if_bge.c revision 1.228 1 /* $NetBSD: if_bge.c,v 1.228 2013/03/27 10:26:05 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.228 2013/03/27 10:26:05 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static int bge_detach(device_t, int);
191 static void bge_release_resources(struct bge_softc *);
192
193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
198
199 static void bge_txeof(struct bge_softc *);
200 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
201 static void bge_rxeof(struct bge_softc *);
202
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ifflags_cb(struct ethercom *);
212 static int bge_ioctl(struct ifnet *, u_long, void *);
213 static int bge_init(struct ifnet *);
214 static void bge_stop(struct ifnet *, int);
215 static void bge_watchdog(struct ifnet *);
216 static int bge_ifmedia_upd(struct ifnet *);
217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218
219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
221
222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
224 static void bge_setmulti(struct bge_softc *);
225
226 static void bge_handle_events(struct bge_softc *);
227 static int bge_alloc_jumbo_mem(struct bge_softc *);
228 #if 0 /* XXX */
229 static void bge_free_jumbo_mem(struct bge_softc *);
230 #endif
231 static void *bge_jalloc(struct bge_softc *);
232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
234 bus_dmamap_t);
235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
236 static int bge_init_rx_ring_std(struct bge_softc *);
237 static void bge_free_rx_ring_std(struct bge_softc *);
238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_tx_ring(struct bge_softc *);
241 static int bge_init_tx_ring(struct bge_softc *);
242
243 static int bge_chipinit(struct bge_softc *);
244 static int bge_blockinit(struct bge_softc *);
245 static int bge_phy_addr(struct bge_softc *);
246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
247 static void bge_writemem_ind(struct bge_softc *, int, int);
248 static void bge_writembx(struct bge_softc *, int, int);
249 static void bge_writembx_flush(struct bge_softc *, int, int);
250 static void bge_writemem_direct(struct bge_softc *, int, int);
251 static void bge_writereg_ind(struct bge_softc *, int, int);
252 static void bge_set_max_readrq(struct bge_softc *);
253
254 static int bge_miibus_readreg(device_t, int, int);
255 static void bge_miibus_writereg(device_t, int, int, int);
256 static void bge_miibus_statchg(struct ifnet *);
257
258 #define BGE_RESET_SHUTDOWN 0
259 #define BGE_RESET_START 1
260 #define BGE_RESET_SUSPEND 2
261 static void bge_sig_post_reset(struct bge_softc *, int);
262 static void bge_sig_legacy(struct bge_softc *, int);
263 static void bge_sig_pre_reset(struct bge_softc *, int);
264 static void bge_wait_for_event_ack(struct bge_softc *);
265 static void bge_stop_fw(struct bge_softc *);
266 static int bge_reset(struct bge_softc *);
267 static void bge_link_upd(struct bge_softc *);
268 static void bge_sysctl_init(struct bge_softc *);
269 static int bge_sysctl_verify(SYSCTLFN_PROTO);
270
271 static void bge_ape_lock_init(struct bge_softc *);
272 static void bge_ape_read_fw_ver(struct bge_softc *);
273 static int bge_ape_lock(struct bge_softc *, int);
274 static void bge_ape_unlock(struct bge_softc *, int);
275 static void bge_ape_send_event(struct bge_softc *, uint32_t);
276 static void bge_ape_driver_state_change(struct bge_softc *, int);
277
278 #ifdef BGE_DEBUG
279 #define DPRINTF(x) if (bgedebug) printf x
280 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
281 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
282 int bgedebug = 0;
283 int bge_tso_debug = 0;
284 void bge_debug_info(struct bge_softc *);
285 #else
286 #define DPRINTF(x)
287 #define DPRINTFN(n,x)
288 #define BGE_TSO_PRINTF(x)
289 #endif
290
291 #ifdef BGE_EVENT_COUNTERS
292 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
293 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
294 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
295 #else
296 #define BGE_EVCNT_INCR(ev) /* nothing */
297 #define BGE_EVCNT_ADD(ev, val) /* nothing */
298 #define BGE_EVCNT_UPD(ev, val) /* nothing */
299 #endif
300
301 static const struct bge_product {
302 pci_vendor_id_t bp_vendor;
303 pci_product_id_t bp_product;
304 const char *bp_name;
305 } bge_products[] = {
306 /*
307 * The BCM5700 documentation seems to indicate that the hardware
308 * still has the Alteon vendor ID burned into it, though it
309 * should always be overridden by the value in the EEPROM. We'll
310 * check for it anyway.
311 */
312 { PCI_VENDOR_ALTEON,
313 PCI_PRODUCT_ALTEON_BCM5700,
314 "Broadcom BCM5700 Gigabit Ethernet",
315 },
316 { PCI_VENDOR_ALTEON,
317 PCI_PRODUCT_ALTEON_BCM5701,
318 "Broadcom BCM5701 Gigabit Ethernet",
319 },
320 { PCI_VENDOR_ALTIMA,
321 PCI_PRODUCT_ALTIMA_AC1000,
322 "Altima AC1000 Gigabit Ethernet",
323 },
324 { PCI_VENDOR_ALTIMA,
325 PCI_PRODUCT_ALTIMA_AC1001,
326 "Altima AC1001 Gigabit Ethernet",
327 },
328 { PCI_VENDOR_ALTIMA,
329 PCI_PRODUCT_ALTIMA_AC1003,
330 "Altima AC1003 Gigabit Ethernet",
331 },
332 { PCI_VENDOR_ALTIMA,
333 PCI_PRODUCT_ALTIMA_AC9100,
334 "Altima AC9100 Gigabit Ethernet",
335 },
336 { PCI_VENDOR_APPLE,
337 PCI_PRODUCT_APPLE_BCM5701,
338 "APPLE BCM5701 Gigabit Ethernet",
339 },
340 { PCI_VENDOR_BROADCOM,
341 PCI_PRODUCT_BROADCOM_BCM5700,
342 "Broadcom BCM5700 Gigabit Ethernet",
343 },
344 { PCI_VENDOR_BROADCOM,
345 PCI_PRODUCT_BROADCOM_BCM5701,
346 "Broadcom BCM5701 Gigabit Ethernet",
347 },
348 { PCI_VENDOR_BROADCOM,
349 PCI_PRODUCT_BROADCOM_BCM5702,
350 "Broadcom BCM5702 Gigabit Ethernet",
351 },
352 { PCI_VENDOR_BROADCOM,
353 PCI_PRODUCT_BROADCOM_BCM5702X,
354 "Broadcom BCM5702X Gigabit Ethernet" },
355 { PCI_VENDOR_BROADCOM,
356 PCI_PRODUCT_BROADCOM_BCM5703,
357 "Broadcom BCM5703 Gigabit Ethernet",
358 },
359 { PCI_VENDOR_BROADCOM,
360 PCI_PRODUCT_BROADCOM_BCM5703X,
361 "Broadcom BCM5703X Gigabit Ethernet",
362 },
363 { PCI_VENDOR_BROADCOM,
364 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
365 "Broadcom BCM5703 Gigabit Ethernet",
366 },
367 { PCI_VENDOR_BROADCOM,
368 PCI_PRODUCT_BROADCOM_BCM5704C,
369 "Broadcom BCM5704C Dual Gigabit Ethernet",
370 },
371 { PCI_VENDOR_BROADCOM,
372 PCI_PRODUCT_BROADCOM_BCM5704S,
373 "Broadcom BCM5704S Dual Gigabit Ethernet",
374 },
375 { PCI_VENDOR_BROADCOM,
376 PCI_PRODUCT_BROADCOM_BCM5705,
377 "Broadcom BCM5705 Gigabit Ethernet",
378 },
379 { PCI_VENDOR_BROADCOM,
380 PCI_PRODUCT_BROADCOM_BCM5705F,
381 "Broadcom BCM5705F Gigabit Ethernet",
382 },
383 { PCI_VENDOR_BROADCOM,
384 PCI_PRODUCT_BROADCOM_BCM5705K,
385 "Broadcom BCM5705K Gigabit Ethernet",
386 },
387 { PCI_VENDOR_BROADCOM,
388 PCI_PRODUCT_BROADCOM_BCM5705M,
389 "Broadcom BCM5705M Gigabit Ethernet",
390 },
391 { PCI_VENDOR_BROADCOM,
392 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
393 "Broadcom BCM5705M Gigabit Ethernet",
394 },
395 { PCI_VENDOR_BROADCOM,
396 PCI_PRODUCT_BROADCOM_BCM5714,
397 "Broadcom BCM5714 Gigabit Ethernet",
398 },
399 { PCI_VENDOR_BROADCOM,
400 PCI_PRODUCT_BROADCOM_BCM5714S,
401 "Broadcom BCM5714S Gigabit Ethernet",
402 },
403 { PCI_VENDOR_BROADCOM,
404 PCI_PRODUCT_BROADCOM_BCM5715,
405 "Broadcom BCM5715 Gigabit Ethernet",
406 },
407 { PCI_VENDOR_BROADCOM,
408 PCI_PRODUCT_BROADCOM_BCM5715S,
409 "Broadcom BCM5715S Gigabit Ethernet",
410 },
411 { PCI_VENDOR_BROADCOM,
412 PCI_PRODUCT_BROADCOM_BCM5717,
413 "Broadcom BCM5717 Gigabit Ethernet",
414 },
415 { PCI_VENDOR_BROADCOM,
416 PCI_PRODUCT_BROADCOM_BCM5718,
417 "Broadcom BCM5718 Gigabit Ethernet",
418 },
419 { PCI_VENDOR_BROADCOM,
420 PCI_PRODUCT_BROADCOM_BCM5719,
421 "Broadcom BCM5719 Gigabit Ethernet",
422 },
423 { PCI_VENDOR_BROADCOM,
424 PCI_PRODUCT_BROADCOM_BCM5720,
425 "Broadcom BCM5720 Gigabit Ethernet",
426 },
427 { PCI_VENDOR_BROADCOM,
428 PCI_PRODUCT_BROADCOM_BCM5721,
429 "Broadcom BCM5721 Gigabit Ethernet",
430 },
431 { PCI_VENDOR_BROADCOM,
432 PCI_PRODUCT_BROADCOM_BCM5722,
433 "Broadcom BCM5722 Gigabit Ethernet",
434 },
435 { PCI_VENDOR_BROADCOM,
436 PCI_PRODUCT_BROADCOM_BCM5723,
437 "Broadcom BCM5723 Gigabit Ethernet",
438 },
439 { PCI_VENDOR_BROADCOM,
440 PCI_PRODUCT_BROADCOM_BCM5724,
441 "Broadcom BCM5724 Gigabit Ethernet",
442 },
443 { PCI_VENDOR_BROADCOM,
444 PCI_PRODUCT_BROADCOM_BCM5750,
445 "Broadcom BCM5750 Gigabit Ethernet",
446 },
447 { PCI_VENDOR_BROADCOM,
448 PCI_PRODUCT_BROADCOM_BCM5750M,
449 "Broadcom BCM5750M Gigabit Ethernet",
450 },
451 { PCI_VENDOR_BROADCOM,
452 PCI_PRODUCT_BROADCOM_BCM5751,
453 "Broadcom BCM5751 Gigabit Ethernet",
454 },
455 { PCI_VENDOR_BROADCOM,
456 PCI_PRODUCT_BROADCOM_BCM5751F,
457 "Broadcom BCM5751F Gigabit Ethernet",
458 },
459 { PCI_VENDOR_BROADCOM,
460 PCI_PRODUCT_BROADCOM_BCM5751M,
461 "Broadcom BCM5751M Gigabit Ethernet",
462 },
463 { PCI_VENDOR_BROADCOM,
464 PCI_PRODUCT_BROADCOM_BCM5752,
465 "Broadcom BCM5752 Gigabit Ethernet",
466 },
467 { PCI_VENDOR_BROADCOM,
468 PCI_PRODUCT_BROADCOM_BCM5752M,
469 "Broadcom BCM5752M Gigabit Ethernet",
470 },
471 { PCI_VENDOR_BROADCOM,
472 PCI_PRODUCT_BROADCOM_BCM5753,
473 "Broadcom BCM5753 Gigabit Ethernet",
474 },
475 { PCI_VENDOR_BROADCOM,
476 PCI_PRODUCT_BROADCOM_BCM5753F,
477 "Broadcom BCM5753F Gigabit Ethernet",
478 },
479 { PCI_VENDOR_BROADCOM,
480 PCI_PRODUCT_BROADCOM_BCM5753M,
481 "Broadcom BCM5753M Gigabit Ethernet",
482 },
483 { PCI_VENDOR_BROADCOM,
484 PCI_PRODUCT_BROADCOM_BCM5754,
485 "Broadcom BCM5754 Gigabit Ethernet",
486 },
487 { PCI_VENDOR_BROADCOM,
488 PCI_PRODUCT_BROADCOM_BCM5754M,
489 "Broadcom BCM5754M Gigabit Ethernet",
490 },
491 { PCI_VENDOR_BROADCOM,
492 PCI_PRODUCT_BROADCOM_BCM5755,
493 "Broadcom BCM5755 Gigabit Ethernet",
494 },
495 { PCI_VENDOR_BROADCOM,
496 PCI_PRODUCT_BROADCOM_BCM5755M,
497 "Broadcom BCM5755M Gigabit Ethernet",
498 },
499 { PCI_VENDOR_BROADCOM,
500 PCI_PRODUCT_BROADCOM_BCM5756,
501 "Broadcom BCM5756 Gigabit Ethernet",
502 },
503 { PCI_VENDOR_BROADCOM,
504 PCI_PRODUCT_BROADCOM_BCM5761,
505 "Broadcom BCM5761 Gigabit Ethernet",
506 },
507 { PCI_VENDOR_BROADCOM,
508 PCI_PRODUCT_BROADCOM_BCM5761E,
509 "Broadcom BCM5761E Gigabit Ethernet",
510 },
511 { PCI_VENDOR_BROADCOM,
512 PCI_PRODUCT_BROADCOM_BCM5761S,
513 "Broadcom BCM5761S Gigabit Ethernet",
514 },
515 { PCI_VENDOR_BROADCOM,
516 PCI_PRODUCT_BROADCOM_BCM5761SE,
517 "Broadcom BCM5761SE Gigabit Ethernet",
518 },
519 { PCI_VENDOR_BROADCOM,
520 PCI_PRODUCT_BROADCOM_BCM5764,
521 "Broadcom BCM5764 Gigabit Ethernet",
522 },
523 { PCI_VENDOR_BROADCOM,
524 PCI_PRODUCT_BROADCOM_BCM5780,
525 "Broadcom BCM5780 Gigabit Ethernet",
526 },
527 { PCI_VENDOR_BROADCOM,
528 PCI_PRODUCT_BROADCOM_BCM5780S,
529 "Broadcom BCM5780S Gigabit Ethernet",
530 },
531 { PCI_VENDOR_BROADCOM,
532 PCI_PRODUCT_BROADCOM_BCM5781,
533 "Broadcom BCM5781 Gigabit Ethernet",
534 },
535 { PCI_VENDOR_BROADCOM,
536 PCI_PRODUCT_BROADCOM_BCM5782,
537 "Broadcom BCM5782 Gigabit Ethernet",
538 },
539 { PCI_VENDOR_BROADCOM,
540 PCI_PRODUCT_BROADCOM_BCM5784M,
541 "BCM5784M NetLink 1000baseT Ethernet",
542 },
543 { PCI_VENDOR_BROADCOM,
544 PCI_PRODUCT_BROADCOM_BCM5785F,
545 "BCM5785F NetLink 10/100 Ethernet",
546 },
547 { PCI_VENDOR_BROADCOM,
548 PCI_PRODUCT_BROADCOM_BCM5785G,
549 "BCM5785G NetLink 1000baseT Ethernet",
550 },
551 { PCI_VENDOR_BROADCOM,
552 PCI_PRODUCT_BROADCOM_BCM5786,
553 "Broadcom BCM5786 Gigabit Ethernet",
554 },
555 { PCI_VENDOR_BROADCOM,
556 PCI_PRODUCT_BROADCOM_BCM5787,
557 "Broadcom BCM5787 Gigabit Ethernet",
558 },
559 { PCI_VENDOR_BROADCOM,
560 PCI_PRODUCT_BROADCOM_BCM5787F,
561 "Broadcom BCM5787F 10/100 Ethernet",
562 },
563 { PCI_VENDOR_BROADCOM,
564 PCI_PRODUCT_BROADCOM_BCM5787M,
565 "Broadcom BCM5787M Gigabit Ethernet",
566 },
567 { PCI_VENDOR_BROADCOM,
568 PCI_PRODUCT_BROADCOM_BCM5788,
569 "Broadcom BCM5788 Gigabit Ethernet",
570 },
571 { PCI_VENDOR_BROADCOM,
572 PCI_PRODUCT_BROADCOM_BCM5789,
573 "Broadcom BCM5789 Gigabit Ethernet",
574 },
575 { PCI_VENDOR_BROADCOM,
576 PCI_PRODUCT_BROADCOM_BCM5901,
577 "Broadcom BCM5901 Fast Ethernet",
578 },
579 { PCI_VENDOR_BROADCOM,
580 PCI_PRODUCT_BROADCOM_BCM5901A2,
581 "Broadcom BCM5901A2 Fast Ethernet",
582 },
583 { PCI_VENDOR_BROADCOM,
584 PCI_PRODUCT_BROADCOM_BCM5903M,
585 "Broadcom BCM5903M Fast Ethernet",
586 },
587 { PCI_VENDOR_BROADCOM,
588 PCI_PRODUCT_BROADCOM_BCM5906,
589 "Broadcom BCM5906 Fast Ethernet",
590 },
591 { PCI_VENDOR_BROADCOM,
592 PCI_PRODUCT_BROADCOM_BCM5906M,
593 "Broadcom BCM5906M Fast Ethernet",
594 },
595 { PCI_VENDOR_BROADCOM,
596 PCI_PRODUCT_BROADCOM_BCM57760,
597 "Broadcom BCM57760 Fast Ethernet",
598 },
599 { PCI_VENDOR_BROADCOM,
600 PCI_PRODUCT_BROADCOM_BCM57761,
601 "Broadcom BCM57761 Fast Ethernet",
602 },
603 { PCI_VENDOR_BROADCOM,
604 PCI_PRODUCT_BROADCOM_BCM57762,
605 "Broadcom BCM57762 Gigabit Ethernet",
606 },
607 { PCI_VENDOR_BROADCOM,
608 PCI_PRODUCT_BROADCOM_BCM57765,
609 "Broadcom BCM57765 Fast Ethernet",
610 },
611 { PCI_VENDOR_BROADCOM,
612 PCI_PRODUCT_BROADCOM_BCM57766,
613 "Broadcom BCM57766 Fast Ethernet",
614 },
615 { PCI_VENDOR_BROADCOM,
616 PCI_PRODUCT_BROADCOM_BCM57780,
617 "Broadcom BCM57780 Fast Ethernet",
618 },
619 { PCI_VENDOR_BROADCOM,
620 PCI_PRODUCT_BROADCOM_BCM57781,
621 "Broadcom BCM57781 Fast Ethernet",
622 },
623 { PCI_VENDOR_BROADCOM,
624 PCI_PRODUCT_BROADCOM_BCM57782,
625 "Broadcom BCM57782 Fast Ethernet",
626 },
627 { PCI_VENDOR_BROADCOM,
628 PCI_PRODUCT_BROADCOM_BCM57785,
629 "Broadcom BCM57785 Fast Ethernet",
630 },
631 { PCI_VENDOR_BROADCOM,
632 PCI_PRODUCT_BROADCOM_BCM57786,
633 "Broadcom BCM57786 Fast Ethernet",
634 },
635 { PCI_VENDOR_BROADCOM,
636 PCI_PRODUCT_BROADCOM_BCM57788,
637 "Broadcom BCM57788 Fast Ethernet",
638 },
639 { PCI_VENDOR_BROADCOM,
640 PCI_PRODUCT_BROADCOM_BCM57790,
641 "Broadcom BCM57790 Fast Ethernet",
642 },
643 { PCI_VENDOR_BROADCOM,
644 PCI_PRODUCT_BROADCOM_BCM57791,
645 "Broadcom BCM57791 Fast Ethernet",
646 },
647 { PCI_VENDOR_BROADCOM,
648 PCI_PRODUCT_BROADCOM_BCM57795,
649 "Broadcom BCM57795 Fast Ethernet",
650 },
651 { PCI_VENDOR_SCHNEIDERKOCH,
652 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
653 "SysKonnect SK-9Dx1 Gigabit Ethernet",
654 },
655 { PCI_VENDOR_3COM,
656 PCI_PRODUCT_3COM_3C996,
657 "3Com 3c996 Gigabit Ethernet",
658 },
659 { PCI_VENDOR_FUJITSU4,
660 PCI_PRODUCT_FUJITSU4_PW008GE4,
661 "Fujitsu PW008GE4 Gigabit Ethernet",
662 },
663 { PCI_VENDOR_FUJITSU4,
664 PCI_PRODUCT_FUJITSU4_PW008GE5,
665 "Fujitsu PW008GE5 Gigabit Ethernet",
666 },
667 { PCI_VENDOR_FUJITSU4,
668 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
669 "Fujitsu Primepower 250/450 Gigabit Ethernet",
670 },
671 { 0,
672 0,
673 NULL },
674 };
675
676 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
677 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
678 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
679 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
680 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
681 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
682 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
683 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
684
685 static const struct bge_revision {
686 uint32_t br_chipid;
687 const char *br_name;
688 } bge_revisions[] = {
689 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
690 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
691 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
692 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
693 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
694 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
695 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
696 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
697 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
698 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
699 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
700 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
701 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
702 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
703 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
704 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
705 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
706 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
707 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
708 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
709 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
710 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
711 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
712 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
713 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
714 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
715 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
716 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
717 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
718 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
719 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
720 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
721 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
722 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
723 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
724 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
725 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
726 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
727 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
728 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
729 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
730 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
731 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
732 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
733 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
734 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
735 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
736 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
737 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
738 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
739 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
740 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
741 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
742 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
743 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
744 /* 5754 and 5787 share the same ASIC ID */
745 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
746 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
747 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
748 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
749 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
750 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
751 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
752 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
753 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
754 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
755
756 { 0, NULL }
757 };
758
759 /*
760 * Some defaults for major revisions, so that newer steppings
761 * that we don't know about have a shot at working.
762 */
763 static const struct bge_revision bge_majorrevs[] = {
764 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
765 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
766 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
767 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
768 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
769 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
770 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
772 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
773 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
774 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
775 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
776 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
777 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
778 /* 5754 and 5787 share the same ASIC ID */
779 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
780 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
781 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
782 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
783 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
784 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
785 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
786 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
787
788 { 0, NULL }
789 };
790
791 static int bge_allow_asf = 1;
792
793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
794 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
795
796 static uint32_t
797 bge_readmem_ind(struct bge_softc *sc, int off)
798 {
799 pcireg_t val;
800
801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
802 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
803 return 0;
804
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
806 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
807 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
808 return val;
809 }
810
811 static void
812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
813 {
814
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
817 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
818 }
819
820 /*
821 * PCI Express only
822 */
823 static void
824 bge_set_max_readrq(struct bge_softc *sc)
825 {
826 pcireg_t val;
827
828 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
829 + PCI_PCIE_DCSR);
830 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
831 switch (sc->bge_expmrq) {
832 case 2048:
833 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
834 break;
835 case 4096:
836 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
837 break;
838 default:
839 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
840 break;
841 }
842 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
843 + PCI_PCIE_DCSR, val);
844 }
845
846 #ifdef notdef
847 static uint32_t
848 bge_readreg_ind(struct bge_softc *sc, int off)
849 {
850 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
851 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
852 }
853 #endif
854
855 static void
856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
857 {
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
859 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
860 }
861
862 static void
863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
864 {
865 CSR_WRITE_4(sc, off, val);
866 }
867
868 static void
869 bge_writembx(struct bge_softc *sc, int off, int val)
870 {
871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
872 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
873
874 CSR_WRITE_4(sc, off, val);
875 }
876
877 static void
878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
879 {
880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
881 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
882
883 CSR_WRITE_4_FLUSH(sc, off, val);
884 }
885
886 /*
887 * Clear all stale locks and select the lock for this driver instance.
888 */
889 void
890 bge_ape_lock_init(struct bge_softc *sc)
891 {
892 struct pci_attach_args *pa = &(sc->bge_pa);
893 uint32_t bit, regbase;
894 int i;
895
896 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
897 regbase = BGE_APE_LOCK_GRANT;
898 else
899 regbase = BGE_APE_PER_LOCK_GRANT;
900
901 /* Clear any stale locks. */
902 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
903 switch (i) {
904 case BGE_APE_LOCK_PHY0:
905 case BGE_APE_LOCK_PHY1:
906 case BGE_APE_LOCK_PHY2:
907 case BGE_APE_LOCK_PHY3:
908 bit = BGE_APE_LOCK_GRANT_DRIVER0;
909 break;
910 default:
911 if (pa->pa_function != 0)
912 bit = BGE_APE_LOCK_GRANT_DRIVER0;
913 else
914 bit = (1 << pa->pa_function);
915 }
916 APE_WRITE_4(sc, regbase + 4 * i, bit);
917 }
918
919 /* Select the PHY lock based on the device's function number. */
920 switch (pa->pa_function) {
921 case 0:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
923 break;
924 case 1:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
926 break;
927 case 2:
928 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
929 break;
930 case 3:
931 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
932 break;
933 default:
934 printf("%s: PHY lock not supported on function\n",
935 device_xname(sc->bge_dev));
936 break;
937 }
938 }
939
940 /*
941 * Check for APE firmware, set flags, and print version info.
942 */
943 void
944 bge_ape_read_fw_ver(struct bge_softc *sc)
945 {
946 const char *fwtype;
947 uint32_t apedata, features;
948
949 /* Check for a valid APE signature in shared memory. */
950 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
951 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
952 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
953 return;
954 }
955
956 /* Check if APE firmware is running. */
957 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
958 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
959 printf("%s: APE signature found but FW status not ready! "
960 "0x%08x\n", device_xname(sc->bge_dev), apedata);
961 return;
962 }
963
964 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
965
966 /* Fetch the APE firwmare type and version. */
967 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
968 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
969 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
970 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
971 fwtype = "NCSI";
972 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
973 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
974 fwtype = "DASH";
975 } else
976 fwtype = "UNKN";
977
978 /* Print the APE firmware version. */
979 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
980 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
981 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
982 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
983 (apedata & BGE_APE_FW_VERSION_BLDMSK));
984 }
985
986 int
987 bge_ape_lock(struct bge_softc *sc, int locknum)
988 {
989 struct pci_attach_args *pa = &(sc->bge_pa);
990 uint32_t bit, gnt, req, status;
991 int i, off;
992
993 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
994 return (0);
995
996 /* Lock request/grant registers have different bases. */
997 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
998 req = BGE_APE_LOCK_REQ;
999 gnt = BGE_APE_LOCK_GRANT;
1000 } else {
1001 req = BGE_APE_PER_LOCK_REQ;
1002 gnt = BGE_APE_PER_LOCK_GRANT;
1003 }
1004
1005 off = 4 * locknum;
1006
1007 switch (locknum) {
1008 case BGE_APE_LOCK_GPIO:
1009 /* Lock required when using GPIO. */
1010 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1011 return (0);
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_GRC:
1018 /* Lock required to reset the device. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_MEM:
1025 /* Lock required when accessing certain APE memory. */
1026 if (pa->pa_function == 0)
1027 bit = BGE_APE_LOCK_REQ_DRIVER0;
1028 else
1029 bit = (1 << pa->pa_function);
1030 break;
1031 case BGE_APE_LOCK_PHY0:
1032 case BGE_APE_LOCK_PHY1:
1033 case BGE_APE_LOCK_PHY2:
1034 case BGE_APE_LOCK_PHY3:
1035 /* Lock required when accessing PHYs. */
1036 bit = BGE_APE_LOCK_REQ_DRIVER0;
1037 break;
1038 default:
1039 return (EINVAL);
1040 }
1041
1042 /* Request a lock. */
1043 APE_WRITE_4_FLUSH(sc, req + off, bit);
1044
1045 /* Wait up to 1 second to acquire lock. */
1046 for (i = 0; i < 20000; i++) {
1047 status = APE_READ_4(sc, gnt + off);
1048 if (status == bit)
1049 break;
1050 DELAY(50);
1051 }
1052
1053 /* Handle any errors. */
1054 if (status != bit) {
1055 printf("%s: APE lock %d request failed! "
1056 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1057 device_xname(sc->bge_dev),
1058 locknum, req + off, bit & 0xFFFF, gnt + off,
1059 status & 0xFFFF);
1060 /* Revoke the lock request. */
1061 APE_WRITE_4(sc, gnt + off, bit);
1062 return (EBUSY);
1063 }
1064
1065 return (0);
1066 }
1067
1068 void
1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
1070 {
1071 struct pci_attach_args *pa = &(sc->bge_pa);
1072 uint32_t bit, gnt;
1073 int off;
1074
1075 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1076 return;
1077
1078 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1079 gnt = BGE_APE_LOCK_GRANT;
1080 else
1081 gnt = BGE_APE_PER_LOCK_GRANT;
1082
1083 off = 4 * locknum;
1084
1085 switch (locknum) {
1086 case BGE_APE_LOCK_GPIO:
1087 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1088 return;
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_GRC:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_MEM:
1101 if (pa->pa_function == 0)
1102 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1103 else
1104 bit = (1 << pa->pa_function);
1105 break;
1106 case BGE_APE_LOCK_PHY0:
1107 case BGE_APE_LOCK_PHY1:
1108 case BGE_APE_LOCK_PHY2:
1109 case BGE_APE_LOCK_PHY3:
1110 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1111 break;
1112 default:
1113 return;
1114 }
1115
1116 /* Write and flush for consecutive bge_ape_lock() */
1117 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1118 }
1119
1120 /*
1121 * Send an event to the APE firmware.
1122 */
1123 void
1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1125 {
1126 uint32_t apedata;
1127 int i;
1128
1129 /* NCSI does not support APE events. */
1130 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1131 return;
1132
1133 printf("%s: APE event 0x%08x send\n", device_xname(sc->bge_dev), event);
1134
1135 /* Wait up to 1ms for APE to service previous event. */
1136 for (i = 10; i > 0; i--) {
1137 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1138 break;
1139 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1140 printf("%s: APE data 0x%08x -> 0x%08x\n",
1141 device_xname(sc->bge_dev), apedata, event);
1142 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1143 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1144 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1145 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1146 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1147 break;
1148 }
1149 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1150 DELAY(100);
1151 }
1152 if (i == 0) {
1153 printf("%s: APE event 0x%08x send timed out\n",
1154 device_xname(sc->bge_dev), event);
1155 }
1156 }
1157
1158 void
1159 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1160 {
1161 uint32_t apedata, event;
1162
1163 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1164 return;
1165
1166 switch (kind) {
1167 case BGE_RESET_START:
1168 /* If this is the first load, clear the load counter. */
1169 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1170 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1171 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1172 else {
1173 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1174 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1175 }
1176 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1177 BGE_APE_HOST_SEG_SIG_MAGIC);
1178 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1179 BGE_APE_HOST_SEG_LEN_MAGIC);
1180
1181 /* Add some version info if bge(4) supports it. */
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1183 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1184 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1185 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1186 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1187 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 BGE_APE_HOST_DRVR_STATE_START);
1190 event = BGE_APE_EVENT_STATUS_STATE_START;
1191 break;
1192 case BGE_RESET_SHUTDOWN:
1193 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1194 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1195 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1196 break;
1197 case BGE_RESET_SUSPEND:
1198 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1199 break;
1200 default:
1201 return;
1202 }
1203
1204 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1205 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1206 }
1207
1208 static uint8_t
1209 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1210 {
1211 uint32_t access, byte = 0;
1212 int i;
1213
1214 /* Lock. */
1215 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1216 for (i = 0; i < 8000; i++) {
1217 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1218 break;
1219 DELAY(20);
1220 }
1221 if (i == 8000)
1222 return 1;
1223
1224 /* Enable access. */
1225 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1226 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1227
1228 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1229 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1230 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1231 DELAY(10);
1232 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1233 DELAY(10);
1234 break;
1235 }
1236 }
1237
1238 if (i == BGE_TIMEOUT * 10) {
1239 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1240 return 1;
1241 }
1242
1243 /* Get result. */
1244 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1245
1246 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1247
1248 /* Disable access. */
1249 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1250
1251 /* Unlock. */
1252 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * Read a sequence of bytes from NVRAM.
1259 */
1260 static int
1261 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1262 {
1263 int error = 0, i;
1264 uint8_t byte = 0;
1265
1266 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1267 return 1;
1268
1269 for (i = 0; i < cnt; i++) {
1270 error = bge_nvram_getbyte(sc, off + i, &byte);
1271 if (error)
1272 break;
1273 *(dest + i) = byte;
1274 }
1275
1276 return (error ? 1 : 0);
1277 }
1278
1279 /*
1280 * Read a byte of data stored in the EEPROM at address 'addr.' The
1281 * BCM570x supports both the traditional bitbang interface and an
1282 * auto access interface for reading the EEPROM. We use the auto
1283 * access method.
1284 */
1285 static uint8_t
1286 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1287 {
1288 int i;
1289 uint32_t byte = 0;
1290
1291 /*
1292 * Enable use of auto EEPROM access so we can avoid
1293 * having to use the bitbang method.
1294 */
1295 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1296
1297 /* Reset the EEPROM, load the clock period. */
1298 CSR_WRITE_4(sc, BGE_EE_ADDR,
1299 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1300 DELAY(20);
1301
1302 /* Issue the read EEPROM command. */
1303 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1304
1305 /* Wait for completion */
1306 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1307 DELAY(10);
1308 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1309 break;
1310 }
1311
1312 if (i == BGE_TIMEOUT * 10) {
1313 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1314 return 1;
1315 }
1316
1317 /* Get result. */
1318 byte = CSR_READ_4(sc, BGE_EE_DATA);
1319
1320 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1321
1322 return 0;
1323 }
1324
1325 /*
1326 * Read a sequence of bytes from the EEPROM.
1327 */
1328 static int
1329 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1330 {
1331 int error = 0, i;
1332 uint8_t byte = 0;
1333 char *dest = destv;
1334
1335 for (i = 0; i < cnt; i++) {
1336 error = bge_eeprom_getbyte(sc, off + i, &byte);
1337 if (error)
1338 break;
1339 *(dest + i) = byte;
1340 }
1341
1342 return (error ? 1 : 0);
1343 }
1344
1345 static int
1346 bge_miibus_readreg(device_t dev, int phy, int reg)
1347 {
1348 struct bge_softc *sc = device_private(dev);
1349 uint32_t val;
1350 uint32_t autopoll;
1351 int i;
1352
1353 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1354 return 0;
1355
1356 /* Reading with autopolling on may trigger PCI errors */
1357 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1358 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1359 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1360 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1361 DELAY(80);
1362 }
1363
1364 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1365 BGE_MIPHY(phy) | BGE_MIREG(reg));
1366
1367 for (i = 0; i < BGE_TIMEOUT; i++) {
1368 delay(10);
1369 val = CSR_READ_4(sc, BGE_MI_COMM);
1370 if (!(val & BGE_MICOMM_BUSY)) {
1371 DELAY(5);
1372 val = CSR_READ_4(sc, BGE_MI_COMM);
1373 break;
1374 }
1375 }
1376
1377 if (i == BGE_TIMEOUT) {
1378 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1379 val = 0;
1380 goto done;
1381 }
1382
1383 done:
1384 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1385 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1386 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1387 DELAY(80);
1388 }
1389
1390 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1391
1392 if (val & BGE_MICOMM_READFAIL)
1393 return 0;
1394
1395 return (val & 0xFFFF);
1396 }
1397
1398 static void
1399 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1400 {
1401 struct bge_softc *sc = device_private(dev);
1402 uint32_t autopoll;
1403 int i;
1404
1405 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1406 return;
1407
1408 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1409 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1410 return;
1411
1412 /* Reading with autopolling on may trigger PCI errors */
1413 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1414 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1415 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1416 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1417 DELAY(80);
1418 }
1419
1420 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1421 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1422
1423 for (i = 0; i < BGE_TIMEOUT; i++) {
1424 delay(10);
1425 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1426 delay(5);
1427 CSR_READ_4(sc, BGE_MI_COMM);
1428 break;
1429 }
1430 }
1431
1432 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1433 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1434 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1435 delay(80);
1436 }
1437
1438 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1439
1440 if (i == BGE_TIMEOUT)
1441 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1442 }
1443
1444 static void
1445 bge_miibus_statchg(struct ifnet *ifp)
1446 {
1447 struct bge_softc *sc = ifp->if_softc;
1448 struct mii_data *mii = &sc->bge_mii;
1449 uint32_t mac_mode, rx_mode, tx_mode;
1450
1451 /*
1452 * Get flow control negotiation result.
1453 */
1454 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1455 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1456 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1457 mii->mii_media_active &= ~IFM_ETH_FMASK;
1458 }
1459
1460 /* Set the port mode (MII/GMII) to match the link speed. */
1461 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1462 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1463 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1464 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1465 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1466 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1467 mac_mode |= BGE_PORTMODE_GMII;
1468 else
1469 mac_mode |= BGE_PORTMODE_MII;
1470
1471 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1472 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1473 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1474 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1475 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1476 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1477 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1478 } else
1479 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1480
1481 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1482 DELAY(40);
1483 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1484 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1485 }
1486
1487 /*
1488 * Update rx threshold levels to values in a particular slot
1489 * of the interrupt-mitigation table bge_rx_threshes.
1490 */
1491 static void
1492 bge_set_thresh(struct ifnet *ifp, int lvl)
1493 {
1494 struct bge_softc *sc = ifp->if_softc;
1495 int s;
1496
1497 /* For now, just save the new Rx-intr thresholds and record
1498 * that a threshold update is pending. Updating the hardware
1499 * registers here (even at splhigh()) is observed to
1500 * occasionaly cause glitches where Rx-interrupts are not
1501 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1502 */
1503 s = splnet();
1504 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1505 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1506 sc->bge_pending_rxintr_change = 1;
1507 splx(s);
1508 }
1509
1510
1511 /*
1512 * Update Rx thresholds of all bge devices
1513 */
1514 static void
1515 bge_update_all_threshes(int lvl)
1516 {
1517 struct ifnet *ifp;
1518 const char * const namebuf = "bge";
1519 int namelen;
1520
1521 if (lvl < 0)
1522 lvl = 0;
1523 else if (lvl >= NBGE_RX_THRESH)
1524 lvl = NBGE_RX_THRESH - 1;
1525
1526 namelen = strlen(namebuf);
1527 /*
1528 * Now search all the interfaces for this name/number
1529 */
1530 IFNET_FOREACH(ifp) {
1531 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1532 continue;
1533 /* We got a match: update if doing auto-threshold-tuning */
1534 if (bge_auto_thresh)
1535 bge_set_thresh(ifp, lvl);
1536 }
1537 }
1538
1539 /*
1540 * Handle events that have triggered interrupts.
1541 */
1542 static void
1543 bge_handle_events(struct bge_softc *sc)
1544 {
1545
1546 return;
1547 }
1548
1549 /*
1550 * Memory management for jumbo frames.
1551 */
1552
1553 static int
1554 bge_alloc_jumbo_mem(struct bge_softc *sc)
1555 {
1556 char *ptr, *kva;
1557 bus_dma_segment_t seg;
1558 int i, rseg, state, error;
1559 struct bge_jpool_entry *entry;
1560
1561 state = error = 0;
1562
1563 /* Grab a big chunk o' storage. */
1564 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1565 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1566 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1567 return ENOBUFS;
1568 }
1569
1570 state = 1;
1571 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1572 BUS_DMA_NOWAIT)) {
1573 aprint_error_dev(sc->bge_dev,
1574 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1575 error = ENOBUFS;
1576 goto out;
1577 }
1578
1579 state = 2;
1580 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1581 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1582 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1583 error = ENOBUFS;
1584 goto out;
1585 }
1586
1587 state = 3;
1588 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1589 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1590 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1591 error = ENOBUFS;
1592 goto out;
1593 }
1594
1595 state = 4;
1596 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1597 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1598
1599 SLIST_INIT(&sc->bge_jfree_listhead);
1600 SLIST_INIT(&sc->bge_jinuse_listhead);
1601
1602 /*
1603 * Now divide it up into 9K pieces and save the addresses
1604 * in an array.
1605 */
1606 ptr = sc->bge_cdata.bge_jumbo_buf;
1607 for (i = 0; i < BGE_JSLOTS; i++) {
1608 sc->bge_cdata.bge_jslots[i] = ptr;
1609 ptr += BGE_JLEN;
1610 entry = malloc(sizeof(struct bge_jpool_entry),
1611 M_DEVBUF, M_NOWAIT);
1612 if (entry == NULL) {
1613 aprint_error_dev(sc->bge_dev,
1614 "no memory for jumbo buffer queue!\n");
1615 error = ENOBUFS;
1616 goto out;
1617 }
1618 entry->slot = i;
1619 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1620 entry, jpool_entries);
1621 }
1622 out:
1623 if (error != 0) {
1624 switch (state) {
1625 case 4:
1626 bus_dmamap_unload(sc->bge_dmatag,
1627 sc->bge_cdata.bge_rx_jumbo_map);
1628 case 3:
1629 bus_dmamap_destroy(sc->bge_dmatag,
1630 sc->bge_cdata.bge_rx_jumbo_map);
1631 case 2:
1632 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1633 case 1:
1634 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1635 break;
1636 default:
1637 break;
1638 }
1639 }
1640
1641 return error;
1642 }
1643
1644 /*
1645 * Allocate a jumbo buffer.
1646 */
1647 static void *
1648 bge_jalloc(struct bge_softc *sc)
1649 {
1650 struct bge_jpool_entry *entry;
1651
1652 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1653
1654 if (entry == NULL) {
1655 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1656 return NULL;
1657 }
1658
1659 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1660 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1661 return (sc->bge_cdata.bge_jslots[entry->slot]);
1662 }
1663
1664 /*
1665 * Release a jumbo buffer.
1666 */
1667 static void
1668 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1669 {
1670 struct bge_jpool_entry *entry;
1671 struct bge_softc *sc;
1672 int i, s;
1673
1674 /* Extract the softc struct pointer. */
1675 sc = (struct bge_softc *)arg;
1676
1677 if (sc == NULL)
1678 panic("bge_jfree: can't find softc pointer!");
1679
1680 /* calculate the slot this buffer belongs to */
1681
1682 i = ((char *)buf
1683 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1684
1685 if ((i < 0) || (i >= BGE_JSLOTS))
1686 panic("bge_jfree: asked to free buffer that we don't manage!");
1687
1688 s = splvm();
1689 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1690 if (entry == NULL)
1691 panic("bge_jfree: buffer not in use!");
1692 entry->slot = i;
1693 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1694 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1695
1696 if (__predict_true(m != NULL))
1697 pool_cache_put(mb_cache, m);
1698 splx(s);
1699 }
1700
1701
1702 /*
1703 * Initialize a standard receive ring descriptor.
1704 */
1705 static int
1706 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1707 bus_dmamap_t dmamap)
1708 {
1709 struct mbuf *m_new = NULL;
1710 struct bge_rx_bd *r;
1711 int error;
1712
1713 if (dmamap == NULL) {
1714 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1715 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1716 if (error != 0)
1717 return error;
1718 }
1719
1720 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1721
1722 if (m == NULL) {
1723 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1724 if (m_new == NULL)
1725 return ENOBUFS;
1726
1727 MCLGET(m_new, M_DONTWAIT);
1728 if (!(m_new->m_flags & M_EXT)) {
1729 m_freem(m_new);
1730 return ENOBUFS;
1731 }
1732 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1733
1734 } else {
1735 m_new = m;
1736 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1737 m_new->m_data = m_new->m_ext.ext_buf;
1738 }
1739 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1740 m_adj(m_new, ETHER_ALIGN);
1741 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1742 BUS_DMA_READ|BUS_DMA_NOWAIT))
1743 return ENOBUFS;
1744 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1745 BUS_DMASYNC_PREREAD);
1746
1747 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1748 r = &sc->bge_rdata->bge_rx_std_ring[i];
1749 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1750 r->bge_flags = BGE_RXBDFLAG_END;
1751 r->bge_len = m_new->m_len;
1752 r->bge_idx = i;
1753
1754 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1755 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1756 i * sizeof (struct bge_rx_bd),
1757 sizeof (struct bge_rx_bd),
1758 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1759
1760 return 0;
1761 }
1762
1763 /*
1764 * Initialize a jumbo receive ring descriptor. This allocates
1765 * a jumbo buffer from the pool managed internally by the driver.
1766 */
1767 static int
1768 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1769 {
1770 struct mbuf *m_new = NULL;
1771 struct bge_rx_bd *r;
1772 void *buf = NULL;
1773
1774 if (m == NULL) {
1775
1776 /* Allocate the mbuf. */
1777 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1778 if (m_new == NULL)
1779 return ENOBUFS;
1780
1781 /* Allocate the jumbo buffer */
1782 buf = bge_jalloc(sc);
1783 if (buf == NULL) {
1784 m_freem(m_new);
1785 aprint_error_dev(sc->bge_dev,
1786 "jumbo allocation failed -- packet dropped!\n");
1787 return ENOBUFS;
1788 }
1789
1790 /* Attach the buffer to the mbuf. */
1791 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1792 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1793 bge_jfree, sc);
1794 m_new->m_flags |= M_EXT_RW;
1795 } else {
1796 m_new = m;
1797 buf = m_new->m_data = m_new->m_ext.ext_buf;
1798 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1799 }
1800 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1801 m_adj(m_new, ETHER_ALIGN);
1802 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1803 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1804 BUS_DMASYNC_PREREAD);
1805 /* Set up the descriptor. */
1806 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1807 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1808 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1809 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1810 r->bge_len = m_new->m_len;
1811 r->bge_idx = i;
1812
1813 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1814 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1815 i * sizeof (struct bge_rx_bd),
1816 sizeof (struct bge_rx_bd),
1817 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1818
1819 return 0;
1820 }
1821
1822 /*
1823 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1824 * that's 1MB or memory, which is a lot. For now, we fill only the first
1825 * 256 ring entries and hope that our CPU is fast enough to keep up with
1826 * the NIC.
1827 */
1828 static int
1829 bge_init_rx_ring_std(struct bge_softc *sc)
1830 {
1831 int i;
1832
1833 if (sc->bge_flags & BGE_RXRING_VALID)
1834 return 0;
1835
1836 for (i = 0; i < BGE_SSLOTS; i++) {
1837 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1838 return ENOBUFS;
1839 }
1840
1841 sc->bge_std = i - 1;
1842 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1843
1844 sc->bge_flags |= BGE_RXRING_VALID;
1845
1846 return 0;
1847 }
1848
1849 static void
1850 bge_free_rx_ring_std(struct bge_softc *sc)
1851 {
1852 int i;
1853
1854 if (!(sc->bge_flags & BGE_RXRING_VALID))
1855 return;
1856
1857 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1858 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1859 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1860 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1861 bus_dmamap_destroy(sc->bge_dmatag,
1862 sc->bge_cdata.bge_rx_std_map[i]);
1863 }
1864 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1865 sizeof(struct bge_rx_bd));
1866 }
1867
1868 sc->bge_flags &= ~BGE_RXRING_VALID;
1869 }
1870
1871 static int
1872 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1873 {
1874 int i;
1875 volatile struct bge_rcb *rcb;
1876
1877 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1878 return 0;
1879
1880 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1881 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1882 return ENOBUFS;
1883 }
1884
1885 sc->bge_jumbo = i - 1;
1886 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1887
1888 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1889 rcb->bge_maxlen_flags = 0;
1890 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1891
1892 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1893
1894 return 0;
1895 }
1896
1897 static void
1898 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1899 {
1900 int i;
1901
1902 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1903 return;
1904
1905 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1906 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1907 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1908 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1909 }
1910 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1911 sizeof(struct bge_rx_bd));
1912 }
1913
1914 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1915 }
1916
1917 static void
1918 bge_free_tx_ring(struct bge_softc *sc)
1919 {
1920 int i;
1921 struct txdmamap_pool_entry *dma;
1922
1923 if (!(sc->bge_flags & BGE_TXRING_VALID))
1924 return;
1925
1926 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1927 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1928 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1929 sc->bge_cdata.bge_tx_chain[i] = NULL;
1930 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1931 link);
1932 sc->txdma[i] = 0;
1933 }
1934 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1935 sizeof(struct bge_tx_bd));
1936 }
1937
1938 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1939 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1940 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1941 free(dma, M_DEVBUF);
1942 }
1943
1944 sc->bge_flags &= ~BGE_TXRING_VALID;
1945 }
1946
1947 static int
1948 bge_init_tx_ring(struct bge_softc *sc)
1949 {
1950 int i;
1951 bus_dmamap_t dmamap;
1952 struct txdmamap_pool_entry *dma;
1953
1954 if (sc->bge_flags & BGE_TXRING_VALID)
1955 return 0;
1956
1957 sc->bge_txcnt = 0;
1958 sc->bge_tx_saved_considx = 0;
1959
1960 /* Initialize transmit producer index for host-memory send ring. */
1961 sc->bge_tx_prodidx = 0;
1962 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1963 /* 5700 b2 errata */
1964 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1965 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1966
1967 /* NIC-memory send ring not used; initialize to zero. */
1968 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1969 /* 5700 b2 errata */
1970 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1971 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1972
1973 SLIST_INIT(&sc->txdma_list);
1974 for (i = 0; i < BGE_RSLOTS; i++) {
1975 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1976 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1977 &dmamap))
1978 return ENOBUFS;
1979 if (dmamap == NULL)
1980 panic("dmamap NULL in bge_init_tx_ring");
1981 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1982 if (dma == NULL) {
1983 aprint_error_dev(sc->bge_dev,
1984 "can't alloc txdmamap_pool_entry\n");
1985 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1986 return ENOMEM;
1987 }
1988 dma->dmamap = dmamap;
1989 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1990 }
1991
1992 sc->bge_flags |= BGE_TXRING_VALID;
1993
1994 return 0;
1995 }
1996
1997 static void
1998 bge_setmulti(struct bge_softc *sc)
1999 {
2000 struct ethercom *ac = &sc->ethercom;
2001 struct ifnet *ifp = &ac->ec_if;
2002 struct ether_multi *enm;
2003 struct ether_multistep step;
2004 uint32_t hashes[4] = { 0, 0, 0, 0 };
2005 uint32_t h;
2006 int i;
2007
2008 if (ifp->if_flags & IFF_PROMISC)
2009 goto allmulti;
2010
2011 /* Now program new ones. */
2012 ETHER_FIRST_MULTI(step, ac, enm);
2013 while (enm != NULL) {
2014 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2015 /*
2016 * We must listen to a range of multicast addresses.
2017 * For now, just accept all multicasts, rather than
2018 * trying to set only those filter bits needed to match
2019 * the range. (At this time, the only use of address
2020 * ranges is for IP multicast routing, for which the
2021 * range is big enough to require all bits set.)
2022 */
2023 goto allmulti;
2024 }
2025
2026 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2027
2028 /* Just want the 7 least-significant bits. */
2029 h &= 0x7f;
2030
2031 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2032 ETHER_NEXT_MULTI(step, enm);
2033 }
2034
2035 ifp->if_flags &= ~IFF_ALLMULTI;
2036 goto setit;
2037
2038 allmulti:
2039 ifp->if_flags |= IFF_ALLMULTI;
2040 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2041
2042 setit:
2043 for (i = 0; i < 4; i++)
2044 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2045 }
2046
2047 static void
2048 bge_sig_pre_reset(struct bge_softc *sc, int type)
2049 {
2050
2051 /*
2052 * Some chips don't like this so only do this if ASF is enabled
2053 */
2054 if (sc->bge_asf_mode)
2055 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2056
2057 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2058 switch (type) {
2059 case BGE_RESET_START:
2060 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2061 BGE_FW_DRV_STATE_START);
2062 break;
2063 case BGE_RESET_SHUTDOWN:
2064 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2065 BGE_FW_DRV_STATE_UNLOAD);
2066 break;
2067 case BGE_RESET_SUSPEND:
2068 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2069 BGE_FW_DRV_STATE_SUSPEND);
2070 break;
2071 }
2072 }
2073
2074 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2075 bge_ape_driver_state_change(sc, type);
2076 }
2077
2078 static void
2079 bge_sig_post_reset(struct bge_softc *sc, int type)
2080 {
2081
2082 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2083 switch (type) {
2084 case BGE_RESET_START:
2085 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2086 BGE_FW_DRV_STATE_START_DONE);
2087 /* START DONE */
2088 break;
2089 case BGE_RESET_SHUTDOWN:
2090 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2091 BGE_FW_DRV_STATE_UNLOAD_DONE);
2092 break;
2093 }
2094 }
2095
2096 if (type == BGE_RESET_SHUTDOWN)
2097 bge_ape_driver_state_change(sc, type);
2098 }
2099
2100 static void
2101 bge_sig_legacy(struct bge_softc *sc, int type)
2102 {
2103
2104 if (sc->bge_asf_mode) {
2105 switch (type) {
2106 case BGE_RESET_START:
2107 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2108 BGE_FW_DRV_STATE_START);
2109 break;
2110 case BGE_RESET_SHUTDOWN:
2111 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2112 BGE_FW_DRV_STATE_UNLOAD);
2113 break;
2114 }
2115 }
2116 }
2117
2118 static void
2119 bge_wait_for_event_ack(struct bge_softc *sc)
2120 {
2121 int i;
2122
2123 /* wait up to 2500usec */
2124 for (i = 0; i < 250; i++) {
2125 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2126 BGE_RX_CPU_DRV_EVENT))
2127 break;
2128 DELAY(10);
2129 }
2130 }
2131
2132 static void
2133 bge_stop_fw(struct bge_softc *sc)
2134 {
2135
2136 if (sc->bge_asf_mode) {
2137 bge_wait_for_event_ack(sc);
2138
2139 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2140 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2141 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2142
2143 bge_wait_for_event_ack(sc);
2144 }
2145 }
2146
2147 static int
2148 bge_poll_fw(struct bge_softc *sc)
2149 {
2150 uint32_t val;
2151 int i;
2152
2153 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2154 for (i = 0; i < BGE_TIMEOUT; i++) {
2155 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2156 if (val & BGE_VCPU_STATUS_INIT_DONE)
2157 break;
2158 DELAY(100);
2159 }
2160 if (i >= BGE_TIMEOUT) {
2161 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2162 return -1;
2163 }
2164 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2165 /*
2166 * Poll the value location we just wrote until
2167 * we see the 1's complement of the magic number.
2168 * This indicates that the firmware initialization
2169 * is complete.
2170 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2171 */
2172 for (i = 0; i < BGE_TIMEOUT; i++) {
2173 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2174 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2175 break;
2176 DELAY(10);
2177 }
2178
2179 if (i >= BGE_TIMEOUT) {
2180 aprint_error_dev(sc->bge_dev,
2181 "firmware handshake timed out, val = %x\n", val);
2182 return -1;
2183 }
2184 }
2185
2186 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2187 /* tg3 says we have to wait extra time */
2188 delay(10 * 1000);
2189 }
2190
2191 return 0;
2192 }
2193
2194 int
2195 bge_phy_addr(struct bge_softc *sc)
2196 {
2197 struct pci_attach_args *pa = &(sc->bge_pa);
2198 int phy_addr = 1;
2199
2200 /*
2201 * PHY address mapping for various devices.
2202 *
2203 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2204 * ---------+-------+-------+-------+-------+
2205 * BCM57XX | 1 | X | X | X |
2206 * BCM5704 | 1 | X | 1 | X |
2207 * BCM5717 | 1 | 8 | 2 | 9 |
2208 * BCM5719 | 1 | 8 | 2 | 9 |
2209 * BCM5720 | 1 | 8 | 2 | 9 |
2210 *
2211 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2212 * ---------+-------+-------+-------+-------+
2213 * BCM57XX | X | X | X | X |
2214 * BCM5704 | X | X | X | X |
2215 * BCM5717 | X | X | X | X |
2216 * BCM5719 | 3 | 10 | 4 | 11 |
2217 * BCM5720 | X | X | X | X |
2218 *
2219 * Other addresses may respond but they are not
2220 * IEEE compliant PHYs and should be ignored.
2221 */
2222 switch (BGE_ASICREV(sc->bge_chipid)) {
2223 case BGE_ASICREV_BCM5717:
2224 case BGE_ASICREV_BCM5719:
2225 case BGE_ASICREV_BCM5720:
2226 phy_addr = pa->pa_function;
2227 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2228 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2229 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2230 } else {
2231 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2232 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2233 }
2234 }
2235
2236 return phy_addr;
2237 }
2238
2239 /*
2240 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2241 * self-test results.
2242 */
2243 static int
2244 bge_chipinit(struct bge_softc *sc)
2245 {
2246 uint32_t dma_rw_ctl, mode_ctl, reg;
2247 int i;
2248
2249 /* Set endianness before we access any non-PCI registers. */
2250 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2251 BGE_INIT);
2252
2253 /*
2254 * Clear the MAC statistics block in the NIC's
2255 * internal memory.
2256 */
2257 for (i = BGE_STATS_BLOCK;
2258 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2259 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2260
2261 for (i = BGE_STATUS_BLOCK;
2262 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2263 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2264
2265 /* 5717 workaround from tg3 */
2266 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2267 /* Save */
2268 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2269
2270 /* Temporary modify MODE_CTL to control TLP */
2271 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2272 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2273
2274 /* Control TLP */
2275 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2276 BGE_TLP_PHYCTL1);
2277 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2278 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2279
2280 /* Restore */
2281 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2282 }
2283
2284 /* XXX Should we use 57765_FAMILY? */
2285 if (BGE_IS_57765_PLUS(sc)) {
2286 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2287 /* Save */
2288 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2289
2290 /* Temporary modify MODE_CTL to control TLP */
2291 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2292 CSR_WRITE_4(sc, BGE_MODE_CTL,
2293 reg | BGE_MODECTL_PCIE_TLPADDR1);
2294
2295 /* Control TLP */
2296 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2297 BGE_TLP_PHYCTL5);
2298 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2299 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2300
2301 /* Restore */
2302 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2303 }
2304 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2305 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2306 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2307 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2308
2309 /* Save */
2310 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2311
2312 /* Temporary modify MODE_CTL to control TLP */
2313 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2314 CSR_WRITE_4(sc, BGE_MODE_CTL,
2315 reg | BGE_MODECTL_PCIE_TLPADDR0);
2316
2317 /* Control TLP */
2318 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2319 BGE_TLP_FTSMAX);
2320 reg &= ~BGE_TLP_FTSMAX_MSK;
2321 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2322 reg | BGE_TLP_FTSMAX_VAL);
2323
2324 /* Restore */
2325 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2326 }
2327
2328 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2329 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2330 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2331 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2332 }
2333
2334 /* Set up the PCI DMA control register. */
2335 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2336 if (sc->bge_flags & BGE_PCIE) {
2337 /* Read watermark not used, 128 bytes for write. */
2338 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2339 device_xname(sc->bge_dev)));
2340 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2341 } else if (sc->bge_flags & BGE_PCIX) {
2342 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2343 device_xname(sc->bge_dev)));
2344 /* PCI-X bus */
2345 if (BGE_IS_5714_FAMILY(sc)) {
2346 /* 256 bytes for read and write. */
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2348 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2349
2350 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2351 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2352 else
2353 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2354 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2355 /* 1536 bytes for read, 384 bytes for write. */
2356 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2357 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 } else {
2359 /* 384 bytes for read and write. */
2360 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2361 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2362 (0x0F);
2363 }
2364
2365 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2366 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2367 uint32_t tmp;
2368
2369 /* Set ONEDMA_ATONCE for hardware workaround. */
2370 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2371 if (tmp == 6 || tmp == 7)
2372 dma_rw_ctl |=
2373 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2374
2375 /* Set PCI-X DMA write workaround. */
2376 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2377 }
2378 } else {
2379 /* Conventional PCI bus: 256 bytes for read and write. */
2380 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2381 device_xname(sc->bge_dev)));
2382 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2383 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2384
2385 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2386 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2387 dma_rw_ctl |= 0x0F;
2388 }
2389
2390 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2391 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2392 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2393 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2394
2395 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2396 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2397 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2398
2399 if (BGE_IS_5717_PLUS(sc)) {
2400 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2401 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2402 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2403
2404 /*
2405 * Enable HW workaround for controllers that misinterpret
2406 * a status tag update and leave interrupts permanently
2407 * disabled.
2408 */
2409 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2410 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2411 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2412 }
2413
2414 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2415 dma_rw_ctl);
2416
2417 /*
2418 * Set up general mode register.
2419 */
2420 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2421 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2422 /* Retain Host-2-BMC settings written by APE firmware. */
2423 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2424 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2425 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2426 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2427 }
2428 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2429 BGE_MODECTL_TX_NO_PHDR_CSUM;
2430
2431 /*
2432 * BCM5701 B5 have a bug causing data corruption when using
2433 * 64-bit DMA reads, which can be terminated early and then
2434 * completed later as 32-bit accesses, in combination with
2435 * certain bridges.
2436 */
2437 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2438 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2439 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2440
2441 /*
2442 * Tell the firmware the driver is running
2443 */
2444 if (sc->bge_asf_mode & ASF_STACKUP)
2445 mode_ctl |= BGE_MODECTL_STACKUP;
2446
2447 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2448
2449 /*
2450 * Disable memory write invalidate. Apparently it is not supported
2451 * properly by these devices.
2452 */
2453 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2454 PCI_COMMAND_INVALIDATE_ENABLE);
2455
2456 #ifdef __brokenalpha__
2457 /*
2458 * Must insure that we do not cross an 8K (bytes) boundary
2459 * for DMA reads. Our highest limit is 1K bytes. This is a
2460 * restriction on some ALPHA platforms with early revision
2461 * 21174 PCI chipsets, such as the AlphaPC 164lx
2462 */
2463 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2464 #endif
2465
2466 /* Set the timer prescaler (always 66MHz) */
2467 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2468
2469 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2470 DELAY(40); /* XXX */
2471
2472 /* Put PHY into ready state */
2473 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2474 DELAY(40);
2475 }
2476
2477 return 0;
2478 }
2479
2480 static int
2481 bge_blockinit(struct bge_softc *sc)
2482 {
2483 volatile struct bge_rcb *rcb;
2484 bus_size_t rcb_addr;
2485 struct ifnet *ifp = &sc->ethercom.ec_if;
2486 bge_hostaddr taddr;
2487 uint32_t dmactl, val;
2488 int i, limit;
2489
2490 /*
2491 * Initialize the memory window pointer register so that
2492 * we can access the first 32K of internal NIC RAM. This will
2493 * allow us to set up the TX send ring RCBs and the RX return
2494 * ring RCBs, plus other things which live in NIC memory.
2495 */
2496 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2497
2498 /* Step 33: Configure mbuf memory pool */
2499 if (!BGE_IS_5705_PLUS(sc)) {
2500 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2501 BGE_BUFFPOOL_1);
2502
2503 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2504 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2505 else
2506 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2507
2508 /* Configure DMA resource pool */
2509 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2510 BGE_DMA_DESCRIPTORS);
2511 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2512 }
2513
2514 /* Step 35: Configure mbuf pool watermarks */
2515 /* new broadcom docs strongly recommend these: */
2516 if (BGE_IS_5717_PLUS(sc)) {
2517 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2519 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2520 } else if (BGE_IS_5705_PLUS(sc)) {
2521 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2522
2523 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2525 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2526 } else {
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2529 }
2530 } else {
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2532 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2534 }
2535
2536 /* Step 36: Configure DMA resource watermarks */
2537 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2538 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2539
2540 /* Step 38: Enable buffer manager */
2541 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2542 /*
2543 * Change the arbitration algorithm of TXMBUF read request to
2544 * round-robin instead of priority based for BCM5719. When
2545 * TXFIFO is almost empty, RDMA will hold its request until
2546 * TXFIFO is not almost empty.
2547 */
2548 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2549 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2550 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2551 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2552 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2553 val |= BGE_BMANMODE_LOMBUF_ATTN;
2554 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2555
2556 /* Step 39: Poll for buffer manager start indication */
2557 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2558 DELAY(10);
2559 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2560 break;
2561 }
2562
2563 if (i == BGE_TIMEOUT * 2) {
2564 aprint_error_dev(sc->bge_dev,
2565 "buffer manager failed to start\n");
2566 return ENXIO;
2567 }
2568
2569 /* Step 40: Enable flow-through queues */
2570 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2571 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2572
2573 /* Wait until queue initialization is complete */
2574 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2575 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2576 break;
2577 DELAY(10);
2578 }
2579
2580 if (i == BGE_TIMEOUT * 2) {
2581 aprint_error_dev(sc->bge_dev,
2582 "flow-through queue init failed\n");
2583 return ENXIO;
2584 }
2585
2586 /*
2587 * Summary of rings supported by the controller:
2588 *
2589 * Standard Receive Producer Ring
2590 * - This ring is used to feed receive buffers for "standard"
2591 * sized frames (typically 1536 bytes) to the controller.
2592 *
2593 * Jumbo Receive Producer Ring
2594 * - This ring is used to feed receive buffers for jumbo sized
2595 * frames (i.e. anything bigger than the "standard" frames)
2596 * to the controller.
2597 *
2598 * Mini Receive Producer Ring
2599 * - This ring is used to feed receive buffers for "mini"
2600 * sized frames to the controller.
2601 * - This feature required external memory for the controller
2602 * but was never used in a production system. Should always
2603 * be disabled.
2604 *
2605 * Receive Return Ring
2606 * - After the controller has placed an incoming frame into a
2607 * receive buffer that buffer is moved into a receive return
2608 * ring. The driver is then responsible to passing the
2609 * buffer up to the stack. Many versions of the controller
2610 * support multiple RR rings.
2611 *
2612 * Send Ring
2613 * - This ring is used for outgoing frames. Many versions of
2614 * the controller support multiple send rings.
2615 */
2616
2617 /* Step 41: Initialize the standard RX ring control block */
2618 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2619 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2620 if (BGE_IS_5717_PLUS(sc)) {
2621 /*
2622 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2623 * Bits 15-2 : Maximum RX frame size
2624 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2625 * Bit 0 : Reserved
2626 */
2627 rcb->bge_maxlen_flags =
2628 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2629 } else if (BGE_IS_5705_PLUS(sc)) {
2630 /*
2631 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2632 * Bits 15-2 : Reserved (should be 0)
2633 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2634 * Bit 0 : Reserved
2635 */
2636 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2637 } else {
2638 /*
2639 * Ring size is always XXX entries
2640 * Bits 31-16: Maximum RX frame size
2641 * Bits 15-2 : Reserved (should be 0)
2642 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2643 * Bit 0 : Reserved
2644 */
2645 rcb->bge_maxlen_flags =
2646 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2647 }
2648 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2649 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2650 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2651 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2652 else
2653 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2654 /* Write the standard receive producer ring control block. */
2655 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2656 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2657 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2658 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2659
2660 /* Reset the standard receive producer ring producer index. */
2661 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2662
2663 /*
2664 * Step 42: Initialize the jumbo RX ring control block
2665 * We set the 'ring disabled' bit in the flags
2666 * field until we're actually ready to start
2667 * using this ring (i.e. once we set the MTU
2668 * high enough to require it).
2669 */
2670 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2671 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2672 BGE_HOSTADDR(rcb->bge_hostaddr,
2673 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2674 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2675 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2679 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2680 else
2681 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2682 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2683 rcb->bge_hostaddr.bge_addr_hi);
2684 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2685 rcb->bge_hostaddr.bge_addr_lo);
2686 /* Program the jumbo receive producer ring RCB parameters. */
2687 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2688 rcb->bge_maxlen_flags);
2689 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2690 /* Reset the jumbo receive producer ring producer index. */
2691 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2692 }
2693
2694 /* Disable the mini receive producer ring RCB. */
2695 if (BGE_IS_5700_FAMILY(sc)) {
2696 /* Set up dummy disabled mini ring RCB */
2697 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2698 rcb->bge_maxlen_flags =
2699 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2700 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2701 rcb->bge_maxlen_flags);
2702 /* Reset the mini receive producer ring producer index. */
2703 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2704
2705 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2706 offsetof(struct bge_ring_data, bge_info),
2707 sizeof (struct bge_gib),
2708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2709 }
2710
2711 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2712 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2713 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2714 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2715 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2716 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2717 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2718 }
2719 /*
2720 * The BD ring replenish thresholds control how often the
2721 * hardware fetches new BD's from the producer rings in host
2722 * memory. Setting the value too low on a busy system can
2723 * starve the hardware and recue the throughpout.
2724 *
2725 * Set the BD ring replenish thresholds. The recommended
2726 * values are 1/8th the number of descriptors allocated to
2727 * each ring, but since we try to avoid filling the entire
2728 * ring we set these to the minimal value of 8. This needs to
2729 * be done on several of the supported chip revisions anyway,
2730 * to work around HW bugs.
2731 */
2732 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2733 if (BGE_IS_JUMBO_CAPABLE(sc))
2734 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2735
2736 if (BGE_IS_5717_PLUS(sc)) {
2737 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2738 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2739 }
2740
2741 /*
2742 * Disable all send rings by setting the 'ring disabled' bit
2743 * in the flags field of all the TX send ring control blocks,
2744 * located in NIC memory.
2745 */
2746 if (BGE_IS_5700_FAMILY(sc)) {
2747 /* 5700 to 5704 had 16 send rings. */
2748 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2749 } else
2750 limit = 1;
2751 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2752 for (i = 0; i < limit; i++) {
2753 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2754 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2755 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2756 rcb_addr += sizeof(struct bge_rcb);
2757 }
2758
2759 /* Configure send ring RCB 0 (we use only the first ring) */
2760 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2761 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2762 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2763 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2764 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2765 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2766 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2767 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2768 else
2769 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2770 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2771 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2772 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2773
2774 /*
2775 * Disable all receive return rings by setting the
2776 * 'ring diabled' bit in the flags field of all the receive
2777 * return ring control blocks, located in NIC memory.
2778 */
2779 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2780 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2781 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2782 /* Should be 17, use 16 until we get an SRAM map. */
2783 limit = 16;
2784 } else if (BGE_IS_5700_FAMILY(sc))
2785 limit = BGE_RX_RINGS_MAX;
2786 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2787 BGE_IS_57765_PLUS(sc))
2788 limit = 4;
2789 else
2790 limit = 1;
2791 /* Disable all receive return rings */
2792 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2793 for (i = 0; i < limit; i++) {
2794 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2795 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2796 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2797 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2798 BGE_RCB_FLAG_RING_DISABLED));
2799 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2800 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2801 (i * (sizeof(uint64_t))), 0);
2802 rcb_addr += sizeof(struct bge_rcb);
2803 }
2804
2805 /*
2806 * Set up receive return ring 0. Note that the NIC address
2807 * for RX return rings is 0x0. The return rings live entirely
2808 * within the host, so the nicaddr field in the RCB isn't used.
2809 */
2810 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2811 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2812 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2813 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2814 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2815 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2816 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2817
2818 /* Set random backoff seed for TX */
2819 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2820 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2821 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2822 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2823 BGE_TX_BACKOFF_SEED_MASK);
2824
2825 /* Set inter-packet gap */
2826 val = 0x2620;
2827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2828 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2829 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2830 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2831
2832 /*
2833 * Specify which ring to use for packets that don't match
2834 * any RX rules.
2835 */
2836 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2837
2838 /*
2839 * Configure number of RX lists. One interrupt distribution
2840 * list, sixteen active lists, one bad frames class.
2841 */
2842 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2843
2844 /* Inialize RX list placement stats mask. */
2845 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2846 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2847
2848 /* Disable host coalescing until we get it set up */
2849 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2850
2851 /* Poll to make sure it's shut down. */
2852 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2853 DELAY(10);
2854 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2855 break;
2856 }
2857
2858 if (i == BGE_TIMEOUT * 2) {
2859 aprint_error_dev(sc->bge_dev,
2860 "host coalescing engine failed to idle\n");
2861 return ENXIO;
2862 }
2863
2864 /* Set up host coalescing defaults */
2865 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2866 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2867 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2868 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2869 if (!(BGE_IS_5705_PLUS(sc))) {
2870 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2871 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2872 }
2873 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2874 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2875
2876 /* Set up address of statistics block */
2877 if (BGE_IS_5700_FAMILY(sc)) {
2878 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2879 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2880 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2881 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2882 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2883 }
2884
2885 /* Set up address of status block */
2886 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2887 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2888 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2889 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2890 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2891 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2892
2893 /* Set up status block size. */
2894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2895 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2896 val = BGE_STATBLKSZ_FULL;
2897 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2898 } else {
2899 val = BGE_STATBLKSZ_32BYTE;
2900 bzero(&sc->bge_rdata->bge_status_block, 32);
2901 }
2902
2903 /* Turn on host coalescing state machine */
2904 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2905
2906 /* Turn on RX BD completion state machine and enable attentions */
2907 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2908 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2909
2910 /* Turn on RX list placement state machine */
2911 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2912
2913 /* Turn on RX list selector state machine. */
2914 if (!(BGE_IS_5705_PLUS(sc)))
2915 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2916
2917 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2918 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2919 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2920 BGE_MACMODE_FRMHDR_DMA_ENB;
2921
2922 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2923 val |= BGE_PORTMODE_TBI;
2924 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2925 val |= BGE_PORTMODE_GMII;
2926 else
2927 val |= BGE_PORTMODE_MII;
2928
2929 /* Allow APE to send/receive frames. */
2930 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2931 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2932
2933 /* Turn on DMA, clear stats */
2934 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2935 DELAY(40);
2936
2937 /* Set misc. local control, enable interrupts on attentions */
2938 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2939 if (BGE_IS_5717_PLUS(sc)) {
2940 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2941 DELAY(100);
2942 }
2943
2944 /* Turn on DMA completion state machine */
2945 if (!(BGE_IS_5705_PLUS(sc)))
2946 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2947
2948 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2949
2950 /* Enable host coalescing bug fix. */
2951 if (BGE_IS_5755_PLUS(sc))
2952 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2953
2954 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2955 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2956
2957 /* Turn on write DMA state machine */
2958 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2959 DELAY(40);
2960
2961 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2962
2963 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2964 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2965
2966 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2967 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2968 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2969 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2970 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2971 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2972
2973 if (sc->bge_flags & BGE_PCIE)
2974 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2975 if (sc->bge_flags & BGE_TSO)
2976 val |= BGE_RDMAMODE_TSO4_ENABLE;
2977
2978 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2979 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2980 BGE_RDMAMODE_H2BNC_VLAN_DET;
2981 /*
2982 * Allow multiple outstanding read requests from
2983 * non-LSO read DMA engine.
2984 */
2985 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2986 }
2987
2988 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2989 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2990 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2991 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2992 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2993 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2994 /*
2995 * Adjust tx margin to prevent TX data corruption and
2996 * fix internal FIFO overflow.
2997 */
2998 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2999 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3000 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3001 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3002 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3003 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3004 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3005 }
3006 /*
3007 * Enable fix for read DMA FIFO overruns.
3008 * The fix is to limit the number of RX BDs
3009 * the hardware would fetch at a fime.
3010 */
3011 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3012 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3013 }
3014
3015 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3016 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3017 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3018 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3019 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3020 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3021 /*
3022 * Allow 4KB burst length reads for non-LSO frames.
3023 * Enable 512B burst length reads for buffer descriptors.
3024 */
3025 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3026 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3027 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3028 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3029 }
3030
3031 /* Turn on read DMA state machine */
3032 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3033 delay(40);
3034
3035 /* Turn on RX data completion state machine */
3036 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3037
3038 /* Turn on RX data and RX BD initiator state machine */
3039 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3040
3041 /* Turn on Mbuf cluster free state machine */
3042 if (!BGE_IS_5705_PLUS(sc))
3043 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3044
3045 /* Turn on send data completion state machine */
3046 val = BGE_SDCMODE_ENABLE;
3047 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3048 val |= BGE_SDCMODE_CDELAY;
3049 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3050
3051 /* Turn on send BD completion state machine */
3052 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3053
3054 /* Turn on RX BD initiator state machine */
3055 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3056
3057 /* Turn on send data initiator state machine */
3058 if (sc->bge_flags & BGE_TSO) {
3059 /* XXX: magic value from Linux driver */
3060 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3061 BGE_SDIMODE_HW_LSO_PRE_DMA);
3062 } else
3063 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3064
3065 /* Turn on send BD initiator state machine */
3066 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3067
3068 /* Turn on send BD selector state machine */
3069 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3070
3071 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3072 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3073 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3074
3075 /* ack/clear link change events */
3076 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3077 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3078 BGE_MACSTAT_LINK_CHANGED);
3079 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3080
3081 /*
3082 * Enable attention when the link has changed state for
3083 * devices that use auto polling.
3084 */
3085 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3086 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3087 } else {
3088 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3089 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3090 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3091 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3092 BGE_EVTENB_MI_INTERRUPT);
3093 }
3094
3095 /*
3096 * Clear any pending link state attention.
3097 * Otherwise some link state change events may be lost until attention
3098 * is cleared by bge_intr() -> bge_link_upd() sequence.
3099 * It's not necessary on newer BCM chips - perhaps enabling link
3100 * state change attentions implies clearing pending attention.
3101 */
3102 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3103 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3104 BGE_MACSTAT_LINK_CHANGED);
3105
3106 /* Enable link state change attentions. */
3107 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3108
3109 return 0;
3110 }
3111
3112 static const struct bge_revision *
3113 bge_lookup_rev(uint32_t chipid)
3114 {
3115 const struct bge_revision *br;
3116
3117 for (br = bge_revisions; br->br_name != NULL; br++) {
3118 if (br->br_chipid == chipid)
3119 return br;
3120 }
3121
3122 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3123 if (br->br_chipid == BGE_ASICREV(chipid))
3124 return br;
3125 }
3126
3127 return NULL;
3128 }
3129
3130 static const struct bge_product *
3131 bge_lookup(const struct pci_attach_args *pa)
3132 {
3133 const struct bge_product *bp;
3134
3135 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3136 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3137 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3138 return bp;
3139 }
3140
3141 return NULL;
3142 }
3143
3144 static uint32_t
3145 bge_chipid(const struct pci_attach_args *pa)
3146 {
3147 uint32_t id;
3148
3149 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3150 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3151
3152 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3153 switch (PCI_PRODUCT(pa->pa_id)) {
3154 case PCI_PRODUCT_BROADCOM_BCM5717:
3155 case PCI_PRODUCT_BROADCOM_BCM5718:
3156 case PCI_PRODUCT_BROADCOM_BCM5719:
3157 case PCI_PRODUCT_BROADCOM_BCM5720:
3158 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3159 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3160 BGE_PCI_GEN2_PRODID_ASICREV);
3161 break;
3162 case PCI_PRODUCT_BROADCOM_BCM57761:
3163 case PCI_PRODUCT_BROADCOM_BCM57762:
3164 case PCI_PRODUCT_BROADCOM_BCM57765:
3165 case PCI_PRODUCT_BROADCOM_BCM57766:
3166 case PCI_PRODUCT_BROADCOM_BCM57781:
3167 case PCI_PRODUCT_BROADCOM_BCM57785:
3168 case PCI_PRODUCT_BROADCOM_BCM57791:
3169 case PCI_PRODUCT_BROADCOM_BCM57795:
3170 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3171 BGE_PCI_GEN15_PRODID_ASICREV);
3172 break;
3173 default:
3174 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3175 BGE_PCI_PRODID_ASICREV);
3176 break;
3177 }
3178 }
3179
3180 return id;
3181 }
3182
3183 /*
3184 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3185 * against our list and return its name if we find a match. Note
3186 * that since the Broadcom controller contains VPD support, we
3187 * can get the device name string from the controller itself instead
3188 * of the compiled-in string. This is a little slow, but it guarantees
3189 * we'll always announce the right product name.
3190 */
3191 static int
3192 bge_probe(device_t parent, cfdata_t match, void *aux)
3193 {
3194 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3195
3196 if (bge_lookup(pa) != NULL)
3197 return 1;
3198
3199 return 0;
3200 }
3201
3202 static void
3203 bge_attach(device_t parent, device_t self, void *aux)
3204 {
3205 struct bge_softc *sc = device_private(self);
3206 struct pci_attach_args *pa = aux;
3207 prop_dictionary_t dict;
3208 const struct bge_product *bp;
3209 const struct bge_revision *br;
3210 pci_chipset_tag_t pc;
3211 pci_intr_handle_t ih;
3212 const char *intrstr = NULL;
3213 uint32_t hwcfg = 0;
3214 uint32_t command;
3215 struct ifnet *ifp;
3216 uint32_t misccfg;
3217 void * kva;
3218 u_char eaddr[ETHER_ADDR_LEN];
3219 pcireg_t memtype, subid, reg;
3220 bus_addr_t memaddr;
3221 uint32_t pm_ctl;
3222 bool no_seeprom;
3223 int capmask;
3224
3225 bp = bge_lookup(pa);
3226 KASSERT(bp != NULL);
3227
3228 sc->sc_pc = pa->pa_pc;
3229 sc->sc_pcitag = pa->pa_tag;
3230 sc->bge_dev = self;
3231
3232 sc->bge_pa = *pa;
3233 pc = sc->sc_pc;
3234 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3235
3236 aprint_naive(": Ethernet controller\n");
3237 aprint_normal(": %s\n", bp->bp_name);
3238
3239 /*
3240 * Map control/status registers.
3241 */
3242 DPRINTFN(5, ("Map control/status regs\n"));
3243 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3244 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3245 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3246 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3247
3248 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3249 aprint_error_dev(sc->bge_dev,
3250 "failed to enable memory mapping!\n");
3251 return;
3252 }
3253
3254 DPRINTFN(5, ("pci_mem_find\n"));
3255 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3256 switch (memtype) {
3257 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3258 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3259 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3260 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3261 &memaddr, &sc->bge_bsize) == 0)
3262 break;
3263 default:
3264 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3265 return;
3266 }
3267
3268 DPRINTFN(5, ("pci_intr_map\n"));
3269 if (pci_intr_map(pa, &ih)) {
3270 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3271 return;
3272 }
3273
3274 DPRINTFN(5, ("pci_intr_string\n"));
3275 intrstr = pci_intr_string(pc, ih);
3276
3277 DPRINTFN(5, ("pci_intr_establish\n"));
3278 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3279
3280 if (sc->bge_intrhand == NULL) {
3281 aprint_error_dev(sc->bge_dev,
3282 "couldn't establish interrupt%s%s\n",
3283 intrstr ? " at " : "", intrstr ? intrstr : "");
3284 return;
3285 }
3286 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3287
3288 /* Save various chip information. */
3289 sc->bge_chipid = bge_chipid(pa);
3290 sc->bge_phy_addr = bge_phy_addr(sc);
3291
3292 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3293 &sc->bge_pciecap, NULL) != 0)
3294 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3295 /* PCIe */
3296 sc->bge_flags |= BGE_PCIE;
3297 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3298 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3299 sc->bge_expmrq = 2048;
3300 else
3301 sc->bge_expmrq = 4096;
3302 bge_set_max_readrq(sc);
3303 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3304 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3305 /* PCI-X */
3306 sc->bge_flags |= BGE_PCIX;
3307 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3308 &sc->bge_pcixcap, NULL) == 0)
3309 aprint_error_dev(sc->bge_dev,
3310 "unable to find PCIX capability\n");
3311 }
3312
3313 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3314 /*
3315 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3316 * can clobber the chip's PCI config-space power control
3317 * registers, leaving the card in D3 powersave state. We do
3318 * not have memory-mapped registers in this state, so force
3319 * device into D0 state before starting initialization.
3320 */
3321 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3322 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3323 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3324 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3325 DELAY(1000); /* 27 usec is allegedly sufficent */
3326 }
3327
3328 /* Save chipset family. */
3329 switch (BGE_ASICREV(sc->bge_chipid)) {
3330 case BGE_ASICREV_BCM57765:
3331 case BGE_ASICREV_BCM57766:
3332 sc->bge_flags |= BGE_57765_PLUS;
3333 /* FALLTHROUGH */
3334 case BGE_ASICREV_BCM5717:
3335 case BGE_ASICREV_BCM5719:
3336 case BGE_ASICREV_BCM5720:
3337 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3338 BGE_5705_PLUS;
3339 break;
3340 case BGE_ASICREV_BCM5755:
3341 case BGE_ASICREV_BCM5761:
3342 case BGE_ASICREV_BCM5784:
3343 case BGE_ASICREV_BCM5785:
3344 case BGE_ASICREV_BCM5787:
3345 case BGE_ASICREV_BCM57780:
3346 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3347 break;
3348 case BGE_ASICREV_BCM5700:
3349 case BGE_ASICREV_BCM5701:
3350 case BGE_ASICREV_BCM5703:
3351 case BGE_ASICREV_BCM5704:
3352 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3353 break;
3354 case BGE_ASICREV_BCM5714_A0:
3355 case BGE_ASICREV_BCM5780:
3356 case BGE_ASICREV_BCM5714:
3357 sc->bge_flags |= BGE_5714_FAMILY;
3358 /* FALLTHROUGH */
3359 case BGE_ASICREV_BCM5750:
3360 case BGE_ASICREV_BCM5752:
3361 case BGE_ASICREV_BCM5906:
3362 sc->bge_flags |= BGE_575X_PLUS;
3363 /* FALLTHROUGH */
3364 case BGE_ASICREV_BCM5705:
3365 sc->bge_flags |= BGE_5705_PLUS;
3366 break;
3367 }
3368
3369 /* Identify chips with APE processor. */
3370 switch (BGE_ASICREV(sc->bge_chipid)) {
3371 case BGE_ASICREV_BCM5717:
3372 case BGE_ASICREV_BCM5719:
3373 case BGE_ASICREV_BCM5720:
3374 case BGE_ASICREV_BCM5761:
3375 sc->bge_flags |= BGE_APE;
3376 break;
3377 }
3378
3379 /* Chips with APE need BAR2 access for APE registers/memory. */
3380 if ((sc->bge_flags & BGE_APE) != 0) {
3381 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3382 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3383 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3384 &sc->bge_apesize)) {
3385 aprint_error_dev(sc->bge_dev,
3386 "couldn't map BAR2 memory\n");
3387 return;
3388 }
3389
3390 /* Enable APE register/memory access by host driver. */
3391 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3392 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3393 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3394 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3395 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3396
3397 bge_ape_lock_init(sc);
3398 bge_ape_read_fw_ver(sc);
3399 }
3400
3401 /* Identify the chips that use an CPMU. */
3402 if (BGE_IS_5717_PLUS(sc) ||
3403 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3404 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3405 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3406 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3407 sc->bge_flags |= BGE_CPMU_PRESENT;
3408
3409 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3410 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3411 else
3412 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3413
3414 /*
3415 * When using the BCM5701 in PCI-X mode, data corruption has
3416 * been observed in the first few bytes of some received packets.
3417 * Aligning the packet buffer in memory eliminates the corruption.
3418 * Unfortunately, this misaligns the packet payloads. On platforms
3419 * which do not support unaligned accesses, we will realign the
3420 * payloads by copying the received packets.
3421 */
3422 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3423 sc->bge_flags & BGE_PCIX)
3424 sc->bge_flags |= BGE_RX_ALIGNBUG;
3425
3426 if (BGE_IS_5700_FAMILY(sc))
3427 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3428
3429 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3430 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3431
3432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3433 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3434 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3435 sc->bge_flags |= BGE_IS_5788;
3436
3437 /*
3438 * Some controllers seem to require a special firmware to use
3439 * TSO. But the firmware is not available to FreeBSD and Linux
3440 * claims that the TSO performed by the firmware is slower than
3441 * hardware based TSO. Moreover the firmware based TSO has one
3442 * known bug which can't handle TSO if ethernet header + IP/TCP
3443 * header is greater than 80 bytes. The workaround for the TSO
3444 * bug exist but it seems it's too expensive than not using
3445 * TSO at all. Some hardwares also have the TSO bug so limit
3446 * the TSO to the controllers that are not affected TSO issues
3447 * (e.g. 5755 or higher).
3448 */
3449 if (BGE_IS_5755_PLUS(sc)) {
3450 /*
3451 * BCM5754 and BCM5787 shares the same ASIC id so
3452 * explicit device id check is required.
3453 */
3454 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3455 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3456 sc->bge_flags |= BGE_TSO;
3457 }
3458
3459 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3460 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3461 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3462 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3463 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3464 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3465 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3466 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3467 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3468 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3469 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3470 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3471 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3472 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3473 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3474 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3475 capmask &= ~BMSR_EXTSTAT;
3476 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3477 }
3478
3479 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3480 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3481 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3482 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3483 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3484
3485 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3486 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
3487 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
3488 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 &&
3489 sc->bge_chipid != BGE_CHIPID_BCM5717_A0) ||
3490 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 &&
3491 sc->bge_chipid != BGE_CHIPID_BCM57765_A0))
3492 sc->bge_flags |= BGE_PHY_EEE;
3493
3494 /* Set various PHY bug flags. */
3495 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3496 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3497 sc->bge_flags |= BGE_PHY_CRC_BUG;
3498 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3499 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3500 sc->bge_flags |= BGE_PHY_ADC_BUG;
3501 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3502 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3503 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3504 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3505 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3506 sc->bge_flags |= BGE_PHY_NO_3LED;
3507 if (BGE_IS_5705_PLUS(sc) &&
3508 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3509 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3510 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3511 !BGE_IS_5717_PLUS(sc)) {
3512 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3513 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3514 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3515 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3516 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3517 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3518 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3519 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3520 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3521 } else
3522 sc->bge_flags |= BGE_PHY_BER_BUG;
3523 }
3524
3525 /*
3526 * SEEPROM check.
3527 * First check if firmware knows we do not have SEEPROM.
3528 */
3529 if (prop_dictionary_get_bool(device_properties(self),
3530 "without-seeprom", &no_seeprom) && no_seeprom)
3531 sc->bge_flags |= BGE_NO_EEPROM;
3532
3533 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3534 sc->bge_flags |= BGE_NO_EEPROM;
3535
3536 /* Now check the 'ROM failed' bit on the RX CPU */
3537 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3538 sc->bge_flags |= BGE_NO_EEPROM;
3539
3540 sc->bge_asf_mode = 0;
3541 /* No ASF if APE present. */
3542 if ((sc->bge_flags & BGE_APE) == 0) {
3543 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3544 BGE_SRAM_DATA_SIG_MAGIC)) {
3545 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3546 BGE_HWCFG_ASF) {
3547 sc->bge_asf_mode |= ASF_ENABLE;
3548 sc->bge_asf_mode |= ASF_STACKUP;
3549 if (BGE_IS_575X_PLUS(sc))
3550 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3551 }
3552 }
3553 }
3554
3555 bge_stop_fw(sc);
3556 bge_sig_pre_reset(sc, BGE_RESET_START);
3557 if (bge_reset(sc))
3558 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3559
3560 bge_sig_legacy(sc, BGE_RESET_START);
3561 bge_sig_post_reset(sc, BGE_RESET_START);
3562
3563 if (bge_chipinit(sc)) {
3564 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3565 bge_release_resources(sc);
3566 return;
3567 }
3568
3569 /*
3570 * Get station address from the EEPROM.
3571 */
3572 if (bge_get_eaddr(sc, eaddr)) {
3573 aprint_error_dev(sc->bge_dev,
3574 "failed to read station address\n");
3575 bge_release_resources(sc);
3576 return;
3577 }
3578
3579 br = bge_lookup_rev(sc->bge_chipid);
3580
3581 if (br == NULL) {
3582 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3583 sc->bge_chipid);
3584 } else {
3585 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3586 br->br_name, sc->bge_chipid);
3587 }
3588 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3589
3590 /* Allocate the general information block and ring buffers. */
3591 if (pci_dma64_available(pa))
3592 sc->bge_dmatag = pa->pa_dmat64;
3593 else
3594 sc->bge_dmatag = pa->pa_dmat;
3595 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3596 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3597 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3598 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3599 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3600 return;
3601 }
3602 DPRINTFN(5, ("bus_dmamem_map\n"));
3603 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3604 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3605 BUS_DMA_NOWAIT)) {
3606 aprint_error_dev(sc->bge_dev,
3607 "can't map DMA buffers (%zu bytes)\n",
3608 sizeof(struct bge_ring_data));
3609 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3610 sc->bge_ring_rseg);
3611 return;
3612 }
3613 DPRINTFN(5, ("bus_dmamem_create\n"));
3614 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3615 sizeof(struct bge_ring_data), 0,
3616 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3617 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3618 bus_dmamem_unmap(sc->bge_dmatag, kva,
3619 sizeof(struct bge_ring_data));
3620 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3621 sc->bge_ring_rseg);
3622 return;
3623 }
3624 DPRINTFN(5, ("bus_dmamem_load\n"));
3625 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3626 sizeof(struct bge_ring_data), NULL,
3627 BUS_DMA_NOWAIT)) {
3628 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3629 bus_dmamem_unmap(sc->bge_dmatag, kva,
3630 sizeof(struct bge_ring_data));
3631 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3632 sc->bge_ring_rseg);
3633 return;
3634 }
3635
3636 DPRINTFN(5, ("bzero\n"));
3637 sc->bge_rdata = (struct bge_ring_data *)kva;
3638
3639 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3640
3641 /* Try to allocate memory for jumbo buffers. */
3642 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3643 if (bge_alloc_jumbo_mem(sc)) {
3644 aprint_error_dev(sc->bge_dev,
3645 "jumbo buffer allocation failed\n");
3646 } else
3647 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3648 }
3649
3650 /* Set default tuneable values. */
3651 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3652 sc->bge_rx_coal_ticks = 150;
3653 sc->bge_rx_max_coal_bds = 64;
3654 sc->bge_tx_coal_ticks = 300;
3655 sc->bge_tx_max_coal_bds = 400;
3656 if (BGE_IS_5705_PLUS(sc)) {
3657 sc->bge_tx_coal_ticks = (12 * 5);
3658 sc->bge_tx_max_coal_bds = (12 * 5);
3659 aprint_verbose_dev(sc->bge_dev,
3660 "setting short Tx thresholds\n");
3661 }
3662
3663 if (BGE_IS_5717_PLUS(sc))
3664 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3665 else if (BGE_IS_5705_PLUS(sc))
3666 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3667 else
3668 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3669
3670 /* Set up ifnet structure */
3671 ifp = &sc->ethercom.ec_if;
3672 ifp->if_softc = sc;
3673 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3674 ifp->if_ioctl = bge_ioctl;
3675 ifp->if_stop = bge_stop;
3676 ifp->if_start = bge_start;
3677 ifp->if_init = bge_init;
3678 ifp->if_watchdog = bge_watchdog;
3679 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3680 IFQ_SET_READY(&ifp->if_snd);
3681 DPRINTFN(5, ("strcpy if_xname\n"));
3682 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3683
3684 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3685 sc->ethercom.ec_if.if_capabilities |=
3686 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3687 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3688 sc->ethercom.ec_if.if_capabilities |=
3689 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3690 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3691 #endif
3692 sc->ethercom.ec_capabilities |=
3693 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3694
3695 if (sc->bge_flags & BGE_TSO)
3696 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3697
3698 /*
3699 * Do MII setup.
3700 */
3701 DPRINTFN(5, ("mii setup\n"));
3702 sc->bge_mii.mii_ifp = ifp;
3703 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3704 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3705 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3706
3707 /*
3708 * Figure out what sort of media we have by checking the hardware
3709 * config word in the first 32k of NIC internal memory, or fall back to
3710 * the config word in the EEPROM. Note: on some BCM5700 cards,
3711 * this value appears to be unset. If that's the case, we have to rely
3712 * on identifying the NIC by its PCI subsystem ID, as we do below for
3713 * the SysKonnect SK-9D41.
3714 */
3715 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3716 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3717 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3718 bge_read_eeprom(sc, (void *)&hwcfg,
3719 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3720 hwcfg = be32toh(hwcfg);
3721 }
3722 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3723 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3724 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3725 if (BGE_IS_5714_FAMILY(sc))
3726 sc->bge_flags |= BGE_PHY_FIBER_MII;
3727 else
3728 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3729 }
3730
3731 /* set phyflags and chipid before mii_attach() */
3732 dict = device_properties(self);
3733 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3734 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3735
3736 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3737 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3738 bge_ifmedia_sts);
3739 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3740 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3741 0, NULL);
3742 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3743 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3744 /* Pretend the user requested this setting */
3745 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3746 } else {
3747 /*
3748 * Do transceiver setup and tell the firmware the
3749 * driver is down so we can try to get access the
3750 * probe if ASF is running. Retry a couple of times
3751 * if we get a conflict with the ASF firmware accessing
3752 * the PHY.
3753 */
3754 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3755 bge_asf_driver_up(sc);
3756
3757 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3758 bge_ifmedia_sts);
3759 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3760 sc->bge_phy_addr, MII_OFFSET_ANY,
3761 MIIF_DOPAUSE);
3762
3763 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3764 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3765 ifmedia_add(&sc->bge_mii.mii_media,
3766 IFM_ETHER|IFM_MANUAL, 0, NULL);
3767 ifmedia_set(&sc->bge_mii.mii_media,
3768 IFM_ETHER|IFM_MANUAL);
3769 } else
3770 ifmedia_set(&sc->bge_mii.mii_media,
3771 IFM_ETHER|IFM_AUTO);
3772
3773 /*
3774 * Now tell the firmware we are going up after probing the PHY
3775 */
3776 if (sc->bge_asf_mode & ASF_STACKUP)
3777 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3778 }
3779
3780 /*
3781 * Call MI attach routine.
3782 */
3783 DPRINTFN(5, ("if_attach\n"));
3784 if_attach(ifp);
3785 DPRINTFN(5, ("ether_ifattach\n"));
3786 ether_ifattach(ifp, eaddr);
3787 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3788 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3789 RND_TYPE_NET, 0);
3790 #ifdef BGE_EVENT_COUNTERS
3791 /*
3792 * Attach event counters.
3793 */
3794 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3795 NULL, device_xname(sc->bge_dev), "intr");
3796 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3797 NULL, device_xname(sc->bge_dev), "tx_xoff");
3798 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3799 NULL, device_xname(sc->bge_dev), "tx_xon");
3800 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3801 NULL, device_xname(sc->bge_dev), "rx_xoff");
3802 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3803 NULL, device_xname(sc->bge_dev), "rx_xon");
3804 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3805 NULL, device_xname(sc->bge_dev), "rx_macctl");
3806 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3807 NULL, device_xname(sc->bge_dev), "xoffentered");
3808 #endif /* BGE_EVENT_COUNTERS */
3809 DPRINTFN(5, ("callout_init\n"));
3810 callout_init(&sc->bge_timeout, 0);
3811
3812 if (pmf_device_register(self, NULL, NULL))
3813 pmf_class_network_register(self, ifp);
3814 else
3815 aprint_error_dev(self, "couldn't establish power handler\n");
3816
3817 bge_sysctl_init(sc);
3818
3819 #ifdef BGE_DEBUG
3820 bge_debug_info(sc);
3821 #endif
3822 }
3823
3824 /*
3825 * Stop all chip I/O so that the kernel's probe routines don't
3826 * get confused by errant DMAs when rebooting.
3827 */
3828 static int
3829 bge_detach(device_t self, int flags __unused)
3830 {
3831 struct bge_softc *sc = device_private(self);
3832 struct ifnet *ifp = &sc->ethercom.ec_if;
3833 int s;
3834
3835 s = splnet();
3836 /* Stop the interface. Callouts are stopped in it. */
3837 bge_stop(ifp, 1);
3838 splx(s);
3839
3840 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3841
3842 /* Delete all remaining media. */
3843 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3844
3845 ether_ifdetach(ifp);
3846 if_detach(ifp);
3847
3848 bge_release_resources(sc);
3849
3850 return 0;
3851 }
3852
3853 static void
3854 bge_release_resources(struct bge_softc *sc)
3855 {
3856
3857 /* Disestablish the interrupt handler */
3858 if (sc->bge_intrhand != NULL) {
3859 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3860 sc->bge_intrhand = NULL;
3861 }
3862
3863 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3864 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3865 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3866 sizeof(struct bge_ring_data));
3867 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3868
3869 /* Unmap the device registers */
3870 if (sc->bge_bsize != 0) {
3871 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3872 sc->bge_bsize = 0;
3873 }
3874
3875 /* Unmap the APE registers */
3876 if (sc->bge_apesize != 0) {
3877 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3878 sc->bge_apesize);
3879 sc->bge_apesize = 0;
3880 }
3881 }
3882
3883 static int
3884 bge_reset(struct bge_softc *sc)
3885 {
3886 uint32_t cachesize, command;
3887 uint32_t reset, mac_mode, mac_mode_mask;
3888 pcireg_t devctl, reg;
3889 int i, val;
3890 void (*write_op)(struct bge_softc *, int, int);
3891
3892 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3893 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3894 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3895 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3896
3897 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3898 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3899 if (sc->bge_flags & BGE_PCIE)
3900 write_op = bge_writemem_direct;
3901 else
3902 write_op = bge_writemem_ind;
3903 } else
3904 write_op = bge_writereg_ind;
3905
3906 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3907 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3908 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3909 for (i = 0; i < 8000; i++) {
3910 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3911 BGE_NVRAMSWARB_GNT1)
3912 break;
3913 DELAY(20);
3914 }
3915 if (i == 8000) {
3916 printf("%s: NVRAM lock timedout!\n",
3917 device_xname(sc->bge_dev));
3918 }
3919 }
3920 /* Take APE lock when performing reset. */
3921 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3922
3923 /* Save some important PCI state. */
3924 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3925 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3926
3927 /* Step 5b-5d: */
3928 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3929 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3930 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3931
3932 /* XXX ???: Disable fastboot on controllers that support it. */
3933 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3934 BGE_IS_5755_PLUS(sc))
3935 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3936
3937 /*
3938 * Step 6: Write the magic number to SRAM at offset 0xB50.
3939 * When firmware finishes its initialization it will
3940 * write ~BGE_MAGIC_NUMBER to the same location.
3941 */
3942 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3943
3944 /* Step 7: */
3945 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3946 /*
3947 * XXX: from FreeBSD/Linux; no documentation
3948 */
3949 if (sc->bge_flags & BGE_PCIE) {
3950 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3951 !BGE_IS_57765_PLUS(sc) &&
3952 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3953 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3954 /* PCI Express 1.0 system */
3955 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3956 BGE_PHY_PCIE_SCRAM_MODE);
3957 }
3958 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3959 /*
3960 * Prevent PCI Express link training
3961 * during global reset.
3962 */
3963 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3964 reset |= (1 << 29);
3965 }
3966 }
3967
3968 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3969 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3970 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3971 i | BGE_VCPU_STATUS_DRV_RESET);
3972 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3973 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3974 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3975 }
3976
3977 /*
3978 * Set GPHY Power Down Override to leave GPHY
3979 * powered up in D0 uninitialized.
3980 */
3981 if (BGE_IS_5705_PLUS(sc) &&
3982 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3983 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3984
3985 /* Issue global reset */
3986 write_op(sc, BGE_MISC_CFG, reset);
3987
3988 /* Step 8: wait for complete */
3989 if (sc->bge_flags & BGE_PCIE)
3990 delay(100*1000); /* too big */
3991 else
3992 delay(1000);
3993
3994 if (sc->bge_flags & BGE_PCIE) {
3995 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3996 DELAY(500000);
3997 /* XXX: Magic Numbers */
3998 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3999 BGE_PCI_UNKNOWN0);
4000 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4001 BGE_PCI_UNKNOWN0,
4002 reg | (1 << 15));
4003 }
4004 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4005 sc->bge_pciecap + PCI_PCIE_DCSR);
4006 /* Clear enable no snoop and disable relaxed ordering. */
4007 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
4008 PCI_PCIE_DCSR_ENA_NO_SNOOP);
4009
4010 /* Set PCIE max payload size to 128 for older PCIe devices */
4011 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4012 devctl &= ~(0x00e0);
4013 /* Clear device status register. Write 1b to clear */
4014 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
4015 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
4016 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4017 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
4018 bge_set_max_readrq(sc);
4019 }
4020
4021 /* From Linux: dummy read to flush PCI posted writes */
4022 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4023
4024 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
4025 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4026 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4027 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4028 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4029 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4030 (sc->bge_flags & BGE_PCIX) != 0)
4031 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4032 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4033 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4034 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4035 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4036 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4037 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4038 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4039
4040 /* Step 11: disable PCI-X Relaxed Ordering. */
4041 if (sc->bge_flags & BGE_PCIX) {
4042 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4043 + PCI_PCIX_CMD);
4044 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4045 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
4046 }
4047
4048 /* Step 12: Enable memory arbiter. */
4049 if (BGE_IS_5714_FAMILY(sc)) {
4050 val = CSR_READ_4(sc, BGE_MARB_MODE);
4051 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4052 } else
4053 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4054
4055 /* XXX 5721, 5751 and 5752 */
4056 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4057 /* Step 19: */
4058 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4059 /* Step 20: */
4060 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4061 }
4062
4063 /* Step 28: Fix up byte swapping */
4064 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4065
4066 /*
4067 * Wait for the bootcode to complete initialization.
4068 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4069 * Section 7".
4070 */
4071 if (BGE_IS_5717_PLUS(sc)) {
4072 for (i = 0; i < 1000*1000; i++) {
4073 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4074 if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4075 break;
4076 DELAY(10);
4077 }
4078 }
4079
4080 /* Step 21: 5822 B0 errata */
4081 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4082 pcireg_t msidata;
4083
4084 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4085 BGE_PCI_MSI_DATA);
4086 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4087 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4088 msidata);
4089 }
4090
4091 /*
4092 * Step 18: wirte mac mode
4093 * XXX Write 0x0c for 5703S and 5704S
4094 */
4095 val = CSR_READ_4(sc, BGE_MAC_MODE);
4096 val = (val & ~mac_mode_mask) | mac_mode;
4097 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4098 DELAY(40);
4099
4100 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4101
4102 /* Step 17: Poll until the firmware initialization is complete */
4103 bge_poll_fw(sc);
4104
4105 /*
4106 * The 5704 in TBI mode apparently needs some special
4107 * adjustment to insure the SERDES drive level is set
4108 * to 1.2V.
4109 */
4110 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4111 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4112 uint32_t serdescfg;
4113
4114 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4115 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4116 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4117 }
4118
4119 if (sc->bge_flags & BGE_PCIE &&
4120 !BGE_IS_57765_PLUS(sc) &&
4121 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4122 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4123 uint32_t v;
4124
4125 /* Enable PCI Express bug fix */
4126 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4127 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4128 v | BGE_TLP_DATA_FIFO_PROTECT);
4129 }
4130
4131 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4132 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4133 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4134
4135 if ((sc->bge_flags & BGE_PHY_EEE) != 0) {
4136 uint32_t eeemode;
4137
4138 eeemode = CSR_READ_4(sc, BGE_CPMU_EEE_MODE);
4139 printf("EEEMODE = %x\n", eeemode);
4140 CSR_WRITE_4(sc, BGE_CPMU_EEE_MODE, 0);
4141 }
4142 return 0;
4143 }
4144
4145 /*
4146 * Frame reception handling. This is called if there's a frame
4147 * on the receive return list.
4148 *
4149 * Note: we have to be able to handle two possibilities here:
4150 * 1) the frame is from the jumbo receive ring
4151 * 2) the frame is from the standard receive ring
4152 */
4153
4154 static void
4155 bge_rxeof(struct bge_softc *sc)
4156 {
4157 struct ifnet *ifp;
4158 uint16_t rx_prod, rx_cons;
4159 int stdcnt = 0, jumbocnt = 0;
4160 bus_dmamap_t dmamap;
4161 bus_addr_t offset, toff;
4162 bus_size_t tlen;
4163 int tosync;
4164
4165 rx_cons = sc->bge_rx_saved_considx;
4166 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4167
4168 /* Nothing to do */
4169 if (rx_cons == rx_prod)
4170 return;
4171
4172 ifp = &sc->ethercom.ec_if;
4173
4174 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4175 offsetof(struct bge_ring_data, bge_status_block),
4176 sizeof (struct bge_status_block),
4177 BUS_DMASYNC_POSTREAD);
4178
4179 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4180 tosync = rx_prod - rx_cons;
4181
4182 if (tosync != 0)
4183 rnd_add_uint32(&sc->rnd_source, tosync);
4184
4185 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4186
4187 if (tosync < 0) {
4188 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4189 sizeof (struct bge_rx_bd);
4190 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4191 toff, tlen, BUS_DMASYNC_POSTREAD);
4192 tosync = -tosync;
4193 }
4194
4195 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4196 offset, tosync * sizeof (struct bge_rx_bd),
4197 BUS_DMASYNC_POSTREAD);
4198
4199 while (rx_cons != rx_prod) {
4200 struct bge_rx_bd *cur_rx;
4201 uint32_t rxidx;
4202 struct mbuf *m = NULL;
4203
4204 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4205
4206 rxidx = cur_rx->bge_idx;
4207 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4208
4209 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4210 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4211 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4212 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4213 jumbocnt++;
4214 bus_dmamap_sync(sc->bge_dmatag,
4215 sc->bge_cdata.bge_rx_jumbo_map,
4216 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4217 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4218 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4219 ifp->if_ierrors++;
4220 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4221 continue;
4222 }
4223 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4224 NULL)== ENOBUFS) {
4225 ifp->if_ierrors++;
4226 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4227 continue;
4228 }
4229 } else {
4230 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4231 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4232
4233 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4234 stdcnt++;
4235 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4236 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4237 if (dmamap == NULL) {
4238 ifp->if_ierrors++;
4239 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4240 continue;
4241 }
4242 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4243 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4244 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4245 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4246 ifp->if_ierrors++;
4247 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4248 continue;
4249 }
4250 if (bge_newbuf_std(sc, sc->bge_std,
4251 NULL, dmamap) == ENOBUFS) {
4252 ifp->if_ierrors++;
4253 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4254 continue;
4255 }
4256 }
4257
4258 ifp->if_ipackets++;
4259 #ifndef __NO_STRICT_ALIGNMENT
4260 /*
4261 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4262 * the Rx buffer has the layer-2 header unaligned.
4263 * If our CPU requires alignment, re-align by copying.
4264 */
4265 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4266 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4267 cur_rx->bge_len);
4268 m->m_data += ETHER_ALIGN;
4269 }
4270 #endif
4271
4272 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4273 m->m_pkthdr.rcvif = ifp;
4274
4275 /*
4276 * Handle BPF listeners. Let the BPF user see the packet.
4277 */
4278 bpf_mtap(ifp, m);
4279
4280 bge_rxcsum(sc, cur_rx, m);
4281
4282 /*
4283 * If we received a packet with a vlan tag, pass it
4284 * to vlan_input() instead of ether_input().
4285 */
4286 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4287 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4288 }
4289
4290 (*ifp->if_input)(ifp, m);
4291 }
4292
4293 sc->bge_rx_saved_considx = rx_cons;
4294 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4295 if (stdcnt)
4296 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4297 if (jumbocnt)
4298 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4299 }
4300
4301 static void
4302 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4303 {
4304
4305 if (BGE_IS_5717_PLUS(sc)) {
4306 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4307 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4308 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4309 if ((cur_rx->bge_error_flag &
4310 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4311 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4312 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4313 m->m_pkthdr.csum_data =
4314 cur_rx->bge_tcp_udp_csum;
4315 m->m_pkthdr.csum_flags |=
4316 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4317 M_CSUM_DATA);
4318 }
4319 }
4320 } else {
4321 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4322 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4323 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4324 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4325 /*
4326 * Rx transport checksum-offload may also
4327 * have bugs with packets which, when transmitted,
4328 * were `runts' requiring padding.
4329 */
4330 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4331 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4332 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4333 m->m_pkthdr.csum_data =
4334 cur_rx->bge_tcp_udp_csum;
4335 m->m_pkthdr.csum_flags |=
4336 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4337 M_CSUM_DATA);
4338 }
4339 }
4340 }
4341
4342 static void
4343 bge_txeof(struct bge_softc *sc)
4344 {
4345 struct bge_tx_bd *cur_tx = NULL;
4346 struct ifnet *ifp;
4347 struct txdmamap_pool_entry *dma;
4348 bus_addr_t offset, toff;
4349 bus_size_t tlen;
4350 int tosync;
4351 struct mbuf *m;
4352
4353 ifp = &sc->ethercom.ec_if;
4354
4355 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4356 offsetof(struct bge_ring_data, bge_status_block),
4357 sizeof (struct bge_status_block),
4358 BUS_DMASYNC_POSTREAD);
4359
4360 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4361 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4362 sc->bge_tx_saved_considx;
4363
4364 if (tosync != 0)
4365 rnd_add_uint32(&sc->rnd_source, tosync);
4366
4367 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4368
4369 if (tosync < 0) {
4370 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4371 sizeof (struct bge_tx_bd);
4372 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4373 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4374 tosync = -tosync;
4375 }
4376
4377 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4378 offset, tosync * sizeof (struct bge_tx_bd),
4379 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4380
4381 /*
4382 * Go through our tx ring and free mbufs for those
4383 * frames that have been sent.
4384 */
4385 while (sc->bge_tx_saved_considx !=
4386 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4387 uint32_t idx = 0;
4388
4389 idx = sc->bge_tx_saved_considx;
4390 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4391 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4392 ifp->if_opackets++;
4393 m = sc->bge_cdata.bge_tx_chain[idx];
4394 if (m != NULL) {
4395 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4396 dma = sc->txdma[idx];
4397 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4398 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4399 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4400 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4401 sc->txdma[idx] = NULL;
4402
4403 m_freem(m);
4404 }
4405 sc->bge_txcnt--;
4406 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4407 ifp->if_timer = 0;
4408 }
4409
4410 if (cur_tx != NULL)
4411 ifp->if_flags &= ~IFF_OACTIVE;
4412 }
4413
4414 static int
4415 bge_intr(void *xsc)
4416 {
4417 struct bge_softc *sc;
4418 struct ifnet *ifp;
4419 uint32_t statusword;
4420
4421 sc = xsc;
4422 ifp = &sc->ethercom.ec_if;
4423
4424 /* It is possible for the interrupt to arrive before
4425 * the status block is updated prior to the interrupt.
4426 * Reading the PCI State register will confirm whether the
4427 * interrupt is ours and will flush the status block.
4428 */
4429
4430 /* read status word from status block */
4431 statusword = sc->bge_rdata->bge_status_block.bge_status;
4432
4433 if ((statusword & BGE_STATFLAG_UPDATED) ||
4434 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4435 /* Ack interrupt and stop others from occuring. */
4436 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4437
4438 BGE_EVCNT_INCR(sc->bge_ev_intr);
4439
4440 /* clear status word */
4441 sc->bge_rdata->bge_status_block.bge_status = 0;
4442
4443 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4444 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4445 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4446 bge_link_upd(sc);
4447
4448 if (ifp->if_flags & IFF_RUNNING) {
4449 /* Check RX return ring producer/consumer */
4450 bge_rxeof(sc);
4451
4452 /* Check TX ring producer/consumer */
4453 bge_txeof(sc);
4454 }
4455
4456 if (sc->bge_pending_rxintr_change) {
4457 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4458 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4459 uint32_t junk;
4460
4461 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4462 DELAY(10);
4463 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4464
4465 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4466 DELAY(10);
4467 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4468
4469 sc->bge_pending_rxintr_change = 0;
4470 }
4471 bge_handle_events(sc);
4472
4473 /* Re-enable interrupts. */
4474 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4475
4476 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4477 bge_start(ifp);
4478
4479 return 1;
4480 } else
4481 return 0;
4482 }
4483
4484 static void
4485 bge_asf_driver_up(struct bge_softc *sc)
4486 {
4487 if (sc->bge_asf_mode & ASF_STACKUP) {
4488 /* Send ASF heartbeat aprox. every 2s */
4489 if (sc->bge_asf_count)
4490 sc->bge_asf_count --;
4491 else {
4492 sc->bge_asf_count = 2;
4493
4494 bge_wait_for_event_ack(sc);
4495
4496 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4497 BGE_FW_CMD_DRV_ALIVE);
4498 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4499 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4500 BGE_FW_HB_TIMEOUT_SEC);
4501 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4502 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4503 BGE_RX_CPU_DRV_EVENT);
4504 }
4505 }
4506 }
4507
4508 static void
4509 bge_tick(void *xsc)
4510 {
4511 struct bge_softc *sc = xsc;
4512 struct mii_data *mii = &sc->bge_mii;
4513 int s;
4514
4515 s = splnet();
4516
4517 if (BGE_IS_5705_PLUS(sc))
4518 bge_stats_update_regs(sc);
4519 else
4520 bge_stats_update(sc);
4521
4522 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4523 /*
4524 * Since in TBI mode auto-polling can't be used we should poll
4525 * link status manually. Here we register pending link event
4526 * and trigger interrupt.
4527 */
4528 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4529 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4530 } else {
4531 /*
4532 * Do not touch PHY if we have link up. This could break
4533 * IPMI/ASF mode or produce extra input errors.
4534 * (extra input errors was reported for bcm5701 & bcm5704).
4535 */
4536 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4537 mii_tick(mii);
4538 }
4539
4540 bge_asf_driver_up(sc);
4541
4542 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4543
4544 splx(s);
4545 }
4546
4547 static void
4548 bge_stats_update_regs(struct bge_softc *sc)
4549 {
4550 struct ifnet *ifp = &sc->ethercom.ec_if;
4551
4552 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4553 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4554
4555 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4556 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4557 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4558 }
4559
4560 static void
4561 bge_stats_update(struct bge_softc *sc)
4562 {
4563 struct ifnet *ifp = &sc->ethercom.ec_if;
4564 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4565
4566 #define READ_STAT(sc, stats, stat) \
4567 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4568
4569 ifp->if_collisions +=
4570 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4571 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4572 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4573 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4574 ifp->if_collisions;
4575
4576 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4577 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4578 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4579 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4580 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4581 READ_STAT(sc, stats,
4582 xoffPauseFramesReceived.bge_addr_lo));
4583 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4584 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4585 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4586 READ_STAT(sc, stats,
4587 macControlFramesReceived.bge_addr_lo));
4588 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4589 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4590
4591 #undef READ_STAT
4592
4593 #ifdef notdef
4594 ifp->if_collisions +=
4595 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4596 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4597 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4598 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4599 ifp->if_collisions;
4600 #endif
4601 }
4602
4603 /*
4604 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4605 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4606 * but when such padded frames employ the bge IP/TCP checksum offload,
4607 * the hardware checksum assist gives incorrect results (possibly
4608 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4609 * If we pad such runts with zeros, the onboard checksum comes out correct.
4610 */
4611 static inline int
4612 bge_cksum_pad(struct mbuf *pkt)
4613 {
4614 struct mbuf *last = NULL;
4615 int padlen;
4616
4617 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4618
4619 /* if there's only the packet-header and we can pad there, use it. */
4620 if (pkt->m_pkthdr.len == pkt->m_len &&
4621 M_TRAILINGSPACE(pkt) >= padlen) {
4622 last = pkt;
4623 } else {
4624 /*
4625 * Walk packet chain to find last mbuf. We will either
4626 * pad there, or append a new mbuf and pad it
4627 * (thus perhaps avoiding the bcm5700 dma-min bug).
4628 */
4629 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4630 continue; /* do nothing */
4631 }
4632
4633 /* `last' now points to last in chain. */
4634 if (M_TRAILINGSPACE(last) < padlen) {
4635 /* Allocate new empty mbuf, pad it. Compact later. */
4636 struct mbuf *n;
4637 MGET(n, M_DONTWAIT, MT_DATA);
4638 if (n == NULL)
4639 return ENOBUFS;
4640 n->m_len = 0;
4641 last->m_next = n;
4642 last = n;
4643 }
4644 }
4645
4646 KDASSERT(!M_READONLY(last));
4647 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4648
4649 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4650 memset(mtod(last, char *) + last->m_len, 0, padlen);
4651 last->m_len += padlen;
4652 pkt->m_pkthdr.len += padlen;
4653 return 0;
4654 }
4655
4656 /*
4657 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4658 */
4659 static inline int
4660 bge_compact_dma_runt(struct mbuf *pkt)
4661 {
4662 struct mbuf *m, *prev;
4663 int totlen, prevlen;
4664
4665 prev = NULL;
4666 totlen = 0;
4667 prevlen = -1;
4668
4669 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4670 int mlen = m->m_len;
4671 int shortfall = 8 - mlen ;
4672
4673 totlen += mlen;
4674 if (mlen == 0)
4675 continue;
4676 if (mlen >= 8)
4677 continue;
4678
4679 /* If we get here, mbuf data is too small for DMA engine.
4680 * Try to fix by shuffling data to prev or next in chain.
4681 * If that fails, do a compacting deep-copy of the whole chain.
4682 */
4683
4684 /* Internal frag. If fits in prev, copy it there. */
4685 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4686 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4687 prev->m_len += mlen;
4688 m->m_len = 0;
4689 /* XXX stitch chain */
4690 prev->m_next = m_free(m);
4691 m = prev;
4692 continue;
4693 }
4694 else if (m->m_next != NULL &&
4695 M_TRAILINGSPACE(m) >= shortfall &&
4696 m->m_next->m_len >= (8 + shortfall)) {
4697 /* m is writable and have enough data in next, pull up. */
4698
4699 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4700 shortfall);
4701 m->m_len += shortfall;
4702 m->m_next->m_len -= shortfall;
4703 m->m_next->m_data += shortfall;
4704 }
4705 else if (m->m_next == NULL || 1) {
4706 /* Got a runt at the very end of the packet.
4707 * borrow data from the tail of the preceding mbuf and
4708 * update its length in-place. (The original data is still
4709 * valid, so we can do this even if prev is not writable.)
4710 */
4711
4712 /* if we'd make prev a runt, just move all of its data. */
4713 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4714 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4715
4716 if ((prev->m_len - shortfall) < 8)
4717 shortfall = prev->m_len;
4718
4719 #ifdef notyet /* just do the safe slow thing for now */
4720 if (!M_READONLY(m)) {
4721 if (M_LEADINGSPACE(m) < shorfall) {
4722 void *m_dat;
4723 m_dat = (m->m_flags & M_PKTHDR) ?
4724 m->m_pktdat : m->dat;
4725 memmove(m_dat, mtod(m, void*), m->m_len);
4726 m->m_data = m_dat;
4727 }
4728 } else
4729 #endif /* just do the safe slow thing */
4730 {
4731 struct mbuf * n = NULL;
4732 int newprevlen = prev->m_len - shortfall;
4733
4734 MGET(n, M_NOWAIT, MT_DATA);
4735 if (n == NULL)
4736 return ENOBUFS;
4737 KASSERT(m->m_len + shortfall < MLEN
4738 /*,
4739 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4740
4741 /* first copy the data we're stealing from prev */
4742 memcpy(n->m_data, prev->m_data + newprevlen,
4743 shortfall);
4744
4745 /* update prev->m_len accordingly */
4746 prev->m_len -= shortfall;
4747
4748 /* copy data from runt m */
4749 memcpy(n->m_data + shortfall, m->m_data,
4750 m->m_len);
4751
4752 /* n holds what we stole from prev, plus m */
4753 n->m_len = shortfall + m->m_len;
4754
4755 /* stitch n into chain and free m */
4756 n->m_next = m->m_next;
4757 prev->m_next = n;
4758 /* KASSERT(m->m_next == NULL); */
4759 m->m_next = NULL;
4760 m_free(m);
4761 m = n; /* for continuing loop */
4762 }
4763 }
4764 prevlen = m->m_len;
4765 }
4766 return 0;
4767 }
4768
4769 /*
4770 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4771 * pointers to descriptors.
4772 */
4773 static int
4774 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4775 {
4776 struct bge_tx_bd *f = NULL;
4777 uint32_t frag, cur;
4778 uint16_t csum_flags = 0;
4779 uint16_t txbd_tso_flags = 0;
4780 struct txdmamap_pool_entry *dma;
4781 bus_dmamap_t dmamap;
4782 int i = 0;
4783 struct m_tag *mtag;
4784 int use_tso, maxsegsize, error;
4785
4786 cur = frag = *txidx;
4787
4788 if (m_head->m_pkthdr.csum_flags) {
4789 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4790 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4791 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4792 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4793 }
4794
4795 /*
4796 * If we were asked to do an outboard checksum, and the NIC
4797 * has the bug where it sometimes adds in the Ethernet padding,
4798 * explicitly pad with zeros so the cksum will be correct either way.
4799 * (For now, do this for all chip versions, until newer
4800 * are confirmed to not require the workaround.)
4801 */
4802 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4803 #ifdef notyet
4804 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4805 #endif
4806 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4807 goto check_dma_bug;
4808
4809 if (bge_cksum_pad(m_head) != 0)
4810 return ENOBUFS;
4811
4812 check_dma_bug:
4813 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4814 goto doit;
4815
4816 /*
4817 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4818 * less than eight bytes. If we encounter a teeny mbuf
4819 * at the end of a chain, we can pad. Otherwise, copy.
4820 */
4821 if (bge_compact_dma_runt(m_head) != 0)
4822 return ENOBUFS;
4823
4824 doit:
4825 dma = SLIST_FIRST(&sc->txdma_list);
4826 if (dma == NULL)
4827 return ENOBUFS;
4828 dmamap = dma->dmamap;
4829
4830 /*
4831 * Set up any necessary TSO state before we start packing...
4832 */
4833 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4834 if (!use_tso) {
4835 maxsegsize = 0;
4836 } else { /* TSO setup */
4837 unsigned mss;
4838 struct ether_header *eh;
4839 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4840 struct mbuf * m0 = m_head;
4841 struct ip *ip;
4842 struct tcphdr *th;
4843 int iphl, hlen;
4844
4845 /*
4846 * XXX It would be nice if the mbuf pkthdr had offset
4847 * fields for the protocol headers.
4848 */
4849
4850 eh = mtod(m0, struct ether_header *);
4851 switch (htons(eh->ether_type)) {
4852 case ETHERTYPE_IP:
4853 offset = ETHER_HDR_LEN;
4854 break;
4855
4856 case ETHERTYPE_VLAN:
4857 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4858 break;
4859
4860 default:
4861 /*
4862 * Don't support this protocol or encapsulation.
4863 */
4864 return ENOBUFS;
4865 }
4866
4867 /*
4868 * TCP/IP headers are in the first mbuf; we can do
4869 * this the easy way.
4870 */
4871 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4872 hlen = iphl + offset;
4873 if (__predict_false(m0->m_len <
4874 (hlen + sizeof(struct tcphdr)))) {
4875
4876 aprint_debug_dev(sc->bge_dev,
4877 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4878 "not handled yet\n",
4879 m0->m_len, hlen+ sizeof(struct tcphdr));
4880 #ifdef NOTYET
4881 /*
4882 * XXX jonathan (at) NetBSD.org: untested.
4883 * how to force this branch to be taken?
4884 */
4885 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4886
4887 m_copydata(m0, offset, sizeof(ip), &ip);
4888 m_copydata(m0, hlen, sizeof(th), &th);
4889
4890 ip.ip_len = 0;
4891
4892 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4893 sizeof(ip.ip_len), &ip.ip_len);
4894
4895 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4896 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4897
4898 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4899 sizeof(th.th_sum), &th.th_sum);
4900
4901 hlen += th.th_off << 2;
4902 iptcp_opt_words = hlen;
4903 #else
4904 /*
4905 * if_wm "hard" case not yet supported, can we not
4906 * mandate it out of existence?
4907 */
4908 (void) ip; (void)th; (void) ip_tcp_hlen;
4909
4910 return ENOBUFS;
4911 #endif
4912 } else {
4913 ip = (struct ip *) (mtod(m0, char *) + offset);
4914 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4915 ip_tcp_hlen = iphl + (th->th_off << 2);
4916
4917 /* Total IP/TCP options, in 32-bit words */
4918 iptcp_opt_words = (ip_tcp_hlen
4919 - sizeof(struct tcphdr)
4920 - sizeof(struct ip)) >> 2;
4921 }
4922 if (BGE_IS_575X_PLUS(sc)) {
4923 th->th_sum = 0;
4924 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4925 } else {
4926 /*
4927 * XXX jonathan (at) NetBSD.org: 5705 untested.
4928 * Requires TSO firmware patch for 5701/5703/5704.
4929 */
4930 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4931 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4932 }
4933
4934 mss = m_head->m_pkthdr.segsz;
4935 txbd_tso_flags |=
4936 BGE_TXBDFLAG_CPU_PRE_DMA |
4937 BGE_TXBDFLAG_CPU_POST_DMA;
4938
4939 /*
4940 * Our NIC TSO-assist assumes TSO has standard, optionless
4941 * IPv4 and TCP headers, which total 40 bytes. By default,
4942 * the NIC copies 40 bytes of IP/TCP header from the
4943 * supplied header into the IP/TCP header portion of
4944 * each post-TSO-segment. If the supplied packet has IP or
4945 * TCP options, we need to tell the NIC to copy those extra
4946 * bytes into each post-TSO header, in addition to the normal
4947 * 40-byte IP/TCP header (and to leave space accordingly).
4948 * Unfortunately, the driver encoding of option length
4949 * varies across different ASIC families.
4950 */
4951 tcp_seg_flags = 0;
4952 if (iptcp_opt_words) {
4953 if (BGE_IS_5705_PLUS(sc)) {
4954 tcp_seg_flags =
4955 iptcp_opt_words << 11;
4956 } else {
4957 txbd_tso_flags |=
4958 iptcp_opt_words << 12;
4959 }
4960 }
4961 maxsegsize = mss | tcp_seg_flags;
4962 ip->ip_len = htons(mss + ip_tcp_hlen);
4963
4964 } /* TSO setup */
4965
4966 /*
4967 * Start packing the mbufs in this chain into
4968 * the fragment pointers. Stop when we run out
4969 * of fragments or hit the end of the mbuf chain.
4970 */
4971 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4972 BUS_DMA_NOWAIT);
4973 if (error)
4974 return ENOBUFS;
4975 /*
4976 * Sanity check: avoid coming within 16 descriptors
4977 * of the end of the ring.
4978 */
4979 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4980 BGE_TSO_PRINTF(("%s: "
4981 " dmamap_load_mbuf too close to ring wrap\n",
4982 device_xname(sc->bge_dev)));
4983 goto fail_unload;
4984 }
4985
4986 mtag = sc->ethercom.ec_nvlans ?
4987 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4988
4989
4990 /* Iterate over dmap-map fragments. */
4991 for (i = 0; i < dmamap->dm_nsegs; i++) {
4992 f = &sc->bge_rdata->bge_tx_ring[frag];
4993 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4994 break;
4995
4996 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4997 f->bge_len = dmamap->dm_segs[i].ds_len;
4998
4999 /*
5000 * For 5751 and follow-ons, for TSO we must turn
5001 * off checksum-assist flag in the tx-descr, and
5002 * supply the ASIC-revision-specific encoding
5003 * of TSO flags and segsize.
5004 */
5005 if (use_tso) {
5006 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5007 f->bge_rsvd = maxsegsize;
5008 f->bge_flags = csum_flags | txbd_tso_flags;
5009 } else {
5010 f->bge_rsvd = 0;
5011 f->bge_flags =
5012 (csum_flags | txbd_tso_flags) & 0x0fff;
5013 }
5014 } else {
5015 f->bge_rsvd = 0;
5016 f->bge_flags = csum_flags;
5017 }
5018
5019 if (mtag != NULL) {
5020 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5021 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5022 } else {
5023 f->bge_vlan_tag = 0;
5024 }
5025 cur = frag;
5026 BGE_INC(frag, BGE_TX_RING_CNT);
5027 }
5028
5029 if (i < dmamap->dm_nsegs) {
5030 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5031 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5032 goto fail_unload;
5033 }
5034
5035 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5036 BUS_DMASYNC_PREWRITE);
5037
5038 if (frag == sc->bge_tx_saved_considx) {
5039 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5040 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5041
5042 goto fail_unload;
5043 }
5044
5045 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5046 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5047 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5048 sc->txdma[cur] = dma;
5049 sc->bge_txcnt += dmamap->dm_nsegs;
5050
5051 *txidx = frag;
5052
5053 return 0;
5054
5055 fail_unload:
5056 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5057
5058 return ENOBUFS;
5059 }
5060
5061 /*
5062 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5063 * to the mbuf data regions directly in the transmit descriptors.
5064 */
5065 static void
5066 bge_start(struct ifnet *ifp)
5067 {
5068 struct bge_softc *sc;
5069 struct mbuf *m_head = NULL;
5070 uint32_t prodidx;
5071 int pkts = 0;
5072
5073 sc = ifp->if_softc;
5074
5075 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5076 return;
5077
5078 prodidx = sc->bge_tx_prodidx;
5079
5080 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5081 IFQ_POLL(&ifp->if_snd, m_head);
5082 if (m_head == NULL)
5083 break;
5084
5085 #if 0
5086 /*
5087 * XXX
5088 * safety overkill. If this is a fragmented packet chain
5089 * with delayed TCP/UDP checksums, then only encapsulate
5090 * it if we have enough descriptors to handle the entire
5091 * chain at once.
5092 * (paranoia -- may not actually be needed)
5093 */
5094 if (m_head->m_flags & M_FIRSTFRAG &&
5095 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5096 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5097 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5098 ifp->if_flags |= IFF_OACTIVE;
5099 break;
5100 }
5101 }
5102 #endif
5103
5104 /*
5105 * Pack the data into the transmit ring. If we
5106 * don't have room, set the OACTIVE flag and wait
5107 * for the NIC to drain the ring.
5108 */
5109 if (bge_encap(sc, m_head, &prodidx)) {
5110 ifp->if_flags |= IFF_OACTIVE;
5111 break;
5112 }
5113
5114 /* now we are committed to transmit the packet */
5115 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5116 pkts++;
5117
5118 /*
5119 * If there's a BPF listener, bounce a copy of this frame
5120 * to him.
5121 */
5122 bpf_mtap(ifp, m_head);
5123 }
5124 if (pkts == 0)
5125 return;
5126
5127 /* Transmit */
5128 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5129 /* 5700 b2 errata */
5130 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5131 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5132
5133 sc->bge_tx_prodidx = prodidx;
5134
5135 /*
5136 * Set a timeout in case the chip goes out to lunch.
5137 */
5138 ifp->if_timer = 5;
5139 }
5140
5141 static int
5142 bge_init(struct ifnet *ifp)
5143 {
5144 struct bge_softc *sc = ifp->if_softc;
5145 const uint16_t *m;
5146 uint32_t mode;
5147 int s, error = 0;
5148
5149 s = splnet();
5150
5151 ifp = &sc->ethercom.ec_if;
5152
5153 /* Cancel pending I/O and flush buffers. */
5154 bge_stop(ifp, 0);
5155
5156 bge_stop_fw(sc);
5157 bge_sig_pre_reset(sc, BGE_RESET_START);
5158 bge_reset(sc);
5159 bge_sig_legacy(sc, BGE_RESET_START);
5160 bge_sig_post_reset(sc, BGE_RESET_START);
5161
5162 bge_chipinit(sc);
5163
5164 /*
5165 * Init the various state machines, ring
5166 * control blocks and firmware.
5167 */
5168 error = bge_blockinit(sc);
5169 if (error != 0) {
5170 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5171 error);
5172 splx(s);
5173 return error;
5174 }
5175
5176 ifp = &sc->ethercom.ec_if;
5177
5178 /* Specify MTU. */
5179 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5180 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5181
5182 /* Load our MAC address. */
5183 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5184 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5185 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5186
5187 /* Enable or disable promiscuous mode as needed. */
5188 if (ifp->if_flags & IFF_PROMISC)
5189 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5190 else
5191 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5192
5193 /* Program multicast filter. */
5194 bge_setmulti(sc);
5195
5196 /* Init RX ring. */
5197 bge_init_rx_ring_std(sc);
5198
5199 /*
5200 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5201 * memory to insure that the chip has in fact read the first
5202 * entry of the ring.
5203 */
5204 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5205 uint32_t v, i;
5206 for (i = 0; i < 10; i++) {
5207 DELAY(20);
5208 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5209 if (v == (MCLBYTES - ETHER_ALIGN))
5210 break;
5211 }
5212 if (i == 10)
5213 aprint_error_dev(sc->bge_dev,
5214 "5705 A0 chip failed to load RX ring\n");
5215 }
5216
5217 /* Init jumbo RX ring. */
5218 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5219 bge_init_rx_ring_jumbo(sc);
5220
5221 /* Init our RX return ring index */
5222 sc->bge_rx_saved_considx = 0;
5223
5224 /* Init TX ring. */
5225 bge_init_tx_ring(sc);
5226
5227 /* Enable TX MAC state machine lockup fix. */
5228 mode = CSR_READ_4(sc, BGE_TX_MODE);
5229 if (BGE_IS_5755_PLUS(sc) ||
5230 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5231 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5232 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5233 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5234 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5235 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5236 }
5237
5238 /* Turn on transmitter */
5239 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5240 DELAY(100);
5241
5242 /* Turn on receiver */
5243 mode = CSR_READ_4(sc, BGE_RX_MODE);
5244 if (BGE_IS_5755_PLUS(sc))
5245 mode |= BGE_RXMODE_IPV6_ENABLE;
5246 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5247 DELAY(10);
5248
5249 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5250
5251 /* Tell firmware we're alive. */
5252 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5253
5254 /* Enable host interrupts. */
5255 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5256 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5257 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5258
5259 if ((error = bge_ifmedia_upd(ifp)) != 0)
5260 goto out;
5261
5262 ifp->if_flags |= IFF_RUNNING;
5263 ifp->if_flags &= ~IFF_OACTIVE;
5264
5265 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5266
5267 out:
5268 sc->bge_if_flags = ifp->if_flags;
5269 splx(s);
5270
5271 return error;
5272 }
5273
5274 /*
5275 * Set media options.
5276 */
5277 static int
5278 bge_ifmedia_upd(struct ifnet *ifp)
5279 {
5280 struct bge_softc *sc = ifp->if_softc;
5281 struct mii_data *mii = &sc->bge_mii;
5282 struct ifmedia *ifm = &sc->bge_ifmedia;
5283 int rc;
5284
5285 /* If this is a 1000baseX NIC, enable the TBI port. */
5286 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5287 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5288 return EINVAL;
5289 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5290 case IFM_AUTO:
5291 /*
5292 * The BCM5704 ASIC appears to have a special
5293 * mechanism for programming the autoneg
5294 * advertisement registers in TBI mode.
5295 */
5296 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5297 uint32_t sgdig;
5298 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5299 if (sgdig & BGE_SGDIGSTS_DONE) {
5300 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5301 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5302 sgdig |= BGE_SGDIGCFG_AUTO |
5303 BGE_SGDIGCFG_PAUSE_CAP |
5304 BGE_SGDIGCFG_ASYM_PAUSE;
5305 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5306 sgdig | BGE_SGDIGCFG_SEND);
5307 DELAY(5);
5308 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5309 sgdig);
5310 }
5311 }
5312 break;
5313 case IFM_1000_SX:
5314 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5315 BGE_CLRBIT(sc, BGE_MAC_MODE,
5316 BGE_MACMODE_HALF_DUPLEX);
5317 } else {
5318 BGE_SETBIT(sc, BGE_MAC_MODE,
5319 BGE_MACMODE_HALF_DUPLEX);
5320 }
5321 DELAY(40);
5322 break;
5323 default:
5324 return EINVAL;
5325 }
5326 /* XXX 802.3x flow control for 1000BASE-SX */
5327 return 0;
5328 }
5329
5330 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5331 if ((rc = mii_mediachg(mii)) == ENXIO)
5332 return 0;
5333
5334 /*
5335 * Force an interrupt so that we will call bge_link_upd
5336 * if needed and clear any pending link state attention.
5337 * Without this we are not getting any further interrupts
5338 * for link state changes and thus will not UP the link and
5339 * not be able to send in bge_start. The only way to get
5340 * things working was to receive a packet and get a RX intr.
5341 */
5342 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5343 sc->bge_flags & BGE_IS_5788)
5344 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5345 else
5346 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5347
5348 return rc;
5349 }
5350
5351 /*
5352 * Report current media status.
5353 */
5354 static void
5355 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5356 {
5357 struct bge_softc *sc = ifp->if_softc;
5358 struct mii_data *mii = &sc->bge_mii;
5359
5360 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5361 ifmr->ifm_status = IFM_AVALID;
5362 ifmr->ifm_active = IFM_ETHER;
5363 if (CSR_READ_4(sc, BGE_MAC_STS) &
5364 BGE_MACSTAT_TBI_PCS_SYNCHED)
5365 ifmr->ifm_status |= IFM_ACTIVE;
5366 ifmr->ifm_active |= IFM_1000_SX;
5367 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5368 ifmr->ifm_active |= IFM_HDX;
5369 else
5370 ifmr->ifm_active |= IFM_FDX;
5371 return;
5372 }
5373
5374 mii_pollstat(mii);
5375 ifmr->ifm_status = mii->mii_media_status;
5376 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5377 sc->bge_flowflags;
5378 }
5379
5380 static int
5381 bge_ifflags_cb(struct ethercom *ec)
5382 {
5383 struct ifnet *ifp = &ec->ec_if;
5384 struct bge_softc *sc = ifp->if_softc;
5385 int change = ifp->if_flags ^ sc->bge_if_flags;
5386
5387 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5388 return ENETRESET;
5389 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5390 return 0;
5391
5392 if ((ifp->if_flags & IFF_PROMISC) == 0)
5393 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5394 else
5395 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5396
5397 bge_setmulti(sc);
5398
5399 sc->bge_if_flags = ifp->if_flags;
5400 return 0;
5401 }
5402
5403 static int
5404 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5405 {
5406 struct bge_softc *sc = ifp->if_softc;
5407 struct ifreq *ifr = (struct ifreq *) data;
5408 int s, error = 0;
5409 struct mii_data *mii;
5410
5411 s = splnet();
5412
5413 switch (command) {
5414 case SIOCSIFMEDIA:
5415 /* XXX Flow control is not supported for 1000BASE-SX */
5416 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5417 ifr->ifr_media &= ~IFM_ETH_FMASK;
5418 sc->bge_flowflags = 0;
5419 }
5420
5421 /* Flow control requires full-duplex mode. */
5422 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5423 (ifr->ifr_media & IFM_FDX) == 0) {
5424 ifr->ifr_media &= ~IFM_ETH_FMASK;
5425 }
5426 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5427 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5428 /* We can do both TXPAUSE and RXPAUSE. */
5429 ifr->ifr_media |=
5430 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5431 }
5432 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5433 }
5434 /* FALLTHROUGH */
5435 case SIOCGIFMEDIA:
5436 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5437 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5438 command);
5439 } else {
5440 mii = &sc->bge_mii;
5441 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5442 command);
5443 }
5444 break;
5445 default:
5446 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5447 break;
5448
5449 error = 0;
5450
5451 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5452 ;
5453 else if (ifp->if_flags & IFF_RUNNING)
5454 bge_setmulti(sc);
5455 break;
5456 }
5457
5458 splx(s);
5459
5460 return error;
5461 }
5462
5463 static void
5464 bge_watchdog(struct ifnet *ifp)
5465 {
5466 struct bge_softc *sc;
5467
5468 sc = ifp->if_softc;
5469
5470 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5471
5472 ifp->if_flags &= ~IFF_RUNNING;
5473 bge_init(ifp);
5474
5475 ifp->if_oerrors++;
5476 }
5477
5478 static void
5479 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5480 {
5481 int i;
5482
5483 BGE_CLRBIT_FLUSH(sc, reg, bit);
5484
5485 for (i = 0; i < 1000; i++) {
5486 delay(100);
5487 if ((CSR_READ_4(sc, reg) & bit) == 0)
5488 return;
5489 }
5490
5491 /*
5492 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5493 * on some environment (and once after boot?)
5494 */
5495 if (reg != BGE_SRS_MODE)
5496 aprint_error_dev(sc->bge_dev,
5497 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5498 (u_long)reg, bit);
5499 }
5500
5501 /*
5502 * Stop the adapter and free any mbufs allocated to the
5503 * RX and TX lists.
5504 */
5505 static void
5506 bge_stop(struct ifnet *ifp, int disable)
5507 {
5508 struct bge_softc *sc = ifp->if_softc;
5509
5510 callout_stop(&sc->bge_timeout);
5511
5512 /* Disable host interrupts. */
5513 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5514 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5515
5516 /*
5517 * Tell firmware we're shutting down.
5518 */
5519 bge_stop_fw(sc);
5520 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5521
5522 /*
5523 * Disable all of the receiver blocks.
5524 */
5525 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5526 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5527 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5528 if (BGE_IS_5700_FAMILY(sc))
5529 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5530 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5531 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5532 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5533
5534 /*
5535 * Disable all of the transmit blocks.
5536 */
5537 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5538 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5539 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5540 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5541 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5542 if (BGE_IS_5700_FAMILY(sc))
5543 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5544 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5545
5546 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5547 delay(40);
5548
5549 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5550
5551 /*
5552 * Shut down all of the memory managers and related
5553 * state machines.
5554 */
5555 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5556 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5557 if (BGE_IS_5700_FAMILY(sc))
5558 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5559
5560 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5561 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5562
5563 if (BGE_IS_5700_FAMILY(sc)) {
5564 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5565 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5566 }
5567
5568 bge_reset(sc);
5569 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5570 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5571
5572 /*
5573 * Keep the ASF firmware running if up.
5574 */
5575 if (sc->bge_asf_mode & ASF_STACKUP)
5576 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5577 else
5578 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5579
5580 /* Free the RX lists. */
5581 bge_free_rx_ring_std(sc);
5582
5583 /* Free jumbo RX list. */
5584 if (BGE_IS_JUMBO_CAPABLE(sc))
5585 bge_free_rx_ring_jumbo(sc);
5586
5587 /* Free TX buffers. */
5588 bge_free_tx_ring(sc);
5589
5590 /*
5591 * Isolate/power down the PHY.
5592 */
5593 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5594 mii_down(&sc->bge_mii);
5595
5596 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5597
5598 /* Clear MAC's link state (PHY may still have link UP). */
5599 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5600
5601 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5602 }
5603
5604 static void
5605 bge_link_upd(struct bge_softc *sc)
5606 {
5607 struct ifnet *ifp = &sc->ethercom.ec_if;
5608 struct mii_data *mii = &sc->bge_mii;
5609 uint32_t status;
5610 int link;
5611
5612 /* Clear 'pending link event' flag */
5613 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5614
5615 /*
5616 * Process link state changes.
5617 * Grrr. The link status word in the status block does
5618 * not work correctly on the BCM5700 rev AX and BX chips,
5619 * according to all available information. Hence, we have
5620 * to enable MII interrupts in order to properly obtain
5621 * async link changes. Unfortunately, this also means that
5622 * we have to read the MAC status register to detect link
5623 * changes, thereby adding an additional register access to
5624 * the interrupt handler.
5625 */
5626
5627 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5628 status = CSR_READ_4(sc, BGE_MAC_STS);
5629 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5630 mii_pollstat(mii);
5631
5632 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5633 mii->mii_media_status & IFM_ACTIVE &&
5634 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5635 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5636 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5637 (!(mii->mii_media_status & IFM_ACTIVE) ||
5638 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5639 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5640
5641 /* Clear the interrupt */
5642 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5643 BGE_EVTENB_MI_INTERRUPT);
5644 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5645 BRGPHY_MII_ISR);
5646 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5647 BRGPHY_MII_IMR, BRGPHY_INTRS);
5648 }
5649 return;
5650 }
5651
5652 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5653 status = CSR_READ_4(sc, BGE_MAC_STS);
5654 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5655 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5656 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5657 if (BGE_ASICREV(sc->bge_chipid)
5658 == BGE_ASICREV_BCM5704) {
5659 BGE_CLRBIT(sc, BGE_MAC_MODE,
5660 BGE_MACMODE_TBI_SEND_CFGS);
5661 DELAY(40);
5662 }
5663 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5664 if_link_state_change(ifp, LINK_STATE_UP);
5665 }
5666 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5667 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5668 if_link_state_change(ifp, LINK_STATE_DOWN);
5669 }
5670 /*
5671 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5672 * This should not happen since mii callouts are locked now, but
5673 * we keep this check for debug.
5674 */
5675 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5676 /*
5677 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5678 * bit in status word always set. Workaround this bug by
5679 * reading PHY link status directly.
5680 */
5681 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5682 BGE_STS_LINK : 0;
5683
5684 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5685 mii_pollstat(mii);
5686
5687 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5688 mii->mii_media_status & IFM_ACTIVE &&
5689 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5690 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5691 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5692 (!(mii->mii_media_status & IFM_ACTIVE) ||
5693 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5694 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5695 }
5696 } else {
5697 /*
5698 * For controllers that call mii_tick, we have to poll
5699 * link status.
5700 */
5701 mii_pollstat(mii);
5702 bge_miibus_statchg(ifp);
5703 }
5704
5705 /* Clear the attention */
5706 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5707 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5708 BGE_MACSTAT_LINK_CHANGED);
5709 }
5710
5711 static int
5712 bge_sysctl_verify(SYSCTLFN_ARGS)
5713 {
5714 int error, t;
5715 struct sysctlnode node;
5716
5717 node = *rnode;
5718 t = *(int*)rnode->sysctl_data;
5719 node.sysctl_data = &t;
5720 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5721 if (error || newp == NULL)
5722 return error;
5723
5724 #if 0
5725 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5726 node.sysctl_num, rnode->sysctl_num));
5727 #endif
5728
5729 if (node.sysctl_num == bge_rxthresh_nodenum) {
5730 if (t < 0 || t >= NBGE_RX_THRESH)
5731 return EINVAL;
5732 bge_update_all_threshes(t);
5733 } else
5734 return EINVAL;
5735
5736 *(int*)rnode->sysctl_data = t;
5737
5738 return 0;
5739 }
5740
5741 /*
5742 * Set up sysctl(3) MIB, hw.bge.*.
5743 */
5744 static void
5745 bge_sysctl_init(struct bge_softc *sc)
5746 {
5747 int rc, bge_root_num;
5748 const struct sysctlnode *node;
5749
5750 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5751 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5752 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5753 goto out;
5754 }
5755
5756 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5757 0, CTLTYPE_NODE, "bge",
5758 SYSCTL_DESCR("BGE interface controls"),
5759 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5760 goto out;
5761 }
5762
5763 bge_root_num = node->sysctl_num;
5764
5765 /* BGE Rx interrupt mitigation level */
5766 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5767 CTLFLAG_READWRITE,
5768 CTLTYPE_INT, "rx_lvl",
5769 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5770 bge_sysctl_verify, 0,
5771 &bge_rx_thresh_lvl,
5772 0, CTL_HW, bge_root_num, CTL_CREATE,
5773 CTL_EOL)) != 0) {
5774 goto out;
5775 }
5776
5777 bge_rxthresh_nodenum = node->sysctl_num;
5778
5779 return;
5780
5781 out:
5782 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5783 }
5784
5785 #ifdef BGE_DEBUG
5786 void
5787 bge_debug_info(struct bge_softc *sc)
5788 {
5789
5790 printf("Hardware Flags:\n");
5791 if (BGE_IS_57765_PLUS(sc))
5792 printf(" - 57765 Plus\n");
5793 if (BGE_IS_5717_PLUS(sc))
5794 printf(" - 5717 Plus\n");
5795 if (BGE_IS_5755_PLUS(sc))
5796 printf(" - 5755 Plus\n");
5797 if (BGE_IS_575X_PLUS(sc))
5798 printf(" - 575X Plus\n");
5799 if (BGE_IS_5705_PLUS(sc))
5800 printf(" - 5705 Plus\n");
5801 if (BGE_IS_5714_FAMILY(sc))
5802 printf(" - 5714 Family\n");
5803 if (BGE_IS_5700_FAMILY(sc))
5804 printf(" - 5700 Family\n");
5805 if (sc->bge_flags & BGE_IS_5788)
5806 printf(" - 5788\n");
5807 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5808 printf(" - Supports Jumbo Frames\n");
5809 if (sc->bge_flags & BGE_NO_EEPROM)
5810 printf(" - No EEPROM\n");
5811 if (sc->bge_flags & BGE_PCIX)
5812 printf(" - PCI-X Bus\n");
5813 if (sc->bge_flags & BGE_PCIE)
5814 printf(" - PCI Express Bus\n");
5815 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5816 printf(" - RX Alignment Bug\n");
5817 if (sc->bge_flags & BGE_APE)
5818 printf(" - APE\n");
5819 if (sc->bge_flags & BGE_CPMU_PRESENT)
5820 printf(" - CPMU\n");
5821 if (sc->bge_flags & BGE_TSO)
5822 printf(" - TSO\n");
5823
5824 if (sc->bge_flags & BGE_PHY_NO_3LED)
5825 printf(" - No 3 LEDs\n");
5826 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5827 printf(" - CRC bug\n");
5828 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5829 printf(" - ADC bug\n");
5830 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5831 printf(" - 5704 A0 bug\n");
5832 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5833 printf(" - jitter bug\n");
5834 if (sc->bge_flags & BGE_PHY_BER_BUG)
5835 printf(" - BER bug\n");
5836 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5837 printf(" - adjust trim\n");
5838 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5839 printf(" - no wirespeed\n");
5840 }
5841 #endif /* BGE_DEBUG */
5842
5843 static int
5844 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5845 {
5846 prop_dictionary_t dict;
5847 prop_data_t ea;
5848
5849 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5850 return 1;
5851
5852 dict = device_properties(sc->bge_dev);
5853 ea = prop_dictionary_get(dict, "mac-address");
5854 if (ea != NULL) {
5855 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5856 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5857 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5858 return 0;
5859 }
5860
5861 return 1;
5862 }
5863
5864 static int
5865 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5866 {
5867 uint32_t mac_addr;
5868
5869 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5870 if ((mac_addr >> 16) == 0x484b) {
5871 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5872 ether_addr[1] = (uint8_t)mac_addr;
5873 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5874 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5875 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5876 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5877 ether_addr[5] = (uint8_t)mac_addr;
5878 return 0;
5879 }
5880 return 1;
5881 }
5882
5883 static int
5884 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5885 {
5886 int mac_offset = BGE_EE_MAC_OFFSET;
5887
5888 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5889 mac_offset = BGE_EE_MAC_OFFSET_5906;
5890
5891 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5892 ETHER_ADDR_LEN));
5893 }
5894
5895 static int
5896 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5897 {
5898
5899 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5900 return 1;
5901
5902 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5903 ETHER_ADDR_LEN));
5904 }
5905
5906 static int
5907 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5908 {
5909 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5910 /* NOTE: Order is critical */
5911 bge_get_eaddr_fw,
5912 bge_get_eaddr_mem,
5913 bge_get_eaddr_nvram,
5914 bge_get_eaddr_eeprom,
5915 NULL
5916 };
5917 const bge_eaddr_fcn_t *func;
5918
5919 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5920 if ((*func)(sc, eaddr) == 0)
5921 break;
5922 }
5923 return (*func == NULL ? ENXIO : 0);
5924 }
5925