Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.228
      1 /*	$NetBSD: if_bge.c,v 1.228 2013/03/27 10:26:05 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.228 2013/03/27 10:26:05 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
    188 static int bge_probe(device_t, cfdata_t, void *);
    189 static void bge_attach(device_t, device_t, void *);
    190 static int bge_detach(device_t, int);
    191 static void bge_release_resources(struct bge_softc *);
    192 
    193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    198 
    199 static void bge_txeof(struct bge_softc *);
    200 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    201 static void bge_rxeof(struct bge_softc *);
    202 
    203 static void bge_asf_driver_up (struct bge_softc *);
    204 static void bge_tick(void *);
    205 static void bge_stats_update(struct bge_softc *);
    206 static void bge_stats_update_regs(struct bge_softc *);
    207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    208 
    209 static int bge_intr(void *);
    210 static void bge_start(struct ifnet *);
    211 static int bge_ifflags_cb(struct ethercom *);
    212 static int bge_ioctl(struct ifnet *, u_long, void *);
    213 static int bge_init(struct ifnet *);
    214 static void bge_stop(struct ifnet *, int);
    215 static void bge_watchdog(struct ifnet *);
    216 static int bge_ifmedia_upd(struct ifnet *);
    217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    218 
    219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    221 
    222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    224 static void bge_setmulti(struct bge_softc *);
    225 
    226 static void bge_handle_events(struct bge_softc *);
    227 static int bge_alloc_jumbo_mem(struct bge_softc *);
    228 #if 0 /* XXX */
    229 static void bge_free_jumbo_mem(struct bge_softc *);
    230 #endif
    231 static void *bge_jalloc(struct bge_softc *);
    232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    234 			       bus_dmamap_t);
    235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    236 static int bge_init_rx_ring_std(struct bge_softc *);
    237 static void bge_free_rx_ring_std(struct bge_softc *);
    238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    240 static void bge_free_tx_ring(struct bge_softc *);
    241 static int bge_init_tx_ring(struct bge_softc *);
    242 
    243 static int bge_chipinit(struct bge_softc *);
    244 static int bge_blockinit(struct bge_softc *);
    245 static int bge_phy_addr(struct bge_softc *);
    246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    247 static void bge_writemem_ind(struct bge_softc *, int, int);
    248 static void bge_writembx(struct bge_softc *, int, int);
    249 static void bge_writembx_flush(struct bge_softc *, int, int);
    250 static void bge_writemem_direct(struct bge_softc *, int, int);
    251 static void bge_writereg_ind(struct bge_softc *, int, int);
    252 static void bge_set_max_readrq(struct bge_softc *);
    253 
    254 static int bge_miibus_readreg(device_t, int, int);
    255 static void bge_miibus_writereg(device_t, int, int, int);
    256 static void bge_miibus_statchg(struct ifnet *);
    257 
    258 #define BGE_RESET_SHUTDOWN	0
    259 #define	BGE_RESET_START		1
    260 #define	BGE_RESET_SUSPEND	2
    261 static void bge_sig_post_reset(struct bge_softc *, int);
    262 static void bge_sig_legacy(struct bge_softc *, int);
    263 static void bge_sig_pre_reset(struct bge_softc *, int);
    264 static void bge_wait_for_event_ack(struct bge_softc *);
    265 static void bge_stop_fw(struct bge_softc *);
    266 static int bge_reset(struct bge_softc *);
    267 static void bge_link_upd(struct bge_softc *);
    268 static void bge_sysctl_init(struct bge_softc *);
    269 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    270 
    271 static void bge_ape_lock_init(struct bge_softc *);
    272 static void bge_ape_read_fw_ver(struct bge_softc *);
    273 static int bge_ape_lock(struct bge_softc *, int);
    274 static void bge_ape_unlock(struct bge_softc *, int);
    275 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    276 static void bge_ape_driver_state_change(struct bge_softc *, int);
    277 
    278 #ifdef BGE_DEBUG
    279 #define DPRINTF(x)	if (bgedebug) printf x
    280 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    281 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    282 int	bgedebug = 0;
    283 int	bge_tso_debug = 0;
    284 void		bge_debug_info(struct bge_softc *);
    285 #else
    286 #define DPRINTF(x)
    287 #define DPRINTFN(n,x)
    288 #define BGE_TSO_PRINTF(x)
    289 #endif
    290 
    291 #ifdef BGE_EVENT_COUNTERS
    292 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    293 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    294 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    295 #else
    296 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    297 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    298 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    299 #endif
    300 
    301 static const struct bge_product {
    302 	pci_vendor_id_t		bp_vendor;
    303 	pci_product_id_t	bp_product;
    304 	const char		*bp_name;
    305 } bge_products[] = {
    306 	/*
    307 	 * The BCM5700 documentation seems to indicate that the hardware
    308 	 * still has the Alteon vendor ID burned into it, though it
    309 	 * should always be overridden by the value in the EEPROM.  We'll
    310 	 * check for it anyway.
    311 	 */
    312 	{ PCI_VENDOR_ALTEON,
    313 	  PCI_PRODUCT_ALTEON_BCM5700,
    314 	  "Broadcom BCM5700 Gigabit Ethernet",
    315 	  },
    316 	{ PCI_VENDOR_ALTEON,
    317 	  PCI_PRODUCT_ALTEON_BCM5701,
    318 	  "Broadcom BCM5701 Gigabit Ethernet",
    319 	  },
    320 	{ PCI_VENDOR_ALTIMA,
    321 	  PCI_PRODUCT_ALTIMA_AC1000,
    322 	  "Altima AC1000 Gigabit Ethernet",
    323 	  },
    324 	{ PCI_VENDOR_ALTIMA,
    325 	  PCI_PRODUCT_ALTIMA_AC1001,
    326 	  "Altima AC1001 Gigabit Ethernet",
    327 	   },
    328 	{ PCI_VENDOR_ALTIMA,
    329 	  PCI_PRODUCT_ALTIMA_AC1003,
    330 	  "Altima AC1003 Gigabit Ethernet",
    331 	   },
    332 	{ PCI_VENDOR_ALTIMA,
    333 	  PCI_PRODUCT_ALTIMA_AC9100,
    334 	  "Altima AC9100 Gigabit Ethernet",
    335 	  },
    336 	{ PCI_VENDOR_APPLE,
    337 	  PCI_PRODUCT_APPLE_BCM5701,
    338 	  "APPLE BCM5701 Gigabit Ethernet",
    339 	  },
    340 	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5700,
    342 	  "Broadcom BCM5700 Gigabit Ethernet",
    343 	  },
    344 	{ PCI_VENDOR_BROADCOM,
    345 	  PCI_PRODUCT_BROADCOM_BCM5701,
    346 	  "Broadcom BCM5701 Gigabit Ethernet",
    347 	  },
    348 	{ PCI_VENDOR_BROADCOM,
    349 	  PCI_PRODUCT_BROADCOM_BCM5702,
    350 	  "Broadcom BCM5702 Gigabit Ethernet",
    351 	  },
    352 	{ PCI_VENDOR_BROADCOM,
    353 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    354 	  "Broadcom BCM5702X Gigabit Ethernet" },
    355 	{ PCI_VENDOR_BROADCOM,
    356 	  PCI_PRODUCT_BROADCOM_BCM5703,
    357 	  "Broadcom BCM5703 Gigabit Ethernet",
    358 	  },
    359 	{ PCI_VENDOR_BROADCOM,
    360 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    361 	  "Broadcom BCM5703X Gigabit Ethernet",
    362 	  },
    363 	{ PCI_VENDOR_BROADCOM,
    364 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    365 	  "Broadcom BCM5703 Gigabit Ethernet",
    366 	  },
    367 	{ PCI_VENDOR_BROADCOM,
    368 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    369 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    370 	  },
    371 	{ PCI_VENDOR_BROADCOM,
    372 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    373 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    374 	  },
    375 	{ PCI_VENDOR_BROADCOM,
    376 	  PCI_PRODUCT_BROADCOM_BCM5705,
    377 	  "Broadcom BCM5705 Gigabit Ethernet",
    378 	  },
    379 	{ PCI_VENDOR_BROADCOM,
    380 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    381 	  "Broadcom BCM5705F Gigabit Ethernet",
    382 	  },
    383 	{ PCI_VENDOR_BROADCOM,
    384 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    385 	  "Broadcom BCM5705K Gigabit Ethernet",
    386 	  },
    387 	{ PCI_VENDOR_BROADCOM,
    388 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    389 	  "Broadcom BCM5705M Gigabit Ethernet",
    390 	  },
    391 	{ PCI_VENDOR_BROADCOM,
    392 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    393 	  "Broadcom BCM5705M Gigabit Ethernet",
    394 	  },
    395 	{ PCI_VENDOR_BROADCOM,
    396 	  PCI_PRODUCT_BROADCOM_BCM5714,
    397 	  "Broadcom BCM5714 Gigabit Ethernet",
    398 	  },
    399 	{ PCI_VENDOR_BROADCOM,
    400 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    401 	  "Broadcom BCM5714S Gigabit Ethernet",
    402 	  },
    403 	{ PCI_VENDOR_BROADCOM,
    404 	  PCI_PRODUCT_BROADCOM_BCM5715,
    405 	  "Broadcom BCM5715 Gigabit Ethernet",
    406 	  },
    407 	{ PCI_VENDOR_BROADCOM,
    408 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    409 	  "Broadcom BCM5715S Gigabit Ethernet",
    410 	  },
    411 	{ PCI_VENDOR_BROADCOM,
    412 	  PCI_PRODUCT_BROADCOM_BCM5717,
    413 	  "Broadcom BCM5717 Gigabit Ethernet",
    414 	  },
    415 	{ PCI_VENDOR_BROADCOM,
    416 	  PCI_PRODUCT_BROADCOM_BCM5718,
    417 	  "Broadcom BCM5718 Gigabit Ethernet",
    418 	  },
    419 	{ PCI_VENDOR_BROADCOM,
    420 	  PCI_PRODUCT_BROADCOM_BCM5719,
    421 	  "Broadcom BCM5719 Gigabit Ethernet",
    422 	  },
    423 	{ PCI_VENDOR_BROADCOM,
    424 	  PCI_PRODUCT_BROADCOM_BCM5720,
    425 	  "Broadcom BCM5720 Gigabit Ethernet",
    426 	  },
    427 	{ PCI_VENDOR_BROADCOM,
    428 	  PCI_PRODUCT_BROADCOM_BCM5721,
    429 	  "Broadcom BCM5721 Gigabit Ethernet",
    430 	  },
    431 	{ PCI_VENDOR_BROADCOM,
    432 	  PCI_PRODUCT_BROADCOM_BCM5722,
    433 	  "Broadcom BCM5722 Gigabit Ethernet",
    434 	  },
    435 	{ PCI_VENDOR_BROADCOM,
    436 	  PCI_PRODUCT_BROADCOM_BCM5723,
    437 	  "Broadcom BCM5723 Gigabit Ethernet",
    438 	  },
    439 	{ PCI_VENDOR_BROADCOM,
    440 	  PCI_PRODUCT_BROADCOM_BCM5724,
    441 	  "Broadcom BCM5724 Gigabit Ethernet",
    442 	  },
    443 	{ PCI_VENDOR_BROADCOM,
    444 	  PCI_PRODUCT_BROADCOM_BCM5750,
    445 	  "Broadcom BCM5750 Gigabit Ethernet",
    446 	  },
    447 	{ PCI_VENDOR_BROADCOM,
    448 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    449 	  "Broadcom BCM5750M Gigabit Ethernet",
    450 	  },
    451 	{ PCI_VENDOR_BROADCOM,
    452 	  PCI_PRODUCT_BROADCOM_BCM5751,
    453 	  "Broadcom BCM5751 Gigabit Ethernet",
    454 	  },
    455 	{ PCI_VENDOR_BROADCOM,
    456 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    457 	  "Broadcom BCM5751F Gigabit Ethernet",
    458 	  },
    459 	{ PCI_VENDOR_BROADCOM,
    460 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    461 	  "Broadcom BCM5751M Gigabit Ethernet",
    462 	  },
    463 	{ PCI_VENDOR_BROADCOM,
    464 	  PCI_PRODUCT_BROADCOM_BCM5752,
    465 	  "Broadcom BCM5752 Gigabit Ethernet",
    466 	  },
    467 	{ PCI_VENDOR_BROADCOM,
    468 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    469 	  "Broadcom BCM5752M Gigabit Ethernet",
    470 	  },
    471 	{ PCI_VENDOR_BROADCOM,
    472 	  PCI_PRODUCT_BROADCOM_BCM5753,
    473 	  "Broadcom BCM5753 Gigabit Ethernet",
    474 	  },
    475 	{ PCI_VENDOR_BROADCOM,
    476 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    477 	  "Broadcom BCM5753F Gigabit Ethernet",
    478 	  },
    479 	{ PCI_VENDOR_BROADCOM,
    480 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    481 	  "Broadcom BCM5753M Gigabit Ethernet",
    482 	  },
    483 	{ PCI_VENDOR_BROADCOM,
    484 	  PCI_PRODUCT_BROADCOM_BCM5754,
    485 	  "Broadcom BCM5754 Gigabit Ethernet",
    486 	},
    487 	{ PCI_VENDOR_BROADCOM,
    488 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    489 	  "Broadcom BCM5754M Gigabit Ethernet",
    490 	},
    491 	{ PCI_VENDOR_BROADCOM,
    492 	  PCI_PRODUCT_BROADCOM_BCM5755,
    493 	  "Broadcom BCM5755 Gigabit Ethernet",
    494 	},
    495 	{ PCI_VENDOR_BROADCOM,
    496 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    497 	  "Broadcom BCM5755M Gigabit Ethernet",
    498 	},
    499 	{ PCI_VENDOR_BROADCOM,
    500 	  PCI_PRODUCT_BROADCOM_BCM5756,
    501 	  "Broadcom BCM5756 Gigabit Ethernet",
    502 	},
    503 	{ PCI_VENDOR_BROADCOM,
    504 	  PCI_PRODUCT_BROADCOM_BCM5761,
    505 	  "Broadcom BCM5761 Gigabit Ethernet",
    506 	},
    507 	{ PCI_VENDOR_BROADCOM,
    508 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    509 	  "Broadcom BCM5761E Gigabit Ethernet",
    510 	},
    511 	{ PCI_VENDOR_BROADCOM,
    512 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    513 	  "Broadcom BCM5761S Gigabit Ethernet",
    514 	},
    515 	{ PCI_VENDOR_BROADCOM,
    516 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    517 	  "Broadcom BCM5761SE Gigabit Ethernet",
    518 	},
    519 	{ PCI_VENDOR_BROADCOM,
    520 	  PCI_PRODUCT_BROADCOM_BCM5764,
    521 	  "Broadcom BCM5764 Gigabit Ethernet",
    522 	  },
    523 	{ PCI_VENDOR_BROADCOM,
    524 	  PCI_PRODUCT_BROADCOM_BCM5780,
    525 	  "Broadcom BCM5780 Gigabit Ethernet",
    526 	  },
    527 	{ PCI_VENDOR_BROADCOM,
    528 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    529 	  "Broadcom BCM5780S Gigabit Ethernet",
    530 	  },
    531 	{ PCI_VENDOR_BROADCOM,
    532 	  PCI_PRODUCT_BROADCOM_BCM5781,
    533 	  "Broadcom BCM5781 Gigabit Ethernet",
    534 	  },
    535 	{ PCI_VENDOR_BROADCOM,
    536 	  PCI_PRODUCT_BROADCOM_BCM5782,
    537 	  "Broadcom BCM5782 Gigabit Ethernet",
    538 	},
    539 	{ PCI_VENDOR_BROADCOM,
    540 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    541 	  "BCM5784M NetLink 1000baseT Ethernet",
    542 	},
    543 	{ PCI_VENDOR_BROADCOM,
    544 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    545 	  "BCM5785F NetLink 10/100 Ethernet",
    546 	},
    547 	{ PCI_VENDOR_BROADCOM,
    548 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    549 	  "BCM5785G NetLink 1000baseT Ethernet",
    550 	},
    551 	{ PCI_VENDOR_BROADCOM,
    552 	  PCI_PRODUCT_BROADCOM_BCM5786,
    553 	  "Broadcom BCM5786 Gigabit Ethernet",
    554 	},
    555 	{ PCI_VENDOR_BROADCOM,
    556 	  PCI_PRODUCT_BROADCOM_BCM5787,
    557 	  "Broadcom BCM5787 Gigabit Ethernet",
    558 	},
    559 	{ PCI_VENDOR_BROADCOM,
    560 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    561 	  "Broadcom BCM5787F 10/100 Ethernet",
    562 	},
    563 	{ PCI_VENDOR_BROADCOM,
    564 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    565 	  "Broadcom BCM5787M Gigabit Ethernet",
    566 	},
    567 	{ PCI_VENDOR_BROADCOM,
    568 	  PCI_PRODUCT_BROADCOM_BCM5788,
    569 	  "Broadcom BCM5788 Gigabit Ethernet",
    570 	  },
    571 	{ PCI_VENDOR_BROADCOM,
    572 	  PCI_PRODUCT_BROADCOM_BCM5789,
    573 	  "Broadcom BCM5789 Gigabit Ethernet",
    574 	  },
    575 	{ PCI_VENDOR_BROADCOM,
    576 	  PCI_PRODUCT_BROADCOM_BCM5901,
    577 	  "Broadcom BCM5901 Fast Ethernet",
    578 	  },
    579 	{ PCI_VENDOR_BROADCOM,
    580 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    581 	  "Broadcom BCM5901A2 Fast Ethernet",
    582 	  },
    583 	{ PCI_VENDOR_BROADCOM,
    584 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    585 	  "Broadcom BCM5903M Fast Ethernet",
    586 	  },
    587 	{ PCI_VENDOR_BROADCOM,
    588 	  PCI_PRODUCT_BROADCOM_BCM5906,
    589 	  "Broadcom BCM5906 Fast Ethernet",
    590 	  },
    591 	{ PCI_VENDOR_BROADCOM,
    592 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    593 	  "Broadcom BCM5906M Fast Ethernet",
    594 	  },
    595 	{ PCI_VENDOR_BROADCOM,
    596 	  PCI_PRODUCT_BROADCOM_BCM57760,
    597 	  "Broadcom BCM57760 Fast Ethernet",
    598 	  },
    599 	{ PCI_VENDOR_BROADCOM,
    600 	  PCI_PRODUCT_BROADCOM_BCM57761,
    601 	  "Broadcom BCM57761 Fast Ethernet",
    602 	  },
    603 	{ PCI_VENDOR_BROADCOM,
    604 	  PCI_PRODUCT_BROADCOM_BCM57762,
    605 	  "Broadcom BCM57762 Gigabit Ethernet",
    606 	  },
    607 	{ PCI_VENDOR_BROADCOM,
    608 	  PCI_PRODUCT_BROADCOM_BCM57765,
    609 	  "Broadcom BCM57765 Fast Ethernet",
    610 	  },
    611 	{ PCI_VENDOR_BROADCOM,
    612 	  PCI_PRODUCT_BROADCOM_BCM57766,
    613 	  "Broadcom BCM57766 Fast Ethernet",
    614 	  },
    615 	{ PCI_VENDOR_BROADCOM,
    616 	  PCI_PRODUCT_BROADCOM_BCM57780,
    617 	  "Broadcom BCM57780 Fast Ethernet",
    618 	  },
    619 	{ PCI_VENDOR_BROADCOM,
    620 	  PCI_PRODUCT_BROADCOM_BCM57781,
    621 	  "Broadcom BCM57781 Fast Ethernet",
    622 	  },
    623 	{ PCI_VENDOR_BROADCOM,
    624 	  PCI_PRODUCT_BROADCOM_BCM57782,
    625 	  "Broadcom BCM57782 Fast Ethernet",
    626 	  },
    627 	{ PCI_VENDOR_BROADCOM,
    628 	  PCI_PRODUCT_BROADCOM_BCM57785,
    629 	  "Broadcom BCM57785 Fast Ethernet",
    630 	  },
    631 	{ PCI_VENDOR_BROADCOM,
    632 	  PCI_PRODUCT_BROADCOM_BCM57786,
    633 	  "Broadcom BCM57786 Fast Ethernet",
    634 	  },
    635 	{ PCI_VENDOR_BROADCOM,
    636 	  PCI_PRODUCT_BROADCOM_BCM57788,
    637 	  "Broadcom BCM57788 Fast Ethernet",
    638 	  },
    639 	{ PCI_VENDOR_BROADCOM,
    640 	  PCI_PRODUCT_BROADCOM_BCM57790,
    641 	  "Broadcom BCM57790 Fast Ethernet",
    642 	  },
    643 	{ PCI_VENDOR_BROADCOM,
    644 	  PCI_PRODUCT_BROADCOM_BCM57791,
    645 	  "Broadcom BCM57791 Fast Ethernet",
    646 	  },
    647 	{ PCI_VENDOR_BROADCOM,
    648 	  PCI_PRODUCT_BROADCOM_BCM57795,
    649 	  "Broadcom BCM57795 Fast Ethernet",
    650 	  },
    651 	{ PCI_VENDOR_SCHNEIDERKOCH,
    652 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    653 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    654 	  },
    655 	{ PCI_VENDOR_3COM,
    656 	  PCI_PRODUCT_3COM_3C996,
    657 	  "3Com 3c996 Gigabit Ethernet",
    658 	  },
    659 	{ PCI_VENDOR_FUJITSU4,
    660 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    661 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    662 	  },
    663 	{ PCI_VENDOR_FUJITSU4,
    664 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    665 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    666 	  },
    667 	{ PCI_VENDOR_FUJITSU4,
    668 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    669 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    670 	  },
    671 	{ 0,
    672 	  0,
    673 	  NULL },
    674 };
    675 
    676 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    677 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    678 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
    679 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    680 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
    681 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
    682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    683 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    684 
    685 static const struct bge_revision {
    686 	uint32_t		br_chipid;
    687 	const char		*br_name;
    688 } bge_revisions[] = {
    689 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    690 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    691 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    692 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    693 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    694 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    695 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    696 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    697 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    698 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    699 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    700 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    701 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    702 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    703 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    704 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    705 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    706 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    707 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    708 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    709 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    710 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    711 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    712 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    713 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    714 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    715 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    716 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    717 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    718 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    719 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    720 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    721 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    722 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    723 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    724 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    725 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    726 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    727 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    728 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    729 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    730 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    731 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    732 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    733 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    734 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    735 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    736 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    737 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    738 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    739 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    740 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    741 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    742 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    743 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    744 	/* 5754 and 5787 share the same ASIC ID */
    745 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    746 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    747 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    748 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    749 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    750 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    751 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    752 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    753 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    754 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    755 
    756 	{ 0, NULL }
    757 };
    758 
    759 /*
    760  * Some defaults for major revisions, so that newer steppings
    761  * that we don't know about have a shot at working.
    762  */
    763 static const struct bge_revision bge_majorrevs[] = {
    764 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    765 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    766 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    767 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    768 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    769 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    770 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    771 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    772 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    773 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    774 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    775 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    776 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    777 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    778 	/* 5754 and 5787 share the same ASIC ID */
    779 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    780 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    781 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    782 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    783 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    784 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    785 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    786 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    787 
    788 	{ 0, NULL }
    789 };
    790 
    791 static int bge_allow_asf = 1;
    792 
    793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    794     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    795 
    796 static uint32_t
    797 bge_readmem_ind(struct bge_softc *sc, int off)
    798 {
    799 	pcireg_t val;
    800 
    801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    802 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    803 		return 0;
    804 
    805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    806 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    807 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    808 	return val;
    809 }
    810 
    811 static void
    812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    813 {
    814 
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    817 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    818 }
    819 
    820 /*
    821  * PCI Express only
    822  */
    823 static void
    824 bge_set_max_readrq(struct bge_softc *sc)
    825 {
    826 	pcireg_t val;
    827 
    828 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    829 	    + PCI_PCIE_DCSR);
    830 	val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    831 	switch (sc->bge_expmrq) {
    832 	case 2048:
    833 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    834 		break;
    835 	case 4096:
    836 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    837 		break;
    838 	default:
    839 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    840 		break;
    841 	}
    842 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    843 	    + PCI_PCIE_DCSR, val);
    844 }
    845 
    846 #ifdef notdef
    847 static uint32_t
    848 bge_readreg_ind(struct bge_softc *sc, int off)
    849 {
    850 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    851 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    852 }
    853 #endif
    854 
    855 static void
    856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    857 {
    858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    859 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    860 }
    861 
    862 static void
    863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    864 {
    865 	CSR_WRITE_4(sc, off, val);
    866 }
    867 
    868 static void
    869 bge_writembx(struct bge_softc *sc, int off, int val)
    870 {
    871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    872 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    873 
    874 	CSR_WRITE_4(sc, off, val);
    875 }
    876 
    877 static void
    878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    879 {
    880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    881 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    882 
    883 	CSR_WRITE_4_FLUSH(sc, off, val);
    884 }
    885 
    886 /*
    887  * Clear all stale locks and select the lock for this driver instance.
    888  */
    889 void
    890 bge_ape_lock_init(struct bge_softc *sc)
    891 {
    892 	struct pci_attach_args *pa = &(sc->bge_pa);
    893 	uint32_t bit, regbase;
    894 	int i;
    895 
    896 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    897 		regbase = BGE_APE_LOCK_GRANT;
    898 	else
    899 		regbase = BGE_APE_PER_LOCK_GRANT;
    900 
    901 	/* Clear any stale locks. */
    902 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    903 		switch (i) {
    904 		case BGE_APE_LOCK_PHY0:
    905 		case BGE_APE_LOCK_PHY1:
    906 		case BGE_APE_LOCK_PHY2:
    907 		case BGE_APE_LOCK_PHY3:
    908 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    909 			break;
    910 		default:
    911 			if (pa->pa_function != 0)
    912 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    913 			else
    914 				bit = (1 << pa->pa_function);
    915 		}
    916 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    917 	}
    918 
    919 	/* Select the PHY lock based on the device's function number. */
    920 	switch (pa->pa_function) {
    921 	case 0:
    922 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    923 		break;
    924 	case 1:
    925 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    926 		break;
    927 	case 2:
    928 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    929 		break;
    930 	case 3:
    931 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    932 		break;
    933 	default:
    934 		printf("%s: PHY lock not supported on function\n",
    935 		    device_xname(sc->bge_dev));
    936 		break;
    937 	}
    938 }
    939 
    940 /*
    941  * Check for APE firmware, set flags, and print version info.
    942  */
    943 void
    944 bge_ape_read_fw_ver(struct bge_softc *sc)
    945 {
    946 	const char *fwtype;
    947 	uint32_t apedata, features;
    948 
    949 	/* Check for a valid APE signature in shared memory. */
    950 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    951 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    952 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    953 		return;
    954 	}
    955 
    956 	/* Check if APE firmware is running. */
    957 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    958 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    959 		printf("%s: APE signature found but FW status not ready! "
    960 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    961 		return;
    962 	}
    963 
    964 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    965 
    966 	/* Fetch the APE firwmare type and version. */
    967 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    968 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    969 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    970 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    971 		fwtype = "NCSI";
    972 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    973 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    974 		fwtype = "DASH";
    975 	} else
    976 		fwtype = "UNKN";
    977 
    978 	/* Print the APE firmware version. */
    979 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
    980 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    982 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    983 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    984 }
    985 
    986 int
    987 bge_ape_lock(struct bge_softc *sc, int locknum)
    988 {
    989 	struct pci_attach_args *pa = &(sc->bge_pa);
    990 	uint32_t bit, gnt, req, status;
    991 	int i, off;
    992 
    993 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    994 		return (0);
    995 
    996 	/* Lock request/grant registers have different bases. */
    997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    998 		req = BGE_APE_LOCK_REQ;
    999 		gnt = BGE_APE_LOCK_GRANT;
   1000 	} else {
   1001 		req = BGE_APE_PER_LOCK_REQ;
   1002 		gnt = BGE_APE_PER_LOCK_GRANT;
   1003 	}
   1004 
   1005 	off = 4 * locknum;
   1006 
   1007 	switch (locknum) {
   1008 	case BGE_APE_LOCK_GPIO:
   1009 		/* Lock required when using GPIO. */
   1010 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1011 			return (0);
   1012 		if (pa->pa_function == 0)
   1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1014 		else
   1015 			bit = (1 << pa->pa_function);
   1016 		break;
   1017 	case BGE_APE_LOCK_GRC:
   1018 		/* Lock required to reset the device. */
   1019 		if (pa->pa_function == 0)
   1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1021 		else
   1022 			bit = (1 << pa->pa_function);
   1023 		break;
   1024 	case BGE_APE_LOCK_MEM:
   1025 		/* Lock required when accessing certain APE memory. */
   1026 		if (pa->pa_function == 0)
   1027 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1028 		else
   1029 			bit = (1 << pa->pa_function);
   1030 		break;
   1031 	case BGE_APE_LOCK_PHY0:
   1032 	case BGE_APE_LOCK_PHY1:
   1033 	case BGE_APE_LOCK_PHY2:
   1034 	case BGE_APE_LOCK_PHY3:
   1035 		/* Lock required when accessing PHYs. */
   1036 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1037 		break;
   1038 	default:
   1039 		return (EINVAL);
   1040 	}
   1041 
   1042 	/* Request a lock. */
   1043 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1044 
   1045 	/* Wait up to 1 second to acquire lock. */
   1046 	for (i = 0; i < 20000; i++) {
   1047 		status = APE_READ_4(sc, gnt + off);
   1048 		if (status == bit)
   1049 			break;
   1050 		DELAY(50);
   1051 	}
   1052 
   1053 	/* Handle any errors. */
   1054 	if (status != bit) {
   1055 		printf("%s: APE lock %d request failed! "
   1056 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1057 		    device_xname(sc->bge_dev),
   1058 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1059 		    status & 0xFFFF);
   1060 		/* Revoke the lock request. */
   1061 		APE_WRITE_4(sc, gnt + off, bit);
   1062 		return (EBUSY);
   1063 	}
   1064 
   1065 	return (0);
   1066 }
   1067 
   1068 void
   1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1070 {
   1071 	struct pci_attach_args *pa = &(sc->bge_pa);
   1072 	uint32_t bit, gnt;
   1073 	int off;
   1074 
   1075 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1076 		return;
   1077 
   1078 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1079 		gnt = BGE_APE_LOCK_GRANT;
   1080 	else
   1081 		gnt = BGE_APE_PER_LOCK_GRANT;
   1082 
   1083 	off = 4 * locknum;
   1084 
   1085 	switch (locknum) {
   1086 	case BGE_APE_LOCK_GPIO:
   1087 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1088 			return;
   1089 		if (pa->pa_function == 0)
   1090 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1091 		else
   1092 			bit = (1 << pa->pa_function);
   1093 		break;
   1094 	case BGE_APE_LOCK_GRC:
   1095 		if (pa->pa_function == 0)
   1096 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1097 		else
   1098 			bit = (1 << pa->pa_function);
   1099 		break;
   1100 	case BGE_APE_LOCK_MEM:
   1101 		if (pa->pa_function == 0)
   1102 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1103 		else
   1104 			bit = (1 << pa->pa_function);
   1105 		break;
   1106 	case BGE_APE_LOCK_PHY0:
   1107 	case BGE_APE_LOCK_PHY1:
   1108 	case BGE_APE_LOCK_PHY2:
   1109 	case BGE_APE_LOCK_PHY3:
   1110 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1111 		break;
   1112 	default:
   1113 		return;
   1114 	}
   1115 
   1116 	/* Write and flush for consecutive bge_ape_lock() */
   1117 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1118 }
   1119 
   1120 /*
   1121  * Send an event to the APE firmware.
   1122  */
   1123 void
   1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1125 {
   1126 	uint32_t apedata;
   1127 	int i;
   1128 
   1129 	/* NCSI does not support APE events. */
   1130 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1131 		return;
   1132 
   1133 	printf("%s: APE event 0x%08x send\n", device_xname(sc->bge_dev), event);
   1134 
   1135 	/* Wait up to 1ms for APE to service previous event. */
   1136 	for (i = 10; i > 0; i--) {
   1137 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1138 			break;
   1139 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1140 		printf("%s: APE data 0x%08x -> 0x%08x\n",
   1141 		    device_xname(sc->bge_dev), apedata, event);
   1142 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1143 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1144 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1145 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1146 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1147 			break;
   1148 		}
   1149 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1150 		DELAY(100);
   1151 	}
   1152 	if (i == 0) {
   1153 		printf("%s: APE event 0x%08x send timed out\n",
   1154 		    device_xname(sc->bge_dev), event);
   1155 	}
   1156 }
   1157 
   1158 void
   1159 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1160 {
   1161 	uint32_t apedata, event;
   1162 
   1163 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1164 		return;
   1165 
   1166 	switch (kind) {
   1167 	case BGE_RESET_START:
   1168 		/* If this is the first load, clear the load counter. */
   1169 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1170 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1171 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1172 		else {
   1173 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1174 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1175 		}
   1176 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1177 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1178 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1179 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1180 
   1181 		/* Add some version info if bge(4) supports it. */
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1183 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1184 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1185 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1186 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1187 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1188 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1189 		    BGE_APE_HOST_DRVR_STATE_START);
   1190 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1191 		break;
   1192 	case BGE_RESET_SHUTDOWN:
   1193 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1194 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1195 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1196 		break;
   1197 	case BGE_RESET_SUSPEND:
   1198 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1199 		break;
   1200 	default:
   1201 		return;
   1202 	}
   1203 
   1204 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1205 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1206 }
   1207 
   1208 static uint8_t
   1209 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1210 {
   1211 	uint32_t access, byte = 0;
   1212 	int i;
   1213 
   1214 	/* Lock. */
   1215 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1216 	for (i = 0; i < 8000; i++) {
   1217 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1218 			break;
   1219 		DELAY(20);
   1220 	}
   1221 	if (i == 8000)
   1222 		return 1;
   1223 
   1224 	/* Enable access. */
   1225 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1226 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1227 
   1228 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1229 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1230 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1231 		DELAY(10);
   1232 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1233 			DELAY(10);
   1234 			break;
   1235 		}
   1236 	}
   1237 
   1238 	if (i == BGE_TIMEOUT * 10) {
   1239 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1240 		return 1;
   1241 	}
   1242 
   1243 	/* Get result. */
   1244 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1245 
   1246 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1247 
   1248 	/* Disable access. */
   1249 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1250 
   1251 	/* Unlock. */
   1252 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1253 
   1254 	return 0;
   1255 }
   1256 
   1257 /*
   1258  * Read a sequence of bytes from NVRAM.
   1259  */
   1260 static int
   1261 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1262 {
   1263 	int error = 0, i;
   1264 	uint8_t byte = 0;
   1265 
   1266 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1267 		return 1;
   1268 
   1269 	for (i = 0; i < cnt; i++) {
   1270 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1271 		if (error)
   1272 			break;
   1273 		*(dest + i) = byte;
   1274 	}
   1275 
   1276 	return (error ? 1 : 0);
   1277 }
   1278 
   1279 /*
   1280  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1281  * BCM570x supports both the traditional bitbang interface and an
   1282  * auto access interface for reading the EEPROM. We use the auto
   1283  * access method.
   1284  */
   1285 static uint8_t
   1286 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1287 {
   1288 	int i;
   1289 	uint32_t byte = 0;
   1290 
   1291 	/*
   1292 	 * Enable use of auto EEPROM access so we can avoid
   1293 	 * having to use the bitbang method.
   1294 	 */
   1295 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1296 
   1297 	/* Reset the EEPROM, load the clock period. */
   1298 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1299 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1300 	DELAY(20);
   1301 
   1302 	/* Issue the read EEPROM command. */
   1303 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1304 
   1305 	/* Wait for completion */
   1306 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1307 		DELAY(10);
   1308 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1309 			break;
   1310 	}
   1311 
   1312 	if (i == BGE_TIMEOUT * 10) {
   1313 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1314 		return 1;
   1315 	}
   1316 
   1317 	/* Get result. */
   1318 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1319 
   1320 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1321 
   1322 	return 0;
   1323 }
   1324 
   1325 /*
   1326  * Read a sequence of bytes from the EEPROM.
   1327  */
   1328 static int
   1329 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1330 {
   1331 	int error = 0, i;
   1332 	uint8_t byte = 0;
   1333 	char *dest = destv;
   1334 
   1335 	for (i = 0; i < cnt; i++) {
   1336 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1337 		if (error)
   1338 			break;
   1339 		*(dest + i) = byte;
   1340 	}
   1341 
   1342 	return (error ? 1 : 0);
   1343 }
   1344 
   1345 static int
   1346 bge_miibus_readreg(device_t dev, int phy, int reg)
   1347 {
   1348 	struct bge_softc *sc = device_private(dev);
   1349 	uint32_t val;
   1350 	uint32_t autopoll;
   1351 	int i;
   1352 
   1353 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1354 		return 0;
   1355 
   1356 	/* Reading with autopolling on may trigger PCI errors */
   1357 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1358 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1359 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1360 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1361 		DELAY(80);
   1362 	}
   1363 
   1364 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1365 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1366 
   1367 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1368 		delay(10);
   1369 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1370 		if (!(val & BGE_MICOMM_BUSY)) {
   1371 			DELAY(5);
   1372 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1373 			break;
   1374 		}
   1375 	}
   1376 
   1377 	if (i == BGE_TIMEOUT) {
   1378 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1379 		val = 0;
   1380 		goto done;
   1381 	}
   1382 
   1383 done:
   1384 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1385 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1386 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1387 		DELAY(80);
   1388 	}
   1389 
   1390 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1391 
   1392 	if (val & BGE_MICOMM_READFAIL)
   1393 		return 0;
   1394 
   1395 	return (val & 0xFFFF);
   1396 }
   1397 
   1398 static void
   1399 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1400 {
   1401 	struct bge_softc *sc = device_private(dev);
   1402 	uint32_t autopoll;
   1403 	int i;
   1404 
   1405 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1406 		return;
   1407 
   1408 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1409 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1410 		return;
   1411 
   1412 	/* Reading with autopolling on may trigger PCI errors */
   1413 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1414 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1415 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1416 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1417 		DELAY(80);
   1418 	}
   1419 
   1420 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1421 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1422 
   1423 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1424 		delay(10);
   1425 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1426 			delay(5);
   1427 			CSR_READ_4(sc, BGE_MI_COMM);
   1428 			break;
   1429 		}
   1430 	}
   1431 
   1432 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1433 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1434 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1435 		delay(80);
   1436 	}
   1437 
   1438 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1439 
   1440 	if (i == BGE_TIMEOUT)
   1441 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1442 }
   1443 
   1444 static void
   1445 bge_miibus_statchg(struct ifnet *ifp)
   1446 {
   1447 	struct bge_softc *sc = ifp->if_softc;
   1448 	struct mii_data *mii = &sc->bge_mii;
   1449 	uint32_t mac_mode, rx_mode, tx_mode;
   1450 
   1451 	/*
   1452 	 * Get flow control negotiation result.
   1453 	 */
   1454 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1455 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1456 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1457 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1458 	}
   1459 
   1460 	/* Set the port mode (MII/GMII) to match the link speed. */
   1461 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1462 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1463 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1464 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1465 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1466 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1467 		mac_mode |= BGE_PORTMODE_GMII;
   1468 	else
   1469 		mac_mode |= BGE_PORTMODE_MII;
   1470 
   1471 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1472 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1473 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1474 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1475 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1476 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1477 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1478 	} else
   1479 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1480 
   1481 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1482 	DELAY(40);
   1483 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1484 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1485 }
   1486 
   1487 /*
   1488  * Update rx threshold levels to values in a particular slot
   1489  * of the interrupt-mitigation table bge_rx_threshes.
   1490  */
   1491 static void
   1492 bge_set_thresh(struct ifnet *ifp, int lvl)
   1493 {
   1494 	struct bge_softc *sc = ifp->if_softc;
   1495 	int s;
   1496 
   1497 	/* For now, just save the new Rx-intr thresholds and record
   1498 	 * that a threshold update is pending.  Updating the hardware
   1499 	 * registers here (even at splhigh()) is observed to
   1500 	 * occasionaly cause glitches where Rx-interrupts are not
   1501 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1502 	 */
   1503 	s = splnet();
   1504 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1505 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1506 	sc->bge_pending_rxintr_change = 1;
   1507 	splx(s);
   1508 }
   1509 
   1510 
   1511 /*
   1512  * Update Rx thresholds of all bge devices
   1513  */
   1514 static void
   1515 bge_update_all_threshes(int lvl)
   1516 {
   1517 	struct ifnet *ifp;
   1518 	const char * const namebuf = "bge";
   1519 	int namelen;
   1520 
   1521 	if (lvl < 0)
   1522 		lvl = 0;
   1523 	else if (lvl >= NBGE_RX_THRESH)
   1524 		lvl = NBGE_RX_THRESH - 1;
   1525 
   1526 	namelen = strlen(namebuf);
   1527 	/*
   1528 	 * Now search all the interfaces for this name/number
   1529 	 */
   1530 	IFNET_FOREACH(ifp) {
   1531 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1532 		      continue;
   1533 		/* We got a match: update if doing auto-threshold-tuning */
   1534 		if (bge_auto_thresh)
   1535 			bge_set_thresh(ifp, lvl);
   1536 	}
   1537 }
   1538 
   1539 /*
   1540  * Handle events that have triggered interrupts.
   1541  */
   1542 static void
   1543 bge_handle_events(struct bge_softc *sc)
   1544 {
   1545 
   1546 	return;
   1547 }
   1548 
   1549 /*
   1550  * Memory management for jumbo frames.
   1551  */
   1552 
   1553 static int
   1554 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1555 {
   1556 	char *ptr, *kva;
   1557 	bus_dma_segment_t	seg;
   1558 	int		i, rseg, state, error;
   1559 	struct bge_jpool_entry   *entry;
   1560 
   1561 	state = error = 0;
   1562 
   1563 	/* Grab a big chunk o' storage. */
   1564 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1565 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1566 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1567 		return ENOBUFS;
   1568 	}
   1569 
   1570 	state = 1;
   1571 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1572 	    BUS_DMA_NOWAIT)) {
   1573 		aprint_error_dev(sc->bge_dev,
   1574 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1575 		error = ENOBUFS;
   1576 		goto out;
   1577 	}
   1578 
   1579 	state = 2;
   1580 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1581 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1582 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1583 		error = ENOBUFS;
   1584 		goto out;
   1585 	}
   1586 
   1587 	state = 3;
   1588 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1589 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1590 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1591 		error = ENOBUFS;
   1592 		goto out;
   1593 	}
   1594 
   1595 	state = 4;
   1596 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1597 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1598 
   1599 	SLIST_INIT(&sc->bge_jfree_listhead);
   1600 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1601 
   1602 	/*
   1603 	 * Now divide it up into 9K pieces and save the addresses
   1604 	 * in an array.
   1605 	 */
   1606 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1607 	for (i = 0; i < BGE_JSLOTS; i++) {
   1608 		sc->bge_cdata.bge_jslots[i] = ptr;
   1609 		ptr += BGE_JLEN;
   1610 		entry = malloc(sizeof(struct bge_jpool_entry),
   1611 		    M_DEVBUF, M_NOWAIT);
   1612 		if (entry == NULL) {
   1613 			aprint_error_dev(sc->bge_dev,
   1614 			    "no memory for jumbo buffer queue!\n");
   1615 			error = ENOBUFS;
   1616 			goto out;
   1617 		}
   1618 		entry->slot = i;
   1619 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1620 				 entry, jpool_entries);
   1621 	}
   1622 out:
   1623 	if (error != 0) {
   1624 		switch (state) {
   1625 		case 4:
   1626 			bus_dmamap_unload(sc->bge_dmatag,
   1627 			    sc->bge_cdata.bge_rx_jumbo_map);
   1628 		case 3:
   1629 			bus_dmamap_destroy(sc->bge_dmatag,
   1630 			    sc->bge_cdata.bge_rx_jumbo_map);
   1631 		case 2:
   1632 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1633 		case 1:
   1634 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1635 			break;
   1636 		default:
   1637 			break;
   1638 		}
   1639 	}
   1640 
   1641 	return error;
   1642 }
   1643 
   1644 /*
   1645  * Allocate a jumbo buffer.
   1646  */
   1647 static void *
   1648 bge_jalloc(struct bge_softc *sc)
   1649 {
   1650 	struct bge_jpool_entry   *entry;
   1651 
   1652 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1653 
   1654 	if (entry == NULL) {
   1655 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1656 		return NULL;
   1657 	}
   1658 
   1659 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1660 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1661 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1662 }
   1663 
   1664 /*
   1665  * Release a jumbo buffer.
   1666  */
   1667 static void
   1668 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1669 {
   1670 	struct bge_jpool_entry *entry;
   1671 	struct bge_softc *sc;
   1672 	int i, s;
   1673 
   1674 	/* Extract the softc struct pointer. */
   1675 	sc = (struct bge_softc *)arg;
   1676 
   1677 	if (sc == NULL)
   1678 		panic("bge_jfree: can't find softc pointer!");
   1679 
   1680 	/* calculate the slot this buffer belongs to */
   1681 
   1682 	i = ((char *)buf
   1683 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1684 
   1685 	if ((i < 0) || (i >= BGE_JSLOTS))
   1686 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1687 
   1688 	s = splvm();
   1689 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1690 	if (entry == NULL)
   1691 		panic("bge_jfree: buffer not in use!");
   1692 	entry->slot = i;
   1693 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1694 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1695 
   1696 	if (__predict_true(m != NULL))
   1697   		pool_cache_put(mb_cache, m);
   1698 	splx(s);
   1699 }
   1700 
   1701 
   1702 /*
   1703  * Initialize a standard receive ring descriptor.
   1704  */
   1705 static int
   1706 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1707     bus_dmamap_t dmamap)
   1708 {
   1709 	struct mbuf		*m_new = NULL;
   1710 	struct bge_rx_bd	*r;
   1711 	int			error;
   1712 
   1713 	if (dmamap == NULL) {
   1714 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1715 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1716 		if (error != 0)
   1717 			return error;
   1718 	}
   1719 
   1720 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1721 
   1722 	if (m == NULL) {
   1723 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1724 		if (m_new == NULL)
   1725 			return ENOBUFS;
   1726 
   1727 		MCLGET(m_new, M_DONTWAIT);
   1728 		if (!(m_new->m_flags & M_EXT)) {
   1729 			m_freem(m_new);
   1730 			return ENOBUFS;
   1731 		}
   1732 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1733 
   1734 	} else {
   1735 		m_new = m;
   1736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1737 		m_new->m_data = m_new->m_ext.ext_buf;
   1738 	}
   1739 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1740 	    m_adj(m_new, ETHER_ALIGN);
   1741 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1742 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1743 		return ENOBUFS;
   1744 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1745 	    BUS_DMASYNC_PREREAD);
   1746 
   1747 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1748 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1749 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1750 	r->bge_flags = BGE_RXBDFLAG_END;
   1751 	r->bge_len = m_new->m_len;
   1752 	r->bge_idx = i;
   1753 
   1754 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1755 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1756 		i * sizeof (struct bge_rx_bd),
   1757 	    sizeof (struct bge_rx_bd),
   1758 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1759 
   1760 	return 0;
   1761 }
   1762 
   1763 /*
   1764  * Initialize a jumbo receive ring descriptor. This allocates
   1765  * a jumbo buffer from the pool managed internally by the driver.
   1766  */
   1767 static int
   1768 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1769 {
   1770 	struct mbuf *m_new = NULL;
   1771 	struct bge_rx_bd *r;
   1772 	void *buf = NULL;
   1773 
   1774 	if (m == NULL) {
   1775 
   1776 		/* Allocate the mbuf. */
   1777 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1778 		if (m_new == NULL)
   1779 			return ENOBUFS;
   1780 
   1781 		/* Allocate the jumbo buffer */
   1782 		buf = bge_jalloc(sc);
   1783 		if (buf == NULL) {
   1784 			m_freem(m_new);
   1785 			aprint_error_dev(sc->bge_dev,
   1786 			    "jumbo allocation failed -- packet dropped!\n");
   1787 			return ENOBUFS;
   1788 		}
   1789 
   1790 		/* Attach the buffer to the mbuf. */
   1791 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1792 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1793 		    bge_jfree, sc);
   1794 		m_new->m_flags |= M_EXT_RW;
   1795 	} else {
   1796 		m_new = m;
   1797 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1798 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1799 	}
   1800 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1801 	    m_adj(m_new, ETHER_ALIGN);
   1802 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1803 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1804 	    BUS_DMASYNC_PREREAD);
   1805 	/* Set up the descriptor. */
   1806 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1807 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1808 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1809 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1810 	r->bge_len = m_new->m_len;
   1811 	r->bge_idx = i;
   1812 
   1813 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1814 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1815 		i * sizeof (struct bge_rx_bd),
   1816 	    sizeof (struct bge_rx_bd),
   1817 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1818 
   1819 	return 0;
   1820 }
   1821 
   1822 /*
   1823  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1824  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1825  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1826  * the NIC.
   1827  */
   1828 static int
   1829 bge_init_rx_ring_std(struct bge_softc *sc)
   1830 {
   1831 	int i;
   1832 
   1833 	if (sc->bge_flags & BGE_RXRING_VALID)
   1834 		return 0;
   1835 
   1836 	for (i = 0; i < BGE_SSLOTS; i++) {
   1837 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1838 			return ENOBUFS;
   1839 	}
   1840 
   1841 	sc->bge_std = i - 1;
   1842 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1843 
   1844 	sc->bge_flags |= BGE_RXRING_VALID;
   1845 
   1846 	return 0;
   1847 }
   1848 
   1849 static void
   1850 bge_free_rx_ring_std(struct bge_softc *sc)
   1851 {
   1852 	int i;
   1853 
   1854 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1855 		return;
   1856 
   1857 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1858 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1859 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1860 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1861 			bus_dmamap_destroy(sc->bge_dmatag,
   1862 			    sc->bge_cdata.bge_rx_std_map[i]);
   1863 		}
   1864 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1865 		    sizeof(struct bge_rx_bd));
   1866 	}
   1867 
   1868 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1869 }
   1870 
   1871 static int
   1872 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1873 {
   1874 	int i;
   1875 	volatile struct bge_rcb *rcb;
   1876 
   1877 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1878 		return 0;
   1879 
   1880 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1881 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1882 			return ENOBUFS;
   1883 	}
   1884 
   1885 	sc->bge_jumbo = i - 1;
   1886 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1887 
   1888 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1889 	rcb->bge_maxlen_flags = 0;
   1890 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1891 
   1892 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1893 
   1894 	return 0;
   1895 }
   1896 
   1897 static void
   1898 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1899 {
   1900 	int i;
   1901 
   1902 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1903 		return;
   1904 
   1905 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1906 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1907 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1908 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1909 		}
   1910 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1911 		    sizeof(struct bge_rx_bd));
   1912 	}
   1913 
   1914 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1915 }
   1916 
   1917 static void
   1918 bge_free_tx_ring(struct bge_softc *sc)
   1919 {
   1920 	int i;
   1921 	struct txdmamap_pool_entry *dma;
   1922 
   1923 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1924 		return;
   1925 
   1926 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1927 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1928 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1929 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1930 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1931 					    link);
   1932 			sc->txdma[i] = 0;
   1933 		}
   1934 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1935 		    sizeof(struct bge_tx_bd));
   1936 	}
   1937 
   1938 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1939 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1940 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1941 		free(dma, M_DEVBUF);
   1942 	}
   1943 
   1944 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1945 }
   1946 
   1947 static int
   1948 bge_init_tx_ring(struct bge_softc *sc)
   1949 {
   1950 	int i;
   1951 	bus_dmamap_t dmamap;
   1952 	struct txdmamap_pool_entry *dma;
   1953 
   1954 	if (sc->bge_flags & BGE_TXRING_VALID)
   1955 		return 0;
   1956 
   1957 	sc->bge_txcnt = 0;
   1958 	sc->bge_tx_saved_considx = 0;
   1959 
   1960 	/* Initialize transmit producer index for host-memory send ring. */
   1961 	sc->bge_tx_prodidx = 0;
   1962 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1963 	/* 5700 b2 errata */
   1964 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1965 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1966 
   1967 	/* NIC-memory send ring not used; initialize to zero. */
   1968 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1969 	/* 5700 b2 errata */
   1970 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1971 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1972 
   1973 	SLIST_INIT(&sc->txdma_list);
   1974 	for (i = 0; i < BGE_RSLOTS; i++) {
   1975 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1976 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1977 		    &dmamap))
   1978 			return ENOBUFS;
   1979 		if (dmamap == NULL)
   1980 			panic("dmamap NULL in bge_init_tx_ring");
   1981 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1982 		if (dma == NULL) {
   1983 			aprint_error_dev(sc->bge_dev,
   1984 			    "can't alloc txdmamap_pool_entry\n");
   1985 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1986 			return ENOMEM;
   1987 		}
   1988 		dma->dmamap = dmamap;
   1989 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1990 	}
   1991 
   1992 	sc->bge_flags |= BGE_TXRING_VALID;
   1993 
   1994 	return 0;
   1995 }
   1996 
   1997 static void
   1998 bge_setmulti(struct bge_softc *sc)
   1999 {
   2000 	struct ethercom		*ac = &sc->ethercom;
   2001 	struct ifnet		*ifp = &ac->ec_if;
   2002 	struct ether_multi	*enm;
   2003 	struct ether_multistep  step;
   2004 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2005 	uint32_t		h;
   2006 	int			i;
   2007 
   2008 	if (ifp->if_flags & IFF_PROMISC)
   2009 		goto allmulti;
   2010 
   2011 	/* Now program new ones. */
   2012 	ETHER_FIRST_MULTI(step, ac, enm);
   2013 	while (enm != NULL) {
   2014 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2015 			/*
   2016 			 * We must listen to a range of multicast addresses.
   2017 			 * For now, just accept all multicasts, rather than
   2018 			 * trying to set only those filter bits needed to match
   2019 			 * the range.  (At this time, the only use of address
   2020 			 * ranges is for IP multicast routing, for which the
   2021 			 * range is big enough to require all bits set.)
   2022 			 */
   2023 			goto allmulti;
   2024 		}
   2025 
   2026 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2027 
   2028 		/* Just want the 7 least-significant bits. */
   2029 		h &= 0x7f;
   2030 
   2031 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2032 		ETHER_NEXT_MULTI(step, enm);
   2033 	}
   2034 
   2035 	ifp->if_flags &= ~IFF_ALLMULTI;
   2036 	goto setit;
   2037 
   2038  allmulti:
   2039 	ifp->if_flags |= IFF_ALLMULTI;
   2040 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2041 
   2042  setit:
   2043 	for (i = 0; i < 4; i++)
   2044 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2045 }
   2046 
   2047 static void
   2048 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2049 {
   2050 
   2051 	/*
   2052 	 * Some chips don't like this so only do this if ASF is enabled
   2053 	 */
   2054 	if (sc->bge_asf_mode)
   2055 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2056 
   2057 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2058 		switch (type) {
   2059 		case BGE_RESET_START:
   2060 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2061 			    BGE_FW_DRV_STATE_START);
   2062 			break;
   2063 		case BGE_RESET_SHUTDOWN:
   2064 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2065 			    BGE_FW_DRV_STATE_UNLOAD);
   2066 			break;
   2067 		case BGE_RESET_SUSPEND:
   2068 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2069 			    BGE_FW_DRV_STATE_SUSPEND);
   2070 			break;
   2071 		}
   2072 	}
   2073 
   2074 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2075 		bge_ape_driver_state_change(sc, type);
   2076 }
   2077 
   2078 static void
   2079 bge_sig_post_reset(struct bge_softc *sc, int type)
   2080 {
   2081 
   2082 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2083 		switch (type) {
   2084 		case BGE_RESET_START:
   2085 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2086 			    BGE_FW_DRV_STATE_START_DONE);
   2087 			/* START DONE */
   2088 			break;
   2089 		case BGE_RESET_SHUTDOWN:
   2090 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2091 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2092 			break;
   2093 		}
   2094 	}
   2095 
   2096 	if (type == BGE_RESET_SHUTDOWN)
   2097 		bge_ape_driver_state_change(sc, type);
   2098 }
   2099 
   2100 static void
   2101 bge_sig_legacy(struct bge_softc *sc, int type)
   2102 {
   2103 
   2104 	if (sc->bge_asf_mode) {
   2105 		switch (type) {
   2106 		case BGE_RESET_START:
   2107 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2108 			    BGE_FW_DRV_STATE_START);
   2109 			break;
   2110 		case BGE_RESET_SHUTDOWN:
   2111 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2112 			    BGE_FW_DRV_STATE_UNLOAD);
   2113 			break;
   2114 		}
   2115 	}
   2116 }
   2117 
   2118 static void
   2119 bge_wait_for_event_ack(struct bge_softc *sc)
   2120 {
   2121 	int i;
   2122 
   2123 	/* wait up to 2500usec */
   2124 	for (i = 0; i < 250; i++) {
   2125 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2126 			BGE_RX_CPU_DRV_EVENT))
   2127 			break;
   2128 		DELAY(10);
   2129 	}
   2130 }
   2131 
   2132 static void
   2133 bge_stop_fw(struct bge_softc *sc)
   2134 {
   2135 
   2136 	if (sc->bge_asf_mode) {
   2137 		bge_wait_for_event_ack(sc);
   2138 
   2139 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2140 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2141 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2142 
   2143 		bge_wait_for_event_ack(sc);
   2144 	}
   2145 }
   2146 
   2147 static int
   2148 bge_poll_fw(struct bge_softc *sc)
   2149 {
   2150 	uint32_t val;
   2151 	int i;
   2152 
   2153 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2154 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2155 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2156 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2157 				break;
   2158 			DELAY(100);
   2159 		}
   2160 		if (i >= BGE_TIMEOUT) {
   2161 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2162 			return -1;
   2163 		}
   2164 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   2165 		/*
   2166 		 * Poll the value location we just wrote until
   2167 		 * we see the 1's complement of the magic number.
   2168 		 * This indicates that the firmware initialization
   2169 		 * is complete.
   2170 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2171 		 */
   2172 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2173 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2174 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2175 				break;
   2176 			DELAY(10);
   2177 		}
   2178 
   2179 		if (i >= BGE_TIMEOUT) {
   2180 			aprint_error_dev(sc->bge_dev,
   2181 			    "firmware handshake timed out, val = %x\n", val);
   2182 			return -1;
   2183 		}
   2184 	}
   2185 
   2186 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2187 		/* tg3 says we have to wait extra time */
   2188 		delay(10 * 1000);
   2189 	}
   2190 
   2191 	return 0;
   2192 }
   2193 
   2194 int
   2195 bge_phy_addr(struct bge_softc *sc)
   2196 {
   2197 	struct pci_attach_args *pa = &(sc->bge_pa);
   2198 	int phy_addr = 1;
   2199 
   2200 	/*
   2201 	 * PHY address mapping for various devices.
   2202 	 *
   2203 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2204 	 * ---------+-------+-------+-------+-------+
   2205 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2206 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2207 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2208 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2209 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2210 	 *
   2211 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2212 	 * ---------+-------+-------+-------+-------+
   2213 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2214 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2215 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2216 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2217 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2218 	 *
   2219 	 * Other addresses may respond but they are not
   2220 	 * IEEE compliant PHYs and should be ignored.
   2221 	 */
   2222 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2223 	case BGE_ASICREV_BCM5717:
   2224 	case BGE_ASICREV_BCM5719:
   2225 	case BGE_ASICREV_BCM5720:
   2226 		phy_addr = pa->pa_function;
   2227 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2228 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2229 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2230 		} else {
   2231 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2232 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2233 		}
   2234 	}
   2235 
   2236 	return phy_addr;
   2237 }
   2238 
   2239 /*
   2240  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2241  * self-test results.
   2242  */
   2243 static int
   2244 bge_chipinit(struct bge_softc *sc)
   2245 {
   2246 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2247 	int i;
   2248 
   2249 	/* Set endianness before we access any non-PCI registers. */
   2250 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2251 	    BGE_INIT);
   2252 
   2253 	/*
   2254 	 * Clear the MAC statistics block in the NIC's
   2255 	 * internal memory.
   2256 	 */
   2257 	for (i = BGE_STATS_BLOCK;
   2258 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2259 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2260 
   2261 	for (i = BGE_STATUS_BLOCK;
   2262 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2263 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2264 
   2265 	/* 5717 workaround from tg3 */
   2266 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2267 		/* Save */
   2268 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2269 
   2270 		/* Temporary modify MODE_CTL to control TLP */
   2271 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2272 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2273 
   2274 		/* Control TLP */
   2275 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2276 		    BGE_TLP_PHYCTL1);
   2277 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2278 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2279 
   2280 		/* Restore */
   2281 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2282 	}
   2283 
   2284 	/* XXX Should we use 57765_FAMILY? */
   2285 	if (BGE_IS_57765_PLUS(sc)) {
   2286 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2287 			/* Save */
   2288 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2289 
   2290 			/* Temporary modify MODE_CTL to control TLP */
   2291 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2292 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2293 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2294 
   2295 			/* Control TLP */
   2296 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2297 			    BGE_TLP_PHYCTL5);
   2298 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2299 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2300 
   2301 			/* Restore */
   2302 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2303 		}
   2304 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2305 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2306 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2307 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2308 
   2309 			/* Save */
   2310 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2311 
   2312 			/* Temporary modify MODE_CTL to control TLP */
   2313 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2314 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2315 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2316 
   2317 			/* Control TLP */
   2318 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2319 			    BGE_TLP_FTSMAX);
   2320 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2321 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2322 			    reg | BGE_TLP_FTSMAX_VAL);
   2323 
   2324 			/* Restore */
   2325 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2326 		}
   2327 
   2328 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2329 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2330 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2331 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2332 	}
   2333 
   2334 	/* Set up the PCI DMA control register. */
   2335 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2336 	if (sc->bge_flags & BGE_PCIE) {
   2337 		/* Read watermark not used, 128 bytes for write. */
   2338 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2339 		    device_xname(sc->bge_dev)));
   2340 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2341 	} else if (sc->bge_flags & BGE_PCIX) {
   2342 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2343 		    device_xname(sc->bge_dev)));
   2344 		/* PCI-X bus */
   2345 		if (BGE_IS_5714_FAMILY(sc)) {
   2346 			/* 256 bytes for read and write. */
   2347 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2348 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2349 
   2350 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2351 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2352 			else
   2353 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2354 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2355 			/* 1536 bytes for read, 384 bytes for write. */
   2356 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2357 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2358 		} else {
   2359 			/* 384 bytes for read and write. */
   2360 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2361 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2362 			    (0x0F);
   2363 		}
   2364 
   2365 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2366 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2367 			uint32_t tmp;
   2368 
   2369 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2370 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2371 			if (tmp == 6 || tmp == 7)
   2372 				dma_rw_ctl |=
   2373 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2374 
   2375 			/* Set PCI-X DMA write workaround. */
   2376 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2377 		}
   2378 	} else {
   2379 		/* Conventional PCI bus: 256 bytes for read and write. */
   2380 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2381 		    device_xname(sc->bge_dev)));
   2382 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2383 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2384 
   2385 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2386 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2387 			dma_rw_ctl |= 0x0F;
   2388 	}
   2389 
   2390 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2391 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2392 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2393 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2394 
   2395 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2396 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2397 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2398 
   2399 	if (BGE_IS_5717_PLUS(sc)) {
   2400 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2401 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2402 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2403 
   2404 		/*
   2405 		 * Enable HW workaround for controllers that misinterpret
   2406 		 * a status tag update and leave interrupts permanently
   2407 		 * disabled.
   2408 		 */
   2409 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2410 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   2411 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2412 	}
   2413 
   2414 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2415 	    dma_rw_ctl);
   2416 
   2417 	/*
   2418 	 * Set up general mode register.
   2419 	 */
   2420 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2421 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2422 		/* Retain Host-2-BMC settings written by APE firmware. */
   2423 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2424 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2425 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2426 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2427 	}
   2428 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2429 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2430 
   2431 	/*
   2432 	 * BCM5701 B5 have a bug causing data corruption when using
   2433 	 * 64-bit DMA reads, which can be terminated early and then
   2434 	 * completed later as 32-bit accesses, in combination with
   2435 	 * certain bridges.
   2436 	 */
   2437 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2438 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2439 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2440 
   2441 	/*
   2442 	 * Tell the firmware the driver is running
   2443 	 */
   2444 	if (sc->bge_asf_mode & ASF_STACKUP)
   2445 		mode_ctl |= BGE_MODECTL_STACKUP;
   2446 
   2447 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2448 
   2449 	/*
   2450 	 * Disable memory write invalidate.  Apparently it is not supported
   2451 	 * properly by these devices.
   2452 	 */
   2453 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2454 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2455 
   2456 #ifdef __brokenalpha__
   2457 	/*
   2458 	 * Must insure that we do not cross an 8K (bytes) boundary
   2459 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2460 	 * restriction on some ALPHA platforms with early revision
   2461 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2462 	 */
   2463 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2464 #endif
   2465 
   2466 	/* Set the timer prescaler (always 66MHz) */
   2467 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2468 
   2469 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2470 		DELAY(40);	/* XXX */
   2471 
   2472 		/* Put PHY into ready state */
   2473 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2474 		DELAY(40);
   2475 	}
   2476 
   2477 	return 0;
   2478 }
   2479 
   2480 static int
   2481 bge_blockinit(struct bge_softc *sc)
   2482 {
   2483 	volatile struct bge_rcb	 *rcb;
   2484 	bus_size_t rcb_addr;
   2485 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2486 	bge_hostaddr taddr;
   2487 	uint32_t	dmactl, val;
   2488 	int		i, limit;
   2489 
   2490 	/*
   2491 	 * Initialize the memory window pointer register so that
   2492 	 * we can access the first 32K of internal NIC RAM. This will
   2493 	 * allow us to set up the TX send ring RCBs and the RX return
   2494 	 * ring RCBs, plus other things which live in NIC memory.
   2495 	 */
   2496 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2497 
   2498 	/* Step 33: Configure mbuf memory pool */
   2499 	if (!BGE_IS_5705_PLUS(sc)) {
   2500 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2501 		    BGE_BUFFPOOL_1);
   2502 
   2503 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2504 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2505 		else
   2506 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2507 
   2508 		/* Configure DMA resource pool */
   2509 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2510 		    BGE_DMA_DESCRIPTORS);
   2511 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2512 	}
   2513 
   2514 	/* Step 35: Configure mbuf pool watermarks */
   2515 	/* new broadcom docs strongly recommend these: */
   2516 	if (BGE_IS_5717_PLUS(sc)) {
   2517 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2518 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2519 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2520 	} else if (BGE_IS_5705_PLUS(sc)) {
   2521 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2522 
   2523 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2524 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2525 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2526 		} else {
   2527 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2528 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2529 		}
   2530 	} else {
   2531 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2532 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2533 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2534 	}
   2535 
   2536 	/* Step 36: Configure DMA resource watermarks */
   2537 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2538 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2539 
   2540 	/* Step 38: Enable buffer manager */
   2541 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2542 	/*
   2543 	 * Change the arbitration algorithm of TXMBUF read request to
   2544 	 * round-robin instead of priority based for BCM5719.  When
   2545 	 * TXFIFO is almost empty, RDMA will hold its request until
   2546 	 * TXFIFO is not almost empty.
   2547 	 */
   2548 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2549 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2550 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2551 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2552 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2553 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2554 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2555 
   2556 	/* Step 39: Poll for buffer manager start indication */
   2557 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2558 		DELAY(10);
   2559 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2560 			break;
   2561 	}
   2562 
   2563 	if (i == BGE_TIMEOUT * 2) {
   2564 		aprint_error_dev(sc->bge_dev,
   2565 		    "buffer manager failed to start\n");
   2566 		return ENXIO;
   2567 	}
   2568 
   2569 	/* Step 40: Enable flow-through queues */
   2570 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2571 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2572 
   2573 	/* Wait until queue initialization is complete */
   2574 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2575 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2576 			break;
   2577 		DELAY(10);
   2578 	}
   2579 
   2580 	if (i == BGE_TIMEOUT * 2) {
   2581 		aprint_error_dev(sc->bge_dev,
   2582 		    "flow-through queue init failed\n");
   2583 		return ENXIO;
   2584 	}
   2585 
   2586 	/*
   2587 	 * Summary of rings supported by the controller:
   2588 	 *
   2589 	 * Standard Receive Producer Ring
   2590 	 * - This ring is used to feed receive buffers for "standard"
   2591 	 *   sized frames (typically 1536 bytes) to the controller.
   2592 	 *
   2593 	 * Jumbo Receive Producer Ring
   2594 	 * - This ring is used to feed receive buffers for jumbo sized
   2595 	 *   frames (i.e. anything bigger than the "standard" frames)
   2596 	 *   to the controller.
   2597 	 *
   2598 	 * Mini Receive Producer Ring
   2599 	 * - This ring is used to feed receive buffers for "mini"
   2600 	 *   sized frames to the controller.
   2601 	 * - This feature required external memory for the controller
   2602 	 *   but was never used in a production system.  Should always
   2603 	 *   be disabled.
   2604 	 *
   2605 	 * Receive Return Ring
   2606 	 * - After the controller has placed an incoming frame into a
   2607 	 *   receive buffer that buffer is moved into a receive return
   2608 	 *   ring.  The driver is then responsible to passing the
   2609 	 *   buffer up to the stack.  Many versions of the controller
   2610 	 *   support multiple RR rings.
   2611 	 *
   2612 	 * Send Ring
   2613 	 * - This ring is used for outgoing frames.  Many versions of
   2614 	 *   the controller support multiple send rings.
   2615 	 */
   2616 
   2617 	/* Step 41: Initialize the standard RX ring control block */
   2618 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2619 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2620 	if (BGE_IS_5717_PLUS(sc)) {
   2621 		/*
   2622 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2623 		 * Bits 15-2 : Maximum RX frame size
   2624 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2625 		 * Bit 0     : Reserved
   2626 		 */
   2627 		rcb->bge_maxlen_flags =
   2628 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2629 	} else if (BGE_IS_5705_PLUS(sc)) {
   2630 		/*
   2631 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2632 		 * Bits 15-2 : Reserved (should be 0)
   2633 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2634 		 * Bit 0     : Reserved
   2635 		 */
   2636 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2637 	} else {
   2638 		/*
   2639 		 * Ring size is always XXX entries
   2640 		 * Bits 31-16: Maximum RX frame size
   2641 		 * Bits 15-2 : Reserved (should be 0)
   2642 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2643 		 * Bit 0     : Reserved
   2644 		 */
   2645 		rcb->bge_maxlen_flags =
   2646 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2647 	}
   2648 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2651 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2652 	else
   2653 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2654 	/* Write the standard receive producer ring control block. */
   2655 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2656 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2657 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2658 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2659 
   2660 	/* Reset the standard receive producer ring producer index. */
   2661 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2662 
   2663 	/*
   2664 	 * Step 42: Initialize the jumbo RX ring control block
   2665 	 * We set the 'ring disabled' bit in the flags
   2666 	 * field until we're actually ready to start
   2667 	 * using this ring (i.e. once we set the MTU
   2668 	 * high enough to require it).
   2669 	 */
   2670 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2671 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2672 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2673 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2674 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2675 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2676 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2677 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2678 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2679 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2680 		else
   2681 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2682 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2683 		    rcb->bge_hostaddr.bge_addr_hi);
   2684 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2685 		    rcb->bge_hostaddr.bge_addr_lo);
   2686 		/* Program the jumbo receive producer ring RCB parameters. */
   2687 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2688 		    rcb->bge_maxlen_flags);
   2689 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2690 		/* Reset the jumbo receive producer ring producer index. */
   2691 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2692 	}
   2693 
   2694 	/* Disable the mini receive producer ring RCB. */
   2695 	if (BGE_IS_5700_FAMILY(sc)) {
   2696 		/* Set up dummy disabled mini ring RCB */
   2697 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2698 		rcb->bge_maxlen_flags =
   2699 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2700 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2701 		    rcb->bge_maxlen_flags);
   2702 		/* Reset the mini receive producer ring producer index. */
   2703 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2704 
   2705 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2706 		    offsetof(struct bge_ring_data, bge_info),
   2707 		    sizeof (struct bge_gib),
   2708 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2709 	}
   2710 
   2711 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2712 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2713 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2714 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2715 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2716 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2717 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2718 	}
   2719 	/*
   2720 	 * The BD ring replenish thresholds control how often the
   2721 	 * hardware fetches new BD's from the producer rings in host
   2722 	 * memory.  Setting the value too low on a busy system can
   2723 	 * starve the hardware and recue the throughpout.
   2724 	 *
   2725 	 * Set the BD ring replenish thresholds. The recommended
   2726 	 * values are 1/8th the number of descriptors allocated to
   2727 	 * each ring, but since we try to avoid filling the entire
   2728 	 * ring we set these to the minimal value of 8.  This needs to
   2729 	 * be done on several of the supported chip revisions anyway,
   2730 	 * to work around HW bugs.
   2731 	 */
   2732 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2733 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2734 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2735 
   2736 	if (BGE_IS_5717_PLUS(sc)) {
   2737 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2738 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2739 	}
   2740 
   2741 	/*
   2742 	 * Disable all send rings by setting the 'ring disabled' bit
   2743 	 * in the flags field of all the TX send ring control blocks,
   2744 	 * located in NIC memory.
   2745 	 */
   2746 	if (BGE_IS_5700_FAMILY(sc)) {
   2747 		/* 5700 to 5704 had 16 send rings. */
   2748 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2749 	} else
   2750 		limit = 1;
   2751 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2752 	for (i = 0; i < limit; i++) {
   2753 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2754 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2755 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2756 		rcb_addr += sizeof(struct bge_rcb);
   2757 	}
   2758 
   2759 	/* Configure send ring RCB 0 (we use only the first ring) */
   2760 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2761 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2762 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2763 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2764 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2765 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2766 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2767 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2768 	else
   2769 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2770 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2771 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2772 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2773 
   2774 	/*
   2775 	 * Disable all receive return rings by setting the
   2776 	 * 'ring diabled' bit in the flags field of all the receive
   2777 	 * return ring control blocks, located in NIC memory.
   2778 	 */
   2779 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2780 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2781 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2782 		/* Should be 17, use 16 until we get an SRAM map. */
   2783 		limit = 16;
   2784 	} else if (BGE_IS_5700_FAMILY(sc))
   2785 		limit = BGE_RX_RINGS_MAX;
   2786 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2787 	    BGE_IS_57765_PLUS(sc))
   2788 		limit = 4;
   2789 	else
   2790 		limit = 1;
   2791 	/* Disable all receive return rings */
   2792 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2793 	for (i = 0; i < limit; i++) {
   2794 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2795 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2796 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2797 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2798 			BGE_RCB_FLAG_RING_DISABLED));
   2799 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2800 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2801 		    (i * (sizeof(uint64_t))), 0);
   2802 		rcb_addr += sizeof(struct bge_rcb);
   2803 	}
   2804 
   2805 	/*
   2806 	 * Set up receive return ring 0.  Note that the NIC address
   2807 	 * for RX return rings is 0x0.  The return rings live entirely
   2808 	 * within the host, so the nicaddr field in the RCB isn't used.
   2809 	 */
   2810 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2811 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2812 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2813 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2814 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2815 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2816 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2817 
   2818 	/* Set random backoff seed for TX */
   2819 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2820 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2821 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2822 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2823 	    BGE_TX_BACKOFF_SEED_MASK);
   2824 
   2825 	/* Set inter-packet gap */
   2826 	val = 0x2620;
   2827 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2828 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2829 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2830 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2831 
   2832 	/*
   2833 	 * Specify which ring to use for packets that don't match
   2834 	 * any RX rules.
   2835 	 */
   2836 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2837 
   2838 	/*
   2839 	 * Configure number of RX lists. One interrupt distribution
   2840 	 * list, sixteen active lists, one bad frames class.
   2841 	 */
   2842 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2843 
   2844 	/* Inialize RX list placement stats mask. */
   2845 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2846 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2847 
   2848 	/* Disable host coalescing until we get it set up */
   2849 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2850 
   2851 	/* Poll to make sure it's shut down. */
   2852 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2853 		DELAY(10);
   2854 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2855 			break;
   2856 	}
   2857 
   2858 	if (i == BGE_TIMEOUT * 2) {
   2859 		aprint_error_dev(sc->bge_dev,
   2860 		    "host coalescing engine failed to idle\n");
   2861 		return ENXIO;
   2862 	}
   2863 
   2864 	/* Set up host coalescing defaults */
   2865 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2866 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2867 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2868 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2869 	if (!(BGE_IS_5705_PLUS(sc))) {
   2870 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2871 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2872 	}
   2873 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2874 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2875 
   2876 	/* Set up address of statistics block */
   2877 	if (BGE_IS_5700_FAMILY(sc)) {
   2878 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2879 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2880 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2881 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2882 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2883 	}
   2884 
   2885 	/* Set up address of status block */
   2886 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2887 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2888 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2889 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2890 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2891 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2892 
   2893 	/* Set up status block size. */
   2894 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2895 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2896 		val = BGE_STATBLKSZ_FULL;
   2897 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2898 	} else {
   2899 		val = BGE_STATBLKSZ_32BYTE;
   2900 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2901 	}
   2902 
   2903 	/* Turn on host coalescing state machine */
   2904 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2905 
   2906 	/* Turn on RX BD completion state machine and enable attentions */
   2907 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2908 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2909 
   2910 	/* Turn on RX list placement state machine */
   2911 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2912 
   2913 	/* Turn on RX list selector state machine. */
   2914 	if (!(BGE_IS_5705_PLUS(sc)))
   2915 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2916 
   2917 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2918 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2919 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2920 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2921 
   2922 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2923 		val |= BGE_PORTMODE_TBI;
   2924 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2925 		val |= BGE_PORTMODE_GMII;
   2926 	else
   2927 		val |= BGE_PORTMODE_MII;
   2928 
   2929 	/* Allow APE to send/receive frames. */
   2930 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2931 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2932 
   2933 	/* Turn on DMA, clear stats */
   2934 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2935 	DELAY(40);
   2936 
   2937 	/* Set misc. local control, enable interrupts on attentions */
   2938 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2939 	if (BGE_IS_5717_PLUS(sc)) {
   2940 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2941 		DELAY(100);
   2942 	}
   2943 
   2944 	/* Turn on DMA completion state machine */
   2945 	if (!(BGE_IS_5705_PLUS(sc)))
   2946 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2947 
   2948 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2949 
   2950 	/* Enable host coalescing bug fix. */
   2951 	if (BGE_IS_5755_PLUS(sc))
   2952 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2953 
   2954 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2955 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2956 
   2957 	/* Turn on write DMA state machine */
   2958 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2959 	DELAY(40);
   2960 
   2961 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2962 
   2963 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2964 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2965 
   2966 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2967 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2968 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2969 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2970 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2971 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2972 
   2973 	if (sc->bge_flags & BGE_PCIE)
   2974 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2975 	if (sc->bge_flags & BGE_TSO)
   2976 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2977 
   2978 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2979 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2980 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2981 		/*
   2982 		 * Allow multiple outstanding read requests from
   2983 		 * non-LSO read DMA engine.
   2984 		 */
   2985 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2986 	}
   2987 
   2988 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2989 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2990 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2991 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2992 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
   2993 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   2994 		/*
   2995 		 * Adjust tx margin to prevent TX data corruption and
   2996 		 * fix internal FIFO overflow.
   2997 		 */
   2998 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   2999 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3000 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3001 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3002 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3003 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3004 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3005 		}
   3006 		/*
   3007 		 * Enable fix for read DMA FIFO overruns.
   3008 		 * The fix is to limit the number of RX BDs
   3009 		 * the hardware would fetch at a fime.
   3010 		 */
   3011 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3012 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3013 	}
   3014 
   3015 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3016 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3017 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3018 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3019 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3020 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3021 		/*
   3022 		 * Allow 4KB burst length reads for non-LSO frames.
   3023 		 * Enable 512B burst length reads for buffer descriptors.
   3024 		 */
   3025 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3026 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3027 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3028 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3029 	}
   3030 
   3031 	/* Turn on read DMA state machine */
   3032 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3033 	delay(40);
   3034 
   3035 	/* Turn on RX data completion state machine */
   3036 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3037 
   3038 	/* Turn on RX data and RX BD initiator state machine */
   3039 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3040 
   3041 	/* Turn on Mbuf cluster free state machine */
   3042 	if (!BGE_IS_5705_PLUS(sc))
   3043 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3044 
   3045 	/* Turn on send data completion state machine */
   3046 	val = BGE_SDCMODE_ENABLE;
   3047 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3048 		val |= BGE_SDCMODE_CDELAY;
   3049 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3050 
   3051 	/* Turn on send BD completion state machine */
   3052 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3053 
   3054 	/* Turn on RX BD initiator state machine */
   3055 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3056 
   3057 	/* Turn on send data initiator state machine */
   3058 	if (sc->bge_flags & BGE_TSO) {
   3059 		/* XXX: magic value from Linux driver */
   3060 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3061 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3062 	} else
   3063 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3064 
   3065 	/* Turn on send BD initiator state machine */
   3066 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3067 
   3068 	/* Turn on send BD selector state machine */
   3069 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3070 
   3071 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3072 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3073 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3074 
   3075 	/* ack/clear link change events */
   3076 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3077 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3078 	    BGE_MACSTAT_LINK_CHANGED);
   3079 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3080 
   3081 	/*
   3082 	 * Enable attention when the link has changed state for
   3083 	 * devices that use auto polling.
   3084 	 */
   3085 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3086 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3087 	} else {
   3088 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3089 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   3090 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3091 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3092 			    BGE_EVTENB_MI_INTERRUPT);
   3093 	}
   3094 
   3095 	/*
   3096 	 * Clear any pending link state attention.
   3097 	 * Otherwise some link state change events may be lost until attention
   3098 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3099 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3100 	 * state change attentions implies clearing pending attention.
   3101 	 */
   3102 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3103 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3104 	    BGE_MACSTAT_LINK_CHANGED);
   3105 
   3106 	/* Enable link state change attentions. */
   3107 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3108 
   3109 	return 0;
   3110 }
   3111 
   3112 static const struct bge_revision *
   3113 bge_lookup_rev(uint32_t chipid)
   3114 {
   3115 	const struct bge_revision *br;
   3116 
   3117 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3118 		if (br->br_chipid == chipid)
   3119 			return br;
   3120 	}
   3121 
   3122 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3123 		if (br->br_chipid == BGE_ASICREV(chipid))
   3124 			return br;
   3125 	}
   3126 
   3127 	return NULL;
   3128 }
   3129 
   3130 static const struct bge_product *
   3131 bge_lookup(const struct pci_attach_args *pa)
   3132 {
   3133 	const struct bge_product *bp;
   3134 
   3135 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3136 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3137 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3138 			return bp;
   3139 	}
   3140 
   3141 	return NULL;
   3142 }
   3143 
   3144 static uint32_t
   3145 bge_chipid(const struct pci_attach_args *pa)
   3146 {
   3147 	uint32_t id;
   3148 
   3149 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3150 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3151 
   3152 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3153 		switch (PCI_PRODUCT(pa->pa_id)) {
   3154 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3155 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3156 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3157 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3158 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3159 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3160 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3161 			break;
   3162 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3163 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3164 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3165 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3166 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3167 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3168 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3169 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3170 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3171 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3172 			break;
   3173 		default:
   3174 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3175 			    BGE_PCI_PRODID_ASICREV);
   3176 			break;
   3177 		}
   3178 	}
   3179 
   3180 	return id;
   3181 }
   3182 
   3183 /*
   3184  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3185  * against our list and return its name if we find a match. Note
   3186  * that since the Broadcom controller contains VPD support, we
   3187  * can get the device name string from the controller itself instead
   3188  * of the compiled-in string. This is a little slow, but it guarantees
   3189  * we'll always announce the right product name.
   3190  */
   3191 static int
   3192 bge_probe(device_t parent, cfdata_t match, void *aux)
   3193 {
   3194 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3195 
   3196 	if (bge_lookup(pa) != NULL)
   3197 		return 1;
   3198 
   3199 	return 0;
   3200 }
   3201 
   3202 static void
   3203 bge_attach(device_t parent, device_t self, void *aux)
   3204 {
   3205 	struct bge_softc	*sc = device_private(self);
   3206 	struct pci_attach_args	*pa = aux;
   3207 	prop_dictionary_t dict;
   3208 	const struct bge_product *bp;
   3209 	const struct bge_revision *br;
   3210 	pci_chipset_tag_t	pc;
   3211 	pci_intr_handle_t	ih;
   3212 	const char		*intrstr = NULL;
   3213 	uint32_t		hwcfg = 0;
   3214 	uint32_t		command;
   3215 	struct ifnet		*ifp;
   3216 	uint32_t		misccfg;
   3217 	void *			kva;
   3218 	u_char			eaddr[ETHER_ADDR_LEN];
   3219 	pcireg_t		memtype, subid, reg;
   3220 	bus_addr_t		memaddr;
   3221 	uint32_t		pm_ctl;
   3222 	bool			no_seeprom;
   3223 	int			capmask;
   3224 
   3225 	bp = bge_lookup(pa);
   3226 	KASSERT(bp != NULL);
   3227 
   3228 	sc->sc_pc = pa->pa_pc;
   3229 	sc->sc_pcitag = pa->pa_tag;
   3230 	sc->bge_dev = self;
   3231 
   3232 	sc->bge_pa = *pa;
   3233 	pc = sc->sc_pc;
   3234 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3235 
   3236 	aprint_naive(": Ethernet controller\n");
   3237 	aprint_normal(": %s\n", bp->bp_name);
   3238 
   3239 	/*
   3240 	 * Map control/status registers.
   3241 	 */
   3242 	DPRINTFN(5, ("Map control/status regs\n"));
   3243 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3244 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3245 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3246 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3247 
   3248 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3249 		aprint_error_dev(sc->bge_dev,
   3250 		    "failed to enable memory mapping!\n");
   3251 		return;
   3252 	}
   3253 
   3254 	DPRINTFN(5, ("pci_mem_find\n"));
   3255 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3256 	switch (memtype) {
   3257 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3258 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3259 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3260 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3261 		    &memaddr, &sc->bge_bsize) == 0)
   3262 			break;
   3263 	default:
   3264 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3265 		return;
   3266 	}
   3267 
   3268 	DPRINTFN(5, ("pci_intr_map\n"));
   3269 	if (pci_intr_map(pa, &ih)) {
   3270 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3271 		return;
   3272 	}
   3273 
   3274 	DPRINTFN(5, ("pci_intr_string\n"));
   3275 	intrstr = pci_intr_string(pc, ih);
   3276 
   3277 	DPRINTFN(5, ("pci_intr_establish\n"));
   3278 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3279 
   3280 	if (sc->bge_intrhand == NULL) {
   3281 		aprint_error_dev(sc->bge_dev,
   3282 		    "couldn't establish interrupt%s%s\n",
   3283 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3284 		return;
   3285 	}
   3286 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3287 
   3288 	/* Save various chip information. */
   3289 	sc->bge_chipid = bge_chipid(pa);
   3290 	sc->bge_phy_addr = bge_phy_addr(sc);
   3291 
   3292 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3293 	        &sc->bge_pciecap, NULL) != 0)
   3294 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3295 		/* PCIe */
   3296 		sc->bge_flags |= BGE_PCIE;
   3297 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3298 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3299 			sc->bge_expmrq = 2048;
   3300 		else
   3301 			sc->bge_expmrq = 4096;
   3302 		bge_set_max_readrq(sc);
   3303 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3304 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3305 		/* PCI-X */
   3306 		sc->bge_flags |= BGE_PCIX;
   3307 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3308 			&sc->bge_pcixcap, NULL) == 0)
   3309 			aprint_error_dev(sc->bge_dev,
   3310 			    "unable to find PCIX capability\n");
   3311 	}
   3312 
   3313 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3314 		/*
   3315 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3316 		 * can clobber the chip's PCI config-space power control
   3317 		 * registers, leaving the card in D3 powersave state. We do
   3318 		 * not have memory-mapped registers in this state, so force
   3319 		 * device into D0 state before starting initialization.
   3320 		 */
   3321 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3322 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3323 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3324 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3325 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3326 	}
   3327 
   3328 	/* Save chipset family. */
   3329 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3330 	case BGE_ASICREV_BCM57765:
   3331 	case BGE_ASICREV_BCM57766:
   3332 		sc->bge_flags |= BGE_57765_PLUS;
   3333 		/* FALLTHROUGH */
   3334 	case BGE_ASICREV_BCM5717:
   3335 	case BGE_ASICREV_BCM5719:
   3336 	case BGE_ASICREV_BCM5720:
   3337 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
   3338 		    BGE_5705_PLUS;
   3339 		break;
   3340 	case BGE_ASICREV_BCM5755:
   3341 	case BGE_ASICREV_BCM5761:
   3342 	case BGE_ASICREV_BCM5784:
   3343 	case BGE_ASICREV_BCM5785:
   3344 	case BGE_ASICREV_BCM5787:
   3345 	case BGE_ASICREV_BCM57780:
   3346 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
   3347 		break;
   3348 	case BGE_ASICREV_BCM5700:
   3349 	case BGE_ASICREV_BCM5701:
   3350 	case BGE_ASICREV_BCM5703:
   3351 	case BGE_ASICREV_BCM5704:
   3352 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
   3353 		break;
   3354 	case BGE_ASICREV_BCM5714_A0:
   3355 	case BGE_ASICREV_BCM5780:
   3356 	case BGE_ASICREV_BCM5714:
   3357 		sc->bge_flags |= BGE_5714_FAMILY;
   3358 		/* FALLTHROUGH */
   3359 	case BGE_ASICREV_BCM5750:
   3360 	case BGE_ASICREV_BCM5752:
   3361 	case BGE_ASICREV_BCM5906:
   3362 		sc->bge_flags |= BGE_575X_PLUS;
   3363 		/* FALLTHROUGH */
   3364 	case BGE_ASICREV_BCM5705:
   3365 		sc->bge_flags |= BGE_5705_PLUS;
   3366 		break;
   3367 	}
   3368 
   3369 	/* Identify chips with APE processor. */
   3370 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3371 	case BGE_ASICREV_BCM5717:
   3372 	case BGE_ASICREV_BCM5719:
   3373 	case BGE_ASICREV_BCM5720:
   3374 	case BGE_ASICREV_BCM5761:
   3375 		sc->bge_flags |= BGE_APE;
   3376 		break;
   3377 	}
   3378 
   3379 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3380 	if ((sc->bge_flags & BGE_APE) != 0) {
   3381 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3382 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3383 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3384 			&sc->bge_apesize)) {
   3385 			aprint_error_dev(sc->bge_dev,
   3386 			    "couldn't map BAR2 memory\n");
   3387 			return;
   3388 		}
   3389 
   3390 		/* Enable APE register/memory access by host driver. */
   3391 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3392 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3393 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3394 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3395 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3396 
   3397 		bge_ape_lock_init(sc);
   3398 		bge_ape_read_fw_ver(sc);
   3399 	}
   3400 
   3401 	/* Identify the chips that use an CPMU. */
   3402 	if (BGE_IS_5717_PLUS(sc) ||
   3403 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3404 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3405 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3406 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3407 		sc->bge_flags |= BGE_CPMU_PRESENT;
   3408 
   3409 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
   3410 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
   3411 	else
   3412 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
   3413 
   3414 	/*
   3415 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3416 	 * been observed in the first few bytes of some received packets.
   3417 	 * Aligning the packet buffer in memory eliminates the corruption.
   3418 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3419 	 * which do not support unaligned accesses, we will realign the
   3420 	 * payloads by copying the received packets.
   3421 	 */
   3422 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3423 	    sc->bge_flags & BGE_PCIX)
   3424 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   3425 
   3426 	if (BGE_IS_5700_FAMILY(sc))
   3427 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   3428 
   3429 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3430 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3431 
   3432 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3433 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3434 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3435 		sc->bge_flags |= BGE_IS_5788;
   3436 
   3437 	/*
   3438 	 * Some controllers seem to require a special firmware to use
   3439 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3440 	 * claims that the TSO performed by the firmware is slower than
   3441 	 * hardware based TSO. Moreover the firmware based TSO has one
   3442 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3443 	 * header is greater than 80 bytes. The workaround for the TSO
   3444 	 * bug exist but it seems it's too expensive than not using
   3445 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3446 	 * the TSO to the controllers that are not affected TSO issues
   3447 	 * (e.g. 5755 or higher).
   3448 	 */
   3449 	if (BGE_IS_5755_PLUS(sc)) {
   3450 		/*
   3451 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3452 		 * explicit device id check is required.
   3453 		 */
   3454 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3455 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3456 			sc->bge_flags |= BGE_TSO;
   3457 	}
   3458 
   3459 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3460 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3461 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3462 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3463 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3464 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3465 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3466 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3467 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3468 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3469 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3470 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3471 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3472 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3473 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3474 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3475 		capmask &= ~BMSR_EXTSTAT;
   3476 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3477 	}
   3478 
   3479 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3480 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3481 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3482 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3483 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3484 
   3485 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3486 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   3487 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
   3488 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 &&
   3489 		sc->bge_chipid != BGE_CHIPID_BCM5717_A0) ||
   3490 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 &&
   3491 		sc->bge_chipid != BGE_CHIPID_BCM57765_A0))
   3492 		sc->bge_flags |= BGE_PHY_EEE;
   3493 
   3494 	/* Set various PHY bug flags. */
   3495 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3496 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3497 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   3498 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3499 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3500 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   3501 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3502 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   3503 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3504 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3505 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3506 		sc->bge_flags |= BGE_PHY_NO_3LED;
   3507 	if (BGE_IS_5705_PLUS(sc) &&
   3508 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3509 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3510 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3511 	    !BGE_IS_5717_PLUS(sc)) {
   3512 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3513 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3514 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3515 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3516 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3517 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3518 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   3519 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3520 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   3521 		} else
   3522 			sc->bge_flags |= BGE_PHY_BER_BUG;
   3523 	}
   3524 
   3525 	/*
   3526 	 * SEEPROM check.
   3527 	 * First check if firmware knows we do not have SEEPROM.
   3528 	 */
   3529 	if (prop_dictionary_get_bool(device_properties(self),
   3530 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3531 	 	sc->bge_flags |= BGE_NO_EEPROM;
   3532 
   3533 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3534 		sc->bge_flags |= BGE_NO_EEPROM;
   3535 
   3536 	/* Now check the 'ROM failed' bit on the RX CPU */
   3537 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3538 		sc->bge_flags |= BGE_NO_EEPROM;
   3539 
   3540 	sc->bge_asf_mode = 0;
   3541 	/* No ASF if APE present. */
   3542 	if ((sc->bge_flags & BGE_APE) == 0) {
   3543 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3544 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3545 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3546 			    BGE_HWCFG_ASF) {
   3547 				sc->bge_asf_mode |= ASF_ENABLE;
   3548 				sc->bge_asf_mode |= ASF_STACKUP;
   3549 				if (BGE_IS_575X_PLUS(sc))
   3550 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3551 			}
   3552 		}
   3553 	}
   3554 
   3555 	bge_stop_fw(sc);
   3556 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3557 	if (bge_reset(sc))
   3558 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3559 
   3560 	bge_sig_legacy(sc, BGE_RESET_START);
   3561 	bge_sig_post_reset(sc, BGE_RESET_START);
   3562 
   3563 	if (bge_chipinit(sc)) {
   3564 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3565 		bge_release_resources(sc);
   3566 		return;
   3567 	}
   3568 
   3569 	/*
   3570 	 * Get station address from the EEPROM.
   3571 	 */
   3572 	if (bge_get_eaddr(sc, eaddr)) {
   3573 		aprint_error_dev(sc->bge_dev,
   3574 		    "failed to read station address\n");
   3575 		bge_release_resources(sc);
   3576 		return;
   3577 	}
   3578 
   3579 	br = bge_lookup_rev(sc->bge_chipid);
   3580 
   3581 	if (br == NULL) {
   3582 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3583 		    sc->bge_chipid);
   3584 	} else {
   3585 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3586 		    br->br_name, sc->bge_chipid);
   3587 	}
   3588 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3589 
   3590 	/* Allocate the general information block and ring buffers. */
   3591 	if (pci_dma64_available(pa))
   3592 		sc->bge_dmatag = pa->pa_dmat64;
   3593 	else
   3594 		sc->bge_dmatag = pa->pa_dmat;
   3595 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3596 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3597 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3598 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3599 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3600 		return;
   3601 	}
   3602 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3603 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3604 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3605 			   BUS_DMA_NOWAIT)) {
   3606 		aprint_error_dev(sc->bge_dev,
   3607 		    "can't map DMA buffers (%zu bytes)\n",
   3608 		    sizeof(struct bge_ring_data));
   3609 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3610 		    sc->bge_ring_rseg);
   3611 		return;
   3612 	}
   3613 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3614 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3615 	    sizeof(struct bge_ring_data), 0,
   3616 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3617 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3618 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3619 				 sizeof(struct bge_ring_data));
   3620 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3621 		    sc->bge_ring_rseg);
   3622 		return;
   3623 	}
   3624 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3625 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3626 			    sizeof(struct bge_ring_data), NULL,
   3627 			    BUS_DMA_NOWAIT)) {
   3628 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3629 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3630 				 sizeof(struct bge_ring_data));
   3631 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3632 		    sc->bge_ring_rseg);
   3633 		return;
   3634 	}
   3635 
   3636 	DPRINTFN(5, ("bzero\n"));
   3637 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3638 
   3639 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3640 
   3641 	/* Try to allocate memory for jumbo buffers. */
   3642 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3643 		if (bge_alloc_jumbo_mem(sc)) {
   3644 			aprint_error_dev(sc->bge_dev,
   3645 			    "jumbo buffer allocation failed\n");
   3646 		} else
   3647 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3648 	}
   3649 
   3650 	/* Set default tuneable values. */
   3651 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3652 	sc->bge_rx_coal_ticks = 150;
   3653 	sc->bge_rx_max_coal_bds = 64;
   3654 	sc->bge_tx_coal_ticks = 300;
   3655 	sc->bge_tx_max_coal_bds = 400;
   3656 	if (BGE_IS_5705_PLUS(sc)) {
   3657 		sc->bge_tx_coal_ticks = (12 * 5);
   3658 		sc->bge_tx_max_coal_bds = (12 * 5);
   3659 			aprint_verbose_dev(sc->bge_dev,
   3660 			    "setting short Tx thresholds\n");
   3661 	}
   3662 
   3663 	if (BGE_IS_5717_PLUS(sc))
   3664 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3665 	else if (BGE_IS_5705_PLUS(sc))
   3666 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3667 	else
   3668 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3669 
   3670 	/* Set up ifnet structure */
   3671 	ifp = &sc->ethercom.ec_if;
   3672 	ifp->if_softc = sc;
   3673 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3674 	ifp->if_ioctl = bge_ioctl;
   3675 	ifp->if_stop = bge_stop;
   3676 	ifp->if_start = bge_start;
   3677 	ifp->if_init = bge_init;
   3678 	ifp->if_watchdog = bge_watchdog;
   3679 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3680 	IFQ_SET_READY(&ifp->if_snd);
   3681 	DPRINTFN(5, ("strcpy if_xname\n"));
   3682 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3683 
   3684 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3685 		sc->ethercom.ec_if.if_capabilities |=
   3686 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3687 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3688 		sc->ethercom.ec_if.if_capabilities |=
   3689 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3690 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3691 #endif
   3692 	sc->ethercom.ec_capabilities |=
   3693 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3694 
   3695 	if (sc->bge_flags & BGE_TSO)
   3696 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3697 
   3698 	/*
   3699 	 * Do MII setup.
   3700 	 */
   3701 	DPRINTFN(5, ("mii setup\n"));
   3702 	sc->bge_mii.mii_ifp = ifp;
   3703 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3704 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3705 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3706 
   3707 	/*
   3708 	 * Figure out what sort of media we have by checking the hardware
   3709 	 * config word in the first 32k of NIC internal memory, or fall back to
   3710 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   3711 	 * this value appears to be unset. If that's the case, we have to rely
   3712 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3713 	 * the SysKonnect SK-9D41.
   3714 	 */
   3715 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
   3716 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3717 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3718 		bge_read_eeprom(sc, (void *)&hwcfg,
   3719 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3720 		hwcfg = be32toh(hwcfg);
   3721 	}
   3722 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3723 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3724 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3725 		if (BGE_IS_5714_FAMILY(sc))
   3726 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3727 		else
   3728 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3729 	}
   3730 
   3731 	/* set phyflags and chipid before mii_attach() */
   3732 	dict = device_properties(self);
   3733 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3734 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3735 
   3736 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3737 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3738 		    bge_ifmedia_sts);
   3739 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3740 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3741 			    0, NULL);
   3742 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3743 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3744 		/* Pretend the user requested this setting */
   3745 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3746 	} else {
   3747 		/*
   3748 		 * Do transceiver setup and tell the firmware the
   3749 		 * driver is down so we can try to get access the
   3750 		 * probe if ASF is running.  Retry a couple of times
   3751 		 * if we get a conflict with the ASF firmware accessing
   3752 		 * the PHY.
   3753 		 */
   3754 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3755 		bge_asf_driver_up(sc);
   3756 
   3757 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3758 			     bge_ifmedia_sts);
   3759 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
   3760 			   sc->bge_phy_addr, MII_OFFSET_ANY,
   3761 			   MIIF_DOPAUSE);
   3762 
   3763 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3764 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3765 			ifmedia_add(&sc->bge_mii.mii_media,
   3766 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3767 			ifmedia_set(&sc->bge_mii.mii_media,
   3768 				    IFM_ETHER|IFM_MANUAL);
   3769 		} else
   3770 			ifmedia_set(&sc->bge_mii.mii_media,
   3771 				    IFM_ETHER|IFM_AUTO);
   3772 
   3773 		/*
   3774 		 * Now tell the firmware we are going up after probing the PHY
   3775 		 */
   3776 		if (sc->bge_asf_mode & ASF_STACKUP)
   3777 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3778 	}
   3779 
   3780 	/*
   3781 	 * Call MI attach routine.
   3782 	 */
   3783 	DPRINTFN(5, ("if_attach\n"));
   3784 	if_attach(ifp);
   3785 	DPRINTFN(5, ("ether_ifattach\n"));
   3786 	ether_ifattach(ifp, eaddr);
   3787 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3788 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3789 		RND_TYPE_NET, 0);
   3790 #ifdef BGE_EVENT_COUNTERS
   3791 	/*
   3792 	 * Attach event counters.
   3793 	 */
   3794 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3795 	    NULL, device_xname(sc->bge_dev), "intr");
   3796 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3797 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3798 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3799 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3800 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3801 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3802 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3803 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3804 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3805 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3806 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3807 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3808 #endif /* BGE_EVENT_COUNTERS */
   3809 	DPRINTFN(5, ("callout_init\n"));
   3810 	callout_init(&sc->bge_timeout, 0);
   3811 
   3812 	if (pmf_device_register(self, NULL, NULL))
   3813 		pmf_class_network_register(self, ifp);
   3814 	else
   3815 		aprint_error_dev(self, "couldn't establish power handler\n");
   3816 
   3817 	bge_sysctl_init(sc);
   3818 
   3819 #ifdef BGE_DEBUG
   3820 	bge_debug_info(sc);
   3821 #endif
   3822 }
   3823 
   3824 /*
   3825  * Stop all chip I/O so that the kernel's probe routines don't
   3826  * get confused by errant DMAs when rebooting.
   3827  */
   3828 static int
   3829 bge_detach(device_t self, int flags __unused)
   3830 {
   3831 	struct bge_softc *sc = device_private(self);
   3832 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3833 	int s;
   3834 
   3835 	s = splnet();
   3836 	/* Stop the interface. Callouts are stopped in it. */
   3837 	bge_stop(ifp, 1);
   3838 	splx(s);
   3839 
   3840 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3841 
   3842 	/* Delete all remaining media. */
   3843 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3844 
   3845 	ether_ifdetach(ifp);
   3846 	if_detach(ifp);
   3847 
   3848 	bge_release_resources(sc);
   3849 
   3850 	return 0;
   3851 }
   3852 
   3853 static void
   3854 bge_release_resources(struct bge_softc *sc)
   3855 {
   3856 
   3857 	/* Disestablish the interrupt handler */
   3858 	if (sc->bge_intrhand != NULL) {
   3859 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   3860 		sc->bge_intrhand = NULL;
   3861 	}
   3862 
   3863 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   3864 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3865 	bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   3866 	    sizeof(struct bge_ring_data));
   3867 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   3868 
   3869 	/* Unmap the device registers */
   3870 	if (sc->bge_bsize != 0) {
   3871 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   3872 		sc->bge_bsize = 0;
   3873 	}
   3874 
   3875 	/* Unmap the APE registers */
   3876 	if (sc->bge_apesize != 0) {
   3877 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   3878 		    sc->bge_apesize);
   3879 		sc->bge_apesize = 0;
   3880 	}
   3881 }
   3882 
   3883 static int
   3884 bge_reset(struct bge_softc *sc)
   3885 {
   3886 	uint32_t cachesize, command;
   3887 	uint32_t reset, mac_mode, mac_mode_mask;
   3888 	pcireg_t devctl, reg;
   3889 	int i, val;
   3890 	void (*write_op)(struct bge_softc *, int, int);
   3891 
   3892 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   3893 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3894 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3895 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   3896 
   3897 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3898 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3899 	    	if (sc->bge_flags & BGE_PCIE)
   3900 			write_op = bge_writemem_direct;
   3901 		else
   3902 			write_op = bge_writemem_ind;
   3903 	} else
   3904 		write_op = bge_writereg_ind;
   3905 
   3906 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   3907 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   3908 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   3909 		for (i = 0; i < 8000; i++) {
   3910 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   3911 			    BGE_NVRAMSWARB_GNT1)
   3912 				break;
   3913 			DELAY(20);
   3914 		}
   3915 		if (i == 8000) {
   3916 			printf("%s: NVRAM lock timedout!\n",
   3917 			    device_xname(sc->bge_dev));
   3918 		}
   3919 	}
   3920 	/* Take APE lock when performing reset. */
   3921 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   3922 
   3923 	/* Save some important PCI state. */
   3924 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3925 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3926 
   3927 	/* Step 5b-5d: */
   3928 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3929 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3930 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3931 
   3932 	/* XXX ???: Disable fastboot on controllers that support it. */
   3933 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3934 	    BGE_IS_5755_PLUS(sc))
   3935 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3936 
   3937 	/*
   3938 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3939 	 * When firmware finishes its initialization it will
   3940 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3941 	 */
   3942 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   3943 
   3944 	/* Step 7: */
   3945 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   3946 	/*
   3947 	 * XXX: from FreeBSD/Linux; no documentation
   3948 	 */
   3949 	if (sc->bge_flags & BGE_PCIE) {
   3950 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   3951 		    !BGE_IS_57765_PLUS(sc) &&
   3952 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   3953 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   3954 			/* PCI Express 1.0 system */
   3955 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   3956 			    BGE_PHY_PCIE_SCRAM_MODE);
   3957 		}
   3958 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3959 			/*
   3960 			 * Prevent PCI Express link training
   3961 			 * during global reset.
   3962 			 */
   3963 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3964 			reset |= (1 << 29);
   3965 		}
   3966 	}
   3967 
   3968 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3969 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3970 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3971 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3972 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3973 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3974 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3975 	}
   3976 
   3977 	/*
   3978 	 * Set GPHY Power Down Override to leave GPHY
   3979 	 * powered up in D0 uninitialized.
   3980 	 */
   3981 	if (BGE_IS_5705_PLUS(sc) &&
   3982 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   3983 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   3984 
   3985 	/* Issue global reset */
   3986 	write_op(sc, BGE_MISC_CFG, reset);
   3987 
   3988 	/* Step 8: wait for complete */
   3989 	if (sc->bge_flags & BGE_PCIE)
   3990 		delay(100*1000); /* too big */
   3991 	else
   3992 		delay(1000);
   3993 
   3994 	if (sc->bge_flags & BGE_PCIE) {
   3995 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3996 			DELAY(500000);
   3997 			/* XXX: Magic Numbers */
   3998 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3999 			    BGE_PCI_UNKNOWN0);
   4000 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4001 			    BGE_PCI_UNKNOWN0,
   4002 			    reg | (1 << 15));
   4003 		}
   4004 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4005 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   4006 		/* Clear enable no snoop and disable relaxed ordering. */
   4007 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   4008 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   4009 
   4010 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4011 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4012 			devctl &= ~(0x00e0);
   4013 		/* Clear device status register. Write 1b to clear */
   4014 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   4015 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   4016 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4017 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   4018 		bge_set_max_readrq(sc);
   4019 	}
   4020 
   4021 	/* From Linux: dummy read to flush PCI posted writes */
   4022 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4023 
   4024 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   4025 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4026 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4027 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4028 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4029 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4030 	    (sc->bge_flags & BGE_PCIX) != 0)
   4031 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4032 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4033 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4034 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4035 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4036 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4037 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4038 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4039 
   4040 	/* Step 11: disable PCI-X Relaxed Ordering. */
   4041 	if (sc->bge_flags & BGE_PCIX) {
   4042 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4043 		    + PCI_PCIX_CMD);
   4044 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4045 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   4046 	}
   4047 
   4048 	/* Step 12: Enable memory arbiter. */
   4049 	if (BGE_IS_5714_FAMILY(sc)) {
   4050 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4051 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4052 	} else
   4053 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4054 
   4055 	/* XXX 5721, 5751 and 5752 */
   4056 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4057 		/* Step 19: */
   4058 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4059 		/* Step 20: */
   4060 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4061 	}
   4062 
   4063 	/* Step 28: Fix up byte swapping */
   4064 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4065 
   4066 	/*
   4067 	 * Wait for the bootcode to complete initialization.
   4068 	 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
   4069 	 * Section 7".
   4070 	 */
   4071 	if (BGE_IS_5717_PLUS(sc)) {
   4072 		for (i = 0; i < 1000*1000; i++) {
   4073 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   4074 			if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
   4075 				break;
   4076 			DELAY(10);
   4077 		}
   4078 	}
   4079 
   4080 	/* Step 21: 5822 B0 errata */
   4081 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4082 		pcireg_t msidata;
   4083 
   4084 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4085 		    BGE_PCI_MSI_DATA);
   4086 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4087 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4088 		    msidata);
   4089 	}
   4090 
   4091 	/*
   4092 	 * Step 18: wirte mac mode
   4093 	 * XXX Write 0x0c for 5703S and 5704S
   4094 	 */
   4095 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4096 	val = (val & ~mac_mode_mask) | mac_mode;
   4097 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4098 	DELAY(40);
   4099 
   4100 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4101 
   4102 	/* Step 17: Poll until the firmware initialization is complete */
   4103 	bge_poll_fw(sc);
   4104 
   4105 	/*
   4106 	 * The 5704 in TBI mode apparently needs some special
   4107 	 * adjustment to insure the SERDES drive level is set
   4108 	 * to 1.2V.
   4109 	 */
   4110 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   4111 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4112 		uint32_t serdescfg;
   4113 
   4114 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4115 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4116 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4117 	}
   4118 
   4119 	if (sc->bge_flags & BGE_PCIE &&
   4120 	    !BGE_IS_57765_PLUS(sc) &&
   4121 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4122 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4123 		uint32_t v;
   4124 
   4125 		/* Enable PCI Express bug fix */
   4126 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4127 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4128 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4129 	}
   4130 
   4131 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4132 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4133 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4134 
   4135 	if ((sc->bge_flags & BGE_PHY_EEE) != 0) {
   4136 		uint32_t eeemode;
   4137 
   4138 		eeemode = CSR_READ_4(sc, BGE_CPMU_EEE_MODE);
   4139 		printf("EEEMODE = %x\n", eeemode);
   4140 		CSR_WRITE_4(sc, BGE_CPMU_EEE_MODE, 0);
   4141 	}
   4142 	return 0;
   4143 }
   4144 
   4145 /*
   4146  * Frame reception handling. This is called if there's a frame
   4147  * on the receive return list.
   4148  *
   4149  * Note: we have to be able to handle two possibilities here:
   4150  * 1) the frame is from the jumbo receive ring
   4151  * 2) the frame is from the standard receive ring
   4152  */
   4153 
   4154 static void
   4155 bge_rxeof(struct bge_softc *sc)
   4156 {
   4157 	struct ifnet *ifp;
   4158 	uint16_t rx_prod, rx_cons;
   4159 	int stdcnt = 0, jumbocnt = 0;
   4160 	bus_dmamap_t dmamap;
   4161 	bus_addr_t offset, toff;
   4162 	bus_size_t tlen;
   4163 	int tosync;
   4164 
   4165 	rx_cons = sc->bge_rx_saved_considx;
   4166 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4167 
   4168 	/* Nothing to do */
   4169 	if (rx_cons == rx_prod)
   4170 		return;
   4171 
   4172 	ifp = &sc->ethercom.ec_if;
   4173 
   4174 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4175 	    offsetof(struct bge_ring_data, bge_status_block),
   4176 	    sizeof (struct bge_status_block),
   4177 	    BUS_DMASYNC_POSTREAD);
   4178 
   4179 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4180 	tosync = rx_prod - rx_cons;
   4181 
   4182 	if (tosync != 0)
   4183 		rnd_add_uint32(&sc->rnd_source, tosync);
   4184 
   4185 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4186 
   4187 	if (tosync < 0) {
   4188 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4189 		    sizeof (struct bge_rx_bd);
   4190 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4191 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4192 		tosync = -tosync;
   4193 	}
   4194 
   4195 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4196 	    offset, tosync * sizeof (struct bge_rx_bd),
   4197 	    BUS_DMASYNC_POSTREAD);
   4198 
   4199 	while (rx_cons != rx_prod) {
   4200 		struct bge_rx_bd	*cur_rx;
   4201 		uint32_t		rxidx;
   4202 		struct mbuf		*m = NULL;
   4203 
   4204 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4205 
   4206 		rxidx = cur_rx->bge_idx;
   4207 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4208 
   4209 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4210 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4211 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4212 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4213 			jumbocnt++;
   4214 			bus_dmamap_sync(sc->bge_dmatag,
   4215 			    sc->bge_cdata.bge_rx_jumbo_map,
   4216 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4217 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4218 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4219 				ifp->if_ierrors++;
   4220 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4221 				continue;
   4222 			}
   4223 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4224 					     NULL)== ENOBUFS) {
   4225 				ifp->if_ierrors++;
   4226 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4227 				continue;
   4228 			}
   4229 		} else {
   4230 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4231 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4232 
   4233 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4234 			stdcnt++;
   4235 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4236 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4237 			if (dmamap == NULL) {
   4238 				ifp->if_ierrors++;
   4239 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4240 				continue;
   4241 			}
   4242 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4243 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4244 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4245 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4246 				ifp->if_ierrors++;
   4247 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4248 				continue;
   4249 			}
   4250 			if (bge_newbuf_std(sc, sc->bge_std,
   4251 			    NULL, dmamap) == ENOBUFS) {
   4252 				ifp->if_ierrors++;
   4253 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4254 				continue;
   4255 			}
   4256 		}
   4257 
   4258 		ifp->if_ipackets++;
   4259 #ifndef __NO_STRICT_ALIGNMENT
   4260 		/*
   4261 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4262 		 * the Rx buffer has the layer-2 header unaligned.
   4263 		 * If our CPU requires alignment, re-align by copying.
   4264 		 */
   4265 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   4266 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4267 				cur_rx->bge_len);
   4268 			m->m_data += ETHER_ALIGN;
   4269 		}
   4270 #endif
   4271 
   4272 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4273 		m->m_pkthdr.rcvif = ifp;
   4274 
   4275 		/*
   4276 		 * Handle BPF listeners. Let the BPF user see the packet.
   4277 		 */
   4278 		bpf_mtap(ifp, m);
   4279 
   4280 		bge_rxcsum(sc, cur_rx, m);
   4281 
   4282 		/*
   4283 		 * If we received a packet with a vlan tag, pass it
   4284 		 * to vlan_input() instead of ether_input().
   4285 		 */
   4286 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4287 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4288 		}
   4289 
   4290 		(*ifp->if_input)(ifp, m);
   4291 	}
   4292 
   4293 	sc->bge_rx_saved_considx = rx_cons;
   4294 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4295 	if (stdcnt)
   4296 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4297 	if (jumbocnt)
   4298 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4299 }
   4300 
   4301 static void
   4302 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4303 {
   4304 
   4305 	if (BGE_IS_5717_PLUS(sc)) {
   4306 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4307 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4308 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4309 			if ((cur_rx->bge_error_flag &
   4310 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4311 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4312 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4313 				m->m_pkthdr.csum_data =
   4314 				    cur_rx->bge_tcp_udp_csum;
   4315 				m->m_pkthdr.csum_flags |=
   4316 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4317 					M_CSUM_DATA);
   4318 			}
   4319 		}
   4320 	} else {
   4321 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4322 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4323 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4324 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4325 		/*
   4326 		 * Rx transport checksum-offload may also
   4327 		 * have bugs with packets which, when transmitted,
   4328 		 * were `runts' requiring padding.
   4329 		 */
   4330 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4331 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4332 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4333 			m->m_pkthdr.csum_data =
   4334 			    cur_rx->bge_tcp_udp_csum;
   4335 			m->m_pkthdr.csum_flags |=
   4336 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4337 				M_CSUM_DATA);
   4338 		}
   4339 	}
   4340 }
   4341 
   4342 static void
   4343 bge_txeof(struct bge_softc *sc)
   4344 {
   4345 	struct bge_tx_bd *cur_tx = NULL;
   4346 	struct ifnet *ifp;
   4347 	struct txdmamap_pool_entry *dma;
   4348 	bus_addr_t offset, toff;
   4349 	bus_size_t tlen;
   4350 	int tosync;
   4351 	struct mbuf *m;
   4352 
   4353 	ifp = &sc->ethercom.ec_if;
   4354 
   4355 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4356 	    offsetof(struct bge_ring_data, bge_status_block),
   4357 	    sizeof (struct bge_status_block),
   4358 	    BUS_DMASYNC_POSTREAD);
   4359 
   4360 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4361 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4362 	    sc->bge_tx_saved_considx;
   4363 
   4364 	if (tosync != 0)
   4365 		rnd_add_uint32(&sc->rnd_source, tosync);
   4366 
   4367 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4368 
   4369 	if (tosync < 0) {
   4370 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4371 		    sizeof (struct bge_tx_bd);
   4372 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4373 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4374 		tosync = -tosync;
   4375 	}
   4376 
   4377 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4378 	    offset, tosync * sizeof (struct bge_tx_bd),
   4379 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4380 
   4381 	/*
   4382 	 * Go through our tx ring and free mbufs for those
   4383 	 * frames that have been sent.
   4384 	 */
   4385 	while (sc->bge_tx_saved_considx !=
   4386 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4387 		uint32_t		idx = 0;
   4388 
   4389 		idx = sc->bge_tx_saved_considx;
   4390 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4391 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4392 			ifp->if_opackets++;
   4393 		m = sc->bge_cdata.bge_tx_chain[idx];
   4394 		if (m != NULL) {
   4395 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4396 			dma = sc->txdma[idx];
   4397 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4398 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4399 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4400 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4401 			sc->txdma[idx] = NULL;
   4402 
   4403 			m_freem(m);
   4404 		}
   4405 		sc->bge_txcnt--;
   4406 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4407 		ifp->if_timer = 0;
   4408 	}
   4409 
   4410 	if (cur_tx != NULL)
   4411 		ifp->if_flags &= ~IFF_OACTIVE;
   4412 }
   4413 
   4414 static int
   4415 bge_intr(void *xsc)
   4416 {
   4417 	struct bge_softc *sc;
   4418 	struct ifnet *ifp;
   4419 	uint32_t statusword;
   4420 
   4421 	sc = xsc;
   4422 	ifp = &sc->ethercom.ec_if;
   4423 
   4424 	/* It is possible for the interrupt to arrive before
   4425 	 * the status block is updated prior to the interrupt.
   4426 	 * Reading the PCI State register will confirm whether the
   4427 	 * interrupt is ours and will flush the status block.
   4428 	 */
   4429 
   4430 	/* read status word from status block */
   4431 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4432 
   4433 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4434 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   4435 		/* Ack interrupt and stop others from occuring. */
   4436 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4437 
   4438 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4439 
   4440 		/* clear status word */
   4441 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4442 
   4443 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4444 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4445 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4446 			bge_link_upd(sc);
   4447 
   4448 		if (ifp->if_flags & IFF_RUNNING) {
   4449 			/* Check RX return ring producer/consumer */
   4450 			bge_rxeof(sc);
   4451 
   4452 			/* Check TX ring producer/consumer */
   4453 			bge_txeof(sc);
   4454 		}
   4455 
   4456 		if (sc->bge_pending_rxintr_change) {
   4457 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4458 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4459 			uint32_t junk;
   4460 
   4461 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4462 			DELAY(10);
   4463 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4464 
   4465 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4466 			DELAY(10);
   4467 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4468 
   4469 			sc->bge_pending_rxintr_change = 0;
   4470 		}
   4471 		bge_handle_events(sc);
   4472 
   4473 		/* Re-enable interrupts. */
   4474 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4475 
   4476 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4477 			bge_start(ifp);
   4478 
   4479 		return 1;
   4480 	} else
   4481 		return 0;
   4482 }
   4483 
   4484 static void
   4485 bge_asf_driver_up(struct bge_softc *sc)
   4486 {
   4487 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4488 		/* Send ASF heartbeat aprox. every 2s */
   4489 		if (sc->bge_asf_count)
   4490 			sc->bge_asf_count --;
   4491 		else {
   4492 			sc->bge_asf_count = 2;
   4493 
   4494 			bge_wait_for_event_ack(sc);
   4495 
   4496 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4497 			    BGE_FW_CMD_DRV_ALIVE);
   4498 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4499 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4500 			    BGE_FW_HB_TIMEOUT_SEC);
   4501 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4502 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4503 			    BGE_RX_CPU_DRV_EVENT);
   4504 		}
   4505 	}
   4506 }
   4507 
   4508 static void
   4509 bge_tick(void *xsc)
   4510 {
   4511 	struct bge_softc *sc = xsc;
   4512 	struct mii_data *mii = &sc->bge_mii;
   4513 	int s;
   4514 
   4515 	s = splnet();
   4516 
   4517 	if (BGE_IS_5705_PLUS(sc))
   4518 		bge_stats_update_regs(sc);
   4519 	else
   4520 		bge_stats_update(sc);
   4521 
   4522 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4523 		/*
   4524 		 * Since in TBI mode auto-polling can't be used we should poll
   4525 		 * link status manually. Here we register pending link event
   4526 		 * and trigger interrupt.
   4527 		 */
   4528 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4529 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4530 	} else {
   4531 		/*
   4532 		 * Do not touch PHY if we have link up. This could break
   4533 		 * IPMI/ASF mode or produce extra input errors.
   4534 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4535 		 */
   4536 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4537 			mii_tick(mii);
   4538 	}
   4539 
   4540 	bge_asf_driver_up(sc);
   4541 
   4542 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4543 
   4544 	splx(s);
   4545 }
   4546 
   4547 static void
   4548 bge_stats_update_regs(struct bge_softc *sc)
   4549 {
   4550 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4551 
   4552 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4553 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4554 
   4555 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4556 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4557 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4558 }
   4559 
   4560 static void
   4561 bge_stats_update(struct bge_softc *sc)
   4562 {
   4563 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4564 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4565 
   4566 #define READ_STAT(sc, stats, stat) \
   4567 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4568 
   4569 	ifp->if_collisions +=
   4570 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4571 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4572 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4573 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4574 	  ifp->if_collisions;
   4575 
   4576 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4577 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4578 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4579 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4580 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4581 		      READ_STAT(sc, stats,
   4582 		      		xoffPauseFramesReceived.bge_addr_lo));
   4583 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4584 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4585 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4586 		      READ_STAT(sc, stats,
   4587 		      		macControlFramesReceived.bge_addr_lo));
   4588 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4589 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4590 
   4591 #undef READ_STAT
   4592 
   4593 #ifdef notdef
   4594 	ifp->if_collisions +=
   4595 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4596 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4597 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4598 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4599 	   ifp->if_collisions;
   4600 #endif
   4601 }
   4602 
   4603 /*
   4604  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4605  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4606  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4607  * the hardware checksum assist gives incorrect results (possibly
   4608  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4609  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4610  */
   4611 static inline int
   4612 bge_cksum_pad(struct mbuf *pkt)
   4613 {
   4614 	struct mbuf *last = NULL;
   4615 	int padlen;
   4616 
   4617 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4618 
   4619 	/* if there's only the packet-header and we can pad there, use it. */
   4620 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4621 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4622 		last = pkt;
   4623 	} else {
   4624 		/*
   4625 		 * Walk packet chain to find last mbuf. We will either
   4626 		 * pad there, or append a new mbuf and pad it
   4627 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4628 		 */
   4629 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4630 	      	       continue; /* do nothing */
   4631 		}
   4632 
   4633 		/* `last' now points to last in chain. */
   4634 		if (M_TRAILINGSPACE(last) < padlen) {
   4635 			/* Allocate new empty mbuf, pad it. Compact later. */
   4636 			struct mbuf *n;
   4637 			MGET(n, M_DONTWAIT, MT_DATA);
   4638 			if (n == NULL)
   4639 				return ENOBUFS;
   4640 			n->m_len = 0;
   4641 			last->m_next = n;
   4642 			last = n;
   4643 		}
   4644 	}
   4645 
   4646 	KDASSERT(!M_READONLY(last));
   4647 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4648 
   4649 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4650 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4651 	last->m_len += padlen;
   4652 	pkt->m_pkthdr.len += padlen;
   4653 	return 0;
   4654 }
   4655 
   4656 /*
   4657  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4658  */
   4659 static inline int
   4660 bge_compact_dma_runt(struct mbuf *pkt)
   4661 {
   4662 	struct mbuf	*m, *prev;
   4663 	int 		totlen, prevlen;
   4664 
   4665 	prev = NULL;
   4666 	totlen = 0;
   4667 	prevlen = -1;
   4668 
   4669 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4670 		int mlen = m->m_len;
   4671 		int shortfall = 8 - mlen ;
   4672 
   4673 		totlen += mlen;
   4674 		if (mlen == 0)
   4675 			continue;
   4676 		if (mlen >= 8)
   4677 			continue;
   4678 
   4679 		/* If we get here, mbuf data is too small for DMA engine.
   4680 		 * Try to fix by shuffling data to prev or next in chain.
   4681 		 * If that fails, do a compacting deep-copy of the whole chain.
   4682 		 */
   4683 
   4684 		/* Internal frag. If fits in prev, copy it there. */
   4685 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4686 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4687 			prev->m_len += mlen;
   4688 			m->m_len = 0;
   4689 			/* XXX stitch chain */
   4690 			prev->m_next = m_free(m);
   4691 			m = prev;
   4692 			continue;
   4693 		}
   4694 		else if (m->m_next != NULL &&
   4695 			     M_TRAILINGSPACE(m) >= shortfall &&
   4696 			     m->m_next->m_len >= (8 + shortfall)) {
   4697 		    /* m is writable and have enough data in next, pull up. */
   4698 
   4699 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4700 			    shortfall);
   4701 			m->m_len += shortfall;
   4702 			m->m_next->m_len -= shortfall;
   4703 			m->m_next->m_data += shortfall;
   4704 		}
   4705 		else if (m->m_next == NULL || 1) {
   4706 		  	/* Got a runt at the very end of the packet.
   4707 			 * borrow data from the tail of the preceding mbuf and
   4708 			 * update its length in-place. (The original data is still
   4709 			 * valid, so we can do this even if prev is not writable.)
   4710 			 */
   4711 
   4712 			/* if we'd make prev a runt, just move all of its data. */
   4713 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4714 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4715 
   4716 			if ((prev->m_len - shortfall) < 8)
   4717 				shortfall = prev->m_len;
   4718 
   4719 #ifdef notyet	/* just do the safe slow thing for now */
   4720 			if (!M_READONLY(m)) {
   4721 				if (M_LEADINGSPACE(m) < shorfall) {
   4722 					void *m_dat;
   4723 					m_dat = (m->m_flags & M_PKTHDR) ?
   4724 					  m->m_pktdat : m->dat;
   4725 					memmove(m_dat, mtod(m, void*), m->m_len);
   4726 					m->m_data = m_dat;
   4727 				    }
   4728 			} else
   4729 #endif	/* just do the safe slow thing */
   4730 			{
   4731 				struct mbuf * n = NULL;
   4732 				int newprevlen = prev->m_len - shortfall;
   4733 
   4734 				MGET(n, M_NOWAIT, MT_DATA);
   4735 				if (n == NULL)
   4736 				   return ENOBUFS;
   4737 				KASSERT(m->m_len + shortfall < MLEN
   4738 					/*,
   4739 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4740 
   4741 				/* first copy the data we're stealing from prev */
   4742 				memcpy(n->m_data, prev->m_data + newprevlen,
   4743 				    shortfall);
   4744 
   4745 				/* update prev->m_len accordingly */
   4746 				prev->m_len -= shortfall;
   4747 
   4748 				/* copy data from runt m */
   4749 				memcpy(n->m_data + shortfall, m->m_data,
   4750 				    m->m_len);
   4751 
   4752 				/* n holds what we stole from prev, plus m */
   4753 				n->m_len = shortfall + m->m_len;
   4754 
   4755 				/* stitch n into chain and free m */
   4756 				n->m_next = m->m_next;
   4757 				prev->m_next = n;
   4758 				/* KASSERT(m->m_next == NULL); */
   4759 				m->m_next = NULL;
   4760 				m_free(m);
   4761 				m = n;	/* for continuing loop */
   4762 			}
   4763 		}
   4764 		prevlen = m->m_len;
   4765 	}
   4766 	return 0;
   4767 }
   4768 
   4769 /*
   4770  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4771  * pointers to descriptors.
   4772  */
   4773 static int
   4774 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4775 {
   4776 	struct bge_tx_bd	*f = NULL;
   4777 	uint32_t		frag, cur;
   4778 	uint16_t		csum_flags = 0;
   4779 	uint16_t		txbd_tso_flags = 0;
   4780 	struct txdmamap_pool_entry *dma;
   4781 	bus_dmamap_t dmamap;
   4782 	int			i = 0;
   4783 	struct m_tag		*mtag;
   4784 	int			use_tso, maxsegsize, error;
   4785 
   4786 	cur = frag = *txidx;
   4787 
   4788 	if (m_head->m_pkthdr.csum_flags) {
   4789 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4790 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4791 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4792 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4793 	}
   4794 
   4795 	/*
   4796 	 * If we were asked to do an outboard checksum, and the NIC
   4797 	 * has the bug where it sometimes adds in the Ethernet padding,
   4798 	 * explicitly pad with zeros so the cksum will be correct either way.
   4799 	 * (For now, do this for all chip versions, until newer
   4800 	 * are confirmed to not require the workaround.)
   4801 	 */
   4802 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4803 #ifdef notyet
   4804 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4805 #endif
   4806 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4807 		goto check_dma_bug;
   4808 
   4809 	if (bge_cksum_pad(m_head) != 0)
   4810 	    return ENOBUFS;
   4811 
   4812 check_dma_bug:
   4813 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4814 		goto doit;
   4815 
   4816 	/*
   4817 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4818 	 * less than eight bytes.  If we encounter a teeny mbuf
   4819 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4820 	 */
   4821 	if (bge_compact_dma_runt(m_head) != 0)
   4822 		return ENOBUFS;
   4823 
   4824 doit:
   4825 	dma = SLIST_FIRST(&sc->txdma_list);
   4826 	if (dma == NULL)
   4827 		return ENOBUFS;
   4828 	dmamap = dma->dmamap;
   4829 
   4830 	/*
   4831 	 * Set up any necessary TSO state before we start packing...
   4832 	 */
   4833 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4834 	if (!use_tso) {
   4835 		maxsegsize = 0;
   4836 	} else {	/* TSO setup */
   4837 		unsigned  mss;
   4838 		struct ether_header *eh;
   4839 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4840 		struct mbuf * m0 = m_head;
   4841 		struct ip *ip;
   4842 		struct tcphdr *th;
   4843 		int iphl, hlen;
   4844 
   4845 		/*
   4846 		 * XXX It would be nice if the mbuf pkthdr had offset
   4847 		 * fields for the protocol headers.
   4848 		 */
   4849 
   4850 		eh = mtod(m0, struct ether_header *);
   4851 		switch (htons(eh->ether_type)) {
   4852 		case ETHERTYPE_IP:
   4853 			offset = ETHER_HDR_LEN;
   4854 			break;
   4855 
   4856 		case ETHERTYPE_VLAN:
   4857 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4858 			break;
   4859 
   4860 		default:
   4861 			/*
   4862 			 * Don't support this protocol or encapsulation.
   4863 			 */
   4864 			return ENOBUFS;
   4865 		}
   4866 
   4867 		/*
   4868 		 * TCP/IP headers are in the first mbuf; we can do
   4869 		 * this the easy way.
   4870 		 */
   4871 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4872 		hlen = iphl + offset;
   4873 		if (__predict_false(m0->m_len <
   4874 				    (hlen + sizeof(struct tcphdr)))) {
   4875 
   4876 			aprint_debug_dev(sc->bge_dev,
   4877 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4878 			    "not handled yet\n",
   4879 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4880 #ifdef NOTYET
   4881 			/*
   4882 			 * XXX jonathan (at) NetBSD.org: untested.
   4883 			 * how to force  this branch to be taken?
   4884 			 */
   4885 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4886 
   4887 			m_copydata(m0, offset, sizeof(ip), &ip);
   4888 			m_copydata(m0, hlen, sizeof(th), &th);
   4889 
   4890 			ip.ip_len = 0;
   4891 
   4892 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4893 			    sizeof(ip.ip_len), &ip.ip_len);
   4894 
   4895 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4896 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4897 
   4898 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4899 			    sizeof(th.th_sum), &th.th_sum);
   4900 
   4901 			hlen += th.th_off << 2;
   4902 			iptcp_opt_words	= hlen;
   4903 #else
   4904 			/*
   4905 			 * if_wm "hard" case not yet supported, can we not
   4906 			 * mandate it out of existence?
   4907 			 */
   4908 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4909 
   4910 			return ENOBUFS;
   4911 #endif
   4912 		} else {
   4913 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4914 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4915 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4916 
   4917 			/* Total IP/TCP options, in 32-bit words */
   4918 			iptcp_opt_words = (ip_tcp_hlen
   4919 					   - sizeof(struct tcphdr)
   4920 					   - sizeof(struct ip)) >> 2;
   4921 		}
   4922 		if (BGE_IS_575X_PLUS(sc)) {
   4923 			th->th_sum = 0;
   4924 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4925 		} else {
   4926 			/*
   4927 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4928 			 * Requires TSO firmware patch for 5701/5703/5704.
   4929 			 */
   4930 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4931 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4932 		}
   4933 
   4934 		mss = m_head->m_pkthdr.segsz;
   4935 		txbd_tso_flags |=
   4936 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4937 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4938 
   4939 		/*
   4940 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4941 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4942 		 * the NIC copies 40 bytes of IP/TCP header from the
   4943 		 * supplied header into the IP/TCP header portion of
   4944 		 * each post-TSO-segment. If the supplied packet has IP or
   4945 		 * TCP options, we need to tell the NIC to copy those extra
   4946 		 * bytes into each  post-TSO header, in addition to the normal
   4947 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4948 		 * Unfortunately, the driver encoding of option length
   4949 		 * varies across different ASIC families.
   4950 		 */
   4951 		tcp_seg_flags = 0;
   4952 		if (iptcp_opt_words) {
   4953 			if (BGE_IS_5705_PLUS(sc)) {
   4954 				tcp_seg_flags =
   4955 					iptcp_opt_words << 11;
   4956 			} else {
   4957 				txbd_tso_flags |=
   4958 					iptcp_opt_words << 12;
   4959 			}
   4960 		}
   4961 		maxsegsize = mss | tcp_seg_flags;
   4962 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4963 
   4964 	}	/* TSO setup */
   4965 
   4966 	/*
   4967 	 * Start packing the mbufs in this chain into
   4968 	 * the fragment pointers. Stop when we run out
   4969 	 * of fragments or hit the end of the mbuf chain.
   4970 	 */
   4971 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4972 	    BUS_DMA_NOWAIT);
   4973 	if (error)
   4974 		return ENOBUFS;
   4975 	/*
   4976 	 * Sanity check: avoid coming within 16 descriptors
   4977 	 * of the end of the ring.
   4978 	 */
   4979 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4980 		BGE_TSO_PRINTF(("%s: "
   4981 		    " dmamap_load_mbuf too close to ring wrap\n",
   4982 		    device_xname(sc->bge_dev)));
   4983 		goto fail_unload;
   4984 	}
   4985 
   4986 	mtag = sc->ethercom.ec_nvlans ?
   4987 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4988 
   4989 
   4990 	/* Iterate over dmap-map fragments. */
   4991 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4992 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4993 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4994 			break;
   4995 
   4996 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4997 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4998 
   4999 		/*
   5000 		 * For 5751 and follow-ons, for TSO we must turn
   5001 		 * off checksum-assist flag in the tx-descr, and
   5002 		 * supply the ASIC-revision-specific encoding
   5003 		 * of TSO flags and segsize.
   5004 		 */
   5005 		if (use_tso) {
   5006 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5007 				f->bge_rsvd = maxsegsize;
   5008 				f->bge_flags = csum_flags | txbd_tso_flags;
   5009 			} else {
   5010 				f->bge_rsvd = 0;
   5011 				f->bge_flags =
   5012 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5013 			}
   5014 		} else {
   5015 			f->bge_rsvd = 0;
   5016 			f->bge_flags = csum_flags;
   5017 		}
   5018 
   5019 		if (mtag != NULL) {
   5020 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5021 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5022 		} else {
   5023 			f->bge_vlan_tag = 0;
   5024 		}
   5025 		cur = frag;
   5026 		BGE_INC(frag, BGE_TX_RING_CNT);
   5027 	}
   5028 
   5029 	if (i < dmamap->dm_nsegs) {
   5030 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5031 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5032 		goto fail_unload;
   5033 	}
   5034 
   5035 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5036 	    BUS_DMASYNC_PREWRITE);
   5037 
   5038 	if (frag == sc->bge_tx_saved_considx) {
   5039 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5040 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5041 
   5042 		goto fail_unload;
   5043 	}
   5044 
   5045 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5046 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5047 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5048 	sc->txdma[cur] = dma;
   5049 	sc->bge_txcnt += dmamap->dm_nsegs;
   5050 
   5051 	*txidx = frag;
   5052 
   5053 	return 0;
   5054 
   5055 fail_unload:
   5056 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5057 
   5058 	return ENOBUFS;
   5059 }
   5060 
   5061 /*
   5062  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5063  * to the mbuf data regions directly in the transmit descriptors.
   5064  */
   5065 static void
   5066 bge_start(struct ifnet *ifp)
   5067 {
   5068 	struct bge_softc *sc;
   5069 	struct mbuf *m_head = NULL;
   5070 	uint32_t prodidx;
   5071 	int pkts = 0;
   5072 
   5073 	sc = ifp->if_softc;
   5074 
   5075 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5076 		return;
   5077 
   5078 	prodidx = sc->bge_tx_prodidx;
   5079 
   5080 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5081 		IFQ_POLL(&ifp->if_snd, m_head);
   5082 		if (m_head == NULL)
   5083 			break;
   5084 
   5085 #if 0
   5086 		/*
   5087 		 * XXX
   5088 		 * safety overkill.  If this is a fragmented packet chain
   5089 		 * with delayed TCP/UDP checksums, then only encapsulate
   5090 		 * it if we have enough descriptors to handle the entire
   5091 		 * chain at once.
   5092 		 * (paranoia -- may not actually be needed)
   5093 		 */
   5094 		if (m_head->m_flags & M_FIRSTFRAG &&
   5095 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5096 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5097 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5098 				ifp->if_flags |= IFF_OACTIVE;
   5099 				break;
   5100 			}
   5101 		}
   5102 #endif
   5103 
   5104 		/*
   5105 		 * Pack the data into the transmit ring. If we
   5106 		 * don't have room, set the OACTIVE flag and wait
   5107 		 * for the NIC to drain the ring.
   5108 		 */
   5109 		if (bge_encap(sc, m_head, &prodidx)) {
   5110 			ifp->if_flags |= IFF_OACTIVE;
   5111 			break;
   5112 		}
   5113 
   5114 		/* now we are committed to transmit the packet */
   5115 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5116 		pkts++;
   5117 
   5118 		/*
   5119 		 * If there's a BPF listener, bounce a copy of this frame
   5120 		 * to him.
   5121 		 */
   5122 		bpf_mtap(ifp, m_head);
   5123 	}
   5124 	if (pkts == 0)
   5125 		return;
   5126 
   5127 	/* Transmit */
   5128 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5129 	/* 5700 b2 errata */
   5130 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5131 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5132 
   5133 	sc->bge_tx_prodidx = prodidx;
   5134 
   5135 	/*
   5136 	 * Set a timeout in case the chip goes out to lunch.
   5137 	 */
   5138 	ifp->if_timer = 5;
   5139 }
   5140 
   5141 static int
   5142 bge_init(struct ifnet *ifp)
   5143 {
   5144 	struct bge_softc *sc = ifp->if_softc;
   5145 	const uint16_t *m;
   5146 	uint32_t mode;
   5147 	int s, error = 0;
   5148 
   5149 	s = splnet();
   5150 
   5151 	ifp = &sc->ethercom.ec_if;
   5152 
   5153 	/* Cancel pending I/O and flush buffers. */
   5154 	bge_stop(ifp, 0);
   5155 
   5156 	bge_stop_fw(sc);
   5157 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5158 	bge_reset(sc);
   5159 	bge_sig_legacy(sc, BGE_RESET_START);
   5160 	bge_sig_post_reset(sc, BGE_RESET_START);
   5161 
   5162 	bge_chipinit(sc);
   5163 
   5164 	/*
   5165 	 * Init the various state machines, ring
   5166 	 * control blocks and firmware.
   5167 	 */
   5168 	error = bge_blockinit(sc);
   5169 	if (error != 0) {
   5170 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5171 		    error);
   5172 		splx(s);
   5173 		return error;
   5174 	}
   5175 
   5176 	ifp = &sc->ethercom.ec_if;
   5177 
   5178 	/* Specify MTU. */
   5179 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5180 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5181 
   5182 	/* Load our MAC address. */
   5183 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5184 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5185 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5186 
   5187 	/* Enable or disable promiscuous mode as needed. */
   5188 	if (ifp->if_flags & IFF_PROMISC)
   5189 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5190 	else
   5191 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5192 
   5193 	/* Program multicast filter. */
   5194 	bge_setmulti(sc);
   5195 
   5196 	/* Init RX ring. */
   5197 	bge_init_rx_ring_std(sc);
   5198 
   5199 	/*
   5200 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5201 	 * memory to insure that the chip has in fact read the first
   5202 	 * entry of the ring.
   5203 	 */
   5204 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5205 		uint32_t		v, i;
   5206 		for (i = 0; i < 10; i++) {
   5207 			DELAY(20);
   5208 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5209 			if (v == (MCLBYTES - ETHER_ALIGN))
   5210 				break;
   5211 		}
   5212 		if (i == 10)
   5213 			aprint_error_dev(sc->bge_dev,
   5214 			    "5705 A0 chip failed to load RX ring\n");
   5215 	}
   5216 
   5217 	/* Init jumbo RX ring. */
   5218 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5219 		bge_init_rx_ring_jumbo(sc);
   5220 
   5221 	/* Init our RX return ring index */
   5222 	sc->bge_rx_saved_considx = 0;
   5223 
   5224 	/* Init TX ring. */
   5225 	bge_init_tx_ring(sc);
   5226 
   5227 	/* Enable TX MAC state machine lockup fix. */
   5228 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5229 	if (BGE_IS_5755_PLUS(sc) ||
   5230 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5231 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5232 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5233 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5234 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5235 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5236 	}
   5237 
   5238 	/* Turn on transmitter */
   5239 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5240 	DELAY(100);
   5241 
   5242 	/* Turn on receiver */
   5243 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5244 	if (BGE_IS_5755_PLUS(sc))
   5245 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5246 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5247 	DELAY(10);
   5248 
   5249 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   5250 
   5251 	/* Tell firmware we're alive. */
   5252 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5253 
   5254 	/* Enable host interrupts. */
   5255 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5256 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5257 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5258 
   5259 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5260 		goto out;
   5261 
   5262 	ifp->if_flags |= IFF_RUNNING;
   5263 	ifp->if_flags &= ~IFF_OACTIVE;
   5264 
   5265 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5266 
   5267 out:
   5268 	sc->bge_if_flags = ifp->if_flags;
   5269 	splx(s);
   5270 
   5271 	return error;
   5272 }
   5273 
   5274 /*
   5275  * Set media options.
   5276  */
   5277 static int
   5278 bge_ifmedia_upd(struct ifnet *ifp)
   5279 {
   5280 	struct bge_softc *sc = ifp->if_softc;
   5281 	struct mii_data *mii = &sc->bge_mii;
   5282 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5283 	int rc;
   5284 
   5285 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5286 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5287 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5288 			return EINVAL;
   5289 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5290 		case IFM_AUTO:
   5291 			/*
   5292 			 * The BCM5704 ASIC appears to have a special
   5293 			 * mechanism for programming the autoneg
   5294 			 * advertisement registers in TBI mode.
   5295 			 */
   5296 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5297 				uint32_t sgdig;
   5298 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5299 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5300 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5301 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5302 					sgdig |= BGE_SGDIGCFG_AUTO |
   5303 					    BGE_SGDIGCFG_PAUSE_CAP |
   5304 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5305 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5306 					    sgdig | BGE_SGDIGCFG_SEND);
   5307 					DELAY(5);
   5308 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5309 					    sgdig);
   5310 				}
   5311 			}
   5312 			break;
   5313 		case IFM_1000_SX:
   5314 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5315 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5316 				    BGE_MACMODE_HALF_DUPLEX);
   5317 			} else {
   5318 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5319 				    BGE_MACMODE_HALF_DUPLEX);
   5320 			}
   5321 			DELAY(40);
   5322 			break;
   5323 		default:
   5324 			return EINVAL;
   5325 		}
   5326 		/* XXX 802.3x flow control for 1000BASE-SX */
   5327 		return 0;
   5328 	}
   5329 
   5330 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5331 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5332 		return 0;
   5333 
   5334 	/*
   5335 	 * Force an interrupt so that we will call bge_link_upd
   5336 	 * if needed and clear any pending link state attention.
   5337 	 * Without this we are not getting any further interrupts
   5338 	 * for link state changes and thus will not UP the link and
   5339 	 * not be able to send in bge_start. The only way to get
   5340 	 * things working was to receive a packet and get a RX intr.
   5341 	 */
   5342 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5343 	    sc->bge_flags & BGE_IS_5788)
   5344 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5345 	else
   5346 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5347 
   5348 	return rc;
   5349 }
   5350 
   5351 /*
   5352  * Report current media status.
   5353  */
   5354 static void
   5355 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5356 {
   5357 	struct bge_softc *sc = ifp->if_softc;
   5358 	struct mii_data *mii = &sc->bge_mii;
   5359 
   5360 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5361 		ifmr->ifm_status = IFM_AVALID;
   5362 		ifmr->ifm_active = IFM_ETHER;
   5363 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5364 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5365 			ifmr->ifm_status |= IFM_ACTIVE;
   5366 		ifmr->ifm_active |= IFM_1000_SX;
   5367 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5368 			ifmr->ifm_active |= IFM_HDX;
   5369 		else
   5370 			ifmr->ifm_active |= IFM_FDX;
   5371 		return;
   5372 	}
   5373 
   5374 	mii_pollstat(mii);
   5375 	ifmr->ifm_status = mii->mii_media_status;
   5376 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5377 	    sc->bge_flowflags;
   5378 }
   5379 
   5380 static int
   5381 bge_ifflags_cb(struct ethercom *ec)
   5382 {
   5383 	struct ifnet *ifp = &ec->ec_if;
   5384 	struct bge_softc *sc = ifp->if_softc;
   5385 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5386 
   5387 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5388 		return ENETRESET;
   5389 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5390 		return 0;
   5391 
   5392 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5393 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5394 	else
   5395 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5396 
   5397 	bge_setmulti(sc);
   5398 
   5399 	sc->bge_if_flags = ifp->if_flags;
   5400 	return 0;
   5401 }
   5402 
   5403 static int
   5404 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5405 {
   5406 	struct bge_softc *sc = ifp->if_softc;
   5407 	struct ifreq *ifr = (struct ifreq *) data;
   5408 	int s, error = 0;
   5409 	struct mii_data *mii;
   5410 
   5411 	s = splnet();
   5412 
   5413 	switch (command) {
   5414 	case SIOCSIFMEDIA:
   5415 		/* XXX Flow control is not supported for 1000BASE-SX */
   5416 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5417 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5418 			sc->bge_flowflags = 0;
   5419 		}
   5420 
   5421 		/* Flow control requires full-duplex mode. */
   5422 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5423 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5424 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5425 		}
   5426 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5427 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5428 				/* We can do both TXPAUSE and RXPAUSE. */
   5429 				ifr->ifr_media |=
   5430 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5431 			}
   5432 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5433 		}
   5434 		/* FALLTHROUGH */
   5435 	case SIOCGIFMEDIA:
   5436 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5437 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5438 			    command);
   5439 		} else {
   5440 			mii = &sc->bge_mii;
   5441 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5442 			    command);
   5443 		}
   5444 		break;
   5445 	default:
   5446 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5447 			break;
   5448 
   5449 		error = 0;
   5450 
   5451 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5452 			;
   5453 		else if (ifp->if_flags & IFF_RUNNING)
   5454 			bge_setmulti(sc);
   5455 		break;
   5456 	}
   5457 
   5458 	splx(s);
   5459 
   5460 	return error;
   5461 }
   5462 
   5463 static void
   5464 bge_watchdog(struct ifnet *ifp)
   5465 {
   5466 	struct bge_softc *sc;
   5467 
   5468 	sc = ifp->if_softc;
   5469 
   5470 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5471 
   5472 	ifp->if_flags &= ~IFF_RUNNING;
   5473 	bge_init(ifp);
   5474 
   5475 	ifp->if_oerrors++;
   5476 }
   5477 
   5478 static void
   5479 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5480 {
   5481 	int i;
   5482 
   5483 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5484 
   5485 	for (i = 0; i < 1000; i++) {
   5486 		delay(100);
   5487 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5488 			return;
   5489 	}
   5490 
   5491 	/*
   5492 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5493 	 * on some environment (and once after boot?)
   5494 	 */
   5495 	if (reg != BGE_SRS_MODE)
   5496 		aprint_error_dev(sc->bge_dev,
   5497 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5498 		    (u_long)reg, bit);
   5499 }
   5500 
   5501 /*
   5502  * Stop the adapter and free any mbufs allocated to the
   5503  * RX and TX lists.
   5504  */
   5505 static void
   5506 bge_stop(struct ifnet *ifp, int disable)
   5507 {
   5508 	struct bge_softc *sc = ifp->if_softc;
   5509 
   5510 	callout_stop(&sc->bge_timeout);
   5511 
   5512 	/* Disable host interrupts. */
   5513 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5514 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5515 
   5516 	/*
   5517 	 * Tell firmware we're shutting down.
   5518 	 */
   5519 	bge_stop_fw(sc);
   5520 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5521 
   5522 	/*
   5523 	 * Disable all of the receiver blocks.
   5524 	 */
   5525 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5526 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5527 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5528 	if (BGE_IS_5700_FAMILY(sc))
   5529 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5530 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5531 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5532 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5533 
   5534 	/*
   5535 	 * Disable all of the transmit blocks.
   5536 	 */
   5537 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5538 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5539 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5540 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5541 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5542 	if (BGE_IS_5700_FAMILY(sc))
   5543 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5544 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5545 
   5546 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5547 	delay(40);
   5548 
   5549 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5550 
   5551 	/*
   5552 	 * Shut down all of the memory managers and related
   5553 	 * state machines.
   5554 	 */
   5555 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5556 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5557 	if (BGE_IS_5700_FAMILY(sc))
   5558 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5559 
   5560 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5561 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5562 
   5563 	if (BGE_IS_5700_FAMILY(sc)) {
   5564 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5565 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5566 	}
   5567 
   5568 	bge_reset(sc);
   5569 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5570 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5571 
   5572 	/*
   5573 	 * Keep the ASF firmware running if up.
   5574 	 */
   5575 	if (sc->bge_asf_mode & ASF_STACKUP)
   5576 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5577 	else
   5578 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5579 
   5580 	/* Free the RX lists. */
   5581 	bge_free_rx_ring_std(sc);
   5582 
   5583 	/* Free jumbo RX list. */
   5584 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5585 		bge_free_rx_ring_jumbo(sc);
   5586 
   5587 	/* Free TX buffers. */
   5588 	bge_free_tx_ring(sc);
   5589 
   5590 	/*
   5591 	 * Isolate/power down the PHY.
   5592 	 */
   5593 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   5594 		mii_down(&sc->bge_mii);
   5595 
   5596 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5597 
   5598 	/* Clear MAC's link state (PHY may still have link UP). */
   5599 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5600 
   5601 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5602 }
   5603 
   5604 static void
   5605 bge_link_upd(struct bge_softc *sc)
   5606 {
   5607 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5608 	struct mii_data *mii = &sc->bge_mii;
   5609 	uint32_t status;
   5610 	int link;
   5611 
   5612 	/* Clear 'pending link event' flag */
   5613 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5614 
   5615 	/*
   5616 	 * Process link state changes.
   5617 	 * Grrr. The link status word in the status block does
   5618 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5619 	 * according to all available information. Hence, we have
   5620 	 * to enable MII interrupts in order to properly obtain
   5621 	 * async link changes. Unfortunately, this also means that
   5622 	 * we have to read the MAC status register to detect link
   5623 	 * changes, thereby adding an additional register access to
   5624 	 * the interrupt handler.
   5625 	 */
   5626 
   5627 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5628 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5629 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5630 			mii_pollstat(mii);
   5631 
   5632 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5633 			    mii->mii_media_status & IFM_ACTIVE &&
   5634 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5635 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5636 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5637 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5638 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5639 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5640 
   5641 			/* Clear the interrupt */
   5642 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5643 			    BGE_EVTENB_MI_INTERRUPT);
   5644 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5645 			    BRGPHY_MII_ISR);
   5646 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5647 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5648 		}
   5649 		return;
   5650 	}
   5651 
   5652 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5653 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5654 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5655 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5656 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5657 				if (BGE_ASICREV(sc->bge_chipid)
   5658 				    == BGE_ASICREV_BCM5704) {
   5659 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5660 					    BGE_MACMODE_TBI_SEND_CFGS);
   5661 					DELAY(40);
   5662 				}
   5663 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5664 				if_link_state_change(ifp, LINK_STATE_UP);
   5665 			}
   5666 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5667 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5668 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5669 		}
   5670 	/*
   5671 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   5672 	 * This should not happen since mii callouts are locked now, but
   5673 	 * we keep this check for debug.
   5674 	 */
   5675 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5676 		/*
   5677 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5678 		 * bit in status word always set. Workaround this bug by
   5679 		 * reading PHY link status directly.
   5680 		 */
   5681 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5682 		    BGE_STS_LINK : 0;
   5683 
   5684 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5685 			mii_pollstat(mii);
   5686 
   5687 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5688 			    mii->mii_media_status & IFM_ACTIVE &&
   5689 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5690 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5691 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5692 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5693 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5694 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5695 		}
   5696 	} else {
   5697 		/*
   5698 		 * For controllers that call mii_tick, we have to poll
   5699 		 * link status.
   5700 		 */
   5701 		mii_pollstat(mii);
   5702 		bge_miibus_statchg(ifp);
   5703 	}
   5704 
   5705 	/* Clear the attention */
   5706 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5707 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5708 	    BGE_MACSTAT_LINK_CHANGED);
   5709 }
   5710 
   5711 static int
   5712 bge_sysctl_verify(SYSCTLFN_ARGS)
   5713 {
   5714 	int error, t;
   5715 	struct sysctlnode node;
   5716 
   5717 	node = *rnode;
   5718 	t = *(int*)rnode->sysctl_data;
   5719 	node.sysctl_data = &t;
   5720 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5721 	if (error || newp == NULL)
   5722 		return error;
   5723 
   5724 #if 0
   5725 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5726 	    node.sysctl_num, rnode->sysctl_num));
   5727 #endif
   5728 
   5729 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5730 		if (t < 0 || t >= NBGE_RX_THRESH)
   5731 			return EINVAL;
   5732 		bge_update_all_threshes(t);
   5733 	} else
   5734 		return EINVAL;
   5735 
   5736 	*(int*)rnode->sysctl_data = t;
   5737 
   5738 	return 0;
   5739 }
   5740 
   5741 /*
   5742  * Set up sysctl(3) MIB, hw.bge.*.
   5743  */
   5744 static void
   5745 bge_sysctl_init(struct bge_softc *sc)
   5746 {
   5747 	int rc, bge_root_num;
   5748 	const struct sysctlnode *node;
   5749 
   5750 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5751 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5752 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5753 		goto out;
   5754 	}
   5755 
   5756 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5757 	    0, CTLTYPE_NODE, "bge",
   5758 	    SYSCTL_DESCR("BGE interface controls"),
   5759 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5760 		goto out;
   5761 	}
   5762 
   5763 	bge_root_num = node->sysctl_num;
   5764 
   5765 	/* BGE Rx interrupt mitigation level */
   5766 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5767 	    CTLFLAG_READWRITE,
   5768 	    CTLTYPE_INT, "rx_lvl",
   5769 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5770 	    bge_sysctl_verify, 0,
   5771 	    &bge_rx_thresh_lvl,
   5772 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5773 	    CTL_EOL)) != 0) {
   5774 		goto out;
   5775 	}
   5776 
   5777 	bge_rxthresh_nodenum = node->sysctl_num;
   5778 
   5779 	return;
   5780 
   5781 out:
   5782 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5783 }
   5784 
   5785 #ifdef BGE_DEBUG
   5786 void
   5787 bge_debug_info(struct bge_softc *sc)
   5788 {
   5789 
   5790 	printf("Hardware Flags:\n");
   5791 	if (BGE_IS_57765_PLUS(sc))
   5792 		printf(" - 57765 Plus\n");
   5793 	if (BGE_IS_5717_PLUS(sc))
   5794 		printf(" - 5717 Plus\n");
   5795 	if (BGE_IS_5755_PLUS(sc))
   5796 		printf(" - 5755 Plus\n");
   5797 	if (BGE_IS_575X_PLUS(sc))
   5798 		printf(" - 575X Plus\n");
   5799 	if (BGE_IS_5705_PLUS(sc))
   5800 		printf(" - 5705 Plus\n");
   5801 	if (BGE_IS_5714_FAMILY(sc))
   5802 		printf(" - 5714 Family\n");
   5803 	if (BGE_IS_5700_FAMILY(sc))
   5804 		printf(" - 5700 Family\n");
   5805 	if (sc->bge_flags & BGE_IS_5788)
   5806 		printf(" - 5788\n");
   5807 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5808 		printf(" - Supports Jumbo Frames\n");
   5809 	if (sc->bge_flags & BGE_NO_EEPROM)
   5810 		printf(" - No EEPROM\n");
   5811 	if (sc->bge_flags & BGE_PCIX)
   5812 		printf(" - PCI-X Bus\n");
   5813 	if (sc->bge_flags & BGE_PCIE)
   5814 		printf(" - PCI Express Bus\n");
   5815 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5816 		printf(" - RX Alignment Bug\n");
   5817 	if (sc->bge_flags & BGE_APE)
   5818 		printf(" - APE\n");
   5819 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5820 		printf(" - CPMU\n");
   5821 	if (sc->bge_flags & BGE_TSO)
   5822 		printf(" - TSO\n");
   5823 
   5824 	if (sc->bge_flags & BGE_PHY_NO_3LED)
   5825 		printf(" - No 3 LEDs\n");
   5826 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
   5827 		printf(" - CRC bug\n");
   5828 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
   5829 		printf(" - ADC bug\n");
   5830 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
   5831 		printf(" - 5704 A0 bug\n");
   5832 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
   5833 		printf(" - jitter bug\n");
   5834 	if (sc->bge_flags & BGE_PHY_BER_BUG)
   5835 		printf(" - BER bug\n");
   5836 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
   5837 		printf(" - adjust trim\n");
   5838 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
   5839 		printf(" - no wirespeed\n");
   5840 }
   5841 #endif /* BGE_DEBUG */
   5842 
   5843 static int
   5844 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5845 {
   5846 	prop_dictionary_t dict;
   5847 	prop_data_t ea;
   5848 
   5849 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5850 		return 1;
   5851 
   5852 	dict = device_properties(sc->bge_dev);
   5853 	ea = prop_dictionary_get(dict, "mac-address");
   5854 	if (ea != NULL) {
   5855 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5856 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5857 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5858 		return 0;
   5859 	}
   5860 
   5861 	return 1;
   5862 }
   5863 
   5864 static int
   5865 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5866 {
   5867 	uint32_t mac_addr;
   5868 
   5869 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5870 	if ((mac_addr >> 16) == 0x484b) {
   5871 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5872 		ether_addr[1] = (uint8_t)mac_addr;
   5873 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5874 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5875 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5876 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5877 		ether_addr[5] = (uint8_t)mac_addr;
   5878 		return 0;
   5879 	}
   5880 	return 1;
   5881 }
   5882 
   5883 static int
   5884 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5885 {
   5886 	int mac_offset = BGE_EE_MAC_OFFSET;
   5887 
   5888 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5889 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5890 
   5891 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5892 	    ETHER_ADDR_LEN));
   5893 }
   5894 
   5895 static int
   5896 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5897 {
   5898 
   5899 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5900 		return 1;
   5901 
   5902 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5903 	   ETHER_ADDR_LEN));
   5904 }
   5905 
   5906 static int
   5907 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5908 {
   5909 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5910 		/* NOTE: Order is critical */
   5911 		bge_get_eaddr_fw,
   5912 		bge_get_eaddr_mem,
   5913 		bge_get_eaddr_nvram,
   5914 		bge_get_eaddr_eeprom,
   5915 		NULL
   5916 	};
   5917 	const bge_eaddr_fcn_t *func;
   5918 
   5919 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5920 		if ((*func)(sc, eaddr) == 0)
   5921 			break;
   5922 	}
   5923 	return (*func == NULL ? ENXIO : 0);
   5924 }
   5925