if_bge.c revision 1.234 1 /* $NetBSD: if_bge.c,v 1.234 2013/04/08 03:35:11 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.234 2013/04/08 03:35:11 msaitoh Exp $");
83
84 #include "vlan.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #include <sys/rnd.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117
118 #include <net/bpf.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131
132 #include <prop/proplib.h>
133
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135
136
137 /*
138 * Tunable thresholds for rx-side bge interrupt mitigation.
139 */
140
141 /*
142 * The pairs of values below were obtained from empirical measurement
143 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144 * interrupt for every N packets received, where N is, approximately,
145 * the second value (rx_max_bds) in each pair. The values are chosen
146 * such that moving from one pair to the succeeding pair was observed
147 * to roughly halve interrupt rate under sustained input packet load.
148 * The values were empirically chosen to avoid overflowing internal
149 * limits on the bcm5700: increasing rx_ticks much beyond 600
150 * results in internal wrapping and higher interrupt rates.
151 * The limit of 46 frames was chosen to match NFS workloads.
152 *
153 * These values also work well on bcm5701, bcm5704C, and (less
154 * tested) bcm5703. On other chipsets, (including the Altima chip
155 * family), the larger values may overflow internal chip limits,
156 * leading to increasing interrupt rates rather than lower interrupt
157 * rates.
158 *
159 * Applications using heavy interrupt mitigation (interrupting every
160 * 32 or 46 frames) in both directions may need to increase the TCP
161 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162 * full link bandwidth, due to ACKs and window updates lingering
163 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164 */
165 static const struct bge_load_rx_thresh {
166 int rx_ticks;
167 int rx_max_bds; }
168 bge_rx_threshes[] = {
169 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
170 { 32, 2 },
171 { 50, 4 },
172 { 100, 8 },
173 { 192, 16 },
174 { 416, 32 },
175 { 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182
183 static int bge_rxthresh_nodenum;
184
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static int bge_detach(device_t, int);
191 static void bge_release_resources(struct bge_softc *);
192
193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
198
199 static void bge_txeof(struct bge_softc *);
200 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
201 static void bge_rxeof(struct bge_softc *);
202
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ifflags_cb(struct ethercom *);
212 static int bge_ioctl(struct ifnet *, u_long, void *);
213 static int bge_init(struct ifnet *);
214 static void bge_stop(struct ifnet *, int);
215 static void bge_watchdog(struct ifnet *);
216 static int bge_ifmedia_upd(struct ifnet *);
217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218
219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
221
222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
224 static void bge_setmulti(struct bge_softc *);
225
226 static void bge_handle_events(struct bge_softc *);
227 static int bge_alloc_jumbo_mem(struct bge_softc *);
228 #if 0 /* XXX */
229 static void bge_free_jumbo_mem(struct bge_softc *);
230 #endif
231 static void *bge_jalloc(struct bge_softc *);
232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
234 bus_dmamap_t);
235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
236 static int bge_init_rx_ring_std(struct bge_softc *);
237 static void bge_free_rx_ring_std(struct bge_softc *);
238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_tx_ring(struct bge_softc *);
241 static int bge_init_tx_ring(struct bge_softc *);
242
243 static int bge_chipinit(struct bge_softc *);
244 static int bge_blockinit(struct bge_softc *);
245 static int bge_phy_addr(struct bge_softc *);
246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
247 static void bge_writemem_ind(struct bge_softc *, int, int);
248 static void bge_writembx(struct bge_softc *, int, int);
249 static void bge_writembx_flush(struct bge_softc *, int, int);
250 static void bge_writemem_direct(struct bge_softc *, int, int);
251 static void bge_writereg_ind(struct bge_softc *, int, int);
252 static void bge_set_max_readrq(struct bge_softc *);
253
254 static int bge_miibus_readreg(device_t, int, int);
255 static void bge_miibus_writereg(device_t, int, int, int);
256 static void bge_miibus_statchg(struct ifnet *);
257
258 #define BGE_RESET_SHUTDOWN 0
259 #define BGE_RESET_START 1
260 #define BGE_RESET_SUSPEND 2
261 static void bge_sig_post_reset(struct bge_softc *, int);
262 static void bge_sig_legacy(struct bge_softc *, int);
263 static void bge_sig_pre_reset(struct bge_softc *, int);
264 static void bge_wait_for_event_ack(struct bge_softc *);
265 static void bge_stop_fw(struct bge_softc *);
266 static int bge_reset(struct bge_softc *);
267 static void bge_link_upd(struct bge_softc *);
268 static void bge_sysctl_init(struct bge_softc *);
269 static int bge_sysctl_verify(SYSCTLFN_PROTO);
270
271 static void bge_ape_lock_init(struct bge_softc *);
272 static void bge_ape_read_fw_ver(struct bge_softc *);
273 static int bge_ape_lock(struct bge_softc *, int);
274 static void bge_ape_unlock(struct bge_softc *, int);
275 static void bge_ape_send_event(struct bge_softc *, uint32_t);
276 static void bge_ape_driver_state_change(struct bge_softc *, int);
277
278 #ifdef BGE_DEBUG
279 #define DPRINTF(x) if (bgedebug) printf x
280 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
281 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
282 int bgedebug = 0;
283 int bge_tso_debug = 0;
284 void bge_debug_info(struct bge_softc *);
285 #else
286 #define DPRINTF(x)
287 #define DPRINTFN(n,x)
288 #define BGE_TSO_PRINTF(x)
289 #endif
290
291 #ifdef BGE_EVENT_COUNTERS
292 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
293 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
294 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
295 #else
296 #define BGE_EVCNT_INCR(ev) /* nothing */
297 #define BGE_EVCNT_ADD(ev, val) /* nothing */
298 #define BGE_EVCNT_UPD(ev, val) /* nothing */
299 #endif
300
301 static const struct bge_product {
302 pci_vendor_id_t bp_vendor;
303 pci_product_id_t bp_product;
304 const char *bp_name;
305 } bge_products[] = {
306 /*
307 * The BCM5700 documentation seems to indicate that the hardware
308 * still has the Alteon vendor ID burned into it, though it
309 * should always be overridden by the value in the EEPROM. We'll
310 * check for it anyway.
311 */
312 { PCI_VENDOR_ALTEON,
313 PCI_PRODUCT_ALTEON_BCM5700,
314 "Broadcom BCM5700 Gigabit Ethernet",
315 },
316 { PCI_VENDOR_ALTEON,
317 PCI_PRODUCT_ALTEON_BCM5701,
318 "Broadcom BCM5701 Gigabit Ethernet",
319 },
320 { PCI_VENDOR_ALTIMA,
321 PCI_PRODUCT_ALTIMA_AC1000,
322 "Altima AC1000 Gigabit Ethernet",
323 },
324 { PCI_VENDOR_ALTIMA,
325 PCI_PRODUCT_ALTIMA_AC1001,
326 "Altima AC1001 Gigabit Ethernet",
327 },
328 { PCI_VENDOR_ALTIMA,
329 PCI_PRODUCT_ALTIMA_AC1003,
330 "Altima AC1003 Gigabit Ethernet",
331 },
332 { PCI_VENDOR_ALTIMA,
333 PCI_PRODUCT_ALTIMA_AC9100,
334 "Altima AC9100 Gigabit Ethernet",
335 },
336 { PCI_VENDOR_APPLE,
337 PCI_PRODUCT_APPLE_BCM5701,
338 "APPLE BCM5701 Gigabit Ethernet",
339 },
340 { PCI_VENDOR_BROADCOM,
341 PCI_PRODUCT_BROADCOM_BCM5700,
342 "Broadcom BCM5700 Gigabit Ethernet",
343 },
344 { PCI_VENDOR_BROADCOM,
345 PCI_PRODUCT_BROADCOM_BCM5701,
346 "Broadcom BCM5701 Gigabit Ethernet",
347 },
348 { PCI_VENDOR_BROADCOM,
349 PCI_PRODUCT_BROADCOM_BCM5702,
350 "Broadcom BCM5702 Gigabit Ethernet",
351 },
352 { PCI_VENDOR_BROADCOM,
353 PCI_PRODUCT_BROADCOM_BCM5702X,
354 "Broadcom BCM5702X Gigabit Ethernet" },
355 { PCI_VENDOR_BROADCOM,
356 PCI_PRODUCT_BROADCOM_BCM5703,
357 "Broadcom BCM5703 Gigabit Ethernet",
358 },
359 { PCI_VENDOR_BROADCOM,
360 PCI_PRODUCT_BROADCOM_BCM5703X,
361 "Broadcom BCM5703X Gigabit Ethernet",
362 },
363 { PCI_VENDOR_BROADCOM,
364 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
365 "Broadcom BCM5703 Gigabit Ethernet",
366 },
367 { PCI_VENDOR_BROADCOM,
368 PCI_PRODUCT_BROADCOM_BCM5704C,
369 "Broadcom BCM5704C Dual Gigabit Ethernet",
370 },
371 { PCI_VENDOR_BROADCOM,
372 PCI_PRODUCT_BROADCOM_BCM5704S,
373 "Broadcom BCM5704S Dual Gigabit Ethernet",
374 },
375 { PCI_VENDOR_BROADCOM,
376 PCI_PRODUCT_BROADCOM_BCM5705,
377 "Broadcom BCM5705 Gigabit Ethernet",
378 },
379 { PCI_VENDOR_BROADCOM,
380 PCI_PRODUCT_BROADCOM_BCM5705F,
381 "Broadcom BCM5705F Gigabit Ethernet",
382 },
383 { PCI_VENDOR_BROADCOM,
384 PCI_PRODUCT_BROADCOM_BCM5705K,
385 "Broadcom BCM5705K Gigabit Ethernet",
386 },
387 { PCI_VENDOR_BROADCOM,
388 PCI_PRODUCT_BROADCOM_BCM5705M,
389 "Broadcom BCM5705M Gigabit Ethernet",
390 },
391 { PCI_VENDOR_BROADCOM,
392 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
393 "Broadcom BCM5705M Gigabit Ethernet",
394 },
395 { PCI_VENDOR_BROADCOM,
396 PCI_PRODUCT_BROADCOM_BCM5714,
397 "Broadcom BCM5714 Gigabit Ethernet",
398 },
399 { PCI_VENDOR_BROADCOM,
400 PCI_PRODUCT_BROADCOM_BCM5714S,
401 "Broadcom BCM5714S Gigabit Ethernet",
402 },
403 { PCI_VENDOR_BROADCOM,
404 PCI_PRODUCT_BROADCOM_BCM5715,
405 "Broadcom BCM5715 Gigabit Ethernet",
406 },
407 { PCI_VENDOR_BROADCOM,
408 PCI_PRODUCT_BROADCOM_BCM5715S,
409 "Broadcom BCM5715S Gigabit Ethernet",
410 },
411 { PCI_VENDOR_BROADCOM,
412 PCI_PRODUCT_BROADCOM_BCM5717,
413 "Broadcom BCM5717 Gigabit Ethernet",
414 },
415 { PCI_VENDOR_BROADCOM,
416 PCI_PRODUCT_BROADCOM_BCM5718,
417 "Broadcom BCM5718 Gigabit Ethernet",
418 },
419 { PCI_VENDOR_BROADCOM,
420 PCI_PRODUCT_BROADCOM_BCM5719,
421 "Broadcom BCM5719 Gigabit Ethernet",
422 },
423 { PCI_VENDOR_BROADCOM,
424 PCI_PRODUCT_BROADCOM_BCM5720,
425 "Broadcom BCM5720 Gigabit Ethernet",
426 },
427 { PCI_VENDOR_BROADCOM,
428 PCI_PRODUCT_BROADCOM_BCM5721,
429 "Broadcom BCM5721 Gigabit Ethernet",
430 },
431 { PCI_VENDOR_BROADCOM,
432 PCI_PRODUCT_BROADCOM_BCM5722,
433 "Broadcom BCM5722 Gigabit Ethernet",
434 },
435 { PCI_VENDOR_BROADCOM,
436 PCI_PRODUCT_BROADCOM_BCM5723,
437 "Broadcom BCM5723 Gigabit Ethernet",
438 },
439 { PCI_VENDOR_BROADCOM,
440 PCI_PRODUCT_BROADCOM_BCM5724,
441 "Broadcom BCM5724 Gigabit Ethernet",
442 },
443 { PCI_VENDOR_BROADCOM,
444 PCI_PRODUCT_BROADCOM_BCM5750,
445 "Broadcom BCM5750 Gigabit Ethernet",
446 },
447 { PCI_VENDOR_BROADCOM,
448 PCI_PRODUCT_BROADCOM_BCM5750M,
449 "Broadcom BCM5750M Gigabit Ethernet",
450 },
451 { PCI_VENDOR_BROADCOM,
452 PCI_PRODUCT_BROADCOM_BCM5751,
453 "Broadcom BCM5751 Gigabit Ethernet",
454 },
455 { PCI_VENDOR_BROADCOM,
456 PCI_PRODUCT_BROADCOM_BCM5751F,
457 "Broadcom BCM5751F Gigabit Ethernet",
458 },
459 { PCI_VENDOR_BROADCOM,
460 PCI_PRODUCT_BROADCOM_BCM5751M,
461 "Broadcom BCM5751M Gigabit Ethernet",
462 },
463 { PCI_VENDOR_BROADCOM,
464 PCI_PRODUCT_BROADCOM_BCM5752,
465 "Broadcom BCM5752 Gigabit Ethernet",
466 },
467 { PCI_VENDOR_BROADCOM,
468 PCI_PRODUCT_BROADCOM_BCM5752M,
469 "Broadcom BCM5752M Gigabit Ethernet",
470 },
471 { PCI_VENDOR_BROADCOM,
472 PCI_PRODUCT_BROADCOM_BCM5753,
473 "Broadcom BCM5753 Gigabit Ethernet",
474 },
475 { PCI_VENDOR_BROADCOM,
476 PCI_PRODUCT_BROADCOM_BCM5753F,
477 "Broadcom BCM5753F Gigabit Ethernet",
478 },
479 { PCI_VENDOR_BROADCOM,
480 PCI_PRODUCT_BROADCOM_BCM5753M,
481 "Broadcom BCM5753M Gigabit Ethernet",
482 },
483 { PCI_VENDOR_BROADCOM,
484 PCI_PRODUCT_BROADCOM_BCM5754,
485 "Broadcom BCM5754 Gigabit Ethernet",
486 },
487 { PCI_VENDOR_BROADCOM,
488 PCI_PRODUCT_BROADCOM_BCM5754M,
489 "Broadcom BCM5754M Gigabit Ethernet",
490 },
491 { PCI_VENDOR_BROADCOM,
492 PCI_PRODUCT_BROADCOM_BCM5755,
493 "Broadcom BCM5755 Gigabit Ethernet",
494 },
495 { PCI_VENDOR_BROADCOM,
496 PCI_PRODUCT_BROADCOM_BCM5755M,
497 "Broadcom BCM5755M Gigabit Ethernet",
498 },
499 { PCI_VENDOR_BROADCOM,
500 PCI_PRODUCT_BROADCOM_BCM5756,
501 "Broadcom BCM5756 Gigabit Ethernet",
502 },
503 { PCI_VENDOR_BROADCOM,
504 PCI_PRODUCT_BROADCOM_BCM5761,
505 "Broadcom BCM5761 Gigabit Ethernet",
506 },
507 { PCI_VENDOR_BROADCOM,
508 PCI_PRODUCT_BROADCOM_BCM5761E,
509 "Broadcom BCM5761E Gigabit Ethernet",
510 },
511 { PCI_VENDOR_BROADCOM,
512 PCI_PRODUCT_BROADCOM_BCM5761S,
513 "Broadcom BCM5761S Gigabit Ethernet",
514 },
515 { PCI_VENDOR_BROADCOM,
516 PCI_PRODUCT_BROADCOM_BCM5761SE,
517 "Broadcom BCM5761SE Gigabit Ethernet",
518 },
519 { PCI_VENDOR_BROADCOM,
520 PCI_PRODUCT_BROADCOM_BCM5764,
521 "Broadcom BCM5764 Gigabit Ethernet",
522 },
523 { PCI_VENDOR_BROADCOM,
524 PCI_PRODUCT_BROADCOM_BCM5780,
525 "Broadcom BCM5780 Gigabit Ethernet",
526 },
527 { PCI_VENDOR_BROADCOM,
528 PCI_PRODUCT_BROADCOM_BCM5780S,
529 "Broadcom BCM5780S Gigabit Ethernet",
530 },
531 { PCI_VENDOR_BROADCOM,
532 PCI_PRODUCT_BROADCOM_BCM5781,
533 "Broadcom BCM5781 Gigabit Ethernet",
534 },
535 { PCI_VENDOR_BROADCOM,
536 PCI_PRODUCT_BROADCOM_BCM5782,
537 "Broadcom BCM5782 Gigabit Ethernet",
538 },
539 { PCI_VENDOR_BROADCOM,
540 PCI_PRODUCT_BROADCOM_BCM5784M,
541 "BCM5784M NetLink 1000baseT Ethernet",
542 },
543 { PCI_VENDOR_BROADCOM,
544 PCI_PRODUCT_BROADCOM_BCM5785F,
545 "BCM5785F NetLink 10/100 Ethernet",
546 },
547 { PCI_VENDOR_BROADCOM,
548 PCI_PRODUCT_BROADCOM_BCM5785G,
549 "BCM5785G NetLink 1000baseT Ethernet",
550 },
551 { PCI_VENDOR_BROADCOM,
552 PCI_PRODUCT_BROADCOM_BCM5786,
553 "Broadcom BCM5786 Gigabit Ethernet",
554 },
555 { PCI_VENDOR_BROADCOM,
556 PCI_PRODUCT_BROADCOM_BCM5787,
557 "Broadcom BCM5787 Gigabit Ethernet",
558 },
559 { PCI_VENDOR_BROADCOM,
560 PCI_PRODUCT_BROADCOM_BCM5787F,
561 "Broadcom BCM5787F 10/100 Ethernet",
562 },
563 { PCI_VENDOR_BROADCOM,
564 PCI_PRODUCT_BROADCOM_BCM5787M,
565 "Broadcom BCM5787M Gigabit Ethernet",
566 },
567 { PCI_VENDOR_BROADCOM,
568 PCI_PRODUCT_BROADCOM_BCM5788,
569 "Broadcom BCM5788 Gigabit Ethernet",
570 },
571 { PCI_VENDOR_BROADCOM,
572 PCI_PRODUCT_BROADCOM_BCM5789,
573 "Broadcom BCM5789 Gigabit Ethernet",
574 },
575 { PCI_VENDOR_BROADCOM,
576 PCI_PRODUCT_BROADCOM_BCM5901,
577 "Broadcom BCM5901 Fast Ethernet",
578 },
579 { PCI_VENDOR_BROADCOM,
580 PCI_PRODUCT_BROADCOM_BCM5901A2,
581 "Broadcom BCM5901A2 Fast Ethernet",
582 },
583 { PCI_VENDOR_BROADCOM,
584 PCI_PRODUCT_BROADCOM_BCM5903M,
585 "Broadcom BCM5903M Fast Ethernet",
586 },
587 { PCI_VENDOR_BROADCOM,
588 PCI_PRODUCT_BROADCOM_BCM5906,
589 "Broadcom BCM5906 Fast Ethernet",
590 },
591 { PCI_VENDOR_BROADCOM,
592 PCI_PRODUCT_BROADCOM_BCM5906M,
593 "Broadcom BCM5906M Fast Ethernet",
594 },
595 { PCI_VENDOR_BROADCOM,
596 PCI_PRODUCT_BROADCOM_BCM57760,
597 "Broadcom BCM57760 Fast Ethernet",
598 },
599 { PCI_VENDOR_BROADCOM,
600 PCI_PRODUCT_BROADCOM_BCM57761,
601 "Broadcom BCM57761 Fast Ethernet",
602 },
603 { PCI_VENDOR_BROADCOM,
604 PCI_PRODUCT_BROADCOM_BCM57762,
605 "Broadcom BCM57762 Gigabit Ethernet",
606 },
607 { PCI_VENDOR_BROADCOM,
608 PCI_PRODUCT_BROADCOM_BCM57765,
609 "Broadcom BCM57765 Fast Ethernet",
610 },
611 { PCI_VENDOR_BROADCOM,
612 PCI_PRODUCT_BROADCOM_BCM57766,
613 "Broadcom BCM57766 Fast Ethernet",
614 },
615 { PCI_VENDOR_BROADCOM,
616 PCI_PRODUCT_BROADCOM_BCM57780,
617 "Broadcom BCM57780 Fast Ethernet",
618 },
619 { PCI_VENDOR_BROADCOM,
620 PCI_PRODUCT_BROADCOM_BCM57781,
621 "Broadcom BCM57781 Fast Ethernet",
622 },
623 { PCI_VENDOR_BROADCOM,
624 PCI_PRODUCT_BROADCOM_BCM57782,
625 "Broadcom BCM57782 Fast Ethernet",
626 },
627 { PCI_VENDOR_BROADCOM,
628 PCI_PRODUCT_BROADCOM_BCM57785,
629 "Broadcom BCM57785 Fast Ethernet",
630 },
631 { PCI_VENDOR_BROADCOM,
632 PCI_PRODUCT_BROADCOM_BCM57786,
633 "Broadcom BCM57786 Fast Ethernet",
634 },
635 { PCI_VENDOR_BROADCOM,
636 PCI_PRODUCT_BROADCOM_BCM57788,
637 "Broadcom BCM57788 Fast Ethernet",
638 },
639 { PCI_VENDOR_BROADCOM,
640 PCI_PRODUCT_BROADCOM_BCM57790,
641 "Broadcom BCM57790 Fast Ethernet",
642 },
643 { PCI_VENDOR_BROADCOM,
644 PCI_PRODUCT_BROADCOM_BCM57791,
645 "Broadcom BCM57791 Fast Ethernet",
646 },
647 { PCI_VENDOR_BROADCOM,
648 PCI_PRODUCT_BROADCOM_BCM57795,
649 "Broadcom BCM57795 Fast Ethernet",
650 },
651 { PCI_VENDOR_SCHNEIDERKOCH,
652 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
653 "SysKonnect SK-9Dx1 Gigabit Ethernet",
654 },
655 { PCI_VENDOR_3COM,
656 PCI_PRODUCT_3COM_3C996,
657 "3Com 3c996 Gigabit Ethernet",
658 },
659 { PCI_VENDOR_FUJITSU4,
660 PCI_PRODUCT_FUJITSU4_PW008GE4,
661 "Fujitsu PW008GE4 Gigabit Ethernet",
662 },
663 { PCI_VENDOR_FUJITSU4,
664 PCI_PRODUCT_FUJITSU4_PW008GE5,
665 "Fujitsu PW008GE5 Gigabit Ethernet",
666 },
667 { PCI_VENDOR_FUJITSU4,
668 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
669 "Fujitsu Primepower 250/450 Gigabit Ethernet",
670 },
671 { 0,
672 0,
673 NULL },
674 };
675
676 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
677 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
678 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
679 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
680 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
681 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
682 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
683 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
684
685 static const struct bge_revision {
686 uint32_t br_chipid;
687 const char *br_name;
688 } bge_revisions[] = {
689 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
690 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
691 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
692 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
693 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
694 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
695 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
696 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
697 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
698 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
699 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
700 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
701 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
702 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
703 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
704 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
705 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
706 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
707 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
708 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
709 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
710 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
711 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
712 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
713 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
714 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
715 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
716 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
717 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
718 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
719 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
720 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
721 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
722 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
723 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
724 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
725 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
726 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
727 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
728 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
729 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
730 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
731 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
732 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
733 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
734 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
735 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
736 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
737 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
738 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
739 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
740 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
741 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
742 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
743 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
744 /* 5754 and 5787 share the same ASIC ID */
745 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
746 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
747 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
748 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
749 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
750 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
751 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
752 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
753 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
754 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
755
756 { 0, NULL }
757 };
758
759 /*
760 * Some defaults for major revisions, so that newer steppings
761 * that we don't know about have a shot at working.
762 */
763 static const struct bge_revision bge_majorrevs[] = {
764 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
765 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
766 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
767 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
768 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
769 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
770 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
772 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
773 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
774 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
775 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
776 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
777 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
778 /* 5754 and 5787 share the same ASIC ID */
779 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
780 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
781 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
782 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
783 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
784 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
785 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
786 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
787
788 { 0, NULL }
789 };
790
791 static int bge_allow_asf = 1;
792
793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
794 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
795
796 static uint32_t
797 bge_readmem_ind(struct bge_softc *sc, int off)
798 {
799 pcireg_t val;
800
801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
802 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
803 return 0;
804
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
806 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
807 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
808 return val;
809 }
810
811 static void
812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
813 {
814
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
817 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
818 }
819
820 /*
821 * PCI Express only
822 */
823 static void
824 bge_set_max_readrq(struct bge_softc *sc)
825 {
826 pcireg_t val;
827
828 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
829 + PCI_PCIE_DCSR);
830 val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
831 switch (sc->bge_expmrq) {
832 case 2048:
833 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
834 break;
835 case 4096:
836 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
837 break;
838 default:
839 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
840 break;
841 }
842 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
843 + PCI_PCIE_DCSR, val);
844 }
845
846 #ifdef notdef
847 static uint32_t
848 bge_readreg_ind(struct bge_softc *sc, int off)
849 {
850 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
851 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
852 }
853 #endif
854
855 static void
856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
857 {
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
859 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
860 }
861
862 static void
863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
864 {
865 CSR_WRITE_4(sc, off, val);
866 }
867
868 static void
869 bge_writembx(struct bge_softc *sc, int off, int val)
870 {
871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
872 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
873
874 CSR_WRITE_4(sc, off, val);
875 }
876
877 static void
878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
879 {
880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
881 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
882
883 CSR_WRITE_4_FLUSH(sc, off, val);
884 }
885
886 /*
887 * Clear all stale locks and select the lock for this driver instance.
888 */
889 void
890 bge_ape_lock_init(struct bge_softc *sc)
891 {
892 struct pci_attach_args *pa = &(sc->bge_pa);
893 uint32_t bit, regbase;
894 int i;
895
896 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
897 regbase = BGE_APE_LOCK_GRANT;
898 else
899 regbase = BGE_APE_PER_LOCK_GRANT;
900
901 /* Clear any stale locks. */
902 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
903 switch (i) {
904 case BGE_APE_LOCK_PHY0:
905 case BGE_APE_LOCK_PHY1:
906 case BGE_APE_LOCK_PHY2:
907 case BGE_APE_LOCK_PHY3:
908 bit = BGE_APE_LOCK_GRANT_DRIVER0;
909 break;
910 default:
911 if (pa->pa_function == 0)
912 bit = BGE_APE_LOCK_GRANT_DRIVER0;
913 else
914 bit = (1 << pa->pa_function);
915 }
916 APE_WRITE_4(sc, regbase + 4 * i, bit);
917 }
918
919 /* Select the PHY lock based on the device's function number. */
920 switch (pa->pa_function) {
921 case 0:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
923 break;
924 case 1:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
926 break;
927 case 2:
928 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
929 break;
930 case 3:
931 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
932 break;
933 default:
934 printf("%s: PHY lock not supported on function\n",
935 device_xname(sc->bge_dev));
936 break;
937 }
938 }
939
940 /*
941 * Check for APE firmware, set flags, and print version info.
942 */
943 void
944 bge_ape_read_fw_ver(struct bge_softc *sc)
945 {
946 const char *fwtype;
947 uint32_t apedata, features;
948
949 /* Check for a valid APE signature in shared memory. */
950 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
951 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
952 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
953 return;
954 }
955
956 /* Check if APE firmware is running. */
957 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
958 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
959 printf("%s: APE signature found but FW status not ready! "
960 "0x%08x\n", device_xname(sc->bge_dev), apedata);
961 return;
962 }
963
964 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
965
966 /* Fetch the APE firwmare type and version. */
967 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
968 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
969 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
970 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
971 fwtype = "NCSI";
972 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
973 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
974 fwtype = "DASH";
975 } else
976 fwtype = "UNKN";
977
978 /* Print the APE firmware version. */
979 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
980 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
981 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
982 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
983 (apedata & BGE_APE_FW_VERSION_BLDMSK));
984 }
985
986 int
987 bge_ape_lock(struct bge_softc *sc, int locknum)
988 {
989 struct pci_attach_args *pa = &(sc->bge_pa);
990 uint32_t bit, gnt, req, status;
991 int i, off;
992
993 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
994 return (0);
995
996 /* Lock request/grant registers have different bases. */
997 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
998 req = BGE_APE_LOCK_REQ;
999 gnt = BGE_APE_LOCK_GRANT;
1000 } else {
1001 req = BGE_APE_PER_LOCK_REQ;
1002 gnt = BGE_APE_PER_LOCK_GRANT;
1003 }
1004
1005 off = 4 * locknum;
1006
1007 switch (locknum) {
1008 case BGE_APE_LOCK_GPIO:
1009 /* Lock required when using GPIO. */
1010 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1011 return (0);
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_GRC:
1018 /* Lock required to reset the device. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_MEM:
1025 /* Lock required when accessing certain APE memory. */
1026 if (pa->pa_function == 0)
1027 bit = BGE_APE_LOCK_REQ_DRIVER0;
1028 else
1029 bit = (1 << pa->pa_function);
1030 break;
1031 case BGE_APE_LOCK_PHY0:
1032 case BGE_APE_LOCK_PHY1:
1033 case BGE_APE_LOCK_PHY2:
1034 case BGE_APE_LOCK_PHY3:
1035 /* Lock required when accessing PHYs. */
1036 bit = BGE_APE_LOCK_REQ_DRIVER0;
1037 break;
1038 default:
1039 return (EINVAL);
1040 }
1041
1042 /* Request a lock. */
1043 APE_WRITE_4_FLUSH(sc, req + off, bit);
1044
1045 /* Wait up to 1 second to acquire lock. */
1046 for (i = 0; i < 20000; i++) {
1047 status = APE_READ_4(sc, gnt + off);
1048 if (status == bit)
1049 break;
1050 DELAY(50);
1051 }
1052
1053 /* Handle any errors. */
1054 if (status != bit) {
1055 printf("%s: APE lock %d request failed! "
1056 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1057 device_xname(sc->bge_dev),
1058 locknum, req + off, bit & 0xFFFF, gnt + off,
1059 status & 0xFFFF);
1060 /* Revoke the lock request. */
1061 APE_WRITE_4(sc, gnt + off, bit);
1062 return (EBUSY);
1063 }
1064
1065 return (0);
1066 }
1067
1068 void
1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
1070 {
1071 struct pci_attach_args *pa = &(sc->bge_pa);
1072 uint32_t bit, gnt;
1073 int off;
1074
1075 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1076 return;
1077
1078 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1079 gnt = BGE_APE_LOCK_GRANT;
1080 else
1081 gnt = BGE_APE_PER_LOCK_GRANT;
1082
1083 off = 4 * locknum;
1084
1085 switch (locknum) {
1086 case BGE_APE_LOCK_GPIO:
1087 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1088 return;
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_GRC:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_MEM:
1101 if (pa->pa_function == 0)
1102 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1103 else
1104 bit = (1 << pa->pa_function);
1105 break;
1106 case BGE_APE_LOCK_PHY0:
1107 case BGE_APE_LOCK_PHY1:
1108 case BGE_APE_LOCK_PHY2:
1109 case BGE_APE_LOCK_PHY3:
1110 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1111 break;
1112 default:
1113 return;
1114 }
1115
1116 /* Write and flush for consecutive bge_ape_lock() */
1117 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1118 }
1119
1120 /*
1121 * Send an event to the APE firmware.
1122 */
1123 void
1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1125 {
1126 uint32_t apedata;
1127 int i;
1128
1129 /* NCSI does not support APE events. */
1130 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1131 return;
1132
1133 /* Wait up to 1ms for APE to service previous event. */
1134 for (i = 10; i > 0; i--) {
1135 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1136 break;
1137 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1138 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1139 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1140 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1141 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1142 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1143 break;
1144 }
1145 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1146 DELAY(100);
1147 }
1148 if (i == 0) {
1149 printf("%s: APE event 0x%08x send timed out\n",
1150 device_xname(sc->bge_dev), event);
1151 }
1152 }
1153
1154 void
1155 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1156 {
1157 uint32_t apedata, event;
1158
1159 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1160 return;
1161
1162 switch (kind) {
1163 case BGE_RESET_START:
1164 /* If this is the first load, clear the load counter. */
1165 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1166 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1167 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1168 else {
1169 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1170 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1171 }
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1173 BGE_APE_HOST_SEG_SIG_MAGIC);
1174 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1175 BGE_APE_HOST_SEG_LEN_MAGIC);
1176
1177 /* Add some version info if bge(4) supports it. */
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1179 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1180 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1181 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1182 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1183 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1184 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1185 BGE_APE_HOST_DRVR_STATE_START);
1186 event = BGE_APE_EVENT_STATUS_STATE_START;
1187 break;
1188 case BGE_RESET_SHUTDOWN:
1189 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1190 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1191 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1192 break;
1193 case BGE_RESET_SUSPEND:
1194 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1195 break;
1196 default:
1197 return;
1198 }
1199
1200 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1201 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1202 }
1203
1204 static uint8_t
1205 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1206 {
1207 uint32_t access, byte = 0;
1208 int i;
1209
1210 /* Lock. */
1211 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1212 for (i = 0; i < 8000; i++) {
1213 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1214 break;
1215 DELAY(20);
1216 }
1217 if (i == 8000)
1218 return 1;
1219
1220 /* Enable access. */
1221 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1222 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1223
1224 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1225 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1226 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1227 DELAY(10);
1228 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1229 DELAY(10);
1230 break;
1231 }
1232 }
1233
1234 if (i == BGE_TIMEOUT * 10) {
1235 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1236 return 1;
1237 }
1238
1239 /* Get result. */
1240 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1241
1242 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1243
1244 /* Disable access. */
1245 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1246
1247 /* Unlock. */
1248 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1249
1250 return 0;
1251 }
1252
1253 /*
1254 * Read a sequence of bytes from NVRAM.
1255 */
1256 static int
1257 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1258 {
1259 int error = 0, i;
1260 uint8_t byte = 0;
1261
1262 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1263 return 1;
1264
1265 for (i = 0; i < cnt; i++) {
1266 error = bge_nvram_getbyte(sc, off + i, &byte);
1267 if (error)
1268 break;
1269 *(dest + i) = byte;
1270 }
1271
1272 return (error ? 1 : 0);
1273 }
1274
1275 /*
1276 * Read a byte of data stored in the EEPROM at address 'addr.' The
1277 * BCM570x supports both the traditional bitbang interface and an
1278 * auto access interface for reading the EEPROM. We use the auto
1279 * access method.
1280 */
1281 static uint8_t
1282 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1283 {
1284 int i;
1285 uint32_t byte = 0;
1286
1287 /*
1288 * Enable use of auto EEPROM access so we can avoid
1289 * having to use the bitbang method.
1290 */
1291 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1292
1293 /* Reset the EEPROM, load the clock period. */
1294 CSR_WRITE_4(sc, BGE_EE_ADDR,
1295 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1296 DELAY(20);
1297
1298 /* Issue the read EEPROM command. */
1299 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1300
1301 /* Wait for completion */
1302 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1303 DELAY(10);
1304 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1305 break;
1306 }
1307
1308 if (i == BGE_TIMEOUT * 10) {
1309 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1310 return 1;
1311 }
1312
1313 /* Get result. */
1314 byte = CSR_READ_4(sc, BGE_EE_DATA);
1315
1316 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * Read a sequence of bytes from the EEPROM.
1323 */
1324 static int
1325 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1326 {
1327 int error = 0, i;
1328 uint8_t byte = 0;
1329 char *dest = destv;
1330
1331 for (i = 0; i < cnt; i++) {
1332 error = bge_eeprom_getbyte(sc, off + i, &byte);
1333 if (error)
1334 break;
1335 *(dest + i) = byte;
1336 }
1337
1338 return (error ? 1 : 0);
1339 }
1340
1341 static int
1342 bge_miibus_readreg(device_t dev, int phy, int reg)
1343 {
1344 struct bge_softc *sc = device_private(dev);
1345 uint32_t val;
1346 uint32_t autopoll;
1347 int i;
1348
1349 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1350 return 0;
1351
1352 /* Reading with autopolling on may trigger PCI errors */
1353 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1354 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1355 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1356 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1357 DELAY(80);
1358 }
1359
1360 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1361 BGE_MIPHY(phy) | BGE_MIREG(reg));
1362
1363 for (i = 0; i < BGE_TIMEOUT; i++) {
1364 delay(10);
1365 val = CSR_READ_4(sc, BGE_MI_COMM);
1366 if (!(val & BGE_MICOMM_BUSY)) {
1367 DELAY(5);
1368 val = CSR_READ_4(sc, BGE_MI_COMM);
1369 break;
1370 }
1371 }
1372
1373 if (i == BGE_TIMEOUT) {
1374 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1375 val = 0;
1376 goto done;
1377 }
1378
1379 done:
1380 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1381 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1382 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1383 DELAY(80);
1384 }
1385
1386 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1387
1388 if (val & BGE_MICOMM_READFAIL)
1389 return 0;
1390
1391 return (val & 0xFFFF);
1392 }
1393
1394 static void
1395 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1396 {
1397 struct bge_softc *sc = device_private(dev);
1398 uint32_t autopoll;
1399 int i;
1400
1401 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1402 return;
1403
1404 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1405 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1406 return;
1407
1408 /* Reading with autopolling on may trigger PCI errors */
1409 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1410 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1411 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1412 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1413 DELAY(80);
1414 }
1415
1416 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1417 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1418
1419 for (i = 0; i < BGE_TIMEOUT; i++) {
1420 delay(10);
1421 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1422 delay(5);
1423 CSR_READ_4(sc, BGE_MI_COMM);
1424 break;
1425 }
1426 }
1427
1428 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1429 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1430 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1431 delay(80);
1432 }
1433
1434 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1435
1436 if (i == BGE_TIMEOUT)
1437 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1438 }
1439
1440 static void
1441 bge_miibus_statchg(struct ifnet *ifp)
1442 {
1443 struct bge_softc *sc = ifp->if_softc;
1444 struct mii_data *mii = &sc->bge_mii;
1445 uint32_t mac_mode, rx_mode, tx_mode;
1446
1447 /*
1448 * Get flow control negotiation result.
1449 */
1450 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1451 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1452 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1453 mii->mii_media_active &= ~IFM_ETH_FMASK;
1454 }
1455
1456 /* Set the port mode (MII/GMII) to match the link speed. */
1457 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1458 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1459 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1460 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1461 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1462 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1463 mac_mode |= BGE_PORTMODE_GMII;
1464 else
1465 mac_mode |= BGE_PORTMODE_MII;
1466
1467 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1468 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1469 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1470 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1471 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1472 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1473 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1474 } else
1475 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1476
1477 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1478 DELAY(40);
1479 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1480 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1481 }
1482
1483 /*
1484 * Update rx threshold levels to values in a particular slot
1485 * of the interrupt-mitigation table bge_rx_threshes.
1486 */
1487 static void
1488 bge_set_thresh(struct ifnet *ifp, int lvl)
1489 {
1490 struct bge_softc *sc = ifp->if_softc;
1491 int s;
1492
1493 /* For now, just save the new Rx-intr thresholds and record
1494 * that a threshold update is pending. Updating the hardware
1495 * registers here (even at splhigh()) is observed to
1496 * occasionaly cause glitches where Rx-interrupts are not
1497 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1498 */
1499 s = splnet();
1500 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1501 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1502 sc->bge_pending_rxintr_change = 1;
1503 splx(s);
1504 }
1505
1506
1507 /*
1508 * Update Rx thresholds of all bge devices
1509 */
1510 static void
1511 bge_update_all_threshes(int lvl)
1512 {
1513 struct ifnet *ifp;
1514 const char * const namebuf = "bge";
1515 int namelen;
1516
1517 if (lvl < 0)
1518 lvl = 0;
1519 else if (lvl >= NBGE_RX_THRESH)
1520 lvl = NBGE_RX_THRESH - 1;
1521
1522 namelen = strlen(namebuf);
1523 /*
1524 * Now search all the interfaces for this name/number
1525 */
1526 IFNET_FOREACH(ifp) {
1527 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1528 continue;
1529 /* We got a match: update if doing auto-threshold-tuning */
1530 if (bge_auto_thresh)
1531 bge_set_thresh(ifp, lvl);
1532 }
1533 }
1534
1535 /*
1536 * Handle events that have triggered interrupts.
1537 */
1538 static void
1539 bge_handle_events(struct bge_softc *sc)
1540 {
1541
1542 return;
1543 }
1544
1545 /*
1546 * Memory management for jumbo frames.
1547 */
1548
1549 static int
1550 bge_alloc_jumbo_mem(struct bge_softc *sc)
1551 {
1552 char *ptr, *kva;
1553 bus_dma_segment_t seg;
1554 int i, rseg, state, error;
1555 struct bge_jpool_entry *entry;
1556
1557 state = error = 0;
1558
1559 /* Grab a big chunk o' storage. */
1560 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1561 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1562 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1563 return ENOBUFS;
1564 }
1565
1566 state = 1;
1567 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1568 BUS_DMA_NOWAIT)) {
1569 aprint_error_dev(sc->bge_dev,
1570 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1571 error = ENOBUFS;
1572 goto out;
1573 }
1574
1575 state = 2;
1576 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1577 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1578 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1579 error = ENOBUFS;
1580 goto out;
1581 }
1582
1583 state = 3;
1584 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1585 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1586 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1587 error = ENOBUFS;
1588 goto out;
1589 }
1590
1591 state = 4;
1592 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1593 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1594
1595 SLIST_INIT(&sc->bge_jfree_listhead);
1596 SLIST_INIT(&sc->bge_jinuse_listhead);
1597
1598 /*
1599 * Now divide it up into 9K pieces and save the addresses
1600 * in an array.
1601 */
1602 ptr = sc->bge_cdata.bge_jumbo_buf;
1603 for (i = 0; i < BGE_JSLOTS; i++) {
1604 sc->bge_cdata.bge_jslots[i] = ptr;
1605 ptr += BGE_JLEN;
1606 entry = malloc(sizeof(struct bge_jpool_entry),
1607 M_DEVBUF, M_NOWAIT);
1608 if (entry == NULL) {
1609 aprint_error_dev(sc->bge_dev,
1610 "no memory for jumbo buffer queue!\n");
1611 error = ENOBUFS;
1612 goto out;
1613 }
1614 entry->slot = i;
1615 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1616 entry, jpool_entries);
1617 }
1618 out:
1619 if (error != 0) {
1620 switch (state) {
1621 case 4:
1622 bus_dmamap_unload(sc->bge_dmatag,
1623 sc->bge_cdata.bge_rx_jumbo_map);
1624 case 3:
1625 bus_dmamap_destroy(sc->bge_dmatag,
1626 sc->bge_cdata.bge_rx_jumbo_map);
1627 case 2:
1628 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1629 case 1:
1630 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1631 break;
1632 default:
1633 break;
1634 }
1635 }
1636
1637 return error;
1638 }
1639
1640 /*
1641 * Allocate a jumbo buffer.
1642 */
1643 static void *
1644 bge_jalloc(struct bge_softc *sc)
1645 {
1646 struct bge_jpool_entry *entry;
1647
1648 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1649
1650 if (entry == NULL) {
1651 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1652 return NULL;
1653 }
1654
1655 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1656 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1657 return (sc->bge_cdata.bge_jslots[entry->slot]);
1658 }
1659
1660 /*
1661 * Release a jumbo buffer.
1662 */
1663 static void
1664 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1665 {
1666 struct bge_jpool_entry *entry;
1667 struct bge_softc *sc;
1668 int i, s;
1669
1670 /* Extract the softc struct pointer. */
1671 sc = (struct bge_softc *)arg;
1672
1673 if (sc == NULL)
1674 panic("bge_jfree: can't find softc pointer!");
1675
1676 /* calculate the slot this buffer belongs to */
1677
1678 i = ((char *)buf
1679 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1680
1681 if ((i < 0) || (i >= BGE_JSLOTS))
1682 panic("bge_jfree: asked to free buffer that we don't manage!");
1683
1684 s = splvm();
1685 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1686 if (entry == NULL)
1687 panic("bge_jfree: buffer not in use!");
1688 entry->slot = i;
1689 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1690 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1691
1692 if (__predict_true(m != NULL))
1693 pool_cache_put(mb_cache, m);
1694 splx(s);
1695 }
1696
1697
1698 /*
1699 * Initialize a standard receive ring descriptor.
1700 */
1701 static int
1702 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1703 bus_dmamap_t dmamap)
1704 {
1705 struct mbuf *m_new = NULL;
1706 struct bge_rx_bd *r;
1707 int error;
1708
1709 if (dmamap == NULL) {
1710 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1711 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1712 if (error != 0)
1713 return error;
1714 }
1715
1716 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1717
1718 if (m == NULL) {
1719 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1720 if (m_new == NULL)
1721 return ENOBUFS;
1722
1723 MCLGET(m_new, M_DONTWAIT);
1724 if (!(m_new->m_flags & M_EXT)) {
1725 m_freem(m_new);
1726 return ENOBUFS;
1727 }
1728 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1729
1730 } else {
1731 m_new = m;
1732 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1733 m_new->m_data = m_new->m_ext.ext_buf;
1734 }
1735 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1736 m_adj(m_new, ETHER_ALIGN);
1737 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1738 BUS_DMA_READ|BUS_DMA_NOWAIT))
1739 return ENOBUFS;
1740 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1741 BUS_DMASYNC_PREREAD);
1742
1743 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1744 r = &sc->bge_rdata->bge_rx_std_ring[i];
1745 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1746 r->bge_flags = BGE_RXBDFLAG_END;
1747 r->bge_len = m_new->m_len;
1748 r->bge_idx = i;
1749
1750 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1751 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1752 i * sizeof (struct bge_rx_bd),
1753 sizeof (struct bge_rx_bd),
1754 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * Initialize a jumbo receive ring descriptor. This allocates
1761 * a jumbo buffer from the pool managed internally by the driver.
1762 */
1763 static int
1764 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1765 {
1766 struct mbuf *m_new = NULL;
1767 struct bge_rx_bd *r;
1768 void *buf = NULL;
1769
1770 if (m == NULL) {
1771
1772 /* Allocate the mbuf. */
1773 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1774 if (m_new == NULL)
1775 return ENOBUFS;
1776
1777 /* Allocate the jumbo buffer */
1778 buf = bge_jalloc(sc);
1779 if (buf == NULL) {
1780 m_freem(m_new);
1781 aprint_error_dev(sc->bge_dev,
1782 "jumbo allocation failed -- packet dropped!\n");
1783 return ENOBUFS;
1784 }
1785
1786 /* Attach the buffer to the mbuf. */
1787 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1788 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1789 bge_jfree, sc);
1790 m_new->m_flags |= M_EXT_RW;
1791 } else {
1792 m_new = m;
1793 buf = m_new->m_data = m_new->m_ext.ext_buf;
1794 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1795 }
1796 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1797 m_adj(m_new, ETHER_ALIGN);
1798 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1799 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1800 BUS_DMASYNC_PREREAD);
1801 /* Set up the descriptor. */
1802 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1803 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1804 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1805 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1806 r->bge_len = m_new->m_len;
1807 r->bge_idx = i;
1808
1809 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1810 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1811 i * sizeof (struct bge_rx_bd),
1812 sizeof (struct bge_rx_bd),
1813 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1814
1815 return 0;
1816 }
1817
1818 /*
1819 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1820 * that's 1MB or memory, which is a lot. For now, we fill only the first
1821 * 256 ring entries and hope that our CPU is fast enough to keep up with
1822 * the NIC.
1823 */
1824 static int
1825 bge_init_rx_ring_std(struct bge_softc *sc)
1826 {
1827 int i;
1828
1829 if (sc->bge_flags & BGE_RXRING_VALID)
1830 return 0;
1831
1832 for (i = 0; i < BGE_SSLOTS; i++) {
1833 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1834 return ENOBUFS;
1835 }
1836
1837 sc->bge_std = i - 1;
1838 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1839
1840 sc->bge_flags |= BGE_RXRING_VALID;
1841
1842 return 0;
1843 }
1844
1845 static void
1846 bge_free_rx_ring_std(struct bge_softc *sc)
1847 {
1848 int i;
1849
1850 if (!(sc->bge_flags & BGE_RXRING_VALID))
1851 return;
1852
1853 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1854 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1855 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1856 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1857 bus_dmamap_destroy(sc->bge_dmatag,
1858 sc->bge_cdata.bge_rx_std_map[i]);
1859 }
1860 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1861 sizeof(struct bge_rx_bd));
1862 }
1863
1864 sc->bge_flags &= ~BGE_RXRING_VALID;
1865 }
1866
1867 static int
1868 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1869 {
1870 int i;
1871 volatile struct bge_rcb *rcb;
1872
1873 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1874 return 0;
1875
1876 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1877 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1878 return ENOBUFS;
1879 }
1880
1881 sc->bge_jumbo = i - 1;
1882 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1883
1884 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1885 rcb->bge_maxlen_flags = 0;
1886 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1887
1888 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1889
1890 return 0;
1891 }
1892
1893 static void
1894 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1895 {
1896 int i;
1897
1898 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1899 return;
1900
1901 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1902 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1903 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1904 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1905 }
1906 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1907 sizeof(struct bge_rx_bd));
1908 }
1909
1910 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1911 }
1912
1913 static void
1914 bge_free_tx_ring(struct bge_softc *sc)
1915 {
1916 int i;
1917 struct txdmamap_pool_entry *dma;
1918
1919 if (!(sc->bge_flags & BGE_TXRING_VALID))
1920 return;
1921
1922 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1923 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1924 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1925 sc->bge_cdata.bge_tx_chain[i] = NULL;
1926 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1927 link);
1928 sc->txdma[i] = 0;
1929 }
1930 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1931 sizeof(struct bge_tx_bd));
1932 }
1933
1934 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1935 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1936 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1937 free(dma, M_DEVBUF);
1938 }
1939
1940 sc->bge_flags &= ~BGE_TXRING_VALID;
1941 }
1942
1943 static int
1944 bge_init_tx_ring(struct bge_softc *sc)
1945 {
1946 int i;
1947 bus_dmamap_t dmamap;
1948 struct txdmamap_pool_entry *dma;
1949
1950 if (sc->bge_flags & BGE_TXRING_VALID)
1951 return 0;
1952
1953 sc->bge_txcnt = 0;
1954 sc->bge_tx_saved_considx = 0;
1955
1956 /* Initialize transmit producer index for host-memory send ring. */
1957 sc->bge_tx_prodidx = 0;
1958 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1959 /* 5700 b2 errata */
1960 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1961 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1962
1963 /* NIC-memory send ring not used; initialize to zero. */
1964 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1965 /* 5700 b2 errata */
1966 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1967 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1968
1969 SLIST_INIT(&sc->txdma_list);
1970 for (i = 0; i < BGE_RSLOTS; i++) {
1971 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1972 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1973 &dmamap))
1974 return ENOBUFS;
1975 if (dmamap == NULL)
1976 panic("dmamap NULL in bge_init_tx_ring");
1977 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1978 if (dma == NULL) {
1979 aprint_error_dev(sc->bge_dev,
1980 "can't alloc txdmamap_pool_entry\n");
1981 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1982 return ENOMEM;
1983 }
1984 dma->dmamap = dmamap;
1985 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1986 }
1987
1988 sc->bge_flags |= BGE_TXRING_VALID;
1989
1990 return 0;
1991 }
1992
1993 static void
1994 bge_setmulti(struct bge_softc *sc)
1995 {
1996 struct ethercom *ac = &sc->ethercom;
1997 struct ifnet *ifp = &ac->ec_if;
1998 struct ether_multi *enm;
1999 struct ether_multistep step;
2000 uint32_t hashes[4] = { 0, 0, 0, 0 };
2001 uint32_t h;
2002 int i;
2003
2004 if (ifp->if_flags & IFF_PROMISC)
2005 goto allmulti;
2006
2007 /* Now program new ones. */
2008 ETHER_FIRST_MULTI(step, ac, enm);
2009 while (enm != NULL) {
2010 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2011 /*
2012 * We must listen to a range of multicast addresses.
2013 * For now, just accept all multicasts, rather than
2014 * trying to set only those filter bits needed to match
2015 * the range. (At this time, the only use of address
2016 * ranges is for IP multicast routing, for which the
2017 * range is big enough to require all bits set.)
2018 */
2019 goto allmulti;
2020 }
2021
2022 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2023
2024 /* Just want the 7 least-significant bits. */
2025 h &= 0x7f;
2026
2027 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2028 ETHER_NEXT_MULTI(step, enm);
2029 }
2030
2031 ifp->if_flags &= ~IFF_ALLMULTI;
2032 goto setit;
2033
2034 allmulti:
2035 ifp->if_flags |= IFF_ALLMULTI;
2036 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2037
2038 setit:
2039 for (i = 0; i < 4; i++)
2040 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2041 }
2042
2043 static void
2044 bge_sig_pre_reset(struct bge_softc *sc, int type)
2045 {
2046
2047 /*
2048 * Some chips don't like this so only do this if ASF is enabled
2049 */
2050 if (sc->bge_asf_mode)
2051 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2052
2053 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2054 switch (type) {
2055 case BGE_RESET_START:
2056 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2057 BGE_FW_DRV_STATE_START);
2058 break;
2059 case BGE_RESET_SHUTDOWN:
2060 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2061 BGE_FW_DRV_STATE_UNLOAD);
2062 break;
2063 case BGE_RESET_SUSPEND:
2064 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2065 BGE_FW_DRV_STATE_SUSPEND);
2066 break;
2067 }
2068 }
2069
2070 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2071 bge_ape_driver_state_change(sc, type);
2072 }
2073
2074 static void
2075 bge_sig_post_reset(struct bge_softc *sc, int type)
2076 {
2077
2078 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2079 switch (type) {
2080 case BGE_RESET_START:
2081 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2082 BGE_FW_DRV_STATE_START_DONE);
2083 /* START DONE */
2084 break;
2085 case BGE_RESET_SHUTDOWN:
2086 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2087 BGE_FW_DRV_STATE_UNLOAD_DONE);
2088 break;
2089 }
2090 }
2091
2092 if (type == BGE_RESET_SHUTDOWN)
2093 bge_ape_driver_state_change(sc, type);
2094 }
2095
2096 static void
2097 bge_sig_legacy(struct bge_softc *sc, int type)
2098 {
2099
2100 if (sc->bge_asf_mode) {
2101 switch (type) {
2102 case BGE_RESET_START:
2103 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2104 BGE_FW_DRV_STATE_START);
2105 break;
2106 case BGE_RESET_SHUTDOWN:
2107 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2108 BGE_FW_DRV_STATE_UNLOAD);
2109 break;
2110 }
2111 }
2112 }
2113
2114 static void
2115 bge_wait_for_event_ack(struct bge_softc *sc)
2116 {
2117 int i;
2118
2119 /* wait up to 2500usec */
2120 for (i = 0; i < 250; i++) {
2121 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2122 BGE_RX_CPU_DRV_EVENT))
2123 break;
2124 DELAY(10);
2125 }
2126 }
2127
2128 static void
2129 bge_stop_fw(struct bge_softc *sc)
2130 {
2131
2132 if (sc->bge_asf_mode) {
2133 bge_wait_for_event_ack(sc);
2134
2135 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2136 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2137 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2138
2139 bge_wait_for_event_ack(sc);
2140 }
2141 }
2142
2143 static int
2144 bge_poll_fw(struct bge_softc *sc)
2145 {
2146 uint32_t val;
2147 int i;
2148
2149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2150 for (i = 0; i < BGE_TIMEOUT; i++) {
2151 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2152 if (val & BGE_VCPU_STATUS_INIT_DONE)
2153 break;
2154 DELAY(100);
2155 }
2156 if (i >= BGE_TIMEOUT) {
2157 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2158 return -1;
2159 }
2160 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2161 /*
2162 * Poll the value location we just wrote until
2163 * we see the 1's complement of the magic number.
2164 * This indicates that the firmware initialization
2165 * is complete.
2166 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2167 */
2168 for (i = 0; i < BGE_TIMEOUT; i++) {
2169 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2170 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2171 break;
2172 DELAY(10);
2173 }
2174
2175 if (i >= BGE_TIMEOUT) {
2176 aprint_error_dev(sc->bge_dev,
2177 "firmware handshake timed out, val = %x\n", val);
2178 return -1;
2179 }
2180 }
2181
2182 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2183 /* tg3 says we have to wait extra time */
2184 delay(10 * 1000);
2185 }
2186
2187 return 0;
2188 }
2189
2190 int
2191 bge_phy_addr(struct bge_softc *sc)
2192 {
2193 struct pci_attach_args *pa = &(sc->bge_pa);
2194 int phy_addr = 1;
2195
2196 /*
2197 * PHY address mapping for various devices.
2198 *
2199 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2200 * ---------+-------+-------+-------+-------+
2201 * BCM57XX | 1 | X | X | X |
2202 * BCM5704 | 1 | X | 1 | X |
2203 * BCM5717 | 1 | 8 | 2 | 9 |
2204 * BCM5719 | 1 | 8 | 2 | 9 |
2205 * BCM5720 | 1 | 8 | 2 | 9 |
2206 *
2207 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2208 * ---------+-------+-------+-------+-------+
2209 * BCM57XX | X | X | X | X |
2210 * BCM5704 | X | X | X | X |
2211 * BCM5717 | X | X | X | X |
2212 * BCM5719 | 3 | 10 | 4 | 11 |
2213 * BCM5720 | X | X | X | X |
2214 *
2215 * Other addresses may respond but they are not
2216 * IEEE compliant PHYs and should be ignored.
2217 */
2218 switch (BGE_ASICREV(sc->bge_chipid)) {
2219 case BGE_ASICREV_BCM5717:
2220 case BGE_ASICREV_BCM5719:
2221 case BGE_ASICREV_BCM5720:
2222 phy_addr = pa->pa_function;
2223 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2224 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2225 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2226 } else {
2227 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2228 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2229 }
2230 }
2231
2232 return phy_addr;
2233 }
2234
2235 /*
2236 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2237 * self-test results.
2238 */
2239 static int
2240 bge_chipinit(struct bge_softc *sc)
2241 {
2242 uint32_t dma_rw_ctl, mode_ctl, reg;
2243 int i;
2244
2245 /* Set endianness before we access any non-PCI registers. */
2246 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2247 BGE_INIT);
2248
2249 /*
2250 * Clear the MAC statistics block in the NIC's
2251 * internal memory.
2252 */
2253 for (i = BGE_STATS_BLOCK;
2254 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2255 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2256
2257 for (i = BGE_STATUS_BLOCK;
2258 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2259 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2260
2261 /* 5717 workaround from tg3 */
2262 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2263 /* Save */
2264 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2265
2266 /* Temporary modify MODE_CTL to control TLP */
2267 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2268 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2269
2270 /* Control TLP */
2271 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2272 BGE_TLP_PHYCTL1);
2273 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2274 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2275
2276 /* Restore */
2277 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2278 }
2279
2280 /* XXX Should we use 57765_FAMILY? */
2281 if (BGE_IS_57765_PLUS(sc)) {
2282 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2283 /* Save */
2284 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2285
2286 /* Temporary modify MODE_CTL to control TLP */
2287 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2288 CSR_WRITE_4(sc, BGE_MODE_CTL,
2289 reg | BGE_MODECTL_PCIE_TLPADDR1);
2290
2291 /* Control TLP */
2292 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2293 BGE_TLP_PHYCTL5);
2294 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2295 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2296
2297 /* Restore */
2298 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2299 }
2300 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2301 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2302 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2303 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2304
2305 /* Save */
2306 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2307
2308 /* Temporary modify MODE_CTL to control TLP */
2309 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2310 CSR_WRITE_4(sc, BGE_MODE_CTL,
2311 reg | BGE_MODECTL_PCIE_TLPADDR0);
2312
2313 /* Control TLP */
2314 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2315 BGE_TLP_FTSMAX);
2316 reg &= ~BGE_TLP_FTSMAX_MSK;
2317 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2318 reg | BGE_TLP_FTSMAX_VAL);
2319
2320 /* Restore */
2321 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2322 }
2323
2324 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2325 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2326 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2327 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2328 }
2329
2330 /* Set up the PCI DMA control register. */
2331 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2332 if (sc->bge_flags & BGE_PCIE) {
2333 /* Read watermark not used, 128 bytes for write. */
2334 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2335 device_xname(sc->bge_dev)));
2336 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2337 } else if (sc->bge_flags & BGE_PCIX) {
2338 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2339 device_xname(sc->bge_dev)));
2340 /* PCI-X bus */
2341 if (BGE_IS_5714_FAMILY(sc)) {
2342 /* 256 bytes for read and write. */
2343 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2344 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2345
2346 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2348 else
2349 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2350 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2351 /* 1536 bytes for read, 384 bytes for write. */
2352 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2353 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2354 } else {
2355 /* 384 bytes for read and write. */
2356 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2357 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2358 (0x0F);
2359 }
2360
2361 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2362 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2363 uint32_t tmp;
2364
2365 /* Set ONEDMA_ATONCE for hardware workaround. */
2366 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2367 if (tmp == 6 || tmp == 7)
2368 dma_rw_ctl |=
2369 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2370
2371 /* Set PCI-X DMA write workaround. */
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2373 }
2374 } else {
2375 /* Conventional PCI bus: 256 bytes for read and write. */
2376 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2377 device_xname(sc->bge_dev)));
2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2380
2381 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2382 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2383 dma_rw_ctl |= 0x0F;
2384 }
2385
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2387 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2388 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2389 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2390
2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2393 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2394
2395 if (BGE_IS_5717_PLUS(sc)) {
2396 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2397 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2398 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2399
2400 /*
2401 * Enable HW workaround for controllers that misinterpret
2402 * a status tag update and leave interrupts permanently
2403 * disabled.
2404 */
2405 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2406 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2407 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2408 }
2409
2410 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2411 dma_rw_ctl);
2412
2413 /*
2414 * Set up general mode register.
2415 */
2416 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2417 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2418 /* Retain Host-2-BMC settings written by APE firmware. */
2419 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2420 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2421 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2422 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2423 }
2424 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2425 BGE_MODECTL_TX_NO_PHDR_CSUM;
2426
2427 /*
2428 * BCM5701 B5 have a bug causing data corruption when using
2429 * 64-bit DMA reads, which can be terminated early and then
2430 * completed later as 32-bit accesses, in combination with
2431 * certain bridges.
2432 */
2433 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2434 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2435 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2436
2437 /*
2438 * Tell the firmware the driver is running
2439 */
2440 if (sc->bge_asf_mode & ASF_STACKUP)
2441 mode_ctl |= BGE_MODECTL_STACKUP;
2442
2443 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2444
2445 /*
2446 * Disable memory write invalidate. Apparently it is not supported
2447 * properly by these devices.
2448 */
2449 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2450 PCI_COMMAND_INVALIDATE_ENABLE);
2451
2452 #ifdef __brokenalpha__
2453 /*
2454 * Must insure that we do not cross an 8K (bytes) boundary
2455 * for DMA reads. Our highest limit is 1K bytes. This is a
2456 * restriction on some ALPHA platforms with early revision
2457 * 21174 PCI chipsets, such as the AlphaPC 164lx
2458 */
2459 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2460 #endif
2461
2462 /* Set the timer prescaler (always 66MHz) */
2463 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2464
2465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2466 DELAY(40); /* XXX */
2467
2468 /* Put PHY into ready state */
2469 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2470 DELAY(40);
2471 }
2472
2473 return 0;
2474 }
2475
2476 static int
2477 bge_blockinit(struct bge_softc *sc)
2478 {
2479 volatile struct bge_rcb *rcb;
2480 bus_size_t rcb_addr;
2481 struct ifnet *ifp = &sc->ethercom.ec_if;
2482 bge_hostaddr taddr;
2483 uint32_t dmactl, val;
2484 int i, limit;
2485
2486 /*
2487 * Initialize the memory window pointer register so that
2488 * we can access the first 32K of internal NIC RAM. This will
2489 * allow us to set up the TX send ring RCBs and the RX return
2490 * ring RCBs, plus other things which live in NIC memory.
2491 */
2492 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2493
2494 /* Step 33: Configure mbuf memory pool */
2495 if (!BGE_IS_5705_PLUS(sc)) {
2496 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2497 BGE_BUFFPOOL_1);
2498
2499 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2500 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2501 else
2502 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2503
2504 /* Configure DMA resource pool */
2505 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 BGE_DMA_DESCRIPTORS);
2507 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 }
2509
2510 /* Step 35: Configure mbuf pool watermarks */
2511 /* new broadcom docs strongly recommend these: */
2512 if (BGE_IS_5717_PLUS(sc)) {
2513 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2514 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2515 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2516 } else if (BGE_IS_5705_PLUS(sc)) {
2517 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2518
2519 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2521 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2522 } else {
2523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2525 }
2526 } else {
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2528 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 }
2531
2532 /* Step 36: Configure DMA resource watermarks */
2533 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2534 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2535
2536 /* Step 38: Enable buffer manager */
2537 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2538 /*
2539 * Change the arbitration algorithm of TXMBUF read request to
2540 * round-robin instead of priority based for BCM5719. When
2541 * TXFIFO is almost empty, RDMA will hold its request until
2542 * TXFIFO is not almost empty.
2543 */
2544 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2545 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2546 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2547 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2548 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2549 val |= BGE_BMANMODE_LOMBUF_ATTN;
2550 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2551
2552 /* Step 39: Poll for buffer manager start indication */
2553 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2554 DELAY(10);
2555 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2556 break;
2557 }
2558
2559 if (i == BGE_TIMEOUT * 2) {
2560 aprint_error_dev(sc->bge_dev,
2561 "buffer manager failed to start\n");
2562 return ENXIO;
2563 }
2564
2565 /* Step 40: Enable flow-through queues */
2566 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2567 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2568
2569 /* Wait until queue initialization is complete */
2570 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2571 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2572 break;
2573 DELAY(10);
2574 }
2575
2576 if (i == BGE_TIMEOUT * 2) {
2577 aprint_error_dev(sc->bge_dev,
2578 "flow-through queue init failed\n");
2579 return ENXIO;
2580 }
2581
2582 /*
2583 * Summary of rings supported by the controller:
2584 *
2585 * Standard Receive Producer Ring
2586 * - This ring is used to feed receive buffers for "standard"
2587 * sized frames (typically 1536 bytes) to the controller.
2588 *
2589 * Jumbo Receive Producer Ring
2590 * - This ring is used to feed receive buffers for jumbo sized
2591 * frames (i.e. anything bigger than the "standard" frames)
2592 * to the controller.
2593 *
2594 * Mini Receive Producer Ring
2595 * - This ring is used to feed receive buffers for "mini"
2596 * sized frames to the controller.
2597 * - This feature required external memory for the controller
2598 * but was never used in a production system. Should always
2599 * be disabled.
2600 *
2601 * Receive Return Ring
2602 * - After the controller has placed an incoming frame into a
2603 * receive buffer that buffer is moved into a receive return
2604 * ring. The driver is then responsible to passing the
2605 * buffer up to the stack. Many versions of the controller
2606 * support multiple RR rings.
2607 *
2608 * Send Ring
2609 * - This ring is used for outgoing frames. Many versions of
2610 * the controller support multiple send rings.
2611 */
2612
2613 /* Step 41: Initialize the standard RX ring control block */
2614 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2615 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2616 if (BGE_IS_5717_PLUS(sc)) {
2617 /*
2618 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2619 * Bits 15-2 : Maximum RX frame size
2620 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2621 * Bit 0 : Reserved
2622 */
2623 rcb->bge_maxlen_flags =
2624 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2625 } else if (BGE_IS_5705_PLUS(sc)) {
2626 /*
2627 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2628 * Bits 15-2 : Reserved (should be 0)
2629 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2630 * Bit 0 : Reserved
2631 */
2632 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2633 } else {
2634 /*
2635 * Ring size is always XXX entries
2636 * Bits 31-16: Maximum RX frame size
2637 * Bits 15-2 : Reserved (should be 0)
2638 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2639 * Bit 0 : Reserved
2640 */
2641 rcb->bge_maxlen_flags =
2642 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2643 }
2644 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2646 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2647 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2648 else
2649 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2650 /* Write the standard receive producer ring control block. */
2651 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2652 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2653 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2654 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2655
2656 /* Reset the standard receive producer ring producer index. */
2657 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2658
2659 /*
2660 * Step 42: Initialize the jumbo RX ring control block
2661 * We set the 'ring disabled' bit in the flags
2662 * field until we're actually ready to start
2663 * using this ring (i.e. once we set the MTU
2664 * high enough to require it).
2665 */
2666 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2667 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2668 BGE_HOSTADDR(rcb->bge_hostaddr,
2669 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2670 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2671 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2672 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2674 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2675 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2676 else
2677 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2678 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2679 rcb->bge_hostaddr.bge_addr_hi);
2680 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2681 rcb->bge_hostaddr.bge_addr_lo);
2682 /* Program the jumbo receive producer ring RCB parameters. */
2683 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2684 rcb->bge_maxlen_flags);
2685 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2686 /* Reset the jumbo receive producer ring producer index. */
2687 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2688 }
2689
2690 /* Disable the mini receive producer ring RCB. */
2691 if (BGE_IS_5700_FAMILY(sc)) {
2692 /* Set up dummy disabled mini ring RCB */
2693 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2694 rcb->bge_maxlen_flags =
2695 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2696 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2697 rcb->bge_maxlen_flags);
2698 /* Reset the mini receive producer ring producer index. */
2699 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2700
2701 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2702 offsetof(struct bge_ring_data, bge_info),
2703 sizeof (struct bge_gib),
2704 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2705 }
2706
2707 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2708 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2709 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2710 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2711 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2712 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2713 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2714 }
2715 /*
2716 * The BD ring replenish thresholds control how often the
2717 * hardware fetches new BD's from the producer rings in host
2718 * memory. Setting the value too low on a busy system can
2719 * starve the hardware and recue the throughpout.
2720 *
2721 * Set the BD ring replenish thresholds. The recommended
2722 * values are 1/8th the number of descriptors allocated to
2723 * each ring, but since we try to avoid filling the entire
2724 * ring we set these to the minimal value of 8. This needs to
2725 * be done on several of the supported chip revisions anyway,
2726 * to work around HW bugs.
2727 */
2728 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2729 if (BGE_IS_JUMBO_CAPABLE(sc))
2730 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2731
2732 if (BGE_IS_5717_PLUS(sc)) {
2733 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2734 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2735 }
2736
2737 /*
2738 * Disable all send rings by setting the 'ring disabled' bit
2739 * in the flags field of all the TX send ring control blocks,
2740 * located in NIC memory.
2741 */
2742 if (BGE_IS_5700_FAMILY(sc)) {
2743 /* 5700 to 5704 had 16 send rings. */
2744 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2745 } else
2746 limit = 1;
2747 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2748 for (i = 0; i < limit; i++) {
2749 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2750 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2751 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2752 rcb_addr += sizeof(struct bge_rcb);
2753 }
2754
2755 /* Configure send ring RCB 0 (we use only the first ring) */
2756 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2757 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2758 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2759 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2760 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2761 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2762 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2763 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2764 else
2765 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2766 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2767 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2768 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2769
2770 /*
2771 * Disable all receive return rings by setting the
2772 * 'ring diabled' bit in the flags field of all the receive
2773 * return ring control blocks, located in NIC memory.
2774 */
2775 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2776 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2777 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2778 /* Should be 17, use 16 until we get an SRAM map. */
2779 limit = 16;
2780 } else if (BGE_IS_5700_FAMILY(sc))
2781 limit = BGE_RX_RINGS_MAX;
2782 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2783 BGE_IS_57765_PLUS(sc))
2784 limit = 4;
2785 else
2786 limit = 1;
2787 /* Disable all receive return rings */
2788 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2789 for (i = 0; i < limit; i++) {
2790 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2791 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2792 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2793 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2794 BGE_RCB_FLAG_RING_DISABLED));
2795 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2796 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2797 (i * (sizeof(uint64_t))), 0);
2798 rcb_addr += sizeof(struct bge_rcb);
2799 }
2800
2801 /*
2802 * Set up receive return ring 0. Note that the NIC address
2803 * for RX return rings is 0x0. The return rings live entirely
2804 * within the host, so the nicaddr field in the RCB isn't used.
2805 */
2806 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2807 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2808 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2809 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2810 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2811 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2812 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2813
2814 /* Set random backoff seed for TX */
2815 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2816 CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2817 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2818 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2819 BGE_TX_BACKOFF_SEED_MASK);
2820
2821 /* Set inter-packet gap */
2822 val = 0x2620;
2823 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2824 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2825 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2826 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2827
2828 /*
2829 * Specify which ring to use for packets that don't match
2830 * any RX rules.
2831 */
2832 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2833
2834 /*
2835 * Configure number of RX lists. One interrupt distribution
2836 * list, sixteen active lists, one bad frames class.
2837 */
2838 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2839
2840 /* Inialize RX list placement stats mask. */
2841 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2842 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2843
2844 /* Disable host coalescing until we get it set up */
2845 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2846
2847 /* Poll to make sure it's shut down. */
2848 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2849 DELAY(10);
2850 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2851 break;
2852 }
2853
2854 if (i == BGE_TIMEOUT * 2) {
2855 aprint_error_dev(sc->bge_dev,
2856 "host coalescing engine failed to idle\n");
2857 return ENXIO;
2858 }
2859
2860 /* Set up host coalescing defaults */
2861 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2862 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2863 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2864 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2865 if (!(BGE_IS_5705_PLUS(sc))) {
2866 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2867 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2868 }
2869 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2870 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2871
2872 /* Set up address of statistics block */
2873 if (BGE_IS_5700_FAMILY(sc)) {
2874 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2875 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2876 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2877 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2878 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2879 }
2880
2881 /* Set up address of status block */
2882 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2883 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2884 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2885 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2886 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2887 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2888
2889 /* Set up status block size. */
2890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2891 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2892 val = BGE_STATBLKSZ_FULL;
2893 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2894 } else {
2895 val = BGE_STATBLKSZ_32BYTE;
2896 bzero(&sc->bge_rdata->bge_status_block, 32);
2897 }
2898
2899 /* Turn on host coalescing state machine */
2900 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2901
2902 /* Turn on RX BD completion state machine and enable attentions */
2903 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2904 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2905
2906 /* Turn on RX list placement state machine */
2907 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2908
2909 /* Turn on RX list selector state machine. */
2910 if (!(BGE_IS_5705_PLUS(sc)))
2911 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2912
2913 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2914 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2915 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2916 BGE_MACMODE_FRMHDR_DMA_ENB;
2917
2918 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2919 val |= BGE_PORTMODE_TBI;
2920 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2921 val |= BGE_PORTMODE_GMII;
2922 else
2923 val |= BGE_PORTMODE_MII;
2924
2925 /* Allow APE to send/receive frames. */
2926 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2927 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2928
2929 /* Turn on DMA, clear stats */
2930 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2931 DELAY(40);
2932
2933 /* Set misc. local control, enable interrupts on attentions */
2934 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2935 if (BGE_IS_5717_PLUS(sc)) {
2936 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2937 DELAY(100);
2938 }
2939
2940 /* Turn on DMA completion state machine */
2941 if (!(BGE_IS_5705_PLUS(sc)))
2942 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2943
2944 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2945
2946 /* Enable host coalescing bug fix. */
2947 if (BGE_IS_5755_PLUS(sc))
2948 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2949
2950 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2951 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2952
2953 /* Turn on write DMA state machine */
2954 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2955 DELAY(40);
2956
2957 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2958
2959 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2960 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2961
2962 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2963 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2964 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2965 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2966 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2967 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2968
2969 if (sc->bge_flags & BGE_PCIE)
2970 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2971 if (sc->bge_flags & BGE_TSO)
2972 val |= BGE_RDMAMODE_TSO4_ENABLE;
2973
2974 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2975 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2976 BGE_RDMAMODE_H2BNC_VLAN_DET;
2977 /*
2978 * Allow multiple outstanding read requests from
2979 * non-LSO read DMA engine.
2980 */
2981 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2982 }
2983
2984 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2985 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2986 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2987 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2988 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2989 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2990 /*
2991 * Adjust tx margin to prevent TX data corruption and
2992 * fix internal FIFO overflow.
2993 */
2994 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2995 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2996 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2997 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2998 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2999 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3000 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3001 }
3002 /*
3003 * Enable fix for read DMA FIFO overruns.
3004 * The fix is to limit the number of RX BDs
3005 * the hardware would fetch at a fime.
3006 */
3007 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3008 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3009 }
3010
3011 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3012 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3013 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3014 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3015 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3016 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3017 /*
3018 * Allow 4KB burst length reads for non-LSO frames.
3019 * Enable 512B burst length reads for buffer descriptors.
3020 */
3021 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3022 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3023 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3024 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3025 }
3026
3027 /* Turn on read DMA state machine */
3028 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3029 delay(40);
3030
3031 /* Turn on RX data completion state machine */
3032 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3033
3034 /* Turn on RX data and RX BD initiator state machine */
3035 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3036
3037 /* Turn on Mbuf cluster free state machine */
3038 if (!BGE_IS_5705_PLUS(sc))
3039 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3040
3041 /* Turn on send data completion state machine */
3042 val = BGE_SDCMODE_ENABLE;
3043 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3044 val |= BGE_SDCMODE_CDELAY;
3045 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3046
3047 /* Turn on send BD completion state machine */
3048 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3049
3050 /* Turn on RX BD initiator state machine */
3051 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3052
3053 /* Turn on send data initiator state machine */
3054 if (sc->bge_flags & BGE_TSO) {
3055 /* XXX: magic value from Linux driver */
3056 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3057 BGE_SDIMODE_HW_LSO_PRE_DMA);
3058 } else
3059 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3060
3061 /* Turn on send BD initiator state machine */
3062 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3063
3064 /* Turn on send BD selector state machine */
3065 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3066
3067 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3068 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3069 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3070
3071 /* ack/clear link change events */
3072 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3073 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3074 BGE_MACSTAT_LINK_CHANGED);
3075 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3076
3077 /*
3078 * Enable attention when the link has changed state for
3079 * devices that use auto polling.
3080 */
3081 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3082 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3083 } else {
3084 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3085 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3087 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3088 BGE_EVTENB_MI_INTERRUPT);
3089 }
3090
3091 /*
3092 * Clear any pending link state attention.
3093 * Otherwise some link state change events may be lost until attention
3094 * is cleared by bge_intr() -> bge_link_upd() sequence.
3095 * It's not necessary on newer BCM chips - perhaps enabling link
3096 * state change attentions implies clearing pending attention.
3097 */
3098 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3099 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3100 BGE_MACSTAT_LINK_CHANGED);
3101
3102 /* Enable link state change attentions. */
3103 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3104
3105 return 0;
3106 }
3107
3108 static const struct bge_revision *
3109 bge_lookup_rev(uint32_t chipid)
3110 {
3111 const struct bge_revision *br;
3112
3113 for (br = bge_revisions; br->br_name != NULL; br++) {
3114 if (br->br_chipid == chipid)
3115 return br;
3116 }
3117
3118 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3119 if (br->br_chipid == BGE_ASICREV(chipid))
3120 return br;
3121 }
3122
3123 return NULL;
3124 }
3125
3126 static const struct bge_product *
3127 bge_lookup(const struct pci_attach_args *pa)
3128 {
3129 const struct bge_product *bp;
3130
3131 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3132 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3133 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3134 return bp;
3135 }
3136
3137 return NULL;
3138 }
3139
3140 static uint32_t
3141 bge_chipid(const struct pci_attach_args *pa)
3142 {
3143 uint32_t id;
3144
3145 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3146 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3147
3148 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3149 switch (PCI_PRODUCT(pa->pa_id)) {
3150 case PCI_PRODUCT_BROADCOM_BCM5717:
3151 case PCI_PRODUCT_BROADCOM_BCM5718:
3152 case PCI_PRODUCT_BROADCOM_BCM5719:
3153 case PCI_PRODUCT_BROADCOM_BCM5720:
3154 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3155 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3156 BGE_PCI_GEN2_PRODID_ASICREV);
3157 break;
3158 case PCI_PRODUCT_BROADCOM_BCM57761:
3159 case PCI_PRODUCT_BROADCOM_BCM57762:
3160 case PCI_PRODUCT_BROADCOM_BCM57765:
3161 case PCI_PRODUCT_BROADCOM_BCM57766:
3162 case PCI_PRODUCT_BROADCOM_BCM57781:
3163 case PCI_PRODUCT_BROADCOM_BCM57785:
3164 case PCI_PRODUCT_BROADCOM_BCM57791:
3165 case PCI_PRODUCT_BROADCOM_BCM57795:
3166 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3167 BGE_PCI_GEN15_PRODID_ASICREV);
3168 break;
3169 default:
3170 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3171 BGE_PCI_PRODID_ASICREV);
3172 break;
3173 }
3174 }
3175
3176 return id;
3177 }
3178
3179 /*
3180 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3181 * against our list and return its name if we find a match. Note
3182 * that since the Broadcom controller contains VPD support, we
3183 * can get the device name string from the controller itself instead
3184 * of the compiled-in string. This is a little slow, but it guarantees
3185 * we'll always announce the right product name.
3186 */
3187 static int
3188 bge_probe(device_t parent, cfdata_t match, void *aux)
3189 {
3190 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3191
3192 if (bge_lookup(pa) != NULL)
3193 return 1;
3194
3195 return 0;
3196 }
3197
3198 static void
3199 bge_attach(device_t parent, device_t self, void *aux)
3200 {
3201 struct bge_softc *sc = device_private(self);
3202 struct pci_attach_args *pa = aux;
3203 prop_dictionary_t dict;
3204 const struct bge_product *bp;
3205 const struct bge_revision *br;
3206 pci_chipset_tag_t pc;
3207 pci_intr_handle_t ih;
3208 const char *intrstr = NULL;
3209 uint32_t hwcfg = 0;
3210 uint32_t command;
3211 struct ifnet *ifp;
3212 uint32_t misccfg;
3213 void * kva;
3214 u_char eaddr[ETHER_ADDR_LEN];
3215 pcireg_t memtype, subid, reg;
3216 bus_addr_t memaddr;
3217 uint32_t pm_ctl;
3218 bool no_seeprom;
3219 int capmask;
3220
3221 bp = bge_lookup(pa);
3222 KASSERT(bp != NULL);
3223
3224 sc->sc_pc = pa->pa_pc;
3225 sc->sc_pcitag = pa->pa_tag;
3226 sc->bge_dev = self;
3227
3228 sc->bge_pa = *pa;
3229 pc = sc->sc_pc;
3230 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3231
3232 aprint_naive(": Ethernet controller\n");
3233 aprint_normal(": %s\n", bp->bp_name);
3234
3235 /*
3236 * Map control/status registers.
3237 */
3238 DPRINTFN(5, ("Map control/status regs\n"));
3239 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3240 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3241 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3242 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3243
3244 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3245 aprint_error_dev(sc->bge_dev,
3246 "failed to enable memory mapping!\n");
3247 return;
3248 }
3249
3250 DPRINTFN(5, ("pci_mem_find\n"));
3251 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3252 switch (memtype) {
3253 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3254 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3255 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3256 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3257 &memaddr, &sc->bge_bsize) == 0)
3258 break;
3259 default:
3260 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3261 return;
3262 }
3263
3264 DPRINTFN(5, ("pci_intr_map\n"));
3265 if (pci_intr_map(pa, &ih)) {
3266 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3267 return;
3268 }
3269
3270 DPRINTFN(5, ("pci_intr_string\n"));
3271 intrstr = pci_intr_string(pc, ih);
3272
3273 DPRINTFN(5, ("pci_intr_establish\n"));
3274 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3275
3276 if (sc->bge_intrhand == NULL) {
3277 aprint_error_dev(sc->bge_dev,
3278 "couldn't establish interrupt%s%s\n",
3279 intrstr ? " at " : "", intrstr ? intrstr : "");
3280 return;
3281 }
3282 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3283
3284 /* Save various chip information. */
3285 sc->bge_chipid = bge_chipid(pa);
3286 sc->bge_phy_addr = bge_phy_addr(sc);
3287
3288 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3289 &sc->bge_pciecap, NULL) != 0)
3290 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3291 /* PCIe */
3292 sc->bge_flags |= BGE_PCIE;
3293 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3294 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3295 sc->bge_expmrq = 2048;
3296 else
3297 sc->bge_expmrq = 4096;
3298 bge_set_max_readrq(sc);
3299 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3300 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3301 /* PCI-X */
3302 sc->bge_flags |= BGE_PCIX;
3303 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3304 &sc->bge_pcixcap, NULL) == 0)
3305 aprint_error_dev(sc->bge_dev,
3306 "unable to find PCIX capability\n");
3307 }
3308
3309 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3310 /*
3311 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3312 * can clobber the chip's PCI config-space power control
3313 * registers, leaving the card in D3 powersave state. We do
3314 * not have memory-mapped registers in this state, so force
3315 * device into D0 state before starting initialization.
3316 */
3317 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3318 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3319 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3320 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3321 DELAY(1000); /* 27 usec is allegedly sufficent */
3322 }
3323
3324 /* Save chipset family. */
3325 switch (BGE_ASICREV(sc->bge_chipid)) {
3326 case BGE_ASICREV_BCM57765:
3327 case BGE_ASICREV_BCM57766:
3328 sc->bge_flags |= BGE_57765_PLUS;
3329 /* FALLTHROUGH */
3330 case BGE_ASICREV_BCM5717:
3331 case BGE_ASICREV_BCM5719:
3332 case BGE_ASICREV_BCM5720:
3333 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3334 BGE_5705_PLUS;
3335 break;
3336 case BGE_ASICREV_BCM5755:
3337 case BGE_ASICREV_BCM5761:
3338 case BGE_ASICREV_BCM5784:
3339 case BGE_ASICREV_BCM5785:
3340 case BGE_ASICREV_BCM5787:
3341 case BGE_ASICREV_BCM57780:
3342 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3343 break;
3344 case BGE_ASICREV_BCM5700:
3345 case BGE_ASICREV_BCM5701:
3346 case BGE_ASICREV_BCM5703:
3347 case BGE_ASICREV_BCM5704:
3348 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3349 break;
3350 case BGE_ASICREV_BCM5714_A0:
3351 case BGE_ASICREV_BCM5780:
3352 case BGE_ASICREV_BCM5714:
3353 sc->bge_flags |= BGE_5714_FAMILY;
3354 /* FALLTHROUGH */
3355 case BGE_ASICREV_BCM5750:
3356 case BGE_ASICREV_BCM5752:
3357 case BGE_ASICREV_BCM5906:
3358 sc->bge_flags |= BGE_575X_PLUS;
3359 /* FALLTHROUGH */
3360 case BGE_ASICREV_BCM5705:
3361 sc->bge_flags |= BGE_5705_PLUS;
3362 break;
3363 }
3364
3365 /* Identify chips with APE processor. */
3366 switch (BGE_ASICREV(sc->bge_chipid)) {
3367 case BGE_ASICREV_BCM5717:
3368 case BGE_ASICREV_BCM5719:
3369 case BGE_ASICREV_BCM5720:
3370 case BGE_ASICREV_BCM5761:
3371 sc->bge_flags |= BGE_APE;
3372 break;
3373 }
3374
3375 /* Chips with APE need BAR2 access for APE registers/memory. */
3376 if ((sc->bge_flags & BGE_APE) != 0) {
3377 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3378 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3379 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3380 &sc->bge_apesize)) {
3381 aprint_error_dev(sc->bge_dev,
3382 "couldn't map BAR2 memory\n");
3383 return;
3384 }
3385
3386 /* Enable APE register/memory access by host driver. */
3387 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3388 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3389 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3390 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3391 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3392
3393 bge_ape_lock_init(sc);
3394 bge_ape_read_fw_ver(sc);
3395 }
3396
3397 /* Identify the chips that use an CPMU. */
3398 if (BGE_IS_5717_PLUS(sc) ||
3399 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3400 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3401 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3402 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3403 sc->bge_flags |= BGE_CPMU_PRESENT;
3404
3405 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3406 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3407 else
3408 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3409
3410 /*
3411 * When using the BCM5701 in PCI-X mode, data corruption has
3412 * been observed in the first few bytes of some received packets.
3413 * Aligning the packet buffer in memory eliminates the corruption.
3414 * Unfortunately, this misaligns the packet payloads. On platforms
3415 * which do not support unaligned accesses, we will realign the
3416 * payloads by copying the received packets.
3417 */
3418 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3419 sc->bge_flags & BGE_PCIX)
3420 sc->bge_flags |= BGE_RX_ALIGNBUG;
3421
3422 if (BGE_IS_5700_FAMILY(sc))
3423 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3424
3425 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3426 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3427
3428 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3429 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3430 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3431 sc->bge_flags |= BGE_IS_5788;
3432
3433 /*
3434 * Some controllers seem to require a special firmware to use
3435 * TSO. But the firmware is not available to FreeBSD and Linux
3436 * claims that the TSO performed by the firmware is slower than
3437 * hardware based TSO. Moreover the firmware based TSO has one
3438 * known bug which can't handle TSO if ethernet header + IP/TCP
3439 * header is greater than 80 bytes. The workaround for the TSO
3440 * bug exist but it seems it's too expensive than not using
3441 * TSO at all. Some hardwares also have the TSO bug so limit
3442 * the TSO to the controllers that are not affected TSO issues
3443 * (e.g. 5755 or higher).
3444 */
3445 if (BGE_IS_5755_PLUS(sc)) {
3446 /*
3447 * BCM5754 and BCM5787 shares the same ASIC id so
3448 * explicit device id check is required.
3449 */
3450 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3451 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3452 sc->bge_flags |= BGE_TSO;
3453 }
3454
3455 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3456 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3457 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3458 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3459 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3460 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3461 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3462 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3463 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3464 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3465 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3466 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3467 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3468 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3469 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3470 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3471 capmask &= ~BMSR_EXTSTAT;
3472 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3473 }
3474
3475 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3476 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3477 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3478 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3479 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3480
3481 /* Set various PHY bug flags. */
3482 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3483 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3484 sc->bge_flags |= BGE_PHY_CRC_BUG;
3485 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3486 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3487 sc->bge_flags |= BGE_PHY_ADC_BUG;
3488 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3489 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3490 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3491 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3492 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3493 sc->bge_flags |= BGE_PHY_NO_3LED;
3494 if (BGE_IS_5705_PLUS(sc) &&
3495 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3496 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3497 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3498 !BGE_IS_5717_PLUS(sc)) {
3499 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3500 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3501 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3503 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3504 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3505 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3506 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3507 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3508 } else
3509 sc->bge_flags |= BGE_PHY_BER_BUG;
3510 }
3511
3512 /*
3513 * SEEPROM check.
3514 * First check if firmware knows we do not have SEEPROM.
3515 */
3516 if (prop_dictionary_get_bool(device_properties(self),
3517 "without-seeprom", &no_seeprom) && no_seeprom)
3518 sc->bge_flags |= BGE_NO_EEPROM;
3519
3520 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3521 sc->bge_flags |= BGE_NO_EEPROM;
3522
3523 /* Now check the 'ROM failed' bit on the RX CPU */
3524 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3525 sc->bge_flags |= BGE_NO_EEPROM;
3526
3527 sc->bge_asf_mode = 0;
3528 /* No ASF if APE present. */
3529 if ((sc->bge_flags & BGE_APE) == 0) {
3530 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3531 BGE_SRAM_DATA_SIG_MAGIC)) {
3532 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3533 BGE_HWCFG_ASF) {
3534 sc->bge_asf_mode |= ASF_ENABLE;
3535 sc->bge_asf_mode |= ASF_STACKUP;
3536 if (BGE_IS_575X_PLUS(sc))
3537 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3538 }
3539 }
3540 }
3541
3542 #if 0
3543 /*
3544 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3545 * lock in bge_reset().
3546 */
3547 CSR_WRITE_4(sc, BGE_EE_ADDR,
3548 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3549 delay(1000);
3550 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3551 #endif
3552
3553 bge_stop_fw(sc);
3554 bge_sig_pre_reset(sc, BGE_RESET_START);
3555 if (bge_reset(sc))
3556 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3557
3558 bge_sig_legacy(sc, BGE_RESET_START);
3559 bge_sig_post_reset(sc, BGE_RESET_START);
3560
3561 if (bge_chipinit(sc)) {
3562 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3563 bge_release_resources(sc);
3564 return;
3565 }
3566
3567 /*
3568 * Get station address from the EEPROM.
3569 */
3570 if (bge_get_eaddr(sc, eaddr)) {
3571 aprint_error_dev(sc->bge_dev,
3572 "failed to read station address\n");
3573 bge_release_resources(sc);
3574 return;
3575 }
3576
3577 br = bge_lookup_rev(sc->bge_chipid);
3578
3579 if (br == NULL) {
3580 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3581 sc->bge_chipid);
3582 } else {
3583 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3584 br->br_name, sc->bge_chipid);
3585 }
3586 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3587
3588 /* Allocate the general information block and ring buffers. */
3589 if (pci_dma64_available(pa))
3590 sc->bge_dmatag = pa->pa_dmat64;
3591 else
3592 sc->bge_dmatag = pa->pa_dmat;
3593 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3594 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3595 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3596 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3597 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3598 return;
3599 }
3600 DPRINTFN(5, ("bus_dmamem_map\n"));
3601 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3602 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3603 BUS_DMA_NOWAIT)) {
3604 aprint_error_dev(sc->bge_dev,
3605 "can't map DMA buffers (%zu bytes)\n",
3606 sizeof(struct bge_ring_data));
3607 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3608 sc->bge_ring_rseg);
3609 return;
3610 }
3611 DPRINTFN(5, ("bus_dmamem_create\n"));
3612 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3613 sizeof(struct bge_ring_data), 0,
3614 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3615 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3616 bus_dmamem_unmap(sc->bge_dmatag, kva,
3617 sizeof(struct bge_ring_data));
3618 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3619 sc->bge_ring_rseg);
3620 return;
3621 }
3622 DPRINTFN(5, ("bus_dmamem_load\n"));
3623 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3624 sizeof(struct bge_ring_data), NULL,
3625 BUS_DMA_NOWAIT)) {
3626 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3627 bus_dmamem_unmap(sc->bge_dmatag, kva,
3628 sizeof(struct bge_ring_data));
3629 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3630 sc->bge_ring_rseg);
3631 return;
3632 }
3633
3634 DPRINTFN(5, ("bzero\n"));
3635 sc->bge_rdata = (struct bge_ring_data *)kva;
3636
3637 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3638
3639 /* Try to allocate memory for jumbo buffers. */
3640 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3641 if (bge_alloc_jumbo_mem(sc)) {
3642 aprint_error_dev(sc->bge_dev,
3643 "jumbo buffer allocation failed\n");
3644 } else
3645 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3646 }
3647
3648 /* Set default tuneable values. */
3649 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3650 sc->bge_rx_coal_ticks = 150;
3651 sc->bge_rx_max_coal_bds = 64;
3652 sc->bge_tx_coal_ticks = 300;
3653 sc->bge_tx_max_coal_bds = 400;
3654 if (BGE_IS_5705_PLUS(sc)) {
3655 sc->bge_tx_coal_ticks = (12 * 5);
3656 sc->bge_tx_max_coal_bds = (12 * 5);
3657 aprint_verbose_dev(sc->bge_dev,
3658 "setting short Tx thresholds\n");
3659 }
3660
3661 if (BGE_IS_5717_PLUS(sc))
3662 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3663 else if (BGE_IS_5705_PLUS(sc))
3664 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3665 else
3666 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3667
3668 /* Set up ifnet structure */
3669 ifp = &sc->ethercom.ec_if;
3670 ifp->if_softc = sc;
3671 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3672 ifp->if_ioctl = bge_ioctl;
3673 ifp->if_stop = bge_stop;
3674 ifp->if_start = bge_start;
3675 ifp->if_init = bge_init;
3676 ifp->if_watchdog = bge_watchdog;
3677 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3678 IFQ_SET_READY(&ifp->if_snd);
3679 DPRINTFN(5, ("strcpy if_xname\n"));
3680 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3681
3682 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3683 sc->ethercom.ec_if.if_capabilities |=
3684 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3685 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3686 sc->ethercom.ec_if.if_capabilities |=
3687 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3688 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3689 #endif
3690 sc->ethercom.ec_capabilities |=
3691 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3692
3693 if (sc->bge_flags & BGE_TSO)
3694 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3695
3696 /*
3697 * Do MII setup.
3698 */
3699 DPRINTFN(5, ("mii setup\n"));
3700 sc->bge_mii.mii_ifp = ifp;
3701 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3702 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3703 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3704
3705 /*
3706 * Figure out what sort of media we have by checking the hardware
3707 * config word in the first 32k of NIC internal memory, or fall back to
3708 * the config word in the EEPROM. Note: on some BCM5700 cards,
3709 * this value appears to be unset. If that's the case, we have to rely
3710 * on identifying the NIC by its PCI subsystem ID, as we do below for
3711 * the SysKonnect SK-9D41.
3712 */
3713 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3714 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3715 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3716 bge_read_eeprom(sc, (void *)&hwcfg,
3717 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3718 hwcfg = be32toh(hwcfg);
3719 }
3720 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
3721 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3722 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3723 if (BGE_IS_5714_FAMILY(sc))
3724 sc->bge_flags |= BGE_PHY_FIBER_MII;
3725 else
3726 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3727 }
3728
3729 /* set phyflags and chipid before mii_attach() */
3730 dict = device_properties(self);
3731 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3732 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3733
3734 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3735 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3736 bge_ifmedia_sts);
3737 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3738 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3739 0, NULL);
3740 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3741 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3742 /* Pretend the user requested this setting */
3743 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3744 } else {
3745 /*
3746 * Do transceiver setup and tell the firmware the
3747 * driver is down so we can try to get access the
3748 * probe if ASF is running. Retry a couple of times
3749 * if we get a conflict with the ASF firmware accessing
3750 * the PHY.
3751 */
3752 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3753 bge_asf_driver_up(sc);
3754
3755 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3756 bge_ifmedia_sts);
3757 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3758 sc->bge_phy_addr, MII_OFFSET_ANY,
3759 MIIF_DOPAUSE);
3760
3761 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3762 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3763 ifmedia_add(&sc->bge_mii.mii_media,
3764 IFM_ETHER|IFM_MANUAL, 0, NULL);
3765 ifmedia_set(&sc->bge_mii.mii_media,
3766 IFM_ETHER|IFM_MANUAL);
3767 } else
3768 ifmedia_set(&sc->bge_mii.mii_media,
3769 IFM_ETHER|IFM_AUTO);
3770
3771 /*
3772 * Now tell the firmware we are going up after probing the PHY
3773 */
3774 if (sc->bge_asf_mode & ASF_STACKUP)
3775 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3776 }
3777
3778 /*
3779 * Call MI attach routine.
3780 */
3781 DPRINTFN(5, ("if_attach\n"));
3782 if_attach(ifp);
3783 DPRINTFN(5, ("ether_ifattach\n"));
3784 ether_ifattach(ifp, eaddr);
3785 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3786 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3787 RND_TYPE_NET, 0);
3788 #ifdef BGE_EVENT_COUNTERS
3789 /*
3790 * Attach event counters.
3791 */
3792 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3793 NULL, device_xname(sc->bge_dev), "intr");
3794 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3795 NULL, device_xname(sc->bge_dev), "tx_xoff");
3796 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3797 NULL, device_xname(sc->bge_dev), "tx_xon");
3798 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3799 NULL, device_xname(sc->bge_dev), "rx_xoff");
3800 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3801 NULL, device_xname(sc->bge_dev), "rx_xon");
3802 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3803 NULL, device_xname(sc->bge_dev), "rx_macctl");
3804 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3805 NULL, device_xname(sc->bge_dev), "xoffentered");
3806 #endif /* BGE_EVENT_COUNTERS */
3807 DPRINTFN(5, ("callout_init\n"));
3808 callout_init(&sc->bge_timeout, 0);
3809
3810 if (pmf_device_register(self, NULL, NULL))
3811 pmf_class_network_register(self, ifp);
3812 else
3813 aprint_error_dev(self, "couldn't establish power handler\n");
3814
3815 bge_sysctl_init(sc);
3816
3817 #ifdef BGE_DEBUG
3818 bge_debug_info(sc);
3819 #endif
3820 }
3821
3822 /*
3823 * Stop all chip I/O so that the kernel's probe routines don't
3824 * get confused by errant DMAs when rebooting.
3825 */
3826 static int
3827 bge_detach(device_t self, int flags __unused)
3828 {
3829 struct bge_softc *sc = device_private(self);
3830 struct ifnet *ifp = &sc->ethercom.ec_if;
3831 int s;
3832
3833 s = splnet();
3834 /* Stop the interface. Callouts are stopped in it. */
3835 bge_stop(ifp, 1);
3836 splx(s);
3837
3838 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3839
3840 /* Delete all remaining media. */
3841 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3842
3843 ether_ifdetach(ifp);
3844 if_detach(ifp);
3845
3846 bge_release_resources(sc);
3847
3848 return 0;
3849 }
3850
3851 static void
3852 bge_release_resources(struct bge_softc *sc)
3853 {
3854
3855 /* Disestablish the interrupt handler */
3856 if (sc->bge_intrhand != NULL) {
3857 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3858 sc->bge_intrhand = NULL;
3859 }
3860
3861 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3862 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3863 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3864 sizeof(struct bge_ring_data));
3865 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3866
3867 /* Unmap the device registers */
3868 if (sc->bge_bsize != 0) {
3869 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3870 sc->bge_bsize = 0;
3871 }
3872
3873 /* Unmap the APE registers */
3874 if (sc->bge_apesize != 0) {
3875 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3876 sc->bge_apesize);
3877 sc->bge_apesize = 0;
3878 }
3879 }
3880
3881 static int
3882 bge_reset(struct bge_softc *sc)
3883 {
3884 uint32_t cachesize, command;
3885 uint32_t reset, mac_mode, mac_mode_mask;
3886 pcireg_t devctl, reg;
3887 int i, val;
3888 void (*write_op)(struct bge_softc *, int, int);
3889
3890 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3891 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3892 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3893 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3894
3895 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3896 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3897 if (sc->bge_flags & BGE_PCIE)
3898 write_op = bge_writemem_direct;
3899 else
3900 write_op = bge_writemem_ind;
3901 } else
3902 write_op = bge_writereg_ind;
3903
3904 #if 0
3905 if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
3906 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3907 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3908 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3909 for (i = 0; i < 8000; i++) {
3910 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3911 BGE_NVRAMSWARB_GNT1)
3912 break;
3913 DELAY(20);
3914 }
3915 if (i == 8000) {
3916 printf("%s: NVRAM lock timedout!\n",
3917 device_xname(sc->bge_dev));
3918 }
3919 }
3920 #endif
3921 /* Take APE lock when performing reset. */
3922 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3923
3924 /* Save some important PCI state. */
3925 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3926 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3927
3928 /* Step 5b-5d: */
3929 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3930 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3931 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3932
3933 /* XXX ???: Disable fastboot on controllers that support it. */
3934 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3935 BGE_IS_5755_PLUS(sc))
3936 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3937
3938 /*
3939 * Step 6: Write the magic number to SRAM at offset 0xB50.
3940 * When firmware finishes its initialization it will
3941 * write ~BGE_MAGIC_NUMBER to the same location.
3942 */
3943 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3944
3945 /* Step 7: */
3946 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3947 /*
3948 * XXX: from FreeBSD/Linux; no documentation
3949 */
3950 if (sc->bge_flags & BGE_PCIE) {
3951 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3952 !BGE_IS_57765_PLUS(sc) &&
3953 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3954 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3955 /* PCI Express 1.0 system */
3956 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3957 BGE_PHY_PCIE_SCRAM_MODE);
3958 }
3959 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3960 /*
3961 * Prevent PCI Express link training
3962 * during global reset.
3963 */
3964 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3965 reset |= (1 << 29);
3966 }
3967 }
3968
3969 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3970 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3971 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3972 i | BGE_VCPU_STATUS_DRV_RESET);
3973 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3974 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3975 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3976 }
3977
3978 /*
3979 * Set GPHY Power Down Override to leave GPHY
3980 * powered up in D0 uninitialized.
3981 */
3982 if (BGE_IS_5705_PLUS(sc) &&
3983 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3984 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3985
3986 /* Issue global reset */
3987 write_op(sc, BGE_MISC_CFG, reset);
3988
3989 /* Step 8: wait for complete */
3990 if (sc->bge_flags & BGE_PCIE)
3991 delay(100*1000); /* too big */
3992 else
3993 delay(1000);
3994
3995 if (sc->bge_flags & BGE_PCIE) {
3996 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3997 DELAY(500000);
3998 /* XXX: Magic Numbers */
3999 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4000 BGE_PCI_UNKNOWN0);
4001 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4002 BGE_PCI_UNKNOWN0,
4003 reg | (1 << 15));
4004 }
4005 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4006 sc->bge_pciecap + PCI_PCIE_DCSR);
4007 /* Clear enable no snoop and disable relaxed ordering. */
4008 devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
4009 PCI_PCIE_DCSR_ENA_NO_SNOOP);
4010
4011 /* Set PCIE max payload size to 128 for older PCIe devices */
4012 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4013 devctl &= ~(0x00e0);
4014 /* Clear device status register. Write 1b to clear */
4015 devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
4016 | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
4017 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4018 sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
4019 bge_set_max_readrq(sc);
4020 }
4021
4022 /* From Linux: dummy read to flush PCI posted writes */
4023 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4024
4025 /* Step 9-10: Reset some of the PCI state that got zapped by reset */
4026 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4027 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4028 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4029 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4030 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4031 (sc->bge_flags & BGE_PCIX) != 0)
4032 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4033 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4034 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4035 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4036 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4037 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4038 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4039 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4040
4041 /* Step 11: disable PCI-X Relaxed Ordering. */
4042 if (sc->bge_flags & BGE_PCIX) {
4043 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4044 + PCI_PCIX_CMD);
4045 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4046 + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
4047 }
4048
4049 /* Step 12: Enable memory arbiter. */
4050 if (BGE_IS_5714_FAMILY(sc)) {
4051 val = CSR_READ_4(sc, BGE_MARB_MODE);
4052 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4053 } else
4054 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4055
4056 /* XXX 5721, 5751 and 5752 */
4057 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4058 /* Step 19: */
4059 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4060 /* Step 20: */
4061 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4062 }
4063
4064 /* Step 28: Fix up byte swapping */
4065 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4066
4067 /*
4068 * Wait for the bootcode to complete initialization.
4069 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4070 * Section 7".
4071 */
4072 if (BGE_IS_5717_PLUS(sc)) {
4073 for (i = 0; i < 1000*1000; i++) {
4074 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4075 if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4076 break;
4077 DELAY(10);
4078 }
4079 }
4080
4081 /* Step 21: 5822 B0 errata */
4082 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4083 pcireg_t msidata;
4084
4085 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4086 BGE_PCI_MSI_DATA);
4087 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4088 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4089 msidata);
4090 }
4091
4092 /*
4093 * Step 18: wirte mac mode
4094 * XXX Write 0x0c for 5703S and 5704S
4095 */
4096 val = CSR_READ_4(sc, BGE_MAC_MODE);
4097 val = (val & ~mac_mode_mask) | mac_mode;
4098 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4099 DELAY(40);
4100
4101 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4102
4103 /* Step 17: Poll until the firmware initialization is complete */
4104 bge_poll_fw(sc);
4105
4106 /*
4107 * The 5704 in TBI mode apparently needs some special
4108 * adjustment to insure the SERDES drive level is set
4109 * to 1.2V.
4110 */
4111 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4112 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4113 uint32_t serdescfg;
4114
4115 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4116 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4117 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4118 }
4119
4120 if (sc->bge_flags & BGE_PCIE &&
4121 !BGE_IS_57765_PLUS(sc) &&
4122 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4123 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4124 uint32_t v;
4125
4126 /* Enable PCI Express bug fix */
4127 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4128 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4129 v | BGE_TLP_DATA_FIFO_PROTECT);
4130 }
4131
4132 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4133 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4134 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4135
4136 return 0;
4137 }
4138
4139 /*
4140 * Frame reception handling. This is called if there's a frame
4141 * on the receive return list.
4142 *
4143 * Note: we have to be able to handle two possibilities here:
4144 * 1) the frame is from the jumbo receive ring
4145 * 2) the frame is from the standard receive ring
4146 */
4147
4148 static void
4149 bge_rxeof(struct bge_softc *sc)
4150 {
4151 struct ifnet *ifp;
4152 uint16_t rx_prod, rx_cons;
4153 int stdcnt = 0, jumbocnt = 0;
4154 bus_dmamap_t dmamap;
4155 bus_addr_t offset, toff;
4156 bus_size_t tlen;
4157 int tosync;
4158
4159 rx_cons = sc->bge_rx_saved_considx;
4160 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4161
4162 /* Nothing to do */
4163 if (rx_cons == rx_prod)
4164 return;
4165
4166 ifp = &sc->ethercom.ec_if;
4167
4168 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4169 offsetof(struct bge_ring_data, bge_status_block),
4170 sizeof (struct bge_status_block),
4171 BUS_DMASYNC_POSTREAD);
4172
4173 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4174 tosync = rx_prod - rx_cons;
4175
4176 if (tosync != 0)
4177 rnd_add_uint32(&sc->rnd_source, tosync);
4178
4179 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4180
4181 if (tosync < 0) {
4182 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4183 sizeof (struct bge_rx_bd);
4184 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4185 toff, tlen, BUS_DMASYNC_POSTREAD);
4186 tosync = -tosync;
4187 }
4188
4189 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4190 offset, tosync * sizeof (struct bge_rx_bd),
4191 BUS_DMASYNC_POSTREAD);
4192
4193 while (rx_cons != rx_prod) {
4194 struct bge_rx_bd *cur_rx;
4195 uint32_t rxidx;
4196 struct mbuf *m = NULL;
4197
4198 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4199
4200 rxidx = cur_rx->bge_idx;
4201 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4202
4203 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4204 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4205 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4206 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4207 jumbocnt++;
4208 bus_dmamap_sync(sc->bge_dmatag,
4209 sc->bge_cdata.bge_rx_jumbo_map,
4210 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4211 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4212 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4213 ifp->if_ierrors++;
4214 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4215 continue;
4216 }
4217 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4218 NULL)== ENOBUFS) {
4219 ifp->if_ierrors++;
4220 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4221 continue;
4222 }
4223 } else {
4224 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4225 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4226
4227 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4228 stdcnt++;
4229 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4230 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4231 if (dmamap == NULL) {
4232 ifp->if_ierrors++;
4233 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4234 continue;
4235 }
4236 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4237 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4238 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4239 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4240 ifp->if_ierrors++;
4241 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4242 continue;
4243 }
4244 if (bge_newbuf_std(sc, sc->bge_std,
4245 NULL, dmamap) == ENOBUFS) {
4246 ifp->if_ierrors++;
4247 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4248 continue;
4249 }
4250 }
4251
4252 ifp->if_ipackets++;
4253 #ifndef __NO_STRICT_ALIGNMENT
4254 /*
4255 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4256 * the Rx buffer has the layer-2 header unaligned.
4257 * If our CPU requires alignment, re-align by copying.
4258 */
4259 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4260 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4261 cur_rx->bge_len);
4262 m->m_data += ETHER_ALIGN;
4263 }
4264 #endif
4265
4266 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4267 m->m_pkthdr.rcvif = ifp;
4268
4269 /*
4270 * Handle BPF listeners. Let the BPF user see the packet.
4271 */
4272 bpf_mtap(ifp, m);
4273
4274 bge_rxcsum(sc, cur_rx, m);
4275
4276 /*
4277 * If we received a packet with a vlan tag, pass it
4278 * to vlan_input() instead of ether_input().
4279 */
4280 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4281 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4282 }
4283
4284 (*ifp->if_input)(ifp, m);
4285 }
4286
4287 sc->bge_rx_saved_considx = rx_cons;
4288 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4289 if (stdcnt)
4290 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4291 if (jumbocnt)
4292 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4293 }
4294
4295 static void
4296 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4297 {
4298
4299 if (BGE_IS_5717_PLUS(sc)) {
4300 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4301 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4302 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4303 if ((cur_rx->bge_error_flag &
4304 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4305 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4306 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4307 m->m_pkthdr.csum_data =
4308 cur_rx->bge_tcp_udp_csum;
4309 m->m_pkthdr.csum_flags |=
4310 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4311 M_CSUM_DATA);
4312 }
4313 }
4314 } else {
4315 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4316 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4317 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4318 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4319 /*
4320 * Rx transport checksum-offload may also
4321 * have bugs with packets which, when transmitted,
4322 * were `runts' requiring padding.
4323 */
4324 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4325 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4326 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4327 m->m_pkthdr.csum_data =
4328 cur_rx->bge_tcp_udp_csum;
4329 m->m_pkthdr.csum_flags |=
4330 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4331 M_CSUM_DATA);
4332 }
4333 }
4334 }
4335
4336 static void
4337 bge_txeof(struct bge_softc *sc)
4338 {
4339 struct bge_tx_bd *cur_tx = NULL;
4340 struct ifnet *ifp;
4341 struct txdmamap_pool_entry *dma;
4342 bus_addr_t offset, toff;
4343 bus_size_t tlen;
4344 int tosync;
4345 struct mbuf *m;
4346
4347 ifp = &sc->ethercom.ec_if;
4348
4349 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4350 offsetof(struct bge_ring_data, bge_status_block),
4351 sizeof (struct bge_status_block),
4352 BUS_DMASYNC_POSTREAD);
4353
4354 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4355 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4356 sc->bge_tx_saved_considx;
4357
4358 if (tosync != 0)
4359 rnd_add_uint32(&sc->rnd_source, tosync);
4360
4361 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4362
4363 if (tosync < 0) {
4364 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4365 sizeof (struct bge_tx_bd);
4366 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4367 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4368 tosync = -tosync;
4369 }
4370
4371 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4372 offset, tosync * sizeof (struct bge_tx_bd),
4373 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4374
4375 /*
4376 * Go through our tx ring and free mbufs for those
4377 * frames that have been sent.
4378 */
4379 while (sc->bge_tx_saved_considx !=
4380 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4381 uint32_t idx = 0;
4382
4383 idx = sc->bge_tx_saved_considx;
4384 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4385 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4386 ifp->if_opackets++;
4387 m = sc->bge_cdata.bge_tx_chain[idx];
4388 if (m != NULL) {
4389 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4390 dma = sc->txdma[idx];
4391 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4392 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4393 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4394 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4395 sc->txdma[idx] = NULL;
4396
4397 m_freem(m);
4398 }
4399 sc->bge_txcnt--;
4400 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4401 ifp->if_timer = 0;
4402 }
4403
4404 if (cur_tx != NULL)
4405 ifp->if_flags &= ~IFF_OACTIVE;
4406 }
4407
4408 static int
4409 bge_intr(void *xsc)
4410 {
4411 struct bge_softc *sc;
4412 struct ifnet *ifp;
4413 uint32_t statusword;
4414
4415 sc = xsc;
4416 ifp = &sc->ethercom.ec_if;
4417
4418 /* It is possible for the interrupt to arrive before
4419 * the status block is updated prior to the interrupt.
4420 * Reading the PCI State register will confirm whether the
4421 * interrupt is ours and will flush the status block.
4422 */
4423
4424 /* read status word from status block */
4425 statusword = sc->bge_rdata->bge_status_block.bge_status;
4426
4427 if ((statusword & BGE_STATFLAG_UPDATED) ||
4428 (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4429 /* Ack interrupt and stop others from occuring. */
4430 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4431
4432 BGE_EVCNT_INCR(sc->bge_ev_intr);
4433
4434 /* clear status word */
4435 sc->bge_rdata->bge_status_block.bge_status = 0;
4436
4437 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4438 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4439 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4440 bge_link_upd(sc);
4441
4442 if (ifp->if_flags & IFF_RUNNING) {
4443 /* Check RX return ring producer/consumer */
4444 bge_rxeof(sc);
4445
4446 /* Check TX ring producer/consumer */
4447 bge_txeof(sc);
4448 }
4449
4450 if (sc->bge_pending_rxintr_change) {
4451 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4452 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4453 uint32_t junk;
4454
4455 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4456 DELAY(10);
4457 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4458
4459 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4460 DELAY(10);
4461 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4462
4463 sc->bge_pending_rxintr_change = 0;
4464 }
4465 bge_handle_events(sc);
4466
4467 /* Re-enable interrupts. */
4468 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4469
4470 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4471 bge_start(ifp);
4472
4473 return 1;
4474 } else
4475 return 0;
4476 }
4477
4478 static void
4479 bge_asf_driver_up(struct bge_softc *sc)
4480 {
4481 if (sc->bge_asf_mode & ASF_STACKUP) {
4482 /* Send ASF heartbeat aprox. every 2s */
4483 if (sc->bge_asf_count)
4484 sc->bge_asf_count --;
4485 else {
4486 sc->bge_asf_count = 2;
4487
4488 bge_wait_for_event_ack(sc);
4489
4490 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4491 BGE_FW_CMD_DRV_ALIVE);
4492 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4493 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4494 BGE_FW_HB_TIMEOUT_SEC);
4495 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4496 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4497 BGE_RX_CPU_DRV_EVENT);
4498 }
4499 }
4500 }
4501
4502 static void
4503 bge_tick(void *xsc)
4504 {
4505 struct bge_softc *sc = xsc;
4506 struct mii_data *mii = &sc->bge_mii;
4507 int s;
4508
4509 s = splnet();
4510
4511 if (BGE_IS_5705_PLUS(sc))
4512 bge_stats_update_regs(sc);
4513 else
4514 bge_stats_update(sc);
4515
4516 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4517 /*
4518 * Since in TBI mode auto-polling can't be used we should poll
4519 * link status manually. Here we register pending link event
4520 * and trigger interrupt.
4521 */
4522 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4523 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4524 } else {
4525 /*
4526 * Do not touch PHY if we have link up. This could break
4527 * IPMI/ASF mode or produce extra input errors.
4528 * (extra input errors was reported for bcm5701 & bcm5704).
4529 */
4530 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4531 mii_tick(mii);
4532 }
4533
4534 bge_asf_driver_up(sc);
4535
4536 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4537
4538 splx(s);
4539 }
4540
4541 static void
4542 bge_stats_update_regs(struct bge_softc *sc)
4543 {
4544 struct ifnet *ifp = &sc->ethercom.ec_if;
4545
4546 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4547 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4548
4549 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4550 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4551 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4552 }
4553
4554 static void
4555 bge_stats_update(struct bge_softc *sc)
4556 {
4557 struct ifnet *ifp = &sc->ethercom.ec_if;
4558 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4559
4560 #define READ_STAT(sc, stats, stat) \
4561 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4562
4563 ifp->if_collisions +=
4564 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4565 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4566 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4567 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4568 ifp->if_collisions;
4569
4570 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4571 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4572 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4573 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4574 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4575 READ_STAT(sc, stats,
4576 xoffPauseFramesReceived.bge_addr_lo));
4577 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4578 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4579 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4580 READ_STAT(sc, stats,
4581 macControlFramesReceived.bge_addr_lo));
4582 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4583 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4584
4585 #undef READ_STAT
4586
4587 #ifdef notdef
4588 ifp->if_collisions +=
4589 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4590 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4591 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4592 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4593 ifp->if_collisions;
4594 #endif
4595 }
4596
4597 /*
4598 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4599 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4600 * but when such padded frames employ the bge IP/TCP checksum offload,
4601 * the hardware checksum assist gives incorrect results (possibly
4602 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4603 * If we pad such runts with zeros, the onboard checksum comes out correct.
4604 */
4605 static inline int
4606 bge_cksum_pad(struct mbuf *pkt)
4607 {
4608 struct mbuf *last = NULL;
4609 int padlen;
4610
4611 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4612
4613 /* if there's only the packet-header and we can pad there, use it. */
4614 if (pkt->m_pkthdr.len == pkt->m_len &&
4615 M_TRAILINGSPACE(pkt) >= padlen) {
4616 last = pkt;
4617 } else {
4618 /*
4619 * Walk packet chain to find last mbuf. We will either
4620 * pad there, or append a new mbuf and pad it
4621 * (thus perhaps avoiding the bcm5700 dma-min bug).
4622 */
4623 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4624 continue; /* do nothing */
4625 }
4626
4627 /* `last' now points to last in chain. */
4628 if (M_TRAILINGSPACE(last) < padlen) {
4629 /* Allocate new empty mbuf, pad it. Compact later. */
4630 struct mbuf *n;
4631 MGET(n, M_DONTWAIT, MT_DATA);
4632 if (n == NULL)
4633 return ENOBUFS;
4634 n->m_len = 0;
4635 last->m_next = n;
4636 last = n;
4637 }
4638 }
4639
4640 KDASSERT(!M_READONLY(last));
4641 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4642
4643 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4644 memset(mtod(last, char *) + last->m_len, 0, padlen);
4645 last->m_len += padlen;
4646 pkt->m_pkthdr.len += padlen;
4647 return 0;
4648 }
4649
4650 /*
4651 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4652 */
4653 static inline int
4654 bge_compact_dma_runt(struct mbuf *pkt)
4655 {
4656 struct mbuf *m, *prev;
4657 int totlen, prevlen;
4658
4659 prev = NULL;
4660 totlen = 0;
4661 prevlen = -1;
4662
4663 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4664 int mlen = m->m_len;
4665 int shortfall = 8 - mlen ;
4666
4667 totlen += mlen;
4668 if (mlen == 0)
4669 continue;
4670 if (mlen >= 8)
4671 continue;
4672
4673 /* If we get here, mbuf data is too small for DMA engine.
4674 * Try to fix by shuffling data to prev or next in chain.
4675 * If that fails, do a compacting deep-copy of the whole chain.
4676 */
4677
4678 /* Internal frag. If fits in prev, copy it there. */
4679 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4680 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4681 prev->m_len += mlen;
4682 m->m_len = 0;
4683 /* XXX stitch chain */
4684 prev->m_next = m_free(m);
4685 m = prev;
4686 continue;
4687 }
4688 else if (m->m_next != NULL &&
4689 M_TRAILINGSPACE(m) >= shortfall &&
4690 m->m_next->m_len >= (8 + shortfall)) {
4691 /* m is writable and have enough data in next, pull up. */
4692
4693 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4694 shortfall);
4695 m->m_len += shortfall;
4696 m->m_next->m_len -= shortfall;
4697 m->m_next->m_data += shortfall;
4698 }
4699 else if (m->m_next == NULL || 1) {
4700 /* Got a runt at the very end of the packet.
4701 * borrow data from the tail of the preceding mbuf and
4702 * update its length in-place. (The original data is still
4703 * valid, so we can do this even if prev is not writable.)
4704 */
4705
4706 /* if we'd make prev a runt, just move all of its data. */
4707 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4708 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4709
4710 if ((prev->m_len - shortfall) < 8)
4711 shortfall = prev->m_len;
4712
4713 #ifdef notyet /* just do the safe slow thing for now */
4714 if (!M_READONLY(m)) {
4715 if (M_LEADINGSPACE(m) < shorfall) {
4716 void *m_dat;
4717 m_dat = (m->m_flags & M_PKTHDR) ?
4718 m->m_pktdat : m->dat;
4719 memmove(m_dat, mtod(m, void*), m->m_len);
4720 m->m_data = m_dat;
4721 }
4722 } else
4723 #endif /* just do the safe slow thing */
4724 {
4725 struct mbuf * n = NULL;
4726 int newprevlen = prev->m_len - shortfall;
4727
4728 MGET(n, M_NOWAIT, MT_DATA);
4729 if (n == NULL)
4730 return ENOBUFS;
4731 KASSERT(m->m_len + shortfall < MLEN
4732 /*,
4733 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4734
4735 /* first copy the data we're stealing from prev */
4736 memcpy(n->m_data, prev->m_data + newprevlen,
4737 shortfall);
4738
4739 /* update prev->m_len accordingly */
4740 prev->m_len -= shortfall;
4741
4742 /* copy data from runt m */
4743 memcpy(n->m_data + shortfall, m->m_data,
4744 m->m_len);
4745
4746 /* n holds what we stole from prev, plus m */
4747 n->m_len = shortfall + m->m_len;
4748
4749 /* stitch n into chain and free m */
4750 n->m_next = m->m_next;
4751 prev->m_next = n;
4752 /* KASSERT(m->m_next == NULL); */
4753 m->m_next = NULL;
4754 m_free(m);
4755 m = n; /* for continuing loop */
4756 }
4757 }
4758 prevlen = m->m_len;
4759 }
4760 return 0;
4761 }
4762
4763 /*
4764 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4765 * pointers to descriptors.
4766 */
4767 static int
4768 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4769 {
4770 struct bge_tx_bd *f = NULL;
4771 uint32_t frag, cur;
4772 uint16_t csum_flags = 0;
4773 uint16_t txbd_tso_flags = 0;
4774 struct txdmamap_pool_entry *dma;
4775 bus_dmamap_t dmamap;
4776 int i = 0;
4777 struct m_tag *mtag;
4778 int use_tso, maxsegsize, error;
4779
4780 cur = frag = *txidx;
4781
4782 if (m_head->m_pkthdr.csum_flags) {
4783 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4784 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4785 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4786 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4787 }
4788
4789 /*
4790 * If we were asked to do an outboard checksum, and the NIC
4791 * has the bug where it sometimes adds in the Ethernet padding,
4792 * explicitly pad with zeros so the cksum will be correct either way.
4793 * (For now, do this for all chip versions, until newer
4794 * are confirmed to not require the workaround.)
4795 */
4796 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4797 #ifdef notyet
4798 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4799 #endif
4800 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4801 goto check_dma_bug;
4802
4803 if (bge_cksum_pad(m_head) != 0)
4804 return ENOBUFS;
4805
4806 check_dma_bug:
4807 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4808 goto doit;
4809
4810 /*
4811 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4812 * less than eight bytes. If we encounter a teeny mbuf
4813 * at the end of a chain, we can pad. Otherwise, copy.
4814 */
4815 if (bge_compact_dma_runt(m_head) != 0)
4816 return ENOBUFS;
4817
4818 doit:
4819 dma = SLIST_FIRST(&sc->txdma_list);
4820 if (dma == NULL)
4821 return ENOBUFS;
4822 dmamap = dma->dmamap;
4823
4824 /*
4825 * Set up any necessary TSO state before we start packing...
4826 */
4827 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4828 if (!use_tso) {
4829 maxsegsize = 0;
4830 } else { /* TSO setup */
4831 unsigned mss;
4832 struct ether_header *eh;
4833 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4834 struct mbuf * m0 = m_head;
4835 struct ip *ip;
4836 struct tcphdr *th;
4837 int iphl, hlen;
4838
4839 /*
4840 * XXX It would be nice if the mbuf pkthdr had offset
4841 * fields for the protocol headers.
4842 */
4843
4844 eh = mtod(m0, struct ether_header *);
4845 switch (htons(eh->ether_type)) {
4846 case ETHERTYPE_IP:
4847 offset = ETHER_HDR_LEN;
4848 break;
4849
4850 case ETHERTYPE_VLAN:
4851 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4852 break;
4853
4854 default:
4855 /*
4856 * Don't support this protocol or encapsulation.
4857 */
4858 return ENOBUFS;
4859 }
4860
4861 /*
4862 * TCP/IP headers are in the first mbuf; we can do
4863 * this the easy way.
4864 */
4865 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4866 hlen = iphl + offset;
4867 if (__predict_false(m0->m_len <
4868 (hlen + sizeof(struct tcphdr)))) {
4869
4870 aprint_debug_dev(sc->bge_dev,
4871 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4872 "not handled yet\n",
4873 m0->m_len, hlen+ sizeof(struct tcphdr));
4874 #ifdef NOTYET
4875 /*
4876 * XXX jonathan (at) NetBSD.org: untested.
4877 * how to force this branch to be taken?
4878 */
4879 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4880
4881 m_copydata(m0, offset, sizeof(ip), &ip);
4882 m_copydata(m0, hlen, sizeof(th), &th);
4883
4884 ip.ip_len = 0;
4885
4886 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4887 sizeof(ip.ip_len), &ip.ip_len);
4888
4889 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4890 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4891
4892 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4893 sizeof(th.th_sum), &th.th_sum);
4894
4895 hlen += th.th_off << 2;
4896 iptcp_opt_words = hlen;
4897 #else
4898 /*
4899 * if_wm "hard" case not yet supported, can we not
4900 * mandate it out of existence?
4901 */
4902 (void) ip; (void)th; (void) ip_tcp_hlen;
4903
4904 return ENOBUFS;
4905 #endif
4906 } else {
4907 ip = (struct ip *) (mtod(m0, char *) + offset);
4908 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4909 ip_tcp_hlen = iphl + (th->th_off << 2);
4910
4911 /* Total IP/TCP options, in 32-bit words */
4912 iptcp_opt_words = (ip_tcp_hlen
4913 - sizeof(struct tcphdr)
4914 - sizeof(struct ip)) >> 2;
4915 }
4916 if (BGE_IS_575X_PLUS(sc)) {
4917 th->th_sum = 0;
4918 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4919 } else {
4920 /*
4921 * XXX jonathan (at) NetBSD.org: 5705 untested.
4922 * Requires TSO firmware patch for 5701/5703/5704.
4923 */
4924 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4925 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4926 }
4927
4928 mss = m_head->m_pkthdr.segsz;
4929 txbd_tso_flags |=
4930 BGE_TXBDFLAG_CPU_PRE_DMA |
4931 BGE_TXBDFLAG_CPU_POST_DMA;
4932
4933 /*
4934 * Our NIC TSO-assist assumes TSO has standard, optionless
4935 * IPv4 and TCP headers, which total 40 bytes. By default,
4936 * the NIC copies 40 bytes of IP/TCP header from the
4937 * supplied header into the IP/TCP header portion of
4938 * each post-TSO-segment. If the supplied packet has IP or
4939 * TCP options, we need to tell the NIC to copy those extra
4940 * bytes into each post-TSO header, in addition to the normal
4941 * 40-byte IP/TCP header (and to leave space accordingly).
4942 * Unfortunately, the driver encoding of option length
4943 * varies across different ASIC families.
4944 */
4945 tcp_seg_flags = 0;
4946 if (iptcp_opt_words) {
4947 if (BGE_IS_5705_PLUS(sc)) {
4948 tcp_seg_flags =
4949 iptcp_opt_words << 11;
4950 } else {
4951 txbd_tso_flags |=
4952 iptcp_opt_words << 12;
4953 }
4954 }
4955 maxsegsize = mss | tcp_seg_flags;
4956 ip->ip_len = htons(mss + ip_tcp_hlen);
4957
4958 } /* TSO setup */
4959
4960 /*
4961 * Start packing the mbufs in this chain into
4962 * the fragment pointers. Stop when we run out
4963 * of fragments or hit the end of the mbuf chain.
4964 */
4965 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4966 BUS_DMA_NOWAIT);
4967 if (error)
4968 return ENOBUFS;
4969 /*
4970 * Sanity check: avoid coming within 16 descriptors
4971 * of the end of the ring.
4972 */
4973 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4974 BGE_TSO_PRINTF(("%s: "
4975 " dmamap_load_mbuf too close to ring wrap\n",
4976 device_xname(sc->bge_dev)));
4977 goto fail_unload;
4978 }
4979
4980 mtag = sc->ethercom.ec_nvlans ?
4981 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4982
4983
4984 /* Iterate over dmap-map fragments. */
4985 for (i = 0; i < dmamap->dm_nsegs; i++) {
4986 f = &sc->bge_rdata->bge_tx_ring[frag];
4987 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4988 break;
4989
4990 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4991 f->bge_len = dmamap->dm_segs[i].ds_len;
4992
4993 /*
4994 * For 5751 and follow-ons, for TSO we must turn
4995 * off checksum-assist flag in the tx-descr, and
4996 * supply the ASIC-revision-specific encoding
4997 * of TSO flags and segsize.
4998 */
4999 if (use_tso) {
5000 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5001 f->bge_rsvd = maxsegsize;
5002 f->bge_flags = csum_flags | txbd_tso_flags;
5003 } else {
5004 f->bge_rsvd = 0;
5005 f->bge_flags =
5006 (csum_flags | txbd_tso_flags) & 0x0fff;
5007 }
5008 } else {
5009 f->bge_rsvd = 0;
5010 f->bge_flags = csum_flags;
5011 }
5012
5013 if (mtag != NULL) {
5014 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5015 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5016 } else {
5017 f->bge_vlan_tag = 0;
5018 }
5019 cur = frag;
5020 BGE_INC(frag, BGE_TX_RING_CNT);
5021 }
5022
5023 if (i < dmamap->dm_nsegs) {
5024 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5025 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5026 goto fail_unload;
5027 }
5028
5029 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5030 BUS_DMASYNC_PREWRITE);
5031
5032 if (frag == sc->bge_tx_saved_considx) {
5033 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5034 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5035
5036 goto fail_unload;
5037 }
5038
5039 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5040 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5041 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5042 sc->txdma[cur] = dma;
5043 sc->bge_txcnt += dmamap->dm_nsegs;
5044
5045 *txidx = frag;
5046
5047 return 0;
5048
5049 fail_unload:
5050 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5051
5052 return ENOBUFS;
5053 }
5054
5055 /*
5056 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5057 * to the mbuf data regions directly in the transmit descriptors.
5058 */
5059 static void
5060 bge_start(struct ifnet *ifp)
5061 {
5062 struct bge_softc *sc;
5063 struct mbuf *m_head = NULL;
5064 uint32_t prodidx;
5065 int pkts = 0;
5066
5067 sc = ifp->if_softc;
5068
5069 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5070 return;
5071
5072 prodidx = sc->bge_tx_prodidx;
5073
5074 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5075 IFQ_POLL(&ifp->if_snd, m_head);
5076 if (m_head == NULL)
5077 break;
5078
5079 #if 0
5080 /*
5081 * XXX
5082 * safety overkill. If this is a fragmented packet chain
5083 * with delayed TCP/UDP checksums, then only encapsulate
5084 * it if we have enough descriptors to handle the entire
5085 * chain at once.
5086 * (paranoia -- may not actually be needed)
5087 */
5088 if (m_head->m_flags & M_FIRSTFRAG &&
5089 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5090 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5091 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5092 ifp->if_flags |= IFF_OACTIVE;
5093 break;
5094 }
5095 }
5096 #endif
5097
5098 /*
5099 * Pack the data into the transmit ring. If we
5100 * don't have room, set the OACTIVE flag and wait
5101 * for the NIC to drain the ring.
5102 */
5103 if (bge_encap(sc, m_head, &prodidx)) {
5104 ifp->if_flags |= IFF_OACTIVE;
5105 break;
5106 }
5107
5108 /* now we are committed to transmit the packet */
5109 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5110 pkts++;
5111
5112 /*
5113 * If there's a BPF listener, bounce a copy of this frame
5114 * to him.
5115 */
5116 bpf_mtap(ifp, m_head);
5117 }
5118 if (pkts == 0)
5119 return;
5120
5121 /* Transmit */
5122 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5123 /* 5700 b2 errata */
5124 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5125 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5126
5127 sc->bge_tx_prodidx = prodidx;
5128
5129 /*
5130 * Set a timeout in case the chip goes out to lunch.
5131 */
5132 ifp->if_timer = 5;
5133 }
5134
5135 static int
5136 bge_init(struct ifnet *ifp)
5137 {
5138 struct bge_softc *sc = ifp->if_softc;
5139 const uint16_t *m;
5140 uint32_t mode;
5141 int s, error = 0;
5142
5143 s = splnet();
5144
5145 ifp = &sc->ethercom.ec_if;
5146
5147 /* Cancel pending I/O and flush buffers. */
5148 bge_stop(ifp, 0);
5149
5150 bge_stop_fw(sc);
5151 bge_sig_pre_reset(sc, BGE_RESET_START);
5152 bge_reset(sc);
5153 bge_sig_legacy(sc, BGE_RESET_START);
5154 bge_sig_post_reset(sc, BGE_RESET_START);
5155
5156 bge_chipinit(sc);
5157
5158 /*
5159 * Init the various state machines, ring
5160 * control blocks and firmware.
5161 */
5162 error = bge_blockinit(sc);
5163 if (error != 0) {
5164 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5165 error);
5166 splx(s);
5167 return error;
5168 }
5169
5170 ifp = &sc->ethercom.ec_if;
5171
5172 /* Specify MTU. */
5173 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5174 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5175
5176 /* Load our MAC address. */
5177 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5178 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5179 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5180
5181 /* Enable or disable promiscuous mode as needed. */
5182 if (ifp->if_flags & IFF_PROMISC)
5183 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5184 else
5185 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5186
5187 /* Program multicast filter. */
5188 bge_setmulti(sc);
5189
5190 /* Init RX ring. */
5191 bge_init_rx_ring_std(sc);
5192
5193 /*
5194 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5195 * memory to insure that the chip has in fact read the first
5196 * entry of the ring.
5197 */
5198 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5199 uint32_t v, i;
5200 for (i = 0; i < 10; i++) {
5201 DELAY(20);
5202 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5203 if (v == (MCLBYTES - ETHER_ALIGN))
5204 break;
5205 }
5206 if (i == 10)
5207 aprint_error_dev(sc->bge_dev,
5208 "5705 A0 chip failed to load RX ring\n");
5209 }
5210
5211 /* Init jumbo RX ring. */
5212 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5213 bge_init_rx_ring_jumbo(sc);
5214
5215 /* Init our RX return ring index */
5216 sc->bge_rx_saved_considx = 0;
5217
5218 /* Init TX ring. */
5219 bge_init_tx_ring(sc);
5220
5221 /* Enable TX MAC state machine lockup fix. */
5222 mode = CSR_READ_4(sc, BGE_TX_MODE);
5223 if (BGE_IS_5755_PLUS(sc) ||
5224 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5225 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5226 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5227 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5228 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5229 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5230 }
5231
5232 /* Turn on transmitter */
5233 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5234 DELAY(100);
5235
5236 /* Turn on receiver */
5237 mode = CSR_READ_4(sc, BGE_RX_MODE);
5238 if (BGE_IS_5755_PLUS(sc))
5239 mode |= BGE_RXMODE_IPV6_ENABLE;
5240 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5241 DELAY(10);
5242
5243 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5244
5245 /* Tell firmware we're alive. */
5246 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5247
5248 /* Enable host interrupts. */
5249 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5250 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5251 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5252
5253 if ((error = bge_ifmedia_upd(ifp)) != 0)
5254 goto out;
5255
5256 ifp->if_flags |= IFF_RUNNING;
5257 ifp->if_flags &= ~IFF_OACTIVE;
5258
5259 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5260
5261 out:
5262 sc->bge_if_flags = ifp->if_flags;
5263 splx(s);
5264
5265 return error;
5266 }
5267
5268 /*
5269 * Set media options.
5270 */
5271 static int
5272 bge_ifmedia_upd(struct ifnet *ifp)
5273 {
5274 struct bge_softc *sc = ifp->if_softc;
5275 struct mii_data *mii = &sc->bge_mii;
5276 struct ifmedia *ifm = &sc->bge_ifmedia;
5277 int rc;
5278
5279 /* If this is a 1000baseX NIC, enable the TBI port. */
5280 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5281 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5282 return EINVAL;
5283 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5284 case IFM_AUTO:
5285 /*
5286 * The BCM5704 ASIC appears to have a special
5287 * mechanism for programming the autoneg
5288 * advertisement registers in TBI mode.
5289 */
5290 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5291 uint32_t sgdig;
5292 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5293 if (sgdig & BGE_SGDIGSTS_DONE) {
5294 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5295 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5296 sgdig |= BGE_SGDIGCFG_AUTO |
5297 BGE_SGDIGCFG_PAUSE_CAP |
5298 BGE_SGDIGCFG_ASYM_PAUSE;
5299 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5300 sgdig | BGE_SGDIGCFG_SEND);
5301 DELAY(5);
5302 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5303 sgdig);
5304 }
5305 }
5306 break;
5307 case IFM_1000_SX:
5308 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5309 BGE_CLRBIT(sc, BGE_MAC_MODE,
5310 BGE_MACMODE_HALF_DUPLEX);
5311 } else {
5312 BGE_SETBIT(sc, BGE_MAC_MODE,
5313 BGE_MACMODE_HALF_DUPLEX);
5314 }
5315 DELAY(40);
5316 break;
5317 default:
5318 return EINVAL;
5319 }
5320 /* XXX 802.3x flow control for 1000BASE-SX */
5321 return 0;
5322 }
5323
5324 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5325 if ((rc = mii_mediachg(mii)) == ENXIO)
5326 return 0;
5327
5328 /*
5329 * Force an interrupt so that we will call bge_link_upd
5330 * if needed and clear any pending link state attention.
5331 * Without this we are not getting any further interrupts
5332 * for link state changes and thus will not UP the link and
5333 * not be able to send in bge_start. The only way to get
5334 * things working was to receive a packet and get a RX intr.
5335 */
5336 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5337 sc->bge_flags & BGE_IS_5788)
5338 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5339 else
5340 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5341
5342 return rc;
5343 }
5344
5345 /*
5346 * Report current media status.
5347 */
5348 static void
5349 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5350 {
5351 struct bge_softc *sc = ifp->if_softc;
5352 struct mii_data *mii = &sc->bge_mii;
5353
5354 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5355 ifmr->ifm_status = IFM_AVALID;
5356 ifmr->ifm_active = IFM_ETHER;
5357 if (CSR_READ_4(sc, BGE_MAC_STS) &
5358 BGE_MACSTAT_TBI_PCS_SYNCHED)
5359 ifmr->ifm_status |= IFM_ACTIVE;
5360 ifmr->ifm_active |= IFM_1000_SX;
5361 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5362 ifmr->ifm_active |= IFM_HDX;
5363 else
5364 ifmr->ifm_active |= IFM_FDX;
5365 return;
5366 }
5367
5368 mii_pollstat(mii);
5369 ifmr->ifm_status = mii->mii_media_status;
5370 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5371 sc->bge_flowflags;
5372 }
5373
5374 static int
5375 bge_ifflags_cb(struct ethercom *ec)
5376 {
5377 struct ifnet *ifp = &ec->ec_if;
5378 struct bge_softc *sc = ifp->if_softc;
5379 int change = ifp->if_flags ^ sc->bge_if_flags;
5380
5381 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5382 return ENETRESET;
5383 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5384 return 0;
5385
5386 if ((ifp->if_flags & IFF_PROMISC) == 0)
5387 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5388 else
5389 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5390
5391 bge_setmulti(sc);
5392
5393 sc->bge_if_flags = ifp->if_flags;
5394 return 0;
5395 }
5396
5397 static int
5398 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5399 {
5400 struct bge_softc *sc = ifp->if_softc;
5401 struct ifreq *ifr = (struct ifreq *) data;
5402 int s, error = 0;
5403 struct mii_data *mii;
5404
5405 s = splnet();
5406
5407 switch (command) {
5408 case SIOCSIFMEDIA:
5409 /* XXX Flow control is not supported for 1000BASE-SX */
5410 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5411 ifr->ifr_media &= ~IFM_ETH_FMASK;
5412 sc->bge_flowflags = 0;
5413 }
5414
5415 /* Flow control requires full-duplex mode. */
5416 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5417 (ifr->ifr_media & IFM_FDX) == 0) {
5418 ifr->ifr_media &= ~IFM_ETH_FMASK;
5419 }
5420 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5421 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5422 /* We can do both TXPAUSE and RXPAUSE. */
5423 ifr->ifr_media |=
5424 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5425 }
5426 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5427 }
5428 /* FALLTHROUGH */
5429 case SIOCGIFMEDIA:
5430 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5431 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5432 command);
5433 } else {
5434 mii = &sc->bge_mii;
5435 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5436 command);
5437 }
5438 break;
5439 default:
5440 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5441 break;
5442
5443 error = 0;
5444
5445 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5446 ;
5447 else if (ifp->if_flags & IFF_RUNNING)
5448 bge_setmulti(sc);
5449 break;
5450 }
5451
5452 splx(s);
5453
5454 return error;
5455 }
5456
5457 static void
5458 bge_watchdog(struct ifnet *ifp)
5459 {
5460 struct bge_softc *sc;
5461
5462 sc = ifp->if_softc;
5463
5464 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5465
5466 ifp->if_flags &= ~IFF_RUNNING;
5467 bge_init(ifp);
5468
5469 ifp->if_oerrors++;
5470 }
5471
5472 static void
5473 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5474 {
5475 int i;
5476
5477 BGE_CLRBIT_FLUSH(sc, reg, bit);
5478
5479 for (i = 0; i < 1000; i++) {
5480 delay(100);
5481 if ((CSR_READ_4(sc, reg) & bit) == 0)
5482 return;
5483 }
5484
5485 /*
5486 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5487 * on some environment (and once after boot?)
5488 */
5489 if (reg != BGE_SRS_MODE)
5490 aprint_error_dev(sc->bge_dev,
5491 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5492 (u_long)reg, bit);
5493 }
5494
5495 /*
5496 * Stop the adapter and free any mbufs allocated to the
5497 * RX and TX lists.
5498 */
5499 static void
5500 bge_stop(struct ifnet *ifp, int disable)
5501 {
5502 struct bge_softc *sc = ifp->if_softc;
5503
5504 callout_stop(&sc->bge_timeout);
5505
5506 /* Disable host interrupts. */
5507 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5508 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5509
5510 /*
5511 * Tell firmware we're shutting down.
5512 */
5513 bge_stop_fw(sc);
5514 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5515
5516 /*
5517 * Disable all of the receiver blocks.
5518 */
5519 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5520 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5521 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5522 if (BGE_IS_5700_FAMILY(sc))
5523 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5524 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5525 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5526 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5527
5528 /*
5529 * Disable all of the transmit blocks.
5530 */
5531 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5532 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5533 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5534 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5535 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5536 if (BGE_IS_5700_FAMILY(sc))
5537 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5538 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5539
5540 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5541 delay(40);
5542
5543 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5544
5545 /*
5546 * Shut down all of the memory managers and related
5547 * state machines.
5548 */
5549 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5550 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5551 if (BGE_IS_5700_FAMILY(sc))
5552 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5553
5554 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5555 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5556
5557 if (BGE_IS_5700_FAMILY(sc)) {
5558 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5559 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5560 }
5561
5562 bge_reset(sc);
5563 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5564 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5565
5566 /*
5567 * Keep the ASF firmware running if up.
5568 */
5569 if (sc->bge_asf_mode & ASF_STACKUP)
5570 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5571 else
5572 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5573
5574 /* Free the RX lists. */
5575 bge_free_rx_ring_std(sc);
5576
5577 /* Free jumbo RX list. */
5578 if (BGE_IS_JUMBO_CAPABLE(sc))
5579 bge_free_rx_ring_jumbo(sc);
5580
5581 /* Free TX buffers. */
5582 bge_free_tx_ring(sc);
5583
5584 /*
5585 * Isolate/power down the PHY.
5586 */
5587 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5588 mii_down(&sc->bge_mii);
5589
5590 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5591
5592 /* Clear MAC's link state (PHY may still have link UP). */
5593 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5594
5595 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5596 }
5597
5598 static void
5599 bge_link_upd(struct bge_softc *sc)
5600 {
5601 struct ifnet *ifp = &sc->ethercom.ec_if;
5602 struct mii_data *mii = &sc->bge_mii;
5603 uint32_t status;
5604 int link;
5605
5606 /* Clear 'pending link event' flag */
5607 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5608
5609 /*
5610 * Process link state changes.
5611 * Grrr. The link status word in the status block does
5612 * not work correctly on the BCM5700 rev AX and BX chips,
5613 * according to all available information. Hence, we have
5614 * to enable MII interrupts in order to properly obtain
5615 * async link changes. Unfortunately, this also means that
5616 * we have to read the MAC status register to detect link
5617 * changes, thereby adding an additional register access to
5618 * the interrupt handler.
5619 */
5620
5621 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5622 status = CSR_READ_4(sc, BGE_MAC_STS);
5623 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5624 mii_pollstat(mii);
5625
5626 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5627 mii->mii_media_status & IFM_ACTIVE &&
5628 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5629 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5630 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5631 (!(mii->mii_media_status & IFM_ACTIVE) ||
5632 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5633 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5634
5635 /* Clear the interrupt */
5636 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5637 BGE_EVTENB_MI_INTERRUPT);
5638 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5639 BRGPHY_MII_ISR);
5640 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5641 BRGPHY_MII_IMR, BRGPHY_INTRS);
5642 }
5643 return;
5644 }
5645
5646 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5647 status = CSR_READ_4(sc, BGE_MAC_STS);
5648 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5649 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5650 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5651 if (BGE_ASICREV(sc->bge_chipid)
5652 == BGE_ASICREV_BCM5704) {
5653 BGE_CLRBIT(sc, BGE_MAC_MODE,
5654 BGE_MACMODE_TBI_SEND_CFGS);
5655 DELAY(40);
5656 }
5657 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5658 if_link_state_change(ifp, LINK_STATE_UP);
5659 }
5660 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5661 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5662 if_link_state_change(ifp, LINK_STATE_DOWN);
5663 }
5664 /*
5665 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5666 * This should not happen since mii callouts are locked now, but
5667 * we keep this check for debug.
5668 */
5669 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5670 /*
5671 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5672 * bit in status word always set. Workaround this bug by
5673 * reading PHY link status directly.
5674 */
5675 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5676 BGE_STS_LINK : 0;
5677
5678 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5679 mii_pollstat(mii);
5680
5681 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5682 mii->mii_media_status & IFM_ACTIVE &&
5683 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5684 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5685 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5686 (!(mii->mii_media_status & IFM_ACTIVE) ||
5687 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5688 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5689 }
5690 }
5691
5692 /* Clear the attention */
5693 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5694 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5695 BGE_MACSTAT_LINK_CHANGED);
5696 }
5697
5698 static int
5699 bge_sysctl_verify(SYSCTLFN_ARGS)
5700 {
5701 int error, t;
5702 struct sysctlnode node;
5703
5704 node = *rnode;
5705 t = *(int*)rnode->sysctl_data;
5706 node.sysctl_data = &t;
5707 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5708 if (error || newp == NULL)
5709 return error;
5710
5711 #if 0
5712 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5713 node.sysctl_num, rnode->sysctl_num));
5714 #endif
5715
5716 if (node.sysctl_num == bge_rxthresh_nodenum) {
5717 if (t < 0 || t >= NBGE_RX_THRESH)
5718 return EINVAL;
5719 bge_update_all_threshes(t);
5720 } else
5721 return EINVAL;
5722
5723 *(int*)rnode->sysctl_data = t;
5724
5725 return 0;
5726 }
5727
5728 /*
5729 * Set up sysctl(3) MIB, hw.bge.*.
5730 */
5731 static void
5732 bge_sysctl_init(struct bge_softc *sc)
5733 {
5734 int rc, bge_root_num;
5735 const struct sysctlnode *node;
5736
5737 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5738 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5739 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5740 goto out;
5741 }
5742
5743 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5744 0, CTLTYPE_NODE, "bge",
5745 SYSCTL_DESCR("BGE interface controls"),
5746 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5747 goto out;
5748 }
5749
5750 bge_root_num = node->sysctl_num;
5751
5752 /* BGE Rx interrupt mitigation level */
5753 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5754 CTLFLAG_READWRITE,
5755 CTLTYPE_INT, "rx_lvl",
5756 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5757 bge_sysctl_verify, 0,
5758 &bge_rx_thresh_lvl,
5759 0, CTL_HW, bge_root_num, CTL_CREATE,
5760 CTL_EOL)) != 0) {
5761 goto out;
5762 }
5763
5764 bge_rxthresh_nodenum = node->sysctl_num;
5765
5766 return;
5767
5768 out:
5769 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5770 }
5771
5772 #ifdef BGE_DEBUG
5773 void
5774 bge_debug_info(struct bge_softc *sc)
5775 {
5776
5777 printf("Hardware Flags:\n");
5778 if (BGE_IS_57765_PLUS(sc))
5779 printf(" - 57765 Plus\n");
5780 if (BGE_IS_5717_PLUS(sc))
5781 printf(" - 5717 Plus\n");
5782 if (BGE_IS_5755_PLUS(sc))
5783 printf(" - 5755 Plus\n");
5784 if (BGE_IS_575X_PLUS(sc))
5785 printf(" - 575X Plus\n");
5786 if (BGE_IS_5705_PLUS(sc))
5787 printf(" - 5705 Plus\n");
5788 if (BGE_IS_5714_FAMILY(sc))
5789 printf(" - 5714 Family\n");
5790 if (BGE_IS_5700_FAMILY(sc))
5791 printf(" - 5700 Family\n");
5792 if (sc->bge_flags & BGE_IS_5788)
5793 printf(" - 5788\n");
5794 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5795 printf(" - Supports Jumbo Frames\n");
5796 if (sc->bge_flags & BGE_NO_EEPROM)
5797 printf(" - No EEPROM\n");
5798 if (sc->bge_flags & BGE_PCIX)
5799 printf(" - PCI-X Bus\n");
5800 if (sc->bge_flags & BGE_PCIE)
5801 printf(" - PCI Express Bus\n");
5802 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5803 printf(" - RX Alignment Bug\n");
5804 if (sc->bge_flags & BGE_APE)
5805 printf(" - APE\n");
5806 if (sc->bge_flags & BGE_CPMU_PRESENT)
5807 printf(" - CPMU\n");
5808 if (sc->bge_flags & BGE_TSO)
5809 printf(" - TSO\n");
5810
5811 if (sc->bge_flags & BGE_PHY_NO_3LED)
5812 printf(" - No 3 LEDs\n");
5813 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5814 printf(" - CRC bug\n");
5815 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5816 printf(" - ADC bug\n");
5817 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5818 printf(" - 5704 A0 bug\n");
5819 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5820 printf(" - jitter bug\n");
5821 if (sc->bge_flags & BGE_PHY_BER_BUG)
5822 printf(" - BER bug\n");
5823 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5824 printf(" - adjust trim\n");
5825 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5826 printf(" - no wirespeed\n");
5827 }
5828 #endif /* BGE_DEBUG */
5829
5830 static int
5831 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5832 {
5833 prop_dictionary_t dict;
5834 prop_data_t ea;
5835
5836 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5837 return 1;
5838
5839 dict = device_properties(sc->bge_dev);
5840 ea = prop_dictionary_get(dict, "mac-address");
5841 if (ea != NULL) {
5842 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5843 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5844 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5845 return 0;
5846 }
5847
5848 return 1;
5849 }
5850
5851 static int
5852 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5853 {
5854 uint32_t mac_addr;
5855
5856 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5857 if ((mac_addr >> 16) == 0x484b) {
5858 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5859 ether_addr[1] = (uint8_t)mac_addr;
5860 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5861 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5862 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5863 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5864 ether_addr[5] = (uint8_t)mac_addr;
5865 return 0;
5866 }
5867 return 1;
5868 }
5869
5870 static int
5871 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5872 {
5873 int mac_offset = BGE_EE_MAC_OFFSET;
5874
5875 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5876 mac_offset = BGE_EE_MAC_OFFSET_5906;
5877
5878 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5879 ETHER_ADDR_LEN));
5880 }
5881
5882 static int
5883 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5884 {
5885
5886 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5887 return 1;
5888
5889 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5890 ETHER_ADDR_LEN));
5891 }
5892
5893 static int
5894 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5895 {
5896 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5897 /* NOTE: Order is critical */
5898 bge_get_eaddr_fw,
5899 bge_get_eaddr_mem,
5900 bge_get_eaddr_nvram,
5901 bge_get_eaddr_eeprom,
5902 NULL
5903 };
5904 const bge_eaddr_fcn_t *func;
5905
5906 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5907 if ((*func)(sc, eaddr) == 0)
5908 break;
5909 }
5910 return (*func == NULL ? ENXIO : 0);
5911 }
5912