (struct bge_ring_data *)kva;
3619
3620 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3621
3622 /* Try to allocate memory for jumbo buffers. */
3623 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3624 if (bge_alloc_jumbo_mem(sc)) {
3625 aprint_error_dev(sc->bge_dev,
3626 "jumbo buffer allocation failed\n");
3627 } else
3628 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3629 }
3630
3631 /* Set default tuneable values. */
3632 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3633 sc->bge_rx_coal_ticks = 150;
3634 sc->bge_rx_max_coal_bds = 64;
3635 sc->bge_tx_coal_ticks = 300;
3636 sc->bge_tx_max_coal_bds = 400;
3637 if (BGE_IS_5705_PLUS(sc)) {
3638 sc->bge_tx_coal_ticks = (12 * 5);
3639 sc->bge_tx_max_coal_bds = (12 * 5);
3640 aprint_verbose_dev(sc->bge_dev,
3641 "setting short Tx thresholds\n");
3642 }
3643
3644 if (BGE_IS_5717_PLUS(sc))
3645 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3646 else if (BGE_IS_5705_PLUS(sc))
3647 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3648 else
3649 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3650
3651 /* Set up ifnet structure */
3652 ifp = &sc->ethercom.ec_if;
3653 ifp->if_softc = sc;
3654 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3655 ifp->if_ioctl = bge_ioctl;
3656 ifp->if_stop = bge_stop;
3657 ifp->if_start = bge_start;
3658 ifp->if_init = bge_init;
3659 ifp->if_watchdog = bge_watchdog;
3660 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3661 IFQ_SET_READY(&ifp->if_snd);
3662 DPRINTFN(5, ("strcpy if_xname\n"));
3663 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3664
3665 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3666 sc->ethercom.ec_if.if_capabilities |=
3667 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3668 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3669 sc->ethercom.ec_if.if_capabilities |=
3670 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3671 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3672 #endif
3673 sc->ethercom.ec_capabilities |=
3674 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3675
3676 if (sc->bge_flags & BGE_TSO)
3677 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3678
3679 /*
3680 * Do MII setup.
3681 */
3682 DPRINTFN(5, ("mii setup\n"));
3683 sc->bge_mii.mii_ifp = ifp;
3684 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3685 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3686 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3687
3688 /*
3689 * Figure out what sort of media we have by checking the hardware
3690 * config word in the first 32k of NIC internal memory, or fall back to
3691 * the config word in the EEPROM. Note: on some BCM5700 cards,
3692 * this value appears to be unset. If that's the case, we have to rely
3693 * on identifying the NIC by its PCI subsystem ID, as we do below for
3694 * the SysKonnect SK-9D41.
3695 */
3696 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3697 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3698 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3699 bge_read_eeprom(sc, (void *)&hwcfg,
3700 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3701 hwcfg = be32toh(hwcfg);
3702 }
3703 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3704 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3705 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3706 if (BGE_IS_5714_FAMILY(sc))
3707 sc->bge_flags |= BGE_PHY_FIBER_MII;
3708 else
3709 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3710 }
3711
3712 /* set phyflags and chipid before mii_attach() */
3713 dict = device_properties(self);
3714 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3715 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3716
3717 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3718 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3719 bge_ifmedia_sts);
3720 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3721 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3722 0, NULL);
3723 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3724 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3725 /* Pretend the user requested this setting */
3726 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3727 } else {
3728 /*
3729 * Do transceiver setup and tell the firmware the
3730 * driver is down so we can try to get access the
3731 * probe if ASF is running. Retry a couple of times
3732 * if we get a conflict with the ASF firmware accessing
3733 * the PHY.
3734 */
3735 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3736 bge_asf_driver_up(sc);
3737
3738 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3739 bge_ifmedia_sts);
3740 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3741 sc->bge_phy_addr, MII_OFFSET_ANY,
3742 MIIF_DOPAUSE);
3743
3744 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3745 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3746 ifmedia_add(&sc->bge_mii.mii_media,
3747 IFM_ETHER|IFM_MANUAL, 0, NULL);
3748 ifmedia_set(&sc->bge_mii.mii_media,
3749 IFM_ETHER|IFM_MANUAL);
3750 } else
3751 ifmedia_set(&sc->bge_mii.mii_media,
3752 IFM_ETHER|IFM_AUTO);
3753
3754 /*
3755 * Now tell the firmware we are going up after probing the PHY
3756 */
3757 if (sc->bge_asf_mode & ASF_STACKUP)
3758 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3759 }
3760
3761 /*
3762 * Call MI attach routine.
3763 */
3764 DPRINTFN(5, ("if_attach\n"));
3765 if_attach(ifp);
3766 DPRINTFN(5, ("ether_ifattach\n"));
3767 ether_ifattach(ifp, eaddr);
3768 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3769 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3770 RND_TYPE_NET, 0);
3771 #ifdef BGE_EVENT_COUNTERS
3772 /*
3773 * Attach event counters.
3774 */
3775 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3776 NULL, device_xname(sc->bge_dev), "intr");
3777 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3778 NULL, device_xname(sc->bge_dev), "tx_xoff");
3779 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3780 NULL, device_xname(sc->bge_dev), "tx_xon");
3781 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3782 NULL, device_xname(sc->bge_dev), "rx_xoff");
3783 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3784 NULL, device_xname(sc->bge_dev), "rx_xon");
3785 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3786 NULL, device_xname(sc->bge_dev), "rx_macctl");
3787 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3788 NULL, device_xname(sc->bge_dev), "xoffentered");
3789 #endif /* BGE_EVENT_COUNTERS */
3790 DPRINTFN(5, ("callout_init\n"));
3791 callout_init(&sc->bge_timeout, 0);
3792
3793 if (pmf_device_register(self, NULL, NULL))
3794 pmf_class_network_register(self, ifp);
3795 else
3796 aprint_error_dev(self, "couldn't establish power handler\n");
3797
3798 bge_sysctl_init(sc);
3799
3800 #ifdef BGE_DEBUG
3801 bge_debug_info(sc);
3802 #endif
3803 }
3804
3805 static void
3806 bge_release_resources(struct bge_softc *sc)
3807 {
3808 if (sc->bge_vpd_prodname != NULL)
3809 free(sc->bge_vpd_prodname, M_DEVBUF);
3810
3811 if (sc->bge_vpd_readonly != NULL)
3812 free(sc->bge_vpd_readonly, M_DEVBUF);
3813 }
3814
3815 static int
3816 bge_reset(struct bge_softc *sc)
3817 {
3818 uint32_t cachesize, command;
3819 uint32_t reset, mac_mode, mac_mode_mask;
3820 pcireg_t devctl, reg;
3821 int i, val;
3822 void (*write_op)(struct bge_softc *, int, int);
3823
3824 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3825 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3826 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3827 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3828
3829 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3830 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3831 if (sc->bge_flags & BGE_PCIE)
3832 write_op = bge_writemem_direct;
3833 else
3834 write_op = bge_writemem_ind;
3835 } else
3836 write_op = bge_writereg_ind;
3837
3838 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3839 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3840 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3841 for (i = 0; i < 8000; i++) {
3842 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3843 BGE_NVRAMSWARB_GNT1)
3844 break;
3845 DELAY(20);
3846 }
3847 if (i == 8000) {
3848 printf("%s: NVRAM lock timedout!\n",
3849 device_xname(sc->bge_dev));
3850 }
3851 }
3852 /* Take APE lock when performing reset. */
3853 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3854
3855 /* Save some important PCI state. */
3856 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3857 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3858
3859 /* Step 5b-5d: */
3860 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3861 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3862 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3863
3864 /* XXX ???: Disable fastboot on controllers that support it. */
3865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3866 BGE_IS_5755_PLUS(sc))
3867 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3868
3869 /*
3870 * Step 6: Write the magic number to SRAM at offset 0xB50.
3871 * When firmware finishes its initialization it will
3872 * write ~BGE_MAGIC_NUMBER to the same location.
3873 */
3874 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3875
3876 /* Step 7: */
3877 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3878 /*
3879 * XXX: from FreeBSD/Linux; no documentation
3880 */
3881 if (sc->bge_flags & BGE_PCIE) {
3882 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3883 !BGE_IS_57765_PLUS(sc) &&
3884 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3885 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3886 /* PCI Express 1.0 system */
3887 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3888 BGE_PHY_PCIE_SCRAM_MODE);
3889 }
3890 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3891 /*
3892 * Prevent PCI Express link training
3893 * during global reset.
3894 */
3895 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3896 reset |= (1 << 29);
3897 }
3898 }
3899
3900 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3901 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3902 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3903 i | BGE_VCPU_STATUS_DRV_RESET);
3904 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3905 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3906 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3907 }
3908
3909 /*
3910 * Set GPHY Power Down Override to leave GPHY
3911 * powered up in D0 uninitialized.
3912 */
3913 if (BGE_IS_5705_PLUS(sc) &&
3914 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3915 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3916
3917 /* Issue global reset */
3918 write_op(sc, BGE_MISC_CFG, reset);
3919
3920 /* Step 8: wait for complete */
3921 if (sc->bge_flags & BGE_PCIE)
3922 delay(100*1000); /* too big */
3923 else
3924 delay(1000);
3925
3926 if (sc->bge_flags & BGE_PCIE) {
3927 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3928 DELAY(500000);
3929 /* XXX: Magic Numbers */
3930 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3931 BGE_PCI_UNKNOWN0);
3932 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3933 BGE_PCI_UNKNOWN0,
3934 reg | (1 << 15));
3935 }
3936 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3937 sc->bge_pciecap + PCI_PCIE_DCSR);
3938 /* Clear enable no snoop and disable relaxed ordering. */
3939 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3940 PCI_PCIE_DCSR_ENA_NO_SNOOP);
3941
3942 /* Set PCIE max payload size to 128 for older PCIe devices */
3943 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3944 devctl &= ~(0x00e0);
3945 /* Clear device status register. Write 1b to clear */
3946 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3947 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3948 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3949 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3950 bge_set_max_readrq(sc);
3951 }
3952
3953 /* From Linux: dummy read to flush PCI posted writes */
3954 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3955
3956 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
3957 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3958 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3959 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3960 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3961 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3962 (sc->bge_flags & BGE_PCIX) != 0)
3963 val |= BGE_PCISTATE_RETRY_SAME_DMA;
3964 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3965 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3966 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3967 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3968 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3969 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3970 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3971
3972 /* Step 11: disable PCI-X Relaxed Ordering. */
3973 if (sc->bge_flags & BGE_PCIX) {
3974 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3975 + PCI_PCIX_CMD);
3976 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3977 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3978 }
3979
3980 /* Step 12: Enable memory arbiter. */
3981 if (BGE_IS_5714_FAMILY(sc)) {
3982 val = CSR_READ_4(sc, BGE_MARB_MODE);
3983 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3984 } else
3985 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3986
3987 /* XXX 5721, 5751 and 5752 */
3988 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3989 /* Step 19: */
3990 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3991 /* Step 20: */
3992 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3993 }
3994
3995 /* Step 28: Fix up byte swapping */
3996 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3997
3998 /*
3999 * Wait for the bootcode to complete initialization.
4000 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4001 * Section 7".
4002 */
4003 if (BGE_IS_5717_PLUS(sc)) {
4004 for (i = 0; i < 1000*1000; i++) {
4005 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4006 if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4007 break;
4008 DELAY(10);
4009 }
4010 }
4011
4012 /* Step 21: 5822 B0 errata */
4013 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4014 pcireg_t msidata;
4015
4016 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4017 BGE_PCI_MSI_DATA);
4018 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4019 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4020 msidata);
4021 }
4022
4023 /*
4024 * Step 18: wirte mac mode
4025 * XXX Write 0x0c for 5703S and 5704S
4026 */
4027 val = CSR_READ_4(sc, BGE_MAC_MODE);
4028 val = (val & ~mac_mode_mask) | mac_mode;
4029 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4030 DELAY(40);
4031
4032 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4033
4034 /* Step 17: Poll until the firmware initialization is complete */
4035 bge_poll_fw(sc);
4036
4037 /*
4038 * The 5704 in TBI mode apparently needs some special
4039 * adjustment to insure the SERDES drive level is set
4040 * to 1.2V.
4041 */
4042 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4044 uint32_t serdescfg;
4045
4046 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4047 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4048 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4049 }
4050
4051 if (sc->bge_flags & BGE_PCIE &&
4052 !BGE_IS_57765_PLUS(sc) &&
4053 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4054 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4055 uint32_t v;
4056
4057 /* Enable PCI Express bug fix */
4058 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4059 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4060 v | BGE_TLP_DATA_FIFO_PROTECT);
4061 }
4062
4063 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4064 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4065 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4066
4067 return 0;
4068 }
4069
4070 /*
4071 * Frame reception handling. This is called if there's a frame
4072 * on the receive return list.
4073 *
4074 * Note: we have to be able to handle two possibilities here:
4075 * 1) the frame is from the jumbo receive ring
4076 * 2) the frame is from the standard receive ring
4077 */
4078
4079 static void
4080 bge_rxeof(struct bge_softc *sc)
4081 {
4082 struct ifnet *ifp;
4083 uint16_t rx_prod, rx_cons;
4084 int stdcnt = 0, jumbocnt = 0;
4085 bus_dmamap_t dmamap;
4086 bus_addr_t offset, toff;
4087 bus_size_t tlen;
4088 int tosync;
4089
4090 rx_cons = sc->bge_rx_saved_considx;
4091 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4092
4093 /* Nothing to do */
4094 if (rx_cons == rx_prod)
4095 return;
4096
4097 ifp = &sc->ethercom.ec_if;
4098
4099 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4100 offsetof(struct bge_ring_data, bge_status_block),
4101 sizeof (struct bge_status_block),
4102 BUS_DMASYNC_POSTREAD);
4103
4104 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4105 tosync = rx_prod - rx_cons;
4106
4107 if (tosync != 0)
4108 rnd_add_uint32(&sc->rnd_source, tosync);
4109
4110 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4111
4112 if (tosync < 0) {
4113 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4114 sizeof (struct bge_rx_bd);
4115 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4116 toff, tlen, BUS_DMASYNC_POSTREAD);
4117 tosync = -tosync;
4118 }
4119
4120 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4121 offset, tosync * sizeof (struct bge_rx_bd),
4122 BUS_DMASYNC_POSTREAD);
4123
4124 while (rx_cons != rx_prod) {
4125 struct bge_rx_bd *cur_rx;
4126 uint32_t rxidx;
4127 struct mbuf *m = NULL;
4128
4129 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4130
4131 rxidx = cur_rx->bge_idx;
4132 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4133
4134 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4135 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4136 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4137 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4138 jumbocnt++;
4139 bus_dmamap_sync(sc->bge_dmatag,
4140 sc->bge_cdata.bge_rx_jumbo_map,
4141 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4142 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4143 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4144 ifp->if_ierrors++;
4145 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4146 continue;
4147 }
4148 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4149 NULL)== ENOBUFS) {
4150 ifp->if_ierrors++;
4151 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4152 continue;
4153 }
4154 } else {
4155 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4156 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4157
4158 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4159 stdcnt++;
4160 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4161 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4162 if (dmamap == NULL) {
4163 ifp->if_ierrors++;
4164 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4165 continue;
4166 }
4167 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4168 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4169 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4170 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4171 ifp->if_ierrors++;
4172 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4173 continue;
4174 }
4175 if (bge_newbuf_std(sc, sc->bge_std,
4176 NULL, dmamap) == ENOBUFS) {
4177 ifp->if_ierrors++;
4178 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4179 continue;
4180 }
4181 }
4182
4183 ifp->if_ipackets++;
4184 #ifndef __NO_STRICT_ALIGNMENT
4185 /*
4186 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4187 * the Rx buffer has the layer-2 header unaligned.
4188 * If our CPU requires alignment, re-align by copying.
4189 */
4190 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4191 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4192 cur_rx->bge_len);
4193 m->m_data += ETHER_ALIGN;
4194 }
4195 #endif
4196
4197 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4198 m->m_pkthdr.rcvif = ifp;
4199
4200 /*
4201 * Handle BPF listeners. Let the BPF user see the packet.
4202 */
4203 bpf_mtap(ifp, m);
4204
4205 bge_rxcsum(sc, cur_rx, m);
4206
4207 /*
4208 * If we received a packet with a vlan tag, pass it
4209 * to vlan_input() instead of ether_input().
4210 */
4211 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4212 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4213 }
4214
4215 (*ifp->if_input)(ifp, m);
4216 }
4217
4218 sc->bge_rx_saved_considx = rx_cons;
4219 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4220 if (stdcnt)
4221 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4222 if (jumbocnt)
4223 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4224 }
4225
4226 static void
4227 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4228 {
4229
4230 if (BGE_IS_5717_PLUS(sc)) {
4231 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4232 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4233 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4234 if ((cur_rx->bge_error_flag &
4235 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4236 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4237 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4238 m->m_pkthdr.csum_data =
4239 cur_rx->bge_tcp_udp_csum;
4240 m->m_pkthdr.csum_flags |=
4241 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4242 M_CSUM_DATA);
4243 }
4244 }
4245 } else {
4246 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4247 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4248 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4249 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4250 /*
4251 * Rx transport checksum-offload may also
4252 * have bugs with packets which, when transmitted,
4253 * were `runts' requiring padding.
4254 */
4255 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4256 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4257 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4258 m->m_pkthdr.csum_data =
4259 cur_rx->bge_tcp_udp_csum;
4260 m->m_pkthdr.csum_flags |=
4261 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4262 M_CSUM_DATA);
4263 }
4264 }
4265 }
4266
4267 static void
4268 bge_txeof(struct bge_softc *sc)
4269 {
4270 struct bge_tx_bd *cur_tx = NULL;
4271 struct ifnet *ifp;
4272 struct txdmamap_pool_entry *dma;
4273 bus_addr_t offset, toff;
4274 bus_size_t tlen;
4275 int tosync;
4276 struct mbuf *m;
4277
4278 ifp = &sc->ethercom.ec_if;
4279
4280 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4281 offsetof(struct bge_ring_data, bge_status_block),
4282 sizeof (struct bge_status_block),
4283 BUS_DMASYNC_POSTREAD);
4284
4285 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4286 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4287 sc->bge_tx_saved_considx;
4288
4289 if (tosync != 0)
4290 rnd_add_uint32(&sc->rnd_source, tosync);
4291
4292 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4293
4294 if (tosync < 0) {
4295 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4296 sizeof (struct bge_tx_bd);
4297 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4298 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4299 tosync = -tosync;
4300 }
4301
4302 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4303 offset, tosync * sizeof (struct bge_tx_bd),
4304 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4305
4306 /*
4307 * Go through our tx ring and free mbufs for those
4308 * frames that have been sent.
4309 */
4310 while (sc->bge_tx_saved_considx !=
4311 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4312 uint32_t idx = 0;
4313
4314 idx = sc->bge_tx_saved_considx;
4315 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4316 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4317 ifp->if_opackets++;
4318 m = sc->bge_cdata.bge_tx_chain[idx];
4319 if (m != NULL) {
4320 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4321 dma = sc->txdma[idx];
4322 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4323 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4324 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4325 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4326 sc->txdma[idx] = NULL;
4327
4328 m_freem(m);
4329 }
4330 sc->bge_txcnt--;
4331 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4332 ifp->if_timer = 0;
4333 }
4334
4335 if (cur_tx != NULL)
4336 ifp->if_flags &= ~IFF_OACTIVE;
4337 }
4338
4339 static int
4340 bge_intr(void *xsc)
4341 {
4342 struct bge_softc *sc;
4343 struct ifnet *ifp;
4344 uint32_t statusword;
4345
4346 sc = xsc;
4347 ifp = &sc->ethercom.ec_if;
4348
4349 /* It is possible for the interrupt to arrive before
4350 * the status block is updated prior to the interrupt.
4351 * Reading the PCI State register will confirm whether the
4352 * interrupt is ours and will flush the status block.
4353 */
4354
4355 /* read status word from status block */
4356 statusword = sc->bge_rdata->bge_status_block.bge_status;
4357
4358 if ((statusword & BGE_STATFLAG_UPDATED) ||
4359 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4360 /* Ack interrupt and stop others from occuring. */
4361 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4362
4363 BGE_EVCNT_INCR(sc->bge_ev_intr);
4364
4365 /* clear status word */
4366 sc->bge_rdata->bge_status_block.bge_status = 0;
4367
4368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4369 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4370 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4371 bge_link_upd(sc);
4372
4373 if (ifp->if_flags & IFF_RUNNING) {
4374 /* Check RX return ring producer/consumer */
4375 bge_rxeof(sc);
4376
4377 /* Check TX ring producer/consumer */
4378 bge_txeof(sc);
4379 }
4380
4381 if (sc->bge_pending_rxintr_change) {
4382 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4383 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4384 uint32_t junk;
4385
4386 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4387 DELAY(10);
4388 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4389
4390 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4391 DELAY(10);
4392 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4393
4394 sc->bge_pending_rxintr_change = 0;
4395 }
4396 bge_handle_events(sc);
4397
4398 /* Re-enable interrupts. */
4399 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4400
4401 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4402 bge_start(ifp);
4403
4404 return 1;
4405 } else
4406 return 0;
4407 }
4408
4409 static void
4410 bge_asf_driver_up(struct bge_softc *sc)
4411 {
4412 if (sc->bge_asf_mode & ASF_STACKUP) {
4413 /* Send ASF heartbeat aprox. every 2s */
4414 if (sc->bge_asf_count)
4415 sc->bge_asf_count --;
4416 else {
4417 sc->bge_asf_count = 2;
4418
4419 bge_wait_for_event_ack(sc);
4420
4421 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4422 BGE_FW_CMD_DRV_ALIVE);
4423 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4424 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4425 BGE_FW_HB_TIMEOUT_SEC);
4426 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4427 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4428 BGE_RX_CPU_DRV_EVENT);
4429 }
4430 }
4431 }
4432
4433 static void
4434 bge_tick(void *xsc)
4435 {
4436 struct bge_softc *sc = xsc;
4437 struct mii_data *mii = &sc->bge_mii;
4438 int s;
4439
4440 s = splnet();
4441
4442 if (BGE_IS_5705_PLUS(sc))
4443 bge_stats_update_regs(sc);
4444 else
4445 bge_stats_update(sc);
4446
4447 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4448 /*
4449 * Since in TBI mode auto-polling can't be used we should poll
4450 * link status manually. Here we register pending link event
4451 * and trigger interrupt.
4452 */
4453 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4454 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4455 } else {
4456 /*
4457 * Do not touch PHY if we have link up. This could break
4458 * IPMI/ASF mode or produce extra input errors.
4459 * (extra input errors was reported for bcm5701 & bcm5704).
4460 */
4461 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4462 mii_tick(mii);
4463 }
4464
4465 bge_asf_driver_up(sc);
4466
4467 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4468
4469 splx(s);
4470 }
4471
4472 static void
4473 bge_stats_update_regs(struct bge_softc *sc)
4474 {
4475 struct ifnet *ifp = &sc->ethercom.ec_if;
4476
4477 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4478 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4479
4480 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4481 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4482 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4483 }
4484
4485 static void
4486 bge_stats_update(struct bge_softc *sc)
4487 {
4488 struct ifnet *ifp = &sc->ethercom.ec_if;
4489 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4490
4491 #define READ_STAT(sc, stats, stat) \
4492 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4493
4494 ifp->if_collisions +=
4495 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4496 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4497 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4498 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4499 ifp->if_collisions;
4500
4501 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4502 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4503 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4504 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4505 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4506 READ_STAT(sc, stats,
4507 xoffPauseFramesReceived.bge_addr_lo));
4508 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4509 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4510 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4511 READ_STAT(sc, stats,
4512 macControlFramesReceived.bge_addr_lo));
4513 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4514 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4515
4516 #undef READ_STAT
4517
4518 #ifdef notdef
4519 ifp->if_collisions +=
4520 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4521 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4522 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4523 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4524 ifp->if_collisions;
4525 #endif
4526 }
4527
4528 /*
4529 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4530 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4531 * but when such padded frames employ the bge IP/TCP checksum offload,
4532 * the hardware checksum assist gives incorrect results (possibly
4533 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4534 * If we pad such runts with zeros, the onboard checksum comes out correct.
4535 */
4536 static inline int
4537 bge_cksum_pad(struct mbuf *pkt)
4538 {
4539 struct mbuf *last = NULL;
4540 int padlen;
4541
4542 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4543
4544 /* if there's only the packet-header and we can pad there, use it. */
4545 if (pkt->m_pkthdr.len == pkt->m_len &&
4546 M_TRAILINGSPACE(pkt) >= padlen) {
4547 last = pkt;
4548 } else {
4549 /*
4550 * Walk packet chain to find last mbuf. We will either
4551 * pad there, or append a new mbuf and pad it
4552 * (thus perhaps avoiding the bcm5700 dma-min bug).
4553 */
4554 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4555 continue; /* do nothing */
4556 }
4557
4558 /* `last' now points to last in chain. */
4559 if (M_TRAILINGSPACE(last) < padlen) {
4560 /* Allocate new empty mbuf, pad it. Compact later. */
4561 struct mbuf *n;
4562 MGET(n, M_DONTWAIT, MT_DATA);
4563 if (n == NULL)
4564 return ENOBUFS;
4565 n->m_len = 0;
4566 last->m_next = n;
4567 last = n;
4568 }
4569 }
4570
4571 KDASSERT(!M_READONLY(last));
4572 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4573
4574 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4575 memset(mtod(last, char *) + last->m_len, 0, padlen);
4576 last->m_len += padlen;
4577 pkt->m_pkthdr.len += padlen;
4578 return 0;
4579 }
4580
4581 /*
4582 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4583 */
4584 static inline int
4585 bge_compact_dma_runt(struct mbuf *pkt)
4586 {
4587 struct mbuf *m, *prev;
4588 int totlen, prevlen;
4589
4590 prev = NULL;
4591 totlen = 0;
4592 prevlen = -1;
4593
4594 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4595 int mlen = m->m_len;
4596 int shortfall = 8 - mlen ;
4597
4598 totlen += mlen;
4599 if (mlen == 0)
4600 continue;
4601 if (mlen >= 8)
4602 continue;
4603
4604 /* If we get here, mbuf data is too small for DMA engine.
4605 * Try to fix by shuffling data to prev or next in chain.
4606 * If that fails, do a compacting deep-copy of the whole chain.
4607 */
4608
4609 /* Internal frag. If fits in prev, copy it there. */
4610 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4611 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4612 prev->m_len += mlen;
4613 m->m_len = 0;
4614 /* XXX stitch chain */
4615 prev->m_next = m_free(m);
4616 m = prev;
4617 continue;
4618 }
4619 else if (m->m_next != NULL &&
4620 M_TRAILINGSPACE(m) >= shortfall &&
4621 m->m_next->m_len >= (8 + shortfall)) {
4622 /* m is writable and have enough data in next, pull up. */
4623
4624 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4625 shortfall);
4626 m->m_len += shortfall;
4627 m->m_next->m_len -= shortfall;
4628 m->m_next->m_data += shortfall;
4629 }
4630 else if (m->m_next == NULL || 1) {
4631 /* Got a runt at the very end of the packet.
4632 * borrow data from the tail of the preceding mbuf and
4633 * update its length in-place. (The original data is still
4634 * valid, so we can do this even if prev is not writable.)
4635 */
4636
4637 /* if we'd make prev a runt, just move all of its data. */
4638 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4639 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4640
4641 if ((prev->m_len - shortfall) < 8)
4642 shortfall = prev->m_len;
4643
4644 #ifdef notyet /* just do the safe slow thing for now */
4645 if (!M_READONLY(m)) {
4646 if (M_LEADINGSPACE(m) < shorfall) {
4647 void *m_dat;
4648 m_dat = (m->m_flags & M_PKTHDR) ?
4649 m->m_pktdat : m->dat;
4650 memmove(m_dat, mtod(m, void*), m->m_len);
4651 m->m_data = m_dat;
4652 }
4653 } else
4654 #endif /* just do the safe slow thing */
4655 {
4656 struct mbuf * n = NULL;
4657 int newprevlen = prev->m_len - shortfall;
4658
4659 MGET(n, M_NOWAIT, MT_DATA);
4660 if (n == NULL)
4661 return ENOBUFS;
4662 KASSERT(m->m_len + shortfall < MLEN
4663 /*,
4664 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4665
4666 /* first copy the data we're stealing from prev */
4667 memcpy(n->m_data, prev->m_data + newprevlen,
4668 shortfall);
4669
4670 /* update prev->m_len accordingly */
4671 prev->m_len -= shortfall;
4672
4673 /* copy data from runt m */
4674 memcpy(n->m_data + shortfall, m->m_data,
4675 m->m_len);
4676
4677 /* n holds what we stole from prev, plus m */
4678 n->m_len = shortfall + m->m_len;
4679
4680 /* stitch n into chain and free m */
4681 n->m_next = m->m_next;
4682 prev->m_next = n;
4683 /* KASSERT(m->m_next == NULL); */
4684 m->m_next = NULL;
4685 m_free(m);
4686 m = n; /* for continuing loop */
4687 }
4688 }
4689 prevlen = m->m_len;
4690 }
4691 return 0;
4692 }
4693
4694 /*
4695 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4696 * pointers to descriptors.
4697 */
4698 static int
4699 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4700 {
4701 struct bge_tx_bd *f = NULL;
4702 uint32_t frag, cur;
4703 uint16_t csum_flags = 0;
4704 uint16_t txbd_tso_flags = 0;
4705 struct txdmamap_pool_entry *dma;
4706 bus_dmamap_t dmamap;
4707 int i = 0;
4708 struct m_tag *mtag;
4709 int use_tso, maxsegsize, error;
4710
4711 cur = frag = *txidx;
4712
4713 if (m_head->m_pkthdr.csum_flags) {
4714 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4715 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4716 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4717 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4718 }
4719
4720 /*
4721 * If we were asked to do an outboard checksum, and the NIC
4722 * has the bug where it sometimes adds in the Ethernet padding,
4723 * explicitly pad with zeros so the cksum will be correct either way.
4724 * (For now, do this for all chip versions, until newer
4725 * are confirmed to not require the workaround.)
4726 */
4727 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4728 #ifdef notyet
4729 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4730 #endif
4731 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4732 goto check_dma_bug;
4733
4734 if (bge_cksum_pad(m_head) != 0)
4735 return ENOBUFS;
4736
4737 check_dma_bug:
4738 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4739 goto doit;
4740
4741 /*
4742 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4743 * less than eight bytes. If we encounter a teeny mbuf
4744 * at the end of a chain, we can pad. Otherwise, copy.
4745 */
4746 if (bge_compact_dma_runt(m_head) != 0)
4747 return ENOBUFS;
4748
4749 doit:
4750 dma = SLIST_FIRST(&sc->txdma_list);
4751 if (dma == NULL)
4752 return ENOBUFS;
4753 dmamap = dma->dmamap;
4754
4755 /*
4756 * Set up any necessary TSO state before we start packing...
4757 */
4758 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4759 if (!use_tso) {
4760 maxsegsize = 0;
4761 } else { /* TSO setup */
4762 unsigned mss;
4763 struct ether_header *eh;
4764 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4765 struct mbuf * m0 = m_head;
4766 struct ip *ip;
4767 struct tcphdr *th;
4768 int iphl, hlen;
4769
4770 /*
4771 * XXX It would be nice if the mbuf pkthdr had offset
4772 * fields for the protocol headers.
4773 */
4774
4775 eh = mtod(m0, struct ether_header *);
4776 switch (htons(eh->ether_type)) {
4777 case ETHERTYPE_IP:
4778 offset = ETHER_HDR_LEN;
4779 break;
4780
4781 case ETHERTYPE_VLAN:
4782 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4783 break;
4784
4785 default:
4786 /*
4787 * Don't support this protocol or encapsulation.
4788 */
4789 return ENOBUFS;
4790 }
4791
4792 /*
4793 * TCP/IP headers are in the first mbuf; we can do
4794 * this the easy way.
4795 */
4796 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4797 hlen = iphl + offset;
4798 if (__predict_false(m0->m_len <
4799 (hlen + sizeof(struct tcphdr)))) {
4800
4801 aprint_debug_dev(sc->bge_dev,
4802 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4803 "not handled yet\n",
4804 m0->m_len, hlen+ sizeof(struct tcphdr));
4805 #ifdef NOTYET
4806 /*
4807 * XXX jonathan (at) NetBSD.org: untested.
4808 * how to force this branch to be taken?
4809 */
4810 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4811
4812 m_copydata(m0, offset, sizeof(ip), &ip);
4813 m_copydata(m0, hlen, sizeof(th), &th);
4814
4815 ip.ip_len = 0;
4816
4817 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4818 sizeof(ip.ip_len), &ip.ip_len);
4819
4820 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4821 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4822
4823 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4824 sizeof(th.th_sum), &th.th_sum);
4825
4826 hlen += th.th_off << 2;
4827 iptcp_opt_words = hlen;
4828 #else
4829 /*
4830 * if_wm "hard" case not yet supported, can we not
4831 * mandate it out of existence?
4832 */
4833 (void) ip; (void)th; (void) ip_tcp_hlen;
4834
4835 return ENOBUFS;
4836 #endif
4837 } else {
4838 ip = (struct ip *) (mtod(m0, char *) + offset);
4839 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4840 ip_tcp_hlen = iphl + (th->th_off << 2);
4841
4842 /* Total IP/TCP options, in 32-bit words */
4843 iptcp_opt_words = (ip_tcp_hlen
4844 - sizeof(struct tcphdr)
4845 - sizeof(struct ip)) >> 2;
4846 }
4847 if (BGE_IS_575X_PLUS(sc)) {
4848 th->th_sum = 0;
4849 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4850 } else {
4851 /*
4852 * XXX jonathan (at) NetBSD.org: 5705 untested.
4853 * Requires TSO firmware patch for 5701/5703/5704.
4854 */
4855 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4856 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4857 }
4858
4859 mss = m_head->m_pkthdr.segsz;
4860 txbd_tso_flags |=
4861 BGE_TXBDFLAG_CPU_PRE_DMA |
4862 BGE_TXBDFLAG_CPU_POST_DMA;
4863
4864 /*
4865 * Our NIC TSO-assist assumes TSO has standard, optionless
4866 * IPv4 and TCP headers, which total 40 bytes. By default,
4867 * the NIC copies 40 bytes of IP/TCP header from the
4868 * supplied header into the IP/TCP header portion of
4869 * each post-TSO-segment. If the supplied packet has IP or
4870 * TCP options, we need to tell the NIC to copy those extra
4871 * bytes into each post-TSO header, in addition to the normal
4872 * 40-byte IP/TCP header (and to leave space accordingly).
4873 * Unfortunately, the driver encoding of option length
4874 * varies across different ASIC families.
4875 */
4876 tcp_seg_flags = 0;
4877 if (iptcp_opt_words) {
4878 if (BGE_IS_5705_PLUS(sc)) {
4879 tcp_seg_flags =
4880 iptcp_opt_words << 11;
4881 } else {
4882 txbd_tso_flags |=
4883 iptcp_opt_words << 12;
4884 }
4885 }
4886 maxsegsize = mss | tcp_seg_flags;
4887 ip->ip_len = htons(mss + ip_tcp_hlen);
4888
4889 } /* TSO setup */
4890
4891 /*
4892 * Start packing the mbufs in this chain into
4893 * the fragment pointers. Stop when we run out
4894 * of fragments or hit the end of the mbuf chain.
4895 */
4896 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4897 BUS_DMA_NOWAIT);
4898 if (error)
4899 return ENOBUFS;
4900 /*
4901 * Sanity check: avoid coming within 16 descriptors
4902 * of the end of the ring.
4903 */
4904 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4905 BGE_TSO_PRINTF(("%s: "
4906 " dmamap_load_mbuf too close to ring wrap\n",
4907 device_xname(sc->bge_dev)));
4908 goto fail_unload;
4909 }
4910
4911 mtag = sc->ethercom.ec_nvlans ?
4912 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4913
4914
4915 /* Iterate over dmap-map fragments. */
4916 for (i = 0; i < dmamap->dm_nsegs; i++) {
4917 f = &sc->bge_rdata->bge_tx_ring[frag];
4918 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4919 break;
4920
4921 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4922 f->bge_len = dmamap->dm_segs[i].ds_len;
4923
4924 /*
4925 * For 5751 and follow-ons, for TSO we must turn
4926 * off checksum-assist flag in the tx-descr, and
4927 * supply the ASIC-revision-specific encoding
4928 * of TSO flags and segsize.
4929 */
4930 if (use_tso) {
4931 if (BGE_IS_575X_PLUS(sc) || i == 0) {
4932 f->bge_rsvd = maxsegsize;
4933 f->bge_flags = csum_flags | txbd_tso_flags;
4934 } else {
4935 f->bge_rsvd = 0;
4936 f->bge_flags =
4937 (csum_flags | txbd_tso_flags) & 0x0fff;
4938 }
4939 } else {
4940 f->bge_rsvd = 0;
4941 f->bge_flags = csum_flags;
4942 }
4943
4944 if (mtag != NULL) {
4945 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4946 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4947 } else {
4948 f->bge_vlan_tag = 0;
4949 }
4950 cur = frag;
4951 BGE_INC(frag, BGE_TX_RING_CNT);
4952 }
4953
4954 if (i < dmamap->dm_nsegs) {
4955 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4956 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4957 goto fail_unload;
4958 }
4959
4960 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4961 BUS_DMASYNC_PREWRITE);
4962
4963 if (frag == sc->bge_tx_saved_considx) {
4964 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4965 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4966
4967 goto fail_unload;
4968 }
4969
4970 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4971 sc->bge_cdata.bge_tx_chain[cur] = m_head;
4972 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4973 sc->txdma[cur] = dma;
4974 sc->bge_txcnt += dmamap->dm_nsegs;
4975
4976 *txidx = frag;
4977
4978 return 0;
4979
4980 fail_unload:
4981 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4982
4983 return ENOBUFS;
4984 }
4985
4986 /*
4987 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4988 * to the mbuf data regions directly in the transmit descriptors.
4989 */
4990 static void
4991 bge_start(struct ifnet *ifp)
4992 {
4993 struct bge_softc *sc;
4994 struct mbuf *m_head = NULL;
4995 uint32_t prodidx;
4996 int pkts = 0;
4997
4998 sc = ifp->if_softc;
4999
5000 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5001 return;
5002
5003 prodidx = sc->bge_tx_prodidx;
5004
5005 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5006 IFQ_POLL(&ifp->if_snd, m_head);
5007 if (m_head == NULL)
5008 break;
5009
5010 #if 0
5011 /*
5012 * XXX
5013 * safety overkill. If this is a fragmented packet chain
5014 * with delayed TCP/UDP checksums, then only encapsulate
5015 * it if we have enough descriptors to handle the entire
5016 * chain at once.
5017 * (paranoia -- may not actually be needed)
5018 */
5019 if (m_head->m_flags & M_FIRSTFRAG &&
5020 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5021 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5022 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5023 ifp->if_flags |= IFF_OACTIVE;
5024 break;
5025 }
5026 }
5027 #endif
5028
5029 /*
5030 * Pack the data into the transmit ring. If we
5031 * don't have room, set the OACTIVE flag and wait
5032 * for the NIC to drain the ring.
5033 */
5034 if (bge_encap(sc, m_head, &prodidx)) {
5035 ifp->if_flags |= IFF_OACTIVE;
5036 break;
5037 }
5038
5039 /* now we are committed to transmit the packet */
5040 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5041 pkts++;
5042
5043 /*
5044 * If there's a BPF listener, bounce a copy of this frame
5045 * to him.
5046 */
5047 bpf_mtap(ifp, m_head);
5048 }
5049 if (pkts == 0)
5050 return;
5051
5052 /* Transmit */
5053 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5054 /* 5700 b2 errata */
5055 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5056 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5057
5058 sc->bge_tx_prodidx = prodidx;
5059
5060 /*
5061 * Set a timeout in case the chip goes out to lunch.
5062 */
5063 ifp->if_timer = 5;
5064 }
5065
5066 static int
5067 bge_init(struct ifnet *ifp)
5068 {
5069 struct bge_softc *sc = ifp->if_softc;
5070 const uint16_t *m;
5071 uint32_t mode;
5072 int s, error = 0;
5073
5074 s = splnet();
5075
5076 ifp = &sc->ethercom.ec_if;
5077
5078 /* Cancel pending I/O and flush buffers. */
5079 bge_stop(ifp, 0);
5080
5081 bge_stop_fw(sc);
5082 bge_sig_pre_reset(sc, BGE_RESET_START);
5083 bge_reset(sc);
5084 bge_sig_legacy(sc, BGE_RESET_START);
5085 bge_sig_post_reset(sc, BGE_RESET_START);
5086
5087 bge_chipinit(sc);
5088
5089 /*
5090 * Init the various state machines, ring
5091 * control blocks and firmware.
5092 */
5093 error = bge_blockinit(sc);
5094 if (error != 0) {
5095 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5096 error);
5097 splx(s);
5098 return error;
5099 }
5100
5101 ifp = &sc->ethercom.ec_if;
5102
5103 /* Specify MTU. */
5104 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5105 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5106
5107 /* Load our MAC address. */
5108 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5109 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5110 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5111
5112 /* Enable or disable promiscuous mode as needed. */
5113 if (ifp->if_flags & IFF_PROMISC)
5114 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5115 else
5116 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5117
5118 /* Program multicast filter. */
5119 bge_setmulti(sc);
5120
5121 /* Init RX ring. */
5122 bge_init_rx_ring_std(sc);
5123
5124 /*
5125 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5126 * memory to insure that the chip has in fact read the first
5127 * entry of the ring.
5128 */
5129 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5130 uint32_t v, i;
5131 for (i = 0; i < 10; i++) {
5132 DELAY(20);
5133 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5134 if (v == (MCLBYTES - ETHER_ALIGN))
5135 break;
5136 }
5137 if (i == 10)
5138 aprint_error_dev(sc->bge_dev,
5139 "5705 A0 chip failed to load RX ring\n");
5140 }
5141
5142 /* Init jumbo RX ring. */
5143 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5144 bge_init_rx_ring_jumbo(sc);
5145
5146 /* Init our RX return ring index */
5147 sc->bge_rx_saved_considx = 0;
5148
5149 /* Init TX ring. */
5150 bge_init_tx_ring(sc);
5151
5152 /* Enable TX MAC state machine lockup fix. */
5153 mode = CSR_READ_4(sc, BGE_TX_MODE);
5154 if (BGE_IS_5755_PLUS(sc) ||
5155 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5156 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5157 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5158 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5159 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5160 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5161 }
5162
5163 /* Turn on transmitter */
5164 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5165 DELAY(100);
5166
5167 /* Turn on receiver */
5168 mode = CSR_READ_4(sc, BGE_RX_MODE);
5169 if (BGE_IS_5755_PLUS(sc))
5170 mode |= BGE_RXMODE_IPV6_ENABLE;
5171 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5172 DELAY(10);
5173
5174 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5175
5176 /* Tell firmware we're alive. */
5177 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5178
5179 /* Enable host interrupts. */
5180 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5181 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5182 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5183
5184 if ((error = bge_ifmedia_upd(ifp)) != 0)
5185 goto out;
5186
5187 ifp->if_flags |= IFF_RUNNING;
5188 ifp->if_flags &= ~IFF_OACTIVE;
5189
5190 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5191
5192 out:
5193 sc->bge_if_flags = ifp->if_flags;
5194 splx(s);
5195
5196 return error;
5197 }
5198
5199 /*
5200 * Set media options.
5201 */
5202 static int
5203 bge_ifmedia_upd(struct ifnet *ifp)
5204 {
5205 struct bge_softc *sc = ifp->if_softc;
5206 struct mii_data *mii = &sc->bge_mii;
5207 struct ifmedia *ifm = &sc->bge_ifmedia;
5208 int rc;
5209
5210 /* If this is a 1000baseX NIC, enable the TBI port. */
5211 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5212 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5213 return EINVAL;
5214 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5215 case IFM_AUTO:
5216 /*
5217 * The BCM5704 ASIC appears to have a special
5218 * mechanism for programming the autoneg
5219 * advertisement registers in TBI mode.
5220 */
5221 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5222 uint32_t sgdig;
5223 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5224 if (sgdig & BGE_SGDIGSTS_DONE) {
5225 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5226 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5227 sgdig |= BGE_SGDIGCFG_AUTO |
5228 BGE_SGDIGCFG_PAUSE_CAP |
5229 BGE_SGDIGCFG_ASYM_PAUSE;
5230 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5231 sgdig | BGE_SGDIGCFG_SEND);
5232 DELAY(5);
5233 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5234 sgdig);
5235 }
5236 }
5237 break;
5238 case IFM_1000_SX:
5239 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5240 BGE_CLRBIT(sc, BGE_MAC_MODE,
5241 BGE_MACMODE_HALF_DUPLEX);
5242 } else {
5243 BGE_SETBIT(sc, BGE_MAC_MODE,
5244 BGE_MACMODE_HALF_DUPLEX);
5245 }
5246 DELAY(40);
5247 break;
5248 default:
5249 return EINVAL;
5250 }
5251 /* XXX 802.3x flow control for 1000BASE-SX */
5252 return 0;
5253 }
5254
5255 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5256 if ((rc = mii_mediachg(mii)) == ENXIO)
5257 return 0;
5258
5259 /*
5260 * Force an interrupt so that we will call bge_link_upd
5261 * if needed and clear any pending link state attention.
5262 * Without this we are not getting any further interrupts
5263 * for link state changes and thus will not UP the link and
5264 * not be able to send in bge_start. The only way to get
5265 * things working was to receive a packet and get a RX intr.
5266 */
5267 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5268 sc->bge_flags & BGE_IS_5788)
5269 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5270 else
5271 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5272
5273 return rc;
5274 }
5275
5276 /*
5277 * Report current media status.
5278 */
5279 static void
5280 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5281 {
5282 struct bge_softc *sc = ifp->if_softc;
5283 struct mii_data *mii = &sc->bge_mii;
5284
5285 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5286 ifmr->ifm_status = IFM_AVALID;
5287 ifmr->ifm_active = IFM_ETHER;
5288 if (CSR_READ_4(sc, BGE_MAC_STS) &
5289 BGE_MACSTAT_TBI_PCS_SYNCHED)
5290 ifmr->ifm_status |= IFM_ACTIVE;
5291 ifmr->ifm_active |= IFM_1000_SX;
5292 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5293 ifmr->ifm_active |= IFM_HDX;
5294 else
5295 ifmr->ifm_active |= IFM_FDX;
5296 return;
5297 }
5298
5299 mii_pollstat(mii);
5300 ifmr->ifm_status = mii->mii_media_status;
5301 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5302 sc->bge_flowflags;
5303 }
5304
5305 static int
5306 bge_ifflags_cb(struct ethercom *ec)
5307 {
5308 struct ifnet *ifp = &ec->ec_if;
5309 struct bge_softc *sc = ifp->if_softc;
5310 int change = ifp->if_flags ^ sc->bge_if_flags;
5311
5312 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5313 return ENETRESET;
5314 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5315 return 0;
5316
5317 if ((ifp->if_flags & IFF_PROMISC) == 0)
5318 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5319 else
5320 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5321
5322 bge_setmulti(sc);
5323
5324 sc->bge_if_flags = ifp->if_flags;
5325 return 0;
5326 }
5327
5328 static int
5329 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5330 {
5331 struct bge_softc *sc = ifp->if_softc;
5332 struct ifreq *ifr = (struct ifreq *) data;
5333 int s, error = 0;
5334 struct mii_data *mii;
5335
5336 s = splnet();
5337
5338 switch (command) {
5339 case SIOCSIFMEDIA:
5340 /* XXX Flow control is not supported for 1000BASE-SX */
5341 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5342 ifr->ifr_media &= ~IFM_ETH_FMASK;
5343 sc->bge_flowflags = 0;
5344 }
5345
5346 /* Flow control requires full-duplex mode. */
5347 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5348 (ifr->ifr_media & IFM_FDX) == 0) {
5349 ifr->ifr_media &= ~IFM_ETH_FMASK;
5350 }
5351 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5352 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5353 /* We can do both TXPAUSE and RXPAUSE. */
5354 ifr->ifr_media |=
5355 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5356 }
5357 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5358 }
5359 /* FALLTHROUGH */
5360 case SIOCGIFMEDIA:
5361 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5362 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5363 command);
5364 } else {
5365 mii = &sc->bge_mii;
5366 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5367 command);
5368 }
5369 break;
5370 default:
5371 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5372 break;
5373
5374 error = 0;
5375
5376 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5377 ;
5378 else if (ifp->if_flags & IFF_RUNNING)
5379 bge_setmulti(sc);
5380 break;
5381 }
5382
5383 splx(s);
5384
5385 return error;
5386 }
5387
5388 static void
5389 bge_watchdog(struct ifnet *ifp)
5390 {
5391 struct bge_softc *sc;
5392
5393 sc = ifp->if_softc;
5394
5395 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5396
5397 ifp->if_flags &= ~IFF_RUNNING;
5398 bge_init(ifp);
5399
5400 ifp->if_oerrors++;
5401 }
5402
5403 static void
5404 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5405 {
5406 int i;
5407
5408 BGE_CLRBIT_FLUSH(sc, reg, bit);
5409
5410 for (i = 0; i < 1000; i++) {
5411 delay(100);
5412 if ((CSR_READ_4(sc, reg) & bit) == 0)
5413 return;
5414 }
5415
5416 /*
5417 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5418 * on some environment (and once after boot?)
5419 */
5420 if (reg != BGE_SRS_MODE)
5421 aprint_error_dev(sc->bge_dev,
5422 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5423 (u_long)reg, bit);
5424 }
5425
5426 /*
5427 * Stop the adapter and free any mbufs allocated to the
5428 * RX and TX lists.
5429 */
5430 static void
5431 bge_stop(struct ifnet *ifp, int disable)
5432 {
5433 struct bge_softc *sc = ifp->if_softc;
5434
5435 callout_stop(&sc->bge_timeout);
5436
5437 /* Disable host interrupts. */
5438 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5439 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5440
5441 /*
5442 * Tell firmware we're shutting down.
5443 */
5444 bge_stop_fw(sc);
5445 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5446
5447 /*
5448 * Disable all of the receiver blocks.
5449 */
5450 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5451 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5452 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5453 if (BGE_IS_5700_FAMILY(sc))
5454 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5455 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5456 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5457 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5458
5459 /*
5460 * Disable all of the transmit blocks.
5461 */
5462 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5463 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5464 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5465 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5466 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5467 if (BGE_IS_5700_FAMILY(sc))
5468 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5469 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5470
5471 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5472 delay(40);
5473
5474 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5475
5476 /*
5477 * Shut down all of the memory managers and related
5478 * state machines.
5479 */
5480 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5481 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5482 if (BGE_IS_5700_FAMILY(sc))
5483 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5484
5485 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5486 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5487
5488 if (BGE_IS_5700_FAMILY(sc)) {
5489 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5490 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5491 }
5492
5493 bge_reset(sc);
5494 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5495 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5496
5497 /*
5498 * Keep the ASF firmware running if up.
5499 */
5500 if (sc->bge_asf_mode & ASF_STACKUP)
5501 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5502 else
5503 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5504
5505 /* Free the RX lists. */
5506 bge_free_rx_ring_std(sc);
5507
5508 /* Free jumbo RX list. */
5509 if (BGE_IS_JUMBO_CAPABLE(sc))
5510 bge_free_rx_ring_jumbo(sc);
5511
5512 /* Free TX buffers. */
5513 bge_free_tx_ring(sc);
5514
5515 /*
5516 * Isolate/power down the PHY.
5517 */
5518 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5519 mii_down(&sc->bge_mii);
5520
5521 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5522
5523 /* Clear MAC's link state (PHY may still have link UP). */
5524 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5525
5526 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5527 }
5528
5529 static void
5530 bge_link_upd(struct bge_softc *sc)
5531 {
5532 struct ifnet *ifp = &sc->ethercom.ec_if;
5533 struct mii_data *mii = &sc->bge_mii;
5534 uint32_t status;
5535 int link;
5536
5537 /* Clear 'pending link event' flag */
5538 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5539
5540 /*
5541 * Process link state changes.
5542 * Grrr. The link status word in the status block does
5543 * not work correctly on the BCM5700 rev AX and BX chips,
5544 * according to all available information. Hence, we have
5545 * to enable MII interrupts in order to properly obtain
5546 * async link changes. Unfortunately, this also means that
5547 * we have to read the MAC status register to detect link
5548 * changes, thereby adding an additional register access to
5549 * the interrupt handler.
5550 */
5551
5552 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5553 status = CSR_READ_4(sc, BGE_MAC_STS);
5554 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5555 mii_pollstat(mii);
5556
5557 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5558 mii->mii_media_status & IFM_ACTIVE &&
5559 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5560 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5561 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5562 (!(mii->mii_media_status & IFM_ACTIVE) ||
5563 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5564 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5565
5566 /* Clear the interrupt */
5567 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5568 BGE_EVTENB_MI_INTERRUPT);
5569 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5570 BRGPHY_MII_ISR);
5571 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5572 BRGPHY_MII_IMR, BRGPHY_INTRS);
5573 }
5574 return;
5575 }
5576
5577 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5578 status = CSR_READ_4(sc, BGE_MAC_STS);
5579 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5580 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5581 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5582 if (BGE_ASICREV(sc->bge_chipid)
5583 == BGE_ASICREV_BCM5704) {
5584 BGE_CLRBIT(sc, BGE_MAC_MODE,
5585 BGE_MACMODE_TBI_SEND_CFGS);
5586 DELAY(40);
5587 }
5588 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5589 if_link_state_change(ifp, LINK_STATE_UP);
5590 }
5591 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5592 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5593 if_link_state_change(ifp, LINK_STATE_DOWN);
5594 }
5595 /*
5596 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5597 * This should not happen since mii callouts are locked now, but
5598 * we keep this check for debug.
5599 */
5600 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5601 /*
5602 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5603 * bit in status word always set. Workaround this bug by
5604 * reading PHY link status directly.
5605 */
5606 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5607 BGE_STS_LINK : 0;
5608
5609 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5610 mii_pollstat(mii);
5611
5612 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5613 mii->mii_media_status & IFM_ACTIVE &&
5614 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5615 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5616 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5617 (!(mii->mii_media_status & IFM_ACTIVE) ||
5618 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5619 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5620 }
5621 }
5622
5623 /* Clear the attention */
5624 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5625 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5626 BGE_MACSTAT_LINK_CHANGED);
5627 }
5628
5629 static int
5630 bge_sysctl_verify(SYSCTLFN_ARGS)
5631 {
5632 int error, t;
5633 struct sysctlnode node;
5634
5635 node = *rnode;
5636 t = *(int*)rnode->sysctl_data;
5637 node.sysctl_data = &t;
5638 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5639 if (error || newp == NULL)
5640 return error;
5641
5642 #if 0
5643 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5644 node.sysctl_num, rnode->sysctl_num));
5645 #endif
5646
5647 if (node.sysctl_num == bge_rxthresh_nodenum) {
5648 if (t < 0 || t >= NBGE_RX_THRESH)
5649 return EINVAL;
5650 bge_update_all_threshes(t);
5651 } else
5652 return EINVAL;
5653
5654 *(int*)rnode->sysctl_data = t;
5655
5656 return 0;
5657 }
5658
5659 /*
5660 * Set up sysctl(3) MIB, hw.bge.*.
5661 */
5662 static void
5663 bge_sysctl_init(struct bge_softc *sc)
5664 {
5665 int rc, bge_root_num;
5666 const struct sysctlnode *node;
5667
5668 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5669 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5670 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5671 goto out;
5672 }
5673
5674 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5675 0, CTLTYPE_NODE, "bge",
5676 SYSCTL_DESCR("BGE interface controls"),
5677 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5678 goto out;
5679 }
5680
5681 bge_root_num = node->sysctl_num;
5682
5683 /* BGE Rx interrupt mitigation level */
5684 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5685 CTLFLAG_READWRITE,
5686 CTLTYPE_INT, "rx_lvl",
5687 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5688 bge_sysctl_verify, 0,
5689 &bge_rx_thresh_lvl,
5690 0, CTL_HW, bge_root_num, CTL_CREATE,
5691 CTL_EOL)) != 0) {
5692 goto out;
5693 }
5694
5695 bge_rxthresh_nodenum = node->sysctl_num;
5696
5697 return;
5698
5699 out:
5700 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5701 }
5702
5703 #ifdef BGE_DEBUG
5704 void
5705 bge_debug_info(struct bge_softc *sc)
5706 {
5707
5708 printf("Hardware Flags:\n");
5709 if (BGE_IS_57765_PLUS(sc))
5710 printf(" - 57765 Plus\n");
5711 if (BGE_IS_5717_PLUS(sc))
5712 printf(" - 5717 Plus\n");
5713 if (BGE_IS_5755_PLUS(sc))
5714 printf(" - 5755 Plus\n");
5715 if (BGE_IS_575X_PLUS(sc))
5716 printf(" - 575X Plus\n");
5717 if (BGE_IS_5705_PLUS(sc))
5718 printf(" - 5705 Plus\n");
5719 if (BGE_IS_5714_FAMILY(sc))
5720 printf(" - 5714 Family\n");
5721 if (BGE_IS_5700_FAMILY(sc))
5722 printf(" - 5700 Family\n");
5723 if (sc->bge_flags & BGE_IS_5788)
5724 printf(" - 5788\n");
5725 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5726 printf(" - Supports Jumbo Frames\n");
5727 if (sc->bge_flags & BGE_NO_EEPROM)
5728 printf(" - No EEPROM\n");
5729 if (sc->bge_flags & BGE_PCIX)
5730 printf(" - PCI-X Bus\n");
5731 if (sc->bge_flags & BGE_PCIE)
5732 printf(" - PCI Express Bus\n");
5733 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5734 printf(" - RX Alignment Bug\n");
5735 if (sc->bge_flags & BGE_APE)
5736 printf(" - APE\n");
5737 if (sc->bge_flags & BGE_CPMU_PRESENT)
5738 printf(" - CPMU\n");
5739 if (sc->bge_flags & BGE_TSO)
5740 printf(" - TSO\n");
5741
5742 if (sc->bge_flags & BGE_PHY_NO_3LED)
5743 printf(" - No 3 LEDs\n");
5744 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5745 printf(" - CRC bug\n");
5746 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5747 printf(" - ADC bug\n");
5748 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5749 printf(" - 5704 A0 bug\n");
5750 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5751 printf(" - jitter bug\n");
5752 if (sc->bge_flags & BGE_PHY_BER_BUG)
5753 printf(" - BER bug\n");
5754 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5755 printf(" - adjust trim\n");
5756 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5757 printf(" - no wirespeed\n");
5758 }
5759 #endif /* BGE_DEBUG */
5760
5761 static int
5762 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5763 {
5764 prop_dictionary_t dict;
5765 prop_data_t ea;
5766
5767 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5768 return 1;
5769
5770 dict = device_properties(sc->bge_dev);
5771 ea = prop_dictionary_get(dict, "mac-address");
5772 if (ea != NULL) {
5773 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5774 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5775 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5776 return 0;
5777 }
5778
5779 return 1;
5780 }
5781
5782 static int
5783 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5784 {
5785 uint32_t mac_addr;
5786
5787 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5788 if ((mac_addr >> 16) == 0x484b) {
5789 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5790 ether_addr[1] = (uint8_t)mac_addr;
5791 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5792 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5793 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5794 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5795 ether_addr[5] = (uint8_t)mac_addr;
5796 return 0;
5797 }
5798 return 1;
5799 }
5800
5801 static int
5802 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5803 {
5804 int mac_offset = BGE_EE_MAC_OFFSET;
5805
5806 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5807 mac_offset = BGE_EE_MAC_OFFSET_5906;
5808
5809 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5810 ETHER_ADDR_LEN));
5811 }
5812
5813 static int
5814 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5815 {
5816
5817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5818 return 1;
5819
5820 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5821 ETHER_ADDR_LEN));
5822 }
5823
5824 static int
5825 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5826 {
5827 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5828 /* NOTE: Order is critical */
5829 bge_get_eaddr_fw,
5830 bge_get_eaddr_mem,
5831 bge_get_eaddr_nvram,
5832 bge_get_eaddr_eeprom,
5833 NULL
5834 };
5835 const bge_eaddr_fcn_t *func;
5836
5837 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5838 if ((*func)(sc, eaddr) == 0)
5839 break;
5840 }
5841 return (*func == NULL ? ENXIO : 0);
5842 }
5843