if_bge.c revision 1.248 1 /* $NetBSD: if_bge.c,v 1.248 2013/05/24 11:47:47 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.248 2013/05/24 11:47:47 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rnd.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
680 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
682
683 static const struct bge_revision {
684 uint32_t br_chipid;
685 const char *br_name;
686 } bge_revisions[] = {
687 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
688 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
689 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
690 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
691 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
692 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
693 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
694 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
695 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
696 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
697 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
698 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
699 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
700 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
701 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
702 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
703 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
704 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
705 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
706 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
707 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
708 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
709 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
710 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
711 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
712 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
713 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
714 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
715 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
716 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
717 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
718 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
719 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
720 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
721 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
722 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
723 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
724 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
725 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
726 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
727 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
728 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
729 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
730 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
731 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
732 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
733 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
734 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
735 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
736 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
737 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
738 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
739 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
740 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
741 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
742 /* 5754 and 5787 share the same ASIC ID */
743 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
744 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
745 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
746 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
747 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
748 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
749 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
750 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
751 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
752 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
753
754 { 0, NULL }
755 };
756
757 /*
758 * Some defaults for major revisions, so that newer steppings
759 * that we don't know about have a shot at working.
760 */
761 static const struct bge_revision bge_majorrevs[] = {
762 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
763 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
764 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
765 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
766 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
767 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
768 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
769 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
771 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
772 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
773 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
774 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
775 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
776 /* 5754 and 5787 share the same ASIC ID */
777 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
778 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
779 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
780 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
781 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
782 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
783 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
784 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
785
786 { 0, NULL }
787 };
788
789 static int bge_allow_asf = 1;
790
791 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
792 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
793
794 static uint32_t
795 bge_readmem_ind(struct bge_softc *sc, int off)
796 {
797 pcireg_t val;
798
799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
800 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
801 return 0;
802
803 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
804 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
806 return val;
807 }
808
809 static void
810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
811 {
812
813 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
816 }
817
818 /*
819 * PCI Express only
820 */
821 static void
822 bge_set_max_readrq(struct bge_softc *sc)
823 {
824 pcireg_t val;
825
826 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
827 + PCIE_DCSR);
828 val &= ~PCIE_DCSR_MAX_READ_REQ;
829 switch (sc->bge_expmrq) {
830 case 2048:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
832 break;
833 case 4096:
834 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
835 break;
836 default:
837 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
838 break;
839 }
840 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
841 + PCIE_DCSR, val);
842 }
843
844 #ifdef notdef
845 static uint32_t
846 bge_readreg_ind(struct bge_softc *sc, int off)
847 {
848 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
849 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
850 }
851 #endif
852
853 static void
854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
855 {
856 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
858 }
859
860 static void
861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
862 {
863 CSR_WRITE_4(sc, off, val);
864 }
865
866 static void
867 bge_writembx(struct bge_softc *sc, int off, int val)
868 {
869 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
870 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
871
872 CSR_WRITE_4(sc, off, val);
873 }
874
875 static void
876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
877 {
878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
879 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
880
881 CSR_WRITE_4_FLUSH(sc, off, val);
882 }
883
884 /*
885 * Clear all stale locks and select the lock for this driver instance.
886 */
887 void
888 bge_ape_lock_init(struct bge_softc *sc)
889 {
890 struct pci_attach_args *pa = &(sc->bge_pa);
891 uint32_t bit, regbase;
892 int i;
893
894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
895 regbase = BGE_APE_LOCK_GRANT;
896 else
897 regbase = BGE_APE_PER_LOCK_GRANT;
898
899 /* Clear any stale locks. */
900 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
901 switch (i) {
902 case BGE_APE_LOCK_PHY0:
903 case BGE_APE_LOCK_PHY1:
904 case BGE_APE_LOCK_PHY2:
905 case BGE_APE_LOCK_PHY3:
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 break;
908 default:
909 if (pa->pa_function == 0)
910 bit = BGE_APE_LOCK_GRANT_DRIVER0;
911 else
912 bit = (1 << pa->pa_function);
913 }
914 APE_WRITE_4(sc, regbase + 4 * i, bit);
915 }
916
917 /* Select the PHY lock based on the device's function number. */
918 switch (pa->pa_function) {
919 case 0:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
921 break;
922 case 1:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
924 break;
925 case 2:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
927 break;
928 case 3:
929 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
930 break;
931 default:
932 printf("%s: PHY lock not supported on function\n",
933 device_xname(sc->bge_dev));
934 break;
935 }
936 }
937
938 /*
939 * Check for APE firmware, set flags, and print version info.
940 */
941 void
942 bge_ape_read_fw_ver(struct bge_softc *sc)
943 {
944 const char *fwtype;
945 uint32_t apedata, features;
946
947 /* Check for a valid APE signature in shared memory. */
948 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
949 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
950 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
951 return;
952 }
953
954 /* Check if APE firmware is running. */
955 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
956 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
957 printf("%s: APE signature found but FW status not ready! "
958 "0x%08x\n", device_xname(sc->bge_dev), apedata);
959 return;
960 }
961
962 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
963
964 /* Fetch the APE firwmare type and version. */
965 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
966 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
967 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
969 fwtype = "NCSI";
970 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
971 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
972 fwtype = "DASH";
973 } else
974 fwtype = "UNKN";
975
976 /* Print the APE firmware version. */
977 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
978 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
979 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
980 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
981 (apedata & BGE_APE_FW_VERSION_BLDMSK));
982 }
983
984 int
985 bge_ape_lock(struct bge_softc *sc, int locknum)
986 {
987 struct pci_attach_args *pa = &(sc->bge_pa);
988 uint32_t bit, gnt, req, status;
989 int i, off;
990
991 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
992 return (0);
993
994 /* Lock request/grant registers have different bases. */
995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
996 req = BGE_APE_LOCK_REQ;
997 gnt = BGE_APE_LOCK_GRANT;
998 } else {
999 req = BGE_APE_PER_LOCK_REQ;
1000 gnt = BGE_APE_PER_LOCK_GRANT;
1001 }
1002
1003 off = 4 * locknum;
1004
1005 switch (locknum) {
1006 case BGE_APE_LOCK_GPIO:
1007 /* Lock required when using GPIO. */
1008 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1009 return (0);
1010 if (pa->pa_function == 0)
1011 bit = BGE_APE_LOCK_REQ_DRIVER0;
1012 else
1013 bit = (1 << pa->pa_function);
1014 break;
1015 case BGE_APE_LOCK_GRC:
1016 /* Lock required to reset the device. */
1017 if (pa->pa_function == 0)
1018 bit = BGE_APE_LOCK_REQ_DRIVER0;
1019 else
1020 bit = (1 << pa->pa_function);
1021 break;
1022 case BGE_APE_LOCK_MEM:
1023 /* Lock required when accessing certain APE memory. */
1024 if (pa->pa_function == 0)
1025 bit = BGE_APE_LOCK_REQ_DRIVER0;
1026 else
1027 bit = (1 << pa->pa_function);
1028 break;
1029 case BGE_APE_LOCK_PHY0:
1030 case BGE_APE_LOCK_PHY1:
1031 case BGE_APE_LOCK_PHY2:
1032 case BGE_APE_LOCK_PHY3:
1033 /* Lock required when accessing PHYs. */
1034 bit = BGE_APE_LOCK_REQ_DRIVER0;
1035 break;
1036 default:
1037 return (EINVAL);
1038 }
1039
1040 /* Request a lock. */
1041 APE_WRITE_4_FLUSH(sc, req + off, bit);
1042
1043 /* Wait up to 1 second to acquire lock. */
1044 for (i = 0; i < 20000; i++) {
1045 status = APE_READ_4(sc, gnt + off);
1046 if (status == bit)
1047 break;
1048 DELAY(50);
1049 }
1050
1051 /* Handle any errors. */
1052 if (status != bit) {
1053 printf("%s: APE lock %d request failed! "
1054 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1055 device_xname(sc->bge_dev),
1056 locknum, req + off, bit & 0xFFFF, gnt + off,
1057 status & 0xFFFF);
1058 /* Revoke the lock request. */
1059 APE_WRITE_4(sc, gnt + off, bit);
1060 return (EBUSY);
1061 }
1062
1063 return (0);
1064 }
1065
1066 void
1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
1068 {
1069 struct pci_attach_args *pa = &(sc->bge_pa);
1070 uint32_t bit, gnt;
1071 int off;
1072
1073 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1074 return;
1075
1076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1077 gnt = BGE_APE_LOCK_GRANT;
1078 else
1079 gnt = BGE_APE_PER_LOCK_GRANT;
1080
1081 off = 4 * locknum;
1082
1083 switch (locknum) {
1084 case BGE_APE_LOCK_GPIO:
1085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1086 return;
1087 if (pa->pa_function == 0)
1088 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1089 else
1090 bit = (1 << pa->pa_function);
1091 break;
1092 case BGE_APE_LOCK_GRC:
1093 if (pa->pa_function == 0)
1094 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1095 else
1096 bit = (1 << pa->pa_function);
1097 break;
1098 case BGE_APE_LOCK_MEM:
1099 if (pa->pa_function == 0)
1100 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1101 else
1102 bit = (1 << pa->pa_function);
1103 break;
1104 case BGE_APE_LOCK_PHY0:
1105 case BGE_APE_LOCK_PHY1:
1106 case BGE_APE_LOCK_PHY2:
1107 case BGE_APE_LOCK_PHY3:
1108 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1109 break;
1110 default:
1111 return;
1112 }
1113
1114 /* Write and flush for consecutive bge_ape_lock() */
1115 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1116 }
1117
1118 /*
1119 * Send an event to the APE firmware.
1120 */
1121 void
1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1123 {
1124 uint32_t apedata;
1125 int i;
1126
1127 /* NCSI does not support APE events. */
1128 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1129 return;
1130
1131 /* Wait up to 1ms for APE to service previous event. */
1132 for (i = 10; i > 0; i--) {
1133 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1134 break;
1135 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1136 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1137 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1138 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1141 break;
1142 }
1143 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1144 DELAY(100);
1145 }
1146 if (i == 0) {
1147 printf("%s: APE event 0x%08x send timed out\n",
1148 device_xname(sc->bge_dev), event);
1149 }
1150 }
1151
1152 void
1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1154 {
1155 uint32_t apedata, event;
1156
1157 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1158 return;
1159
1160 switch (kind) {
1161 case BGE_RESET_START:
1162 /* If this is the first load, clear the load counter. */
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1164 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1166 else {
1167 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1168 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1169 }
1170 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1171 BGE_APE_HOST_SEG_SIG_MAGIC);
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1173 BGE_APE_HOST_SEG_LEN_MAGIC);
1174
1175 /* Add some version info if bge(4) supports it. */
1176 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1177 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1178 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1179 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1180 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1181 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_START);
1184 event = BGE_APE_EVENT_STATUS_STATE_START;
1185 break;
1186 case BGE_RESET_SHUTDOWN:
1187 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1188 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1189 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1190 break;
1191 case BGE_RESET_SUSPEND:
1192 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1193 break;
1194 default:
1195 return;
1196 }
1197
1198 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1199 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1200 }
1201
1202 static uint8_t
1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1204 {
1205 uint32_t access, byte = 0;
1206 int i;
1207
1208 /* Lock. */
1209 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1210 for (i = 0; i < 8000; i++) {
1211 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1212 break;
1213 DELAY(20);
1214 }
1215 if (i == 8000)
1216 return 1;
1217
1218 /* Enable access. */
1219 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1220 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1221
1222 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1223 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1224 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1225 DELAY(10);
1226 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1227 DELAY(10);
1228 break;
1229 }
1230 }
1231
1232 if (i == BGE_TIMEOUT * 10) {
1233 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1234 return 1;
1235 }
1236
1237 /* Get result. */
1238 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1239
1240 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1241
1242 /* Disable access. */
1243 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1244
1245 /* Unlock. */
1246 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * Read a sequence of bytes from NVRAM.
1253 */
1254 static int
1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1256 {
1257 int error = 0, i;
1258 uint8_t byte = 0;
1259
1260 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1261 return 1;
1262
1263 for (i = 0; i < cnt; i++) {
1264 error = bge_nvram_getbyte(sc, off + i, &byte);
1265 if (error)
1266 break;
1267 *(dest + i) = byte;
1268 }
1269
1270 return (error ? 1 : 0);
1271 }
1272
1273 /*
1274 * Read a byte of data stored in the EEPROM at address 'addr.' The
1275 * BCM570x supports both the traditional bitbang interface and an
1276 * auto access interface for reading the EEPROM. We use the auto
1277 * access method.
1278 */
1279 static uint8_t
1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1281 {
1282 int i;
1283 uint32_t byte = 0;
1284
1285 /*
1286 * Enable use of auto EEPROM access so we can avoid
1287 * having to use the bitbang method.
1288 */
1289 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1290
1291 /* Reset the EEPROM, load the clock period. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR,
1293 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1294 DELAY(20);
1295
1296 /* Issue the read EEPROM command. */
1297 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1298
1299 /* Wait for completion */
1300 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1301 DELAY(10);
1302 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1303 break;
1304 }
1305
1306 if (i == BGE_TIMEOUT * 10) {
1307 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1308 return 1;
1309 }
1310
1311 /* Get result. */
1312 byte = CSR_READ_4(sc, BGE_EE_DATA);
1313
1314 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Read a sequence of bytes from the EEPROM.
1321 */
1322 static int
1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1324 {
1325 int error = 0, i;
1326 uint8_t byte = 0;
1327 char *dest = destv;
1328
1329 for (i = 0; i < cnt; i++) {
1330 error = bge_eeprom_getbyte(sc, off + i, &byte);
1331 if (error)
1332 break;
1333 *(dest + i) = byte;
1334 }
1335
1336 return (error ? 1 : 0);
1337 }
1338
1339 static int
1340 bge_miibus_readreg(device_t dev, int phy, int reg)
1341 {
1342 struct bge_softc *sc = device_private(dev);
1343 uint32_t val;
1344 uint32_t autopoll;
1345 int i;
1346
1347 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1348 return 0;
1349
1350 /* Reading with autopolling on may trigger PCI errors */
1351 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1352 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1353 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1354 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1355 DELAY(80);
1356 }
1357
1358 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1359 BGE_MIPHY(phy) | BGE_MIREG(reg));
1360
1361 for (i = 0; i < BGE_TIMEOUT; i++) {
1362 delay(10);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 if (!(val & BGE_MICOMM_BUSY)) {
1365 DELAY(5);
1366 val = CSR_READ_4(sc, BGE_MI_COMM);
1367 break;
1368 }
1369 }
1370
1371 if (i == BGE_TIMEOUT) {
1372 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1373 val = 0;
1374 goto done;
1375 }
1376
1377 done:
1378 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1379 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1380 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1381 DELAY(80);
1382 }
1383
1384 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1385
1386 if (val & BGE_MICOMM_READFAIL)
1387 return 0;
1388
1389 return (val & 0xFFFF);
1390 }
1391
1392 static void
1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1394 {
1395 struct bge_softc *sc = device_private(dev);
1396 uint32_t autopoll;
1397 int i;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1403 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1404 return;
1405
1406 /* Reading with autopolling on may trigger PCI errors */
1407 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1408 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1409 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1410 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1411 DELAY(80);
1412 }
1413
1414 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1415 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1416
1417 for (i = 0; i < BGE_TIMEOUT; i++) {
1418 delay(10);
1419 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1420 delay(5);
1421 CSR_READ_4(sc, BGE_MI_COMM);
1422 break;
1423 }
1424 }
1425
1426 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1427 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1428 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1429 delay(80);
1430 }
1431
1432 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1433
1434 if (i == BGE_TIMEOUT)
1435 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1436 }
1437
1438 static void
1439 bge_miibus_statchg(struct ifnet *ifp)
1440 {
1441 struct bge_softc *sc = ifp->if_softc;
1442 struct mii_data *mii = &sc->bge_mii;
1443 uint32_t mac_mode, rx_mode, tx_mode;
1444
1445 /*
1446 * Get flow control negotiation result.
1447 */
1448 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1449 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1450 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1451 mii->mii_media_active &= ~IFM_ETH_FMASK;
1452 }
1453
1454 /* Set the port mode (MII/GMII) to match the link speed. */
1455 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1456 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1457 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1458 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1459 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1460 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1461 mac_mode |= BGE_PORTMODE_GMII;
1462 else
1463 mac_mode |= BGE_PORTMODE_MII;
1464
1465 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1466 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1467 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1468 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1469 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1470 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1471 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1472 } else
1473 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1474
1475 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1476 DELAY(40);
1477 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1478 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1479 }
1480
1481 /*
1482 * Update rx threshold levels to values in a particular slot
1483 * of the interrupt-mitigation table bge_rx_threshes.
1484 */
1485 static void
1486 bge_set_thresh(struct ifnet *ifp, int lvl)
1487 {
1488 struct bge_softc *sc = ifp->if_softc;
1489 int s;
1490
1491 /* For now, just save the new Rx-intr thresholds and record
1492 * that a threshold update is pending. Updating the hardware
1493 * registers here (even at splhigh()) is observed to
1494 * occasionaly cause glitches where Rx-interrupts are not
1495 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1496 */
1497 s = splnet();
1498 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1499 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1500 sc->bge_pending_rxintr_change = 1;
1501 splx(s);
1502 }
1503
1504
1505 /*
1506 * Update Rx thresholds of all bge devices
1507 */
1508 static void
1509 bge_update_all_threshes(int lvl)
1510 {
1511 struct ifnet *ifp;
1512 const char * const namebuf = "bge";
1513 int namelen;
1514
1515 if (lvl < 0)
1516 lvl = 0;
1517 else if (lvl >= NBGE_RX_THRESH)
1518 lvl = NBGE_RX_THRESH - 1;
1519
1520 namelen = strlen(namebuf);
1521 /*
1522 * Now search all the interfaces for this name/number
1523 */
1524 IFNET_FOREACH(ifp) {
1525 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1526 continue;
1527 /* We got a match: update if doing auto-threshold-tuning */
1528 if (bge_auto_thresh)
1529 bge_set_thresh(ifp, lvl);
1530 }
1531 }
1532
1533 /*
1534 * Handle events that have triggered interrupts.
1535 */
1536 static void
1537 bge_handle_events(struct bge_softc *sc)
1538 {
1539
1540 return;
1541 }
1542
1543 /*
1544 * Memory management for jumbo frames.
1545 */
1546
1547 static int
1548 bge_alloc_jumbo_mem(struct bge_softc *sc)
1549 {
1550 char *ptr, *kva;
1551 bus_dma_segment_t seg;
1552 int i, rseg, state, error;
1553 struct bge_jpool_entry *entry;
1554
1555 state = error = 0;
1556
1557 /* Grab a big chunk o' storage. */
1558 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1560 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1561 return ENOBUFS;
1562 }
1563
1564 state = 1;
1565 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1566 BUS_DMA_NOWAIT)) {
1567 aprint_error_dev(sc->bge_dev,
1568 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1569 error = ENOBUFS;
1570 goto out;
1571 }
1572
1573 state = 2;
1574 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1575 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1576 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1577 error = ENOBUFS;
1578 goto out;
1579 }
1580
1581 state = 3;
1582 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1583 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1584 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1585 error = ENOBUFS;
1586 goto out;
1587 }
1588
1589 state = 4;
1590 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1591 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1592
1593 SLIST_INIT(&sc->bge_jfree_listhead);
1594 SLIST_INIT(&sc->bge_jinuse_listhead);
1595
1596 /*
1597 * Now divide it up into 9K pieces and save the addresses
1598 * in an array.
1599 */
1600 ptr = sc->bge_cdata.bge_jumbo_buf;
1601 for (i = 0; i < BGE_JSLOTS; i++) {
1602 sc->bge_cdata.bge_jslots[i] = ptr;
1603 ptr += BGE_JLEN;
1604 entry = malloc(sizeof(struct bge_jpool_entry),
1605 M_DEVBUF, M_NOWAIT);
1606 if (entry == NULL) {
1607 aprint_error_dev(sc->bge_dev,
1608 "no memory for jumbo buffer queue!\n");
1609 error = ENOBUFS;
1610 goto out;
1611 }
1612 entry->slot = i;
1613 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1614 entry, jpool_entries);
1615 }
1616 out:
1617 if (error != 0) {
1618 switch (state) {
1619 case 4:
1620 bus_dmamap_unload(sc->bge_dmatag,
1621 sc->bge_cdata.bge_rx_jumbo_map);
1622 case 3:
1623 bus_dmamap_destroy(sc->bge_dmatag,
1624 sc->bge_cdata.bge_rx_jumbo_map);
1625 case 2:
1626 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1627 case 1:
1628 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1629 break;
1630 default:
1631 break;
1632 }
1633 }
1634
1635 return error;
1636 }
1637
1638 /*
1639 * Allocate a jumbo buffer.
1640 */
1641 static void *
1642 bge_jalloc(struct bge_softc *sc)
1643 {
1644 struct bge_jpool_entry *entry;
1645
1646 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1647
1648 if (entry == NULL) {
1649 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1650 return NULL;
1651 }
1652
1653 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1654 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1655 return (sc->bge_cdata.bge_jslots[entry->slot]);
1656 }
1657
1658 /*
1659 * Release a jumbo buffer.
1660 */
1661 static void
1662 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1663 {
1664 struct bge_jpool_entry *entry;
1665 struct bge_softc *sc;
1666 int i, s;
1667
1668 /* Extract the softc struct pointer. */
1669 sc = (struct bge_softc *)arg;
1670
1671 if (sc == NULL)
1672 panic("bge_jfree: can't find softc pointer!");
1673
1674 /* calculate the slot this buffer belongs to */
1675
1676 i = ((char *)buf
1677 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1678
1679 if ((i < 0) || (i >= BGE_JSLOTS))
1680 panic("bge_jfree: asked to free buffer that we don't manage!");
1681
1682 s = splvm();
1683 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1684 if (entry == NULL)
1685 panic("bge_jfree: buffer not in use!");
1686 entry->slot = i;
1687 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1688 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1689
1690 if (__predict_true(m != NULL))
1691 pool_cache_put(mb_cache, m);
1692 splx(s);
1693 }
1694
1695
1696 /*
1697 * Initialize a standard receive ring descriptor.
1698 */
1699 static int
1700 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1701 bus_dmamap_t dmamap)
1702 {
1703 struct mbuf *m_new = NULL;
1704 struct bge_rx_bd *r;
1705 int error;
1706
1707 if (dmamap == NULL) {
1708 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1709 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1710 if (error != 0)
1711 return error;
1712 }
1713
1714 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1715
1716 if (m == NULL) {
1717 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1718 if (m_new == NULL)
1719 return ENOBUFS;
1720
1721 MCLGET(m_new, M_DONTWAIT);
1722 if (!(m_new->m_flags & M_EXT)) {
1723 m_freem(m_new);
1724 return ENOBUFS;
1725 }
1726 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1727
1728 } else {
1729 m_new = m;
1730 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1731 m_new->m_data = m_new->m_ext.ext_buf;
1732 }
1733 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1734 m_adj(m_new, ETHER_ALIGN);
1735 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1736 BUS_DMA_READ|BUS_DMA_NOWAIT))
1737 return ENOBUFS;
1738 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1739 BUS_DMASYNC_PREREAD);
1740
1741 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1742 r = &sc->bge_rdata->bge_rx_std_ring[i];
1743 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1744 r->bge_flags = BGE_RXBDFLAG_END;
1745 r->bge_len = m_new->m_len;
1746 r->bge_idx = i;
1747
1748 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1749 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1750 i * sizeof (struct bge_rx_bd),
1751 sizeof (struct bge_rx_bd),
1752 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1753
1754 return 0;
1755 }
1756
1757 /*
1758 * Initialize a jumbo receive ring descriptor. This allocates
1759 * a jumbo buffer from the pool managed internally by the driver.
1760 */
1761 static int
1762 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1763 {
1764 struct mbuf *m_new = NULL;
1765 struct bge_rx_bd *r;
1766 void *buf = NULL;
1767
1768 if (m == NULL) {
1769
1770 /* Allocate the mbuf. */
1771 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1772 if (m_new == NULL)
1773 return ENOBUFS;
1774
1775 /* Allocate the jumbo buffer */
1776 buf = bge_jalloc(sc);
1777 if (buf == NULL) {
1778 m_freem(m_new);
1779 aprint_error_dev(sc->bge_dev,
1780 "jumbo allocation failed -- packet dropped!\n");
1781 return ENOBUFS;
1782 }
1783
1784 /* Attach the buffer to the mbuf. */
1785 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1786 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1787 bge_jfree, sc);
1788 m_new->m_flags |= M_EXT_RW;
1789 } else {
1790 m_new = m;
1791 buf = m_new->m_data = m_new->m_ext.ext_buf;
1792 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1793 }
1794 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1795 m_adj(m_new, ETHER_ALIGN);
1796 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1797 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1798 BUS_DMASYNC_PREREAD);
1799 /* Set up the descriptor. */
1800 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1801 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1802 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1803 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1804 r->bge_len = m_new->m_len;
1805 r->bge_idx = i;
1806
1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1808 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1809 i * sizeof (struct bge_rx_bd),
1810 sizeof (struct bge_rx_bd),
1811 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1812
1813 return 0;
1814 }
1815
1816 /*
1817 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1818 * that's 1MB or memory, which is a lot. For now, we fill only the first
1819 * 256 ring entries and hope that our CPU is fast enough to keep up with
1820 * the NIC.
1821 */
1822 static int
1823 bge_init_rx_ring_std(struct bge_softc *sc)
1824 {
1825 int i;
1826
1827 if (sc->bge_flags & BGE_RXRING_VALID)
1828 return 0;
1829
1830 for (i = 0; i < BGE_SSLOTS; i++) {
1831 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1832 return ENOBUFS;
1833 }
1834
1835 sc->bge_std = i - 1;
1836 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1837
1838 sc->bge_flags |= BGE_RXRING_VALID;
1839
1840 return 0;
1841 }
1842
1843 static void
1844 bge_free_rx_ring_std(struct bge_softc *sc)
1845 {
1846 int i;
1847
1848 if (!(sc->bge_flags & BGE_RXRING_VALID))
1849 return;
1850
1851 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1852 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1853 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1854 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1855 bus_dmamap_destroy(sc->bge_dmatag,
1856 sc->bge_cdata.bge_rx_std_map[i]);
1857 }
1858 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1859 sizeof(struct bge_rx_bd));
1860 }
1861
1862 sc->bge_flags &= ~BGE_RXRING_VALID;
1863 }
1864
1865 static int
1866 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1867 {
1868 int i;
1869 volatile struct bge_rcb *rcb;
1870
1871 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1872 return 0;
1873
1874 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1875 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1876 return ENOBUFS;
1877 }
1878
1879 sc->bge_jumbo = i - 1;
1880 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1881
1882 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1883 rcb->bge_maxlen_flags = 0;
1884 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1885
1886 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1887
1888 return 0;
1889 }
1890
1891 static void
1892 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1893 {
1894 int i;
1895
1896 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1897 return;
1898
1899 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1900 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1901 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1902 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1903 }
1904 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1905 sizeof(struct bge_rx_bd));
1906 }
1907
1908 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1909 }
1910
1911 static void
1912 bge_free_tx_ring(struct bge_softc *sc)
1913 {
1914 int i;
1915 struct txdmamap_pool_entry *dma;
1916
1917 if (!(sc->bge_flags & BGE_TXRING_VALID))
1918 return;
1919
1920 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1921 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1922 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1923 sc->bge_cdata.bge_tx_chain[i] = NULL;
1924 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1925 link);
1926 sc->txdma[i] = 0;
1927 }
1928 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1929 sizeof(struct bge_tx_bd));
1930 }
1931
1932 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1933 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1934 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1935 free(dma, M_DEVBUF);
1936 }
1937
1938 sc->bge_flags &= ~BGE_TXRING_VALID;
1939 }
1940
1941 static int
1942 bge_init_tx_ring(struct bge_softc *sc)
1943 {
1944 int i;
1945 bus_dmamap_t dmamap;
1946 struct txdmamap_pool_entry *dma;
1947
1948 if (sc->bge_flags & BGE_TXRING_VALID)
1949 return 0;
1950
1951 sc->bge_txcnt = 0;
1952 sc->bge_tx_saved_considx = 0;
1953
1954 /* Initialize transmit producer index for host-memory send ring. */
1955 sc->bge_tx_prodidx = 0;
1956 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1957 /* 5700 b2 errata */
1958 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1959 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1960
1961 /* NIC-memory send ring not used; initialize to zero. */
1962 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1963 /* 5700 b2 errata */
1964 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1965 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1966
1967 SLIST_INIT(&sc->txdma_list);
1968 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1969 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1970 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1971 &dmamap))
1972 return ENOBUFS;
1973 if (dmamap == NULL)
1974 panic("dmamap NULL in bge_init_tx_ring");
1975 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1976 if (dma == NULL) {
1977 aprint_error_dev(sc->bge_dev,
1978 "can't alloc txdmamap_pool_entry\n");
1979 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1980 return ENOMEM;
1981 }
1982 dma->dmamap = dmamap;
1983 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1984 }
1985
1986 sc->bge_flags |= BGE_TXRING_VALID;
1987
1988 return 0;
1989 }
1990
1991 static void
1992 bge_setmulti(struct bge_softc *sc)
1993 {
1994 struct ethercom *ac = &sc->ethercom;
1995 struct ifnet *ifp = &ac->ec_if;
1996 struct ether_multi *enm;
1997 struct ether_multistep step;
1998 uint32_t hashes[4] = { 0, 0, 0, 0 };
1999 uint32_t h;
2000 int i;
2001
2002 if (ifp->if_flags & IFF_PROMISC)
2003 goto allmulti;
2004
2005 /* Now program new ones. */
2006 ETHER_FIRST_MULTI(step, ac, enm);
2007 while (enm != NULL) {
2008 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2009 /*
2010 * We must listen to a range of multicast addresses.
2011 * For now, just accept all multicasts, rather than
2012 * trying to set only those filter bits needed to match
2013 * the range. (At this time, the only use of address
2014 * ranges is for IP multicast routing, for which the
2015 * range is big enough to require all bits set.)
2016 */
2017 goto allmulti;
2018 }
2019
2020 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2021
2022 /* Just want the 7 least-significant bits. */
2023 h &= 0x7f;
2024
2025 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2026 ETHER_NEXT_MULTI(step, enm);
2027 }
2028
2029 ifp->if_flags &= ~IFF_ALLMULTI;
2030 goto setit;
2031
2032 allmulti:
2033 ifp->if_flags |= IFF_ALLMULTI;
2034 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2035
2036 setit:
2037 for (i = 0; i < 4; i++)
2038 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2039 }
2040
2041 static void
2042 bge_sig_pre_reset(struct bge_softc *sc, int type)
2043 {
2044
2045 /*
2046 * Some chips don't like this so only do this if ASF is enabled
2047 */
2048 if (sc->bge_asf_mode)
2049 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2050
2051 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2052 switch (type) {
2053 case BGE_RESET_START:
2054 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2055 BGE_FW_DRV_STATE_START);
2056 break;
2057 case BGE_RESET_SHUTDOWN:
2058 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2059 BGE_FW_DRV_STATE_UNLOAD);
2060 break;
2061 case BGE_RESET_SUSPEND:
2062 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2063 BGE_FW_DRV_STATE_SUSPEND);
2064 break;
2065 }
2066 }
2067
2068 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2069 bge_ape_driver_state_change(sc, type);
2070 }
2071
2072 static void
2073 bge_sig_post_reset(struct bge_softc *sc, int type)
2074 {
2075
2076 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2077 switch (type) {
2078 case BGE_RESET_START:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_START_DONE);
2081 /* START DONE */
2082 break;
2083 case BGE_RESET_SHUTDOWN:
2084 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2085 BGE_FW_DRV_STATE_UNLOAD_DONE);
2086 break;
2087 }
2088 }
2089
2090 if (type == BGE_RESET_SHUTDOWN)
2091 bge_ape_driver_state_change(sc, type);
2092 }
2093
2094 static void
2095 bge_sig_legacy(struct bge_softc *sc, int type)
2096 {
2097
2098 if (sc->bge_asf_mode) {
2099 switch (type) {
2100 case BGE_RESET_START:
2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 BGE_FW_DRV_STATE_START);
2103 break;
2104 case BGE_RESET_SHUTDOWN:
2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 BGE_FW_DRV_STATE_UNLOAD);
2107 break;
2108 }
2109 }
2110 }
2111
2112 static void
2113 bge_wait_for_event_ack(struct bge_softc *sc)
2114 {
2115 int i;
2116
2117 /* wait up to 2500usec */
2118 for (i = 0; i < 250; i++) {
2119 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2120 BGE_RX_CPU_DRV_EVENT))
2121 break;
2122 DELAY(10);
2123 }
2124 }
2125
2126 static void
2127 bge_stop_fw(struct bge_softc *sc)
2128 {
2129
2130 if (sc->bge_asf_mode) {
2131 bge_wait_for_event_ack(sc);
2132
2133 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2134 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2135 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2136
2137 bge_wait_for_event_ack(sc);
2138 }
2139 }
2140
2141 static int
2142 bge_poll_fw(struct bge_softc *sc)
2143 {
2144 uint32_t val;
2145 int i;
2146
2147 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2148 for (i = 0; i < BGE_TIMEOUT; i++) {
2149 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2150 if (val & BGE_VCPU_STATUS_INIT_DONE)
2151 break;
2152 DELAY(100);
2153 }
2154 if (i >= BGE_TIMEOUT) {
2155 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2156 return -1;
2157 }
2158 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2159 /*
2160 * Poll the value location we just wrote until
2161 * we see the 1's complement of the magic number.
2162 * This indicates that the firmware initialization
2163 * is complete.
2164 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2165 */
2166 for (i = 0; i < BGE_TIMEOUT; i++) {
2167 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2168 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2169 break;
2170 DELAY(10);
2171 }
2172
2173 if (i >= BGE_TIMEOUT) {
2174 aprint_error_dev(sc->bge_dev,
2175 "firmware handshake timed out, val = %x\n", val);
2176 return -1;
2177 }
2178 }
2179
2180 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2181 /* tg3 says we have to wait extra time */
2182 delay(10 * 1000);
2183 }
2184
2185 return 0;
2186 }
2187
2188 int
2189 bge_phy_addr(struct bge_softc *sc)
2190 {
2191 struct pci_attach_args *pa = &(sc->bge_pa);
2192 int phy_addr = 1;
2193
2194 /*
2195 * PHY address mapping for various devices.
2196 *
2197 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2198 * ---------+-------+-------+-------+-------+
2199 * BCM57XX | 1 | X | X | X |
2200 * BCM5704 | 1 | X | 1 | X |
2201 * BCM5717 | 1 | 8 | 2 | 9 |
2202 * BCM5719 | 1 | 8 | 2 | 9 |
2203 * BCM5720 | 1 | 8 | 2 | 9 |
2204 *
2205 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2206 * ---------+-------+-------+-------+-------+
2207 * BCM57XX | X | X | X | X |
2208 * BCM5704 | X | X | X | X |
2209 * BCM5717 | X | X | X | X |
2210 * BCM5719 | 3 | 10 | 4 | 11 |
2211 * BCM5720 | X | X | X | X |
2212 *
2213 * Other addresses may respond but they are not
2214 * IEEE compliant PHYs and should be ignored.
2215 */
2216 switch (BGE_ASICREV(sc->bge_chipid)) {
2217 case BGE_ASICREV_BCM5717:
2218 case BGE_ASICREV_BCM5719:
2219 case BGE_ASICREV_BCM5720:
2220 phy_addr = pa->pa_function;
2221 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2222 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2223 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2224 } else {
2225 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2226 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2227 }
2228 }
2229
2230 return phy_addr;
2231 }
2232
2233 /*
2234 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2235 * self-test results.
2236 */
2237 static int
2238 bge_chipinit(struct bge_softc *sc)
2239 {
2240 uint32_t dma_rw_ctl, mode_ctl, reg;
2241 int i;
2242
2243 /* Set endianness before we access any non-PCI registers. */
2244 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2245 BGE_INIT);
2246
2247 /*
2248 * Clear the MAC statistics block in the NIC's
2249 * internal memory.
2250 */
2251 for (i = BGE_STATS_BLOCK;
2252 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2253 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2254
2255 for (i = BGE_STATUS_BLOCK;
2256 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2257 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2258
2259 /* 5717 workaround from tg3 */
2260 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2261 /* Save */
2262 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2263
2264 /* Temporary modify MODE_CTL to control TLP */
2265 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2266 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2267
2268 /* Control TLP */
2269 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2270 BGE_TLP_PHYCTL1);
2271 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2272 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2273
2274 /* Restore */
2275 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276 }
2277
2278 /* XXX Should we use 57765_FAMILY? */
2279 if (BGE_IS_57765_PLUS(sc)) {
2280 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2281 /* Save */
2282 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2283
2284 /* Temporary modify MODE_CTL to control TLP */
2285 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2286 CSR_WRITE_4(sc, BGE_MODE_CTL,
2287 reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL5);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2293 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2299 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2300 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2301 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2302
2303 /* Save */
2304 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305
2306 /* Temporary modify MODE_CTL to control TLP */
2307 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 reg | BGE_MODECTL_PCIE_TLPADDR0);
2310
2311 /* Control TLP */
2312 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 BGE_TLP_FTSMAX);
2314 reg &= ~BGE_TLP_FTSMAX_MSK;
2315 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2316 reg | BGE_TLP_FTSMAX_VAL);
2317
2318 /* Restore */
2319 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2320 }
2321
2322 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2323 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2324 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2325 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2326 }
2327
2328 /* Set up the PCI DMA control register. */
2329 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2330 if (sc->bge_flags & BGE_PCIE) {
2331 /* Read watermark not used, 128 bytes for write. */
2332 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2333 device_xname(sc->bge_dev)));
2334 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2335 } else if (sc->bge_flags & BGE_PCIX) {
2336 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2337 device_xname(sc->bge_dev)));
2338 /* PCI-X bus */
2339 if (BGE_IS_5714_FAMILY(sc)) {
2340 /* 256 bytes for read and write. */
2341 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2342 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2343
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2345 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2346 else
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2348 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2349 /* 1536 bytes for read, 384 bytes for write. */
2350 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2351 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2352 } else {
2353 /* 384 bytes for read and write. */
2354 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2355 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2356 (0x0F);
2357 }
2358
2359 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2360 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2361 uint32_t tmp;
2362
2363 /* Set ONEDMA_ATONCE for hardware workaround. */
2364 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2365 if (tmp == 6 || tmp == 7)
2366 dma_rw_ctl |=
2367 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2368
2369 /* Set PCI-X DMA write workaround. */
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2371 }
2372 } else {
2373 /* Conventional PCI bus: 256 bytes for read and write. */
2374 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2375 device_xname(sc->bge_dev)));
2376 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2377 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2378
2379 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2380 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2381 dma_rw_ctl |= 0x0F;
2382 }
2383
2384 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2385 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2386 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2387 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2388
2389 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2390 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2391 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2392
2393 if (BGE_IS_5717_PLUS(sc)) {
2394 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2395 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2396 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2397
2398 /*
2399 * Enable HW workaround for controllers that misinterpret
2400 * a status tag update and leave interrupts permanently
2401 * disabled.
2402 */
2403 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2404 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2405 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2406 }
2407
2408 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2409 dma_rw_ctl);
2410
2411 /*
2412 * Set up general mode register.
2413 */
2414 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2415 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2416 /* Retain Host-2-BMC settings written by APE firmware. */
2417 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2418 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2419 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2420 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2421 }
2422 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2423 BGE_MODECTL_TX_NO_PHDR_CSUM;
2424
2425 /*
2426 * BCM5701 B5 have a bug causing data corruption when using
2427 * 64-bit DMA reads, which can be terminated early and then
2428 * completed later as 32-bit accesses, in combination with
2429 * certain bridges.
2430 */
2431 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2432 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2433 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2434
2435 /*
2436 * Tell the firmware the driver is running
2437 */
2438 if (sc->bge_asf_mode & ASF_STACKUP)
2439 mode_ctl |= BGE_MODECTL_STACKUP;
2440
2441 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2442
2443 /*
2444 * Disable memory write invalidate. Apparently it is not supported
2445 * properly by these devices.
2446 */
2447 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2448 PCI_COMMAND_INVALIDATE_ENABLE);
2449
2450 #ifdef __brokenalpha__
2451 /*
2452 * Must insure that we do not cross an 8K (bytes) boundary
2453 * for DMA reads. Our highest limit is 1K bytes. This is a
2454 * restriction on some ALPHA platforms with early revision
2455 * 21174 PCI chipsets, such as the AlphaPC 164lx
2456 */
2457 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2458 #endif
2459
2460 /* Set the timer prescaler (always 66MHz) */
2461 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2462
2463 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2464 DELAY(40); /* XXX */
2465
2466 /* Put PHY into ready state */
2467 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2468 DELAY(40);
2469 }
2470
2471 return 0;
2472 }
2473
2474 static int
2475 bge_blockinit(struct bge_softc *sc)
2476 {
2477 volatile struct bge_rcb *rcb;
2478 bus_size_t rcb_addr;
2479 struct ifnet *ifp = &sc->ethercom.ec_if;
2480 bge_hostaddr taddr;
2481 uint32_t dmactl, val;
2482 int i, limit;
2483
2484 /*
2485 * Initialize the memory window pointer register so that
2486 * we can access the first 32K of internal NIC RAM. This will
2487 * allow us to set up the TX send ring RCBs and the RX return
2488 * ring RCBs, plus other things which live in NIC memory.
2489 */
2490 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2491
2492 if (!BGE_IS_5705_PLUS(sc)) {
2493 /* 57XX step 33 */
2494 /* Configure mbuf memory pool */
2495 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2496 BGE_BUFFPOOL_1);
2497
2498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2499 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2500 else
2501 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2502
2503 /* 57XX step 34 */
2504 /* Configure DMA resource pool */
2505 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 BGE_DMA_DESCRIPTORS);
2507 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 }
2509
2510 /* 5718 step 11, 57XX step 35 */
2511 /*
2512 * Configure mbuf pool watermarks. New broadcom docs strongly
2513 * recommend these.
2514 */
2515 if (BGE_IS_5717_PLUS(sc)) {
2516 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2517 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2519 } else if (BGE_IS_5705_PLUS(sc)) {
2520 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2521
2522 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2523 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2525 } else {
2526 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2528 }
2529 } else {
2530 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2532 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2533 }
2534
2535 /* 57XX step 36 */
2536 /* Configure DMA resource watermarks */
2537 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2538 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2539
2540 /* 5718 step 13, 57XX step 38 */
2541 /* Enable buffer manager */
2542 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2543 /*
2544 * Change the arbitration algorithm of TXMBUF read request to
2545 * round-robin instead of priority based for BCM5719. When
2546 * TXFIFO is almost empty, RDMA will hold its request until
2547 * TXFIFO is not almost empty.
2548 */
2549 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2550 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2551 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2552 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2553 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2554 val |= BGE_BMANMODE_LOMBUF_ATTN;
2555 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2556
2557 /* 57XX step 39 */
2558 /* Poll for buffer manager start indication */
2559 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2560 DELAY(10);
2561 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2562 break;
2563 }
2564
2565 if (i == BGE_TIMEOUT * 2) {
2566 aprint_error_dev(sc->bge_dev,
2567 "buffer manager failed to start\n");
2568 return ENXIO;
2569 }
2570
2571 /* 57XX step 40 */
2572 /* Enable flow-through queues */
2573 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2574 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2575
2576 /* Wait until queue initialization is complete */
2577 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2578 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2579 break;
2580 DELAY(10);
2581 }
2582
2583 if (i == BGE_TIMEOUT * 2) {
2584 aprint_error_dev(sc->bge_dev,
2585 "flow-through queue init failed\n");
2586 return ENXIO;
2587 }
2588
2589 /*
2590 * Summary of rings supported by the controller:
2591 *
2592 * Standard Receive Producer Ring
2593 * - This ring is used to feed receive buffers for "standard"
2594 * sized frames (typically 1536 bytes) to the controller.
2595 *
2596 * Jumbo Receive Producer Ring
2597 * - This ring is used to feed receive buffers for jumbo sized
2598 * frames (i.e. anything bigger than the "standard" frames)
2599 * to the controller.
2600 *
2601 * Mini Receive Producer Ring
2602 * - This ring is used to feed receive buffers for "mini"
2603 * sized frames to the controller.
2604 * - This feature required external memory for the controller
2605 * but was never used in a production system. Should always
2606 * be disabled.
2607 *
2608 * Receive Return Ring
2609 * - After the controller has placed an incoming frame into a
2610 * receive buffer that buffer is moved into a receive return
2611 * ring. The driver is then responsible to passing the
2612 * buffer up to the stack. Many versions of the controller
2613 * support multiple RR rings.
2614 *
2615 * Send Ring
2616 * - This ring is used for outgoing frames. Many versions of
2617 * the controller support multiple send rings.
2618 */
2619
2620 /* 5718 step 15, 57XX step 41 */
2621 /* Initialize the standard RX ring control block */
2622 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2623 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2624 /* 5718 step 16 */
2625 if (BGE_IS_5717_PLUS(sc)) {
2626 /*
2627 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2628 * Bits 15-2 : Maximum RX frame size
2629 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2630 * Bit 0 : Reserved
2631 */
2632 rcb->bge_maxlen_flags =
2633 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2634 } else if (BGE_IS_5705_PLUS(sc)) {
2635 /*
2636 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2637 * Bits 15-2 : Reserved (should be 0)
2638 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2639 * Bit 0 : Reserved
2640 */
2641 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2642 } else {
2643 /*
2644 * Ring size is always XXX entries
2645 * Bits 31-16: Maximum RX frame size
2646 * Bits 15-2 : Reserved (should be 0)
2647 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2648 * Bit 0 : Reserved
2649 */
2650 rcb->bge_maxlen_flags =
2651 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2652 }
2653 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2654 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2655 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2656 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2657 else
2658 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2659 /* Write the standard receive producer ring control block. */
2660 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2661 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2662 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2663 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2664
2665 /* Reset the standard receive producer ring producer index. */
2666 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2667
2668 /* 57XX step 42 */
2669 /*
2670 * Initialize the jumbo RX ring control block
2671 * We set the 'ring disabled' bit in the flags
2672 * field until we're actually ready to start
2673 * using this ring (i.e. once we set the MTU
2674 * high enough to require it).
2675 */
2676 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2677 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2678 BGE_HOSTADDR(rcb->bge_hostaddr,
2679 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2680 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2681 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2682 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2683 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2684 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2685 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2686 else
2687 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2688 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2689 rcb->bge_hostaddr.bge_addr_hi);
2690 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2691 rcb->bge_hostaddr.bge_addr_lo);
2692 /* Program the jumbo receive producer ring RCB parameters. */
2693 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2694 rcb->bge_maxlen_flags);
2695 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2696 /* Reset the jumbo receive producer ring producer index. */
2697 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2698 }
2699
2700 /* 57XX step 43 */
2701 /* Disable the mini receive producer ring RCB. */
2702 if (BGE_IS_5700_FAMILY(sc)) {
2703 /* Set up dummy disabled mini ring RCB */
2704 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2705 rcb->bge_maxlen_flags =
2706 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2707 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2708 rcb->bge_maxlen_flags);
2709 /* Reset the mini receive producer ring producer index. */
2710 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2711
2712 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2713 offsetof(struct bge_ring_data, bge_info),
2714 sizeof (struct bge_gib),
2715 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2716 }
2717
2718 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2719 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2720 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2721 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2722 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2723 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2724 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2725 }
2726 /* 5718 step 14, 57XX step 44 */
2727 /*
2728 * The BD ring replenish thresholds control how often the
2729 * hardware fetches new BD's from the producer rings in host
2730 * memory. Setting the value too low on a busy system can
2731 * starve the hardware and recue the throughpout.
2732 *
2733 * Set the BD ring replenish thresholds. The recommended
2734 * values are 1/8th the number of descriptors allocated to
2735 * each ring, but since we try to avoid filling the entire
2736 * ring we set these to the minimal value of 8. This needs to
2737 * be done on several of the supported chip revisions anyway,
2738 * to work around HW bugs.
2739 */
2740 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2741 if (BGE_IS_JUMBO_CAPABLE(sc))
2742 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2743
2744 /* 5718 step 18 */
2745 if (BGE_IS_5717_PLUS(sc)) {
2746 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2747 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2748 }
2749
2750 /* 57XX step 45 */
2751 /*
2752 * Disable all send rings by setting the 'ring disabled' bit
2753 * in the flags field of all the TX send ring control blocks,
2754 * located in NIC memory.
2755 */
2756 if (BGE_IS_5700_FAMILY(sc)) {
2757 /* 5700 to 5704 had 16 send rings. */
2758 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2759 } else
2760 limit = 1;
2761 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2762 for (i = 0; i < limit; i++) {
2763 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2764 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2765 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2766 rcb_addr += sizeof(struct bge_rcb);
2767 }
2768
2769 /* 57XX step 46 and 47 */
2770 /* Configure send ring RCB 0 (we use only the first ring) */
2771 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2772 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2773 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2774 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2775 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2776 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2777 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2778 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2779 else
2780 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2781 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2782 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2783 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2784
2785 /* 57XX step 48 */
2786 /*
2787 * Disable all receive return rings by setting the
2788 * 'ring diabled' bit in the flags field of all the receive
2789 * return ring control blocks, located in NIC memory.
2790 */
2791 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2792 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2793 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2794 /* Should be 17, use 16 until we get an SRAM map. */
2795 limit = 16;
2796 } else if (BGE_IS_5700_FAMILY(sc))
2797 limit = BGE_RX_RINGS_MAX;
2798 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2799 BGE_IS_57765_PLUS(sc))
2800 limit = 4;
2801 else
2802 limit = 1;
2803 /* Disable all receive return rings */
2804 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2805 for (i = 0; i < limit; i++) {
2806 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2807 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2808 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2809 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2810 BGE_RCB_FLAG_RING_DISABLED));
2811 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2812 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2813 (i * (sizeof(uint64_t))), 0);
2814 rcb_addr += sizeof(struct bge_rcb);
2815 }
2816
2817 /* 57XX step 49 */
2818 /*
2819 * Set up receive return ring 0. Note that the NIC address
2820 * for RX return rings is 0x0. The return rings live entirely
2821 * within the host, so the nicaddr field in the RCB isn't used.
2822 */
2823 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2824 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2825 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2826 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2827 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2828 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2829 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2830
2831 /* 5718 step 24, 57XX step 53 */
2832 /* Set random backoff seed for TX */
2833 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2834 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2835 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2836 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2837 BGE_TX_BACKOFF_SEED_MASK);
2838
2839 /* 5718 step 26, 57XX step 55 */
2840 /* Set inter-packet gap */
2841 val = 0x2620;
2842 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2843 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2844 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2845 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2846
2847 /* 5718 step 27, 57XX step 56 */
2848 /*
2849 * Specify which ring to use for packets that don't match
2850 * any RX rules.
2851 */
2852 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2853
2854 /* 5718 step 28, 57XX step 57 */
2855 /*
2856 * Configure number of RX lists. One interrupt distribution
2857 * list, sixteen active lists, one bad frames class.
2858 */
2859 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2860
2861 /* 5718 step 29, 57XX step 58 */
2862 /* Inialize RX list placement stats mask. */
2863 if (BGE_IS_575X_PLUS(sc)) {
2864 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2865 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2866 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2867 } else
2868 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2869
2870 /* 5718 step 30, 57XX step 59 */
2871 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2872
2873 /* 5718 step 33, 57XX step 62 */
2874 /* Disable host coalescing until we get it set up */
2875 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2876
2877 /* 5718 step 34, 57XX step 63 */
2878 /* Poll to make sure it's shut down. */
2879 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2880 DELAY(10);
2881 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2882 break;
2883 }
2884
2885 if (i == BGE_TIMEOUT * 2) {
2886 aprint_error_dev(sc->bge_dev,
2887 "host coalescing engine failed to idle\n");
2888 return ENXIO;
2889 }
2890
2891 /* 5718 step 35, 36, 37 */
2892 /* Set up host coalescing defaults */
2893 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2894 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2895 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2896 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2897 if (!(BGE_IS_5705_PLUS(sc))) {
2898 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2899 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2900 }
2901 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2902 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2903
2904 /* Set up address of statistics block */
2905 if (BGE_IS_5700_FAMILY(sc)) {
2906 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2907 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2908 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2909 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2910 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2911 }
2912
2913 /* 5718 step 38 */
2914 /* Set up address of status block */
2915 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2916 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2917 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2918 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2919 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2920 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2921
2922 /* Set up status block size. */
2923 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2924 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2925 val = BGE_STATBLKSZ_FULL;
2926 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2927 } else {
2928 val = BGE_STATBLKSZ_32BYTE;
2929 bzero(&sc->bge_rdata->bge_status_block, 32);
2930 }
2931
2932 /* 5718 step 39, 57XX step 73 */
2933 /* Turn on host coalescing state machine */
2934 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2935
2936 /* 5718 step 40, 57XX step 74 */
2937 /* Turn on RX BD completion state machine and enable attentions */
2938 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2939 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2940
2941 /* 5718 step 41, 57XX step 75 */
2942 /* Turn on RX list placement state machine */
2943 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2944
2945 /* 57XX step 76 */
2946 /* Turn on RX list selector state machine. */
2947 if (!(BGE_IS_5705_PLUS(sc)))
2948 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2949
2950 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2951 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2952 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2953 BGE_MACMODE_FRMHDR_DMA_ENB;
2954
2955 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2956 val |= BGE_PORTMODE_TBI;
2957 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2958 val |= BGE_PORTMODE_GMII;
2959 else
2960 val |= BGE_PORTMODE_MII;
2961
2962 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2963 /* Allow APE to send/receive frames. */
2964 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2965 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2966
2967 /* Turn on DMA, clear stats */
2968 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2969 /* 5718 step 44 */
2970 DELAY(40);
2971
2972 /* 5718 step 45, 57XX step 79 */
2973 /* Set misc. local control, enable interrupts on attentions */
2974 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2975 if (BGE_IS_5717_PLUS(sc)) {
2976 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2977 /* 5718 step 46 */
2978 DELAY(100);
2979 }
2980
2981 /* 57XX step 81 */
2982 /* Turn on DMA completion state machine */
2983 if (!(BGE_IS_5705_PLUS(sc)))
2984 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2985
2986 /* 5718 step 47, 57XX step 82 */
2987 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2988
2989 /* 5718 step 48 */
2990 /* Enable host coalescing bug fix. */
2991 if (BGE_IS_5755_PLUS(sc))
2992 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2993
2994 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2995 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2996
2997 /* Turn on write DMA state machine */
2998 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2999 /* 5718 step 49 */
3000 DELAY(40);
3001
3002 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3003
3004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3005 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3006
3007 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3008 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3009 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3010 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3011 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3012 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3013
3014 if (sc->bge_flags & BGE_PCIE)
3015 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3016 if (sc->bge_flags & BGE_TSO)
3017 val |= BGE_RDMAMODE_TSO4_ENABLE;
3018
3019 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3020 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3021 BGE_RDMAMODE_H2BNC_VLAN_DET;
3022 /*
3023 * Allow multiple outstanding read requests from
3024 * non-LSO read DMA engine.
3025 */
3026 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3027 }
3028
3029 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3030 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3031 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3032 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3033 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
3034 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3035 /*
3036 * Adjust tx margin to prevent TX data corruption and
3037 * fix internal FIFO overflow.
3038 */
3039 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3040 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3041 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3042 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3043 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3044 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3045 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3046 }
3047 /*
3048 * Enable fix for read DMA FIFO overruns.
3049 * The fix is to limit the number of RX BDs
3050 * the hardware would fetch at a fime.
3051 */
3052 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3053 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3054 }
3055
3056 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3057 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3058 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3059 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3060 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3061 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3062 /*
3063 * Allow 4KB burst length reads for non-LSO frames.
3064 * Enable 512B burst length reads for buffer descriptors.
3065 */
3066 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3067 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3068 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3069 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3070 }
3071
3072 /* Turn on read DMA state machine */
3073 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3074 /* 5718 step 52 */
3075 delay(40);
3076
3077 /* 5718 step 56, 57XX step 84 */
3078 /* Turn on RX data completion state machine */
3079 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3080
3081 /* Turn on RX data and RX BD initiator state machine */
3082 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3083
3084 /* 57XX step 85 */
3085 /* Turn on Mbuf cluster free state machine */
3086 if (!BGE_IS_5705_PLUS(sc))
3087 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3088
3089 /* 5718 step 57, 57XX step 86 */
3090 /* Turn on send data completion state machine */
3091 val = BGE_SDCMODE_ENABLE;
3092 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3093 val |= BGE_SDCMODE_CDELAY;
3094 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3095
3096 /* 5718 step 58 */
3097 /* Turn on send BD completion state machine */
3098 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3099
3100 /* 57XX step 88 */
3101 /* Turn on RX BD initiator state machine */
3102 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3103
3104 /* 5718 step 60, 57XX step 90 */
3105 /* Turn on send data initiator state machine */
3106 if (sc->bge_flags & BGE_TSO) {
3107 /* XXX: magic value from Linux driver */
3108 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3109 BGE_SDIMODE_HW_LSO_PRE_DMA);
3110 } else
3111 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3112
3113 /* 5718 step 61, 57XX step 91 */
3114 /* Turn on send BD initiator state machine */
3115 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3116
3117 /* 5718 step 62, 57XX step 92 */
3118 /* Turn on send BD selector state machine */
3119 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3120
3121 /* 5718 step 31, 57XX step 60 */
3122 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3123 /* 5718 step 32, 57XX step 61 */
3124 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3125 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3126
3127 /* ack/clear link change events */
3128 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3129 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3130 BGE_MACSTAT_LINK_CHANGED);
3131 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3132
3133 /*
3134 * Enable attention when the link has changed state for
3135 * devices that use auto polling.
3136 */
3137 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3138 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3139 } else {
3140 /* 5718 step 68 */
3141 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3142 /* 5718 step 69 (optionally) */
3143 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3144 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3145 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3146 BGE_EVTENB_MI_INTERRUPT);
3147 }
3148
3149 /*
3150 * Clear any pending link state attention.
3151 * Otherwise some link state change events may be lost until attention
3152 * is cleared by bge_intr() -> bge_link_upd() sequence.
3153 * It's not necessary on newer BCM chips - perhaps enabling link
3154 * state change attentions implies clearing pending attention.
3155 */
3156 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3157 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3158 BGE_MACSTAT_LINK_CHANGED);
3159
3160 /* Enable link state change attentions. */
3161 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3162
3163 return 0;
3164 }
3165
3166 static const struct bge_revision *
3167 bge_lookup_rev(uint32_t chipid)
3168 {
3169 const struct bge_revision *br;
3170
3171 for (br = bge_revisions; br->br_name != NULL; br++) {
3172 if (br->br_chipid == chipid)
3173 return br;
3174 }
3175
3176 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3177 if (br->br_chipid == BGE_ASICREV(chipid))
3178 return br;
3179 }
3180
3181 return NULL;
3182 }
3183
3184 static const struct bge_product *
3185 bge_lookup(const struct pci_attach_args *pa)
3186 {
3187 const struct bge_product *bp;
3188
3189 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3190 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3191 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3192 return bp;
3193 }
3194
3195 return NULL;
3196 }
3197
3198 static uint32_t
3199 bge_chipid(const struct pci_attach_args *pa)
3200 {
3201 uint32_t id;
3202
3203 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3204 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3205
3206 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3207 switch (PCI_PRODUCT(pa->pa_id)) {
3208 case PCI_PRODUCT_BROADCOM_BCM5717:
3209 case PCI_PRODUCT_BROADCOM_BCM5718:
3210 case PCI_PRODUCT_BROADCOM_BCM5719:
3211 case PCI_PRODUCT_BROADCOM_BCM5720:
3212 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3213 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3214 BGE_PCI_GEN2_PRODID_ASICREV);
3215 break;
3216 case PCI_PRODUCT_BROADCOM_BCM57761:
3217 case PCI_PRODUCT_BROADCOM_BCM57762:
3218 case PCI_PRODUCT_BROADCOM_BCM57765:
3219 case PCI_PRODUCT_BROADCOM_BCM57766:
3220 case PCI_PRODUCT_BROADCOM_BCM57781:
3221 case PCI_PRODUCT_BROADCOM_BCM57785:
3222 case PCI_PRODUCT_BROADCOM_BCM57791:
3223 case PCI_PRODUCT_BROADCOM_BCM57795:
3224 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3225 BGE_PCI_GEN15_PRODID_ASICREV);
3226 break;
3227 default:
3228 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3229 BGE_PCI_PRODID_ASICREV);
3230 break;
3231 }
3232 }
3233
3234 return id;
3235 }
3236
3237 /*
3238 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3239 * against our list and return its name if we find a match. Note
3240 * that since the Broadcom controller contains VPD support, we
3241 * can get the device name string from the controller itself instead
3242 * of the compiled-in string. This is a little slow, but it guarantees
3243 * we'll always announce the right product name.
3244 */
3245 static int
3246 bge_probe(device_t parent, cfdata_t match, void *aux)
3247 {
3248 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3249
3250 if (bge_lookup(pa) != NULL)
3251 return 1;
3252
3253 return 0;
3254 }
3255
3256 static void
3257 bge_attach(device_t parent, device_t self, void *aux)
3258 {
3259 struct bge_softc *sc = device_private(self);
3260 struct pci_attach_args *pa = aux;
3261 prop_dictionary_t dict;
3262 const struct bge_product *bp;
3263 const struct bge_revision *br;
3264 pci_chipset_tag_t pc;
3265 pci_intr_handle_t ih;
3266 const char *intrstr = NULL;
3267 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4;
3268 uint32_t command;
3269 struct ifnet *ifp;
3270 uint32_t misccfg;
3271 void * kva;
3272 u_char eaddr[ETHER_ADDR_LEN];
3273 pcireg_t memtype, subid, reg;
3274 bus_addr_t memaddr;
3275 uint32_t pm_ctl;
3276 bool no_seeprom;
3277 int capmask;
3278
3279 bp = bge_lookup(pa);
3280 KASSERT(bp != NULL);
3281
3282 sc->sc_pc = pa->pa_pc;
3283 sc->sc_pcitag = pa->pa_tag;
3284 sc->bge_dev = self;
3285
3286 sc->bge_pa = *pa;
3287 pc = sc->sc_pc;
3288 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3289
3290 aprint_naive(": Ethernet controller\n");
3291 aprint_normal(": %s\n", bp->bp_name);
3292
3293 /*
3294 * Map control/status registers.
3295 */
3296 DPRINTFN(5, ("Map control/status regs\n"));
3297 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3298 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3299 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3300 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3301
3302 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3303 aprint_error_dev(sc->bge_dev,
3304 "failed to enable memory mapping!\n");
3305 return;
3306 }
3307
3308 DPRINTFN(5, ("pci_mem_find\n"));
3309 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3310 switch (memtype) {
3311 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3312 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3313 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3314 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3315 &memaddr, &sc->bge_bsize) == 0)
3316 break;
3317 default:
3318 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3319 return;
3320 }
3321
3322 DPRINTFN(5, ("pci_intr_map\n"));
3323 if (pci_intr_map(pa, &ih)) {
3324 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3325 return;
3326 }
3327
3328 DPRINTFN(5, ("pci_intr_string\n"));
3329 intrstr = pci_intr_string(pc, ih);
3330
3331 DPRINTFN(5, ("pci_intr_establish\n"));
3332 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3333
3334 if (sc->bge_intrhand == NULL) {
3335 aprint_error_dev(sc->bge_dev,
3336 "couldn't establish interrupt%s%s\n",
3337 intrstr ? " at " : "", intrstr ? intrstr : "");
3338 return;
3339 }
3340 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3341
3342 /* Save various chip information. */
3343 sc->bge_chipid = bge_chipid(pa);
3344 sc->bge_phy_addr = bge_phy_addr(sc);
3345
3346 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3347 &sc->bge_pciecap, NULL) != 0)
3348 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3349 /* PCIe */
3350 sc->bge_flags |= BGE_PCIE;
3351 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3352 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3353 sc->bge_expmrq = 2048;
3354 else
3355 sc->bge_expmrq = 4096;
3356 bge_set_max_readrq(sc);
3357 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3358 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3359 /* PCI-X */
3360 sc->bge_flags |= BGE_PCIX;
3361 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3362 &sc->bge_pcixcap, NULL) == 0)
3363 aprint_error_dev(sc->bge_dev,
3364 "unable to find PCIX capability\n");
3365 }
3366
3367 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3368 /*
3369 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3370 * can clobber the chip's PCI config-space power control
3371 * registers, leaving the card in D3 powersave state. We do
3372 * not have memory-mapped registers in this state, so force
3373 * device into D0 state before starting initialization.
3374 */
3375 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3376 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3377 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3378 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3379 DELAY(1000); /* 27 usec is allegedly sufficent */
3380 }
3381
3382 /* Save chipset family. */
3383 switch (BGE_ASICREV(sc->bge_chipid)) {
3384 case BGE_ASICREV_BCM57765:
3385 case BGE_ASICREV_BCM57766:
3386 sc->bge_flags |= BGE_57765_PLUS;
3387 /* FALLTHROUGH */
3388 case BGE_ASICREV_BCM5717:
3389 case BGE_ASICREV_BCM5719:
3390 case BGE_ASICREV_BCM5720:
3391 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3392 BGE_5705_PLUS;
3393 break;
3394 case BGE_ASICREV_BCM5755:
3395 case BGE_ASICREV_BCM5761:
3396 case BGE_ASICREV_BCM5784:
3397 case BGE_ASICREV_BCM5785:
3398 case BGE_ASICREV_BCM5787:
3399 case BGE_ASICREV_BCM57780:
3400 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3401 break;
3402 case BGE_ASICREV_BCM5700:
3403 case BGE_ASICREV_BCM5701:
3404 case BGE_ASICREV_BCM5703:
3405 case BGE_ASICREV_BCM5704:
3406 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3407 break;
3408 case BGE_ASICREV_BCM5714_A0:
3409 case BGE_ASICREV_BCM5780:
3410 case BGE_ASICREV_BCM5714:
3411 sc->bge_flags |= BGE_5714_FAMILY;
3412 /* FALLTHROUGH */
3413 case BGE_ASICREV_BCM5750:
3414 case BGE_ASICREV_BCM5752:
3415 case BGE_ASICREV_BCM5906:
3416 sc->bge_flags |= BGE_575X_PLUS;
3417 /* FALLTHROUGH */
3418 case BGE_ASICREV_BCM5705:
3419 sc->bge_flags |= BGE_5705_PLUS;
3420 break;
3421 }
3422
3423 /* Identify chips with APE processor. */
3424 switch (BGE_ASICREV(sc->bge_chipid)) {
3425 case BGE_ASICREV_BCM5717:
3426 case BGE_ASICREV_BCM5719:
3427 case BGE_ASICREV_BCM5720:
3428 case BGE_ASICREV_BCM5761:
3429 sc->bge_flags |= BGE_APE;
3430 break;
3431 }
3432
3433 /* Chips with APE need BAR2 access for APE registers/memory. */
3434 if ((sc->bge_flags & BGE_APE) != 0) {
3435 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3436 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3437 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3438 &sc->bge_apesize)) {
3439 aprint_error_dev(sc->bge_dev,
3440 "couldn't map BAR2 memory\n");
3441 return;
3442 }
3443
3444 /* Enable APE register/memory access by host driver. */
3445 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3446 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3447 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3448 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3449 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3450
3451 bge_ape_lock_init(sc);
3452 bge_ape_read_fw_ver(sc);
3453 }
3454
3455 /* Identify the chips that use an CPMU. */
3456 if (BGE_IS_5717_PLUS(sc) ||
3457 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3458 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3459 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3460 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3461 sc->bge_flags |= BGE_CPMU_PRESENT;
3462
3463 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3464 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3465 else
3466 CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3467
3468 /*
3469 * When using the BCM5701 in PCI-X mode, data corruption has
3470 * been observed in the first few bytes of some received packets.
3471 * Aligning the packet buffer in memory eliminates the corruption.
3472 * Unfortunately, this misaligns the packet payloads. On platforms
3473 * which do not support unaligned accesses, we will realign the
3474 * payloads by copying the received packets.
3475 */
3476 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3477 sc->bge_flags & BGE_PCIX)
3478 sc->bge_flags |= BGE_RX_ALIGNBUG;
3479
3480 if (BGE_IS_5700_FAMILY(sc))
3481 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3482
3483 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3484 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3485
3486 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3487 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3488 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3489 sc->bge_flags |= BGE_IS_5788;
3490
3491 /*
3492 * Some controllers seem to require a special firmware to use
3493 * TSO. But the firmware is not available to FreeBSD and Linux
3494 * claims that the TSO performed by the firmware is slower than
3495 * hardware based TSO. Moreover the firmware based TSO has one
3496 * known bug which can't handle TSO if ethernet header + IP/TCP
3497 * header is greater than 80 bytes. The workaround for the TSO
3498 * bug exist but it seems it's too expensive than not using
3499 * TSO at all. Some hardwares also have the TSO bug so limit
3500 * the TSO to the controllers that are not affected TSO issues
3501 * (e.g. 5755 or higher).
3502 */
3503 if (BGE_IS_5755_PLUS(sc)) {
3504 /*
3505 * BCM5754 and BCM5787 shares the same ASIC id so
3506 * explicit device id check is required.
3507 */
3508 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3509 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3510 sc->bge_flags |= BGE_TSO;
3511 }
3512
3513 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3514 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3515 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3516 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3517 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3518 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3519 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3520 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3521 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3522 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3523 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3524 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3525 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3526 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3527 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3528 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3529 capmask &= ~BMSR_EXTSTAT;
3530 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3531 }
3532
3533 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3534 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3535 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3536 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3537 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3538
3539 /* Set various PHY bug flags. */
3540 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3541 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3542 sc->bge_flags |= BGE_PHY_CRC_BUG;
3543 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3544 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3545 sc->bge_flags |= BGE_PHY_ADC_BUG;
3546 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3547 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3548 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3549 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3550 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3551 sc->bge_flags |= BGE_PHY_NO_3LED;
3552 if (BGE_IS_5705_PLUS(sc) &&
3553 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3554 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3555 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3556 !BGE_IS_5717_PLUS(sc)) {
3557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3558 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3559 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3560 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3561 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3562 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3563 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3564 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3565 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3566 } else
3567 sc->bge_flags |= BGE_PHY_BER_BUG;
3568 }
3569
3570 /*
3571 * SEEPROM check.
3572 * First check if firmware knows we do not have SEEPROM.
3573 */
3574 if (prop_dictionary_get_bool(device_properties(self),
3575 "without-seeprom", &no_seeprom) && no_seeprom)
3576 sc->bge_flags |= BGE_NO_EEPROM;
3577
3578 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3579 sc->bge_flags |= BGE_NO_EEPROM;
3580
3581 /* Now check the 'ROM failed' bit on the RX CPU */
3582 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3583 sc->bge_flags |= BGE_NO_EEPROM;
3584
3585 sc->bge_asf_mode = 0;
3586 /* No ASF if APE present. */
3587 if ((sc->bge_flags & BGE_APE) == 0) {
3588 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3589 BGE_SRAM_DATA_SIG_MAGIC)) {
3590 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3591 BGE_HWCFG_ASF) {
3592 sc->bge_asf_mode |= ASF_ENABLE;
3593 sc->bge_asf_mode |= ASF_STACKUP;
3594 if (BGE_IS_575X_PLUS(sc))
3595 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3596 }
3597 }
3598 }
3599
3600 /*
3601 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3602 * lock in bge_reset().
3603 */
3604 CSR_WRITE_4(sc, BGE_EE_ADDR,
3605 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3606 delay(1000);
3607 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3608
3609 bge_stop_fw(sc);
3610 bge_sig_pre_reset(sc, BGE_RESET_START);
3611 if (bge_reset(sc))
3612 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3613
3614 /*
3615 * Read the hardware config word in the first 32k of NIC internal
3616 * memory, or fall back to the config word in the EEPROM.
3617 * Note: on some BCM5700 cards, this value appears to be unset.
3618 */
3619 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3620 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3621 BGE_SRAM_DATA_SIG_MAGIC) {
3622 uint32_t tmp;
3623
3624 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3625 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3626 BGE_SRAM_DATA_VER_SHIFT;
3627 if ((0 < tmp) && (tmp < 0x100))
3628 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3629 if (sc->bge_flags & BGE_PCIE)
3630 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3631 if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3632 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3633 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3634 bge_read_eeprom(sc, (void *)&hwcfg,
3635 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3636 hwcfg = be32toh(hwcfg);
3637 }
3638 aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3639 hwcfg, hwcfg2, hwcfg3, hwcfg4);
3640
3641 bge_sig_legacy(sc, BGE_RESET_START);
3642 bge_sig_post_reset(sc, BGE_RESET_START);
3643
3644 if (bge_chipinit(sc)) {
3645 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3646 bge_release_resources(sc);
3647 return;
3648 }
3649
3650 /*
3651 * Get station address from the EEPROM.
3652 */
3653 if (bge_get_eaddr(sc, eaddr)) {
3654 aprint_error_dev(sc->bge_dev,
3655 "failed to read station address\n");
3656 bge_release_resources(sc);
3657 return;
3658 }
3659
3660 br = bge_lookup_rev(sc->bge_chipid);
3661
3662 if (br == NULL) {
3663 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3664 sc->bge_chipid);
3665 } else {
3666 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3667 br->br_name, sc->bge_chipid);
3668 }
3669 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3670
3671 /* Allocate the general information block and ring buffers. */
3672 if (pci_dma64_available(pa))
3673 sc->bge_dmatag = pa->pa_dmat64;
3674 else
3675 sc->bge_dmatag = pa->pa_dmat;
3676 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3677 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3678 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3679 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3680 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3681 return;
3682 }
3683 DPRINTFN(5, ("bus_dmamem_map\n"));
3684 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3685 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3686 BUS_DMA_NOWAIT)) {
3687 aprint_error_dev(sc->bge_dev,
3688 "can't map DMA buffers (%zu bytes)\n",
3689 sizeof(struct bge_ring_data));
3690 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3691 sc->bge_ring_rseg);
3692 return;
3693 }
3694 DPRINTFN(5, ("bus_dmamem_create\n"));
3695 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3696 sizeof(struct bge_ring_data), 0,
3697 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3698 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3699 bus_dmamem_unmap(sc->bge_dmatag, kva,
3700 sizeof(struct bge_ring_data));
3701 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3702 sc->bge_ring_rseg);
3703 return;
3704 }
3705 DPRINTFN(5, ("bus_dmamem_load\n"));
3706 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3707 sizeof(struct bge_ring_data), NULL,
3708 BUS_DMA_NOWAIT)) {
3709 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3710 bus_dmamem_unmap(sc->bge_dmatag, kva,
3711 sizeof(struct bge_ring_data));
3712 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3713 sc->bge_ring_rseg);
3714 return;
3715 }
3716
3717 DPRINTFN(5, ("bzero\n"));
3718 sc->bge_rdata = (struct bge_ring_data *)kva;
3719
3720 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3721
3722 /* Try to allocate memory for jumbo buffers. */
3723 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3724 if (bge_alloc_jumbo_mem(sc)) {
3725 aprint_error_dev(sc->bge_dev,
3726 "jumbo buffer allocation failed\n");
3727 } else
3728 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3729 }
3730
3731 /* Set default tuneable values. */
3732 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3733 sc->bge_rx_coal_ticks = 150;
3734 sc->bge_rx_max_coal_bds = 64;
3735 sc->bge_tx_coal_ticks = 300;
3736 sc->bge_tx_max_coal_bds = 400;
3737 if (BGE_IS_5705_PLUS(sc)) {
3738 sc->bge_tx_coal_ticks = (12 * 5);
3739 sc->bge_tx_max_coal_bds = (12 * 5);
3740 aprint_verbose_dev(sc->bge_dev,
3741 "setting short Tx thresholds\n");
3742 }
3743
3744 if (BGE_IS_5717_PLUS(sc))
3745 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3746 else if (BGE_IS_5705_PLUS(sc))
3747 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3748 else
3749 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3750
3751 /* Set up ifnet structure */
3752 ifp = &sc->ethercom.ec_if;
3753 ifp->if_softc = sc;
3754 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3755 ifp->if_ioctl = bge_ioctl;
3756 ifp->if_stop = bge_stop;
3757 ifp->if_start = bge_start;
3758 ifp->if_init = bge_init;
3759 ifp->if_watchdog = bge_watchdog;
3760 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3761 IFQ_SET_READY(&ifp->if_snd);
3762 DPRINTFN(5, ("strcpy if_xname\n"));
3763 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3764
3765 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3766 sc->ethercom.ec_if.if_capabilities |=
3767 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3768 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3769 sc->ethercom.ec_if.if_capabilities |=
3770 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3771 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3772 #endif
3773 sc->ethercom.ec_capabilities |=
3774 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3775
3776 if (sc->bge_flags & BGE_TSO)
3777 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3778
3779 /*
3780 * Do MII setup.
3781 */
3782 DPRINTFN(5, ("mii setup\n"));
3783 sc->bge_mii.mii_ifp = ifp;
3784 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3785 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3786 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3787
3788 /*
3789 * Figure out what sort of media we have by checking the hardware
3790 * config word. Note: on some BCM5700 cards, this value appears to be
3791 * unset. If that's the case, we have to rely on identifying the NIC
3792 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3793 * The SysKonnect SK-9D41 is a 1000baseSX card.
3794 */
3795 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3796 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3797 if (BGE_IS_5714_FAMILY(sc))
3798 sc->bge_flags |= BGE_PHY_FIBER_MII;
3799 else
3800 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3801 }
3802
3803 /* set phyflags and chipid before mii_attach() */
3804 dict = device_properties(self);
3805 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3806 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3807
3808 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3809 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3810 bge_ifmedia_sts);
3811 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3812 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3813 0, NULL);
3814 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3815 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3816 /* Pretend the user requested this setting */
3817 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3818 } else {
3819 /*
3820 * Do transceiver setup and tell the firmware the
3821 * driver is down so we can try to get access the
3822 * probe if ASF is running. Retry a couple of times
3823 * if we get a conflict with the ASF firmware accessing
3824 * the PHY.
3825 */
3826 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3827 bge_asf_driver_up(sc);
3828
3829 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3830 bge_ifmedia_sts);
3831 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3832 sc->bge_phy_addr, MII_OFFSET_ANY,
3833 MIIF_DOPAUSE);
3834
3835 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3836 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3837 ifmedia_add(&sc->bge_mii.mii_media,
3838 IFM_ETHER|IFM_MANUAL, 0, NULL);
3839 ifmedia_set(&sc->bge_mii.mii_media,
3840 IFM_ETHER|IFM_MANUAL);
3841 } else
3842 ifmedia_set(&sc->bge_mii.mii_media,
3843 IFM_ETHER|IFM_AUTO);
3844
3845 /*
3846 * Now tell the firmware we are going up after probing the PHY
3847 */
3848 if (sc->bge_asf_mode & ASF_STACKUP)
3849 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3850 }
3851
3852 /*
3853 * Call MI attach routine.
3854 */
3855 DPRINTFN(5, ("if_attach\n"));
3856 if_attach(ifp);
3857 DPRINTFN(5, ("ether_ifattach\n"));
3858 ether_ifattach(ifp, eaddr);
3859 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3860 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3861 RND_TYPE_NET, 0);
3862 #ifdef BGE_EVENT_COUNTERS
3863 /*
3864 * Attach event counters.
3865 */
3866 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3867 NULL, device_xname(sc->bge_dev), "intr");
3868 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3869 NULL, device_xname(sc->bge_dev), "tx_xoff");
3870 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3871 NULL, device_xname(sc->bge_dev), "tx_xon");
3872 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3873 NULL, device_xname(sc->bge_dev), "rx_xoff");
3874 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3875 NULL, device_xname(sc->bge_dev), "rx_xon");
3876 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3877 NULL, device_xname(sc->bge_dev), "rx_macctl");
3878 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3879 NULL, device_xname(sc->bge_dev), "xoffentered");
3880 #endif /* BGE_EVENT_COUNTERS */
3881 DPRINTFN(5, ("callout_init\n"));
3882 callout_init(&sc->bge_timeout, 0);
3883
3884 if (pmf_device_register(self, NULL, NULL))
3885 pmf_class_network_register(self, ifp);
3886 else
3887 aprint_error_dev(self, "couldn't establish power handler\n");
3888
3889 bge_sysctl_init(sc);
3890
3891 #ifdef BGE_DEBUG
3892 bge_debug_info(sc);
3893 #endif
3894 }
3895
3896 /*
3897 * Stop all chip I/O so that the kernel's probe routines don't
3898 * get confused by errant DMAs when rebooting.
3899 */
3900 static int
3901 bge_detach(device_t self, int flags __unused)
3902 {
3903 struct bge_softc *sc = device_private(self);
3904 struct ifnet *ifp = &sc->ethercom.ec_if;
3905 int s;
3906
3907 s = splnet();
3908 /* Stop the interface. Callouts are stopped in it. */
3909 bge_stop(ifp, 1);
3910 splx(s);
3911
3912 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3913
3914 /* Delete all remaining media. */
3915 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3916
3917 ether_ifdetach(ifp);
3918 if_detach(ifp);
3919
3920 bge_release_resources(sc);
3921
3922 return 0;
3923 }
3924
3925 static void
3926 bge_release_resources(struct bge_softc *sc)
3927 {
3928
3929 /* Disestablish the interrupt handler */
3930 if (sc->bge_intrhand != NULL) {
3931 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3932 sc->bge_intrhand = NULL;
3933 }
3934
3935 if (sc->bge_dmatag != NULL) {
3936 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3937 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3938 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3939 sizeof(struct bge_ring_data));
3940 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3941 }
3942
3943 /* Unmap the device registers */
3944 if (sc->bge_bsize != 0) {
3945 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3946 sc->bge_bsize = 0;
3947 }
3948
3949 /* Unmap the APE registers */
3950 if (sc->bge_apesize != 0) {
3951 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3952 sc->bge_apesize);
3953 sc->bge_apesize = 0;
3954 }
3955 }
3956
3957 static int
3958 bge_reset(struct bge_softc *sc)
3959 {
3960 uint32_t cachesize, command;
3961 uint32_t reset, mac_mode, mac_mode_mask;
3962 pcireg_t devctl, reg;
3963 int i, val;
3964 void (*write_op)(struct bge_softc *, int, int);
3965
3966 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3967 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3968 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3969 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3970
3971 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3972 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3973 if (sc->bge_flags & BGE_PCIE)
3974 write_op = bge_writemem_direct;
3975 else
3976 write_op = bge_writemem_ind;
3977 } else
3978 write_op = bge_writereg_ind;
3979
3980 /* 57XX step 4 */
3981 /* Acquire the NVM lock */
3982 if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
3983 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3984 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3985 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3986 for (i = 0; i < 8000; i++) {
3987 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3988 BGE_NVRAMSWARB_GNT1)
3989 break;
3990 DELAY(20);
3991 }
3992 if (i == 8000) {
3993 printf("%s: NVRAM lock timedout!\n",
3994 device_xname(sc->bge_dev));
3995 }
3996 }
3997
3998 /* Take APE lock when performing reset. */
3999 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4000
4001 /* 57XX step 3 */
4002 /* Save some important PCI state. */
4003 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4004 /* 5718 reset step 3 */
4005 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4006
4007 /* 5718 reset step 5, 57XX step 5b-5d */
4008 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4009 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4010 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4011
4012 /* XXX ???: Disable fastboot on controllers that support it. */
4013 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4014 BGE_IS_5755_PLUS(sc))
4015 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4016
4017 /* 5718 reset step 2, 57XX step 6 */
4018 /*
4019 * Write the magic number to SRAM at offset 0xB50.
4020 * When firmware finishes its initialization it will
4021 * write ~BGE_MAGIC_NUMBER to the same location.
4022 */
4023 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4024
4025 /* 5718 reset step 6, 57XX step 7 */
4026 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4027 /*
4028 * XXX: from FreeBSD/Linux; no documentation
4029 */
4030 if (sc->bge_flags & BGE_PCIE) {
4031 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4032 !BGE_IS_57765_PLUS(sc) &&
4033 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4034 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4035 /* PCI Express 1.0 system */
4036 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4037 BGE_PHY_PCIE_SCRAM_MODE);
4038 }
4039 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4040 /*
4041 * Prevent PCI Express link training
4042 * during global reset.
4043 */
4044 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4045 reset |= (1 << 29);
4046 }
4047 }
4048
4049 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4050 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4051 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4052 i | BGE_VCPU_STATUS_DRV_RESET);
4053 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4054 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4055 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4056 }
4057
4058 /*
4059 * Set GPHY Power Down Override to leave GPHY
4060 * powered up in D0 uninitialized.
4061 */
4062 if (BGE_IS_5705_PLUS(sc) &&
4063 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4064 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4065
4066 /* Issue global reset */
4067 write_op(sc, BGE_MISC_CFG, reset);
4068
4069 /* 5718 reset step 7, 57XX step 8 */
4070 if (sc->bge_flags & BGE_PCIE)
4071 delay(100*1000); /* too big */
4072 else
4073 delay(1000);
4074
4075 if (sc->bge_flags & BGE_PCIE) {
4076 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4077 DELAY(500000);
4078 /* XXX: Magic Numbers */
4079 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4080 BGE_PCI_UNKNOWN0);
4081 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4082 BGE_PCI_UNKNOWN0,
4083 reg | (1 << 15));
4084 }
4085 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4086 sc->bge_pciecap + PCIE_DCSR);
4087 /* Clear enable no snoop and disable relaxed ordering. */
4088 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4089 PCIE_DCSR_ENA_NO_SNOOP);
4090
4091 /* Set PCIE max payload size to 128 for older PCIe devices */
4092 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4093 devctl &= ~(0x00e0);
4094 /* Clear device status register. Write 1b to clear */
4095 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4096 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4097 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4098 sc->bge_pciecap + PCIE_DCSR, devctl);
4099 bge_set_max_readrq(sc);
4100 }
4101
4102 /* From Linux: dummy read to flush PCI posted writes */
4103 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4104
4105 /*
4106 * Reset some of the PCI state that got zapped by reset
4107 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4108 * set, too.
4109 */
4110 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4111 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4112 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4113 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4114 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4115 (sc->bge_flags & BGE_PCIX) != 0)
4116 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4117 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4118 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4119 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4120 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4121 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4122 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4123 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4124
4125 /* Step 11: disable PCI-X Relaxed Ordering. */
4126 if (sc->bge_flags & BGE_PCIX) {
4127 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4128 + PCIX_CMD);
4129 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4130 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4131 }
4132
4133 /* 5718 reset step 10, 57XX step 12 */
4134 /* Enable memory arbiter. */
4135 if (BGE_IS_5714_FAMILY(sc)) {
4136 val = CSR_READ_4(sc, BGE_MARB_MODE);
4137 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4138 } else
4139 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4140
4141 /* XXX 5721, 5751 and 5752 */
4142 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4143 /* Step 19: */
4144 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4145 /* Step 20: */
4146 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4147 }
4148
4149 /* 5718 reset step 12, 57XX step 15 and 16 */
4150 /* Fix up byte swapping */
4151 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4152
4153 /* 5718 reset step 13, 57XX step 17 */
4154 /*
4155 * Wait for the bootcode to complete initialization.
4156 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4157 * Section 7". For 57XX, it's optional.
4158 */
4159 if (BGE_IS_5717_PLUS(sc)) {
4160 for (i = 0; i < 1000*1000; i++) {
4161 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4162 if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4163 break;
4164 DELAY(10);
4165 }
4166 }
4167
4168 /* 57XX step 21 */
4169 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4170 pcireg_t msidata;
4171
4172 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4173 BGE_PCI_MSI_DATA);
4174 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4175 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4176 msidata);
4177 }
4178
4179 /* 57XX step 18 */
4180 /* Write mac mode.
4181 * XXX Write 0x0c for 5703S and 5704S
4182 */
4183 val = CSR_READ_4(sc, BGE_MAC_MODE);
4184 val = (val & ~mac_mode_mask) | mac_mode;
4185 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4186 DELAY(40);
4187
4188 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4189
4190 /* 57XX step 17 */
4191 /* Poll until the firmware initialization is complete */
4192 bge_poll_fw(sc);
4193
4194 /*
4195 * The 5704 in TBI mode apparently needs some special
4196 * adjustment to insure the SERDES drive level is set
4197 * to 1.2V.
4198 */
4199 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4200 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4201 uint32_t serdescfg;
4202
4203 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4204 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4205 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4206 }
4207
4208 if (sc->bge_flags & BGE_PCIE &&
4209 !BGE_IS_57765_PLUS(sc) &&
4210 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4211 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4212 uint32_t v;
4213
4214 /* Enable PCI Express bug fix */
4215 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4216 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4217 v | BGE_TLP_DATA_FIFO_PROTECT);
4218 }
4219
4220 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4221 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4222 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4223
4224 return 0;
4225 }
4226
4227 /*
4228 * Frame reception handling. This is called if there's a frame
4229 * on the receive return list.
4230 *
4231 * Note: we have to be able to handle two possibilities here:
4232 * 1) the frame is from the jumbo receive ring
4233 * 2) the frame is from the standard receive ring
4234 */
4235
4236 static void
4237 bge_rxeof(struct bge_softc *sc)
4238 {
4239 struct ifnet *ifp;
4240 uint16_t rx_prod, rx_cons;
4241 int stdcnt = 0, jumbocnt = 0;
4242 bus_dmamap_t dmamap;
4243 bus_addr_t offset, toff;
4244 bus_size_t tlen;
4245 int tosync;
4246
4247 rx_cons = sc->bge_rx_saved_considx;
4248 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4249
4250 /* Nothing to do */
4251 if (rx_cons == rx_prod)
4252 return;
4253
4254 ifp = &sc->ethercom.ec_if;
4255
4256 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4257 offsetof(struct bge_ring_data, bge_status_block),
4258 sizeof (struct bge_status_block),
4259 BUS_DMASYNC_POSTREAD);
4260
4261 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4262 tosync = rx_prod - rx_cons;
4263
4264 if (tosync != 0)
4265 rnd_add_uint32(&sc->rnd_source, tosync);
4266
4267 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4268
4269 if (tosync < 0) {
4270 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4271 sizeof (struct bge_rx_bd);
4272 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4273 toff, tlen, BUS_DMASYNC_POSTREAD);
4274 tosync = -tosync;
4275 }
4276
4277 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4278 offset, tosync * sizeof (struct bge_rx_bd),
4279 BUS_DMASYNC_POSTREAD);
4280
4281 while (rx_cons != rx_prod) {
4282 struct bge_rx_bd *cur_rx;
4283 uint32_t rxidx;
4284 struct mbuf *m = NULL;
4285
4286 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4287
4288 rxidx = cur_rx->bge_idx;
4289 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4290
4291 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4292 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4293 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4294 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4295 jumbocnt++;
4296 bus_dmamap_sync(sc->bge_dmatag,
4297 sc->bge_cdata.bge_rx_jumbo_map,
4298 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4299 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4300 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4301 ifp->if_ierrors++;
4302 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4303 continue;
4304 }
4305 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4306 NULL)== ENOBUFS) {
4307 ifp->if_ierrors++;
4308 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4309 continue;
4310 }
4311 } else {
4312 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4313 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4314
4315 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4316 stdcnt++;
4317 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4318 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4319 if (dmamap == NULL) {
4320 ifp->if_ierrors++;
4321 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4322 continue;
4323 }
4324 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4325 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4326 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4327 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4328 ifp->if_ierrors++;
4329 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4330 continue;
4331 }
4332 if (bge_newbuf_std(sc, sc->bge_std,
4333 NULL, dmamap) == ENOBUFS) {
4334 ifp->if_ierrors++;
4335 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4336 continue;
4337 }
4338 }
4339
4340 ifp->if_ipackets++;
4341 #ifndef __NO_STRICT_ALIGNMENT
4342 /*
4343 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4344 * the Rx buffer has the layer-2 header unaligned.
4345 * If our CPU requires alignment, re-align by copying.
4346 */
4347 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4348 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4349 cur_rx->bge_len);
4350 m->m_data += ETHER_ALIGN;
4351 }
4352 #endif
4353
4354 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4355 m->m_pkthdr.rcvif = ifp;
4356
4357 /*
4358 * Handle BPF listeners. Let the BPF user see the packet.
4359 */
4360 bpf_mtap(ifp, m);
4361
4362 bge_rxcsum(sc, cur_rx, m);
4363
4364 /*
4365 * If we received a packet with a vlan tag, pass it
4366 * to vlan_input() instead of ether_input().
4367 */
4368 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4369 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4370 }
4371
4372 (*ifp->if_input)(ifp, m);
4373 }
4374
4375 sc->bge_rx_saved_considx = rx_cons;
4376 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4377 if (stdcnt)
4378 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4379 if (jumbocnt)
4380 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4381 }
4382
4383 static void
4384 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4385 {
4386
4387 if (BGE_IS_5717_PLUS(sc)) {
4388 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4389 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4390 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4391 if ((cur_rx->bge_error_flag &
4392 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4393 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4394 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4395 m->m_pkthdr.csum_data =
4396 cur_rx->bge_tcp_udp_csum;
4397 m->m_pkthdr.csum_flags |=
4398 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4399 M_CSUM_DATA);
4400 }
4401 }
4402 } else {
4403 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4404 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4405 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4406 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4407 /*
4408 * Rx transport checksum-offload may also
4409 * have bugs with packets which, when transmitted,
4410 * were `runts' requiring padding.
4411 */
4412 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4413 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4414 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4415 m->m_pkthdr.csum_data =
4416 cur_rx->bge_tcp_udp_csum;
4417 m->m_pkthdr.csum_flags |=
4418 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4419 M_CSUM_DATA);
4420 }
4421 }
4422 }
4423
4424 static void
4425 bge_txeof(struct bge_softc *sc)
4426 {
4427 struct bge_tx_bd *cur_tx = NULL;
4428 struct ifnet *ifp;
4429 struct txdmamap_pool_entry *dma;
4430 bus_addr_t offset, toff;
4431 bus_size_t tlen;
4432 int tosync;
4433 struct mbuf *m;
4434
4435 ifp = &sc->ethercom.ec_if;
4436
4437 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4438 offsetof(struct bge_ring_data, bge_status_block),
4439 sizeof (struct bge_status_block),
4440 BUS_DMASYNC_POSTREAD);
4441
4442 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4443 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4444 sc->bge_tx_saved_considx;
4445
4446 if (tosync != 0)
4447 rnd_add_uint32(&sc->rnd_source, tosync);
4448
4449 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4450
4451 if (tosync < 0) {
4452 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4453 sizeof (struct bge_tx_bd);
4454 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4455 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4456 tosync = -tosync;
4457 }
4458
4459 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4460 offset, tosync * sizeof (struct bge_tx_bd),
4461 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4462
4463 /*
4464 * Go through our tx ring and free mbufs for those
4465 * frames that have been sent.
4466 */
4467 while (sc->bge_tx_saved_considx !=
4468 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4469 uint32_t idx = 0;
4470
4471 idx = sc->bge_tx_saved_considx;
4472 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4473 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4474 ifp->if_opackets++;
4475 m = sc->bge_cdata.bge_tx_chain[idx];
4476 if (m != NULL) {
4477 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4478 dma = sc->txdma[idx];
4479 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4480 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4481 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4482 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4483 sc->txdma[idx] = NULL;
4484
4485 m_freem(m);
4486 }
4487 sc->bge_txcnt--;
4488 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4489 ifp->if_timer = 0;
4490 }
4491
4492 if (cur_tx != NULL)
4493 ifp->if_flags &= ~IFF_OACTIVE;
4494 }
4495
4496 static int
4497 bge_intr(void *xsc)
4498 {
4499 struct bge_softc *sc;
4500 struct ifnet *ifp;
4501 uint32_t statusword;
4502 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4503
4504 sc = xsc;
4505 ifp = &sc->ethercom.ec_if;
4506
4507 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4508 if (BGE_IS_5717_PLUS(sc))
4509 intrmask = 0;
4510
4511 /* It is possible for the interrupt to arrive before
4512 * the status block is updated prior to the interrupt.
4513 * Reading the PCI State register will confirm whether the
4514 * interrupt is ours and will flush the status block.
4515 */
4516
4517 /* read status word from status block */
4518 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4519 offsetof(struct bge_ring_data, bge_status_block),
4520 sizeof (struct bge_status_block),
4521 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4522 statusword = sc->bge_rdata->bge_status_block.bge_status;
4523
4524 if ((statusword & BGE_STATFLAG_UPDATED) ||
4525 (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4526 /* Ack interrupt and stop others from occuring. */
4527 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4528
4529 BGE_EVCNT_INCR(sc->bge_ev_intr);
4530
4531 /* clear status word */
4532 sc->bge_rdata->bge_status_block.bge_status = 0;
4533
4534 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4535 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4536 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4537 bge_link_upd(sc);
4538
4539 if (ifp->if_flags & IFF_RUNNING) {
4540 /* Check RX return ring producer/consumer */
4541 bge_rxeof(sc);
4542
4543 /* Check TX ring producer/consumer */
4544 bge_txeof(sc);
4545 }
4546
4547 if (sc->bge_pending_rxintr_change) {
4548 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4549 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4550 uint32_t junk;
4551
4552 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4553 DELAY(10);
4554 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4555
4556 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4557 DELAY(10);
4558 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4559
4560 sc->bge_pending_rxintr_change = 0;
4561 }
4562 bge_handle_events(sc);
4563
4564 /* Re-enable interrupts. */
4565 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4566
4567 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4568 bge_start(ifp);
4569
4570 return 1;
4571 } else
4572 return 0;
4573 }
4574
4575 static void
4576 bge_asf_driver_up(struct bge_softc *sc)
4577 {
4578 if (sc->bge_asf_mode & ASF_STACKUP) {
4579 /* Send ASF heartbeat aprox. every 2s */
4580 if (sc->bge_asf_count)
4581 sc->bge_asf_count --;
4582 else {
4583 sc->bge_asf_count = 2;
4584
4585 bge_wait_for_event_ack(sc);
4586
4587 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4588 BGE_FW_CMD_DRV_ALIVE);
4589 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4590 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4591 BGE_FW_HB_TIMEOUT_SEC);
4592 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4593 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4594 BGE_RX_CPU_DRV_EVENT);
4595 }
4596 }
4597 }
4598
4599 static void
4600 bge_tick(void *xsc)
4601 {
4602 struct bge_softc *sc = xsc;
4603 struct mii_data *mii = &sc->bge_mii;
4604 int s;
4605
4606 s = splnet();
4607
4608 if (BGE_IS_5705_PLUS(sc))
4609 bge_stats_update_regs(sc);
4610 else
4611 bge_stats_update(sc);
4612
4613 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4614 /*
4615 * Since in TBI mode auto-polling can't be used we should poll
4616 * link status manually. Here we register pending link event
4617 * and trigger interrupt.
4618 */
4619 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4620 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4621 } else {
4622 /*
4623 * Do not touch PHY if we have link up. This could break
4624 * IPMI/ASF mode or produce extra input errors.
4625 * (extra input errors was reported for bcm5701 & bcm5704).
4626 */
4627 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4628 mii_tick(mii);
4629 }
4630
4631 bge_asf_driver_up(sc);
4632
4633 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4634
4635 splx(s);
4636 }
4637
4638 static void
4639 bge_stats_update_regs(struct bge_softc *sc)
4640 {
4641 struct ifnet *ifp = &sc->ethercom.ec_if;
4642
4643 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4644 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4645
4646 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4647 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4648 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4649 }
4650
4651 static void
4652 bge_stats_update(struct bge_softc *sc)
4653 {
4654 struct ifnet *ifp = &sc->ethercom.ec_if;
4655 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4656
4657 #define READ_STAT(sc, stats, stat) \
4658 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4659
4660 ifp->if_collisions +=
4661 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4662 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4663 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4664 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4665 ifp->if_collisions;
4666
4667 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4668 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4669 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4670 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4671 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4672 READ_STAT(sc, stats,
4673 xoffPauseFramesReceived.bge_addr_lo));
4674 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4675 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4676 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4677 READ_STAT(sc, stats,
4678 macControlFramesReceived.bge_addr_lo));
4679 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4680 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4681
4682 #undef READ_STAT
4683
4684 #ifdef notdef
4685 ifp->if_collisions +=
4686 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4687 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4688 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4689 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4690 ifp->if_collisions;
4691 #endif
4692 }
4693
4694 /*
4695 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4696 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4697 * but when such padded frames employ the bge IP/TCP checksum offload,
4698 * the hardware checksum assist gives incorrect results (possibly
4699 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4700 * If we pad such runts with zeros, the onboard checksum comes out correct.
4701 */
4702 static inline int
4703 bge_cksum_pad(struct mbuf *pkt)
4704 {
4705 struct mbuf *last = NULL;
4706 int padlen;
4707
4708 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4709
4710 /* if there's only the packet-header and we can pad there, use it. */
4711 if (pkt->m_pkthdr.len == pkt->m_len &&
4712 M_TRAILINGSPACE(pkt) >= padlen) {
4713 last = pkt;
4714 } else {
4715 /*
4716 * Walk packet chain to find last mbuf. We will either
4717 * pad there, or append a new mbuf and pad it
4718 * (thus perhaps avoiding the bcm5700 dma-min bug).
4719 */
4720 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4721 continue; /* do nothing */
4722 }
4723
4724 /* `last' now points to last in chain. */
4725 if (M_TRAILINGSPACE(last) < padlen) {
4726 /* Allocate new empty mbuf, pad it. Compact later. */
4727 struct mbuf *n;
4728 MGET(n, M_DONTWAIT, MT_DATA);
4729 if (n == NULL)
4730 return ENOBUFS;
4731 n->m_len = 0;
4732 last->m_next = n;
4733 last = n;
4734 }
4735 }
4736
4737 KDASSERT(!M_READONLY(last));
4738 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4739
4740 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4741 memset(mtod(last, char *) + last->m_len, 0, padlen);
4742 last->m_len += padlen;
4743 pkt->m_pkthdr.len += padlen;
4744 return 0;
4745 }
4746
4747 /*
4748 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4749 */
4750 static inline int
4751 bge_compact_dma_runt(struct mbuf *pkt)
4752 {
4753 struct mbuf *m, *prev;
4754 int totlen, prevlen;
4755
4756 prev = NULL;
4757 totlen = 0;
4758 prevlen = -1;
4759
4760 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4761 int mlen = m->m_len;
4762 int shortfall = 8 - mlen ;
4763
4764 totlen += mlen;
4765 if (mlen == 0)
4766 continue;
4767 if (mlen >= 8)
4768 continue;
4769
4770 /* If we get here, mbuf data is too small for DMA engine.
4771 * Try to fix by shuffling data to prev or next in chain.
4772 * If that fails, do a compacting deep-copy of the whole chain.
4773 */
4774
4775 /* Internal frag. If fits in prev, copy it there. */
4776 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4777 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4778 prev->m_len += mlen;
4779 m->m_len = 0;
4780 /* XXX stitch chain */
4781 prev->m_next = m_free(m);
4782 m = prev;
4783 continue;
4784 }
4785 else if (m->m_next != NULL &&
4786 M_TRAILINGSPACE(m) >= shortfall &&
4787 m->m_next->m_len >= (8 + shortfall)) {
4788 /* m is writable and have enough data in next, pull up. */
4789
4790 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4791 shortfall);
4792 m->m_len += shortfall;
4793 m->m_next->m_len -= shortfall;
4794 m->m_next->m_data += shortfall;
4795 }
4796 else if (m->m_next == NULL || 1) {
4797 /* Got a runt at the very end of the packet.
4798 * borrow data from the tail of the preceding mbuf and
4799 * update its length in-place. (The original data is still
4800 * valid, so we can do this even if prev is not writable.)
4801 */
4802
4803 /* if we'd make prev a runt, just move all of its data. */
4804 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4805 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4806
4807 if ((prev->m_len - shortfall) < 8)
4808 shortfall = prev->m_len;
4809
4810 #ifdef notyet /* just do the safe slow thing for now */
4811 if (!M_READONLY(m)) {
4812 if (M_LEADINGSPACE(m) < shorfall) {
4813 void *m_dat;
4814 m_dat = (m->m_flags & M_PKTHDR) ?
4815 m->m_pktdat : m->dat;
4816 memmove(m_dat, mtod(m, void*), m->m_len);
4817 m->m_data = m_dat;
4818 }
4819 } else
4820 #endif /* just do the safe slow thing */
4821 {
4822 struct mbuf * n = NULL;
4823 int newprevlen = prev->m_len - shortfall;
4824
4825 MGET(n, M_NOWAIT, MT_DATA);
4826 if (n == NULL)
4827 return ENOBUFS;
4828 KASSERT(m->m_len + shortfall < MLEN
4829 /*,
4830 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4831
4832 /* first copy the data we're stealing from prev */
4833 memcpy(n->m_data, prev->m_data + newprevlen,
4834 shortfall);
4835
4836 /* update prev->m_len accordingly */
4837 prev->m_len -= shortfall;
4838
4839 /* copy data from runt m */
4840 memcpy(n->m_data + shortfall, m->m_data,
4841 m->m_len);
4842
4843 /* n holds what we stole from prev, plus m */
4844 n->m_len = shortfall + m->m_len;
4845
4846 /* stitch n into chain and free m */
4847 n->m_next = m->m_next;
4848 prev->m_next = n;
4849 /* KASSERT(m->m_next == NULL); */
4850 m->m_next = NULL;
4851 m_free(m);
4852 m = n; /* for continuing loop */
4853 }
4854 }
4855 prevlen = m->m_len;
4856 }
4857 return 0;
4858 }
4859
4860 /*
4861 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4862 * pointers to descriptors.
4863 */
4864 static int
4865 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4866 {
4867 struct bge_tx_bd *f = NULL;
4868 uint32_t frag, cur;
4869 uint16_t csum_flags = 0;
4870 uint16_t txbd_tso_flags = 0;
4871 struct txdmamap_pool_entry *dma;
4872 bus_dmamap_t dmamap;
4873 int i = 0;
4874 struct m_tag *mtag;
4875 int use_tso, maxsegsize, error;
4876
4877 cur = frag = *txidx;
4878
4879 if (m_head->m_pkthdr.csum_flags) {
4880 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4881 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4882 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4883 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4884 }
4885
4886 /*
4887 * If we were asked to do an outboard checksum, and the NIC
4888 * has the bug where it sometimes adds in the Ethernet padding,
4889 * explicitly pad with zeros so the cksum will be correct either way.
4890 * (For now, do this for all chip versions, until newer
4891 * are confirmed to not require the workaround.)
4892 */
4893 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4894 #ifdef notyet
4895 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4896 #endif
4897 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4898 goto check_dma_bug;
4899
4900 if (bge_cksum_pad(m_head) != 0)
4901 return ENOBUFS;
4902
4903 check_dma_bug:
4904 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4905 goto doit;
4906
4907 /*
4908 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4909 * less than eight bytes. If we encounter a teeny mbuf
4910 * at the end of a chain, we can pad. Otherwise, copy.
4911 */
4912 if (bge_compact_dma_runt(m_head) != 0)
4913 return ENOBUFS;
4914
4915 doit:
4916 dma = SLIST_FIRST(&sc->txdma_list);
4917 if (dma == NULL)
4918 return ENOBUFS;
4919 dmamap = dma->dmamap;
4920
4921 /*
4922 * Set up any necessary TSO state before we start packing...
4923 */
4924 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4925 if (!use_tso) {
4926 maxsegsize = 0;
4927 } else { /* TSO setup */
4928 unsigned mss;
4929 struct ether_header *eh;
4930 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4931 struct mbuf * m0 = m_head;
4932 struct ip *ip;
4933 struct tcphdr *th;
4934 int iphl, hlen;
4935
4936 /*
4937 * XXX It would be nice if the mbuf pkthdr had offset
4938 * fields for the protocol headers.
4939 */
4940
4941 eh = mtod(m0, struct ether_header *);
4942 switch (htons(eh->ether_type)) {
4943 case ETHERTYPE_IP:
4944 offset = ETHER_HDR_LEN;
4945 break;
4946
4947 case ETHERTYPE_VLAN:
4948 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4949 break;
4950
4951 default:
4952 /*
4953 * Don't support this protocol or encapsulation.
4954 */
4955 return ENOBUFS;
4956 }
4957
4958 /*
4959 * TCP/IP headers are in the first mbuf; we can do
4960 * this the easy way.
4961 */
4962 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4963 hlen = iphl + offset;
4964 if (__predict_false(m0->m_len <
4965 (hlen + sizeof(struct tcphdr)))) {
4966
4967 aprint_debug_dev(sc->bge_dev,
4968 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4969 "not handled yet\n",
4970 m0->m_len, hlen+ sizeof(struct tcphdr));
4971 #ifdef NOTYET
4972 /*
4973 * XXX jonathan (at) NetBSD.org: untested.
4974 * how to force this branch to be taken?
4975 */
4976 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4977
4978 m_copydata(m0, offset, sizeof(ip), &ip);
4979 m_copydata(m0, hlen, sizeof(th), &th);
4980
4981 ip.ip_len = 0;
4982
4983 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4984 sizeof(ip.ip_len), &ip.ip_len);
4985
4986 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4987 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4988
4989 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4990 sizeof(th.th_sum), &th.th_sum);
4991
4992 hlen += th.th_off << 2;
4993 iptcp_opt_words = hlen;
4994 #else
4995 /*
4996 * if_wm "hard" case not yet supported, can we not
4997 * mandate it out of existence?
4998 */
4999 (void) ip; (void)th; (void) ip_tcp_hlen;
5000
5001 return ENOBUFS;
5002 #endif
5003 } else {
5004 ip = (struct ip *) (mtod(m0, char *) + offset);
5005 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5006 ip_tcp_hlen = iphl + (th->th_off << 2);
5007
5008 /* Total IP/TCP options, in 32-bit words */
5009 iptcp_opt_words = (ip_tcp_hlen
5010 - sizeof(struct tcphdr)
5011 - sizeof(struct ip)) >> 2;
5012 }
5013 if (BGE_IS_575X_PLUS(sc)) {
5014 th->th_sum = 0;
5015 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5016 } else {
5017 /*
5018 * XXX jonathan (at) NetBSD.org: 5705 untested.
5019 * Requires TSO firmware patch for 5701/5703/5704.
5020 */
5021 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5022 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5023 }
5024
5025 mss = m_head->m_pkthdr.segsz;
5026 txbd_tso_flags |=
5027 BGE_TXBDFLAG_CPU_PRE_DMA |
5028 BGE_TXBDFLAG_CPU_POST_DMA;
5029
5030 /*
5031 * Our NIC TSO-assist assumes TSO has standard, optionless
5032 * IPv4 and TCP headers, which total 40 bytes. By default,
5033 * the NIC copies 40 bytes of IP/TCP header from the
5034 * supplied header into the IP/TCP header portion of
5035 * each post-TSO-segment. If the supplied packet has IP or
5036 * TCP options, we need to tell the NIC to copy those extra
5037 * bytes into each post-TSO header, in addition to the normal
5038 * 40-byte IP/TCP header (and to leave space accordingly).
5039 * Unfortunately, the driver encoding of option length
5040 * varies across different ASIC families.
5041 */
5042 tcp_seg_flags = 0;
5043 if (iptcp_opt_words) {
5044 if (BGE_IS_5705_PLUS(sc)) {
5045 tcp_seg_flags =
5046 iptcp_opt_words << 11;
5047 } else {
5048 txbd_tso_flags |=
5049 iptcp_opt_words << 12;
5050 }
5051 }
5052 maxsegsize = mss | tcp_seg_flags;
5053 ip->ip_len = htons(mss + ip_tcp_hlen);
5054
5055 } /* TSO setup */
5056
5057 /*
5058 * Start packing the mbufs in this chain into
5059 * the fragment pointers. Stop when we run out
5060 * of fragments or hit the end of the mbuf chain.
5061 */
5062 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5063 BUS_DMA_NOWAIT);
5064 if (error)
5065 return ENOBUFS;
5066 /*
5067 * Sanity check: avoid coming within 16 descriptors
5068 * of the end of the ring.
5069 */
5070 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5071 BGE_TSO_PRINTF(("%s: "
5072 " dmamap_load_mbuf too close to ring wrap\n",
5073 device_xname(sc->bge_dev)));
5074 goto fail_unload;
5075 }
5076
5077 mtag = sc->ethercom.ec_nvlans ?
5078 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5079
5080
5081 /* Iterate over dmap-map fragments. */
5082 for (i = 0; i < dmamap->dm_nsegs; i++) {
5083 f = &sc->bge_rdata->bge_tx_ring[frag];
5084 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5085 break;
5086
5087 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5088 f->bge_len = dmamap->dm_segs[i].ds_len;
5089
5090 /*
5091 * For 5751 and follow-ons, for TSO we must turn
5092 * off checksum-assist flag in the tx-descr, and
5093 * supply the ASIC-revision-specific encoding
5094 * of TSO flags and segsize.
5095 */
5096 if (use_tso) {
5097 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5098 f->bge_rsvd = maxsegsize;
5099 f->bge_flags = csum_flags | txbd_tso_flags;
5100 } else {
5101 f->bge_rsvd = 0;
5102 f->bge_flags =
5103 (csum_flags | txbd_tso_flags) & 0x0fff;
5104 }
5105 } else {
5106 f->bge_rsvd = 0;
5107 f->bge_flags = csum_flags;
5108 }
5109
5110 if (mtag != NULL) {
5111 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5112 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5113 } else {
5114 f->bge_vlan_tag = 0;
5115 }
5116 cur = frag;
5117 BGE_INC(frag, BGE_TX_RING_CNT);
5118 }
5119
5120 if (i < dmamap->dm_nsegs) {
5121 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5122 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5123 goto fail_unload;
5124 }
5125
5126 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5127 BUS_DMASYNC_PREWRITE);
5128
5129 if (frag == sc->bge_tx_saved_considx) {
5130 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5131 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5132
5133 goto fail_unload;
5134 }
5135
5136 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5137 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5138 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5139 sc->txdma[cur] = dma;
5140 sc->bge_txcnt += dmamap->dm_nsegs;
5141
5142 *txidx = frag;
5143
5144 return 0;
5145
5146 fail_unload:
5147 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5148
5149 return ENOBUFS;
5150 }
5151
5152 /*
5153 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5154 * to the mbuf data regions directly in the transmit descriptors.
5155 */
5156 static void
5157 bge_start(struct ifnet *ifp)
5158 {
5159 struct bge_softc *sc;
5160 struct mbuf *m_head = NULL;
5161 uint32_t prodidx;
5162 int pkts = 0;
5163
5164 sc = ifp->if_softc;
5165
5166 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5167 return;
5168
5169 prodidx = sc->bge_tx_prodidx;
5170
5171 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5172 IFQ_POLL(&ifp->if_snd, m_head);
5173 if (m_head == NULL)
5174 break;
5175
5176 #if 0
5177 /*
5178 * XXX
5179 * safety overkill. If this is a fragmented packet chain
5180 * with delayed TCP/UDP checksums, then only encapsulate
5181 * it if we have enough descriptors to handle the entire
5182 * chain at once.
5183 * (paranoia -- may not actually be needed)
5184 */
5185 if (m_head->m_flags & M_FIRSTFRAG &&
5186 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5187 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5188 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5189 ifp->if_flags |= IFF_OACTIVE;
5190 break;
5191 }
5192 }
5193 #endif
5194
5195 /*
5196 * Pack the data into the transmit ring. If we
5197 * don't have room, set the OACTIVE flag and wait
5198 * for the NIC to drain the ring.
5199 */
5200 if (bge_encap(sc, m_head, &prodidx)) {
5201 ifp->if_flags |= IFF_OACTIVE;
5202 break;
5203 }
5204
5205 /* now we are committed to transmit the packet */
5206 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5207 pkts++;
5208
5209 /*
5210 * If there's a BPF listener, bounce a copy of this frame
5211 * to him.
5212 */
5213 bpf_mtap(ifp, m_head);
5214 }
5215 if (pkts == 0)
5216 return;
5217
5218 /* Transmit */
5219 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5220 /* 5700 b2 errata */
5221 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5222 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5223
5224 sc->bge_tx_prodidx = prodidx;
5225
5226 /*
5227 * Set a timeout in case the chip goes out to lunch.
5228 */
5229 ifp->if_timer = 5;
5230 }
5231
5232 static int
5233 bge_init(struct ifnet *ifp)
5234 {
5235 struct bge_softc *sc = ifp->if_softc;
5236 const uint16_t *m;
5237 uint32_t mode;
5238 int s, error = 0;
5239
5240 s = splnet();
5241
5242 ifp = &sc->ethercom.ec_if;
5243
5244 /* Cancel pending I/O and flush buffers. */
5245 bge_stop(ifp, 0);
5246
5247 bge_stop_fw(sc);
5248 bge_sig_pre_reset(sc, BGE_RESET_START);
5249 bge_reset(sc);
5250 bge_sig_legacy(sc, BGE_RESET_START);
5251 bge_sig_post_reset(sc, BGE_RESET_START);
5252
5253 bge_chipinit(sc);
5254
5255 /*
5256 * Init the various state machines, ring
5257 * control blocks and firmware.
5258 */
5259 error = bge_blockinit(sc);
5260 if (error != 0) {
5261 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5262 error);
5263 splx(s);
5264 return error;
5265 }
5266
5267 ifp = &sc->ethercom.ec_if;
5268
5269 /* 5718 step 25, 57XX step 54 */
5270 /* Specify MTU. */
5271 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5272 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5273
5274 /* 5718 step 23 */
5275 /* Load our MAC address. */
5276 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5277 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5278 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5279
5280 /* Enable or disable promiscuous mode as needed. */
5281 if (ifp->if_flags & IFF_PROMISC)
5282 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5283 else
5284 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5285
5286 /* Program multicast filter. */
5287 bge_setmulti(sc);
5288
5289 /* Init RX ring. */
5290 bge_init_rx_ring_std(sc);
5291
5292 /*
5293 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5294 * memory to insure that the chip has in fact read the first
5295 * entry of the ring.
5296 */
5297 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5298 uint32_t v, i;
5299 for (i = 0; i < 10; i++) {
5300 DELAY(20);
5301 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5302 if (v == (MCLBYTES - ETHER_ALIGN))
5303 break;
5304 }
5305 if (i == 10)
5306 aprint_error_dev(sc->bge_dev,
5307 "5705 A0 chip failed to load RX ring\n");
5308 }
5309
5310 /* Init jumbo RX ring. */
5311 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5312 bge_init_rx_ring_jumbo(sc);
5313
5314 /* Init our RX return ring index */
5315 sc->bge_rx_saved_considx = 0;
5316
5317 /* Init TX ring. */
5318 bge_init_tx_ring(sc);
5319
5320 /* 5718 step 63, 57XX step 94 */
5321 /* Enable TX MAC state machine lockup fix. */
5322 mode = CSR_READ_4(sc, BGE_TX_MODE);
5323 if (BGE_IS_5755_PLUS(sc) ||
5324 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5325 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5326 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5327 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5328 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5329 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5330 }
5331
5332 /* Turn on transmitter */
5333 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5334 /* 5718 step 64 */
5335 DELAY(100);
5336
5337 /* 5718 step 65, 57XX step 95 */
5338 /* Turn on receiver */
5339 mode = CSR_READ_4(sc, BGE_RX_MODE);
5340 if (BGE_IS_5755_PLUS(sc))
5341 mode |= BGE_RXMODE_IPV6_ENABLE;
5342 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5343 /* 5718 step 66 */
5344 DELAY(10);
5345
5346 /* 5718 step 12 */
5347 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5348
5349 /* Tell firmware we're alive. */
5350 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5351
5352 /* Enable host interrupts. */
5353 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5354 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5355 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5356
5357 if ((error = bge_ifmedia_upd(ifp)) != 0)
5358 goto out;
5359
5360 ifp->if_flags |= IFF_RUNNING;
5361 ifp->if_flags &= ~IFF_OACTIVE;
5362
5363 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5364
5365 out:
5366 sc->bge_if_flags = ifp->if_flags;
5367 splx(s);
5368
5369 return error;
5370 }
5371
5372 /*
5373 * Set media options.
5374 */
5375 static int
5376 bge_ifmedia_upd(struct ifnet *ifp)
5377 {
5378 struct bge_softc *sc = ifp->if_softc;
5379 struct mii_data *mii = &sc->bge_mii;
5380 struct ifmedia *ifm = &sc->bge_ifmedia;
5381 int rc;
5382
5383 /* If this is a 1000baseX NIC, enable the TBI port. */
5384 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5385 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5386 return EINVAL;
5387 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5388 case IFM_AUTO:
5389 /*
5390 * The BCM5704 ASIC appears to have a special
5391 * mechanism for programming the autoneg
5392 * advertisement registers in TBI mode.
5393 */
5394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5395 uint32_t sgdig;
5396 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5397 if (sgdig & BGE_SGDIGSTS_DONE) {
5398 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5399 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5400 sgdig |= BGE_SGDIGCFG_AUTO |
5401 BGE_SGDIGCFG_PAUSE_CAP |
5402 BGE_SGDIGCFG_ASYM_PAUSE;
5403 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5404 sgdig | BGE_SGDIGCFG_SEND);
5405 DELAY(5);
5406 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5407 sgdig);
5408 }
5409 }
5410 break;
5411 case IFM_1000_SX:
5412 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5413 BGE_CLRBIT(sc, BGE_MAC_MODE,
5414 BGE_MACMODE_HALF_DUPLEX);
5415 } else {
5416 BGE_SETBIT(sc, BGE_MAC_MODE,
5417 BGE_MACMODE_HALF_DUPLEX);
5418 }
5419 DELAY(40);
5420 break;
5421 default:
5422 return EINVAL;
5423 }
5424 /* XXX 802.3x flow control for 1000BASE-SX */
5425 return 0;
5426 }
5427
5428 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5429 if ((rc = mii_mediachg(mii)) == ENXIO)
5430 return 0;
5431
5432 /*
5433 * Force an interrupt so that we will call bge_link_upd
5434 * if needed and clear any pending link state attention.
5435 * Without this we are not getting any further interrupts
5436 * for link state changes and thus will not UP the link and
5437 * not be able to send in bge_start. The only way to get
5438 * things working was to receive a packet and get a RX intr.
5439 */
5440 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5441 sc->bge_flags & BGE_IS_5788)
5442 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5443 else
5444 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5445
5446 return rc;
5447 }
5448
5449 /*
5450 * Report current media status.
5451 */
5452 static void
5453 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5454 {
5455 struct bge_softc *sc = ifp->if_softc;
5456 struct mii_data *mii = &sc->bge_mii;
5457
5458 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5459 ifmr->ifm_status = IFM_AVALID;
5460 ifmr->ifm_active = IFM_ETHER;
5461 if (CSR_READ_4(sc, BGE_MAC_STS) &
5462 BGE_MACSTAT_TBI_PCS_SYNCHED)
5463 ifmr->ifm_status |= IFM_ACTIVE;
5464 ifmr->ifm_active |= IFM_1000_SX;
5465 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5466 ifmr->ifm_active |= IFM_HDX;
5467 else
5468 ifmr->ifm_active |= IFM_FDX;
5469 return;
5470 }
5471
5472 mii_pollstat(mii);
5473 ifmr->ifm_status = mii->mii_media_status;
5474 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5475 sc->bge_flowflags;
5476 }
5477
5478 static int
5479 bge_ifflags_cb(struct ethercom *ec)
5480 {
5481 struct ifnet *ifp = &ec->ec_if;
5482 struct bge_softc *sc = ifp->if_softc;
5483 int change = ifp->if_flags ^ sc->bge_if_flags;
5484
5485 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5486 return ENETRESET;
5487 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5488 return 0;
5489
5490 if ((ifp->if_flags & IFF_PROMISC) == 0)
5491 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5492 else
5493 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5494
5495 bge_setmulti(sc);
5496
5497 sc->bge_if_flags = ifp->if_flags;
5498 return 0;
5499 }
5500
5501 static int
5502 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5503 {
5504 struct bge_softc *sc = ifp->if_softc;
5505 struct ifreq *ifr = (struct ifreq *) data;
5506 int s, error = 0;
5507 struct mii_data *mii;
5508
5509 s = splnet();
5510
5511 switch (command) {
5512 case SIOCSIFMEDIA:
5513 /* XXX Flow control is not supported for 1000BASE-SX */
5514 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5515 ifr->ifr_media &= ~IFM_ETH_FMASK;
5516 sc->bge_flowflags = 0;
5517 }
5518
5519 /* Flow control requires full-duplex mode. */
5520 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5521 (ifr->ifr_media & IFM_FDX) == 0) {
5522 ifr->ifr_media &= ~IFM_ETH_FMASK;
5523 }
5524 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5525 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5526 /* We can do both TXPAUSE and RXPAUSE. */
5527 ifr->ifr_media |=
5528 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5529 }
5530 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5531 }
5532 /* FALLTHROUGH */
5533 case SIOCGIFMEDIA:
5534 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5535 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5536 command);
5537 } else {
5538 mii = &sc->bge_mii;
5539 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5540 command);
5541 }
5542 break;
5543 default:
5544 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5545 break;
5546
5547 error = 0;
5548
5549 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5550 ;
5551 else if (ifp->if_flags & IFF_RUNNING)
5552 bge_setmulti(sc);
5553 break;
5554 }
5555
5556 splx(s);
5557
5558 return error;
5559 }
5560
5561 static void
5562 bge_watchdog(struct ifnet *ifp)
5563 {
5564 struct bge_softc *sc;
5565
5566 sc = ifp->if_softc;
5567
5568 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5569
5570 ifp->if_flags &= ~IFF_RUNNING;
5571 bge_init(ifp);
5572
5573 ifp->if_oerrors++;
5574 }
5575
5576 static void
5577 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5578 {
5579 int i;
5580
5581 BGE_CLRBIT_FLUSH(sc, reg, bit);
5582
5583 for (i = 0; i < 1000; i++) {
5584 delay(100);
5585 if ((CSR_READ_4(sc, reg) & bit) == 0)
5586 return;
5587 }
5588
5589 /*
5590 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5591 * on some environment (and once after boot?)
5592 */
5593 if (reg != BGE_SRS_MODE)
5594 aprint_error_dev(sc->bge_dev,
5595 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5596 (u_long)reg, bit);
5597 }
5598
5599 /*
5600 * Stop the adapter and free any mbufs allocated to the
5601 * RX and TX lists.
5602 */
5603 static void
5604 bge_stop(struct ifnet *ifp, int disable)
5605 {
5606 struct bge_softc *sc = ifp->if_softc;
5607
5608 callout_stop(&sc->bge_timeout);
5609
5610 /* Disable host interrupts. */
5611 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5612 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5613
5614 /*
5615 * Tell firmware we're shutting down.
5616 */
5617 bge_stop_fw(sc);
5618 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5619
5620 /*
5621 * Disable all of the receiver blocks.
5622 */
5623 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5624 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5625 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5626 if (BGE_IS_5700_FAMILY(sc))
5627 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5628 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5629 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5630 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5631
5632 /*
5633 * Disable all of the transmit blocks.
5634 */
5635 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5636 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5637 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5638 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5639 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5640 if (BGE_IS_5700_FAMILY(sc))
5641 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5642 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5643
5644 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5645 delay(40);
5646
5647 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5648
5649 /*
5650 * Shut down all of the memory managers and related
5651 * state machines.
5652 */
5653 /* 5718 step 5a,5b */
5654 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5655 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5656 if (BGE_IS_5700_FAMILY(sc))
5657 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5658
5659 /* 5718 step 5c,5d */
5660 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5661 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5662
5663 if (BGE_IS_5700_FAMILY(sc)) {
5664 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5665 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5666 }
5667
5668 bge_reset(sc);
5669 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5670 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5671
5672 /*
5673 * Keep the ASF firmware running if up.
5674 */
5675 if (sc->bge_asf_mode & ASF_STACKUP)
5676 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5677 else
5678 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5679
5680 /* Free the RX lists. */
5681 bge_free_rx_ring_std(sc);
5682
5683 /* Free jumbo RX list. */
5684 if (BGE_IS_JUMBO_CAPABLE(sc))
5685 bge_free_rx_ring_jumbo(sc);
5686
5687 /* Free TX buffers. */
5688 bge_free_tx_ring(sc);
5689
5690 /*
5691 * Isolate/power down the PHY.
5692 */
5693 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5694 mii_down(&sc->bge_mii);
5695
5696 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5697
5698 /* Clear MAC's link state (PHY may still have link UP). */
5699 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5700
5701 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5702 }
5703
5704 static void
5705 bge_link_upd(struct bge_softc *sc)
5706 {
5707 struct ifnet *ifp = &sc->ethercom.ec_if;
5708 struct mii_data *mii = &sc->bge_mii;
5709 uint32_t status;
5710 int link;
5711
5712 /* Clear 'pending link event' flag */
5713 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5714
5715 /*
5716 * Process link state changes.
5717 * Grrr. The link status word in the status block does
5718 * not work correctly on the BCM5700 rev AX and BX chips,
5719 * according to all available information. Hence, we have
5720 * to enable MII interrupts in order to properly obtain
5721 * async link changes. Unfortunately, this also means that
5722 * we have to read the MAC status register to detect link
5723 * changes, thereby adding an additional register access to
5724 * the interrupt handler.
5725 */
5726
5727 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5728 status = CSR_READ_4(sc, BGE_MAC_STS);
5729 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5730 mii_pollstat(mii);
5731
5732 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5733 mii->mii_media_status & IFM_ACTIVE &&
5734 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5735 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5736 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5737 (!(mii->mii_media_status & IFM_ACTIVE) ||
5738 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5739 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5740
5741 /* Clear the interrupt */
5742 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5743 BGE_EVTENB_MI_INTERRUPT);
5744 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5745 BRGPHY_MII_ISR);
5746 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5747 BRGPHY_MII_IMR, BRGPHY_INTRS);
5748 }
5749 return;
5750 }
5751
5752 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5753 status = CSR_READ_4(sc, BGE_MAC_STS);
5754 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5755 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5756 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5757 if (BGE_ASICREV(sc->bge_chipid)
5758 == BGE_ASICREV_BCM5704) {
5759 BGE_CLRBIT(sc, BGE_MAC_MODE,
5760 BGE_MACMODE_TBI_SEND_CFGS);
5761 DELAY(40);
5762 }
5763 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5764 if_link_state_change(ifp, LINK_STATE_UP);
5765 }
5766 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5767 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5768 if_link_state_change(ifp, LINK_STATE_DOWN);
5769 }
5770 /*
5771 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5772 * This should not happen since mii callouts are locked now, but
5773 * we keep this check for debug.
5774 */
5775 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5776 /*
5777 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5778 * bit in status word always set. Workaround this bug by
5779 * reading PHY link status directly.
5780 */
5781 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5782 BGE_STS_LINK : 0;
5783
5784 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5785 mii_pollstat(mii);
5786
5787 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5788 mii->mii_media_status & IFM_ACTIVE &&
5789 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5790 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5791 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5792 (!(mii->mii_media_status & IFM_ACTIVE) ||
5793 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5794 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5795 }
5796 }
5797
5798 /* Clear the attention */
5799 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5800 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5801 BGE_MACSTAT_LINK_CHANGED);
5802 }
5803
5804 static int
5805 bge_sysctl_verify(SYSCTLFN_ARGS)
5806 {
5807 int error, t;
5808 struct sysctlnode node;
5809
5810 node = *rnode;
5811 t = *(int*)rnode->sysctl_data;
5812 node.sysctl_data = &t;
5813 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5814 if (error || newp == NULL)
5815 return error;
5816
5817 #if 0
5818 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5819 node.sysctl_num, rnode->sysctl_num));
5820 #endif
5821
5822 if (node.sysctl_num == bge_rxthresh_nodenum) {
5823 if (t < 0 || t >= NBGE_RX_THRESH)
5824 return EINVAL;
5825 bge_update_all_threshes(t);
5826 } else
5827 return EINVAL;
5828
5829 *(int*)rnode->sysctl_data = t;
5830
5831 return 0;
5832 }
5833
5834 /*
5835 * Set up sysctl(3) MIB, hw.bge.*.
5836 */
5837 static void
5838 bge_sysctl_init(struct bge_softc *sc)
5839 {
5840 int rc, bge_root_num;
5841 const struct sysctlnode *node;
5842
5843 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5844 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5845 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5846 goto out;
5847 }
5848
5849 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5850 0, CTLTYPE_NODE, "bge",
5851 SYSCTL_DESCR("BGE interface controls"),
5852 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5853 goto out;
5854 }
5855
5856 bge_root_num = node->sysctl_num;
5857
5858 /* BGE Rx interrupt mitigation level */
5859 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5860 CTLFLAG_READWRITE,
5861 CTLTYPE_INT, "rx_lvl",
5862 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5863 bge_sysctl_verify, 0,
5864 &bge_rx_thresh_lvl,
5865 0, CTL_HW, bge_root_num, CTL_CREATE,
5866 CTL_EOL)) != 0) {
5867 goto out;
5868 }
5869
5870 bge_rxthresh_nodenum = node->sysctl_num;
5871
5872 return;
5873
5874 out:
5875 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5876 }
5877
5878 #ifdef BGE_DEBUG
5879 void
5880 bge_debug_info(struct bge_softc *sc)
5881 {
5882
5883 printf("Hardware Flags:\n");
5884 if (BGE_IS_57765_PLUS(sc))
5885 printf(" - 57765 Plus\n");
5886 if (BGE_IS_5717_PLUS(sc))
5887 printf(" - 5717 Plus\n");
5888 if (BGE_IS_5755_PLUS(sc))
5889 printf(" - 5755 Plus\n");
5890 if (BGE_IS_575X_PLUS(sc))
5891 printf(" - 575X Plus\n");
5892 if (BGE_IS_5705_PLUS(sc))
5893 printf(" - 5705 Plus\n");
5894 if (BGE_IS_5714_FAMILY(sc))
5895 printf(" - 5714 Family\n");
5896 if (BGE_IS_5700_FAMILY(sc))
5897 printf(" - 5700 Family\n");
5898 if (sc->bge_flags & BGE_IS_5788)
5899 printf(" - 5788\n");
5900 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5901 printf(" - Supports Jumbo Frames\n");
5902 if (sc->bge_flags & BGE_NO_EEPROM)
5903 printf(" - No EEPROM\n");
5904 if (sc->bge_flags & BGE_PCIX)
5905 printf(" - PCI-X Bus\n");
5906 if (sc->bge_flags & BGE_PCIE)
5907 printf(" - PCI Express Bus\n");
5908 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5909 printf(" - RX Alignment Bug\n");
5910 if (sc->bge_flags & BGE_APE)
5911 printf(" - APE\n");
5912 if (sc->bge_flags & BGE_CPMU_PRESENT)
5913 printf(" - CPMU\n");
5914 if (sc->bge_flags & BGE_TSO)
5915 printf(" - TSO\n");
5916
5917 if (sc->bge_flags & BGE_PHY_NO_3LED)
5918 printf(" - No 3 LEDs\n");
5919 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5920 printf(" - CRC bug\n");
5921 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5922 printf(" - ADC bug\n");
5923 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5924 printf(" - 5704 A0 bug\n");
5925 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5926 printf(" - jitter bug\n");
5927 if (sc->bge_flags & BGE_PHY_BER_BUG)
5928 printf(" - BER bug\n");
5929 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5930 printf(" - adjust trim\n");
5931 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5932 printf(" - no wirespeed\n");
5933 }
5934 #endif /* BGE_DEBUG */
5935
5936 static int
5937 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5938 {
5939 prop_dictionary_t dict;
5940 prop_data_t ea;
5941
5942 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5943 return 1;
5944
5945 dict = device_properties(sc->bge_dev);
5946 ea = prop_dictionary_get(dict, "mac-address");
5947 if (ea != NULL) {
5948 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5949 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5950 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5951 return 0;
5952 }
5953
5954 return 1;
5955 }
5956
5957 static int
5958 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5959 {
5960 uint32_t mac_addr;
5961
5962 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5963 if ((mac_addr >> 16) == 0x484b) {
5964 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5965 ether_addr[1] = (uint8_t)mac_addr;
5966 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5967 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5968 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5969 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5970 ether_addr[5] = (uint8_t)mac_addr;
5971 return 0;
5972 }
5973 return 1;
5974 }
5975
5976 static int
5977 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5978 {
5979 int mac_offset = BGE_EE_MAC_OFFSET;
5980
5981 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5982 mac_offset = BGE_EE_MAC_OFFSET_5906;
5983
5984 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5985 ETHER_ADDR_LEN));
5986 }
5987
5988 static int
5989 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5990 {
5991
5992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5993 return 1;
5994
5995 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5996 ETHER_ADDR_LEN));
5997 }
5998
5999 static int
6000 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6001 {
6002 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6003 /* NOTE: Order is critical */
6004 bge_get_eaddr_fw,
6005 bge_get_eaddr_mem,
6006 bge_get_eaddr_nvram,
6007 bge_get_eaddr_eeprom,
6008 NULL
6009 };
6010 const bge_eaddr_fcn_t *func;
6011
6012 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6013 if ((*func)(sc, eaddr) == 0)
6014 break;
6015 }
6016 return (*func == NULL ? ENXIO : 0);
6017 }
6018