Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.232
      1 /*	$NetBSD: if_bge.c,v 1.232 2013/04/02 12:27:02 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.232 2013/04/02 12:27:02 msaitoh Exp $");
     83 
     84 #include "vlan.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/device.h>
     94 #include <sys/socket.h>
     95 #include <sys/sysctl.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #include <sys/rnd.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP  Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 
    118 #include <net/bpf.h>
    119 
    120 #include <dev/pci/pcireg.h>
    121 #include <dev/pci/pcivar.h>
    122 #include <dev/pci/pcidevs.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/miidevs.h>
    127 #include <dev/mii/brgphyreg.h>
    128 
    129 #include <dev/pci/if_bgereg.h>
    130 #include <dev/pci/if_bgevar.h>
    131 
    132 #include <prop/proplib.h>
    133 
    134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    135 
    136 
    137 /*
    138  * Tunable thresholds for rx-side bge interrupt mitigation.
    139  */
    140 
    141 /*
    142  * The pairs of values below were obtained from empirical measurement
    143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    144  * interrupt for every N packets received, where N is, approximately,
    145  * the second value (rx_max_bds) in each pair.  The values are chosen
    146  * such that moving from one pair to the succeeding pair was observed
    147  * to roughly halve interrupt rate under sustained input packet load.
    148  * The values were empirically chosen to avoid overflowing internal
    149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    150  * results in internal wrapping and higher interrupt rates.
    151  * The limit of 46 frames was chosen to match NFS workloads.
    152  *
    153  * These values also work well on bcm5701, bcm5704C, and (less
    154  * tested) bcm5703.  On other chipsets, (including the Altima chip
    155  * family), the larger values may overflow internal chip limits,
    156  * leading to increasing interrupt rates rather than lower interrupt
    157  * rates.
    158  *
    159  * Applications using heavy interrupt mitigation (interrupting every
    160  * 32 or 46 frames) in both directions may need to increase the TCP
    161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    162  * full link bandwidth, due to ACKs and window updates lingering
    163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    164  */
    165 static const struct bge_load_rx_thresh {
    166 	int rx_ticks;
    167 	int rx_max_bds; }
    168 bge_rx_threshes[] = {
    169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    170 	{ 32,   2 },
    171 	{ 50,   4 },
    172 	{ 100,  8 },
    173 	{ 192, 16 },
    174 	{ 416, 32 },
    175 	{ 598, 46 }
    176 };
    177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    178 
    179 /* XXX patchable; should be sysctl'able */
    180 static int bge_auto_thresh = 1;
    181 static int bge_rx_thresh_lvl;
    182 
    183 static int bge_rxthresh_nodenum;
    184 
    185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    186 
    187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
    188 static int bge_probe(device_t, cfdata_t, void *);
    189 static void bge_attach(device_t, device_t, void *);
    190 static int bge_detach(device_t, int);
    191 static void bge_release_resources(struct bge_softc *);
    192 
    193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    198 
    199 static void bge_txeof(struct bge_softc *);
    200 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    201 static void bge_rxeof(struct bge_softc *);
    202 
    203 static void bge_asf_driver_up (struct bge_softc *);
    204 static void bge_tick(void *);
    205 static void bge_stats_update(struct bge_softc *);
    206 static void bge_stats_update_regs(struct bge_softc *);
    207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    208 
    209 static int bge_intr(void *);
    210 static void bge_start(struct ifnet *);
    211 static int bge_ifflags_cb(struct ethercom *);
    212 static int bge_ioctl(struct ifnet *, u_long, void *);
    213 static int bge_init(struct ifnet *);
    214 static void bge_stop(struct ifnet *, int);
    215 static void bge_watchdog(struct ifnet *);
    216 static int bge_ifmedia_upd(struct ifnet *);
    217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    218 
    219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    221 
    222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    224 static void bge_setmulti(struct bge_softc *);
    225 
    226 static void bge_handle_events(struct bge_softc *);
    227 static int bge_alloc_jumbo_mem(struct bge_softc *);
    228 #if 0 /* XXX */
    229 static void bge_free_jumbo_mem(struct bge_softc *);
    230 #endif
    231 static void *bge_jalloc(struct bge_softc *);
    232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    234 			       bus_dmamap_t);
    235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    236 static int bge_init_rx_ring_std(struct bge_softc *);
    237 static void bge_free_rx_ring_std(struct bge_softc *);
    238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    240 static void bge_free_tx_ring(struct bge_softc *);
    241 static int bge_init_tx_ring(struct bge_softc *);
    242 
    243 static int bge_chipinit(struct bge_softc *);
    244 static int bge_blockinit(struct bge_softc *);
    245 static int bge_phy_addr(struct bge_softc *);
    246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    247 static void bge_writemem_ind(struct bge_softc *, int, int);
    248 static void bge_writembx(struct bge_softc *, int, int);
    249 static void bge_writembx_flush(struct bge_softc *, int, int);
    250 static void bge_writemem_direct(struct bge_softc *, int, int);
    251 static void bge_writereg_ind(struct bge_softc *, int, int);
    252 static void bge_set_max_readrq(struct bge_softc *);
    253 
    254 static int bge_miibus_readreg(device_t, int, int);
    255 static void bge_miibus_writereg(device_t, int, int, int);
    256 static void bge_miibus_statchg(struct ifnet *);
    257 
    258 #define BGE_RESET_SHUTDOWN	0
    259 #define	BGE_RESET_START		1
    260 #define	BGE_RESET_SUSPEND	2
    261 static void bge_sig_post_reset(struct bge_softc *, int);
    262 static void bge_sig_legacy(struct bge_softc *, int);
    263 static void bge_sig_pre_reset(struct bge_softc *, int);
    264 static void bge_wait_for_event_ack(struct bge_softc *);
    265 static void bge_stop_fw(struct bge_softc *);
    266 static int bge_reset(struct bge_softc *);
    267 static void bge_link_upd(struct bge_softc *);
    268 static void bge_sysctl_init(struct bge_softc *);
    269 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    270 
    271 static void bge_ape_lock_init(struct bge_softc *);
    272 static void bge_ape_read_fw_ver(struct bge_softc *);
    273 static int bge_ape_lock(struct bge_softc *, int);
    274 static void bge_ape_unlock(struct bge_softc *, int);
    275 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    276 static void bge_ape_driver_state_change(struct bge_softc *, int);
    277 
    278 #ifdef BGE_DEBUG
    279 #define DPRINTF(x)	if (bgedebug) printf x
    280 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    281 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    282 int	bgedebug = 0;
    283 int	bge_tso_debug = 0;
    284 void		bge_debug_info(struct bge_softc *);
    285 #else
    286 #define DPRINTF(x)
    287 #define DPRINTFN(n,x)
    288 #define BGE_TSO_PRINTF(x)
    289 #endif
    290 
    291 #ifdef BGE_EVENT_COUNTERS
    292 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    293 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    294 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    295 #else
    296 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    297 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    298 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    299 #endif
    300 
    301 static const struct bge_product {
    302 	pci_vendor_id_t		bp_vendor;
    303 	pci_product_id_t	bp_product;
    304 	const char		*bp_name;
    305 } bge_products[] = {
    306 	/*
    307 	 * The BCM5700 documentation seems to indicate that the hardware
    308 	 * still has the Alteon vendor ID burned into it, though it
    309 	 * should always be overridden by the value in the EEPROM.  We'll
    310 	 * check for it anyway.
    311 	 */
    312 	{ PCI_VENDOR_ALTEON,
    313 	  PCI_PRODUCT_ALTEON_BCM5700,
    314 	  "Broadcom BCM5700 Gigabit Ethernet",
    315 	  },
    316 	{ PCI_VENDOR_ALTEON,
    317 	  PCI_PRODUCT_ALTEON_BCM5701,
    318 	  "Broadcom BCM5701 Gigabit Ethernet",
    319 	  },
    320 	{ PCI_VENDOR_ALTIMA,
    321 	  PCI_PRODUCT_ALTIMA_AC1000,
    322 	  "Altima AC1000 Gigabit Ethernet",
    323 	  },
    324 	{ PCI_VENDOR_ALTIMA,
    325 	  PCI_PRODUCT_ALTIMA_AC1001,
    326 	  "Altima AC1001 Gigabit Ethernet",
    327 	   },
    328 	{ PCI_VENDOR_ALTIMA,
    329 	  PCI_PRODUCT_ALTIMA_AC1003,
    330 	  "Altima AC1003 Gigabit Ethernet",
    331 	   },
    332 	{ PCI_VENDOR_ALTIMA,
    333 	  PCI_PRODUCT_ALTIMA_AC9100,
    334 	  "Altima AC9100 Gigabit Ethernet",
    335 	  },
    336 	{ PCI_VENDOR_APPLE,
    337 	  PCI_PRODUCT_APPLE_BCM5701,
    338 	  "APPLE BCM5701 Gigabit Ethernet",
    339 	  },
    340 	{ PCI_VENDOR_BROADCOM,
    341 	  PCI_PRODUCT_BROADCOM_BCM5700,
    342 	  "Broadcom BCM5700 Gigabit Ethernet",
    343 	  },
    344 	{ PCI_VENDOR_BROADCOM,
    345 	  PCI_PRODUCT_BROADCOM_BCM5701,
    346 	  "Broadcom BCM5701 Gigabit Ethernet",
    347 	  },
    348 	{ PCI_VENDOR_BROADCOM,
    349 	  PCI_PRODUCT_BROADCOM_BCM5702,
    350 	  "Broadcom BCM5702 Gigabit Ethernet",
    351 	  },
    352 	{ PCI_VENDOR_BROADCOM,
    353 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    354 	  "Broadcom BCM5702X Gigabit Ethernet" },
    355 	{ PCI_VENDOR_BROADCOM,
    356 	  PCI_PRODUCT_BROADCOM_BCM5703,
    357 	  "Broadcom BCM5703 Gigabit Ethernet",
    358 	  },
    359 	{ PCI_VENDOR_BROADCOM,
    360 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    361 	  "Broadcom BCM5703X Gigabit Ethernet",
    362 	  },
    363 	{ PCI_VENDOR_BROADCOM,
    364 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    365 	  "Broadcom BCM5703 Gigabit Ethernet",
    366 	  },
    367 	{ PCI_VENDOR_BROADCOM,
    368 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    369 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    370 	  },
    371 	{ PCI_VENDOR_BROADCOM,
    372 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    373 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    374 	  },
    375 	{ PCI_VENDOR_BROADCOM,
    376 	  PCI_PRODUCT_BROADCOM_BCM5705,
    377 	  "Broadcom BCM5705 Gigabit Ethernet",
    378 	  },
    379 	{ PCI_VENDOR_BROADCOM,
    380 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    381 	  "Broadcom BCM5705F Gigabit Ethernet",
    382 	  },
    383 	{ PCI_VENDOR_BROADCOM,
    384 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    385 	  "Broadcom BCM5705K Gigabit Ethernet",
    386 	  },
    387 	{ PCI_VENDOR_BROADCOM,
    388 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    389 	  "Broadcom BCM5705M Gigabit Ethernet",
    390 	  },
    391 	{ PCI_VENDOR_BROADCOM,
    392 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    393 	  "Broadcom BCM5705M Gigabit Ethernet",
    394 	  },
    395 	{ PCI_VENDOR_BROADCOM,
    396 	  PCI_PRODUCT_BROADCOM_BCM5714,
    397 	  "Broadcom BCM5714 Gigabit Ethernet",
    398 	  },
    399 	{ PCI_VENDOR_BROADCOM,
    400 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    401 	  "Broadcom BCM5714S Gigabit Ethernet",
    402 	  },
    403 	{ PCI_VENDOR_BROADCOM,
    404 	  PCI_PRODUCT_BROADCOM_BCM5715,
    405 	  "Broadcom BCM5715 Gigabit Ethernet",
    406 	  },
    407 	{ PCI_VENDOR_BROADCOM,
    408 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    409 	  "Broadcom BCM5715S Gigabit Ethernet",
    410 	  },
    411 	{ PCI_VENDOR_BROADCOM,
    412 	  PCI_PRODUCT_BROADCOM_BCM5717,
    413 	  "Broadcom BCM5717 Gigabit Ethernet",
    414 	  },
    415 	{ PCI_VENDOR_BROADCOM,
    416 	  PCI_PRODUCT_BROADCOM_BCM5718,
    417 	  "Broadcom BCM5718 Gigabit Ethernet",
    418 	  },
    419 	{ PCI_VENDOR_BROADCOM,
    420 	  PCI_PRODUCT_BROADCOM_BCM5719,
    421 	  "Broadcom BCM5719 Gigabit Ethernet",
    422 	  },
    423 	{ PCI_VENDOR_BROADCOM,
    424 	  PCI_PRODUCT_BROADCOM_BCM5720,
    425 	  "Broadcom BCM5720 Gigabit Ethernet",
    426 	  },
    427 	{ PCI_VENDOR_BROADCOM,
    428 	  PCI_PRODUCT_BROADCOM_BCM5721,
    429 	  "Broadcom BCM5721 Gigabit Ethernet",
    430 	  },
    431 	{ PCI_VENDOR_BROADCOM,
    432 	  PCI_PRODUCT_BROADCOM_BCM5722,
    433 	  "Broadcom BCM5722 Gigabit Ethernet",
    434 	  },
    435 	{ PCI_VENDOR_BROADCOM,
    436 	  PCI_PRODUCT_BROADCOM_BCM5723,
    437 	  "Broadcom BCM5723 Gigabit Ethernet",
    438 	  },
    439 	{ PCI_VENDOR_BROADCOM,
    440 	  PCI_PRODUCT_BROADCOM_BCM5724,
    441 	  "Broadcom BCM5724 Gigabit Ethernet",
    442 	  },
    443 	{ PCI_VENDOR_BROADCOM,
    444 	  PCI_PRODUCT_BROADCOM_BCM5750,
    445 	  "Broadcom BCM5750 Gigabit Ethernet",
    446 	  },
    447 	{ PCI_VENDOR_BROADCOM,
    448 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    449 	  "Broadcom BCM5750M Gigabit Ethernet",
    450 	  },
    451 	{ PCI_VENDOR_BROADCOM,
    452 	  PCI_PRODUCT_BROADCOM_BCM5751,
    453 	  "Broadcom BCM5751 Gigabit Ethernet",
    454 	  },
    455 	{ PCI_VENDOR_BROADCOM,
    456 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    457 	  "Broadcom BCM5751F Gigabit Ethernet",
    458 	  },
    459 	{ PCI_VENDOR_BROADCOM,
    460 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    461 	  "Broadcom BCM5751M Gigabit Ethernet",
    462 	  },
    463 	{ PCI_VENDOR_BROADCOM,
    464 	  PCI_PRODUCT_BROADCOM_BCM5752,
    465 	  "Broadcom BCM5752 Gigabit Ethernet",
    466 	  },
    467 	{ PCI_VENDOR_BROADCOM,
    468 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    469 	  "Broadcom BCM5752M Gigabit Ethernet",
    470 	  },
    471 	{ PCI_VENDOR_BROADCOM,
    472 	  PCI_PRODUCT_BROADCOM_BCM5753,
    473 	  "Broadcom BCM5753 Gigabit Ethernet",
    474 	  },
    475 	{ PCI_VENDOR_BROADCOM,
    476 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    477 	  "Broadcom BCM5753F Gigabit Ethernet",
    478 	  },
    479 	{ PCI_VENDOR_BROADCOM,
    480 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    481 	  "Broadcom BCM5753M Gigabit Ethernet",
    482 	  },
    483 	{ PCI_VENDOR_BROADCOM,
    484 	  PCI_PRODUCT_BROADCOM_BCM5754,
    485 	  "Broadcom BCM5754 Gigabit Ethernet",
    486 	},
    487 	{ PCI_VENDOR_BROADCOM,
    488 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    489 	  "Broadcom BCM5754M Gigabit Ethernet",
    490 	},
    491 	{ PCI_VENDOR_BROADCOM,
    492 	  PCI_PRODUCT_BROADCOM_BCM5755,
    493 	  "Broadcom BCM5755 Gigabit Ethernet",
    494 	},
    495 	{ PCI_VENDOR_BROADCOM,
    496 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    497 	  "Broadcom BCM5755M Gigabit Ethernet",
    498 	},
    499 	{ PCI_VENDOR_BROADCOM,
    500 	  PCI_PRODUCT_BROADCOM_BCM5756,
    501 	  "Broadcom BCM5756 Gigabit Ethernet",
    502 	},
    503 	{ PCI_VENDOR_BROADCOM,
    504 	  PCI_PRODUCT_BROADCOM_BCM5761,
    505 	  "Broadcom BCM5761 Gigabit Ethernet",
    506 	},
    507 	{ PCI_VENDOR_BROADCOM,
    508 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    509 	  "Broadcom BCM5761E Gigabit Ethernet",
    510 	},
    511 	{ PCI_VENDOR_BROADCOM,
    512 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    513 	  "Broadcom BCM5761S Gigabit Ethernet",
    514 	},
    515 	{ PCI_VENDOR_BROADCOM,
    516 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    517 	  "Broadcom BCM5761SE Gigabit Ethernet",
    518 	},
    519 	{ PCI_VENDOR_BROADCOM,
    520 	  PCI_PRODUCT_BROADCOM_BCM5764,
    521 	  "Broadcom BCM5764 Gigabit Ethernet",
    522 	  },
    523 	{ PCI_VENDOR_BROADCOM,
    524 	  PCI_PRODUCT_BROADCOM_BCM5780,
    525 	  "Broadcom BCM5780 Gigabit Ethernet",
    526 	  },
    527 	{ PCI_VENDOR_BROADCOM,
    528 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    529 	  "Broadcom BCM5780S Gigabit Ethernet",
    530 	  },
    531 	{ PCI_VENDOR_BROADCOM,
    532 	  PCI_PRODUCT_BROADCOM_BCM5781,
    533 	  "Broadcom BCM5781 Gigabit Ethernet",
    534 	  },
    535 	{ PCI_VENDOR_BROADCOM,
    536 	  PCI_PRODUCT_BROADCOM_BCM5782,
    537 	  "Broadcom BCM5782 Gigabit Ethernet",
    538 	},
    539 	{ PCI_VENDOR_BROADCOM,
    540 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    541 	  "BCM5784M NetLink 1000baseT Ethernet",
    542 	},
    543 	{ PCI_VENDOR_BROADCOM,
    544 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    545 	  "BCM5785F NetLink 10/100 Ethernet",
    546 	},
    547 	{ PCI_VENDOR_BROADCOM,
    548 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    549 	  "BCM5785G NetLink 1000baseT Ethernet",
    550 	},
    551 	{ PCI_VENDOR_BROADCOM,
    552 	  PCI_PRODUCT_BROADCOM_BCM5786,
    553 	  "Broadcom BCM5786 Gigabit Ethernet",
    554 	},
    555 	{ PCI_VENDOR_BROADCOM,
    556 	  PCI_PRODUCT_BROADCOM_BCM5787,
    557 	  "Broadcom BCM5787 Gigabit Ethernet",
    558 	},
    559 	{ PCI_VENDOR_BROADCOM,
    560 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    561 	  "Broadcom BCM5787F 10/100 Ethernet",
    562 	},
    563 	{ PCI_VENDOR_BROADCOM,
    564 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    565 	  "Broadcom BCM5787M Gigabit Ethernet",
    566 	},
    567 	{ PCI_VENDOR_BROADCOM,
    568 	  PCI_PRODUCT_BROADCOM_BCM5788,
    569 	  "Broadcom BCM5788 Gigabit Ethernet",
    570 	  },
    571 	{ PCI_VENDOR_BROADCOM,
    572 	  PCI_PRODUCT_BROADCOM_BCM5789,
    573 	  "Broadcom BCM5789 Gigabit Ethernet",
    574 	  },
    575 	{ PCI_VENDOR_BROADCOM,
    576 	  PCI_PRODUCT_BROADCOM_BCM5901,
    577 	  "Broadcom BCM5901 Fast Ethernet",
    578 	  },
    579 	{ PCI_VENDOR_BROADCOM,
    580 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    581 	  "Broadcom BCM5901A2 Fast Ethernet",
    582 	  },
    583 	{ PCI_VENDOR_BROADCOM,
    584 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    585 	  "Broadcom BCM5903M Fast Ethernet",
    586 	  },
    587 	{ PCI_VENDOR_BROADCOM,
    588 	  PCI_PRODUCT_BROADCOM_BCM5906,
    589 	  "Broadcom BCM5906 Fast Ethernet",
    590 	  },
    591 	{ PCI_VENDOR_BROADCOM,
    592 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    593 	  "Broadcom BCM5906M Fast Ethernet",
    594 	  },
    595 	{ PCI_VENDOR_BROADCOM,
    596 	  PCI_PRODUCT_BROADCOM_BCM57760,
    597 	  "Broadcom BCM57760 Fast Ethernet",
    598 	  },
    599 	{ PCI_VENDOR_BROADCOM,
    600 	  PCI_PRODUCT_BROADCOM_BCM57761,
    601 	  "Broadcom BCM57761 Fast Ethernet",
    602 	  },
    603 	{ PCI_VENDOR_BROADCOM,
    604 	  PCI_PRODUCT_BROADCOM_BCM57762,
    605 	  "Broadcom BCM57762 Gigabit Ethernet",
    606 	  },
    607 	{ PCI_VENDOR_BROADCOM,
    608 	  PCI_PRODUCT_BROADCOM_BCM57765,
    609 	  "Broadcom BCM57765 Fast Ethernet",
    610 	  },
    611 	{ PCI_VENDOR_BROADCOM,
    612 	  PCI_PRODUCT_BROADCOM_BCM57766,
    613 	  "Broadcom BCM57766 Fast Ethernet",
    614 	  },
    615 	{ PCI_VENDOR_BROADCOM,
    616 	  PCI_PRODUCT_BROADCOM_BCM57780,
    617 	  "Broadcom BCM57780 Fast Ethernet",
    618 	  },
    619 	{ PCI_VENDOR_BROADCOM,
    620 	  PCI_PRODUCT_BROADCOM_BCM57781,
    621 	  "Broadcom BCM57781 Fast Ethernet",
    622 	  },
    623 	{ PCI_VENDOR_BROADCOM,
    624 	  PCI_PRODUCT_BROADCOM_BCM57782,
    625 	  "Broadcom BCM57782 Fast Ethernet",
    626 	  },
    627 	{ PCI_VENDOR_BROADCOM,
    628 	  PCI_PRODUCT_BROADCOM_BCM57785,
    629 	  "Broadcom BCM57785 Fast Ethernet",
    630 	  },
    631 	{ PCI_VENDOR_BROADCOM,
    632 	  PCI_PRODUCT_BROADCOM_BCM57786,
    633 	  "Broadcom BCM57786 Fast Ethernet",
    634 	  },
    635 	{ PCI_VENDOR_BROADCOM,
    636 	  PCI_PRODUCT_BROADCOM_BCM57788,
    637 	  "Broadcom BCM57788 Fast Ethernet",
    638 	  },
    639 	{ PCI_VENDOR_BROADCOM,
    640 	  PCI_PRODUCT_BROADCOM_BCM57790,
    641 	  "Broadcom BCM57790 Fast Ethernet",
    642 	  },
    643 	{ PCI_VENDOR_BROADCOM,
    644 	  PCI_PRODUCT_BROADCOM_BCM57791,
    645 	  "Broadcom BCM57791 Fast Ethernet",
    646 	  },
    647 	{ PCI_VENDOR_BROADCOM,
    648 	  PCI_PRODUCT_BROADCOM_BCM57795,
    649 	  "Broadcom BCM57795 Fast Ethernet",
    650 	  },
    651 	{ PCI_VENDOR_SCHNEIDERKOCH,
    652 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    653 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    654 	  },
    655 	{ PCI_VENDOR_3COM,
    656 	  PCI_PRODUCT_3COM_3C996,
    657 	  "3Com 3c996 Gigabit Ethernet",
    658 	  },
    659 	{ PCI_VENDOR_FUJITSU4,
    660 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    661 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    662 	  },
    663 	{ PCI_VENDOR_FUJITSU4,
    664 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    665 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    666 	  },
    667 	{ PCI_VENDOR_FUJITSU4,
    668 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    669 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    670 	  },
    671 	{ 0,
    672 	  0,
    673 	  NULL },
    674 };
    675 
    676 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    677 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    678 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
    679 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    680 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
    681 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
    682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    683 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    684 
    685 static const struct bge_revision {
    686 	uint32_t		br_chipid;
    687 	const char		*br_name;
    688 } bge_revisions[] = {
    689 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    690 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    691 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    692 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    693 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    694 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    695 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    696 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    697 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    698 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    699 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    700 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    701 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    702 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    703 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    704 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    705 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    706 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    707 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    708 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    709 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    710 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    711 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    712 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    713 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    714 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    715 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    716 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    717 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    718 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    719 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    720 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    721 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    722 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    723 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    724 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    725 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    726 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    727 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    728 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    729 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    730 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    731 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    732 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    733 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    734 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    735 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    736 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    737 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    738 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    739 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    740 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    741 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    742 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    743 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    744 	/* 5754 and 5787 share the same ASIC ID */
    745 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    746 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    747 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    748 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    749 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    750 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    751 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    752 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    753 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    754 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    755 
    756 	{ 0, NULL }
    757 };
    758 
    759 /*
    760  * Some defaults for major revisions, so that newer steppings
    761  * that we don't know about have a shot at working.
    762  */
    763 static const struct bge_revision bge_majorrevs[] = {
    764 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    765 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    766 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    767 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    768 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    769 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    770 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    771 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    772 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    773 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    774 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    775 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    776 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    777 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    778 	/* 5754 and 5787 share the same ASIC ID */
    779 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    780 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    781 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    782 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    783 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    784 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    785 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    786 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    787 
    788 	{ 0, NULL }
    789 };
    790 
    791 static int bge_allow_asf = 1;
    792 
    793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    794     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    795 
    796 static uint32_t
    797 bge_readmem_ind(struct bge_softc *sc, int off)
    798 {
    799 	pcireg_t val;
    800 
    801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    802 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    803 		return 0;
    804 
    805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    806 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    807 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    808 	return val;
    809 }
    810 
    811 static void
    812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    813 {
    814 
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    817 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    818 }
    819 
    820 /*
    821  * PCI Express only
    822  */
    823 static void
    824 bge_set_max_readrq(struct bge_softc *sc)
    825 {
    826 	pcireg_t val;
    827 
    828 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    829 	    + PCI_PCIE_DCSR);
    830 	val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
    831 	switch (sc->bge_expmrq) {
    832 	case 2048:
    833 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    834 		break;
    835 	case 4096:
    836 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    837 		break;
    838 	default:
    839 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    840 		break;
    841 	}
    842 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    843 	    + PCI_PCIE_DCSR, val);
    844 }
    845 
    846 #ifdef notdef
    847 static uint32_t
    848 bge_readreg_ind(struct bge_softc *sc, int off)
    849 {
    850 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    851 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    852 }
    853 #endif
    854 
    855 static void
    856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    857 {
    858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    859 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    860 }
    861 
    862 static void
    863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    864 {
    865 	CSR_WRITE_4(sc, off, val);
    866 }
    867 
    868 static void
    869 bge_writembx(struct bge_softc *sc, int off, int val)
    870 {
    871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    872 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    873 
    874 	CSR_WRITE_4(sc, off, val);
    875 }
    876 
    877 static void
    878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    879 {
    880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    881 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    882 
    883 	CSR_WRITE_4_FLUSH(sc, off, val);
    884 }
    885 
    886 /*
    887  * Clear all stale locks and select the lock for this driver instance.
    888  */
    889 void
    890 bge_ape_lock_init(struct bge_softc *sc)
    891 {
    892 	struct pci_attach_args *pa = &(sc->bge_pa);
    893 	uint32_t bit, regbase;
    894 	int i;
    895 
    896 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    897 		regbase = BGE_APE_LOCK_GRANT;
    898 	else
    899 		regbase = BGE_APE_PER_LOCK_GRANT;
    900 
    901 	/* Clear any stale locks. */
    902 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    903 		switch (i) {
    904 		case BGE_APE_LOCK_PHY0:
    905 		case BGE_APE_LOCK_PHY1:
    906 		case BGE_APE_LOCK_PHY2:
    907 		case BGE_APE_LOCK_PHY3:
    908 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    909 			break;
    910 		default:
    911 			if (pa->pa_function == 0)
    912 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    913 			else
    914 				bit = (1 << pa->pa_function);
    915 		}
    916 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    917 	}
    918 
    919 	/* Select the PHY lock based on the device's function number. */
    920 	switch (pa->pa_function) {
    921 	case 0:
    922 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    923 		break;
    924 	case 1:
    925 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    926 		break;
    927 	case 2:
    928 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    929 		break;
    930 	case 3:
    931 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    932 		break;
    933 	default:
    934 		printf("%s: PHY lock not supported on function\n",
    935 		    device_xname(sc->bge_dev));
    936 		break;
    937 	}
    938 }
    939 
    940 /*
    941  * Check for APE firmware, set flags, and print version info.
    942  */
    943 void
    944 bge_ape_read_fw_ver(struct bge_softc *sc)
    945 {
    946 	const char *fwtype;
    947 	uint32_t apedata, features;
    948 
    949 	/* Check for a valid APE signature in shared memory. */
    950 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    951 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    952 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    953 		return;
    954 	}
    955 
    956 	/* Check if APE firmware is running. */
    957 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    958 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    959 		printf("%s: APE signature found but FW status not ready! "
    960 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    961 		return;
    962 	}
    963 
    964 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    965 
    966 	/* Fetch the APE firwmare type and version. */
    967 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    968 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    969 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    970 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    971 		fwtype = "NCSI";
    972 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    973 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    974 		fwtype = "DASH";
    975 	} else
    976 		fwtype = "UNKN";
    977 
    978 	/* Print the APE firmware version. */
    979 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
    980 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    982 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    983 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    984 }
    985 
    986 int
    987 bge_ape_lock(struct bge_softc *sc, int locknum)
    988 {
    989 	struct pci_attach_args *pa = &(sc->bge_pa);
    990 	uint32_t bit, gnt, req, status;
    991 	int i, off;
    992 
    993 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    994 		return (0);
    995 
    996 	/* Lock request/grant registers have different bases. */
    997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    998 		req = BGE_APE_LOCK_REQ;
    999 		gnt = BGE_APE_LOCK_GRANT;
   1000 	} else {
   1001 		req = BGE_APE_PER_LOCK_REQ;
   1002 		gnt = BGE_APE_PER_LOCK_GRANT;
   1003 	}
   1004 
   1005 	off = 4 * locknum;
   1006 
   1007 	switch (locknum) {
   1008 	case BGE_APE_LOCK_GPIO:
   1009 		/* Lock required when using GPIO. */
   1010 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1011 			return (0);
   1012 		if (pa->pa_function == 0)
   1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1014 		else
   1015 			bit = (1 << pa->pa_function);
   1016 		break;
   1017 	case BGE_APE_LOCK_GRC:
   1018 		/* Lock required to reset the device. */
   1019 		if (pa->pa_function == 0)
   1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1021 		else
   1022 			bit = (1 << pa->pa_function);
   1023 		break;
   1024 	case BGE_APE_LOCK_MEM:
   1025 		/* Lock required when accessing certain APE memory. */
   1026 		if (pa->pa_function == 0)
   1027 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1028 		else
   1029 			bit = (1 << pa->pa_function);
   1030 		break;
   1031 	case BGE_APE_LOCK_PHY0:
   1032 	case BGE_APE_LOCK_PHY1:
   1033 	case BGE_APE_LOCK_PHY2:
   1034 	case BGE_APE_LOCK_PHY3:
   1035 		/* Lock required when accessing PHYs. */
   1036 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1037 		break;
   1038 	default:
   1039 		return (EINVAL);
   1040 	}
   1041 
   1042 	/* Request a lock. */
   1043 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1044 
   1045 	/* Wait up to 1 second to acquire lock. */
   1046 	for (i = 0; i < 20000; i++) {
   1047 		status = APE_READ_4(sc, gnt + off);
   1048 		if (status == bit)
   1049 			break;
   1050 		DELAY(50);
   1051 	}
   1052 
   1053 	/* Handle any errors. */
   1054 	if (status != bit) {
   1055 		printf("%s: APE lock %d request failed! "
   1056 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1057 		    device_xname(sc->bge_dev),
   1058 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1059 		    status & 0xFFFF);
   1060 		/* Revoke the lock request. */
   1061 		APE_WRITE_4(sc, gnt + off, bit);
   1062 		return (EBUSY);
   1063 	}
   1064 
   1065 	return (0);
   1066 }
   1067 
   1068 void
   1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1070 {
   1071 	struct pci_attach_args *pa = &(sc->bge_pa);
   1072 	uint32_t bit, gnt;
   1073 	int off;
   1074 
   1075 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1076 		return;
   1077 
   1078 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1079 		gnt = BGE_APE_LOCK_GRANT;
   1080 	else
   1081 		gnt = BGE_APE_PER_LOCK_GRANT;
   1082 
   1083 	off = 4 * locknum;
   1084 
   1085 	switch (locknum) {
   1086 	case BGE_APE_LOCK_GPIO:
   1087 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1088 			return;
   1089 		if (pa->pa_function == 0)
   1090 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1091 		else
   1092 			bit = (1 << pa->pa_function);
   1093 		break;
   1094 	case BGE_APE_LOCK_GRC:
   1095 		if (pa->pa_function == 0)
   1096 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1097 		else
   1098 			bit = (1 << pa->pa_function);
   1099 		break;
   1100 	case BGE_APE_LOCK_MEM:
   1101 		if (pa->pa_function == 0)
   1102 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1103 		else
   1104 			bit = (1 << pa->pa_function);
   1105 		break;
   1106 	case BGE_APE_LOCK_PHY0:
   1107 	case BGE_APE_LOCK_PHY1:
   1108 	case BGE_APE_LOCK_PHY2:
   1109 	case BGE_APE_LOCK_PHY3:
   1110 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1111 		break;
   1112 	default:
   1113 		return;
   1114 	}
   1115 
   1116 	/* Write and flush for consecutive bge_ape_lock() */
   1117 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1118 }
   1119 
   1120 /*
   1121  * Send an event to the APE firmware.
   1122  */
   1123 void
   1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1125 {
   1126 	uint32_t apedata;
   1127 	int i;
   1128 
   1129 	/* NCSI does not support APE events. */
   1130 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1131 		return;
   1132 
   1133 	/* Wait up to 1ms for APE to service previous event. */
   1134 	for (i = 10; i > 0; i--) {
   1135 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1136 			break;
   1137 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1138 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1139 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1140 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1141 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1142 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1143 			break;
   1144 		}
   1145 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1146 		DELAY(100);
   1147 	}
   1148 	if (i == 0) {
   1149 		printf("%s: APE event 0x%08x send timed out\n",
   1150 		    device_xname(sc->bge_dev), event);
   1151 	}
   1152 }
   1153 
   1154 void
   1155 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1156 {
   1157 	uint32_t apedata, event;
   1158 
   1159 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1160 		return;
   1161 
   1162 	switch (kind) {
   1163 	case BGE_RESET_START:
   1164 		/* If this is the first load, clear the load counter. */
   1165 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1166 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1167 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1168 		else {
   1169 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1170 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1171 		}
   1172 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1173 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1174 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1175 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1176 
   1177 		/* Add some version info if bge(4) supports it. */
   1178 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1179 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1180 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1181 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1183 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1184 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1185 		    BGE_APE_HOST_DRVR_STATE_START);
   1186 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1187 		break;
   1188 	case BGE_RESET_SHUTDOWN:
   1189 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1190 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1191 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1192 		break;
   1193 	case BGE_RESET_SUSPEND:
   1194 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1195 		break;
   1196 	default:
   1197 		return;
   1198 	}
   1199 
   1200 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1201 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1202 }
   1203 
   1204 static uint8_t
   1205 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1206 {
   1207 	uint32_t access, byte = 0;
   1208 	int i;
   1209 
   1210 	/* Lock. */
   1211 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1212 	for (i = 0; i < 8000; i++) {
   1213 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1214 			break;
   1215 		DELAY(20);
   1216 	}
   1217 	if (i == 8000)
   1218 		return 1;
   1219 
   1220 	/* Enable access. */
   1221 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1222 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1223 
   1224 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1225 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1226 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1227 		DELAY(10);
   1228 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1229 			DELAY(10);
   1230 			break;
   1231 		}
   1232 	}
   1233 
   1234 	if (i == BGE_TIMEOUT * 10) {
   1235 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1236 		return 1;
   1237 	}
   1238 
   1239 	/* Get result. */
   1240 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1241 
   1242 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1243 
   1244 	/* Disable access. */
   1245 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1246 
   1247 	/* Unlock. */
   1248 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1249 
   1250 	return 0;
   1251 }
   1252 
   1253 /*
   1254  * Read a sequence of bytes from NVRAM.
   1255  */
   1256 static int
   1257 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1258 {
   1259 	int error = 0, i;
   1260 	uint8_t byte = 0;
   1261 
   1262 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1263 		return 1;
   1264 
   1265 	for (i = 0; i < cnt; i++) {
   1266 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1267 		if (error)
   1268 			break;
   1269 		*(dest + i) = byte;
   1270 	}
   1271 
   1272 	return (error ? 1 : 0);
   1273 }
   1274 
   1275 /*
   1276  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1277  * BCM570x supports both the traditional bitbang interface and an
   1278  * auto access interface for reading the EEPROM. We use the auto
   1279  * access method.
   1280  */
   1281 static uint8_t
   1282 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1283 {
   1284 	int i;
   1285 	uint32_t byte = 0;
   1286 
   1287 	/*
   1288 	 * Enable use of auto EEPROM access so we can avoid
   1289 	 * having to use the bitbang method.
   1290 	 */
   1291 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1292 
   1293 	/* Reset the EEPROM, load the clock period. */
   1294 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1295 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1296 	DELAY(20);
   1297 
   1298 	/* Issue the read EEPROM command. */
   1299 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1300 
   1301 	/* Wait for completion */
   1302 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1303 		DELAY(10);
   1304 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1305 			break;
   1306 	}
   1307 
   1308 	if (i == BGE_TIMEOUT * 10) {
   1309 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1310 		return 1;
   1311 	}
   1312 
   1313 	/* Get result. */
   1314 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1315 
   1316 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1317 
   1318 	return 0;
   1319 }
   1320 
   1321 /*
   1322  * Read a sequence of bytes from the EEPROM.
   1323  */
   1324 static int
   1325 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1326 {
   1327 	int error = 0, i;
   1328 	uint8_t byte = 0;
   1329 	char *dest = destv;
   1330 
   1331 	for (i = 0; i < cnt; i++) {
   1332 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1333 		if (error)
   1334 			break;
   1335 		*(dest + i) = byte;
   1336 	}
   1337 
   1338 	return (error ? 1 : 0);
   1339 }
   1340 
   1341 static int
   1342 bge_miibus_readreg(device_t dev, int phy, int reg)
   1343 {
   1344 	struct bge_softc *sc = device_private(dev);
   1345 	uint32_t val;
   1346 	uint32_t autopoll;
   1347 	int i;
   1348 
   1349 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1350 		return 0;
   1351 
   1352 	/* Reading with autopolling on may trigger PCI errors */
   1353 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1354 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1355 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1356 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1357 		DELAY(80);
   1358 	}
   1359 
   1360 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1361 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1362 
   1363 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1364 		delay(10);
   1365 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1366 		if (!(val & BGE_MICOMM_BUSY)) {
   1367 			DELAY(5);
   1368 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1369 			break;
   1370 		}
   1371 	}
   1372 
   1373 	if (i == BGE_TIMEOUT) {
   1374 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1375 		val = 0;
   1376 		goto done;
   1377 	}
   1378 
   1379 done:
   1380 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1381 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1382 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1383 		DELAY(80);
   1384 	}
   1385 
   1386 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1387 
   1388 	if (val & BGE_MICOMM_READFAIL)
   1389 		return 0;
   1390 
   1391 	return (val & 0xFFFF);
   1392 }
   1393 
   1394 static void
   1395 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1396 {
   1397 	struct bge_softc *sc = device_private(dev);
   1398 	uint32_t autopoll;
   1399 	int i;
   1400 
   1401 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1402 		return;
   1403 
   1404 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1405 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1406 		return;
   1407 
   1408 	/* Reading with autopolling on may trigger PCI errors */
   1409 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1410 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1411 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1412 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1413 		DELAY(80);
   1414 	}
   1415 
   1416 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1417 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1418 
   1419 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1420 		delay(10);
   1421 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1422 			delay(5);
   1423 			CSR_READ_4(sc, BGE_MI_COMM);
   1424 			break;
   1425 		}
   1426 	}
   1427 
   1428 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1429 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1430 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1431 		delay(80);
   1432 	}
   1433 
   1434 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1435 
   1436 	if (i == BGE_TIMEOUT)
   1437 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1438 }
   1439 
   1440 static void
   1441 bge_miibus_statchg(struct ifnet *ifp)
   1442 {
   1443 	struct bge_softc *sc = ifp->if_softc;
   1444 	struct mii_data *mii = &sc->bge_mii;
   1445 	uint32_t mac_mode, rx_mode, tx_mode;
   1446 
   1447 	/*
   1448 	 * Get flow control negotiation result.
   1449 	 */
   1450 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1451 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1452 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1453 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1454 	}
   1455 
   1456 	/* Set the port mode (MII/GMII) to match the link speed. */
   1457 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1458 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1459 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1460 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1461 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1462 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1463 		mac_mode |= BGE_PORTMODE_GMII;
   1464 	else
   1465 		mac_mode |= BGE_PORTMODE_MII;
   1466 
   1467 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1468 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1469 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1470 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1471 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1472 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1473 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1474 	} else
   1475 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1476 
   1477 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1478 	DELAY(40);
   1479 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1480 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1481 }
   1482 
   1483 /*
   1484  * Update rx threshold levels to values in a particular slot
   1485  * of the interrupt-mitigation table bge_rx_threshes.
   1486  */
   1487 static void
   1488 bge_set_thresh(struct ifnet *ifp, int lvl)
   1489 {
   1490 	struct bge_softc *sc = ifp->if_softc;
   1491 	int s;
   1492 
   1493 	/* For now, just save the new Rx-intr thresholds and record
   1494 	 * that a threshold update is pending.  Updating the hardware
   1495 	 * registers here (even at splhigh()) is observed to
   1496 	 * occasionaly cause glitches where Rx-interrupts are not
   1497 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1498 	 */
   1499 	s = splnet();
   1500 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1501 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1502 	sc->bge_pending_rxintr_change = 1;
   1503 	splx(s);
   1504 }
   1505 
   1506 
   1507 /*
   1508  * Update Rx thresholds of all bge devices
   1509  */
   1510 static void
   1511 bge_update_all_threshes(int lvl)
   1512 {
   1513 	struct ifnet *ifp;
   1514 	const char * const namebuf = "bge";
   1515 	int namelen;
   1516 
   1517 	if (lvl < 0)
   1518 		lvl = 0;
   1519 	else if (lvl >= NBGE_RX_THRESH)
   1520 		lvl = NBGE_RX_THRESH - 1;
   1521 
   1522 	namelen = strlen(namebuf);
   1523 	/*
   1524 	 * Now search all the interfaces for this name/number
   1525 	 */
   1526 	IFNET_FOREACH(ifp) {
   1527 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1528 		      continue;
   1529 		/* We got a match: update if doing auto-threshold-tuning */
   1530 		if (bge_auto_thresh)
   1531 			bge_set_thresh(ifp, lvl);
   1532 	}
   1533 }
   1534 
   1535 /*
   1536  * Handle events that have triggered interrupts.
   1537  */
   1538 static void
   1539 bge_handle_events(struct bge_softc *sc)
   1540 {
   1541 
   1542 	return;
   1543 }
   1544 
   1545 /*
   1546  * Memory management for jumbo frames.
   1547  */
   1548 
   1549 static int
   1550 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1551 {
   1552 	char *ptr, *kva;
   1553 	bus_dma_segment_t	seg;
   1554 	int		i, rseg, state, error;
   1555 	struct bge_jpool_entry   *entry;
   1556 
   1557 	state = error = 0;
   1558 
   1559 	/* Grab a big chunk o' storage. */
   1560 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1561 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1562 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1563 		return ENOBUFS;
   1564 	}
   1565 
   1566 	state = 1;
   1567 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1568 	    BUS_DMA_NOWAIT)) {
   1569 		aprint_error_dev(sc->bge_dev,
   1570 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1571 		error = ENOBUFS;
   1572 		goto out;
   1573 	}
   1574 
   1575 	state = 2;
   1576 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1577 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1578 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1579 		error = ENOBUFS;
   1580 		goto out;
   1581 	}
   1582 
   1583 	state = 3;
   1584 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1585 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1586 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1587 		error = ENOBUFS;
   1588 		goto out;
   1589 	}
   1590 
   1591 	state = 4;
   1592 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1593 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1594 
   1595 	SLIST_INIT(&sc->bge_jfree_listhead);
   1596 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1597 
   1598 	/*
   1599 	 * Now divide it up into 9K pieces and save the addresses
   1600 	 * in an array.
   1601 	 */
   1602 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1603 	for (i = 0; i < BGE_JSLOTS; i++) {
   1604 		sc->bge_cdata.bge_jslots[i] = ptr;
   1605 		ptr += BGE_JLEN;
   1606 		entry = malloc(sizeof(struct bge_jpool_entry),
   1607 		    M_DEVBUF, M_NOWAIT);
   1608 		if (entry == NULL) {
   1609 			aprint_error_dev(sc->bge_dev,
   1610 			    "no memory for jumbo buffer queue!\n");
   1611 			error = ENOBUFS;
   1612 			goto out;
   1613 		}
   1614 		entry->slot = i;
   1615 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1616 				 entry, jpool_entries);
   1617 	}
   1618 out:
   1619 	if (error != 0) {
   1620 		switch (state) {
   1621 		case 4:
   1622 			bus_dmamap_unload(sc->bge_dmatag,
   1623 			    sc->bge_cdata.bge_rx_jumbo_map);
   1624 		case 3:
   1625 			bus_dmamap_destroy(sc->bge_dmatag,
   1626 			    sc->bge_cdata.bge_rx_jumbo_map);
   1627 		case 2:
   1628 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1629 		case 1:
   1630 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1631 			break;
   1632 		default:
   1633 			break;
   1634 		}
   1635 	}
   1636 
   1637 	return error;
   1638 }
   1639 
   1640 /*
   1641  * Allocate a jumbo buffer.
   1642  */
   1643 static void *
   1644 bge_jalloc(struct bge_softc *sc)
   1645 {
   1646 	struct bge_jpool_entry   *entry;
   1647 
   1648 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1649 
   1650 	if (entry == NULL) {
   1651 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1652 		return NULL;
   1653 	}
   1654 
   1655 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1656 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1657 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1658 }
   1659 
   1660 /*
   1661  * Release a jumbo buffer.
   1662  */
   1663 static void
   1664 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1665 {
   1666 	struct bge_jpool_entry *entry;
   1667 	struct bge_softc *sc;
   1668 	int i, s;
   1669 
   1670 	/* Extract the softc struct pointer. */
   1671 	sc = (struct bge_softc *)arg;
   1672 
   1673 	if (sc == NULL)
   1674 		panic("bge_jfree: can't find softc pointer!");
   1675 
   1676 	/* calculate the slot this buffer belongs to */
   1677 
   1678 	i = ((char *)buf
   1679 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1680 
   1681 	if ((i < 0) || (i >= BGE_JSLOTS))
   1682 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1683 
   1684 	s = splvm();
   1685 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1686 	if (entry == NULL)
   1687 		panic("bge_jfree: buffer not in use!");
   1688 	entry->slot = i;
   1689 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1690 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1691 
   1692 	if (__predict_true(m != NULL))
   1693   		pool_cache_put(mb_cache, m);
   1694 	splx(s);
   1695 }
   1696 
   1697 
   1698 /*
   1699  * Initialize a standard receive ring descriptor.
   1700  */
   1701 static int
   1702 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1703     bus_dmamap_t dmamap)
   1704 {
   1705 	struct mbuf		*m_new = NULL;
   1706 	struct bge_rx_bd	*r;
   1707 	int			error;
   1708 
   1709 	if (dmamap == NULL) {
   1710 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1711 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1712 		if (error != 0)
   1713 			return error;
   1714 	}
   1715 
   1716 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1717 
   1718 	if (m == NULL) {
   1719 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1720 		if (m_new == NULL)
   1721 			return ENOBUFS;
   1722 
   1723 		MCLGET(m_new, M_DONTWAIT);
   1724 		if (!(m_new->m_flags & M_EXT)) {
   1725 			m_freem(m_new);
   1726 			return ENOBUFS;
   1727 		}
   1728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1729 
   1730 	} else {
   1731 		m_new = m;
   1732 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1733 		m_new->m_data = m_new->m_ext.ext_buf;
   1734 	}
   1735 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1736 	    m_adj(m_new, ETHER_ALIGN);
   1737 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1738 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1739 		return ENOBUFS;
   1740 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1741 	    BUS_DMASYNC_PREREAD);
   1742 
   1743 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1744 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1745 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1746 	r->bge_flags = BGE_RXBDFLAG_END;
   1747 	r->bge_len = m_new->m_len;
   1748 	r->bge_idx = i;
   1749 
   1750 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1751 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1752 		i * sizeof (struct bge_rx_bd),
   1753 	    sizeof (struct bge_rx_bd),
   1754 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1755 
   1756 	return 0;
   1757 }
   1758 
   1759 /*
   1760  * Initialize a jumbo receive ring descriptor. This allocates
   1761  * a jumbo buffer from the pool managed internally by the driver.
   1762  */
   1763 static int
   1764 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1765 {
   1766 	struct mbuf *m_new = NULL;
   1767 	struct bge_rx_bd *r;
   1768 	void *buf = NULL;
   1769 
   1770 	if (m == NULL) {
   1771 
   1772 		/* Allocate the mbuf. */
   1773 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1774 		if (m_new == NULL)
   1775 			return ENOBUFS;
   1776 
   1777 		/* Allocate the jumbo buffer */
   1778 		buf = bge_jalloc(sc);
   1779 		if (buf == NULL) {
   1780 			m_freem(m_new);
   1781 			aprint_error_dev(sc->bge_dev,
   1782 			    "jumbo allocation failed -- packet dropped!\n");
   1783 			return ENOBUFS;
   1784 		}
   1785 
   1786 		/* Attach the buffer to the mbuf. */
   1787 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1788 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1789 		    bge_jfree, sc);
   1790 		m_new->m_flags |= M_EXT_RW;
   1791 	} else {
   1792 		m_new = m;
   1793 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1794 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1795 	}
   1796 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1797 	    m_adj(m_new, ETHER_ALIGN);
   1798 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1799 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1800 	    BUS_DMASYNC_PREREAD);
   1801 	/* Set up the descriptor. */
   1802 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1803 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1804 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1805 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1806 	r->bge_len = m_new->m_len;
   1807 	r->bge_idx = i;
   1808 
   1809 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1810 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1811 		i * sizeof (struct bge_rx_bd),
   1812 	    sizeof (struct bge_rx_bd),
   1813 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1814 
   1815 	return 0;
   1816 }
   1817 
   1818 /*
   1819  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1820  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1821  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1822  * the NIC.
   1823  */
   1824 static int
   1825 bge_init_rx_ring_std(struct bge_softc *sc)
   1826 {
   1827 	int i;
   1828 
   1829 	if (sc->bge_flags & BGE_RXRING_VALID)
   1830 		return 0;
   1831 
   1832 	for (i = 0; i < BGE_SSLOTS; i++) {
   1833 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1834 			return ENOBUFS;
   1835 	}
   1836 
   1837 	sc->bge_std = i - 1;
   1838 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1839 
   1840 	sc->bge_flags |= BGE_RXRING_VALID;
   1841 
   1842 	return 0;
   1843 }
   1844 
   1845 static void
   1846 bge_free_rx_ring_std(struct bge_softc *sc)
   1847 {
   1848 	int i;
   1849 
   1850 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1851 		return;
   1852 
   1853 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1854 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1855 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1856 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1857 			bus_dmamap_destroy(sc->bge_dmatag,
   1858 			    sc->bge_cdata.bge_rx_std_map[i]);
   1859 		}
   1860 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1861 		    sizeof(struct bge_rx_bd));
   1862 	}
   1863 
   1864 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1865 }
   1866 
   1867 static int
   1868 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1869 {
   1870 	int i;
   1871 	volatile struct bge_rcb *rcb;
   1872 
   1873 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1874 		return 0;
   1875 
   1876 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1877 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1878 			return ENOBUFS;
   1879 	}
   1880 
   1881 	sc->bge_jumbo = i - 1;
   1882 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1883 
   1884 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1885 	rcb->bge_maxlen_flags = 0;
   1886 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1887 
   1888 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1889 
   1890 	return 0;
   1891 }
   1892 
   1893 static void
   1894 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1895 {
   1896 	int i;
   1897 
   1898 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1899 		return;
   1900 
   1901 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1902 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1903 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1904 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1905 		}
   1906 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1907 		    sizeof(struct bge_rx_bd));
   1908 	}
   1909 
   1910 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1911 }
   1912 
   1913 static void
   1914 bge_free_tx_ring(struct bge_softc *sc)
   1915 {
   1916 	int i;
   1917 	struct txdmamap_pool_entry *dma;
   1918 
   1919 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1920 		return;
   1921 
   1922 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1923 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1924 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1925 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1926 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1927 					    link);
   1928 			sc->txdma[i] = 0;
   1929 		}
   1930 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1931 		    sizeof(struct bge_tx_bd));
   1932 	}
   1933 
   1934 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1935 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1936 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1937 		free(dma, M_DEVBUF);
   1938 	}
   1939 
   1940 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1941 }
   1942 
   1943 static int
   1944 bge_init_tx_ring(struct bge_softc *sc)
   1945 {
   1946 	int i;
   1947 	bus_dmamap_t dmamap;
   1948 	struct txdmamap_pool_entry *dma;
   1949 
   1950 	if (sc->bge_flags & BGE_TXRING_VALID)
   1951 		return 0;
   1952 
   1953 	sc->bge_txcnt = 0;
   1954 	sc->bge_tx_saved_considx = 0;
   1955 
   1956 	/* Initialize transmit producer index for host-memory send ring. */
   1957 	sc->bge_tx_prodidx = 0;
   1958 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1959 	/* 5700 b2 errata */
   1960 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1961 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1962 
   1963 	/* NIC-memory send ring not used; initialize to zero. */
   1964 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1965 	/* 5700 b2 errata */
   1966 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1967 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1968 
   1969 	SLIST_INIT(&sc->txdma_list);
   1970 	for (i = 0; i < BGE_RSLOTS; i++) {
   1971 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1972 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1973 		    &dmamap))
   1974 			return ENOBUFS;
   1975 		if (dmamap == NULL)
   1976 			panic("dmamap NULL in bge_init_tx_ring");
   1977 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1978 		if (dma == NULL) {
   1979 			aprint_error_dev(sc->bge_dev,
   1980 			    "can't alloc txdmamap_pool_entry\n");
   1981 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1982 			return ENOMEM;
   1983 		}
   1984 		dma->dmamap = dmamap;
   1985 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1986 	}
   1987 
   1988 	sc->bge_flags |= BGE_TXRING_VALID;
   1989 
   1990 	return 0;
   1991 }
   1992 
   1993 static void
   1994 bge_setmulti(struct bge_softc *sc)
   1995 {
   1996 	struct ethercom		*ac = &sc->ethercom;
   1997 	struct ifnet		*ifp = &ac->ec_if;
   1998 	struct ether_multi	*enm;
   1999 	struct ether_multistep  step;
   2000 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2001 	uint32_t		h;
   2002 	int			i;
   2003 
   2004 	if (ifp->if_flags & IFF_PROMISC)
   2005 		goto allmulti;
   2006 
   2007 	/* Now program new ones. */
   2008 	ETHER_FIRST_MULTI(step, ac, enm);
   2009 	while (enm != NULL) {
   2010 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2011 			/*
   2012 			 * We must listen to a range of multicast addresses.
   2013 			 * For now, just accept all multicasts, rather than
   2014 			 * trying to set only those filter bits needed to match
   2015 			 * the range.  (At this time, the only use of address
   2016 			 * ranges is for IP multicast routing, for which the
   2017 			 * range is big enough to require all bits set.)
   2018 			 */
   2019 			goto allmulti;
   2020 		}
   2021 
   2022 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2023 
   2024 		/* Just want the 7 least-significant bits. */
   2025 		h &= 0x7f;
   2026 
   2027 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2028 		ETHER_NEXT_MULTI(step, enm);
   2029 	}
   2030 
   2031 	ifp->if_flags &= ~IFF_ALLMULTI;
   2032 	goto setit;
   2033 
   2034  allmulti:
   2035 	ifp->if_flags |= IFF_ALLMULTI;
   2036 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2037 
   2038  setit:
   2039 	for (i = 0; i < 4; i++)
   2040 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2041 }
   2042 
   2043 static void
   2044 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2045 {
   2046 
   2047 	/*
   2048 	 * Some chips don't like this so only do this if ASF is enabled
   2049 	 */
   2050 	if (sc->bge_asf_mode)
   2051 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2052 
   2053 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2054 		switch (type) {
   2055 		case BGE_RESET_START:
   2056 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2057 			    BGE_FW_DRV_STATE_START);
   2058 			break;
   2059 		case BGE_RESET_SHUTDOWN:
   2060 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2061 			    BGE_FW_DRV_STATE_UNLOAD);
   2062 			break;
   2063 		case BGE_RESET_SUSPEND:
   2064 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2065 			    BGE_FW_DRV_STATE_SUSPEND);
   2066 			break;
   2067 		}
   2068 	}
   2069 
   2070 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2071 		bge_ape_driver_state_change(sc, type);
   2072 }
   2073 
   2074 static void
   2075 bge_sig_post_reset(struct bge_softc *sc, int type)
   2076 {
   2077 
   2078 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2079 		switch (type) {
   2080 		case BGE_RESET_START:
   2081 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2082 			    BGE_FW_DRV_STATE_START_DONE);
   2083 			/* START DONE */
   2084 			break;
   2085 		case BGE_RESET_SHUTDOWN:
   2086 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2087 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2088 			break;
   2089 		}
   2090 	}
   2091 
   2092 	if (type == BGE_RESET_SHUTDOWN)
   2093 		bge_ape_driver_state_change(sc, type);
   2094 }
   2095 
   2096 static void
   2097 bge_sig_legacy(struct bge_softc *sc, int type)
   2098 {
   2099 
   2100 	if (sc->bge_asf_mode) {
   2101 		switch (type) {
   2102 		case BGE_RESET_START:
   2103 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2104 			    BGE_FW_DRV_STATE_START);
   2105 			break;
   2106 		case BGE_RESET_SHUTDOWN:
   2107 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2108 			    BGE_FW_DRV_STATE_UNLOAD);
   2109 			break;
   2110 		}
   2111 	}
   2112 }
   2113 
   2114 static void
   2115 bge_wait_for_event_ack(struct bge_softc *sc)
   2116 {
   2117 	int i;
   2118 
   2119 	/* wait up to 2500usec */
   2120 	for (i = 0; i < 250; i++) {
   2121 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2122 			BGE_RX_CPU_DRV_EVENT))
   2123 			break;
   2124 		DELAY(10);
   2125 	}
   2126 }
   2127 
   2128 static void
   2129 bge_stop_fw(struct bge_softc *sc)
   2130 {
   2131 
   2132 	if (sc->bge_asf_mode) {
   2133 		bge_wait_for_event_ack(sc);
   2134 
   2135 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2136 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2137 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2138 
   2139 		bge_wait_for_event_ack(sc);
   2140 	}
   2141 }
   2142 
   2143 static int
   2144 bge_poll_fw(struct bge_softc *sc)
   2145 {
   2146 	uint32_t val;
   2147 	int i;
   2148 
   2149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2150 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2151 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2152 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2153 				break;
   2154 			DELAY(100);
   2155 		}
   2156 		if (i >= BGE_TIMEOUT) {
   2157 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2158 			return -1;
   2159 		}
   2160 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   2161 		/*
   2162 		 * Poll the value location we just wrote until
   2163 		 * we see the 1's complement of the magic number.
   2164 		 * This indicates that the firmware initialization
   2165 		 * is complete.
   2166 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2167 		 */
   2168 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2169 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2170 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2171 				break;
   2172 			DELAY(10);
   2173 		}
   2174 
   2175 		if (i >= BGE_TIMEOUT) {
   2176 			aprint_error_dev(sc->bge_dev,
   2177 			    "firmware handshake timed out, val = %x\n", val);
   2178 			return -1;
   2179 		}
   2180 	}
   2181 
   2182 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2183 		/* tg3 says we have to wait extra time */
   2184 		delay(10 * 1000);
   2185 	}
   2186 
   2187 	return 0;
   2188 }
   2189 
   2190 int
   2191 bge_phy_addr(struct bge_softc *sc)
   2192 {
   2193 	struct pci_attach_args *pa = &(sc->bge_pa);
   2194 	int phy_addr = 1;
   2195 
   2196 	/*
   2197 	 * PHY address mapping for various devices.
   2198 	 *
   2199 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2200 	 * ---------+-------+-------+-------+-------+
   2201 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2202 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2203 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2204 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2205 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2206 	 *
   2207 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2208 	 * ---------+-------+-------+-------+-------+
   2209 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2210 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2211 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2212 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2213 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2214 	 *
   2215 	 * Other addresses may respond but they are not
   2216 	 * IEEE compliant PHYs and should be ignored.
   2217 	 */
   2218 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2219 	case BGE_ASICREV_BCM5717:
   2220 	case BGE_ASICREV_BCM5719:
   2221 	case BGE_ASICREV_BCM5720:
   2222 		phy_addr = pa->pa_function;
   2223 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2224 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2225 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2226 		} else {
   2227 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2228 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2229 		}
   2230 	}
   2231 
   2232 	return phy_addr;
   2233 }
   2234 
   2235 /*
   2236  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2237  * self-test results.
   2238  */
   2239 static int
   2240 bge_chipinit(struct bge_softc *sc)
   2241 {
   2242 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2243 	int i;
   2244 
   2245 	/* Set endianness before we access any non-PCI registers. */
   2246 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2247 	    BGE_INIT);
   2248 
   2249 	/*
   2250 	 * Clear the MAC statistics block in the NIC's
   2251 	 * internal memory.
   2252 	 */
   2253 	for (i = BGE_STATS_BLOCK;
   2254 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2255 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2256 
   2257 	for (i = BGE_STATUS_BLOCK;
   2258 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2259 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2260 
   2261 	/* 5717 workaround from tg3 */
   2262 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2263 		/* Save */
   2264 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2265 
   2266 		/* Temporary modify MODE_CTL to control TLP */
   2267 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2268 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2269 
   2270 		/* Control TLP */
   2271 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2272 		    BGE_TLP_PHYCTL1);
   2273 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2274 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2275 
   2276 		/* Restore */
   2277 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2278 	}
   2279 
   2280 	/* XXX Should we use 57765_FAMILY? */
   2281 	if (BGE_IS_57765_PLUS(sc)) {
   2282 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2283 			/* Save */
   2284 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2285 
   2286 			/* Temporary modify MODE_CTL to control TLP */
   2287 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2288 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2289 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2290 
   2291 			/* Control TLP */
   2292 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2293 			    BGE_TLP_PHYCTL5);
   2294 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2295 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2296 
   2297 			/* Restore */
   2298 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2299 		}
   2300 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2301 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2302 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2303 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2304 
   2305 			/* Save */
   2306 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2307 
   2308 			/* Temporary modify MODE_CTL to control TLP */
   2309 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2310 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2311 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2312 
   2313 			/* Control TLP */
   2314 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2315 			    BGE_TLP_FTSMAX);
   2316 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2317 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2318 			    reg | BGE_TLP_FTSMAX_VAL);
   2319 
   2320 			/* Restore */
   2321 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2322 		}
   2323 
   2324 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2325 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2326 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2327 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2328 	}
   2329 
   2330 	/* Set up the PCI DMA control register. */
   2331 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2332 	if (sc->bge_flags & BGE_PCIE) {
   2333 		/* Read watermark not used, 128 bytes for write. */
   2334 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2335 		    device_xname(sc->bge_dev)));
   2336 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2337 	} else if (sc->bge_flags & BGE_PCIX) {
   2338 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2339 		    device_xname(sc->bge_dev)));
   2340 		/* PCI-X bus */
   2341 		if (BGE_IS_5714_FAMILY(sc)) {
   2342 			/* 256 bytes for read and write. */
   2343 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2344 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2345 
   2346 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2347 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2348 			else
   2349 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2350 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2351 			/* 1536 bytes for read, 384 bytes for write. */
   2352 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2353 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2354 		} else {
   2355 			/* 384 bytes for read and write. */
   2356 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2357 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2358 			    (0x0F);
   2359 		}
   2360 
   2361 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2362 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2363 			uint32_t tmp;
   2364 
   2365 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2366 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2367 			if (tmp == 6 || tmp == 7)
   2368 				dma_rw_ctl |=
   2369 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2370 
   2371 			/* Set PCI-X DMA write workaround. */
   2372 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2373 		}
   2374 	} else {
   2375 		/* Conventional PCI bus: 256 bytes for read and write. */
   2376 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2377 		    device_xname(sc->bge_dev)));
   2378 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2379 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2380 
   2381 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2382 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2383 			dma_rw_ctl |= 0x0F;
   2384 	}
   2385 
   2386 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2387 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2388 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2389 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2390 
   2391 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2392 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2393 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2394 
   2395 	if (BGE_IS_5717_PLUS(sc)) {
   2396 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2397 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2398 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2399 
   2400 		/*
   2401 		 * Enable HW workaround for controllers that misinterpret
   2402 		 * a status tag update and leave interrupts permanently
   2403 		 * disabled.
   2404 		 */
   2405 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2406 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   2407 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2408 	}
   2409 
   2410 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2411 	    dma_rw_ctl);
   2412 
   2413 	/*
   2414 	 * Set up general mode register.
   2415 	 */
   2416 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2417 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2418 		/* Retain Host-2-BMC settings written by APE firmware. */
   2419 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2420 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2421 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2422 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2423 	}
   2424 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2425 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2426 
   2427 	/*
   2428 	 * BCM5701 B5 have a bug causing data corruption when using
   2429 	 * 64-bit DMA reads, which can be terminated early and then
   2430 	 * completed later as 32-bit accesses, in combination with
   2431 	 * certain bridges.
   2432 	 */
   2433 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2434 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2435 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2436 
   2437 	/*
   2438 	 * Tell the firmware the driver is running
   2439 	 */
   2440 	if (sc->bge_asf_mode & ASF_STACKUP)
   2441 		mode_ctl |= BGE_MODECTL_STACKUP;
   2442 
   2443 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2444 
   2445 	/*
   2446 	 * Disable memory write invalidate.  Apparently it is not supported
   2447 	 * properly by these devices.
   2448 	 */
   2449 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2450 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2451 
   2452 #ifdef __brokenalpha__
   2453 	/*
   2454 	 * Must insure that we do not cross an 8K (bytes) boundary
   2455 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2456 	 * restriction on some ALPHA platforms with early revision
   2457 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2458 	 */
   2459 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2460 #endif
   2461 
   2462 	/* Set the timer prescaler (always 66MHz) */
   2463 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2464 
   2465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2466 		DELAY(40);	/* XXX */
   2467 
   2468 		/* Put PHY into ready state */
   2469 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2470 		DELAY(40);
   2471 	}
   2472 
   2473 	return 0;
   2474 }
   2475 
   2476 static int
   2477 bge_blockinit(struct bge_softc *sc)
   2478 {
   2479 	volatile struct bge_rcb	 *rcb;
   2480 	bus_size_t rcb_addr;
   2481 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2482 	bge_hostaddr taddr;
   2483 	uint32_t	dmactl, val;
   2484 	int		i, limit;
   2485 
   2486 	/*
   2487 	 * Initialize the memory window pointer register so that
   2488 	 * we can access the first 32K of internal NIC RAM. This will
   2489 	 * allow us to set up the TX send ring RCBs and the RX return
   2490 	 * ring RCBs, plus other things which live in NIC memory.
   2491 	 */
   2492 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2493 
   2494 	/* Step 33: Configure mbuf memory pool */
   2495 	if (!BGE_IS_5705_PLUS(sc)) {
   2496 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2497 		    BGE_BUFFPOOL_1);
   2498 
   2499 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2500 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2501 		else
   2502 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2503 
   2504 		/* Configure DMA resource pool */
   2505 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2506 		    BGE_DMA_DESCRIPTORS);
   2507 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2508 	}
   2509 
   2510 	/* Step 35: Configure mbuf pool watermarks */
   2511 	/* new broadcom docs strongly recommend these: */
   2512 	if (BGE_IS_5717_PLUS(sc)) {
   2513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2515 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2516 	} else if (BGE_IS_5705_PLUS(sc)) {
   2517 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2518 
   2519 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2520 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2521 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2522 		} else {
   2523 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2524 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2525 		}
   2526 	} else {
   2527 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2528 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2529 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2530 	}
   2531 
   2532 	/* Step 36: Configure DMA resource watermarks */
   2533 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2534 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2535 
   2536 	/* Step 38: Enable buffer manager */
   2537 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2538 	/*
   2539 	 * Change the arbitration algorithm of TXMBUF read request to
   2540 	 * round-robin instead of priority based for BCM5719.  When
   2541 	 * TXFIFO is almost empty, RDMA will hold its request until
   2542 	 * TXFIFO is not almost empty.
   2543 	 */
   2544 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2545 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2546 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2547 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2548 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2549 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2550 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2551 
   2552 	/* Step 39: Poll for buffer manager start indication */
   2553 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2554 		DELAY(10);
   2555 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2556 			break;
   2557 	}
   2558 
   2559 	if (i == BGE_TIMEOUT * 2) {
   2560 		aprint_error_dev(sc->bge_dev,
   2561 		    "buffer manager failed to start\n");
   2562 		return ENXIO;
   2563 	}
   2564 
   2565 	/* Step 40: Enable flow-through queues */
   2566 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2567 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2568 
   2569 	/* Wait until queue initialization is complete */
   2570 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2571 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2572 			break;
   2573 		DELAY(10);
   2574 	}
   2575 
   2576 	if (i == BGE_TIMEOUT * 2) {
   2577 		aprint_error_dev(sc->bge_dev,
   2578 		    "flow-through queue init failed\n");
   2579 		return ENXIO;
   2580 	}
   2581 
   2582 	/*
   2583 	 * Summary of rings supported by the controller:
   2584 	 *
   2585 	 * Standard Receive Producer Ring
   2586 	 * - This ring is used to feed receive buffers for "standard"
   2587 	 *   sized frames (typically 1536 bytes) to the controller.
   2588 	 *
   2589 	 * Jumbo Receive Producer Ring
   2590 	 * - This ring is used to feed receive buffers for jumbo sized
   2591 	 *   frames (i.e. anything bigger than the "standard" frames)
   2592 	 *   to the controller.
   2593 	 *
   2594 	 * Mini Receive Producer Ring
   2595 	 * - This ring is used to feed receive buffers for "mini"
   2596 	 *   sized frames to the controller.
   2597 	 * - This feature required external memory for the controller
   2598 	 *   but was never used in a production system.  Should always
   2599 	 *   be disabled.
   2600 	 *
   2601 	 * Receive Return Ring
   2602 	 * - After the controller has placed an incoming frame into a
   2603 	 *   receive buffer that buffer is moved into a receive return
   2604 	 *   ring.  The driver is then responsible to passing the
   2605 	 *   buffer up to the stack.  Many versions of the controller
   2606 	 *   support multiple RR rings.
   2607 	 *
   2608 	 * Send Ring
   2609 	 * - This ring is used for outgoing frames.  Many versions of
   2610 	 *   the controller support multiple send rings.
   2611 	 */
   2612 
   2613 	/* Step 41: Initialize the standard RX ring control block */
   2614 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2615 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2616 	if (BGE_IS_5717_PLUS(sc)) {
   2617 		/*
   2618 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2619 		 * Bits 15-2 : Maximum RX frame size
   2620 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2621 		 * Bit 0     : Reserved
   2622 		 */
   2623 		rcb->bge_maxlen_flags =
   2624 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2625 	} else if (BGE_IS_5705_PLUS(sc)) {
   2626 		/*
   2627 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2628 		 * Bits 15-2 : Reserved (should be 0)
   2629 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2630 		 * Bit 0     : Reserved
   2631 		 */
   2632 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2633 	} else {
   2634 		/*
   2635 		 * Ring size is always XXX entries
   2636 		 * Bits 31-16: Maximum RX frame size
   2637 		 * Bits 15-2 : Reserved (should be 0)
   2638 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2639 		 * Bit 0     : Reserved
   2640 		 */
   2641 		rcb->bge_maxlen_flags =
   2642 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2643 	}
   2644 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2646 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2647 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2648 	else
   2649 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2650 	/* Write the standard receive producer ring control block. */
   2651 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2652 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2653 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2654 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2655 
   2656 	/* Reset the standard receive producer ring producer index. */
   2657 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2658 
   2659 	/*
   2660 	 * Step 42: Initialize the jumbo RX ring control block
   2661 	 * We set the 'ring disabled' bit in the flags
   2662 	 * field until we're actually ready to start
   2663 	 * using this ring (i.e. once we set the MTU
   2664 	 * high enough to require it).
   2665 	 */
   2666 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2667 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2668 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2669 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2670 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2671 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2672 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2673 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2674 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2675 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2676 		else
   2677 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2678 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2679 		    rcb->bge_hostaddr.bge_addr_hi);
   2680 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2681 		    rcb->bge_hostaddr.bge_addr_lo);
   2682 		/* Program the jumbo receive producer ring RCB parameters. */
   2683 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2684 		    rcb->bge_maxlen_flags);
   2685 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2686 		/* Reset the jumbo receive producer ring producer index. */
   2687 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2688 	}
   2689 
   2690 	/* Disable the mini receive producer ring RCB. */
   2691 	if (BGE_IS_5700_FAMILY(sc)) {
   2692 		/* Set up dummy disabled mini ring RCB */
   2693 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2694 		rcb->bge_maxlen_flags =
   2695 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2696 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2697 		    rcb->bge_maxlen_flags);
   2698 		/* Reset the mini receive producer ring producer index. */
   2699 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2700 
   2701 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2702 		    offsetof(struct bge_ring_data, bge_info),
   2703 		    sizeof (struct bge_gib),
   2704 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2705 	}
   2706 
   2707 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2708 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2709 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2710 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2711 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2712 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2713 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2714 	}
   2715 	/*
   2716 	 * The BD ring replenish thresholds control how often the
   2717 	 * hardware fetches new BD's from the producer rings in host
   2718 	 * memory.  Setting the value too low on a busy system can
   2719 	 * starve the hardware and recue the throughpout.
   2720 	 *
   2721 	 * Set the BD ring replenish thresholds. The recommended
   2722 	 * values are 1/8th the number of descriptors allocated to
   2723 	 * each ring, but since we try to avoid filling the entire
   2724 	 * ring we set these to the minimal value of 8.  This needs to
   2725 	 * be done on several of the supported chip revisions anyway,
   2726 	 * to work around HW bugs.
   2727 	 */
   2728 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2729 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2730 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2731 
   2732 	if (BGE_IS_5717_PLUS(sc)) {
   2733 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2734 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2735 	}
   2736 
   2737 	/*
   2738 	 * Disable all send rings by setting the 'ring disabled' bit
   2739 	 * in the flags field of all the TX send ring control blocks,
   2740 	 * located in NIC memory.
   2741 	 */
   2742 	if (BGE_IS_5700_FAMILY(sc)) {
   2743 		/* 5700 to 5704 had 16 send rings. */
   2744 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2745 	} else
   2746 		limit = 1;
   2747 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2748 	for (i = 0; i < limit; i++) {
   2749 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2750 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2751 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2752 		rcb_addr += sizeof(struct bge_rcb);
   2753 	}
   2754 
   2755 	/* Configure send ring RCB 0 (we use only the first ring) */
   2756 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2757 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2758 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2759 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2760 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2761 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2762 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2763 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2764 	else
   2765 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2766 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2767 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2768 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2769 
   2770 	/*
   2771 	 * Disable all receive return rings by setting the
   2772 	 * 'ring diabled' bit in the flags field of all the receive
   2773 	 * return ring control blocks, located in NIC memory.
   2774 	 */
   2775 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2776 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2777 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2778 		/* Should be 17, use 16 until we get an SRAM map. */
   2779 		limit = 16;
   2780 	} else if (BGE_IS_5700_FAMILY(sc))
   2781 		limit = BGE_RX_RINGS_MAX;
   2782 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2783 	    BGE_IS_57765_PLUS(sc))
   2784 		limit = 4;
   2785 	else
   2786 		limit = 1;
   2787 	/* Disable all receive return rings */
   2788 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2789 	for (i = 0; i < limit; i++) {
   2790 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2791 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2792 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2793 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2794 			BGE_RCB_FLAG_RING_DISABLED));
   2795 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2796 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2797 		    (i * (sizeof(uint64_t))), 0);
   2798 		rcb_addr += sizeof(struct bge_rcb);
   2799 	}
   2800 
   2801 	/*
   2802 	 * Set up receive return ring 0.  Note that the NIC address
   2803 	 * for RX return rings is 0x0.  The return rings live entirely
   2804 	 * within the host, so the nicaddr field in the RCB isn't used.
   2805 	 */
   2806 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2807 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2808 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2809 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2810 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2811 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2812 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2813 
   2814 	/* Set random backoff seed for TX */
   2815 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2816 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2817 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2818 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
   2819 	    BGE_TX_BACKOFF_SEED_MASK);
   2820 
   2821 	/* Set inter-packet gap */
   2822 	val = 0x2620;
   2823 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2824 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2825 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2826 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2827 
   2828 	/*
   2829 	 * Specify which ring to use for packets that don't match
   2830 	 * any RX rules.
   2831 	 */
   2832 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2833 
   2834 	/*
   2835 	 * Configure number of RX lists. One interrupt distribution
   2836 	 * list, sixteen active lists, one bad frames class.
   2837 	 */
   2838 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2839 
   2840 	/* Inialize RX list placement stats mask. */
   2841 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2842 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2843 
   2844 	/* Disable host coalescing until we get it set up */
   2845 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2846 
   2847 	/* Poll to make sure it's shut down. */
   2848 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2849 		DELAY(10);
   2850 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2851 			break;
   2852 	}
   2853 
   2854 	if (i == BGE_TIMEOUT * 2) {
   2855 		aprint_error_dev(sc->bge_dev,
   2856 		    "host coalescing engine failed to idle\n");
   2857 		return ENXIO;
   2858 	}
   2859 
   2860 	/* Set up host coalescing defaults */
   2861 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2862 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2863 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2864 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2865 	if (!(BGE_IS_5705_PLUS(sc))) {
   2866 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2867 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2868 	}
   2869 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2870 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2871 
   2872 	/* Set up address of statistics block */
   2873 	if (BGE_IS_5700_FAMILY(sc)) {
   2874 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2875 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2876 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2877 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2878 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2879 	}
   2880 
   2881 	/* Set up address of status block */
   2882 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2883 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2884 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2885 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2886 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2887 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2888 
   2889 	/* Set up status block size. */
   2890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2891 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2892 		val = BGE_STATBLKSZ_FULL;
   2893 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2894 	} else {
   2895 		val = BGE_STATBLKSZ_32BYTE;
   2896 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2897 	}
   2898 
   2899 	/* Turn on host coalescing state machine */
   2900 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2901 
   2902 	/* Turn on RX BD completion state machine and enable attentions */
   2903 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2904 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2905 
   2906 	/* Turn on RX list placement state machine */
   2907 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2908 
   2909 	/* Turn on RX list selector state machine. */
   2910 	if (!(BGE_IS_5705_PLUS(sc)))
   2911 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2912 
   2913 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2914 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2915 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2916 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2917 
   2918 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2919 		val |= BGE_PORTMODE_TBI;
   2920 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2921 		val |= BGE_PORTMODE_GMII;
   2922 	else
   2923 		val |= BGE_PORTMODE_MII;
   2924 
   2925 	/* Allow APE to send/receive frames. */
   2926 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2927 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2928 
   2929 	/* Turn on DMA, clear stats */
   2930 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2931 	DELAY(40);
   2932 
   2933 	/* Set misc. local control, enable interrupts on attentions */
   2934 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2935 	if (BGE_IS_5717_PLUS(sc)) {
   2936 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2937 		DELAY(100);
   2938 	}
   2939 
   2940 	/* Turn on DMA completion state machine */
   2941 	if (!(BGE_IS_5705_PLUS(sc)))
   2942 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2943 
   2944 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2945 
   2946 	/* Enable host coalescing bug fix. */
   2947 	if (BGE_IS_5755_PLUS(sc))
   2948 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2949 
   2950 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2951 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2952 
   2953 	/* Turn on write DMA state machine */
   2954 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2955 	DELAY(40);
   2956 
   2957 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2958 
   2959 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2960 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2961 
   2962 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2963 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2964 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2965 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2966 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2967 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2968 
   2969 	if (sc->bge_flags & BGE_PCIE)
   2970 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2971 	if (sc->bge_flags & BGE_TSO)
   2972 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2973 
   2974 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2975 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2976 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2977 		/*
   2978 		 * Allow multiple outstanding read requests from
   2979 		 * non-LSO read DMA engine.
   2980 		 */
   2981 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2982 	}
   2983 
   2984 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2985 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2986 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2987 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2988 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
   2989 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   2990 		/*
   2991 		 * Adjust tx margin to prevent TX data corruption and
   2992 		 * fix internal FIFO overflow.
   2993 		 */
   2994 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   2995 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2996 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2997 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2998 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2999 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3000 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3001 		}
   3002 		/*
   3003 		 * Enable fix for read DMA FIFO overruns.
   3004 		 * The fix is to limit the number of RX BDs
   3005 		 * the hardware would fetch at a fime.
   3006 		 */
   3007 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3008 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3009 	}
   3010 
   3011 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3012 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3013 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3014 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3015 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3016 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3017 		/*
   3018 		 * Allow 4KB burst length reads for non-LSO frames.
   3019 		 * Enable 512B burst length reads for buffer descriptors.
   3020 		 */
   3021 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3022 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3023 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3024 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3025 	}
   3026 
   3027 	/* Turn on read DMA state machine */
   3028 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3029 	delay(40);
   3030 
   3031 	/* Turn on RX data completion state machine */
   3032 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3033 
   3034 	/* Turn on RX data and RX BD initiator state machine */
   3035 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3036 
   3037 	/* Turn on Mbuf cluster free state machine */
   3038 	if (!BGE_IS_5705_PLUS(sc))
   3039 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3040 
   3041 	/* Turn on send data completion state machine */
   3042 	val = BGE_SDCMODE_ENABLE;
   3043 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3044 		val |= BGE_SDCMODE_CDELAY;
   3045 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3046 
   3047 	/* Turn on send BD completion state machine */
   3048 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3049 
   3050 	/* Turn on RX BD initiator state machine */
   3051 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3052 
   3053 	/* Turn on send data initiator state machine */
   3054 	if (sc->bge_flags & BGE_TSO) {
   3055 		/* XXX: magic value from Linux driver */
   3056 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3057 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3058 	} else
   3059 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3060 
   3061 	/* Turn on send BD initiator state machine */
   3062 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3063 
   3064 	/* Turn on send BD selector state machine */
   3065 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3066 
   3067 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3068 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3069 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3070 
   3071 	/* ack/clear link change events */
   3072 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3073 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3074 	    BGE_MACSTAT_LINK_CHANGED);
   3075 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3076 
   3077 	/*
   3078 	 * Enable attention when the link has changed state for
   3079 	 * devices that use auto polling.
   3080 	 */
   3081 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3082 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3083 	} else {
   3084 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3085 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   3086 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3087 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3088 			    BGE_EVTENB_MI_INTERRUPT);
   3089 	}
   3090 
   3091 	/*
   3092 	 * Clear any pending link state attention.
   3093 	 * Otherwise some link state change events may be lost until attention
   3094 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3095 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3096 	 * state change attentions implies clearing pending attention.
   3097 	 */
   3098 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3099 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3100 	    BGE_MACSTAT_LINK_CHANGED);
   3101 
   3102 	/* Enable link state change attentions. */
   3103 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3104 
   3105 	return 0;
   3106 }
   3107 
   3108 static const struct bge_revision *
   3109 bge_lookup_rev(uint32_t chipid)
   3110 {
   3111 	const struct bge_revision *br;
   3112 
   3113 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3114 		if (br->br_chipid == chipid)
   3115 			return br;
   3116 	}
   3117 
   3118 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3119 		if (br->br_chipid == BGE_ASICREV(chipid))
   3120 			return br;
   3121 	}
   3122 
   3123 	return NULL;
   3124 }
   3125 
   3126 static const struct bge_product *
   3127 bge_lookup(const struct pci_attach_args *pa)
   3128 {
   3129 	const struct bge_product *bp;
   3130 
   3131 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3132 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3133 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3134 			return bp;
   3135 	}
   3136 
   3137 	return NULL;
   3138 }
   3139 
   3140 static uint32_t
   3141 bge_chipid(const struct pci_attach_args *pa)
   3142 {
   3143 	uint32_t id;
   3144 
   3145 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3146 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3147 
   3148 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3149 		switch (PCI_PRODUCT(pa->pa_id)) {
   3150 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3151 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3152 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3153 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3154 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3155 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3156 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3157 			break;
   3158 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3159 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3160 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3161 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3162 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3163 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3164 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3165 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3166 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3167 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3168 			break;
   3169 		default:
   3170 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3171 			    BGE_PCI_PRODID_ASICREV);
   3172 			break;
   3173 		}
   3174 	}
   3175 
   3176 	return id;
   3177 }
   3178 
   3179 /*
   3180  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3181  * against our list and return its name if we find a match. Note
   3182  * that since the Broadcom controller contains VPD support, we
   3183  * can get the device name string from the controller itself instead
   3184  * of the compiled-in string. This is a little slow, but it guarantees
   3185  * we'll always announce the right product name.
   3186  */
   3187 static int
   3188 bge_probe(device_t parent, cfdata_t match, void *aux)
   3189 {
   3190 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3191 
   3192 	if (bge_lookup(pa) != NULL)
   3193 		return 1;
   3194 
   3195 	return 0;
   3196 }
   3197 
   3198 static void
   3199 bge_attach(device_t parent, device_t self, void *aux)
   3200 {
   3201 	struct bge_softc	*sc = device_private(self);
   3202 	struct pci_attach_args	*pa = aux;
   3203 	prop_dictionary_t dict;
   3204 	const struct bge_product *bp;
   3205 	const struct bge_revision *br;
   3206 	pci_chipset_tag_t	pc;
   3207 	pci_intr_handle_t	ih;
   3208 	const char		*intrstr = NULL;
   3209 	uint32_t		hwcfg = 0;
   3210 	uint32_t		command;
   3211 	struct ifnet		*ifp;
   3212 	uint32_t		misccfg;
   3213 	void *			kva;
   3214 	u_char			eaddr[ETHER_ADDR_LEN];
   3215 	pcireg_t		memtype, subid, reg;
   3216 	bus_addr_t		memaddr;
   3217 	uint32_t		pm_ctl;
   3218 	bool			no_seeprom;
   3219 	int			capmask;
   3220 
   3221 	bp = bge_lookup(pa);
   3222 	KASSERT(bp != NULL);
   3223 
   3224 	sc->sc_pc = pa->pa_pc;
   3225 	sc->sc_pcitag = pa->pa_tag;
   3226 	sc->bge_dev = self;
   3227 
   3228 	sc->bge_pa = *pa;
   3229 	pc = sc->sc_pc;
   3230 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3231 
   3232 	aprint_naive(": Ethernet controller\n");
   3233 	aprint_normal(": %s\n", bp->bp_name);
   3234 
   3235 	/*
   3236 	 * Map control/status registers.
   3237 	 */
   3238 	DPRINTFN(5, ("Map control/status regs\n"));
   3239 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3240 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3241 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3242 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3243 
   3244 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3245 		aprint_error_dev(sc->bge_dev,
   3246 		    "failed to enable memory mapping!\n");
   3247 		return;
   3248 	}
   3249 
   3250 	DPRINTFN(5, ("pci_mem_find\n"));
   3251 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3252 	switch (memtype) {
   3253 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3254 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3255 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3256 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3257 		    &memaddr, &sc->bge_bsize) == 0)
   3258 			break;
   3259 	default:
   3260 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3261 		return;
   3262 	}
   3263 
   3264 	DPRINTFN(5, ("pci_intr_map\n"));
   3265 	if (pci_intr_map(pa, &ih)) {
   3266 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3267 		return;
   3268 	}
   3269 
   3270 	DPRINTFN(5, ("pci_intr_string\n"));
   3271 	intrstr = pci_intr_string(pc, ih);
   3272 
   3273 	DPRINTFN(5, ("pci_intr_establish\n"));
   3274 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3275 
   3276 	if (sc->bge_intrhand == NULL) {
   3277 		aprint_error_dev(sc->bge_dev,
   3278 		    "couldn't establish interrupt%s%s\n",
   3279 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3280 		return;
   3281 	}
   3282 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3283 
   3284 	/* Save various chip information. */
   3285 	sc->bge_chipid = bge_chipid(pa);
   3286 	sc->bge_phy_addr = bge_phy_addr(sc);
   3287 
   3288 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3289 	        &sc->bge_pciecap, NULL) != 0)
   3290 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3291 		/* PCIe */
   3292 		sc->bge_flags |= BGE_PCIE;
   3293 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3294 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3295 			sc->bge_expmrq = 2048;
   3296 		else
   3297 			sc->bge_expmrq = 4096;
   3298 		bge_set_max_readrq(sc);
   3299 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3300 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3301 		/* PCI-X */
   3302 		sc->bge_flags |= BGE_PCIX;
   3303 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3304 			&sc->bge_pcixcap, NULL) == 0)
   3305 			aprint_error_dev(sc->bge_dev,
   3306 			    "unable to find PCIX capability\n");
   3307 	}
   3308 
   3309 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3310 		/*
   3311 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3312 		 * can clobber the chip's PCI config-space power control
   3313 		 * registers, leaving the card in D3 powersave state. We do
   3314 		 * not have memory-mapped registers in this state, so force
   3315 		 * device into D0 state before starting initialization.
   3316 		 */
   3317 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3318 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3319 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3320 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3321 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3322 	}
   3323 
   3324 	/* Save chipset family. */
   3325 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3326 	case BGE_ASICREV_BCM57765:
   3327 	case BGE_ASICREV_BCM57766:
   3328 		sc->bge_flags |= BGE_57765_PLUS;
   3329 		/* FALLTHROUGH */
   3330 	case BGE_ASICREV_BCM5717:
   3331 	case BGE_ASICREV_BCM5719:
   3332 	case BGE_ASICREV_BCM5720:
   3333 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
   3334 		    BGE_5705_PLUS;
   3335 		break;
   3336 	case BGE_ASICREV_BCM5755:
   3337 	case BGE_ASICREV_BCM5761:
   3338 	case BGE_ASICREV_BCM5784:
   3339 	case BGE_ASICREV_BCM5785:
   3340 	case BGE_ASICREV_BCM5787:
   3341 	case BGE_ASICREV_BCM57780:
   3342 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
   3343 		break;
   3344 	case BGE_ASICREV_BCM5700:
   3345 	case BGE_ASICREV_BCM5701:
   3346 	case BGE_ASICREV_BCM5703:
   3347 	case BGE_ASICREV_BCM5704:
   3348 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
   3349 		break;
   3350 	case BGE_ASICREV_BCM5714_A0:
   3351 	case BGE_ASICREV_BCM5780:
   3352 	case BGE_ASICREV_BCM5714:
   3353 		sc->bge_flags |= BGE_5714_FAMILY;
   3354 		/* FALLTHROUGH */
   3355 	case BGE_ASICREV_BCM5750:
   3356 	case BGE_ASICREV_BCM5752:
   3357 	case BGE_ASICREV_BCM5906:
   3358 		sc->bge_flags |= BGE_575X_PLUS;
   3359 		/* FALLTHROUGH */
   3360 	case BGE_ASICREV_BCM5705:
   3361 		sc->bge_flags |= BGE_5705_PLUS;
   3362 		break;
   3363 	}
   3364 
   3365 	/* Identify chips with APE processor. */
   3366 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3367 	case BGE_ASICREV_BCM5717:
   3368 	case BGE_ASICREV_BCM5719:
   3369 	case BGE_ASICREV_BCM5720:
   3370 	case BGE_ASICREV_BCM5761:
   3371 		sc->bge_flags |= BGE_APE;
   3372 		break;
   3373 	}
   3374 
   3375 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3376 	if ((sc->bge_flags & BGE_APE) != 0) {
   3377 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3378 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3379 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3380 			&sc->bge_apesize)) {
   3381 			aprint_error_dev(sc->bge_dev,
   3382 			    "couldn't map BAR2 memory\n");
   3383 			return;
   3384 		}
   3385 
   3386 		/* Enable APE register/memory access by host driver. */
   3387 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3388 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3389 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3390 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3391 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3392 
   3393 		bge_ape_lock_init(sc);
   3394 		bge_ape_read_fw_ver(sc);
   3395 	}
   3396 
   3397 	/* Identify the chips that use an CPMU. */
   3398 	if (BGE_IS_5717_PLUS(sc) ||
   3399 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3400 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3401 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3402 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3403 		sc->bge_flags |= BGE_CPMU_PRESENT;
   3404 
   3405 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
   3406 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
   3407 	else
   3408 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
   3409 
   3410 	/*
   3411 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3412 	 * been observed in the first few bytes of some received packets.
   3413 	 * Aligning the packet buffer in memory eliminates the corruption.
   3414 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3415 	 * which do not support unaligned accesses, we will realign the
   3416 	 * payloads by copying the received packets.
   3417 	 */
   3418 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3419 	    sc->bge_flags & BGE_PCIX)
   3420 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   3421 
   3422 	if (BGE_IS_5700_FAMILY(sc))
   3423 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   3424 
   3425 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3426 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3427 
   3428 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3429 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3430 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3431 		sc->bge_flags |= BGE_IS_5788;
   3432 
   3433 	/*
   3434 	 * Some controllers seem to require a special firmware to use
   3435 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3436 	 * claims that the TSO performed by the firmware is slower than
   3437 	 * hardware based TSO. Moreover the firmware based TSO has one
   3438 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3439 	 * header is greater than 80 bytes. The workaround for the TSO
   3440 	 * bug exist but it seems it's too expensive than not using
   3441 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3442 	 * the TSO to the controllers that are not affected TSO issues
   3443 	 * (e.g. 5755 or higher).
   3444 	 */
   3445 	if (BGE_IS_5755_PLUS(sc)) {
   3446 		/*
   3447 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3448 		 * explicit device id check is required.
   3449 		 */
   3450 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3451 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3452 			sc->bge_flags |= BGE_TSO;
   3453 	}
   3454 
   3455 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3456 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3457 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3458 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3459 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3460 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3461 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3462 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3463 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3464 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3465 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3466 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3467 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3468 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3469 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3470 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3471 		capmask &= ~BMSR_EXTSTAT;
   3472 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3473 	}
   3474 
   3475 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3476 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3477 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3478 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3479 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3480 
   3481 	/* Set various PHY bug flags. */
   3482 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3483 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3484 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   3485 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3486 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3487 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   3488 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3489 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   3490 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3491 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3492 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3493 		sc->bge_flags |= BGE_PHY_NO_3LED;
   3494 	if (BGE_IS_5705_PLUS(sc) &&
   3495 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3496 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3497 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3498 	    !BGE_IS_5717_PLUS(sc)) {
   3499 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3500 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3501 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3502 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3503 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3504 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3505 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   3506 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3507 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   3508 		} else
   3509 			sc->bge_flags |= BGE_PHY_BER_BUG;
   3510 	}
   3511 
   3512 	/*
   3513 	 * SEEPROM check.
   3514 	 * First check if firmware knows we do not have SEEPROM.
   3515 	 */
   3516 	if (prop_dictionary_get_bool(device_properties(self),
   3517 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3518 	 	sc->bge_flags |= BGE_NO_EEPROM;
   3519 
   3520 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3521 		sc->bge_flags |= BGE_NO_EEPROM;
   3522 
   3523 	/* Now check the 'ROM failed' bit on the RX CPU */
   3524 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3525 		sc->bge_flags |= BGE_NO_EEPROM;
   3526 
   3527 	sc->bge_asf_mode = 0;
   3528 	/* No ASF if APE present. */
   3529 	if ((sc->bge_flags & BGE_APE) == 0) {
   3530 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3531 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3532 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3533 			    BGE_HWCFG_ASF) {
   3534 				sc->bge_asf_mode |= ASF_ENABLE;
   3535 				sc->bge_asf_mode |= ASF_STACKUP;
   3536 				if (BGE_IS_575X_PLUS(sc))
   3537 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3538 			}
   3539 		}
   3540 	}
   3541 
   3542 	/*
   3543 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3544 	 * lock in bge_reset().
   3545 	 */
   3546 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3547 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3548 	delay(1000);
   3549 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3550 
   3551 	bge_stop_fw(sc);
   3552 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3553 	if (bge_reset(sc))
   3554 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3555 
   3556 	bge_sig_legacy(sc, BGE_RESET_START);
   3557 	bge_sig_post_reset(sc, BGE_RESET_START);
   3558 
   3559 	if (bge_chipinit(sc)) {
   3560 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3561 		bge_release_resources(sc);
   3562 		return;
   3563 	}
   3564 
   3565 	/*
   3566 	 * Get station address from the EEPROM.
   3567 	 */
   3568 	if (bge_get_eaddr(sc, eaddr)) {
   3569 		aprint_error_dev(sc->bge_dev,
   3570 		    "failed to read station address\n");
   3571 		bge_release_resources(sc);
   3572 		return;
   3573 	}
   3574 
   3575 	br = bge_lookup_rev(sc->bge_chipid);
   3576 
   3577 	if (br == NULL) {
   3578 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3579 		    sc->bge_chipid);
   3580 	} else {
   3581 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3582 		    br->br_name, sc->bge_chipid);
   3583 	}
   3584 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3585 
   3586 	/* Allocate the general information block and ring buffers. */
   3587 	if (pci_dma64_available(pa))
   3588 		sc->bge_dmatag = pa->pa_dmat64;
   3589 	else
   3590 		sc->bge_dmatag = pa->pa_dmat;
   3591 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3592 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3593 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3594 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3595 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3596 		return;
   3597 	}
   3598 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3599 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3600 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3601 			   BUS_DMA_NOWAIT)) {
   3602 		aprint_error_dev(sc->bge_dev,
   3603 		    "can't map DMA buffers (%zu bytes)\n",
   3604 		    sizeof(struct bge_ring_data));
   3605 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3606 		    sc->bge_ring_rseg);
   3607 		return;
   3608 	}
   3609 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3610 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3611 	    sizeof(struct bge_ring_data), 0,
   3612 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3613 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3614 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3615 				 sizeof(struct bge_ring_data));
   3616 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3617 		    sc->bge_ring_rseg);
   3618 		return;
   3619 	}
   3620 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3621 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3622 			    sizeof(struct bge_ring_data), NULL,
   3623 			    BUS_DMA_NOWAIT)) {
   3624 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3625 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3626 				 sizeof(struct bge_ring_data));
   3627 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3628 		    sc->bge_ring_rseg);
   3629 		return;
   3630 	}
   3631 
   3632 	DPRINTFN(5, ("bzero\n"));
   3633 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3634 
   3635 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3636 
   3637 	/* Try to allocate memory for jumbo buffers. */
   3638 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3639 		if (bge_alloc_jumbo_mem(sc)) {
   3640 			aprint_error_dev(sc->bge_dev,
   3641 			    "jumbo buffer allocation failed\n");
   3642 		} else
   3643 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3644 	}
   3645 
   3646 	/* Set default tuneable values. */
   3647 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3648 	sc->bge_rx_coal_ticks = 150;
   3649 	sc->bge_rx_max_coal_bds = 64;
   3650 	sc->bge_tx_coal_ticks = 300;
   3651 	sc->bge_tx_max_coal_bds = 400;
   3652 	if (BGE_IS_5705_PLUS(sc)) {
   3653 		sc->bge_tx_coal_ticks = (12 * 5);
   3654 		sc->bge_tx_max_coal_bds = (12 * 5);
   3655 			aprint_verbose_dev(sc->bge_dev,
   3656 			    "setting short Tx thresholds\n");
   3657 	}
   3658 
   3659 	if (BGE_IS_5717_PLUS(sc))
   3660 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3661 	else if (BGE_IS_5705_PLUS(sc))
   3662 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3663 	else
   3664 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3665 
   3666 	/* Set up ifnet structure */
   3667 	ifp = &sc->ethercom.ec_if;
   3668 	ifp->if_softc = sc;
   3669 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3670 	ifp->if_ioctl = bge_ioctl;
   3671 	ifp->if_stop = bge_stop;
   3672 	ifp->if_start = bge_start;
   3673 	ifp->if_init = bge_init;
   3674 	ifp->if_watchdog = bge_watchdog;
   3675 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3676 	IFQ_SET_READY(&ifp->if_snd);
   3677 	DPRINTFN(5, ("strcpy if_xname\n"));
   3678 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3679 
   3680 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3681 		sc->ethercom.ec_if.if_capabilities |=
   3682 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3683 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3684 		sc->ethercom.ec_if.if_capabilities |=
   3685 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3686 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3687 #endif
   3688 	sc->ethercom.ec_capabilities |=
   3689 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3690 
   3691 	if (sc->bge_flags & BGE_TSO)
   3692 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3693 
   3694 	/*
   3695 	 * Do MII setup.
   3696 	 */
   3697 	DPRINTFN(5, ("mii setup\n"));
   3698 	sc->bge_mii.mii_ifp = ifp;
   3699 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3700 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3701 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3702 
   3703 	/*
   3704 	 * Figure out what sort of media we have by checking the hardware
   3705 	 * config word in the first 32k of NIC internal memory, or fall back to
   3706 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
   3707 	 * this value appears to be unset. If that's the case, we have to rely
   3708 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
   3709 	 * the SysKonnect SK-9D41.
   3710 	 */
   3711 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
   3712 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3713 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3714 		bge_read_eeprom(sc, (void *)&hwcfg,
   3715 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3716 		hwcfg = be32toh(hwcfg);
   3717 	}
   3718 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   3719 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3720 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3721 		if (BGE_IS_5714_FAMILY(sc))
   3722 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3723 		else
   3724 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3725 	}
   3726 
   3727 	/* set phyflags and chipid before mii_attach() */
   3728 	dict = device_properties(self);
   3729 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3730 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3731 
   3732 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3733 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3734 		    bge_ifmedia_sts);
   3735 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3736 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3737 			    0, NULL);
   3738 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3739 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3740 		/* Pretend the user requested this setting */
   3741 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3742 	} else {
   3743 		/*
   3744 		 * Do transceiver setup and tell the firmware the
   3745 		 * driver is down so we can try to get access the
   3746 		 * probe if ASF is running.  Retry a couple of times
   3747 		 * if we get a conflict with the ASF firmware accessing
   3748 		 * the PHY.
   3749 		 */
   3750 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3751 		bge_asf_driver_up(sc);
   3752 
   3753 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3754 			     bge_ifmedia_sts);
   3755 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
   3756 			   sc->bge_phy_addr, MII_OFFSET_ANY,
   3757 			   MIIF_DOPAUSE);
   3758 
   3759 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3760 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3761 			ifmedia_add(&sc->bge_mii.mii_media,
   3762 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3763 			ifmedia_set(&sc->bge_mii.mii_media,
   3764 				    IFM_ETHER|IFM_MANUAL);
   3765 		} else
   3766 			ifmedia_set(&sc->bge_mii.mii_media,
   3767 				    IFM_ETHER|IFM_AUTO);
   3768 
   3769 		/*
   3770 		 * Now tell the firmware we are going up after probing the PHY
   3771 		 */
   3772 		if (sc->bge_asf_mode & ASF_STACKUP)
   3773 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3774 	}
   3775 
   3776 	/*
   3777 	 * Call MI attach routine.
   3778 	 */
   3779 	DPRINTFN(5, ("if_attach\n"));
   3780 	if_attach(ifp);
   3781 	DPRINTFN(5, ("ether_ifattach\n"));
   3782 	ether_ifattach(ifp, eaddr);
   3783 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3784 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3785 		RND_TYPE_NET, 0);
   3786 #ifdef BGE_EVENT_COUNTERS
   3787 	/*
   3788 	 * Attach event counters.
   3789 	 */
   3790 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3791 	    NULL, device_xname(sc->bge_dev), "intr");
   3792 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3793 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3794 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3795 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3796 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3797 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3798 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3799 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3800 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3801 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3802 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3803 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3804 #endif /* BGE_EVENT_COUNTERS */
   3805 	DPRINTFN(5, ("callout_init\n"));
   3806 	callout_init(&sc->bge_timeout, 0);
   3807 
   3808 	if (pmf_device_register(self, NULL, NULL))
   3809 		pmf_class_network_register(self, ifp);
   3810 	else
   3811 		aprint_error_dev(self, "couldn't establish power handler\n");
   3812 
   3813 	bge_sysctl_init(sc);
   3814 
   3815 #ifdef BGE_DEBUG
   3816 	bge_debug_info(sc);
   3817 #endif
   3818 }
   3819 
   3820 /*
   3821  * Stop all chip I/O so that the kernel's probe routines don't
   3822  * get confused by errant DMAs when rebooting.
   3823  */
   3824 static int
   3825 bge_detach(device_t self, int flags __unused)
   3826 {
   3827 	struct bge_softc *sc = device_private(self);
   3828 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3829 	int s;
   3830 
   3831 	s = splnet();
   3832 	/* Stop the interface. Callouts are stopped in it. */
   3833 	bge_stop(ifp, 1);
   3834 	splx(s);
   3835 
   3836 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3837 
   3838 	/* Delete all remaining media. */
   3839 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3840 
   3841 	ether_ifdetach(ifp);
   3842 	if_detach(ifp);
   3843 
   3844 	bge_release_resources(sc);
   3845 
   3846 	return 0;
   3847 }
   3848 
   3849 static void
   3850 bge_release_resources(struct bge_softc *sc)
   3851 {
   3852 
   3853 	/* Disestablish the interrupt handler */
   3854 	if (sc->bge_intrhand != NULL) {
   3855 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   3856 		sc->bge_intrhand = NULL;
   3857 	}
   3858 
   3859 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   3860 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3861 	bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   3862 	    sizeof(struct bge_ring_data));
   3863 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   3864 
   3865 	/* Unmap the device registers */
   3866 	if (sc->bge_bsize != 0) {
   3867 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   3868 		sc->bge_bsize = 0;
   3869 	}
   3870 
   3871 	/* Unmap the APE registers */
   3872 	if (sc->bge_apesize != 0) {
   3873 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   3874 		    sc->bge_apesize);
   3875 		sc->bge_apesize = 0;
   3876 	}
   3877 }
   3878 
   3879 static int
   3880 bge_reset(struct bge_softc *sc)
   3881 {
   3882 	uint32_t cachesize, command;
   3883 	uint32_t reset, mac_mode, mac_mode_mask;
   3884 	pcireg_t devctl, reg;
   3885 	int i, val;
   3886 	void (*write_op)(struct bge_softc *, int, int);
   3887 
   3888 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   3889 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3890 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3891 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   3892 
   3893 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3894 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3895 	    	if (sc->bge_flags & BGE_PCIE)
   3896 			write_op = bge_writemem_direct;
   3897 		else
   3898 			write_op = bge_writemem_ind;
   3899 	} else
   3900 		write_op = bge_writereg_ind;
   3901 
   3902 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
   3903 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   3904 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   3905 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   3906 		for (i = 0; i < 8000; i++) {
   3907 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   3908 			    BGE_NVRAMSWARB_GNT1)
   3909 				break;
   3910 			DELAY(20);
   3911 		}
   3912 		if (i == 8000) {
   3913 			printf("%s: NVRAM lock timedout!\n",
   3914 			    device_xname(sc->bge_dev));
   3915 		}
   3916 	}
   3917 	/* Take APE lock when performing reset. */
   3918 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   3919 
   3920 	/* Save some important PCI state. */
   3921 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   3922 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   3923 
   3924 	/* Step 5b-5d: */
   3925 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   3926 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   3927 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   3928 
   3929 	/* XXX ???: Disable fastboot on controllers that support it. */
   3930 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   3931 	    BGE_IS_5755_PLUS(sc))
   3932 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   3933 
   3934 	/*
   3935 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
   3936 	 * When firmware finishes its initialization it will
   3937 	 * write ~BGE_MAGIC_NUMBER to the same location.
   3938 	 */
   3939 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   3940 
   3941 	/* Step 7: */
   3942 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   3943 	/*
   3944 	 * XXX: from FreeBSD/Linux; no documentation
   3945 	 */
   3946 	if (sc->bge_flags & BGE_PCIE) {
   3947 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   3948 		    !BGE_IS_57765_PLUS(sc) &&
   3949 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   3950 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   3951 			/* PCI Express 1.0 system */
   3952 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   3953 			    BGE_PHY_PCIE_SCRAM_MODE);
   3954 		}
   3955 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   3956 			/*
   3957 			 * Prevent PCI Express link training
   3958 			 * during global reset.
   3959 			 */
   3960 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   3961 			reset |= (1 << 29);
   3962 		}
   3963 	}
   3964 
   3965 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3966 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   3967 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   3968 		    i | BGE_VCPU_STATUS_DRV_RESET);
   3969 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   3970 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   3971 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   3972 	}
   3973 
   3974 	/*
   3975 	 * Set GPHY Power Down Override to leave GPHY
   3976 	 * powered up in D0 uninitialized.
   3977 	 */
   3978 	if (BGE_IS_5705_PLUS(sc) &&
   3979 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   3980 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   3981 
   3982 	/* Issue global reset */
   3983 	write_op(sc, BGE_MISC_CFG, reset);
   3984 
   3985 	/* Step 8: wait for complete */
   3986 	if (sc->bge_flags & BGE_PCIE)
   3987 		delay(100*1000); /* too big */
   3988 	else
   3989 		delay(1000);
   3990 
   3991 	if (sc->bge_flags & BGE_PCIE) {
   3992 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   3993 			DELAY(500000);
   3994 			/* XXX: Magic Numbers */
   3995 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3996 			    BGE_PCI_UNKNOWN0);
   3997 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   3998 			    BGE_PCI_UNKNOWN0,
   3999 			    reg | (1 << 15));
   4000 		}
   4001 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4002 		    sc->bge_pciecap + PCI_PCIE_DCSR);
   4003 		/* Clear enable no snoop and disable relaxed ordering. */
   4004 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
   4005 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
   4006 
   4007 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4008 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4009 			devctl &= ~(0x00e0);
   4010 		/* Clear device status register. Write 1b to clear */
   4011 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
   4012 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
   4013 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4014 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
   4015 		bge_set_max_readrq(sc);
   4016 	}
   4017 
   4018 	/* From Linux: dummy read to flush PCI posted writes */
   4019 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4020 
   4021 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
   4022 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4023 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4024 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4025 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4026 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4027 	    (sc->bge_flags & BGE_PCIX) != 0)
   4028 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4029 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4030 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4031 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4032 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4033 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4034 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4035 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4036 
   4037 	/* Step 11: disable PCI-X Relaxed Ordering. */
   4038 	if (sc->bge_flags & BGE_PCIX) {
   4039 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4040 		    + PCI_PCIX_CMD);
   4041 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4042 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
   4043 	}
   4044 
   4045 	/* Step 12: Enable memory arbiter. */
   4046 	if (BGE_IS_5714_FAMILY(sc)) {
   4047 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4048 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4049 	} else
   4050 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4051 
   4052 	/* XXX 5721, 5751 and 5752 */
   4053 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4054 		/* Step 19: */
   4055 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4056 		/* Step 20: */
   4057 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4058 	}
   4059 
   4060 	/* Step 28: Fix up byte swapping */
   4061 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4062 
   4063 	/*
   4064 	 * Wait for the bootcode to complete initialization.
   4065 	 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
   4066 	 * Section 7".
   4067 	 */
   4068 	if (BGE_IS_5717_PLUS(sc)) {
   4069 		for (i = 0; i < 1000*1000; i++) {
   4070 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   4071 			if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
   4072 				break;
   4073 			DELAY(10);
   4074 		}
   4075 	}
   4076 
   4077 	/* Step 21: 5822 B0 errata */
   4078 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4079 		pcireg_t msidata;
   4080 
   4081 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4082 		    BGE_PCI_MSI_DATA);
   4083 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4084 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4085 		    msidata);
   4086 	}
   4087 
   4088 	/*
   4089 	 * Step 18: wirte mac mode
   4090 	 * XXX Write 0x0c for 5703S and 5704S
   4091 	 */
   4092 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4093 	val = (val & ~mac_mode_mask) | mac_mode;
   4094 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4095 	DELAY(40);
   4096 
   4097 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4098 
   4099 	/* Step 17: Poll until the firmware initialization is complete */
   4100 	bge_poll_fw(sc);
   4101 
   4102 	/*
   4103 	 * The 5704 in TBI mode apparently needs some special
   4104 	 * adjustment to insure the SERDES drive level is set
   4105 	 * to 1.2V.
   4106 	 */
   4107 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   4108 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4109 		uint32_t serdescfg;
   4110 
   4111 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4112 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4113 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4114 	}
   4115 
   4116 	if (sc->bge_flags & BGE_PCIE &&
   4117 	    !BGE_IS_57765_PLUS(sc) &&
   4118 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4119 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4120 		uint32_t v;
   4121 
   4122 		/* Enable PCI Express bug fix */
   4123 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4124 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4125 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4126 	}
   4127 
   4128 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4129 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4130 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4131 
   4132 	return 0;
   4133 }
   4134 
   4135 /*
   4136  * Frame reception handling. This is called if there's a frame
   4137  * on the receive return list.
   4138  *
   4139  * Note: we have to be able to handle two possibilities here:
   4140  * 1) the frame is from the jumbo receive ring
   4141  * 2) the frame is from the standard receive ring
   4142  */
   4143 
   4144 static void
   4145 bge_rxeof(struct bge_softc *sc)
   4146 {
   4147 	struct ifnet *ifp;
   4148 	uint16_t rx_prod, rx_cons;
   4149 	int stdcnt = 0, jumbocnt = 0;
   4150 	bus_dmamap_t dmamap;
   4151 	bus_addr_t offset, toff;
   4152 	bus_size_t tlen;
   4153 	int tosync;
   4154 
   4155 	rx_cons = sc->bge_rx_saved_considx;
   4156 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4157 
   4158 	/* Nothing to do */
   4159 	if (rx_cons == rx_prod)
   4160 		return;
   4161 
   4162 	ifp = &sc->ethercom.ec_if;
   4163 
   4164 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4165 	    offsetof(struct bge_ring_data, bge_status_block),
   4166 	    sizeof (struct bge_status_block),
   4167 	    BUS_DMASYNC_POSTREAD);
   4168 
   4169 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4170 	tosync = rx_prod - rx_cons;
   4171 
   4172 	if (tosync != 0)
   4173 		rnd_add_uint32(&sc->rnd_source, tosync);
   4174 
   4175 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4176 
   4177 	if (tosync < 0) {
   4178 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4179 		    sizeof (struct bge_rx_bd);
   4180 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4181 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4182 		tosync = -tosync;
   4183 	}
   4184 
   4185 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4186 	    offset, tosync * sizeof (struct bge_rx_bd),
   4187 	    BUS_DMASYNC_POSTREAD);
   4188 
   4189 	while (rx_cons != rx_prod) {
   4190 		struct bge_rx_bd	*cur_rx;
   4191 		uint32_t		rxidx;
   4192 		struct mbuf		*m = NULL;
   4193 
   4194 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4195 
   4196 		rxidx = cur_rx->bge_idx;
   4197 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4198 
   4199 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4200 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4201 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4202 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4203 			jumbocnt++;
   4204 			bus_dmamap_sync(sc->bge_dmatag,
   4205 			    sc->bge_cdata.bge_rx_jumbo_map,
   4206 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4207 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4208 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4209 				ifp->if_ierrors++;
   4210 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4211 				continue;
   4212 			}
   4213 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4214 					     NULL)== ENOBUFS) {
   4215 				ifp->if_ierrors++;
   4216 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4217 				continue;
   4218 			}
   4219 		} else {
   4220 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4221 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4222 
   4223 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4224 			stdcnt++;
   4225 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4226 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4227 			if (dmamap == NULL) {
   4228 				ifp->if_ierrors++;
   4229 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4230 				continue;
   4231 			}
   4232 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4233 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4234 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4235 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4236 				ifp->if_ierrors++;
   4237 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4238 				continue;
   4239 			}
   4240 			if (bge_newbuf_std(sc, sc->bge_std,
   4241 			    NULL, dmamap) == ENOBUFS) {
   4242 				ifp->if_ierrors++;
   4243 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4244 				continue;
   4245 			}
   4246 		}
   4247 
   4248 		ifp->if_ipackets++;
   4249 #ifndef __NO_STRICT_ALIGNMENT
   4250 		/*
   4251 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4252 		 * the Rx buffer has the layer-2 header unaligned.
   4253 		 * If our CPU requires alignment, re-align by copying.
   4254 		 */
   4255 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   4256 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4257 				cur_rx->bge_len);
   4258 			m->m_data += ETHER_ALIGN;
   4259 		}
   4260 #endif
   4261 
   4262 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4263 		m->m_pkthdr.rcvif = ifp;
   4264 
   4265 		/*
   4266 		 * Handle BPF listeners. Let the BPF user see the packet.
   4267 		 */
   4268 		bpf_mtap(ifp, m);
   4269 
   4270 		bge_rxcsum(sc, cur_rx, m);
   4271 
   4272 		/*
   4273 		 * If we received a packet with a vlan tag, pass it
   4274 		 * to vlan_input() instead of ether_input().
   4275 		 */
   4276 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4277 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4278 		}
   4279 
   4280 		(*ifp->if_input)(ifp, m);
   4281 	}
   4282 
   4283 	sc->bge_rx_saved_considx = rx_cons;
   4284 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4285 	if (stdcnt)
   4286 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4287 	if (jumbocnt)
   4288 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4289 }
   4290 
   4291 static void
   4292 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4293 {
   4294 
   4295 	if (BGE_IS_5717_PLUS(sc)) {
   4296 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4297 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4298 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4299 			if ((cur_rx->bge_error_flag &
   4300 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4301 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4302 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4303 				m->m_pkthdr.csum_data =
   4304 				    cur_rx->bge_tcp_udp_csum;
   4305 				m->m_pkthdr.csum_flags |=
   4306 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4307 					M_CSUM_DATA);
   4308 			}
   4309 		}
   4310 	} else {
   4311 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4312 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4313 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4314 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4315 		/*
   4316 		 * Rx transport checksum-offload may also
   4317 		 * have bugs with packets which, when transmitted,
   4318 		 * were `runts' requiring padding.
   4319 		 */
   4320 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4321 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4322 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4323 			m->m_pkthdr.csum_data =
   4324 			    cur_rx->bge_tcp_udp_csum;
   4325 			m->m_pkthdr.csum_flags |=
   4326 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4327 				M_CSUM_DATA);
   4328 		}
   4329 	}
   4330 }
   4331 
   4332 static void
   4333 bge_txeof(struct bge_softc *sc)
   4334 {
   4335 	struct bge_tx_bd *cur_tx = NULL;
   4336 	struct ifnet *ifp;
   4337 	struct txdmamap_pool_entry *dma;
   4338 	bus_addr_t offset, toff;
   4339 	bus_size_t tlen;
   4340 	int tosync;
   4341 	struct mbuf *m;
   4342 
   4343 	ifp = &sc->ethercom.ec_if;
   4344 
   4345 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4346 	    offsetof(struct bge_ring_data, bge_status_block),
   4347 	    sizeof (struct bge_status_block),
   4348 	    BUS_DMASYNC_POSTREAD);
   4349 
   4350 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4351 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4352 	    sc->bge_tx_saved_considx;
   4353 
   4354 	if (tosync != 0)
   4355 		rnd_add_uint32(&sc->rnd_source, tosync);
   4356 
   4357 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4358 
   4359 	if (tosync < 0) {
   4360 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4361 		    sizeof (struct bge_tx_bd);
   4362 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4363 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4364 		tosync = -tosync;
   4365 	}
   4366 
   4367 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4368 	    offset, tosync * sizeof (struct bge_tx_bd),
   4369 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4370 
   4371 	/*
   4372 	 * Go through our tx ring and free mbufs for those
   4373 	 * frames that have been sent.
   4374 	 */
   4375 	while (sc->bge_tx_saved_considx !=
   4376 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4377 		uint32_t		idx = 0;
   4378 
   4379 		idx = sc->bge_tx_saved_considx;
   4380 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4381 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4382 			ifp->if_opackets++;
   4383 		m = sc->bge_cdata.bge_tx_chain[idx];
   4384 		if (m != NULL) {
   4385 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4386 			dma = sc->txdma[idx];
   4387 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4388 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4389 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4390 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4391 			sc->txdma[idx] = NULL;
   4392 
   4393 			m_freem(m);
   4394 		}
   4395 		sc->bge_txcnt--;
   4396 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4397 		ifp->if_timer = 0;
   4398 	}
   4399 
   4400 	if (cur_tx != NULL)
   4401 		ifp->if_flags &= ~IFF_OACTIVE;
   4402 }
   4403 
   4404 static int
   4405 bge_intr(void *xsc)
   4406 {
   4407 	struct bge_softc *sc;
   4408 	struct ifnet *ifp;
   4409 	uint32_t statusword;
   4410 
   4411 	sc = xsc;
   4412 	ifp = &sc->ethercom.ec_if;
   4413 
   4414 	/* It is possible for the interrupt to arrive before
   4415 	 * the status block is updated prior to the interrupt.
   4416 	 * Reading the PCI State register will confirm whether the
   4417 	 * interrupt is ours and will flush the status block.
   4418 	 */
   4419 
   4420 	/* read status word from status block */
   4421 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4422 
   4423 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4424 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
   4425 		/* Ack interrupt and stop others from occuring. */
   4426 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4427 
   4428 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4429 
   4430 		/* clear status word */
   4431 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4432 
   4433 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4434 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4435 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4436 			bge_link_upd(sc);
   4437 
   4438 		if (ifp->if_flags & IFF_RUNNING) {
   4439 			/* Check RX return ring producer/consumer */
   4440 			bge_rxeof(sc);
   4441 
   4442 			/* Check TX ring producer/consumer */
   4443 			bge_txeof(sc);
   4444 		}
   4445 
   4446 		if (sc->bge_pending_rxintr_change) {
   4447 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4448 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4449 			uint32_t junk;
   4450 
   4451 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4452 			DELAY(10);
   4453 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4454 
   4455 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4456 			DELAY(10);
   4457 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4458 
   4459 			sc->bge_pending_rxintr_change = 0;
   4460 		}
   4461 		bge_handle_events(sc);
   4462 
   4463 		/* Re-enable interrupts. */
   4464 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4465 
   4466 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4467 			bge_start(ifp);
   4468 
   4469 		return 1;
   4470 	} else
   4471 		return 0;
   4472 }
   4473 
   4474 static void
   4475 bge_asf_driver_up(struct bge_softc *sc)
   4476 {
   4477 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4478 		/* Send ASF heartbeat aprox. every 2s */
   4479 		if (sc->bge_asf_count)
   4480 			sc->bge_asf_count --;
   4481 		else {
   4482 			sc->bge_asf_count = 2;
   4483 
   4484 			bge_wait_for_event_ack(sc);
   4485 
   4486 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4487 			    BGE_FW_CMD_DRV_ALIVE);
   4488 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4489 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4490 			    BGE_FW_HB_TIMEOUT_SEC);
   4491 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4492 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4493 			    BGE_RX_CPU_DRV_EVENT);
   4494 		}
   4495 	}
   4496 }
   4497 
   4498 static void
   4499 bge_tick(void *xsc)
   4500 {
   4501 	struct bge_softc *sc = xsc;
   4502 	struct mii_data *mii = &sc->bge_mii;
   4503 	int s;
   4504 
   4505 	s = splnet();
   4506 
   4507 	if (BGE_IS_5705_PLUS(sc))
   4508 		bge_stats_update_regs(sc);
   4509 	else
   4510 		bge_stats_update(sc);
   4511 
   4512 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4513 		/*
   4514 		 * Since in TBI mode auto-polling can't be used we should poll
   4515 		 * link status manually. Here we register pending link event
   4516 		 * and trigger interrupt.
   4517 		 */
   4518 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4519 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4520 	} else {
   4521 		/*
   4522 		 * Do not touch PHY if we have link up. This could break
   4523 		 * IPMI/ASF mode or produce extra input errors.
   4524 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4525 		 */
   4526 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4527 			mii_tick(mii);
   4528 	}
   4529 
   4530 	bge_asf_driver_up(sc);
   4531 
   4532 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4533 
   4534 	splx(s);
   4535 }
   4536 
   4537 static void
   4538 bge_stats_update_regs(struct bge_softc *sc)
   4539 {
   4540 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4541 
   4542 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4543 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4544 
   4545 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4546 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4547 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4548 }
   4549 
   4550 static void
   4551 bge_stats_update(struct bge_softc *sc)
   4552 {
   4553 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4554 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4555 
   4556 #define READ_STAT(sc, stats, stat) \
   4557 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4558 
   4559 	ifp->if_collisions +=
   4560 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4561 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4562 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4563 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4564 	  ifp->if_collisions;
   4565 
   4566 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4567 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4568 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4569 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4570 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4571 		      READ_STAT(sc, stats,
   4572 		      		xoffPauseFramesReceived.bge_addr_lo));
   4573 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4574 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4575 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4576 		      READ_STAT(sc, stats,
   4577 		      		macControlFramesReceived.bge_addr_lo));
   4578 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4579 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4580 
   4581 #undef READ_STAT
   4582 
   4583 #ifdef notdef
   4584 	ifp->if_collisions +=
   4585 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4586 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4587 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4588 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4589 	   ifp->if_collisions;
   4590 #endif
   4591 }
   4592 
   4593 /*
   4594  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4595  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4596  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4597  * the hardware checksum assist gives incorrect results (possibly
   4598  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4599  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4600  */
   4601 static inline int
   4602 bge_cksum_pad(struct mbuf *pkt)
   4603 {
   4604 	struct mbuf *last = NULL;
   4605 	int padlen;
   4606 
   4607 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4608 
   4609 	/* if there's only the packet-header and we can pad there, use it. */
   4610 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4611 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4612 		last = pkt;
   4613 	} else {
   4614 		/*
   4615 		 * Walk packet chain to find last mbuf. We will either
   4616 		 * pad there, or append a new mbuf and pad it
   4617 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4618 		 */
   4619 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4620 	      	       continue; /* do nothing */
   4621 		}
   4622 
   4623 		/* `last' now points to last in chain. */
   4624 		if (M_TRAILINGSPACE(last) < padlen) {
   4625 			/* Allocate new empty mbuf, pad it. Compact later. */
   4626 			struct mbuf *n;
   4627 			MGET(n, M_DONTWAIT, MT_DATA);
   4628 			if (n == NULL)
   4629 				return ENOBUFS;
   4630 			n->m_len = 0;
   4631 			last->m_next = n;
   4632 			last = n;
   4633 		}
   4634 	}
   4635 
   4636 	KDASSERT(!M_READONLY(last));
   4637 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4638 
   4639 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4640 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4641 	last->m_len += padlen;
   4642 	pkt->m_pkthdr.len += padlen;
   4643 	return 0;
   4644 }
   4645 
   4646 /*
   4647  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4648  */
   4649 static inline int
   4650 bge_compact_dma_runt(struct mbuf *pkt)
   4651 {
   4652 	struct mbuf	*m, *prev;
   4653 	int 		totlen, prevlen;
   4654 
   4655 	prev = NULL;
   4656 	totlen = 0;
   4657 	prevlen = -1;
   4658 
   4659 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4660 		int mlen = m->m_len;
   4661 		int shortfall = 8 - mlen ;
   4662 
   4663 		totlen += mlen;
   4664 		if (mlen == 0)
   4665 			continue;
   4666 		if (mlen >= 8)
   4667 			continue;
   4668 
   4669 		/* If we get here, mbuf data is too small for DMA engine.
   4670 		 * Try to fix by shuffling data to prev or next in chain.
   4671 		 * If that fails, do a compacting deep-copy of the whole chain.
   4672 		 */
   4673 
   4674 		/* Internal frag. If fits in prev, copy it there. */
   4675 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4676 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4677 			prev->m_len += mlen;
   4678 			m->m_len = 0;
   4679 			/* XXX stitch chain */
   4680 			prev->m_next = m_free(m);
   4681 			m = prev;
   4682 			continue;
   4683 		}
   4684 		else if (m->m_next != NULL &&
   4685 			     M_TRAILINGSPACE(m) >= shortfall &&
   4686 			     m->m_next->m_len >= (8 + shortfall)) {
   4687 		    /* m is writable and have enough data in next, pull up. */
   4688 
   4689 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4690 			    shortfall);
   4691 			m->m_len += shortfall;
   4692 			m->m_next->m_len -= shortfall;
   4693 			m->m_next->m_data += shortfall;
   4694 		}
   4695 		else if (m->m_next == NULL || 1) {
   4696 		  	/* Got a runt at the very end of the packet.
   4697 			 * borrow data from the tail of the preceding mbuf and
   4698 			 * update its length in-place. (The original data is still
   4699 			 * valid, so we can do this even if prev is not writable.)
   4700 			 */
   4701 
   4702 			/* if we'd make prev a runt, just move all of its data. */
   4703 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4704 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4705 
   4706 			if ((prev->m_len - shortfall) < 8)
   4707 				shortfall = prev->m_len;
   4708 
   4709 #ifdef notyet	/* just do the safe slow thing for now */
   4710 			if (!M_READONLY(m)) {
   4711 				if (M_LEADINGSPACE(m) < shorfall) {
   4712 					void *m_dat;
   4713 					m_dat = (m->m_flags & M_PKTHDR) ?
   4714 					  m->m_pktdat : m->dat;
   4715 					memmove(m_dat, mtod(m, void*), m->m_len);
   4716 					m->m_data = m_dat;
   4717 				    }
   4718 			} else
   4719 #endif	/* just do the safe slow thing */
   4720 			{
   4721 				struct mbuf * n = NULL;
   4722 				int newprevlen = prev->m_len - shortfall;
   4723 
   4724 				MGET(n, M_NOWAIT, MT_DATA);
   4725 				if (n == NULL)
   4726 				   return ENOBUFS;
   4727 				KASSERT(m->m_len + shortfall < MLEN
   4728 					/*,
   4729 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4730 
   4731 				/* first copy the data we're stealing from prev */
   4732 				memcpy(n->m_data, prev->m_data + newprevlen,
   4733 				    shortfall);
   4734 
   4735 				/* update prev->m_len accordingly */
   4736 				prev->m_len -= shortfall;
   4737 
   4738 				/* copy data from runt m */
   4739 				memcpy(n->m_data + shortfall, m->m_data,
   4740 				    m->m_len);
   4741 
   4742 				/* n holds what we stole from prev, plus m */
   4743 				n->m_len = shortfall + m->m_len;
   4744 
   4745 				/* stitch n into chain and free m */
   4746 				n->m_next = m->m_next;
   4747 				prev->m_next = n;
   4748 				/* KASSERT(m->m_next == NULL); */
   4749 				m->m_next = NULL;
   4750 				m_free(m);
   4751 				m = n;	/* for continuing loop */
   4752 			}
   4753 		}
   4754 		prevlen = m->m_len;
   4755 	}
   4756 	return 0;
   4757 }
   4758 
   4759 /*
   4760  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4761  * pointers to descriptors.
   4762  */
   4763 static int
   4764 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4765 {
   4766 	struct bge_tx_bd	*f = NULL;
   4767 	uint32_t		frag, cur;
   4768 	uint16_t		csum_flags = 0;
   4769 	uint16_t		txbd_tso_flags = 0;
   4770 	struct txdmamap_pool_entry *dma;
   4771 	bus_dmamap_t dmamap;
   4772 	int			i = 0;
   4773 	struct m_tag		*mtag;
   4774 	int			use_tso, maxsegsize, error;
   4775 
   4776 	cur = frag = *txidx;
   4777 
   4778 	if (m_head->m_pkthdr.csum_flags) {
   4779 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4780 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4781 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4782 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4783 	}
   4784 
   4785 	/*
   4786 	 * If we were asked to do an outboard checksum, and the NIC
   4787 	 * has the bug where it sometimes adds in the Ethernet padding,
   4788 	 * explicitly pad with zeros so the cksum will be correct either way.
   4789 	 * (For now, do this for all chip versions, until newer
   4790 	 * are confirmed to not require the workaround.)
   4791 	 */
   4792 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4793 #ifdef notyet
   4794 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4795 #endif
   4796 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4797 		goto check_dma_bug;
   4798 
   4799 	if (bge_cksum_pad(m_head) != 0)
   4800 	    return ENOBUFS;
   4801 
   4802 check_dma_bug:
   4803 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4804 		goto doit;
   4805 
   4806 	/*
   4807 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4808 	 * less than eight bytes.  If we encounter a teeny mbuf
   4809 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4810 	 */
   4811 	if (bge_compact_dma_runt(m_head) != 0)
   4812 		return ENOBUFS;
   4813 
   4814 doit:
   4815 	dma = SLIST_FIRST(&sc->txdma_list);
   4816 	if (dma == NULL)
   4817 		return ENOBUFS;
   4818 	dmamap = dma->dmamap;
   4819 
   4820 	/*
   4821 	 * Set up any necessary TSO state before we start packing...
   4822 	 */
   4823 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4824 	if (!use_tso) {
   4825 		maxsegsize = 0;
   4826 	} else {	/* TSO setup */
   4827 		unsigned  mss;
   4828 		struct ether_header *eh;
   4829 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4830 		struct mbuf * m0 = m_head;
   4831 		struct ip *ip;
   4832 		struct tcphdr *th;
   4833 		int iphl, hlen;
   4834 
   4835 		/*
   4836 		 * XXX It would be nice if the mbuf pkthdr had offset
   4837 		 * fields for the protocol headers.
   4838 		 */
   4839 
   4840 		eh = mtod(m0, struct ether_header *);
   4841 		switch (htons(eh->ether_type)) {
   4842 		case ETHERTYPE_IP:
   4843 			offset = ETHER_HDR_LEN;
   4844 			break;
   4845 
   4846 		case ETHERTYPE_VLAN:
   4847 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4848 			break;
   4849 
   4850 		default:
   4851 			/*
   4852 			 * Don't support this protocol or encapsulation.
   4853 			 */
   4854 			return ENOBUFS;
   4855 		}
   4856 
   4857 		/*
   4858 		 * TCP/IP headers are in the first mbuf; we can do
   4859 		 * this the easy way.
   4860 		 */
   4861 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4862 		hlen = iphl + offset;
   4863 		if (__predict_false(m0->m_len <
   4864 				    (hlen + sizeof(struct tcphdr)))) {
   4865 
   4866 			aprint_debug_dev(sc->bge_dev,
   4867 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4868 			    "not handled yet\n",
   4869 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4870 #ifdef NOTYET
   4871 			/*
   4872 			 * XXX jonathan (at) NetBSD.org: untested.
   4873 			 * how to force  this branch to be taken?
   4874 			 */
   4875 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4876 
   4877 			m_copydata(m0, offset, sizeof(ip), &ip);
   4878 			m_copydata(m0, hlen, sizeof(th), &th);
   4879 
   4880 			ip.ip_len = 0;
   4881 
   4882 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4883 			    sizeof(ip.ip_len), &ip.ip_len);
   4884 
   4885 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4886 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4887 
   4888 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4889 			    sizeof(th.th_sum), &th.th_sum);
   4890 
   4891 			hlen += th.th_off << 2;
   4892 			iptcp_opt_words	= hlen;
   4893 #else
   4894 			/*
   4895 			 * if_wm "hard" case not yet supported, can we not
   4896 			 * mandate it out of existence?
   4897 			 */
   4898 			(void) ip; (void)th; (void) ip_tcp_hlen;
   4899 
   4900 			return ENOBUFS;
   4901 #endif
   4902 		} else {
   4903 			ip = (struct ip *) (mtod(m0, char *) + offset);
   4904 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   4905 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   4906 
   4907 			/* Total IP/TCP options, in 32-bit words */
   4908 			iptcp_opt_words = (ip_tcp_hlen
   4909 					   - sizeof(struct tcphdr)
   4910 					   - sizeof(struct ip)) >> 2;
   4911 		}
   4912 		if (BGE_IS_575X_PLUS(sc)) {
   4913 			th->th_sum = 0;
   4914 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   4915 		} else {
   4916 			/*
   4917 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   4918 			 * Requires TSO firmware patch for 5701/5703/5704.
   4919 			 */
   4920 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   4921 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   4922 		}
   4923 
   4924 		mss = m_head->m_pkthdr.segsz;
   4925 		txbd_tso_flags |=
   4926 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   4927 		    BGE_TXBDFLAG_CPU_POST_DMA;
   4928 
   4929 		/*
   4930 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   4931 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   4932 		 * the NIC copies 40 bytes of IP/TCP header from the
   4933 		 * supplied header into the IP/TCP header portion of
   4934 		 * each post-TSO-segment. If the supplied packet has IP or
   4935 		 * TCP options, we need to tell the NIC to copy those extra
   4936 		 * bytes into each  post-TSO header, in addition to the normal
   4937 		 * 40-byte IP/TCP header (and to leave space accordingly).
   4938 		 * Unfortunately, the driver encoding of option length
   4939 		 * varies across different ASIC families.
   4940 		 */
   4941 		tcp_seg_flags = 0;
   4942 		if (iptcp_opt_words) {
   4943 			if (BGE_IS_5705_PLUS(sc)) {
   4944 				tcp_seg_flags =
   4945 					iptcp_opt_words << 11;
   4946 			} else {
   4947 				txbd_tso_flags |=
   4948 					iptcp_opt_words << 12;
   4949 			}
   4950 		}
   4951 		maxsegsize = mss | tcp_seg_flags;
   4952 		ip->ip_len = htons(mss + ip_tcp_hlen);
   4953 
   4954 	}	/* TSO setup */
   4955 
   4956 	/*
   4957 	 * Start packing the mbufs in this chain into
   4958 	 * the fragment pointers. Stop when we run out
   4959 	 * of fragments or hit the end of the mbuf chain.
   4960 	 */
   4961 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   4962 	    BUS_DMA_NOWAIT);
   4963 	if (error)
   4964 		return ENOBUFS;
   4965 	/*
   4966 	 * Sanity check: avoid coming within 16 descriptors
   4967 	 * of the end of the ring.
   4968 	 */
   4969 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   4970 		BGE_TSO_PRINTF(("%s: "
   4971 		    " dmamap_load_mbuf too close to ring wrap\n",
   4972 		    device_xname(sc->bge_dev)));
   4973 		goto fail_unload;
   4974 	}
   4975 
   4976 	mtag = sc->ethercom.ec_nvlans ?
   4977 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   4978 
   4979 
   4980 	/* Iterate over dmap-map fragments. */
   4981 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   4982 		f = &sc->bge_rdata->bge_tx_ring[frag];
   4983 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   4984 			break;
   4985 
   4986 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   4987 		f->bge_len = dmamap->dm_segs[i].ds_len;
   4988 
   4989 		/*
   4990 		 * For 5751 and follow-ons, for TSO we must turn
   4991 		 * off checksum-assist flag in the tx-descr, and
   4992 		 * supply the ASIC-revision-specific encoding
   4993 		 * of TSO flags and segsize.
   4994 		 */
   4995 		if (use_tso) {
   4996 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   4997 				f->bge_rsvd = maxsegsize;
   4998 				f->bge_flags = csum_flags | txbd_tso_flags;
   4999 			} else {
   5000 				f->bge_rsvd = 0;
   5001 				f->bge_flags =
   5002 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5003 			}
   5004 		} else {
   5005 			f->bge_rsvd = 0;
   5006 			f->bge_flags = csum_flags;
   5007 		}
   5008 
   5009 		if (mtag != NULL) {
   5010 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5011 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5012 		} else {
   5013 			f->bge_vlan_tag = 0;
   5014 		}
   5015 		cur = frag;
   5016 		BGE_INC(frag, BGE_TX_RING_CNT);
   5017 	}
   5018 
   5019 	if (i < dmamap->dm_nsegs) {
   5020 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5021 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5022 		goto fail_unload;
   5023 	}
   5024 
   5025 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5026 	    BUS_DMASYNC_PREWRITE);
   5027 
   5028 	if (frag == sc->bge_tx_saved_considx) {
   5029 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5030 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5031 
   5032 		goto fail_unload;
   5033 	}
   5034 
   5035 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5036 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5037 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5038 	sc->txdma[cur] = dma;
   5039 	sc->bge_txcnt += dmamap->dm_nsegs;
   5040 
   5041 	*txidx = frag;
   5042 
   5043 	return 0;
   5044 
   5045 fail_unload:
   5046 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5047 
   5048 	return ENOBUFS;
   5049 }
   5050 
   5051 /*
   5052  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5053  * to the mbuf data regions directly in the transmit descriptors.
   5054  */
   5055 static void
   5056 bge_start(struct ifnet *ifp)
   5057 {
   5058 	struct bge_softc *sc;
   5059 	struct mbuf *m_head = NULL;
   5060 	uint32_t prodidx;
   5061 	int pkts = 0;
   5062 
   5063 	sc = ifp->if_softc;
   5064 
   5065 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5066 		return;
   5067 
   5068 	prodidx = sc->bge_tx_prodidx;
   5069 
   5070 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5071 		IFQ_POLL(&ifp->if_snd, m_head);
   5072 		if (m_head == NULL)
   5073 			break;
   5074 
   5075 #if 0
   5076 		/*
   5077 		 * XXX
   5078 		 * safety overkill.  If this is a fragmented packet chain
   5079 		 * with delayed TCP/UDP checksums, then only encapsulate
   5080 		 * it if we have enough descriptors to handle the entire
   5081 		 * chain at once.
   5082 		 * (paranoia -- may not actually be needed)
   5083 		 */
   5084 		if (m_head->m_flags & M_FIRSTFRAG &&
   5085 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5086 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5087 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5088 				ifp->if_flags |= IFF_OACTIVE;
   5089 				break;
   5090 			}
   5091 		}
   5092 #endif
   5093 
   5094 		/*
   5095 		 * Pack the data into the transmit ring. If we
   5096 		 * don't have room, set the OACTIVE flag and wait
   5097 		 * for the NIC to drain the ring.
   5098 		 */
   5099 		if (bge_encap(sc, m_head, &prodidx)) {
   5100 			ifp->if_flags |= IFF_OACTIVE;
   5101 			break;
   5102 		}
   5103 
   5104 		/* now we are committed to transmit the packet */
   5105 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5106 		pkts++;
   5107 
   5108 		/*
   5109 		 * If there's a BPF listener, bounce a copy of this frame
   5110 		 * to him.
   5111 		 */
   5112 		bpf_mtap(ifp, m_head);
   5113 	}
   5114 	if (pkts == 0)
   5115 		return;
   5116 
   5117 	/* Transmit */
   5118 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5119 	/* 5700 b2 errata */
   5120 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5121 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5122 
   5123 	sc->bge_tx_prodidx = prodidx;
   5124 
   5125 	/*
   5126 	 * Set a timeout in case the chip goes out to lunch.
   5127 	 */
   5128 	ifp->if_timer = 5;
   5129 }
   5130 
   5131 static int
   5132 bge_init(struct ifnet *ifp)
   5133 {
   5134 	struct bge_softc *sc = ifp->if_softc;
   5135 	const uint16_t *m;
   5136 	uint32_t mode;
   5137 	int s, error = 0;
   5138 
   5139 	s = splnet();
   5140 
   5141 	ifp = &sc->ethercom.ec_if;
   5142 
   5143 	/* Cancel pending I/O and flush buffers. */
   5144 	bge_stop(ifp, 0);
   5145 
   5146 	bge_stop_fw(sc);
   5147 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5148 	bge_reset(sc);
   5149 	bge_sig_legacy(sc, BGE_RESET_START);
   5150 	bge_sig_post_reset(sc, BGE_RESET_START);
   5151 
   5152 	bge_chipinit(sc);
   5153 
   5154 	/*
   5155 	 * Init the various state machines, ring
   5156 	 * control blocks and firmware.
   5157 	 */
   5158 	error = bge_blockinit(sc);
   5159 	if (error != 0) {
   5160 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5161 		    error);
   5162 		splx(s);
   5163 		return error;
   5164 	}
   5165 
   5166 	ifp = &sc->ethercom.ec_if;
   5167 
   5168 	/* Specify MTU. */
   5169 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5170 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5171 
   5172 	/* Load our MAC address. */
   5173 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5174 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5175 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5176 
   5177 	/* Enable or disable promiscuous mode as needed. */
   5178 	if (ifp->if_flags & IFF_PROMISC)
   5179 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5180 	else
   5181 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5182 
   5183 	/* Program multicast filter. */
   5184 	bge_setmulti(sc);
   5185 
   5186 	/* Init RX ring. */
   5187 	bge_init_rx_ring_std(sc);
   5188 
   5189 	/*
   5190 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5191 	 * memory to insure that the chip has in fact read the first
   5192 	 * entry of the ring.
   5193 	 */
   5194 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5195 		uint32_t		v, i;
   5196 		for (i = 0; i < 10; i++) {
   5197 			DELAY(20);
   5198 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5199 			if (v == (MCLBYTES - ETHER_ALIGN))
   5200 				break;
   5201 		}
   5202 		if (i == 10)
   5203 			aprint_error_dev(sc->bge_dev,
   5204 			    "5705 A0 chip failed to load RX ring\n");
   5205 	}
   5206 
   5207 	/* Init jumbo RX ring. */
   5208 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5209 		bge_init_rx_ring_jumbo(sc);
   5210 
   5211 	/* Init our RX return ring index */
   5212 	sc->bge_rx_saved_considx = 0;
   5213 
   5214 	/* Init TX ring. */
   5215 	bge_init_tx_ring(sc);
   5216 
   5217 	/* Enable TX MAC state machine lockup fix. */
   5218 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5219 	if (BGE_IS_5755_PLUS(sc) ||
   5220 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5221 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5222 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5223 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5224 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5225 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5226 	}
   5227 
   5228 	/* Turn on transmitter */
   5229 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5230 	DELAY(100);
   5231 
   5232 	/* Turn on receiver */
   5233 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5234 	if (BGE_IS_5755_PLUS(sc))
   5235 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5236 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5237 	DELAY(10);
   5238 
   5239 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   5240 
   5241 	/* Tell firmware we're alive. */
   5242 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5243 
   5244 	/* Enable host interrupts. */
   5245 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5246 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5247 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5248 
   5249 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5250 		goto out;
   5251 
   5252 	ifp->if_flags |= IFF_RUNNING;
   5253 	ifp->if_flags &= ~IFF_OACTIVE;
   5254 
   5255 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5256 
   5257 out:
   5258 	sc->bge_if_flags = ifp->if_flags;
   5259 	splx(s);
   5260 
   5261 	return error;
   5262 }
   5263 
   5264 /*
   5265  * Set media options.
   5266  */
   5267 static int
   5268 bge_ifmedia_upd(struct ifnet *ifp)
   5269 {
   5270 	struct bge_softc *sc = ifp->if_softc;
   5271 	struct mii_data *mii = &sc->bge_mii;
   5272 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5273 	int rc;
   5274 
   5275 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5276 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5277 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5278 			return EINVAL;
   5279 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5280 		case IFM_AUTO:
   5281 			/*
   5282 			 * The BCM5704 ASIC appears to have a special
   5283 			 * mechanism for programming the autoneg
   5284 			 * advertisement registers in TBI mode.
   5285 			 */
   5286 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5287 				uint32_t sgdig;
   5288 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5289 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5290 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5291 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5292 					sgdig |= BGE_SGDIGCFG_AUTO |
   5293 					    BGE_SGDIGCFG_PAUSE_CAP |
   5294 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5295 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5296 					    sgdig | BGE_SGDIGCFG_SEND);
   5297 					DELAY(5);
   5298 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5299 					    sgdig);
   5300 				}
   5301 			}
   5302 			break;
   5303 		case IFM_1000_SX:
   5304 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5305 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5306 				    BGE_MACMODE_HALF_DUPLEX);
   5307 			} else {
   5308 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5309 				    BGE_MACMODE_HALF_DUPLEX);
   5310 			}
   5311 			DELAY(40);
   5312 			break;
   5313 		default:
   5314 			return EINVAL;
   5315 		}
   5316 		/* XXX 802.3x flow control for 1000BASE-SX */
   5317 		return 0;
   5318 	}
   5319 
   5320 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5321 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5322 		return 0;
   5323 
   5324 	/*
   5325 	 * Force an interrupt so that we will call bge_link_upd
   5326 	 * if needed and clear any pending link state attention.
   5327 	 * Without this we are not getting any further interrupts
   5328 	 * for link state changes and thus will not UP the link and
   5329 	 * not be able to send in bge_start. The only way to get
   5330 	 * things working was to receive a packet and get a RX intr.
   5331 	 */
   5332 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5333 	    sc->bge_flags & BGE_IS_5788)
   5334 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5335 	else
   5336 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5337 
   5338 	return rc;
   5339 }
   5340 
   5341 /*
   5342  * Report current media status.
   5343  */
   5344 static void
   5345 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5346 {
   5347 	struct bge_softc *sc = ifp->if_softc;
   5348 	struct mii_data *mii = &sc->bge_mii;
   5349 
   5350 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5351 		ifmr->ifm_status = IFM_AVALID;
   5352 		ifmr->ifm_active = IFM_ETHER;
   5353 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5354 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5355 			ifmr->ifm_status |= IFM_ACTIVE;
   5356 		ifmr->ifm_active |= IFM_1000_SX;
   5357 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5358 			ifmr->ifm_active |= IFM_HDX;
   5359 		else
   5360 			ifmr->ifm_active |= IFM_FDX;
   5361 		return;
   5362 	}
   5363 
   5364 	mii_pollstat(mii);
   5365 	ifmr->ifm_status = mii->mii_media_status;
   5366 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5367 	    sc->bge_flowflags;
   5368 }
   5369 
   5370 static int
   5371 bge_ifflags_cb(struct ethercom *ec)
   5372 {
   5373 	struct ifnet *ifp = &ec->ec_if;
   5374 	struct bge_softc *sc = ifp->if_softc;
   5375 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5376 
   5377 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5378 		return ENETRESET;
   5379 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5380 		return 0;
   5381 
   5382 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5383 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5384 	else
   5385 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5386 
   5387 	bge_setmulti(sc);
   5388 
   5389 	sc->bge_if_flags = ifp->if_flags;
   5390 	return 0;
   5391 }
   5392 
   5393 static int
   5394 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5395 {
   5396 	struct bge_softc *sc = ifp->if_softc;
   5397 	struct ifreq *ifr = (struct ifreq *) data;
   5398 	int s, error = 0;
   5399 	struct mii_data *mii;
   5400 
   5401 	s = splnet();
   5402 
   5403 	switch (command) {
   5404 	case SIOCSIFMEDIA:
   5405 		/* XXX Flow control is not supported for 1000BASE-SX */
   5406 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5407 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5408 			sc->bge_flowflags = 0;
   5409 		}
   5410 
   5411 		/* Flow control requires full-duplex mode. */
   5412 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5413 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5414 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5415 		}
   5416 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5417 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5418 				/* We can do both TXPAUSE and RXPAUSE. */
   5419 				ifr->ifr_media |=
   5420 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5421 			}
   5422 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5423 		}
   5424 		/* FALLTHROUGH */
   5425 	case SIOCGIFMEDIA:
   5426 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5427 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5428 			    command);
   5429 		} else {
   5430 			mii = &sc->bge_mii;
   5431 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5432 			    command);
   5433 		}
   5434 		break;
   5435 	default:
   5436 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5437 			break;
   5438 
   5439 		error = 0;
   5440 
   5441 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5442 			;
   5443 		else if (ifp->if_flags & IFF_RUNNING)
   5444 			bge_setmulti(sc);
   5445 		break;
   5446 	}
   5447 
   5448 	splx(s);
   5449 
   5450 	return error;
   5451 }
   5452 
   5453 static void
   5454 bge_watchdog(struct ifnet *ifp)
   5455 {
   5456 	struct bge_softc *sc;
   5457 
   5458 	sc = ifp->if_softc;
   5459 
   5460 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5461 
   5462 	ifp->if_flags &= ~IFF_RUNNING;
   5463 	bge_init(ifp);
   5464 
   5465 	ifp->if_oerrors++;
   5466 }
   5467 
   5468 static void
   5469 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5470 {
   5471 	int i;
   5472 
   5473 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5474 
   5475 	for (i = 0; i < 1000; i++) {
   5476 		delay(100);
   5477 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5478 			return;
   5479 	}
   5480 
   5481 	/*
   5482 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5483 	 * on some environment (and once after boot?)
   5484 	 */
   5485 	if (reg != BGE_SRS_MODE)
   5486 		aprint_error_dev(sc->bge_dev,
   5487 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5488 		    (u_long)reg, bit);
   5489 }
   5490 
   5491 /*
   5492  * Stop the adapter and free any mbufs allocated to the
   5493  * RX and TX lists.
   5494  */
   5495 static void
   5496 bge_stop(struct ifnet *ifp, int disable)
   5497 {
   5498 	struct bge_softc *sc = ifp->if_softc;
   5499 
   5500 	callout_stop(&sc->bge_timeout);
   5501 
   5502 	/* Disable host interrupts. */
   5503 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5504 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5505 
   5506 	/*
   5507 	 * Tell firmware we're shutting down.
   5508 	 */
   5509 	bge_stop_fw(sc);
   5510 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5511 
   5512 	/*
   5513 	 * Disable all of the receiver blocks.
   5514 	 */
   5515 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5516 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5517 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5518 	if (BGE_IS_5700_FAMILY(sc))
   5519 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5520 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5521 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5522 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5523 
   5524 	/*
   5525 	 * Disable all of the transmit blocks.
   5526 	 */
   5527 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5528 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5529 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5530 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5531 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5532 	if (BGE_IS_5700_FAMILY(sc))
   5533 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5534 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5535 
   5536 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5537 	delay(40);
   5538 
   5539 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5540 
   5541 	/*
   5542 	 * Shut down all of the memory managers and related
   5543 	 * state machines.
   5544 	 */
   5545 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5546 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5547 	if (BGE_IS_5700_FAMILY(sc))
   5548 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5549 
   5550 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5551 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5552 
   5553 	if (BGE_IS_5700_FAMILY(sc)) {
   5554 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5555 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5556 	}
   5557 
   5558 	bge_reset(sc);
   5559 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5560 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5561 
   5562 	/*
   5563 	 * Keep the ASF firmware running if up.
   5564 	 */
   5565 	if (sc->bge_asf_mode & ASF_STACKUP)
   5566 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5567 	else
   5568 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5569 
   5570 	/* Free the RX lists. */
   5571 	bge_free_rx_ring_std(sc);
   5572 
   5573 	/* Free jumbo RX list. */
   5574 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5575 		bge_free_rx_ring_jumbo(sc);
   5576 
   5577 	/* Free TX buffers. */
   5578 	bge_free_tx_ring(sc);
   5579 
   5580 	/*
   5581 	 * Isolate/power down the PHY.
   5582 	 */
   5583 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   5584 		mii_down(&sc->bge_mii);
   5585 
   5586 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5587 
   5588 	/* Clear MAC's link state (PHY may still have link UP). */
   5589 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5590 
   5591 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5592 }
   5593 
   5594 static void
   5595 bge_link_upd(struct bge_softc *sc)
   5596 {
   5597 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5598 	struct mii_data *mii = &sc->bge_mii;
   5599 	uint32_t status;
   5600 	int link;
   5601 
   5602 	/* Clear 'pending link event' flag */
   5603 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5604 
   5605 	/*
   5606 	 * Process link state changes.
   5607 	 * Grrr. The link status word in the status block does
   5608 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5609 	 * according to all available information. Hence, we have
   5610 	 * to enable MII interrupts in order to properly obtain
   5611 	 * async link changes. Unfortunately, this also means that
   5612 	 * we have to read the MAC status register to detect link
   5613 	 * changes, thereby adding an additional register access to
   5614 	 * the interrupt handler.
   5615 	 */
   5616 
   5617 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5618 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5619 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5620 			mii_pollstat(mii);
   5621 
   5622 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5623 			    mii->mii_media_status & IFM_ACTIVE &&
   5624 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5625 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5626 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5627 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5628 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5629 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5630 
   5631 			/* Clear the interrupt */
   5632 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5633 			    BGE_EVTENB_MI_INTERRUPT);
   5634 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5635 			    BRGPHY_MII_ISR);
   5636 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5637 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5638 		}
   5639 		return;
   5640 	}
   5641 
   5642 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5643 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5644 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5645 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5646 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5647 				if (BGE_ASICREV(sc->bge_chipid)
   5648 				    == BGE_ASICREV_BCM5704) {
   5649 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5650 					    BGE_MACMODE_TBI_SEND_CFGS);
   5651 					DELAY(40);
   5652 				}
   5653 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5654 				if_link_state_change(ifp, LINK_STATE_UP);
   5655 			}
   5656 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5657 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5658 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5659 		}
   5660 	/*
   5661 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   5662 	 * This should not happen since mii callouts are locked now, but
   5663 	 * we keep this check for debug.
   5664 	 */
   5665 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5666 		/*
   5667 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5668 		 * bit in status word always set. Workaround this bug by
   5669 		 * reading PHY link status directly.
   5670 		 */
   5671 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5672 		    BGE_STS_LINK : 0;
   5673 
   5674 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5675 			mii_pollstat(mii);
   5676 
   5677 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5678 			    mii->mii_media_status & IFM_ACTIVE &&
   5679 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5680 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5681 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5682 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5683 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5684 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5685 		}
   5686 	}
   5687 
   5688 	/* Clear the attention */
   5689 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5690 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5691 	    BGE_MACSTAT_LINK_CHANGED);
   5692 }
   5693 
   5694 static int
   5695 bge_sysctl_verify(SYSCTLFN_ARGS)
   5696 {
   5697 	int error, t;
   5698 	struct sysctlnode node;
   5699 
   5700 	node = *rnode;
   5701 	t = *(int*)rnode->sysctl_data;
   5702 	node.sysctl_data = &t;
   5703 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5704 	if (error || newp == NULL)
   5705 		return error;
   5706 
   5707 #if 0
   5708 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5709 	    node.sysctl_num, rnode->sysctl_num));
   5710 #endif
   5711 
   5712 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5713 		if (t < 0 || t >= NBGE_RX_THRESH)
   5714 			return EINVAL;
   5715 		bge_update_all_threshes(t);
   5716 	} else
   5717 		return EINVAL;
   5718 
   5719 	*(int*)rnode->sysctl_data = t;
   5720 
   5721 	return 0;
   5722 }
   5723 
   5724 /*
   5725  * Set up sysctl(3) MIB, hw.bge.*.
   5726  */
   5727 static void
   5728 bge_sysctl_init(struct bge_softc *sc)
   5729 {
   5730 	int rc, bge_root_num;
   5731 	const struct sysctlnode *node;
   5732 
   5733 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5734 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5735 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5736 		goto out;
   5737 	}
   5738 
   5739 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5740 	    0, CTLTYPE_NODE, "bge",
   5741 	    SYSCTL_DESCR("BGE interface controls"),
   5742 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5743 		goto out;
   5744 	}
   5745 
   5746 	bge_root_num = node->sysctl_num;
   5747 
   5748 	/* BGE Rx interrupt mitigation level */
   5749 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5750 	    CTLFLAG_READWRITE,
   5751 	    CTLTYPE_INT, "rx_lvl",
   5752 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5753 	    bge_sysctl_verify, 0,
   5754 	    &bge_rx_thresh_lvl,
   5755 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5756 	    CTL_EOL)) != 0) {
   5757 		goto out;
   5758 	}
   5759 
   5760 	bge_rxthresh_nodenum = node->sysctl_num;
   5761 
   5762 	return;
   5763 
   5764 out:
   5765 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5766 }
   5767 
   5768 #ifdef BGE_DEBUG
   5769 void
   5770 bge_debug_info(struct bge_softc *sc)
   5771 {
   5772 
   5773 	printf("Hardware Flags:\n");
   5774 	if (BGE_IS_57765_PLUS(sc))
   5775 		printf(" - 57765 Plus\n");
   5776 	if (BGE_IS_5717_PLUS(sc))
   5777 		printf(" - 5717 Plus\n");
   5778 	if (BGE_IS_5755_PLUS(sc))
   5779 		printf(" - 5755 Plus\n");
   5780 	if (BGE_IS_575X_PLUS(sc))
   5781 		printf(" - 575X Plus\n");
   5782 	if (BGE_IS_5705_PLUS(sc))
   5783 		printf(" - 5705 Plus\n");
   5784 	if (BGE_IS_5714_FAMILY(sc))
   5785 		printf(" - 5714 Family\n");
   5786 	if (BGE_IS_5700_FAMILY(sc))
   5787 		printf(" - 5700 Family\n");
   5788 	if (sc->bge_flags & BGE_IS_5788)
   5789 		printf(" - 5788\n");
   5790 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5791 		printf(" - Supports Jumbo Frames\n");
   5792 	if (sc->bge_flags & BGE_NO_EEPROM)
   5793 		printf(" - No EEPROM\n");
   5794 	if (sc->bge_flags & BGE_PCIX)
   5795 		printf(" - PCI-X Bus\n");
   5796 	if (sc->bge_flags & BGE_PCIE)
   5797 		printf(" - PCI Express Bus\n");
   5798 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5799 		printf(" - RX Alignment Bug\n");
   5800 	if (sc->bge_flags & BGE_APE)
   5801 		printf(" - APE\n");
   5802 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5803 		printf(" - CPMU\n");
   5804 	if (sc->bge_flags & BGE_TSO)
   5805 		printf(" - TSO\n");
   5806 
   5807 	if (sc->bge_flags & BGE_PHY_NO_3LED)
   5808 		printf(" - No 3 LEDs\n");
   5809 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
   5810 		printf(" - CRC bug\n");
   5811 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
   5812 		printf(" - ADC bug\n");
   5813 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
   5814 		printf(" - 5704 A0 bug\n");
   5815 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
   5816 		printf(" - jitter bug\n");
   5817 	if (sc->bge_flags & BGE_PHY_BER_BUG)
   5818 		printf(" - BER bug\n");
   5819 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
   5820 		printf(" - adjust trim\n");
   5821 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
   5822 		printf(" - no wirespeed\n");
   5823 }
   5824 #endif /* BGE_DEBUG */
   5825 
   5826 static int
   5827 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5828 {
   5829 	prop_dictionary_t dict;
   5830 	prop_data_t ea;
   5831 
   5832 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5833 		return 1;
   5834 
   5835 	dict = device_properties(sc->bge_dev);
   5836 	ea = prop_dictionary_get(dict, "mac-address");
   5837 	if (ea != NULL) {
   5838 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5839 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5840 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5841 		return 0;
   5842 	}
   5843 
   5844 	return 1;
   5845 }
   5846 
   5847 static int
   5848 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5849 {
   5850 	uint32_t mac_addr;
   5851 
   5852 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5853 	if ((mac_addr >> 16) == 0x484b) {
   5854 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5855 		ether_addr[1] = (uint8_t)mac_addr;
   5856 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5857 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5858 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5859 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5860 		ether_addr[5] = (uint8_t)mac_addr;
   5861 		return 0;
   5862 	}
   5863 	return 1;
   5864 }
   5865 
   5866 static int
   5867 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5868 {
   5869 	int mac_offset = BGE_EE_MAC_OFFSET;
   5870 
   5871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5872 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5873 
   5874 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5875 	    ETHER_ADDR_LEN));
   5876 }
   5877 
   5878 static int
   5879 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5880 {
   5881 
   5882 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5883 		return 1;
   5884 
   5885 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5886 	   ETHER_ADDR_LEN));
   5887 }
   5888 
   5889 static int
   5890 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   5891 {
   5892 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   5893 		/* NOTE: Order is critical */
   5894 		bge_get_eaddr_fw,
   5895 		bge_get_eaddr_mem,
   5896 		bge_get_eaddr_nvram,
   5897 		bge_get_eaddr_eeprom,
   5898 		NULL
   5899 	};
   5900 	const bge_eaddr_fcn_t *func;
   5901 
   5902 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   5903 		if ((*func)(sc, eaddr) == 0)
   5904 			break;
   5905 	}
   5906 	return (*func == NULL ? ENXIO : 0);
   5907 }
   5908