Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.254
      1 /*	$NetBSD: if_bge.c,v 1.254 2013/07/03 05:49:36 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.254 2013/07/03 05:49:36 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rnd.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static int bge_ifflags_cb(struct ethercom *);
    210 static int bge_ioctl(struct ifnet *, u_long, void *);
    211 static int bge_init(struct ifnet *);
    212 static void bge_stop(struct ifnet *, int);
    213 static void bge_watchdog(struct ifnet *);
    214 static int bge_ifmedia_upd(struct ifnet *);
    215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    219 
    220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    222 static void bge_setmulti(struct bge_softc *);
    223 
    224 static void bge_handle_events(struct bge_softc *);
    225 static int bge_alloc_jumbo_mem(struct bge_softc *);
    226 #if 0 /* XXX */
    227 static void bge_free_jumbo_mem(struct bge_softc *);
    228 #endif
    229 static void *bge_jalloc(struct bge_softc *);
    230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    232 			       bus_dmamap_t);
    233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    234 static int bge_init_rx_ring_std(struct bge_softc *);
    235 static void bge_free_rx_ring_std(struct bge_softc *);
    236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_tx_ring(struct bge_softc *);
    239 static int bge_init_tx_ring(struct bge_softc *);
    240 
    241 static int bge_chipinit(struct bge_softc *);
    242 static int bge_blockinit(struct bge_softc *);
    243 static int bge_phy_addr(struct bge_softc *);
    244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    245 static void bge_writemem_ind(struct bge_softc *, int, int);
    246 static void bge_writembx(struct bge_softc *, int, int);
    247 static void bge_writembx_flush(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(struct ifnet *);
    255 
    256 #define BGE_RESET_SHUTDOWN	0
    257 #define	BGE_RESET_START		1
    258 #define	BGE_RESET_SUSPEND	2
    259 static void bge_sig_post_reset(struct bge_softc *, int);
    260 static void bge_sig_legacy(struct bge_softc *, int);
    261 static void bge_sig_pre_reset(struct bge_softc *, int);
    262 static void bge_wait_for_event_ack(struct bge_softc *);
    263 static void bge_stop_fw(struct bge_softc *);
    264 static int bge_reset(struct bge_softc *);
    265 static void bge_link_upd(struct bge_softc *);
    266 static void bge_sysctl_init(struct bge_softc *);
    267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    268 
    269 static void bge_ape_lock_init(struct bge_softc *);
    270 static void bge_ape_read_fw_ver(struct bge_softc *);
    271 static int bge_ape_lock(struct bge_softc *, int);
    272 static void bge_ape_unlock(struct bge_softc *, int);
    273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    274 static void bge_ape_driver_state_change(struct bge_softc *, int);
    275 
    276 #ifdef BGE_DEBUG
    277 #define DPRINTF(x)	if (bgedebug) printf x
    278 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    280 int	bgedebug = 0;
    281 int	bge_tso_debug = 0;
    282 void		bge_debug_info(struct bge_softc *);
    283 #else
    284 #define DPRINTF(x)
    285 #define DPRINTFN(n,x)
    286 #define BGE_TSO_PRINTF(x)
    287 #endif
    288 
    289 #ifdef BGE_EVENT_COUNTERS
    290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    293 #else
    294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    297 #endif
    298 
    299 static const struct bge_product {
    300 	pci_vendor_id_t		bp_vendor;
    301 	pci_product_id_t	bp_product;
    302 	const char		*bp_name;
    303 } bge_products[] = {
    304 	/*
    305 	 * The BCM5700 documentation seems to indicate that the hardware
    306 	 * still has the Alteon vendor ID burned into it, though it
    307 	 * should always be overridden by the value in the EEPROM.  We'll
    308 	 * check for it anyway.
    309 	 */
    310 	{ PCI_VENDOR_ALTEON,
    311 	  PCI_PRODUCT_ALTEON_BCM5700,
    312 	  "Broadcom BCM5700 Gigabit Ethernet",
    313 	  },
    314 	{ PCI_VENDOR_ALTEON,
    315 	  PCI_PRODUCT_ALTEON_BCM5701,
    316 	  "Broadcom BCM5701 Gigabit Ethernet",
    317 	  },
    318 	{ PCI_VENDOR_ALTIMA,
    319 	  PCI_PRODUCT_ALTIMA_AC1000,
    320 	  "Altima AC1000 Gigabit Ethernet",
    321 	  },
    322 	{ PCI_VENDOR_ALTIMA,
    323 	  PCI_PRODUCT_ALTIMA_AC1001,
    324 	  "Altima AC1001 Gigabit Ethernet",
    325 	   },
    326 	{ PCI_VENDOR_ALTIMA,
    327 	  PCI_PRODUCT_ALTIMA_AC1003,
    328 	  "Altima AC1003 Gigabit Ethernet",
    329 	   },
    330 	{ PCI_VENDOR_ALTIMA,
    331 	  PCI_PRODUCT_ALTIMA_AC9100,
    332 	  "Altima AC9100 Gigabit Ethernet",
    333 	  },
    334 	{ PCI_VENDOR_APPLE,
    335 	  PCI_PRODUCT_APPLE_BCM5701,
    336 	  "APPLE BCM5701 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5700,
    340 	  "Broadcom BCM5700 Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5701,
    344 	  "Broadcom BCM5701 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5702,
    348 	  "Broadcom BCM5702 Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    352 	  "Broadcom BCM5702X Gigabit Ethernet" },
    353 	{ PCI_VENDOR_BROADCOM,
    354 	  PCI_PRODUCT_BROADCOM_BCM5703,
    355 	  "Broadcom BCM5703 Gigabit Ethernet",
    356 	  },
    357 	{ PCI_VENDOR_BROADCOM,
    358 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    359 	  "Broadcom BCM5703X Gigabit Ethernet",
    360 	  },
    361 	{ PCI_VENDOR_BROADCOM,
    362 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    363 	  "Broadcom BCM5703 Gigabit Ethernet",
    364 	  },
    365 	{ PCI_VENDOR_BROADCOM,
    366 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    367 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    368 	  },
    369 	{ PCI_VENDOR_BROADCOM,
    370 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    371 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    372 	  },
    373 	{ PCI_VENDOR_BROADCOM,
    374 	  PCI_PRODUCT_BROADCOM_BCM5705,
    375 	  "Broadcom BCM5705 Gigabit Ethernet",
    376 	  },
    377 	{ PCI_VENDOR_BROADCOM,
    378 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    379 	  "Broadcom BCM5705F Gigabit Ethernet",
    380 	  },
    381 	{ PCI_VENDOR_BROADCOM,
    382 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    383 	  "Broadcom BCM5705K Gigabit Ethernet",
    384 	  },
    385 	{ PCI_VENDOR_BROADCOM,
    386 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    387 	  "Broadcom BCM5705M Gigabit Ethernet",
    388 	  },
    389 	{ PCI_VENDOR_BROADCOM,
    390 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    391 	  "Broadcom BCM5705M Gigabit Ethernet",
    392 	  },
    393 	{ PCI_VENDOR_BROADCOM,
    394 	  PCI_PRODUCT_BROADCOM_BCM5714,
    395 	  "Broadcom BCM5714 Gigabit Ethernet",
    396 	  },
    397 	{ PCI_VENDOR_BROADCOM,
    398 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    399 	  "Broadcom BCM5714S Gigabit Ethernet",
    400 	  },
    401 	{ PCI_VENDOR_BROADCOM,
    402 	  PCI_PRODUCT_BROADCOM_BCM5715,
    403 	  "Broadcom BCM5715 Gigabit Ethernet",
    404 	  },
    405 	{ PCI_VENDOR_BROADCOM,
    406 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    407 	  "Broadcom BCM5715S Gigabit Ethernet",
    408 	  },
    409 	{ PCI_VENDOR_BROADCOM,
    410 	  PCI_PRODUCT_BROADCOM_BCM5717,
    411 	  "Broadcom BCM5717 Gigabit Ethernet",
    412 	  },
    413 	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5718,
    415 	  "Broadcom BCM5718 Gigabit Ethernet",
    416 	  },
    417 	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5719,
    419 	  "Broadcom BCM5719 Gigabit Ethernet",
    420 	  },
    421 	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5720,
    423 	  "Broadcom BCM5720 Gigabit Ethernet",
    424 	  },
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5721,
    427 	  "Broadcom BCM5721 Gigabit Ethernet",
    428 	  },
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5722,
    431 	  "Broadcom BCM5722 Gigabit Ethernet",
    432 	  },
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5723,
    435 	  "Broadcom BCM5723 Gigabit Ethernet",
    436 	  },
    437 	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5724,
    439 	  "Broadcom BCM5724 Gigabit Ethernet",
    440 	  },
    441 	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5750,
    443 	  "Broadcom BCM5750 Gigabit Ethernet",
    444 	  },
    445 	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    447 	  "Broadcom BCM5750M Gigabit Ethernet",
    448 	  },
    449 	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5751,
    451 	  "Broadcom BCM5751 Gigabit Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_BROADCOM,
    454 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    455 	  "Broadcom BCM5751F Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_BROADCOM,
    458 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    459 	  "Broadcom BCM5751M Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5752,
    463 	  "Broadcom BCM5752 Gigabit Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    467 	  "Broadcom BCM5752M Gigabit Ethernet",
    468 	  },
    469 	{ PCI_VENDOR_BROADCOM,
    470 	  PCI_PRODUCT_BROADCOM_BCM5753,
    471 	  "Broadcom BCM5753 Gigabit Ethernet",
    472 	  },
    473 	{ PCI_VENDOR_BROADCOM,
    474 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    475 	  "Broadcom BCM5753F Gigabit Ethernet",
    476 	  },
    477 	{ PCI_VENDOR_BROADCOM,
    478 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    479 	  "Broadcom BCM5753M Gigabit Ethernet",
    480 	  },
    481 	{ PCI_VENDOR_BROADCOM,
    482 	  PCI_PRODUCT_BROADCOM_BCM5754,
    483 	  "Broadcom BCM5754 Gigabit Ethernet",
    484 	},
    485 	{ PCI_VENDOR_BROADCOM,
    486 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    487 	  "Broadcom BCM5754M Gigabit Ethernet",
    488 	},
    489 	{ PCI_VENDOR_BROADCOM,
    490 	  PCI_PRODUCT_BROADCOM_BCM5755,
    491 	  "Broadcom BCM5755 Gigabit Ethernet",
    492 	},
    493 	{ PCI_VENDOR_BROADCOM,
    494 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    495 	  "Broadcom BCM5755M Gigabit Ethernet",
    496 	},
    497 	{ PCI_VENDOR_BROADCOM,
    498 	  PCI_PRODUCT_BROADCOM_BCM5756,
    499 	  "Broadcom BCM5756 Gigabit Ethernet",
    500 	},
    501 	{ PCI_VENDOR_BROADCOM,
    502 	  PCI_PRODUCT_BROADCOM_BCM5761,
    503 	  "Broadcom BCM5761 Gigabit Ethernet",
    504 	},
    505 	{ PCI_VENDOR_BROADCOM,
    506 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    507 	  "Broadcom BCM5761E Gigabit Ethernet",
    508 	},
    509 	{ PCI_VENDOR_BROADCOM,
    510 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    511 	  "Broadcom BCM5761S Gigabit Ethernet",
    512 	},
    513 	{ PCI_VENDOR_BROADCOM,
    514 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    515 	  "Broadcom BCM5761SE Gigabit Ethernet",
    516 	},
    517 	{ PCI_VENDOR_BROADCOM,
    518 	  PCI_PRODUCT_BROADCOM_BCM5764,
    519 	  "Broadcom BCM5764 Gigabit Ethernet",
    520 	  },
    521 	{ PCI_VENDOR_BROADCOM,
    522 	  PCI_PRODUCT_BROADCOM_BCM5780,
    523 	  "Broadcom BCM5780 Gigabit Ethernet",
    524 	  },
    525 	{ PCI_VENDOR_BROADCOM,
    526 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    527 	  "Broadcom BCM5780S Gigabit Ethernet",
    528 	  },
    529 	{ PCI_VENDOR_BROADCOM,
    530 	  PCI_PRODUCT_BROADCOM_BCM5781,
    531 	  "Broadcom BCM5781 Gigabit Ethernet",
    532 	  },
    533 	{ PCI_VENDOR_BROADCOM,
    534 	  PCI_PRODUCT_BROADCOM_BCM5782,
    535 	  "Broadcom BCM5782 Gigabit Ethernet",
    536 	},
    537 	{ PCI_VENDOR_BROADCOM,
    538 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    539 	  "BCM5784M NetLink 1000baseT Ethernet",
    540 	},
    541 	{ PCI_VENDOR_BROADCOM,
    542 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    543 	  "BCM5785F NetLink 10/100 Ethernet",
    544 	},
    545 	{ PCI_VENDOR_BROADCOM,
    546 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    547 	  "BCM5785G NetLink 1000baseT Ethernet",
    548 	},
    549 	{ PCI_VENDOR_BROADCOM,
    550 	  PCI_PRODUCT_BROADCOM_BCM5786,
    551 	  "Broadcom BCM5786 Gigabit Ethernet",
    552 	},
    553 	{ PCI_VENDOR_BROADCOM,
    554 	  PCI_PRODUCT_BROADCOM_BCM5787,
    555 	  "Broadcom BCM5787 Gigabit Ethernet",
    556 	},
    557 	{ PCI_VENDOR_BROADCOM,
    558 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    559 	  "Broadcom BCM5787F 10/100 Ethernet",
    560 	},
    561 	{ PCI_VENDOR_BROADCOM,
    562 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    563 	  "Broadcom BCM5787M Gigabit Ethernet",
    564 	},
    565 	{ PCI_VENDOR_BROADCOM,
    566 	  PCI_PRODUCT_BROADCOM_BCM5788,
    567 	  "Broadcom BCM5788 Gigabit Ethernet",
    568 	  },
    569 	{ PCI_VENDOR_BROADCOM,
    570 	  PCI_PRODUCT_BROADCOM_BCM5789,
    571 	  "Broadcom BCM5789 Gigabit Ethernet",
    572 	  },
    573 	{ PCI_VENDOR_BROADCOM,
    574 	  PCI_PRODUCT_BROADCOM_BCM5901,
    575 	  "Broadcom BCM5901 Fast Ethernet",
    576 	  },
    577 	{ PCI_VENDOR_BROADCOM,
    578 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    579 	  "Broadcom BCM5901A2 Fast Ethernet",
    580 	  },
    581 	{ PCI_VENDOR_BROADCOM,
    582 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    583 	  "Broadcom BCM5903M Fast Ethernet",
    584 	  },
    585 	{ PCI_VENDOR_BROADCOM,
    586 	  PCI_PRODUCT_BROADCOM_BCM5906,
    587 	  "Broadcom BCM5906 Fast Ethernet",
    588 	  },
    589 	{ PCI_VENDOR_BROADCOM,
    590 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    591 	  "Broadcom BCM5906M Fast Ethernet",
    592 	  },
    593 	{ PCI_VENDOR_BROADCOM,
    594 	  PCI_PRODUCT_BROADCOM_BCM57760,
    595 	  "Broadcom BCM57760 Fast Ethernet",
    596 	  },
    597 	{ PCI_VENDOR_BROADCOM,
    598 	  PCI_PRODUCT_BROADCOM_BCM57761,
    599 	  "Broadcom BCM57761 Fast Ethernet",
    600 	  },
    601 	{ PCI_VENDOR_BROADCOM,
    602 	  PCI_PRODUCT_BROADCOM_BCM57762,
    603 	  "Broadcom BCM57762 Gigabit Ethernet",
    604 	  },
    605 	{ PCI_VENDOR_BROADCOM,
    606 	  PCI_PRODUCT_BROADCOM_BCM57765,
    607 	  "Broadcom BCM57765 Fast Ethernet",
    608 	  },
    609 	{ PCI_VENDOR_BROADCOM,
    610 	  PCI_PRODUCT_BROADCOM_BCM57766,
    611 	  "Broadcom BCM57766 Fast Ethernet",
    612 	  },
    613 	{ PCI_VENDOR_BROADCOM,
    614 	  PCI_PRODUCT_BROADCOM_BCM57780,
    615 	  "Broadcom BCM57780 Fast Ethernet",
    616 	  },
    617 	{ PCI_VENDOR_BROADCOM,
    618 	  PCI_PRODUCT_BROADCOM_BCM57781,
    619 	  "Broadcom BCM57781 Fast Ethernet",
    620 	  },
    621 	{ PCI_VENDOR_BROADCOM,
    622 	  PCI_PRODUCT_BROADCOM_BCM57782,
    623 	  "Broadcom BCM57782 Fast Ethernet",
    624 	  },
    625 	{ PCI_VENDOR_BROADCOM,
    626 	  PCI_PRODUCT_BROADCOM_BCM57785,
    627 	  "Broadcom BCM57785 Fast Ethernet",
    628 	  },
    629 	{ PCI_VENDOR_BROADCOM,
    630 	  PCI_PRODUCT_BROADCOM_BCM57786,
    631 	  "Broadcom BCM57786 Fast Ethernet",
    632 	  },
    633 	{ PCI_VENDOR_BROADCOM,
    634 	  PCI_PRODUCT_BROADCOM_BCM57788,
    635 	  "Broadcom BCM57788 Fast Ethernet",
    636 	  },
    637 	{ PCI_VENDOR_BROADCOM,
    638 	  PCI_PRODUCT_BROADCOM_BCM57790,
    639 	  "Broadcom BCM57790 Fast Ethernet",
    640 	  },
    641 	{ PCI_VENDOR_BROADCOM,
    642 	  PCI_PRODUCT_BROADCOM_BCM57791,
    643 	  "Broadcom BCM57791 Fast Ethernet",
    644 	  },
    645 	{ PCI_VENDOR_BROADCOM,
    646 	  PCI_PRODUCT_BROADCOM_BCM57795,
    647 	  "Broadcom BCM57795 Fast Ethernet",
    648 	  },
    649 	{ PCI_VENDOR_SCHNEIDERKOCH,
    650 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    651 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    652 	  },
    653 	{ PCI_VENDOR_3COM,
    654 	  PCI_PRODUCT_3COM_3C996,
    655 	  "3Com 3c996 Gigabit Ethernet",
    656 	  },
    657 	{ PCI_VENDOR_FUJITSU4,
    658 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    659 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    660 	  },
    661 	{ PCI_VENDOR_FUJITSU4,
    662 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    663 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    664 	  },
    665 	{ PCI_VENDOR_FUJITSU4,
    666 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    667 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    668 	  },
    669 	{ 0,
    670 	  0,
    671 	  NULL },
    672 };
    673 
    674 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    675 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    676 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
    677 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    678 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
    679 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
    680 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    681 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    682 
    683 static const struct bge_revision {
    684 	uint32_t		br_chipid;
    685 	const char		*br_name;
    686 } bge_revisions[] = {
    687 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    688 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    689 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    690 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    691 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    692 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    693 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    694 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    695 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    696 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    697 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    698 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    699 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    700 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    701 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    702 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    703 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    704 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    705 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    706 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    707 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    708 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    709 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    710 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    711 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    712 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    713 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    714 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    715 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    716 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    717 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    718 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    719 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    720 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    721 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    722 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    723 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    724 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    725 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    726 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    727 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    728 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    729 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    730 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    731 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    732 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    733 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    734 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    735 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    736 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    737 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    738 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    739 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    740 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    741 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    742 	/* 5754 and 5787 share the same ASIC ID */
    743 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    744 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    745 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    746 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    747 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    748 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    749 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    750 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    751 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    752 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    753 
    754 	{ 0, NULL }
    755 };
    756 
    757 /*
    758  * Some defaults for major revisions, so that newer steppings
    759  * that we don't know about have a shot at working.
    760  */
    761 static const struct bge_revision bge_majorrevs[] = {
    762 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    763 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    764 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    765 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    766 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    767 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    768 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    769 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    770 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    771 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    772 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    773 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    774 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    775 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    776 	/* 5754 and 5787 share the same ASIC ID */
    777 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    778 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    779 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    780 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    781 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    782 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    783 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    784 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    785 
    786 	{ 0, NULL }
    787 };
    788 
    789 static int bge_allow_asf = 1;
    790 
    791 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    792     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    793 
    794 static uint32_t
    795 bge_readmem_ind(struct bge_softc *sc, int off)
    796 {
    797 	pcireg_t val;
    798 
    799 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    800 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    801 		return 0;
    802 
    803 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    804 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    806 	return val;
    807 }
    808 
    809 static void
    810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    811 {
    812 
    813 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    816 }
    817 
    818 /*
    819  * PCI Express only
    820  */
    821 static void
    822 bge_set_max_readrq(struct bge_softc *sc)
    823 {
    824 	pcireg_t val;
    825 
    826 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    827 	    + PCIE_DCSR);
    828 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    829 	switch (sc->bge_expmrq) {
    830 	case 2048:
    831 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    832 		break;
    833 	case 4096:
    834 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    835 		break;
    836 	default:
    837 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    838 		break;
    839 	}
    840 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    841 	    + PCIE_DCSR, val);
    842 }
    843 
    844 #ifdef notdef
    845 static uint32_t
    846 bge_readreg_ind(struct bge_softc *sc, int off)
    847 {
    848 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    849 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    850 }
    851 #endif
    852 
    853 static void
    854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    855 {
    856 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    858 }
    859 
    860 static void
    861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    862 {
    863 	CSR_WRITE_4(sc, off, val);
    864 }
    865 
    866 static void
    867 bge_writembx(struct bge_softc *sc, int off, int val)
    868 {
    869 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    870 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    871 
    872 	CSR_WRITE_4(sc, off, val);
    873 }
    874 
    875 static void
    876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    877 {
    878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    879 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    880 
    881 	CSR_WRITE_4_FLUSH(sc, off, val);
    882 }
    883 
    884 /*
    885  * Clear all stale locks and select the lock for this driver instance.
    886  */
    887 void
    888 bge_ape_lock_init(struct bge_softc *sc)
    889 {
    890 	struct pci_attach_args *pa = &(sc->bge_pa);
    891 	uint32_t bit, regbase;
    892 	int i;
    893 
    894 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    895 		regbase = BGE_APE_LOCK_GRANT;
    896 	else
    897 		regbase = BGE_APE_PER_LOCK_GRANT;
    898 
    899 	/* Clear any stale locks. */
    900 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    901 		switch (i) {
    902 		case BGE_APE_LOCK_PHY0:
    903 		case BGE_APE_LOCK_PHY1:
    904 		case BGE_APE_LOCK_PHY2:
    905 		case BGE_APE_LOCK_PHY3:
    906 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    907 			break;
    908 		default:
    909 			if (pa->pa_function == 0)
    910 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    911 			else
    912 				bit = (1 << pa->pa_function);
    913 		}
    914 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    915 	}
    916 
    917 	/* Select the PHY lock based on the device's function number. */
    918 	switch (pa->pa_function) {
    919 	case 0:
    920 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    921 		break;
    922 	case 1:
    923 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    924 		break;
    925 	case 2:
    926 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    927 		break;
    928 	case 3:
    929 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    930 		break;
    931 	default:
    932 		printf("%s: PHY lock not supported on function\n",
    933 		    device_xname(sc->bge_dev));
    934 		break;
    935 	}
    936 }
    937 
    938 /*
    939  * Check for APE firmware, set flags, and print version info.
    940  */
    941 void
    942 bge_ape_read_fw_ver(struct bge_softc *sc)
    943 {
    944 	const char *fwtype;
    945 	uint32_t apedata, features;
    946 
    947 	/* Check for a valid APE signature in shared memory. */
    948 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    949 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    950 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    951 		return;
    952 	}
    953 
    954 	/* Check if APE firmware is running. */
    955 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    956 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    957 		printf("%s: APE signature found but FW status not ready! "
    958 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    959 		return;
    960 	}
    961 
    962 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    963 
    964 	/* Fetch the APE firwmare type and version. */
    965 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    966 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    967 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    968 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    969 		fwtype = "NCSI";
    970 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    971 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    972 		fwtype = "DASH";
    973 	} else
    974 		fwtype = "UNKN";
    975 
    976 	/* Print the APE firmware version. */
    977 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
    978 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    979 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    980 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    982 }
    983 
    984 int
    985 bge_ape_lock(struct bge_softc *sc, int locknum)
    986 {
    987 	struct pci_attach_args *pa = &(sc->bge_pa);
    988 	uint32_t bit, gnt, req, status;
    989 	int i, off;
    990 
    991 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    992 		return (0);
    993 
    994 	/* Lock request/grant registers have different bases. */
    995 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    996 		req = BGE_APE_LOCK_REQ;
    997 		gnt = BGE_APE_LOCK_GRANT;
    998 	} else {
    999 		req = BGE_APE_PER_LOCK_REQ;
   1000 		gnt = BGE_APE_PER_LOCK_GRANT;
   1001 	}
   1002 
   1003 	off = 4 * locknum;
   1004 
   1005 	switch (locknum) {
   1006 	case BGE_APE_LOCK_GPIO:
   1007 		/* Lock required when using GPIO. */
   1008 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1009 			return (0);
   1010 		if (pa->pa_function == 0)
   1011 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1012 		else
   1013 			bit = (1 << pa->pa_function);
   1014 		break;
   1015 	case BGE_APE_LOCK_GRC:
   1016 		/* Lock required to reset the device. */
   1017 		if (pa->pa_function == 0)
   1018 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1019 		else
   1020 			bit = (1 << pa->pa_function);
   1021 		break;
   1022 	case BGE_APE_LOCK_MEM:
   1023 		/* Lock required when accessing certain APE memory. */
   1024 		if (pa->pa_function == 0)
   1025 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1026 		else
   1027 			bit = (1 << pa->pa_function);
   1028 		break;
   1029 	case BGE_APE_LOCK_PHY0:
   1030 	case BGE_APE_LOCK_PHY1:
   1031 	case BGE_APE_LOCK_PHY2:
   1032 	case BGE_APE_LOCK_PHY3:
   1033 		/* Lock required when accessing PHYs. */
   1034 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1035 		break;
   1036 	default:
   1037 		return (EINVAL);
   1038 	}
   1039 
   1040 	/* Request a lock. */
   1041 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1042 
   1043 	/* Wait up to 1 second to acquire lock. */
   1044 	for (i = 0; i < 20000; i++) {
   1045 		status = APE_READ_4(sc, gnt + off);
   1046 		if (status == bit)
   1047 			break;
   1048 		DELAY(50);
   1049 	}
   1050 
   1051 	/* Handle any errors. */
   1052 	if (status != bit) {
   1053 		printf("%s: APE lock %d request failed! "
   1054 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1055 		    device_xname(sc->bge_dev),
   1056 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1057 		    status & 0xFFFF);
   1058 		/* Revoke the lock request. */
   1059 		APE_WRITE_4(sc, gnt + off, bit);
   1060 		return (EBUSY);
   1061 	}
   1062 
   1063 	return (0);
   1064 }
   1065 
   1066 void
   1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1068 {
   1069 	struct pci_attach_args *pa = &(sc->bge_pa);
   1070 	uint32_t bit, gnt;
   1071 	int off;
   1072 
   1073 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1074 		return;
   1075 
   1076 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1077 		gnt = BGE_APE_LOCK_GRANT;
   1078 	else
   1079 		gnt = BGE_APE_PER_LOCK_GRANT;
   1080 
   1081 	off = 4 * locknum;
   1082 
   1083 	switch (locknum) {
   1084 	case BGE_APE_LOCK_GPIO:
   1085 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1086 			return;
   1087 		if (pa->pa_function == 0)
   1088 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1089 		else
   1090 			bit = (1 << pa->pa_function);
   1091 		break;
   1092 	case BGE_APE_LOCK_GRC:
   1093 		if (pa->pa_function == 0)
   1094 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1095 		else
   1096 			bit = (1 << pa->pa_function);
   1097 		break;
   1098 	case BGE_APE_LOCK_MEM:
   1099 		if (pa->pa_function == 0)
   1100 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1101 		else
   1102 			bit = (1 << pa->pa_function);
   1103 		break;
   1104 	case BGE_APE_LOCK_PHY0:
   1105 	case BGE_APE_LOCK_PHY1:
   1106 	case BGE_APE_LOCK_PHY2:
   1107 	case BGE_APE_LOCK_PHY3:
   1108 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1109 		break;
   1110 	default:
   1111 		return;
   1112 	}
   1113 
   1114 	/* Write and flush for consecutive bge_ape_lock() */
   1115 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1116 }
   1117 
   1118 /*
   1119  * Send an event to the APE firmware.
   1120  */
   1121 void
   1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1123 {
   1124 	uint32_t apedata;
   1125 	int i;
   1126 
   1127 	/* NCSI does not support APE events. */
   1128 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1129 		return;
   1130 
   1131 	/* Wait up to 1ms for APE to service previous event. */
   1132 	for (i = 10; i > 0; i--) {
   1133 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1134 			break;
   1135 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1136 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1137 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1138 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1139 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1140 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1141 			break;
   1142 		}
   1143 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1144 		DELAY(100);
   1145 	}
   1146 	if (i == 0) {
   1147 		printf("%s: APE event 0x%08x send timed out\n",
   1148 		    device_xname(sc->bge_dev), event);
   1149 	}
   1150 }
   1151 
   1152 void
   1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1154 {
   1155 	uint32_t apedata, event;
   1156 
   1157 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1158 		return;
   1159 
   1160 	switch (kind) {
   1161 	case BGE_RESET_START:
   1162 		/* If this is the first load, clear the load counter. */
   1163 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1164 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1165 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1166 		else {
   1167 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1168 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1169 		}
   1170 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1171 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1172 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1173 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1174 
   1175 		/* Add some version info if bge(4) supports it. */
   1176 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1177 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1178 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1179 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1180 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1181 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1183 		    BGE_APE_HOST_DRVR_STATE_START);
   1184 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1185 		break;
   1186 	case BGE_RESET_SHUTDOWN:
   1187 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1188 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1189 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1190 		break;
   1191 	case BGE_RESET_SUSPEND:
   1192 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1193 		break;
   1194 	default:
   1195 		return;
   1196 	}
   1197 
   1198 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1199 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1200 }
   1201 
   1202 static uint8_t
   1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1204 {
   1205 	uint32_t access, byte = 0;
   1206 	int i;
   1207 
   1208 	/* Lock. */
   1209 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1210 	for (i = 0; i < 8000; i++) {
   1211 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1212 			break;
   1213 		DELAY(20);
   1214 	}
   1215 	if (i == 8000)
   1216 		return 1;
   1217 
   1218 	/* Enable access. */
   1219 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1220 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1221 
   1222 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1223 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1224 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1225 		DELAY(10);
   1226 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1227 			DELAY(10);
   1228 			break;
   1229 		}
   1230 	}
   1231 
   1232 	if (i == BGE_TIMEOUT * 10) {
   1233 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1234 		return 1;
   1235 	}
   1236 
   1237 	/* Get result. */
   1238 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1239 
   1240 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1241 
   1242 	/* Disable access. */
   1243 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1244 
   1245 	/* Unlock. */
   1246 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1247 
   1248 	return 0;
   1249 }
   1250 
   1251 /*
   1252  * Read a sequence of bytes from NVRAM.
   1253  */
   1254 static int
   1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1256 {
   1257 	int error = 0, i;
   1258 	uint8_t byte = 0;
   1259 
   1260 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1261 		return 1;
   1262 
   1263 	for (i = 0; i < cnt; i++) {
   1264 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1265 		if (error)
   1266 			break;
   1267 		*(dest + i) = byte;
   1268 	}
   1269 
   1270 	return (error ? 1 : 0);
   1271 }
   1272 
   1273 /*
   1274  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1275  * BCM570x supports both the traditional bitbang interface and an
   1276  * auto access interface for reading the EEPROM. We use the auto
   1277  * access method.
   1278  */
   1279 static uint8_t
   1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1281 {
   1282 	int i;
   1283 	uint32_t byte = 0;
   1284 
   1285 	/*
   1286 	 * Enable use of auto EEPROM access so we can avoid
   1287 	 * having to use the bitbang method.
   1288 	 */
   1289 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1290 
   1291 	/* Reset the EEPROM, load the clock period. */
   1292 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1293 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1294 	DELAY(20);
   1295 
   1296 	/* Issue the read EEPROM command. */
   1297 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1298 
   1299 	/* Wait for completion */
   1300 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1301 		DELAY(10);
   1302 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1303 			break;
   1304 	}
   1305 
   1306 	if (i == BGE_TIMEOUT * 10) {
   1307 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1308 		return 1;
   1309 	}
   1310 
   1311 	/* Get result. */
   1312 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1313 
   1314 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1315 
   1316 	return 0;
   1317 }
   1318 
   1319 /*
   1320  * Read a sequence of bytes from the EEPROM.
   1321  */
   1322 static int
   1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1324 {
   1325 	int error = 0, i;
   1326 	uint8_t byte = 0;
   1327 	char *dest = destv;
   1328 
   1329 	for (i = 0; i < cnt; i++) {
   1330 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1331 		if (error)
   1332 			break;
   1333 		*(dest + i) = byte;
   1334 	}
   1335 
   1336 	return (error ? 1 : 0);
   1337 }
   1338 
   1339 static int
   1340 bge_miibus_readreg(device_t dev, int phy, int reg)
   1341 {
   1342 	struct bge_softc *sc = device_private(dev);
   1343 	uint32_t val;
   1344 	uint32_t autopoll;
   1345 	int i;
   1346 
   1347 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1348 		return 0;
   1349 
   1350 	/* Reading with autopolling on may trigger PCI errors */
   1351 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1352 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1353 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1354 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1355 		DELAY(80);
   1356 	}
   1357 
   1358 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1359 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1360 
   1361 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1362 		delay(10);
   1363 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1364 		if (!(val & BGE_MICOMM_BUSY)) {
   1365 			DELAY(5);
   1366 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1367 			break;
   1368 		}
   1369 	}
   1370 
   1371 	if (i == BGE_TIMEOUT) {
   1372 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1373 		val = 0;
   1374 		goto done;
   1375 	}
   1376 
   1377 done:
   1378 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1379 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1380 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1381 		DELAY(80);
   1382 	}
   1383 
   1384 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1385 
   1386 	if (val & BGE_MICOMM_READFAIL)
   1387 		return 0;
   1388 
   1389 	return (val & 0xFFFF);
   1390 }
   1391 
   1392 static void
   1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1394 {
   1395 	struct bge_softc *sc = device_private(dev);
   1396 	uint32_t autopoll;
   1397 	int i;
   1398 
   1399 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1400 		return;
   1401 
   1402 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1403 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1404 		return;
   1405 
   1406 	/* Reading with autopolling on may trigger PCI errors */
   1407 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1408 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1409 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1410 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1411 		DELAY(80);
   1412 	}
   1413 
   1414 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1415 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1416 
   1417 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1418 		delay(10);
   1419 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1420 			delay(5);
   1421 			CSR_READ_4(sc, BGE_MI_COMM);
   1422 			break;
   1423 		}
   1424 	}
   1425 
   1426 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1427 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1428 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1429 		delay(80);
   1430 	}
   1431 
   1432 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1433 
   1434 	if (i == BGE_TIMEOUT)
   1435 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1436 }
   1437 
   1438 static void
   1439 bge_miibus_statchg(struct ifnet *ifp)
   1440 {
   1441 	struct bge_softc *sc = ifp->if_softc;
   1442 	struct mii_data *mii = &sc->bge_mii;
   1443 	uint32_t mac_mode, rx_mode, tx_mode;
   1444 
   1445 	/*
   1446 	 * Get flow control negotiation result.
   1447 	 */
   1448 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1449 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
   1450 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1451 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1452 	}
   1453 
   1454 	/* Set the port mode (MII/GMII) to match the link speed. */
   1455 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1456 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1457 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1458 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1459 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1460 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1461 		mac_mode |= BGE_PORTMODE_GMII;
   1462 	else
   1463 		mac_mode |= BGE_PORTMODE_MII;
   1464 
   1465 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1466 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1467 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1468 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1469 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1470 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1471 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1472 	} else
   1473 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1474 
   1475 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1476 	DELAY(40);
   1477 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1478 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1479 }
   1480 
   1481 /*
   1482  * Update rx threshold levels to values in a particular slot
   1483  * of the interrupt-mitigation table bge_rx_threshes.
   1484  */
   1485 static void
   1486 bge_set_thresh(struct ifnet *ifp, int lvl)
   1487 {
   1488 	struct bge_softc *sc = ifp->if_softc;
   1489 	int s;
   1490 
   1491 	/* For now, just save the new Rx-intr thresholds and record
   1492 	 * that a threshold update is pending.  Updating the hardware
   1493 	 * registers here (even at splhigh()) is observed to
   1494 	 * occasionaly cause glitches where Rx-interrupts are not
   1495 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1496 	 */
   1497 	s = splnet();
   1498 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1499 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1500 	sc->bge_pending_rxintr_change = 1;
   1501 	splx(s);
   1502 }
   1503 
   1504 
   1505 /*
   1506  * Update Rx thresholds of all bge devices
   1507  */
   1508 static void
   1509 bge_update_all_threshes(int lvl)
   1510 {
   1511 	struct ifnet *ifp;
   1512 	const char * const namebuf = "bge";
   1513 	int namelen;
   1514 
   1515 	if (lvl < 0)
   1516 		lvl = 0;
   1517 	else if (lvl >= NBGE_RX_THRESH)
   1518 		lvl = NBGE_RX_THRESH - 1;
   1519 
   1520 	namelen = strlen(namebuf);
   1521 	/*
   1522 	 * Now search all the interfaces for this name/number
   1523 	 */
   1524 	IFNET_FOREACH(ifp) {
   1525 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1526 		      continue;
   1527 		/* We got a match: update if doing auto-threshold-tuning */
   1528 		if (bge_auto_thresh)
   1529 			bge_set_thresh(ifp, lvl);
   1530 	}
   1531 }
   1532 
   1533 /*
   1534  * Handle events that have triggered interrupts.
   1535  */
   1536 static void
   1537 bge_handle_events(struct bge_softc *sc)
   1538 {
   1539 
   1540 	return;
   1541 }
   1542 
   1543 /*
   1544  * Memory management for jumbo frames.
   1545  */
   1546 
   1547 static int
   1548 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1549 {
   1550 	char *ptr, *kva;
   1551 	bus_dma_segment_t	seg;
   1552 	int		i, rseg, state, error;
   1553 	struct bge_jpool_entry   *entry;
   1554 
   1555 	state = error = 0;
   1556 
   1557 	/* Grab a big chunk o' storage. */
   1558 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1559 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1560 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1561 		return ENOBUFS;
   1562 	}
   1563 
   1564 	state = 1;
   1565 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1566 	    BUS_DMA_NOWAIT)) {
   1567 		aprint_error_dev(sc->bge_dev,
   1568 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1569 		error = ENOBUFS;
   1570 		goto out;
   1571 	}
   1572 
   1573 	state = 2;
   1574 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1575 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1576 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1577 		error = ENOBUFS;
   1578 		goto out;
   1579 	}
   1580 
   1581 	state = 3;
   1582 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1583 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1584 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1585 		error = ENOBUFS;
   1586 		goto out;
   1587 	}
   1588 
   1589 	state = 4;
   1590 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1591 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1592 
   1593 	SLIST_INIT(&sc->bge_jfree_listhead);
   1594 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1595 
   1596 	/*
   1597 	 * Now divide it up into 9K pieces and save the addresses
   1598 	 * in an array.
   1599 	 */
   1600 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1601 	for (i = 0; i < BGE_JSLOTS; i++) {
   1602 		sc->bge_cdata.bge_jslots[i] = ptr;
   1603 		ptr += BGE_JLEN;
   1604 		entry = malloc(sizeof(struct bge_jpool_entry),
   1605 		    M_DEVBUF, M_NOWAIT);
   1606 		if (entry == NULL) {
   1607 			aprint_error_dev(sc->bge_dev,
   1608 			    "no memory for jumbo buffer queue!\n");
   1609 			error = ENOBUFS;
   1610 			goto out;
   1611 		}
   1612 		entry->slot = i;
   1613 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1614 				 entry, jpool_entries);
   1615 	}
   1616 out:
   1617 	if (error != 0) {
   1618 		switch (state) {
   1619 		case 4:
   1620 			bus_dmamap_unload(sc->bge_dmatag,
   1621 			    sc->bge_cdata.bge_rx_jumbo_map);
   1622 		case 3:
   1623 			bus_dmamap_destroy(sc->bge_dmatag,
   1624 			    sc->bge_cdata.bge_rx_jumbo_map);
   1625 		case 2:
   1626 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1627 		case 1:
   1628 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1629 			break;
   1630 		default:
   1631 			break;
   1632 		}
   1633 	}
   1634 
   1635 	return error;
   1636 }
   1637 
   1638 /*
   1639  * Allocate a jumbo buffer.
   1640  */
   1641 static void *
   1642 bge_jalloc(struct bge_softc *sc)
   1643 {
   1644 	struct bge_jpool_entry   *entry;
   1645 
   1646 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1647 
   1648 	if (entry == NULL) {
   1649 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1650 		return NULL;
   1651 	}
   1652 
   1653 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1654 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1655 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1656 }
   1657 
   1658 /*
   1659  * Release a jumbo buffer.
   1660  */
   1661 static void
   1662 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1663 {
   1664 	struct bge_jpool_entry *entry;
   1665 	struct bge_softc *sc;
   1666 	int i, s;
   1667 
   1668 	/* Extract the softc struct pointer. */
   1669 	sc = (struct bge_softc *)arg;
   1670 
   1671 	if (sc == NULL)
   1672 		panic("bge_jfree: can't find softc pointer!");
   1673 
   1674 	/* calculate the slot this buffer belongs to */
   1675 
   1676 	i = ((char *)buf
   1677 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1678 
   1679 	if ((i < 0) || (i >= BGE_JSLOTS))
   1680 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1681 
   1682 	s = splvm();
   1683 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1684 	if (entry == NULL)
   1685 		panic("bge_jfree: buffer not in use!");
   1686 	entry->slot = i;
   1687 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1688 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1689 
   1690 	if (__predict_true(m != NULL))
   1691   		pool_cache_put(mb_cache, m);
   1692 	splx(s);
   1693 }
   1694 
   1695 
   1696 /*
   1697  * Initialize a standard receive ring descriptor.
   1698  */
   1699 static int
   1700 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1701     bus_dmamap_t dmamap)
   1702 {
   1703 	struct mbuf		*m_new = NULL;
   1704 	struct bge_rx_bd	*r;
   1705 	int			error;
   1706 
   1707 	if (dmamap == NULL) {
   1708 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1709 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1710 		if (error != 0)
   1711 			return error;
   1712 	}
   1713 
   1714 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1715 
   1716 	if (m == NULL) {
   1717 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1718 		if (m_new == NULL)
   1719 			return ENOBUFS;
   1720 
   1721 		MCLGET(m_new, M_DONTWAIT);
   1722 		if (!(m_new->m_flags & M_EXT)) {
   1723 			m_freem(m_new);
   1724 			return ENOBUFS;
   1725 		}
   1726 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1727 
   1728 	} else {
   1729 		m_new = m;
   1730 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1731 		m_new->m_data = m_new->m_ext.ext_buf;
   1732 	}
   1733 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1734 	    m_adj(m_new, ETHER_ALIGN);
   1735 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1736 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1737 		return ENOBUFS;
   1738 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1739 	    BUS_DMASYNC_PREREAD);
   1740 
   1741 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1742 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1743 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1744 	r->bge_flags = BGE_RXBDFLAG_END;
   1745 	r->bge_len = m_new->m_len;
   1746 	r->bge_idx = i;
   1747 
   1748 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1749 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1750 		i * sizeof (struct bge_rx_bd),
   1751 	    sizeof (struct bge_rx_bd),
   1752 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1753 
   1754 	return 0;
   1755 }
   1756 
   1757 /*
   1758  * Initialize a jumbo receive ring descriptor. This allocates
   1759  * a jumbo buffer from the pool managed internally by the driver.
   1760  */
   1761 static int
   1762 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1763 {
   1764 	struct mbuf *m_new = NULL;
   1765 	struct bge_rx_bd *r;
   1766 	void *buf = NULL;
   1767 
   1768 	if (m == NULL) {
   1769 
   1770 		/* Allocate the mbuf. */
   1771 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1772 		if (m_new == NULL)
   1773 			return ENOBUFS;
   1774 
   1775 		/* Allocate the jumbo buffer */
   1776 		buf = bge_jalloc(sc);
   1777 		if (buf == NULL) {
   1778 			m_freem(m_new);
   1779 			aprint_error_dev(sc->bge_dev,
   1780 			    "jumbo allocation failed -- packet dropped!\n");
   1781 			return ENOBUFS;
   1782 		}
   1783 
   1784 		/* Attach the buffer to the mbuf. */
   1785 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1786 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1787 		    bge_jfree, sc);
   1788 		m_new->m_flags |= M_EXT_RW;
   1789 	} else {
   1790 		m_new = m;
   1791 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1792 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1793 	}
   1794 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1795 	    m_adj(m_new, ETHER_ALIGN);
   1796 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1797 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1798 	    BUS_DMASYNC_PREREAD);
   1799 	/* Set up the descriptor. */
   1800 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1801 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1802 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1803 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1804 	r->bge_len = m_new->m_len;
   1805 	r->bge_idx = i;
   1806 
   1807 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1808 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1809 		i * sizeof (struct bge_rx_bd),
   1810 	    sizeof (struct bge_rx_bd),
   1811 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1812 
   1813 	return 0;
   1814 }
   1815 
   1816 /*
   1817  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1818  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1819  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1820  * the NIC.
   1821  */
   1822 static int
   1823 bge_init_rx_ring_std(struct bge_softc *sc)
   1824 {
   1825 	int i;
   1826 
   1827 	if (sc->bge_flags & BGE_RXRING_VALID)
   1828 		return 0;
   1829 
   1830 	for (i = 0; i < BGE_SSLOTS; i++) {
   1831 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1832 			return ENOBUFS;
   1833 	}
   1834 
   1835 	sc->bge_std = i - 1;
   1836 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1837 
   1838 	sc->bge_flags |= BGE_RXRING_VALID;
   1839 
   1840 	return 0;
   1841 }
   1842 
   1843 static void
   1844 bge_free_rx_ring_std(struct bge_softc *sc)
   1845 {
   1846 	int i;
   1847 
   1848 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1849 		return;
   1850 
   1851 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1852 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1853 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1854 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1855 			bus_dmamap_destroy(sc->bge_dmatag,
   1856 			    sc->bge_cdata.bge_rx_std_map[i]);
   1857 		}
   1858 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1859 		    sizeof(struct bge_rx_bd));
   1860 	}
   1861 
   1862 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1863 }
   1864 
   1865 static int
   1866 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1867 {
   1868 	int i;
   1869 	volatile struct bge_rcb *rcb;
   1870 
   1871 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1872 		return 0;
   1873 
   1874 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1875 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1876 			return ENOBUFS;
   1877 	}
   1878 
   1879 	sc->bge_jumbo = i - 1;
   1880 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1881 
   1882 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1883 	rcb->bge_maxlen_flags = 0;
   1884 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1885 
   1886 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1887 
   1888 	return 0;
   1889 }
   1890 
   1891 static void
   1892 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1893 {
   1894 	int i;
   1895 
   1896 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1897 		return;
   1898 
   1899 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1900 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1901 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1902 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1903 		}
   1904 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1905 		    sizeof(struct bge_rx_bd));
   1906 	}
   1907 
   1908 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1909 }
   1910 
   1911 static void
   1912 bge_free_tx_ring(struct bge_softc *sc)
   1913 {
   1914 	int i;
   1915 	struct txdmamap_pool_entry *dma;
   1916 
   1917 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1918 		return;
   1919 
   1920 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1921 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1922 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1923 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1924 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1925 					    link);
   1926 			sc->txdma[i] = 0;
   1927 		}
   1928 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1929 		    sizeof(struct bge_tx_bd));
   1930 	}
   1931 
   1932 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1933 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1934 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1935 		free(dma, M_DEVBUF);
   1936 	}
   1937 
   1938 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1939 }
   1940 
   1941 static int
   1942 bge_init_tx_ring(struct bge_softc *sc)
   1943 {
   1944 	int i;
   1945 	bus_dmamap_t dmamap;
   1946 	struct txdmamap_pool_entry *dma;
   1947 
   1948 	if (sc->bge_flags & BGE_TXRING_VALID)
   1949 		return 0;
   1950 
   1951 	sc->bge_txcnt = 0;
   1952 	sc->bge_tx_saved_considx = 0;
   1953 
   1954 	/* Initialize transmit producer index for host-memory send ring. */
   1955 	sc->bge_tx_prodidx = 0;
   1956 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1957 	/* 5700 b2 errata */
   1958 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1959 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1960 
   1961 	/* NIC-memory send ring not used; initialize to zero. */
   1962 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1963 	/* 5700 b2 errata */
   1964 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1965 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1966 
   1967 	SLIST_INIT(&sc->txdma_list);
   1968 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1969 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1970 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1971 		    &dmamap))
   1972 			return ENOBUFS;
   1973 		if (dmamap == NULL)
   1974 			panic("dmamap NULL in bge_init_tx_ring");
   1975 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1976 		if (dma == NULL) {
   1977 			aprint_error_dev(sc->bge_dev,
   1978 			    "can't alloc txdmamap_pool_entry\n");
   1979 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1980 			return ENOMEM;
   1981 		}
   1982 		dma->dmamap = dmamap;
   1983 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1984 	}
   1985 
   1986 	sc->bge_flags |= BGE_TXRING_VALID;
   1987 
   1988 	return 0;
   1989 }
   1990 
   1991 static void
   1992 bge_setmulti(struct bge_softc *sc)
   1993 {
   1994 	struct ethercom		*ac = &sc->ethercom;
   1995 	struct ifnet		*ifp = &ac->ec_if;
   1996 	struct ether_multi	*enm;
   1997 	struct ether_multistep  step;
   1998 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1999 	uint32_t		h;
   2000 	int			i;
   2001 
   2002 	if (ifp->if_flags & IFF_PROMISC)
   2003 		goto allmulti;
   2004 
   2005 	/* Now program new ones. */
   2006 	ETHER_FIRST_MULTI(step, ac, enm);
   2007 	while (enm != NULL) {
   2008 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2009 			/*
   2010 			 * We must listen to a range of multicast addresses.
   2011 			 * For now, just accept all multicasts, rather than
   2012 			 * trying to set only those filter bits needed to match
   2013 			 * the range.  (At this time, the only use of address
   2014 			 * ranges is for IP multicast routing, for which the
   2015 			 * range is big enough to require all bits set.)
   2016 			 */
   2017 			goto allmulti;
   2018 		}
   2019 
   2020 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2021 
   2022 		/* Just want the 7 least-significant bits. */
   2023 		h &= 0x7f;
   2024 
   2025 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2026 		ETHER_NEXT_MULTI(step, enm);
   2027 	}
   2028 
   2029 	ifp->if_flags &= ~IFF_ALLMULTI;
   2030 	goto setit;
   2031 
   2032  allmulti:
   2033 	ifp->if_flags |= IFF_ALLMULTI;
   2034 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2035 
   2036  setit:
   2037 	for (i = 0; i < 4; i++)
   2038 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2039 }
   2040 
   2041 static void
   2042 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2043 {
   2044 
   2045 	/*
   2046 	 * Some chips don't like this so only do this if ASF is enabled
   2047 	 */
   2048 	if (sc->bge_asf_mode)
   2049 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2050 
   2051 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2052 		switch (type) {
   2053 		case BGE_RESET_START:
   2054 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2055 			    BGE_FW_DRV_STATE_START);
   2056 			break;
   2057 		case BGE_RESET_SHUTDOWN:
   2058 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2059 			    BGE_FW_DRV_STATE_UNLOAD);
   2060 			break;
   2061 		case BGE_RESET_SUSPEND:
   2062 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2063 			    BGE_FW_DRV_STATE_SUSPEND);
   2064 			break;
   2065 		}
   2066 	}
   2067 
   2068 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2069 		bge_ape_driver_state_change(sc, type);
   2070 }
   2071 
   2072 static void
   2073 bge_sig_post_reset(struct bge_softc *sc, int type)
   2074 {
   2075 
   2076 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2077 		switch (type) {
   2078 		case BGE_RESET_START:
   2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2080 			    BGE_FW_DRV_STATE_START_DONE);
   2081 			/* START DONE */
   2082 			break;
   2083 		case BGE_RESET_SHUTDOWN:
   2084 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2085 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2086 			break;
   2087 		}
   2088 	}
   2089 
   2090 	if (type == BGE_RESET_SHUTDOWN)
   2091 		bge_ape_driver_state_change(sc, type);
   2092 }
   2093 
   2094 static void
   2095 bge_sig_legacy(struct bge_softc *sc, int type)
   2096 {
   2097 
   2098 	if (sc->bge_asf_mode) {
   2099 		switch (type) {
   2100 		case BGE_RESET_START:
   2101 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2102 			    BGE_FW_DRV_STATE_START);
   2103 			break;
   2104 		case BGE_RESET_SHUTDOWN:
   2105 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2106 			    BGE_FW_DRV_STATE_UNLOAD);
   2107 			break;
   2108 		}
   2109 	}
   2110 }
   2111 
   2112 static void
   2113 bge_wait_for_event_ack(struct bge_softc *sc)
   2114 {
   2115 	int i;
   2116 
   2117 	/* wait up to 2500usec */
   2118 	for (i = 0; i < 250; i++) {
   2119 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2120 			BGE_RX_CPU_DRV_EVENT))
   2121 			break;
   2122 		DELAY(10);
   2123 	}
   2124 }
   2125 
   2126 static void
   2127 bge_stop_fw(struct bge_softc *sc)
   2128 {
   2129 
   2130 	if (sc->bge_asf_mode) {
   2131 		bge_wait_for_event_ack(sc);
   2132 
   2133 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2134 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2135 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2136 
   2137 		bge_wait_for_event_ack(sc);
   2138 	}
   2139 }
   2140 
   2141 static int
   2142 bge_poll_fw(struct bge_softc *sc)
   2143 {
   2144 	uint32_t val;
   2145 	int i;
   2146 
   2147 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2148 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2149 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2150 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2151 				break;
   2152 			DELAY(100);
   2153 		}
   2154 		if (i >= BGE_TIMEOUT) {
   2155 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2156 			return -1;
   2157 		}
   2158 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   2159 		/*
   2160 		 * Poll the value location we just wrote until
   2161 		 * we see the 1's complement of the magic number.
   2162 		 * This indicates that the firmware initialization
   2163 		 * is complete.
   2164 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2165 		 */
   2166 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2167 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2168 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2169 				break;
   2170 			DELAY(10);
   2171 		}
   2172 
   2173 		if (i >= BGE_TIMEOUT) {
   2174 			aprint_error_dev(sc->bge_dev,
   2175 			    "firmware handshake timed out, val = %x\n", val);
   2176 			return -1;
   2177 		}
   2178 	}
   2179 
   2180 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2181 		/* tg3 says we have to wait extra time */
   2182 		delay(10 * 1000);
   2183 	}
   2184 
   2185 	return 0;
   2186 }
   2187 
   2188 int
   2189 bge_phy_addr(struct bge_softc *sc)
   2190 {
   2191 	struct pci_attach_args *pa = &(sc->bge_pa);
   2192 	int phy_addr = 1;
   2193 
   2194 	/*
   2195 	 * PHY address mapping for various devices.
   2196 	 *
   2197 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2198 	 * ---------+-------+-------+-------+-------+
   2199 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2200 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2201 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2202 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2203 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2204 	 *
   2205 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2206 	 * ---------+-------+-------+-------+-------+
   2207 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2208 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2209 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2210 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2211 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2212 	 *
   2213 	 * Other addresses may respond but they are not
   2214 	 * IEEE compliant PHYs and should be ignored.
   2215 	 */
   2216 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2217 	case BGE_ASICREV_BCM5717:
   2218 	case BGE_ASICREV_BCM5719:
   2219 	case BGE_ASICREV_BCM5720:
   2220 		phy_addr = pa->pa_function;
   2221 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2222 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2223 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2224 		} else {
   2225 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2226 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2227 		}
   2228 	}
   2229 
   2230 	return phy_addr;
   2231 }
   2232 
   2233 /*
   2234  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2235  * self-test results.
   2236  */
   2237 static int
   2238 bge_chipinit(struct bge_softc *sc)
   2239 {
   2240 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2241 	int i;
   2242 
   2243 	/* Set endianness before we access any non-PCI registers. */
   2244 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2245 	    BGE_INIT);
   2246 
   2247 	/*
   2248 	 * Clear the MAC statistics block in the NIC's
   2249 	 * internal memory.
   2250 	 */
   2251 	for (i = BGE_STATS_BLOCK;
   2252 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2253 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2254 
   2255 	for (i = BGE_STATUS_BLOCK;
   2256 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2257 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2258 
   2259 	/* 5717 workaround from tg3 */
   2260 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2261 		/* Save */
   2262 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2263 
   2264 		/* Temporary modify MODE_CTL to control TLP */
   2265 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2266 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2267 
   2268 		/* Control TLP */
   2269 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2270 		    BGE_TLP_PHYCTL1);
   2271 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2272 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2273 
   2274 		/* Restore */
   2275 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2276 	}
   2277 
   2278 	/* XXX Should we use 57765_FAMILY? */
   2279 	if (BGE_IS_57765_PLUS(sc)) {
   2280 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2281 			/* Save */
   2282 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2283 
   2284 			/* Temporary modify MODE_CTL to control TLP */
   2285 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2286 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2287 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2288 
   2289 			/* Control TLP */
   2290 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2291 			    BGE_TLP_PHYCTL5);
   2292 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2293 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2294 
   2295 			/* Restore */
   2296 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2297 		}
   2298 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2299 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2300 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2301 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2302 
   2303 			/* Save */
   2304 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2305 
   2306 			/* Temporary modify MODE_CTL to control TLP */
   2307 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2308 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2309 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2310 
   2311 			/* Control TLP */
   2312 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2313 			    BGE_TLP_FTSMAX);
   2314 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2315 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2316 			    reg | BGE_TLP_FTSMAX_VAL);
   2317 
   2318 			/* Restore */
   2319 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2320 		}
   2321 
   2322 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2323 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2324 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2325 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2326 	}
   2327 
   2328 	/* Set up the PCI DMA control register. */
   2329 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2330 	if (sc->bge_flags & BGE_PCIE) {
   2331 		/* Read watermark not used, 128 bytes for write. */
   2332 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2333 		    device_xname(sc->bge_dev)));
   2334 		if (sc->bge_mps >= 256)
   2335 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2336 		else
   2337 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2338 	} else if (sc->bge_flags & BGE_PCIX) {
   2339 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2340 		    device_xname(sc->bge_dev)));
   2341 		/* PCI-X bus */
   2342 		if (BGE_IS_5714_FAMILY(sc)) {
   2343 			/* 256 bytes for read and write. */
   2344 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2345 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2346 
   2347 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2348 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2349 			else
   2350 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2351 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2352 			/* 1536 bytes for read, 384 bytes for write. */
   2353 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2354 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2355 		} else {
   2356 			/* 384 bytes for read and write. */
   2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2358 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2359 			    (0x0F);
   2360 		}
   2361 
   2362 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2363 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2364 			uint32_t tmp;
   2365 
   2366 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2367 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2368 			if (tmp == 6 || tmp == 7)
   2369 				dma_rw_ctl |=
   2370 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2371 
   2372 			/* Set PCI-X DMA write workaround. */
   2373 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2374 		}
   2375 	} else {
   2376 		/* Conventional PCI bus: 256 bytes for read and write. */
   2377 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2378 		    device_xname(sc->bge_dev)));
   2379 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2380 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2381 
   2382 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2383 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2384 			dma_rw_ctl |= 0x0F;
   2385 	}
   2386 
   2387 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2388 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2389 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2390 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2391 
   2392 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2393 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2394 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2395 
   2396 	if (BGE_IS_5717_PLUS(sc)) {
   2397 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2398 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2399 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2400 
   2401 		/*
   2402 		 * Enable HW workaround for controllers that misinterpret
   2403 		 * a status tag update and leave interrupts permanently
   2404 		 * disabled.
   2405 		 */
   2406 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2407 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   2408 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2409 	}
   2410 
   2411 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2412 	    dma_rw_ctl);
   2413 
   2414 	/*
   2415 	 * Set up general mode register.
   2416 	 */
   2417 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2418 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2419 		/* Retain Host-2-BMC settings written by APE firmware. */
   2420 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2421 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2422 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2423 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2424 	}
   2425 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2426 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2427 
   2428 	/*
   2429 	 * BCM5701 B5 have a bug causing data corruption when using
   2430 	 * 64-bit DMA reads, which can be terminated early and then
   2431 	 * completed later as 32-bit accesses, in combination with
   2432 	 * certain bridges.
   2433 	 */
   2434 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2435 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2436 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2437 
   2438 	/*
   2439 	 * Tell the firmware the driver is running
   2440 	 */
   2441 	if (sc->bge_asf_mode & ASF_STACKUP)
   2442 		mode_ctl |= BGE_MODECTL_STACKUP;
   2443 
   2444 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2445 
   2446 	/*
   2447 	 * Disable memory write invalidate.  Apparently it is not supported
   2448 	 * properly by these devices.
   2449 	 */
   2450 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2451 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2452 
   2453 #ifdef __brokenalpha__
   2454 	/*
   2455 	 * Must insure that we do not cross an 8K (bytes) boundary
   2456 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2457 	 * restriction on some ALPHA platforms with early revision
   2458 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2459 	 */
   2460 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2461 #endif
   2462 
   2463 	/* Set the timer prescaler (always 66MHz) */
   2464 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2465 
   2466 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2467 		DELAY(40);	/* XXX */
   2468 
   2469 		/* Put PHY into ready state */
   2470 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2471 		DELAY(40);
   2472 	}
   2473 
   2474 	return 0;
   2475 }
   2476 
   2477 static int
   2478 bge_blockinit(struct bge_softc *sc)
   2479 {
   2480 	volatile struct bge_rcb	 *rcb;
   2481 	bus_size_t rcb_addr;
   2482 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2483 	bge_hostaddr taddr;
   2484 	uint32_t	dmactl, val;
   2485 	int		i, limit;
   2486 
   2487 	/*
   2488 	 * Initialize the memory window pointer register so that
   2489 	 * we can access the first 32K of internal NIC RAM. This will
   2490 	 * allow us to set up the TX send ring RCBs and the RX return
   2491 	 * ring RCBs, plus other things which live in NIC memory.
   2492 	 */
   2493 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2494 
   2495 	if (!BGE_IS_5705_PLUS(sc)) {
   2496 		/* 57XX step 33 */
   2497 		/* Configure mbuf memory pool */
   2498 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2499 		    BGE_BUFFPOOL_1);
   2500 
   2501 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2502 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2503 		else
   2504 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2505 
   2506 		/* 57XX step 34 */
   2507 		/* Configure DMA resource pool */
   2508 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2509 		    BGE_DMA_DESCRIPTORS);
   2510 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2511 	}
   2512 
   2513 	/* 5718 step 11, 57XX step 35 */
   2514 	/*
   2515 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2516 	 * recommend these.
   2517 	 */
   2518 	if (BGE_IS_5717_PLUS(sc)) {
   2519 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2520 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2521 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2522 	} else if (BGE_IS_5705_PLUS(sc)) {
   2523 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2524 
   2525 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2526 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2527 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2528 		} else {
   2529 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2530 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2531 		}
   2532 	} else {
   2533 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2534 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2535 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2536 	}
   2537 
   2538 	/* 57XX step 36 */
   2539 	/* Configure DMA resource watermarks */
   2540 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2541 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2542 
   2543 	/* 5718 step 13, 57XX step 38 */
   2544 	/* Enable buffer manager */
   2545 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2546 	/*
   2547 	 * Change the arbitration algorithm of TXMBUF read request to
   2548 	 * round-robin instead of priority based for BCM5719.  When
   2549 	 * TXFIFO is almost empty, RDMA will hold its request until
   2550 	 * TXFIFO is not almost empty.
   2551 	 */
   2552 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2553 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2554 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2555 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2556 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2557 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2558 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2559 
   2560 	/* 57XX step 39 */
   2561 	/* Poll for buffer manager start indication */
   2562 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2563 		DELAY(10);
   2564 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2565 			break;
   2566 	}
   2567 
   2568 	if (i == BGE_TIMEOUT * 2) {
   2569 		aprint_error_dev(sc->bge_dev,
   2570 		    "buffer manager failed to start\n");
   2571 		return ENXIO;
   2572 	}
   2573 
   2574 	/* 57XX step 40 */
   2575 	/* Enable flow-through queues */
   2576 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2577 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2578 
   2579 	/* Wait until queue initialization is complete */
   2580 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2581 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2582 			break;
   2583 		DELAY(10);
   2584 	}
   2585 
   2586 	if (i == BGE_TIMEOUT * 2) {
   2587 		aprint_error_dev(sc->bge_dev,
   2588 		    "flow-through queue init failed\n");
   2589 		return ENXIO;
   2590 	}
   2591 
   2592 	/*
   2593 	 * Summary of rings supported by the controller:
   2594 	 *
   2595 	 * Standard Receive Producer Ring
   2596 	 * - This ring is used to feed receive buffers for "standard"
   2597 	 *   sized frames (typically 1536 bytes) to the controller.
   2598 	 *
   2599 	 * Jumbo Receive Producer Ring
   2600 	 * - This ring is used to feed receive buffers for jumbo sized
   2601 	 *   frames (i.e. anything bigger than the "standard" frames)
   2602 	 *   to the controller.
   2603 	 *
   2604 	 * Mini Receive Producer Ring
   2605 	 * - This ring is used to feed receive buffers for "mini"
   2606 	 *   sized frames to the controller.
   2607 	 * - This feature required external memory for the controller
   2608 	 *   but was never used in a production system.  Should always
   2609 	 *   be disabled.
   2610 	 *
   2611 	 * Receive Return Ring
   2612 	 * - After the controller has placed an incoming frame into a
   2613 	 *   receive buffer that buffer is moved into a receive return
   2614 	 *   ring.  The driver is then responsible to passing the
   2615 	 *   buffer up to the stack.  Many versions of the controller
   2616 	 *   support multiple RR rings.
   2617 	 *
   2618 	 * Send Ring
   2619 	 * - This ring is used for outgoing frames.  Many versions of
   2620 	 *   the controller support multiple send rings.
   2621 	 */
   2622 
   2623 	/* 5718 step 15, 57XX step 41 */
   2624 	/* Initialize the standard RX ring control block */
   2625 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2626 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2627 	/* 5718 step 16 */
   2628 	if (BGE_IS_5717_PLUS(sc)) {
   2629 		/*
   2630 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2631 		 * Bits 15-2 : Maximum RX frame size
   2632 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2633 		 * Bit 0     : Reserved
   2634 		 */
   2635 		rcb->bge_maxlen_flags =
   2636 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2637 	} else if (BGE_IS_5705_PLUS(sc)) {
   2638 		/*
   2639 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2640 		 * Bits 15-2 : Reserved (should be 0)
   2641 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2642 		 * Bit 0     : Reserved
   2643 		 */
   2644 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2645 	} else {
   2646 		/*
   2647 		 * Ring size is always XXX entries
   2648 		 * Bits 31-16: Maximum RX frame size
   2649 		 * Bits 15-2 : Reserved (should be 0)
   2650 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2651 		 * Bit 0     : Reserved
   2652 		 */
   2653 		rcb->bge_maxlen_flags =
   2654 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2655 	}
   2656 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2658 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2659 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2660 	else
   2661 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2662 	/* Write the standard receive producer ring control block. */
   2663 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2664 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2665 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2666 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2667 
   2668 	/* Reset the standard receive producer ring producer index. */
   2669 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2670 
   2671 	/* 57XX step 42 */
   2672 	/*
   2673 	 * Initialize the jumbo RX ring control block
   2674 	 * We set the 'ring disabled' bit in the flags
   2675 	 * field until we're actually ready to start
   2676 	 * using this ring (i.e. once we set the MTU
   2677 	 * high enough to require it).
   2678 	 */
   2679 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2680 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2681 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2682 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2683 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2684 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2685 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2686 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2687 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2688 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2689 		else
   2690 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2691 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2692 		    rcb->bge_hostaddr.bge_addr_hi);
   2693 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2694 		    rcb->bge_hostaddr.bge_addr_lo);
   2695 		/* Program the jumbo receive producer ring RCB parameters. */
   2696 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2697 		    rcb->bge_maxlen_flags);
   2698 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2699 		/* Reset the jumbo receive producer ring producer index. */
   2700 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2701 	}
   2702 
   2703 	/* 57XX step 43 */
   2704 	/* Disable the mini receive producer ring RCB. */
   2705 	if (BGE_IS_5700_FAMILY(sc)) {
   2706 		/* Set up dummy disabled mini ring RCB */
   2707 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2708 		rcb->bge_maxlen_flags =
   2709 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2710 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2711 		    rcb->bge_maxlen_flags);
   2712 		/* Reset the mini receive producer ring producer index. */
   2713 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2714 
   2715 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2716 		    offsetof(struct bge_ring_data, bge_info),
   2717 		    sizeof (struct bge_gib),
   2718 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2719 	}
   2720 
   2721 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2722 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2723 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2724 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2725 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2726 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2727 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2728 	}
   2729 	/* 5718 step 14, 57XX step 44 */
   2730 	/*
   2731 	 * The BD ring replenish thresholds control how often the
   2732 	 * hardware fetches new BD's from the producer rings in host
   2733 	 * memory.  Setting the value too low on a busy system can
   2734 	 * starve the hardware and recue the throughpout.
   2735 	 *
   2736 	 * Set the BD ring replenish thresholds. The recommended
   2737 	 * values are 1/8th the number of descriptors allocated to
   2738 	 * each ring, but since we try to avoid filling the entire
   2739 	 * ring we set these to the minimal value of 8.  This needs to
   2740 	 * be done on several of the supported chip revisions anyway,
   2741 	 * to work around HW bugs.
   2742 	 */
   2743 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2744 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2745 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2746 
   2747 	/* 5718 step 18 */
   2748 	if (BGE_IS_5717_PLUS(sc)) {
   2749 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2750 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2751 	}
   2752 
   2753 	/* 57XX step 45 */
   2754 	/*
   2755 	 * Disable all send rings by setting the 'ring disabled' bit
   2756 	 * in the flags field of all the TX send ring control blocks,
   2757 	 * located in NIC memory.
   2758 	 */
   2759 	if (BGE_IS_5700_FAMILY(sc)) {
   2760 		/* 5700 to 5704 had 16 send rings. */
   2761 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2762 	} else
   2763 		limit = 1;
   2764 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2765 	for (i = 0; i < limit; i++) {
   2766 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2767 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2768 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2769 		rcb_addr += sizeof(struct bge_rcb);
   2770 	}
   2771 
   2772 	/* 57XX step 46 and 47 */
   2773 	/* Configure send ring RCB 0 (we use only the first ring) */
   2774 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2775 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2776 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2777 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2778 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2779 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2780 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2781 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2782 	else
   2783 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2784 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2785 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2786 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2787 
   2788 	/* 57XX step 48 */
   2789 	/*
   2790 	 * Disable all receive return rings by setting the
   2791 	 * 'ring diabled' bit in the flags field of all the receive
   2792 	 * return ring control blocks, located in NIC memory.
   2793 	 */
   2794 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2795 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2796 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2797 		/* Should be 17, use 16 until we get an SRAM map. */
   2798 		limit = 16;
   2799 	} else if (BGE_IS_5700_FAMILY(sc))
   2800 		limit = BGE_RX_RINGS_MAX;
   2801 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2802 	    BGE_IS_57765_PLUS(sc))
   2803 		limit = 4;
   2804 	else
   2805 		limit = 1;
   2806 	/* Disable all receive return rings */
   2807 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2808 	for (i = 0; i < limit; i++) {
   2809 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2810 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2811 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2812 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2813 			BGE_RCB_FLAG_RING_DISABLED));
   2814 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2815 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2816 		    (i * (sizeof(uint64_t))), 0);
   2817 		rcb_addr += sizeof(struct bge_rcb);
   2818 	}
   2819 
   2820 	/* 57XX step 49 */
   2821 	/*
   2822 	 * Set up receive return ring 0.  Note that the NIC address
   2823 	 * for RX return rings is 0x0.  The return rings live entirely
   2824 	 * within the host, so the nicaddr field in the RCB isn't used.
   2825 	 */
   2826 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2827 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2828 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2829 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2830 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2831 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2832 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2833 
   2834 	/* 5718 step 24, 57XX step 53 */
   2835 	/* Set random backoff seed for TX */
   2836 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2837 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2838 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2839 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2840 	    BGE_TX_BACKOFF_SEED_MASK);
   2841 
   2842 	/* 5718 step 26, 57XX step 55 */
   2843 	/* Set inter-packet gap */
   2844 	val = 0x2620;
   2845 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2846 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2847 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2848 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2849 
   2850 	/* 5718 step 27, 57XX step 56 */
   2851 	/*
   2852 	 * Specify which ring to use for packets that don't match
   2853 	 * any RX rules.
   2854 	 */
   2855 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2856 
   2857 	/* 5718 step 28, 57XX step 57 */
   2858 	/*
   2859 	 * Configure number of RX lists. One interrupt distribution
   2860 	 * list, sixteen active lists, one bad frames class.
   2861 	 */
   2862 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2863 
   2864 	/* 5718 step 29, 57XX step 58 */
   2865 	/* Inialize RX list placement stats mask. */
   2866 	if (BGE_IS_575X_PLUS(sc)) {
   2867 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2868 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2869 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2870 	} else
   2871 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2872 
   2873 	/* 5718 step 30, 57XX step 59 */
   2874 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2875 
   2876 	/* 5718 step 33, 57XX step 62 */
   2877 	/* Disable host coalescing until we get it set up */
   2878 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2879 
   2880 	/* 5718 step 34, 57XX step 63 */
   2881 	/* Poll to make sure it's shut down. */
   2882 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2883 		DELAY(10);
   2884 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2885 			break;
   2886 	}
   2887 
   2888 	if (i == BGE_TIMEOUT * 2) {
   2889 		aprint_error_dev(sc->bge_dev,
   2890 		    "host coalescing engine failed to idle\n");
   2891 		return ENXIO;
   2892 	}
   2893 
   2894 	/* 5718 step 35, 36, 37 */
   2895 	/* Set up host coalescing defaults */
   2896 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2897 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2898 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2899 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2900 	if (!(BGE_IS_5705_PLUS(sc))) {
   2901 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2902 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2903 	}
   2904 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2905 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2906 
   2907 	/* Set up address of statistics block */
   2908 	if (BGE_IS_5700_FAMILY(sc)) {
   2909 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2910 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2911 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2912 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2913 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2914 	}
   2915 
   2916 	/* 5718 step 38 */
   2917 	/* Set up address of status block */
   2918 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2919 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2920 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2921 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2922 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2923 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2924 
   2925 	/* Set up status block size. */
   2926 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2927 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2928 		val = BGE_STATBLKSZ_FULL;
   2929 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2930 	} else {
   2931 		val = BGE_STATBLKSZ_32BYTE;
   2932 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2933 	}
   2934 
   2935 	/* 5718 step 39, 57XX step 73 */
   2936 	/* Turn on host coalescing state machine */
   2937 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2938 
   2939 	/* 5718 step 40, 57XX step 74 */
   2940 	/* Turn on RX BD completion state machine and enable attentions */
   2941 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2942 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2943 
   2944 	/* 5718 step 41, 57XX step 75 */
   2945 	/* Turn on RX list placement state machine */
   2946 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2947 
   2948 	/* 57XX step 76 */
   2949 	/* Turn on RX list selector state machine. */
   2950 	if (!(BGE_IS_5705_PLUS(sc)))
   2951 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2952 
   2953 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2954 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2955 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2956 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2957 
   2958 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2959 		val |= BGE_PORTMODE_TBI;
   2960 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2961 		val |= BGE_PORTMODE_GMII;
   2962 	else
   2963 		val |= BGE_PORTMODE_MII;
   2964 
   2965 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2966 	/* Allow APE to send/receive frames. */
   2967 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2968 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2969 
   2970 	/* Turn on DMA, clear stats */
   2971 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2972 	/* 5718 step 44 */
   2973 	DELAY(40);
   2974 
   2975 	/* 5718 step 45, 57XX step 79 */
   2976 	/* Set misc. local control, enable interrupts on attentions */
   2977 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2978 	if (BGE_IS_5717_PLUS(sc)) {
   2979 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2980 		/* 5718 step 46 */
   2981 		DELAY(100);
   2982 	}
   2983 
   2984 	/* 57XX step 81 */
   2985 	/* Turn on DMA completion state machine */
   2986 	if (!(BGE_IS_5705_PLUS(sc)))
   2987 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2988 
   2989 	/* 5718 step 47, 57XX step 82 */
   2990 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2991 
   2992 	/* 5718 step 48 */
   2993 	/* Enable host coalescing bug fix. */
   2994 	if (BGE_IS_5755_PLUS(sc))
   2995 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2996 
   2997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2998 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2999 
   3000 	/* Turn on write DMA state machine */
   3001 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   3002 	/* 5718 step 49 */
   3003 	DELAY(40);
   3004 
   3005 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   3006 
   3007 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   3008 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3009 
   3010 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3011 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3012 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3013 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   3014 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   3015 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   3016 
   3017 	if (sc->bge_flags & BGE_PCIE)
   3018 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   3019 	if (sc->bge_flags & BGE_TSO)
   3020 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   3021 
   3022 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3023 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   3024 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   3025 		/*
   3026 		 * Allow multiple outstanding read requests from
   3027 		 * non-LSO read DMA engine.
   3028 		 */
   3029 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3030 	}
   3031 
   3032 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3033 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3034 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3035 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   3036 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
   3037 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   3038 		/*
   3039 		 * Adjust tx margin to prevent TX data corruption and
   3040 		 * fix internal FIFO overflow.
   3041 		 */
   3042 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   3043 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3044 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3045 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3046 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3047 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3048 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3049 		}
   3050 		/*
   3051 		 * Enable fix for read DMA FIFO overruns.
   3052 		 * The fix is to limit the number of RX BDs
   3053 		 * the hardware would fetch at a fime.
   3054 		 */
   3055 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3056 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3057 	}
   3058 
   3059 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3060 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3061 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3062 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3063 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3064 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3065 		/*
   3066 		 * Allow 4KB burst length reads for non-LSO frames.
   3067 		 * Enable 512B burst length reads for buffer descriptors.
   3068 		 */
   3069 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3070 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3071 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3072 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3073 	}
   3074 
   3075 	/* Turn on read DMA state machine */
   3076 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3077 	/* 5718 step 52 */
   3078 	delay(40);
   3079 
   3080 	/* 5718 step 56, 57XX step 84 */
   3081 	/* Turn on RX data completion state machine */
   3082 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3083 
   3084 	/* Turn on RX data and RX BD initiator state machine */
   3085 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3086 
   3087 	/* 57XX step 85 */
   3088 	/* Turn on Mbuf cluster free state machine */
   3089 	if (!BGE_IS_5705_PLUS(sc))
   3090 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3091 
   3092 	/* 5718 step 57, 57XX step 86 */
   3093 	/* Turn on send data completion state machine */
   3094 	val = BGE_SDCMODE_ENABLE;
   3095 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3096 		val |= BGE_SDCMODE_CDELAY;
   3097 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3098 
   3099 	/* 5718 step 58 */
   3100 	/* Turn on send BD completion state machine */
   3101 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3102 
   3103 	/* 57XX step 88 */
   3104 	/* Turn on RX BD initiator state machine */
   3105 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3106 
   3107 	/* 5718 step 60, 57XX step 90 */
   3108 	/* Turn on send data initiator state machine */
   3109 	if (sc->bge_flags & BGE_TSO) {
   3110 		/* XXX: magic value from Linux driver */
   3111 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3112 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3113 	} else
   3114 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3115 
   3116 	/* 5718 step 61, 57XX step 91 */
   3117 	/* Turn on send BD initiator state machine */
   3118 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3119 
   3120 	/* 5718 step 62, 57XX step 92 */
   3121 	/* Turn on send BD selector state machine */
   3122 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3123 
   3124 	/* 5718 step 31, 57XX step 60 */
   3125 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3126 	/* 5718 step 32, 57XX step 61 */
   3127 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3128 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3129 
   3130 	/* ack/clear link change events */
   3131 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3132 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3133 	    BGE_MACSTAT_LINK_CHANGED);
   3134 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3135 
   3136 	/*
   3137 	 * Enable attention when the link has changed state for
   3138 	 * devices that use auto polling.
   3139 	 */
   3140 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3141 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3142 	} else {
   3143 		/* 5718 step 68 */
   3144 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3145 		/* 5718 step 69 (optionally) */
   3146 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   3147 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3148 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3149 			    BGE_EVTENB_MI_INTERRUPT);
   3150 	}
   3151 
   3152 	/*
   3153 	 * Clear any pending link state attention.
   3154 	 * Otherwise some link state change events may be lost until attention
   3155 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3156 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3157 	 * state change attentions implies clearing pending attention.
   3158 	 */
   3159 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3160 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3161 	    BGE_MACSTAT_LINK_CHANGED);
   3162 
   3163 	/* Enable link state change attentions. */
   3164 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3165 
   3166 	return 0;
   3167 }
   3168 
   3169 static const struct bge_revision *
   3170 bge_lookup_rev(uint32_t chipid)
   3171 {
   3172 	const struct bge_revision *br;
   3173 
   3174 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3175 		if (br->br_chipid == chipid)
   3176 			return br;
   3177 	}
   3178 
   3179 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3180 		if (br->br_chipid == BGE_ASICREV(chipid))
   3181 			return br;
   3182 	}
   3183 
   3184 	return NULL;
   3185 }
   3186 
   3187 static const struct bge_product *
   3188 bge_lookup(const struct pci_attach_args *pa)
   3189 {
   3190 	const struct bge_product *bp;
   3191 
   3192 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3193 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3194 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3195 			return bp;
   3196 	}
   3197 
   3198 	return NULL;
   3199 }
   3200 
   3201 static uint32_t
   3202 bge_chipid(const struct pci_attach_args *pa)
   3203 {
   3204 	uint32_t id;
   3205 
   3206 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3207 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3208 
   3209 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3210 		switch (PCI_PRODUCT(pa->pa_id)) {
   3211 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3212 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3213 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3214 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3215 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3216 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3217 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3218 			break;
   3219 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3220 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3221 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3222 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3223 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3224 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3225 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3226 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3227 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3228 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3229 			break;
   3230 		default:
   3231 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3232 			    BGE_PCI_PRODID_ASICREV);
   3233 			break;
   3234 		}
   3235 	}
   3236 
   3237 	return id;
   3238 }
   3239 
   3240 /*
   3241  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3242  * against our list and return its name if we find a match. Note
   3243  * that since the Broadcom controller contains VPD support, we
   3244  * can get the device name string from the controller itself instead
   3245  * of the compiled-in string. This is a little slow, but it guarantees
   3246  * we'll always announce the right product name.
   3247  */
   3248 static int
   3249 bge_probe(device_t parent, cfdata_t match, void *aux)
   3250 {
   3251 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3252 
   3253 	if (bge_lookup(pa) != NULL)
   3254 		return 1;
   3255 
   3256 	return 0;
   3257 }
   3258 
   3259 static void
   3260 bge_attach(device_t parent, device_t self, void *aux)
   3261 {
   3262 	struct bge_softc	*sc = device_private(self);
   3263 	struct pci_attach_args	*pa = aux;
   3264 	prop_dictionary_t dict;
   3265 	const struct bge_product *bp;
   3266 	const struct bge_revision *br;
   3267 	pci_chipset_tag_t	pc;
   3268 	pci_intr_handle_t	ih;
   3269 	const char		*intrstr = NULL;
   3270 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4;
   3271 	uint32_t		command;
   3272 	struct ifnet		*ifp;
   3273 	uint32_t		misccfg, mimode;
   3274 	void *			kva;
   3275 	u_char			eaddr[ETHER_ADDR_LEN];
   3276 	pcireg_t		memtype, subid, reg;
   3277 	bus_addr_t		memaddr;
   3278 	uint32_t		pm_ctl;
   3279 	bool			no_seeprom;
   3280 	int			capmask;
   3281 
   3282 	bp = bge_lookup(pa);
   3283 	KASSERT(bp != NULL);
   3284 
   3285 	sc->sc_pc = pa->pa_pc;
   3286 	sc->sc_pcitag = pa->pa_tag;
   3287 	sc->bge_dev = self;
   3288 
   3289 	sc->bge_pa = *pa;
   3290 	pc = sc->sc_pc;
   3291 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3292 
   3293 	aprint_naive(": Ethernet controller\n");
   3294 	aprint_normal(": %s\n", bp->bp_name);
   3295 
   3296 	/*
   3297 	 * Map control/status registers.
   3298 	 */
   3299 	DPRINTFN(5, ("Map control/status regs\n"));
   3300 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3301 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3302 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3303 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3304 
   3305 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3306 		aprint_error_dev(sc->bge_dev,
   3307 		    "failed to enable memory mapping!\n");
   3308 		return;
   3309 	}
   3310 
   3311 	DPRINTFN(5, ("pci_mem_find\n"));
   3312 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3313 	switch (memtype) {
   3314 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3315 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3316 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3317 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3318 		    &memaddr, &sc->bge_bsize) == 0)
   3319 			break;
   3320 	default:
   3321 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3322 		return;
   3323 	}
   3324 
   3325 	DPRINTFN(5, ("pci_intr_map\n"));
   3326 	if (pci_intr_map(pa, &ih)) {
   3327 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3328 		return;
   3329 	}
   3330 
   3331 	DPRINTFN(5, ("pci_intr_string\n"));
   3332 	intrstr = pci_intr_string(pc, ih);
   3333 
   3334 	DPRINTFN(5, ("pci_intr_establish\n"));
   3335 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3336 
   3337 	if (sc->bge_intrhand == NULL) {
   3338 		aprint_error_dev(sc->bge_dev,
   3339 		    "couldn't establish interrupt%s%s\n",
   3340 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3341 		return;
   3342 	}
   3343 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3344 
   3345 	/* Save various chip information. */
   3346 	sc->bge_chipid = bge_chipid(pa);
   3347 	sc->bge_phy_addr = bge_phy_addr(sc);
   3348 
   3349 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3350 	        &sc->bge_pciecap, NULL) != 0)
   3351 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3352 		/* PCIe */
   3353 		sc->bge_flags |= BGE_PCIE;
   3354 		/* Extract supported maximum payload size. */
   3355 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3356 		    sc->bge_pciecap + PCIE_DCAP);
   3357 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3358 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3359 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3360 			sc->bge_expmrq = 2048;
   3361 		else
   3362 			sc->bge_expmrq = 4096;
   3363 		bge_set_max_readrq(sc);
   3364 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3365 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3366 		/* PCI-X */
   3367 		sc->bge_flags |= BGE_PCIX;
   3368 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3369 			&sc->bge_pcixcap, NULL) == 0)
   3370 			aprint_error_dev(sc->bge_dev,
   3371 			    "unable to find PCIX capability\n");
   3372 	}
   3373 
   3374 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3375 		/*
   3376 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3377 		 * can clobber the chip's PCI config-space power control
   3378 		 * registers, leaving the card in D3 powersave state. We do
   3379 		 * not have memory-mapped registers in this state, so force
   3380 		 * device into D0 state before starting initialization.
   3381 		 */
   3382 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3383 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3384 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3385 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3386 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3387 	}
   3388 
   3389 	/* Save chipset family. */
   3390 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3391 	case BGE_ASICREV_BCM57765:
   3392 	case BGE_ASICREV_BCM57766:
   3393 		sc->bge_flags |= BGE_57765_PLUS;
   3394 		/* FALLTHROUGH */
   3395 	case BGE_ASICREV_BCM5717:
   3396 	case BGE_ASICREV_BCM5719:
   3397 	case BGE_ASICREV_BCM5720:
   3398 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS |
   3399 		    BGE_575X_PLUS | BGE_5705_PLUS | BGE_JUMBO_CAPABLE;
   3400 		/* Jumbo frame on BCM5719 A0 does not work. */
   3401 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3402 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3403 			sc->bge_flags |= ~BGE_JUMBO_CAPABLE;
   3404 		break;
   3405 	case BGE_ASICREV_BCM5755:
   3406 	case BGE_ASICREV_BCM5761:
   3407 	case BGE_ASICREV_BCM5784:
   3408 	case BGE_ASICREV_BCM5785:
   3409 	case BGE_ASICREV_BCM5787:
   3410 	case BGE_ASICREV_BCM57780:
   3411 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
   3412 		break;
   3413 	case BGE_ASICREV_BCM5700:
   3414 	case BGE_ASICREV_BCM5701:
   3415 	case BGE_ASICREV_BCM5703:
   3416 	case BGE_ASICREV_BCM5704:
   3417 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
   3418 		break;
   3419 	case BGE_ASICREV_BCM5714_A0:
   3420 	case BGE_ASICREV_BCM5780:
   3421 	case BGE_ASICREV_BCM5714:
   3422 		sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE;
   3423 		/* FALLTHROUGH */
   3424 	case BGE_ASICREV_BCM5750:
   3425 	case BGE_ASICREV_BCM5752:
   3426 	case BGE_ASICREV_BCM5906:
   3427 		sc->bge_flags |= BGE_575X_PLUS;
   3428 		/* FALLTHROUGH */
   3429 	case BGE_ASICREV_BCM5705:
   3430 		sc->bge_flags |= BGE_5705_PLUS;
   3431 		break;
   3432 	}
   3433 
   3434 	/* Identify chips with APE processor. */
   3435 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3436 	case BGE_ASICREV_BCM5717:
   3437 	case BGE_ASICREV_BCM5719:
   3438 	case BGE_ASICREV_BCM5720:
   3439 	case BGE_ASICREV_BCM5761:
   3440 		sc->bge_flags |= BGE_APE;
   3441 		break;
   3442 	}
   3443 
   3444 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3445 	if ((sc->bge_flags & BGE_APE) != 0) {
   3446 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3447 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3448 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3449 			&sc->bge_apesize)) {
   3450 			aprint_error_dev(sc->bge_dev,
   3451 			    "couldn't map BAR2 memory\n");
   3452 			return;
   3453 		}
   3454 
   3455 		/* Enable APE register/memory access by host driver. */
   3456 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3457 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3458 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3459 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3460 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3461 
   3462 		bge_ape_lock_init(sc);
   3463 		bge_ape_read_fw_ver(sc);
   3464 	}
   3465 
   3466 	/* Identify the chips that use an CPMU. */
   3467 	if (BGE_IS_5717_PLUS(sc) ||
   3468 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3469 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3470 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3471 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3472 		sc->bge_flags |= BGE_CPMU_PRESENT;
   3473 
   3474 	/* Set MI_MODE */
   3475 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3476 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
   3477 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3478 	else
   3479 		mimode |= BGE_MIMODE_BASE;
   3480 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3481 
   3482 	/*
   3483 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3484 	 * been observed in the first few bytes of some received packets.
   3485 	 * Aligning the packet buffer in memory eliminates the corruption.
   3486 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3487 	 * which do not support unaligned accesses, we will realign the
   3488 	 * payloads by copying the received packets.
   3489 	 */
   3490 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3491 	    sc->bge_flags & BGE_PCIX)
   3492 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   3493 
   3494 	if (BGE_IS_5700_FAMILY(sc))
   3495 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   3496 
   3497 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3498 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3499 
   3500 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3501 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3502 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3503 		sc->bge_flags |= BGE_IS_5788;
   3504 
   3505 	/*
   3506 	 * Some controllers seem to require a special firmware to use
   3507 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3508 	 * claims that the TSO performed by the firmware is slower than
   3509 	 * hardware based TSO. Moreover the firmware based TSO has one
   3510 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3511 	 * header is greater than 80 bytes. The workaround for the TSO
   3512 	 * bug exist but it seems it's too expensive than not using
   3513 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3514 	 * the TSO to the controllers that are not affected TSO issues
   3515 	 * (e.g. 5755 or higher).
   3516 	 */
   3517 	if (BGE_IS_5755_PLUS(sc)) {
   3518 		/*
   3519 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3520 		 * explicit device id check is required.
   3521 		 */
   3522 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3523 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3524 			sc->bge_flags |= BGE_TSO;
   3525 	}
   3526 
   3527 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3528 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3529 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3530 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3531 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3532 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3533 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3534 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3535 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3536 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3537 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3538 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3539 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3540 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3541 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3542 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3543 		capmask &= ~BMSR_EXTSTAT;
   3544 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3545 	}
   3546 
   3547 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3548 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3549 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3550 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3551 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3552 
   3553 	/* Set various PHY bug flags. */
   3554 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3555 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3556 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   3557 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3558 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3559 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   3560 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3561 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   3562 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3563 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3564 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3565 		sc->bge_flags |= BGE_PHY_NO_3LED;
   3566 	if (BGE_IS_5705_PLUS(sc) &&
   3567 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3568 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3569 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3570 	    !BGE_IS_5717_PLUS(sc)) {
   3571 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3572 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3573 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3574 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3575 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3576 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3577 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   3578 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3579 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   3580 		} else
   3581 			sc->bge_flags |= BGE_PHY_BER_BUG;
   3582 	}
   3583 
   3584 	/*
   3585 	 * SEEPROM check.
   3586 	 * First check if firmware knows we do not have SEEPROM.
   3587 	 */
   3588 	if (prop_dictionary_get_bool(device_properties(self),
   3589 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3590 	 	sc->bge_flags |= BGE_NO_EEPROM;
   3591 
   3592 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3593 		sc->bge_flags |= BGE_NO_EEPROM;
   3594 
   3595 	/* Now check the 'ROM failed' bit on the RX CPU */
   3596 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3597 		sc->bge_flags |= BGE_NO_EEPROM;
   3598 
   3599 	sc->bge_asf_mode = 0;
   3600 	/* No ASF if APE present. */
   3601 	if ((sc->bge_flags & BGE_APE) == 0) {
   3602 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3603 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3604 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3605 			    BGE_HWCFG_ASF) {
   3606 				sc->bge_asf_mode |= ASF_ENABLE;
   3607 				sc->bge_asf_mode |= ASF_STACKUP;
   3608 				if (BGE_IS_575X_PLUS(sc))
   3609 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3610 			}
   3611 		}
   3612 	}
   3613 
   3614 	/*
   3615 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3616 	 * lock in bge_reset().
   3617 	 */
   3618 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3619 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3620 	delay(1000);
   3621 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3622 
   3623 	bge_stop_fw(sc);
   3624 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3625 	if (bge_reset(sc))
   3626 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3627 
   3628 	/*
   3629 	 * Read the hardware config word in the first 32k of NIC internal
   3630 	 * memory, or fall back to the config word in the EEPROM.
   3631 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3632 	 */
   3633 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
   3634 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3635 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3636 		uint32_t tmp;
   3637 
   3638 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3639 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3640 		    BGE_SRAM_DATA_VER_SHIFT;
   3641 		if ((0 < tmp) && (tmp < 0x100))
   3642 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3643 		if (sc->bge_flags & BGE_PCIE)
   3644 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3645 		if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
   3646 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3647 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3648 		bge_read_eeprom(sc, (void *)&hwcfg,
   3649 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3650 		hwcfg = be32toh(hwcfg);
   3651 	}
   3652 	aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
   3653 	    hwcfg, hwcfg2, hwcfg3, hwcfg4);
   3654 
   3655 	bge_sig_legacy(sc, BGE_RESET_START);
   3656 	bge_sig_post_reset(sc, BGE_RESET_START);
   3657 
   3658 	if (bge_chipinit(sc)) {
   3659 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3660 		bge_release_resources(sc);
   3661 		return;
   3662 	}
   3663 
   3664 	/*
   3665 	 * Get station address from the EEPROM.
   3666 	 */
   3667 	if (bge_get_eaddr(sc, eaddr)) {
   3668 		aprint_error_dev(sc->bge_dev,
   3669 		    "failed to read station address\n");
   3670 		bge_release_resources(sc);
   3671 		return;
   3672 	}
   3673 
   3674 	br = bge_lookup_rev(sc->bge_chipid);
   3675 
   3676 	if (br == NULL) {
   3677 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3678 		    sc->bge_chipid);
   3679 	} else {
   3680 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3681 		    br->br_name, sc->bge_chipid);
   3682 	}
   3683 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3684 
   3685 	/* Allocate the general information block and ring buffers. */
   3686 	if (pci_dma64_available(pa))
   3687 		sc->bge_dmatag = pa->pa_dmat64;
   3688 	else
   3689 		sc->bge_dmatag = pa->pa_dmat;
   3690 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3691 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3692 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3693 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3694 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3695 		return;
   3696 	}
   3697 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3698 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3699 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3700 			   BUS_DMA_NOWAIT)) {
   3701 		aprint_error_dev(sc->bge_dev,
   3702 		    "can't map DMA buffers (%zu bytes)\n",
   3703 		    sizeof(struct bge_ring_data));
   3704 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3705 		    sc->bge_ring_rseg);
   3706 		return;
   3707 	}
   3708 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3709 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3710 	    sizeof(struct bge_ring_data), 0,
   3711 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3712 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3713 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3714 				 sizeof(struct bge_ring_data));
   3715 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3716 		    sc->bge_ring_rseg);
   3717 		return;
   3718 	}
   3719 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3720 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3721 			    sizeof(struct bge_ring_data), NULL,
   3722 			    BUS_DMA_NOWAIT)) {
   3723 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3724 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3725 				 sizeof(struct bge_ring_data));
   3726 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3727 		    sc->bge_ring_rseg);
   3728 		return;
   3729 	}
   3730 
   3731 	DPRINTFN(5, ("bzero\n"));
   3732 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3733 
   3734 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3735 
   3736 	/* Try to allocate memory for jumbo buffers. */
   3737 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3738 		if (bge_alloc_jumbo_mem(sc)) {
   3739 			aprint_error_dev(sc->bge_dev,
   3740 			    "jumbo buffer allocation failed\n");
   3741 		} else
   3742 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3743 	}
   3744 
   3745 	/* Set default tuneable values. */
   3746 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3747 	sc->bge_rx_coal_ticks = 150;
   3748 	sc->bge_rx_max_coal_bds = 64;
   3749 	sc->bge_tx_coal_ticks = 300;
   3750 	sc->bge_tx_max_coal_bds = 400;
   3751 	if (BGE_IS_5705_PLUS(sc)) {
   3752 		sc->bge_tx_coal_ticks = (12 * 5);
   3753 		sc->bge_tx_max_coal_bds = (12 * 5);
   3754 			aprint_verbose_dev(sc->bge_dev,
   3755 			    "setting short Tx thresholds\n");
   3756 	}
   3757 
   3758 	if (BGE_IS_5717_PLUS(sc))
   3759 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3760 	else if (BGE_IS_5705_PLUS(sc))
   3761 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3762 	else
   3763 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3764 
   3765 	/* Set up ifnet structure */
   3766 	ifp = &sc->ethercom.ec_if;
   3767 	ifp->if_softc = sc;
   3768 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3769 	ifp->if_ioctl = bge_ioctl;
   3770 	ifp->if_stop = bge_stop;
   3771 	ifp->if_start = bge_start;
   3772 	ifp->if_init = bge_init;
   3773 	ifp->if_watchdog = bge_watchdog;
   3774 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3775 	IFQ_SET_READY(&ifp->if_snd);
   3776 	DPRINTFN(5, ("strcpy if_xname\n"));
   3777 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3778 
   3779 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3780 		sc->ethercom.ec_if.if_capabilities |=
   3781 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3782 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3783 		sc->ethercom.ec_if.if_capabilities |=
   3784 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3785 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3786 #endif
   3787 	sc->ethercom.ec_capabilities |=
   3788 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3789 
   3790 	if (sc->bge_flags & BGE_TSO)
   3791 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3792 
   3793 	/*
   3794 	 * Do MII setup.
   3795 	 */
   3796 	DPRINTFN(5, ("mii setup\n"));
   3797 	sc->bge_mii.mii_ifp = ifp;
   3798 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3799 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3800 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3801 
   3802 	/*
   3803 	 * Figure out what sort of media we have by checking the hardware
   3804 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3805 	 * unset. If that's the case, we have to rely on identifying the NIC
   3806 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3807 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3808 	 */
   3809 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3810 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3811 		if (BGE_IS_5714_FAMILY(sc))
   3812 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3813 		else
   3814 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3815 	}
   3816 
   3817 	/* set phyflags and chipid before mii_attach() */
   3818 	dict = device_properties(self);
   3819 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3820 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3821 
   3822 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3823 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3824 		    bge_ifmedia_sts);
   3825 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3826 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3827 			    0, NULL);
   3828 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3829 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3830 		/* Pretend the user requested this setting */
   3831 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3832 	} else {
   3833 		/*
   3834 		 * Do transceiver setup and tell the firmware the
   3835 		 * driver is down so we can try to get access the
   3836 		 * probe if ASF is running.  Retry a couple of times
   3837 		 * if we get a conflict with the ASF firmware accessing
   3838 		 * the PHY.
   3839 		 */
   3840 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3841 		bge_asf_driver_up(sc);
   3842 
   3843 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3844 			     bge_ifmedia_sts);
   3845 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
   3846 			   sc->bge_phy_addr, MII_OFFSET_ANY,
   3847 			   MIIF_DOPAUSE);
   3848 
   3849 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3850 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3851 			ifmedia_add(&sc->bge_mii.mii_media,
   3852 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3853 			ifmedia_set(&sc->bge_mii.mii_media,
   3854 				    IFM_ETHER|IFM_MANUAL);
   3855 		} else
   3856 			ifmedia_set(&sc->bge_mii.mii_media,
   3857 				    IFM_ETHER|IFM_AUTO);
   3858 
   3859 		/*
   3860 		 * Now tell the firmware we are going up after probing the PHY
   3861 		 */
   3862 		if (sc->bge_asf_mode & ASF_STACKUP)
   3863 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3864 	}
   3865 
   3866 	/*
   3867 	 * Call MI attach routine.
   3868 	 */
   3869 	DPRINTFN(5, ("if_attach\n"));
   3870 	if_attach(ifp);
   3871 	DPRINTFN(5, ("ether_ifattach\n"));
   3872 	ether_ifattach(ifp, eaddr);
   3873 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3874 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3875 		RND_TYPE_NET, 0);
   3876 #ifdef BGE_EVENT_COUNTERS
   3877 	/*
   3878 	 * Attach event counters.
   3879 	 */
   3880 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3881 	    NULL, device_xname(sc->bge_dev), "intr");
   3882 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3883 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3884 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3885 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3886 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3887 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3888 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3889 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3890 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3891 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3892 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3893 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3894 #endif /* BGE_EVENT_COUNTERS */
   3895 	DPRINTFN(5, ("callout_init\n"));
   3896 	callout_init(&sc->bge_timeout, 0);
   3897 
   3898 	if (pmf_device_register(self, NULL, NULL))
   3899 		pmf_class_network_register(self, ifp);
   3900 	else
   3901 		aprint_error_dev(self, "couldn't establish power handler\n");
   3902 
   3903 	bge_sysctl_init(sc);
   3904 
   3905 #ifdef BGE_DEBUG
   3906 	bge_debug_info(sc);
   3907 #endif
   3908 }
   3909 
   3910 /*
   3911  * Stop all chip I/O so that the kernel's probe routines don't
   3912  * get confused by errant DMAs when rebooting.
   3913  */
   3914 static int
   3915 bge_detach(device_t self, int flags __unused)
   3916 {
   3917 	struct bge_softc *sc = device_private(self);
   3918 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3919 	int s;
   3920 
   3921 	s = splnet();
   3922 	/* Stop the interface. Callouts are stopped in it. */
   3923 	bge_stop(ifp, 1);
   3924 	splx(s);
   3925 
   3926 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3927 
   3928 	/* Delete all remaining media. */
   3929 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3930 
   3931 	ether_ifdetach(ifp);
   3932 	if_detach(ifp);
   3933 
   3934 	bge_release_resources(sc);
   3935 
   3936 	return 0;
   3937 }
   3938 
   3939 static void
   3940 bge_release_resources(struct bge_softc *sc)
   3941 {
   3942 
   3943 	/* Disestablish the interrupt handler */
   3944 	if (sc->bge_intrhand != NULL) {
   3945 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   3946 		sc->bge_intrhand = NULL;
   3947 	}
   3948 
   3949 	if (sc->bge_dmatag != NULL) {
   3950 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   3951 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3952 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   3953 		    sizeof(struct bge_ring_data));
   3954 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   3955 	}
   3956 
   3957 	/* Unmap the device registers */
   3958 	if (sc->bge_bsize != 0) {
   3959 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   3960 		sc->bge_bsize = 0;
   3961 	}
   3962 
   3963 	/* Unmap the APE registers */
   3964 	if (sc->bge_apesize != 0) {
   3965 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   3966 		    sc->bge_apesize);
   3967 		sc->bge_apesize = 0;
   3968 	}
   3969 }
   3970 
   3971 static int
   3972 bge_reset(struct bge_softc *sc)
   3973 {
   3974 	uint32_t cachesize, command;
   3975 	uint32_t reset, mac_mode, mac_mode_mask;
   3976 	pcireg_t devctl, reg;
   3977 	int i, val;
   3978 	void (*write_op)(struct bge_softc *, int, int);
   3979 
   3980 	/* Make mask for BGE_MAC_MODE register. */
   3981 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   3982 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3983 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3984 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   3985 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   3986 
   3987 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3988 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3989 	    	if (sc->bge_flags & BGE_PCIE)
   3990 			write_op = bge_writemem_direct;
   3991 		else
   3992 			write_op = bge_writemem_ind;
   3993 	} else
   3994 		write_op = bge_writereg_ind;
   3995 
   3996 	/* 57XX step 4 */
   3997 	/* Acquire the NVM lock */
   3998 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
   3999 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4000 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4001 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4002 		for (i = 0; i < 8000; i++) {
   4003 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4004 			    BGE_NVRAMSWARB_GNT1)
   4005 				break;
   4006 			DELAY(20);
   4007 		}
   4008 		if (i == 8000) {
   4009 			printf("%s: NVRAM lock timedout!\n",
   4010 			    device_xname(sc->bge_dev));
   4011 		}
   4012 	}
   4013 
   4014 	/* Take APE lock when performing reset. */
   4015 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4016 
   4017 	/* 57XX step 3 */
   4018 	/* Save some important PCI state. */
   4019 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4020 	/* 5718 reset step 3 */
   4021 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4022 
   4023 	/* 5718 reset step 5, 57XX step 5b-5d */
   4024 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4025 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4026 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4027 
   4028 	/* XXX ???: Disable fastboot on controllers that support it. */
   4029 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4030 	    BGE_IS_5755_PLUS(sc))
   4031 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4032 
   4033 	/* 5718 reset step 2, 57XX step 6 */
   4034 	/*
   4035 	 * Write the magic number to SRAM at offset 0xB50.
   4036 	 * When firmware finishes its initialization it will
   4037 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4038 	 */
   4039 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4040 
   4041 	/* 5718 reset step 6, 57XX step 7 */
   4042 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4043 	/*
   4044 	 * XXX: from FreeBSD/Linux; no documentation
   4045 	 */
   4046 	if (sc->bge_flags & BGE_PCIE) {
   4047 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   4048 		    !BGE_IS_57765_PLUS(sc) &&
   4049 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4050 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4051 			/* PCI Express 1.0 system */
   4052 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4053 			    BGE_PHY_PCIE_SCRAM_MODE);
   4054 		}
   4055 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4056 			/*
   4057 			 * Prevent PCI Express link training
   4058 			 * during global reset.
   4059 			 */
   4060 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4061 			reset |= (1 << 29);
   4062 		}
   4063 	}
   4064 
   4065 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4066 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4067 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4068 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4069 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4070 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4071 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4072 	}
   4073 
   4074 	/*
   4075 	 * Set GPHY Power Down Override to leave GPHY
   4076 	 * powered up in D0 uninitialized.
   4077 	 */
   4078 	if (BGE_IS_5705_PLUS(sc) &&
   4079 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4080 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4081 
   4082 	/* Issue global reset */
   4083 	write_op(sc, BGE_MISC_CFG, reset);
   4084 
   4085 	/* 5718 reset step 7, 57XX step 8 */
   4086 	if (sc->bge_flags & BGE_PCIE)
   4087 		delay(100*1000); /* too big */
   4088 	else
   4089 		delay(1000);
   4090 
   4091 	if (sc->bge_flags & BGE_PCIE) {
   4092 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4093 			DELAY(500000);
   4094 			/* XXX: Magic Numbers */
   4095 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4096 			    BGE_PCI_UNKNOWN0);
   4097 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4098 			    BGE_PCI_UNKNOWN0,
   4099 			    reg | (1 << 15));
   4100 		}
   4101 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4102 		    sc->bge_pciecap + PCIE_DCSR);
   4103 		/* Clear enable no snoop and disable relaxed ordering. */
   4104 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4105 		    PCIE_DCSR_ENA_NO_SNOOP);
   4106 
   4107 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4108 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4109 			devctl &= ~(0x00e0);
   4110 		/* Clear device status register. Write 1b to clear */
   4111 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4112 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4113 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4114 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4115 		bge_set_max_readrq(sc);
   4116 	}
   4117 
   4118 	/* From Linux: dummy read to flush PCI posted writes */
   4119 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4120 
   4121 	/*
   4122 	 * Reset some of the PCI state that got zapped by reset
   4123 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4124 	 * set, too.
   4125 	 */
   4126 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4127 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4128 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4129 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4130 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4131 	    (sc->bge_flags & BGE_PCIX) != 0)
   4132 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4133 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4134 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4135 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4136 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4137 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4138 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4139 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4140 
   4141 	/* Step 11: disable PCI-X Relaxed Ordering. */
   4142 	if (sc->bge_flags & BGE_PCIX) {
   4143 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4144 		    + PCIX_CMD);
   4145 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4146 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4147 	}
   4148 
   4149 	/* 5718 reset step 10, 57XX step 12 */
   4150 	/* Enable memory arbiter. */
   4151 	if (BGE_IS_5714_FAMILY(sc)) {
   4152 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4153 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4154 	} else
   4155 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4156 
   4157 	/* XXX 5721, 5751 and 5752 */
   4158 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4159 		/* Step 19: */
   4160 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4161 		/* Step 20: */
   4162 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4163 	}
   4164 
   4165 	/* 5718 reset step 13, 57XX step 17 */
   4166 	/* Poll until the firmware initialization is complete */
   4167 	bge_poll_fw(sc);
   4168 
   4169 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4170 	/* Fix up byte swapping */
   4171 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4172 
   4173 	/* 57XX step 21 */
   4174 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4175 		pcireg_t msidata;
   4176 
   4177 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4178 		    BGE_PCI_MSI_DATA);
   4179 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4180 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4181 		    msidata);
   4182 	}
   4183 
   4184 	/* 57XX step 18 */
   4185 	/* Write mac mode. */
   4186 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4187 	/* Restore mac_mode_mask's bits using mac_mode */
   4188 	val = (val & ~mac_mode_mask) | mac_mode;
   4189 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4190 	DELAY(40);
   4191 
   4192 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4193 
   4194 	/*
   4195 	 * The 5704 in TBI mode apparently needs some special
   4196 	 * adjustment to insure the SERDES drive level is set
   4197 	 * to 1.2V.
   4198 	 */
   4199 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   4200 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4201 		uint32_t serdescfg;
   4202 
   4203 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4204 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4205 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4206 	}
   4207 
   4208 	if (sc->bge_flags & BGE_PCIE &&
   4209 	    !BGE_IS_57765_PLUS(sc) &&
   4210 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4211 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4212 		uint32_t v;
   4213 
   4214 		/* Enable PCI Express bug fix */
   4215 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4216 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4217 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4218 	}
   4219 
   4220 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4221 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4222 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4223 
   4224 	return 0;
   4225 }
   4226 
   4227 /*
   4228  * Frame reception handling. This is called if there's a frame
   4229  * on the receive return list.
   4230  *
   4231  * Note: we have to be able to handle two possibilities here:
   4232  * 1) the frame is from the jumbo receive ring
   4233  * 2) the frame is from the standard receive ring
   4234  */
   4235 
   4236 static void
   4237 bge_rxeof(struct bge_softc *sc)
   4238 {
   4239 	struct ifnet *ifp;
   4240 	uint16_t rx_prod, rx_cons;
   4241 	int stdcnt = 0, jumbocnt = 0;
   4242 	bus_dmamap_t dmamap;
   4243 	bus_addr_t offset, toff;
   4244 	bus_size_t tlen;
   4245 	int tosync;
   4246 
   4247 	rx_cons = sc->bge_rx_saved_considx;
   4248 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4249 
   4250 	/* Nothing to do */
   4251 	if (rx_cons == rx_prod)
   4252 		return;
   4253 
   4254 	ifp = &sc->ethercom.ec_if;
   4255 
   4256 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4257 	    offsetof(struct bge_ring_data, bge_status_block),
   4258 	    sizeof (struct bge_status_block),
   4259 	    BUS_DMASYNC_POSTREAD);
   4260 
   4261 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4262 	tosync = rx_prod - rx_cons;
   4263 
   4264 	if (tosync != 0)
   4265 		rnd_add_uint32(&sc->rnd_source, tosync);
   4266 
   4267 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4268 
   4269 	if (tosync < 0) {
   4270 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4271 		    sizeof (struct bge_rx_bd);
   4272 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4273 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4274 		tosync = -tosync;
   4275 	}
   4276 
   4277 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4278 	    offset, tosync * sizeof (struct bge_rx_bd),
   4279 	    BUS_DMASYNC_POSTREAD);
   4280 
   4281 	while (rx_cons != rx_prod) {
   4282 		struct bge_rx_bd	*cur_rx;
   4283 		uint32_t		rxidx;
   4284 		struct mbuf		*m = NULL;
   4285 
   4286 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4287 
   4288 		rxidx = cur_rx->bge_idx;
   4289 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4290 
   4291 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4292 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4293 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4294 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4295 			jumbocnt++;
   4296 			bus_dmamap_sync(sc->bge_dmatag,
   4297 			    sc->bge_cdata.bge_rx_jumbo_map,
   4298 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4299 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4300 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4301 				ifp->if_ierrors++;
   4302 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4303 				continue;
   4304 			}
   4305 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4306 					     NULL)== ENOBUFS) {
   4307 				ifp->if_ierrors++;
   4308 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4309 				continue;
   4310 			}
   4311 		} else {
   4312 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4313 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4314 
   4315 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4316 			stdcnt++;
   4317 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4318 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4319 			if (dmamap == NULL) {
   4320 				ifp->if_ierrors++;
   4321 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4322 				continue;
   4323 			}
   4324 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4325 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4326 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4327 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4328 				ifp->if_ierrors++;
   4329 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4330 				continue;
   4331 			}
   4332 			if (bge_newbuf_std(sc, sc->bge_std,
   4333 			    NULL, dmamap) == ENOBUFS) {
   4334 				ifp->if_ierrors++;
   4335 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4336 				continue;
   4337 			}
   4338 		}
   4339 
   4340 		ifp->if_ipackets++;
   4341 #ifndef __NO_STRICT_ALIGNMENT
   4342 		/*
   4343 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4344 		 * the Rx buffer has the layer-2 header unaligned.
   4345 		 * If our CPU requires alignment, re-align by copying.
   4346 		 */
   4347 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   4348 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4349 				cur_rx->bge_len);
   4350 			m->m_data += ETHER_ALIGN;
   4351 		}
   4352 #endif
   4353 
   4354 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4355 		m->m_pkthdr.rcvif = ifp;
   4356 
   4357 		/*
   4358 		 * Handle BPF listeners. Let the BPF user see the packet.
   4359 		 */
   4360 		bpf_mtap(ifp, m);
   4361 
   4362 		bge_rxcsum(sc, cur_rx, m);
   4363 
   4364 		/*
   4365 		 * If we received a packet with a vlan tag, pass it
   4366 		 * to vlan_input() instead of ether_input().
   4367 		 */
   4368 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4369 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4370 		}
   4371 
   4372 		(*ifp->if_input)(ifp, m);
   4373 	}
   4374 
   4375 	sc->bge_rx_saved_considx = rx_cons;
   4376 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4377 	if (stdcnt)
   4378 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4379 	if (jumbocnt)
   4380 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4381 }
   4382 
   4383 static void
   4384 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4385 {
   4386 
   4387 	if (BGE_IS_5717_PLUS(sc)) {
   4388 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4389 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4390 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4391 			if ((cur_rx->bge_error_flag &
   4392 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4393 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4394 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4395 				m->m_pkthdr.csum_data =
   4396 				    cur_rx->bge_tcp_udp_csum;
   4397 				m->m_pkthdr.csum_flags |=
   4398 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4399 					M_CSUM_DATA);
   4400 			}
   4401 		}
   4402 	} else {
   4403 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4404 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4405 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4406 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4407 		/*
   4408 		 * Rx transport checksum-offload may also
   4409 		 * have bugs with packets which, when transmitted,
   4410 		 * were `runts' requiring padding.
   4411 		 */
   4412 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4413 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4414 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4415 			m->m_pkthdr.csum_data =
   4416 			    cur_rx->bge_tcp_udp_csum;
   4417 			m->m_pkthdr.csum_flags |=
   4418 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4419 				M_CSUM_DATA);
   4420 		}
   4421 	}
   4422 }
   4423 
   4424 static void
   4425 bge_txeof(struct bge_softc *sc)
   4426 {
   4427 	struct bge_tx_bd *cur_tx = NULL;
   4428 	struct ifnet *ifp;
   4429 	struct txdmamap_pool_entry *dma;
   4430 	bus_addr_t offset, toff;
   4431 	bus_size_t tlen;
   4432 	int tosync;
   4433 	struct mbuf *m;
   4434 
   4435 	ifp = &sc->ethercom.ec_if;
   4436 
   4437 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4438 	    offsetof(struct bge_ring_data, bge_status_block),
   4439 	    sizeof (struct bge_status_block),
   4440 	    BUS_DMASYNC_POSTREAD);
   4441 
   4442 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4443 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4444 	    sc->bge_tx_saved_considx;
   4445 
   4446 	if (tosync != 0)
   4447 		rnd_add_uint32(&sc->rnd_source, tosync);
   4448 
   4449 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4450 
   4451 	if (tosync < 0) {
   4452 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4453 		    sizeof (struct bge_tx_bd);
   4454 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4455 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4456 		tosync = -tosync;
   4457 	}
   4458 
   4459 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4460 	    offset, tosync * sizeof (struct bge_tx_bd),
   4461 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4462 
   4463 	/*
   4464 	 * Go through our tx ring and free mbufs for those
   4465 	 * frames that have been sent.
   4466 	 */
   4467 	while (sc->bge_tx_saved_considx !=
   4468 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4469 		uint32_t		idx = 0;
   4470 
   4471 		idx = sc->bge_tx_saved_considx;
   4472 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4473 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4474 			ifp->if_opackets++;
   4475 		m = sc->bge_cdata.bge_tx_chain[idx];
   4476 		if (m != NULL) {
   4477 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4478 			dma = sc->txdma[idx];
   4479 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4480 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4481 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4482 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4483 			sc->txdma[idx] = NULL;
   4484 
   4485 			m_freem(m);
   4486 		}
   4487 		sc->bge_txcnt--;
   4488 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4489 		ifp->if_timer = 0;
   4490 	}
   4491 
   4492 	if (cur_tx != NULL)
   4493 		ifp->if_flags &= ~IFF_OACTIVE;
   4494 }
   4495 
   4496 static int
   4497 bge_intr(void *xsc)
   4498 {
   4499 	struct bge_softc *sc;
   4500 	struct ifnet *ifp;
   4501 	uint32_t statusword;
   4502 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4503 
   4504 	sc = xsc;
   4505 	ifp = &sc->ethercom.ec_if;
   4506 
   4507 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4508 	if (BGE_IS_5717_PLUS(sc))
   4509 		intrmask = 0;
   4510 
   4511 	/* It is possible for the interrupt to arrive before
   4512 	 * the status block is updated prior to the interrupt.
   4513 	 * Reading the PCI State register will confirm whether the
   4514 	 * interrupt is ours and will flush the status block.
   4515 	 */
   4516 
   4517 	/* read status word from status block */
   4518 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4519 	    offsetof(struct bge_ring_data, bge_status_block),
   4520 	    sizeof (struct bge_status_block),
   4521 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4522 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4523 
   4524 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4525 	    (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
   4526 		/* Ack interrupt and stop others from occuring. */
   4527 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4528 
   4529 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4530 
   4531 		/* clear status word */
   4532 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4533 
   4534 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4535 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4536 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4537 			bge_link_upd(sc);
   4538 
   4539 		if (ifp->if_flags & IFF_RUNNING) {
   4540 			/* Check RX return ring producer/consumer */
   4541 			bge_rxeof(sc);
   4542 
   4543 			/* Check TX ring producer/consumer */
   4544 			bge_txeof(sc);
   4545 		}
   4546 
   4547 		if (sc->bge_pending_rxintr_change) {
   4548 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4549 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4550 			uint32_t junk;
   4551 
   4552 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4553 			DELAY(10);
   4554 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4555 
   4556 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4557 			DELAY(10);
   4558 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4559 
   4560 			sc->bge_pending_rxintr_change = 0;
   4561 		}
   4562 		bge_handle_events(sc);
   4563 
   4564 		/* Re-enable interrupts. */
   4565 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4566 
   4567 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4568 			bge_start(ifp);
   4569 
   4570 		return 1;
   4571 	} else
   4572 		return 0;
   4573 }
   4574 
   4575 static void
   4576 bge_asf_driver_up(struct bge_softc *sc)
   4577 {
   4578 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4579 		/* Send ASF heartbeat aprox. every 2s */
   4580 		if (sc->bge_asf_count)
   4581 			sc->bge_asf_count --;
   4582 		else {
   4583 			sc->bge_asf_count = 2;
   4584 
   4585 			bge_wait_for_event_ack(sc);
   4586 
   4587 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4588 			    BGE_FW_CMD_DRV_ALIVE);
   4589 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4590 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4591 			    BGE_FW_HB_TIMEOUT_SEC);
   4592 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4593 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4594 			    BGE_RX_CPU_DRV_EVENT);
   4595 		}
   4596 	}
   4597 }
   4598 
   4599 static void
   4600 bge_tick(void *xsc)
   4601 {
   4602 	struct bge_softc *sc = xsc;
   4603 	struct mii_data *mii = &sc->bge_mii;
   4604 	int s;
   4605 
   4606 	s = splnet();
   4607 
   4608 	if (BGE_IS_5705_PLUS(sc))
   4609 		bge_stats_update_regs(sc);
   4610 	else
   4611 		bge_stats_update(sc);
   4612 
   4613 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4614 		/*
   4615 		 * Since in TBI mode auto-polling can't be used we should poll
   4616 		 * link status manually. Here we register pending link event
   4617 		 * and trigger interrupt.
   4618 		 */
   4619 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4620 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4621 	} else {
   4622 		/*
   4623 		 * Do not touch PHY if we have link up. This could break
   4624 		 * IPMI/ASF mode or produce extra input errors.
   4625 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4626 		 */
   4627 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4628 			mii_tick(mii);
   4629 	}
   4630 
   4631 	bge_asf_driver_up(sc);
   4632 
   4633 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4634 
   4635 	splx(s);
   4636 }
   4637 
   4638 static void
   4639 bge_stats_update_regs(struct bge_softc *sc)
   4640 {
   4641 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4642 
   4643 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4644 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4645 
   4646 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4647 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4648 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4649 }
   4650 
   4651 static void
   4652 bge_stats_update(struct bge_softc *sc)
   4653 {
   4654 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4655 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4656 
   4657 #define READ_STAT(sc, stats, stat) \
   4658 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4659 
   4660 	ifp->if_collisions +=
   4661 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4662 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4663 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4664 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4665 	  ifp->if_collisions;
   4666 
   4667 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4668 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4669 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4670 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4671 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4672 		      READ_STAT(sc, stats,
   4673 		      		xoffPauseFramesReceived.bge_addr_lo));
   4674 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4675 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4676 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4677 		      READ_STAT(sc, stats,
   4678 		      		macControlFramesReceived.bge_addr_lo));
   4679 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4680 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4681 
   4682 #undef READ_STAT
   4683 
   4684 #ifdef notdef
   4685 	ifp->if_collisions +=
   4686 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4687 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4688 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4689 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4690 	   ifp->if_collisions;
   4691 #endif
   4692 }
   4693 
   4694 /*
   4695  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4696  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4697  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4698  * the hardware checksum assist gives incorrect results (possibly
   4699  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4700  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4701  */
   4702 static inline int
   4703 bge_cksum_pad(struct mbuf *pkt)
   4704 {
   4705 	struct mbuf *last = NULL;
   4706 	int padlen;
   4707 
   4708 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4709 
   4710 	/* if there's only the packet-header and we can pad there, use it. */
   4711 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4712 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4713 		last = pkt;
   4714 	} else {
   4715 		/*
   4716 		 * Walk packet chain to find last mbuf. We will either
   4717 		 * pad there, or append a new mbuf and pad it
   4718 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4719 		 */
   4720 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4721 	      	       continue; /* do nothing */
   4722 		}
   4723 
   4724 		/* `last' now points to last in chain. */
   4725 		if (M_TRAILINGSPACE(last) < padlen) {
   4726 			/* Allocate new empty mbuf, pad it. Compact later. */
   4727 			struct mbuf *n;
   4728 			MGET(n, M_DONTWAIT, MT_DATA);
   4729 			if (n == NULL)
   4730 				return ENOBUFS;
   4731 			n->m_len = 0;
   4732 			last->m_next = n;
   4733 			last = n;
   4734 		}
   4735 	}
   4736 
   4737 	KDASSERT(!M_READONLY(last));
   4738 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4739 
   4740 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4741 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4742 	last->m_len += padlen;
   4743 	pkt->m_pkthdr.len += padlen;
   4744 	return 0;
   4745 }
   4746 
   4747 /*
   4748  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4749  */
   4750 static inline int
   4751 bge_compact_dma_runt(struct mbuf *pkt)
   4752 {
   4753 	struct mbuf	*m, *prev;
   4754 	int 		totlen, prevlen;
   4755 
   4756 	prev = NULL;
   4757 	totlen = 0;
   4758 	prevlen = -1;
   4759 
   4760 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4761 		int mlen = m->m_len;
   4762 		int shortfall = 8 - mlen ;
   4763 
   4764 		totlen += mlen;
   4765 		if (mlen == 0)
   4766 			continue;
   4767 		if (mlen >= 8)
   4768 			continue;
   4769 
   4770 		/* If we get here, mbuf data is too small for DMA engine.
   4771 		 * Try to fix by shuffling data to prev or next in chain.
   4772 		 * If that fails, do a compacting deep-copy of the whole chain.
   4773 		 */
   4774 
   4775 		/* Internal frag. If fits in prev, copy it there. */
   4776 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4777 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4778 			prev->m_len += mlen;
   4779 			m->m_len = 0;
   4780 			/* XXX stitch chain */
   4781 			prev->m_next = m_free(m);
   4782 			m = prev;
   4783 			continue;
   4784 		}
   4785 		else if (m->m_next != NULL &&
   4786 			     M_TRAILINGSPACE(m) >= shortfall &&
   4787 			     m->m_next->m_len >= (8 + shortfall)) {
   4788 		    /* m is writable and have enough data in next, pull up. */
   4789 
   4790 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4791 			    shortfall);
   4792 			m->m_len += shortfall;
   4793 			m->m_next->m_len -= shortfall;
   4794 			m->m_next->m_data += shortfall;
   4795 		}
   4796 		else if (m->m_next == NULL || 1) {
   4797 		  	/* Got a runt at the very end of the packet.
   4798 			 * borrow data from the tail of the preceding mbuf and
   4799 			 * update its length in-place. (The original data is still
   4800 			 * valid, so we can do this even if prev is not writable.)
   4801 			 */
   4802 
   4803 			/* if we'd make prev a runt, just move all of its data. */
   4804 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4805 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4806 
   4807 			if ((prev->m_len - shortfall) < 8)
   4808 				shortfall = prev->m_len;
   4809 
   4810 #ifdef notyet	/* just do the safe slow thing for now */
   4811 			if (!M_READONLY(m)) {
   4812 				if (M_LEADINGSPACE(m) < shorfall) {
   4813 					void *m_dat;
   4814 					m_dat = (m->m_flags & M_PKTHDR) ?
   4815 					  m->m_pktdat : m->dat;
   4816 					memmove(m_dat, mtod(m, void*), m->m_len);
   4817 					m->m_data = m_dat;
   4818 				    }
   4819 			} else
   4820 #endif	/* just do the safe slow thing */
   4821 			{
   4822 				struct mbuf * n = NULL;
   4823 				int newprevlen = prev->m_len - shortfall;
   4824 
   4825 				MGET(n, M_NOWAIT, MT_DATA);
   4826 				if (n == NULL)
   4827 				   return ENOBUFS;
   4828 				KASSERT(m->m_len + shortfall < MLEN
   4829 					/*,
   4830 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4831 
   4832 				/* first copy the data we're stealing from prev */
   4833 				memcpy(n->m_data, prev->m_data + newprevlen,
   4834 				    shortfall);
   4835 
   4836 				/* update prev->m_len accordingly */
   4837 				prev->m_len -= shortfall;
   4838 
   4839 				/* copy data from runt m */
   4840 				memcpy(n->m_data + shortfall, m->m_data,
   4841 				    m->m_len);
   4842 
   4843 				/* n holds what we stole from prev, plus m */
   4844 				n->m_len = shortfall + m->m_len;
   4845 
   4846 				/* stitch n into chain and free m */
   4847 				n->m_next = m->m_next;
   4848 				prev->m_next = n;
   4849 				/* KASSERT(m->m_next == NULL); */
   4850 				m->m_next = NULL;
   4851 				m_free(m);
   4852 				m = n;	/* for continuing loop */
   4853 			}
   4854 		}
   4855 		prevlen = m->m_len;
   4856 	}
   4857 	return 0;
   4858 }
   4859 
   4860 /*
   4861  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4862  * pointers to descriptors.
   4863  */
   4864 static int
   4865 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4866 {
   4867 	struct bge_tx_bd	*f = NULL;
   4868 	uint32_t		frag, cur;
   4869 	uint16_t		csum_flags = 0;
   4870 	uint16_t		txbd_tso_flags = 0;
   4871 	struct txdmamap_pool_entry *dma;
   4872 	bus_dmamap_t dmamap;
   4873 	int			i = 0;
   4874 	struct m_tag		*mtag;
   4875 	int			use_tso, maxsegsize, error;
   4876 
   4877 	cur = frag = *txidx;
   4878 
   4879 	if (m_head->m_pkthdr.csum_flags) {
   4880 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4881 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4882 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4883 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4884 	}
   4885 
   4886 	/*
   4887 	 * If we were asked to do an outboard checksum, and the NIC
   4888 	 * has the bug where it sometimes adds in the Ethernet padding,
   4889 	 * explicitly pad with zeros so the cksum will be correct either way.
   4890 	 * (For now, do this for all chip versions, until newer
   4891 	 * are confirmed to not require the workaround.)
   4892 	 */
   4893 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4894 #ifdef notyet
   4895 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4896 #endif
   4897 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4898 		goto check_dma_bug;
   4899 
   4900 	if (bge_cksum_pad(m_head) != 0)
   4901 	    return ENOBUFS;
   4902 
   4903 check_dma_bug:
   4904 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4905 		goto doit;
   4906 
   4907 	/*
   4908 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4909 	 * less than eight bytes.  If we encounter a teeny mbuf
   4910 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4911 	 */
   4912 	if (bge_compact_dma_runt(m_head) != 0)
   4913 		return ENOBUFS;
   4914 
   4915 doit:
   4916 	dma = SLIST_FIRST(&sc->txdma_list);
   4917 	if (dma == NULL)
   4918 		return ENOBUFS;
   4919 	dmamap = dma->dmamap;
   4920 
   4921 	/*
   4922 	 * Set up any necessary TSO state before we start packing...
   4923 	 */
   4924 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4925 	if (!use_tso) {
   4926 		maxsegsize = 0;
   4927 	} else {	/* TSO setup */
   4928 		unsigned  mss;
   4929 		struct ether_header *eh;
   4930 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4931 		struct mbuf * m0 = m_head;
   4932 		struct ip *ip;
   4933 		struct tcphdr *th;
   4934 		int iphl, hlen;
   4935 
   4936 		/*
   4937 		 * XXX It would be nice if the mbuf pkthdr had offset
   4938 		 * fields for the protocol headers.
   4939 		 */
   4940 
   4941 		eh = mtod(m0, struct ether_header *);
   4942 		switch (htons(eh->ether_type)) {
   4943 		case ETHERTYPE_IP:
   4944 			offset = ETHER_HDR_LEN;
   4945 			break;
   4946 
   4947 		case ETHERTYPE_VLAN:
   4948 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4949 			break;
   4950 
   4951 		default:
   4952 			/*
   4953 			 * Don't support this protocol or encapsulation.
   4954 			 */
   4955 			return ENOBUFS;
   4956 		}
   4957 
   4958 		/*
   4959 		 * TCP/IP headers are in the first mbuf; we can do
   4960 		 * this the easy way.
   4961 		 */
   4962 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4963 		hlen = iphl + offset;
   4964 		if (__predict_false(m0->m_len <
   4965 				    (hlen + sizeof(struct tcphdr)))) {
   4966 
   4967 			aprint_debug_dev(sc->bge_dev,
   4968 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4969 			    "not handled yet\n",
   4970 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4971 #ifdef NOTYET
   4972 			/*
   4973 			 * XXX jonathan (at) NetBSD.org: untested.
   4974 			 * how to force  this branch to be taken?
   4975 			 */
   4976 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4977 
   4978 			m_copydata(m0, offset, sizeof(ip), &ip);
   4979 			m_copydata(m0, hlen, sizeof(th), &th);
   4980 
   4981 			ip.ip_len = 0;
   4982 
   4983 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4984 			    sizeof(ip.ip_len), &ip.ip_len);
   4985 
   4986 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4987 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4988 
   4989 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   4990 			    sizeof(th.th_sum), &th.th_sum);
   4991 
   4992 			hlen += th.th_off << 2;
   4993 			iptcp_opt_words	= hlen;
   4994 #else
   4995 			/*
   4996 			 * if_wm "hard" case not yet supported, can we not
   4997 			 * mandate it out of existence?
   4998 			 */
   4999 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5000 
   5001 			return ENOBUFS;
   5002 #endif
   5003 		} else {
   5004 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5005 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5006 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5007 
   5008 			/* Total IP/TCP options, in 32-bit words */
   5009 			iptcp_opt_words = (ip_tcp_hlen
   5010 					   - sizeof(struct tcphdr)
   5011 					   - sizeof(struct ip)) >> 2;
   5012 		}
   5013 		if (BGE_IS_575X_PLUS(sc)) {
   5014 			th->th_sum = 0;
   5015 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   5016 		} else {
   5017 			/*
   5018 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5019 			 * Requires TSO firmware patch for 5701/5703/5704.
   5020 			 */
   5021 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5022 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5023 		}
   5024 
   5025 		mss = m_head->m_pkthdr.segsz;
   5026 		txbd_tso_flags |=
   5027 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5028 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5029 
   5030 		/*
   5031 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5032 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5033 		 * the NIC copies 40 bytes of IP/TCP header from the
   5034 		 * supplied header into the IP/TCP header portion of
   5035 		 * each post-TSO-segment. If the supplied packet has IP or
   5036 		 * TCP options, we need to tell the NIC to copy those extra
   5037 		 * bytes into each  post-TSO header, in addition to the normal
   5038 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5039 		 * Unfortunately, the driver encoding of option length
   5040 		 * varies across different ASIC families.
   5041 		 */
   5042 		tcp_seg_flags = 0;
   5043 		if (iptcp_opt_words) {
   5044 			if (BGE_IS_5705_PLUS(sc)) {
   5045 				tcp_seg_flags =
   5046 					iptcp_opt_words << 11;
   5047 			} else {
   5048 				txbd_tso_flags |=
   5049 					iptcp_opt_words << 12;
   5050 			}
   5051 		}
   5052 		maxsegsize = mss | tcp_seg_flags;
   5053 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5054 
   5055 	}	/* TSO setup */
   5056 
   5057 	/*
   5058 	 * Start packing the mbufs in this chain into
   5059 	 * the fragment pointers. Stop when we run out
   5060 	 * of fragments or hit the end of the mbuf chain.
   5061 	 */
   5062 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   5063 	    BUS_DMA_NOWAIT);
   5064 	if (error)
   5065 		return ENOBUFS;
   5066 	/*
   5067 	 * Sanity check: avoid coming within 16 descriptors
   5068 	 * of the end of the ring.
   5069 	 */
   5070 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5071 		BGE_TSO_PRINTF(("%s: "
   5072 		    " dmamap_load_mbuf too close to ring wrap\n",
   5073 		    device_xname(sc->bge_dev)));
   5074 		goto fail_unload;
   5075 	}
   5076 
   5077 	mtag = sc->ethercom.ec_nvlans ?
   5078 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   5079 
   5080 
   5081 	/* Iterate over dmap-map fragments. */
   5082 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5083 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5084 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5085 			break;
   5086 
   5087 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5088 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5089 
   5090 		/*
   5091 		 * For 5751 and follow-ons, for TSO we must turn
   5092 		 * off checksum-assist flag in the tx-descr, and
   5093 		 * supply the ASIC-revision-specific encoding
   5094 		 * of TSO flags and segsize.
   5095 		 */
   5096 		if (use_tso) {
   5097 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5098 				f->bge_rsvd = maxsegsize;
   5099 				f->bge_flags = csum_flags | txbd_tso_flags;
   5100 			} else {
   5101 				f->bge_rsvd = 0;
   5102 				f->bge_flags =
   5103 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5104 			}
   5105 		} else {
   5106 			f->bge_rsvd = 0;
   5107 			f->bge_flags = csum_flags;
   5108 		}
   5109 
   5110 		if (mtag != NULL) {
   5111 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5112 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5113 		} else {
   5114 			f->bge_vlan_tag = 0;
   5115 		}
   5116 		cur = frag;
   5117 		BGE_INC(frag, BGE_TX_RING_CNT);
   5118 	}
   5119 
   5120 	if (i < dmamap->dm_nsegs) {
   5121 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5122 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5123 		goto fail_unload;
   5124 	}
   5125 
   5126 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5127 	    BUS_DMASYNC_PREWRITE);
   5128 
   5129 	if (frag == sc->bge_tx_saved_considx) {
   5130 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5131 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5132 
   5133 		goto fail_unload;
   5134 	}
   5135 
   5136 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5137 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5138 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5139 	sc->txdma[cur] = dma;
   5140 	sc->bge_txcnt += dmamap->dm_nsegs;
   5141 
   5142 	*txidx = frag;
   5143 
   5144 	return 0;
   5145 
   5146 fail_unload:
   5147 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5148 
   5149 	return ENOBUFS;
   5150 }
   5151 
   5152 /*
   5153  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5154  * to the mbuf data regions directly in the transmit descriptors.
   5155  */
   5156 static void
   5157 bge_start(struct ifnet *ifp)
   5158 {
   5159 	struct bge_softc *sc;
   5160 	struct mbuf *m_head = NULL;
   5161 	uint32_t prodidx;
   5162 	int pkts = 0;
   5163 
   5164 	sc = ifp->if_softc;
   5165 
   5166 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5167 		return;
   5168 
   5169 	prodidx = sc->bge_tx_prodidx;
   5170 
   5171 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5172 		IFQ_POLL(&ifp->if_snd, m_head);
   5173 		if (m_head == NULL)
   5174 			break;
   5175 
   5176 #if 0
   5177 		/*
   5178 		 * XXX
   5179 		 * safety overkill.  If this is a fragmented packet chain
   5180 		 * with delayed TCP/UDP checksums, then only encapsulate
   5181 		 * it if we have enough descriptors to handle the entire
   5182 		 * chain at once.
   5183 		 * (paranoia -- may not actually be needed)
   5184 		 */
   5185 		if (m_head->m_flags & M_FIRSTFRAG &&
   5186 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5187 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5188 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5189 				ifp->if_flags |= IFF_OACTIVE;
   5190 				break;
   5191 			}
   5192 		}
   5193 #endif
   5194 
   5195 		/*
   5196 		 * Pack the data into the transmit ring. If we
   5197 		 * don't have room, set the OACTIVE flag and wait
   5198 		 * for the NIC to drain the ring.
   5199 		 */
   5200 		if (bge_encap(sc, m_head, &prodidx)) {
   5201 			ifp->if_flags |= IFF_OACTIVE;
   5202 			break;
   5203 		}
   5204 
   5205 		/* now we are committed to transmit the packet */
   5206 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5207 		pkts++;
   5208 
   5209 		/*
   5210 		 * If there's a BPF listener, bounce a copy of this frame
   5211 		 * to him.
   5212 		 */
   5213 		bpf_mtap(ifp, m_head);
   5214 	}
   5215 	if (pkts == 0)
   5216 		return;
   5217 
   5218 	/* Transmit */
   5219 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5220 	/* 5700 b2 errata */
   5221 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5222 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5223 
   5224 	sc->bge_tx_prodidx = prodidx;
   5225 
   5226 	/*
   5227 	 * Set a timeout in case the chip goes out to lunch.
   5228 	 */
   5229 	ifp->if_timer = 5;
   5230 }
   5231 
   5232 static int
   5233 bge_init(struct ifnet *ifp)
   5234 {
   5235 	struct bge_softc *sc = ifp->if_softc;
   5236 	const uint16_t *m;
   5237 	uint32_t mode;
   5238 	int s, error = 0;
   5239 
   5240 	s = splnet();
   5241 
   5242 	ifp = &sc->ethercom.ec_if;
   5243 
   5244 	/* Cancel pending I/O and flush buffers. */
   5245 	bge_stop(ifp, 0);
   5246 
   5247 	bge_stop_fw(sc);
   5248 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5249 	bge_reset(sc);
   5250 	bge_sig_legacy(sc, BGE_RESET_START);
   5251 	bge_sig_post_reset(sc, BGE_RESET_START);
   5252 
   5253 	bge_chipinit(sc);
   5254 
   5255 	/*
   5256 	 * Init the various state machines, ring
   5257 	 * control blocks and firmware.
   5258 	 */
   5259 	error = bge_blockinit(sc);
   5260 	if (error != 0) {
   5261 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5262 		    error);
   5263 		splx(s);
   5264 		return error;
   5265 	}
   5266 
   5267 	ifp = &sc->ethercom.ec_if;
   5268 
   5269 	/* 5718 step 25, 57XX step 54 */
   5270 	/* Specify MTU. */
   5271 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5272 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5273 
   5274 	/* 5718 step 23 */
   5275 	/* Load our MAC address. */
   5276 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5277 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5278 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5279 
   5280 	/* Enable or disable promiscuous mode as needed. */
   5281 	if (ifp->if_flags & IFF_PROMISC)
   5282 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5283 	else
   5284 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5285 
   5286 	/* Program multicast filter. */
   5287 	bge_setmulti(sc);
   5288 
   5289 	/* Init RX ring. */
   5290 	bge_init_rx_ring_std(sc);
   5291 
   5292 	/*
   5293 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5294 	 * memory to insure that the chip has in fact read the first
   5295 	 * entry of the ring.
   5296 	 */
   5297 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5298 		uint32_t		v, i;
   5299 		for (i = 0; i < 10; i++) {
   5300 			DELAY(20);
   5301 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5302 			if (v == (MCLBYTES - ETHER_ALIGN))
   5303 				break;
   5304 		}
   5305 		if (i == 10)
   5306 			aprint_error_dev(sc->bge_dev,
   5307 			    "5705 A0 chip failed to load RX ring\n");
   5308 	}
   5309 
   5310 	/* Init jumbo RX ring. */
   5311 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5312 		bge_init_rx_ring_jumbo(sc);
   5313 
   5314 	/* Init our RX return ring index */
   5315 	sc->bge_rx_saved_considx = 0;
   5316 
   5317 	/* Init TX ring. */
   5318 	bge_init_tx_ring(sc);
   5319 
   5320 	/* 5718 step 63, 57XX step 94 */
   5321 	/* Enable TX MAC state machine lockup fix. */
   5322 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5323 	if (BGE_IS_5755_PLUS(sc) ||
   5324 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5325 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5326 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5327 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5328 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5329 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5330 	}
   5331 
   5332 	/* Turn on transmitter */
   5333 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5334 	/* 5718 step 64 */
   5335 	DELAY(100);
   5336 
   5337 	/* 5718 step 65, 57XX step 95 */
   5338 	/* Turn on receiver */
   5339 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5340 	if (BGE_IS_5755_PLUS(sc))
   5341 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5342 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5343 	/* 5718 step 66 */
   5344 	DELAY(10);
   5345 
   5346 	/* 5718 step 12 */
   5347 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   5348 
   5349 	/* Tell firmware we're alive. */
   5350 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5351 
   5352 	/* Enable host interrupts. */
   5353 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5354 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5355 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5356 
   5357 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5358 		goto out;
   5359 
   5360 	ifp->if_flags |= IFF_RUNNING;
   5361 	ifp->if_flags &= ~IFF_OACTIVE;
   5362 
   5363 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5364 
   5365 out:
   5366 	sc->bge_if_flags = ifp->if_flags;
   5367 	splx(s);
   5368 
   5369 	return error;
   5370 }
   5371 
   5372 /*
   5373  * Set media options.
   5374  */
   5375 static int
   5376 bge_ifmedia_upd(struct ifnet *ifp)
   5377 {
   5378 	struct bge_softc *sc = ifp->if_softc;
   5379 	struct mii_data *mii = &sc->bge_mii;
   5380 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5381 	int rc;
   5382 
   5383 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5384 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5385 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5386 			return EINVAL;
   5387 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5388 		case IFM_AUTO:
   5389 			/*
   5390 			 * The BCM5704 ASIC appears to have a special
   5391 			 * mechanism for programming the autoneg
   5392 			 * advertisement registers in TBI mode.
   5393 			 */
   5394 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5395 				uint32_t sgdig;
   5396 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5397 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5398 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5399 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5400 					sgdig |= BGE_SGDIGCFG_AUTO |
   5401 					    BGE_SGDIGCFG_PAUSE_CAP |
   5402 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5403 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5404 					    sgdig | BGE_SGDIGCFG_SEND);
   5405 					DELAY(5);
   5406 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5407 					    sgdig);
   5408 				}
   5409 			}
   5410 			break;
   5411 		case IFM_1000_SX:
   5412 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5413 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5414 				    BGE_MACMODE_HALF_DUPLEX);
   5415 			} else {
   5416 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5417 				    BGE_MACMODE_HALF_DUPLEX);
   5418 			}
   5419 			DELAY(40);
   5420 			break;
   5421 		default:
   5422 			return EINVAL;
   5423 		}
   5424 		/* XXX 802.3x flow control for 1000BASE-SX */
   5425 		return 0;
   5426 	}
   5427 
   5428 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5429 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5430 		return 0;
   5431 
   5432 	/*
   5433 	 * Force an interrupt so that we will call bge_link_upd
   5434 	 * if needed and clear any pending link state attention.
   5435 	 * Without this we are not getting any further interrupts
   5436 	 * for link state changes and thus will not UP the link and
   5437 	 * not be able to send in bge_start. The only way to get
   5438 	 * things working was to receive a packet and get a RX intr.
   5439 	 */
   5440 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5441 	    sc->bge_flags & BGE_IS_5788)
   5442 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5443 	else
   5444 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5445 
   5446 	return rc;
   5447 }
   5448 
   5449 /*
   5450  * Report current media status.
   5451  */
   5452 static void
   5453 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5454 {
   5455 	struct bge_softc *sc = ifp->if_softc;
   5456 	struct mii_data *mii = &sc->bge_mii;
   5457 
   5458 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5459 		ifmr->ifm_status = IFM_AVALID;
   5460 		ifmr->ifm_active = IFM_ETHER;
   5461 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5462 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5463 			ifmr->ifm_status |= IFM_ACTIVE;
   5464 		ifmr->ifm_active |= IFM_1000_SX;
   5465 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5466 			ifmr->ifm_active |= IFM_HDX;
   5467 		else
   5468 			ifmr->ifm_active |= IFM_FDX;
   5469 		return;
   5470 	}
   5471 
   5472 	mii_pollstat(mii);
   5473 	ifmr->ifm_status = mii->mii_media_status;
   5474 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5475 	    sc->bge_flowflags;
   5476 }
   5477 
   5478 static int
   5479 bge_ifflags_cb(struct ethercom *ec)
   5480 {
   5481 	struct ifnet *ifp = &ec->ec_if;
   5482 	struct bge_softc *sc = ifp->if_softc;
   5483 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5484 
   5485 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5486 		return ENETRESET;
   5487 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5488 		return 0;
   5489 
   5490 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5491 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5492 	else
   5493 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5494 
   5495 	bge_setmulti(sc);
   5496 
   5497 	sc->bge_if_flags = ifp->if_flags;
   5498 	return 0;
   5499 }
   5500 
   5501 static int
   5502 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5503 {
   5504 	struct bge_softc *sc = ifp->if_softc;
   5505 	struct ifreq *ifr = (struct ifreq *) data;
   5506 	int s, error = 0;
   5507 	struct mii_data *mii;
   5508 
   5509 	s = splnet();
   5510 
   5511 	switch (command) {
   5512 	case SIOCSIFMEDIA:
   5513 		/* XXX Flow control is not supported for 1000BASE-SX */
   5514 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5515 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5516 			sc->bge_flowflags = 0;
   5517 		}
   5518 
   5519 		/* Flow control requires full-duplex mode. */
   5520 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5521 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5522 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5523 		}
   5524 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5525 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5526 				/* We can do both TXPAUSE and RXPAUSE. */
   5527 				ifr->ifr_media |=
   5528 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5529 			}
   5530 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5531 		}
   5532 		/* FALLTHROUGH */
   5533 	case SIOCGIFMEDIA:
   5534 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5535 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5536 			    command);
   5537 		} else {
   5538 			mii = &sc->bge_mii;
   5539 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5540 			    command);
   5541 		}
   5542 		break;
   5543 	default:
   5544 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5545 			break;
   5546 
   5547 		error = 0;
   5548 
   5549 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5550 			;
   5551 		else if (ifp->if_flags & IFF_RUNNING)
   5552 			bge_setmulti(sc);
   5553 		break;
   5554 	}
   5555 
   5556 	splx(s);
   5557 
   5558 	return error;
   5559 }
   5560 
   5561 static void
   5562 bge_watchdog(struct ifnet *ifp)
   5563 {
   5564 	struct bge_softc *sc;
   5565 
   5566 	sc = ifp->if_softc;
   5567 
   5568 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5569 
   5570 	ifp->if_flags &= ~IFF_RUNNING;
   5571 	bge_init(ifp);
   5572 
   5573 	ifp->if_oerrors++;
   5574 }
   5575 
   5576 static void
   5577 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5578 {
   5579 	int i;
   5580 
   5581 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5582 
   5583 	for (i = 0; i < 1000; i++) {
   5584 		delay(100);
   5585 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5586 			return;
   5587 	}
   5588 
   5589 	/*
   5590 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5591 	 * on some environment (and once after boot?)
   5592 	 */
   5593 	if (reg != BGE_SRS_MODE)
   5594 		aprint_error_dev(sc->bge_dev,
   5595 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5596 		    (u_long)reg, bit);
   5597 }
   5598 
   5599 /*
   5600  * Stop the adapter and free any mbufs allocated to the
   5601  * RX and TX lists.
   5602  */
   5603 static void
   5604 bge_stop(struct ifnet *ifp, int disable)
   5605 {
   5606 	struct bge_softc *sc = ifp->if_softc;
   5607 
   5608 	callout_stop(&sc->bge_timeout);
   5609 
   5610 	/* Disable host interrupts. */
   5611 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5612 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5613 
   5614 	/*
   5615 	 * Tell firmware we're shutting down.
   5616 	 */
   5617 	bge_stop_fw(sc);
   5618 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5619 
   5620 	/*
   5621 	 * Disable all of the receiver blocks.
   5622 	 */
   5623 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5624 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5625 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5626 	if (BGE_IS_5700_FAMILY(sc))
   5627 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5628 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5629 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5630 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5631 
   5632 	/*
   5633 	 * Disable all of the transmit blocks.
   5634 	 */
   5635 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5636 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5637 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5638 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5639 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5640 	if (BGE_IS_5700_FAMILY(sc))
   5641 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5642 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5643 
   5644 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5645 	delay(40);
   5646 
   5647 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5648 
   5649 	/*
   5650 	 * Shut down all of the memory managers and related
   5651 	 * state machines.
   5652 	 */
   5653 	/* 5718 step 5a,5b */
   5654 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5655 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5656 	if (BGE_IS_5700_FAMILY(sc))
   5657 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5658 
   5659 	/* 5718 step 5c,5d */
   5660 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5661 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5662 
   5663 	if (BGE_IS_5700_FAMILY(sc)) {
   5664 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5665 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5666 	}
   5667 
   5668 	bge_reset(sc);
   5669 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5670 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5671 
   5672 	/*
   5673 	 * Keep the ASF firmware running if up.
   5674 	 */
   5675 	if (sc->bge_asf_mode & ASF_STACKUP)
   5676 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5677 	else
   5678 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5679 
   5680 	/* Free the RX lists. */
   5681 	bge_free_rx_ring_std(sc);
   5682 
   5683 	/* Free jumbo RX list. */
   5684 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5685 		bge_free_rx_ring_jumbo(sc);
   5686 
   5687 	/* Free TX buffers. */
   5688 	bge_free_tx_ring(sc);
   5689 
   5690 	/*
   5691 	 * Isolate/power down the PHY.
   5692 	 */
   5693 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   5694 		mii_down(&sc->bge_mii);
   5695 
   5696 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5697 
   5698 	/* Clear MAC's link state (PHY may still have link UP). */
   5699 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5700 
   5701 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5702 }
   5703 
   5704 static void
   5705 bge_link_upd(struct bge_softc *sc)
   5706 {
   5707 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5708 	struct mii_data *mii = &sc->bge_mii;
   5709 	uint32_t status;
   5710 	int link;
   5711 
   5712 	/* Clear 'pending link event' flag */
   5713 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5714 
   5715 	/*
   5716 	 * Process link state changes.
   5717 	 * Grrr. The link status word in the status block does
   5718 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5719 	 * according to all available information. Hence, we have
   5720 	 * to enable MII interrupts in order to properly obtain
   5721 	 * async link changes. Unfortunately, this also means that
   5722 	 * we have to read the MAC status register to detect link
   5723 	 * changes, thereby adding an additional register access to
   5724 	 * the interrupt handler.
   5725 	 */
   5726 
   5727 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5728 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5729 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5730 			mii_pollstat(mii);
   5731 
   5732 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5733 			    mii->mii_media_status & IFM_ACTIVE &&
   5734 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5735 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5736 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5737 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5738 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5739 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5740 
   5741 			/* Clear the interrupt */
   5742 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5743 			    BGE_EVTENB_MI_INTERRUPT);
   5744 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5745 			    BRGPHY_MII_ISR);
   5746 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5747 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5748 		}
   5749 		return;
   5750 	}
   5751 
   5752 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5753 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5754 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5755 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5756 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5757 				if (BGE_ASICREV(sc->bge_chipid)
   5758 				    == BGE_ASICREV_BCM5704) {
   5759 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5760 					    BGE_MACMODE_TBI_SEND_CFGS);
   5761 					DELAY(40);
   5762 				}
   5763 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5764 				if_link_state_change(ifp, LINK_STATE_UP);
   5765 			}
   5766 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5767 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5768 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5769 		}
   5770 	/*
   5771 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
   5772 	 * This should not happen since mii callouts are locked now, but
   5773 	 * we keep this check for debug.
   5774 	 */
   5775 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5776 		/*
   5777 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5778 		 * bit in status word always set. Workaround this bug by
   5779 		 * reading PHY link status directly.
   5780 		 */
   5781 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5782 		    BGE_STS_LINK : 0;
   5783 
   5784 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5785 			mii_pollstat(mii);
   5786 
   5787 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5788 			    mii->mii_media_status & IFM_ACTIVE &&
   5789 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5790 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5791 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5792 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5793 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5794 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5795 		}
   5796 	}
   5797 
   5798 	/* Clear the attention */
   5799 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5800 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5801 	    BGE_MACSTAT_LINK_CHANGED);
   5802 }
   5803 
   5804 static int
   5805 bge_sysctl_verify(SYSCTLFN_ARGS)
   5806 {
   5807 	int error, t;
   5808 	struct sysctlnode node;
   5809 
   5810 	node = *rnode;
   5811 	t = *(int*)rnode->sysctl_data;
   5812 	node.sysctl_data = &t;
   5813 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5814 	if (error || newp == NULL)
   5815 		return error;
   5816 
   5817 #if 0
   5818 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5819 	    node.sysctl_num, rnode->sysctl_num));
   5820 #endif
   5821 
   5822 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5823 		if (t < 0 || t >= NBGE_RX_THRESH)
   5824 			return EINVAL;
   5825 		bge_update_all_threshes(t);
   5826 	} else
   5827 		return EINVAL;
   5828 
   5829 	*(int*)rnode->sysctl_data = t;
   5830 
   5831 	return 0;
   5832 }
   5833 
   5834 /*
   5835  * Set up sysctl(3) MIB, hw.bge.*.
   5836  */
   5837 static void
   5838 bge_sysctl_init(struct bge_softc *sc)
   5839 {
   5840 	int rc, bge_root_num;
   5841 	const struct sysctlnode *node;
   5842 
   5843 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5844 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5845 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5846 		goto out;
   5847 	}
   5848 
   5849 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5850 	    0, CTLTYPE_NODE, "bge",
   5851 	    SYSCTL_DESCR("BGE interface controls"),
   5852 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5853 		goto out;
   5854 	}
   5855 
   5856 	bge_root_num = node->sysctl_num;
   5857 
   5858 	/* BGE Rx interrupt mitigation level */
   5859 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5860 	    CTLFLAG_READWRITE,
   5861 	    CTLTYPE_INT, "rx_lvl",
   5862 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5863 	    bge_sysctl_verify, 0,
   5864 	    &bge_rx_thresh_lvl,
   5865 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5866 	    CTL_EOL)) != 0) {
   5867 		goto out;
   5868 	}
   5869 
   5870 	bge_rxthresh_nodenum = node->sysctl_num;
   5871 
   5872 	return;
   5873 
   5874 out:
   5875 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5876 }
   5877 
   5878 #ifdef BGE_DEBUG
   5879 void
   5880 bge_debug_info(struct bge_softc *sc)
   5881 {
   5882 
   5883 	printf("Hardware Flags:\n");
   5884 	if (BGE_IS_57765_PLUS(sc))
   5885 		printf(" - 57765 Plus\n");
   5886 	if (BGE_IS_5717_PLUS(sc))
   5887 		printf(" - 5717 Plus\n");
   5888 	if (BGE_IS_5755_PLUS(sc))
   5889 		printf(" - 5755 Plus\n");
   5890 	if (BGE_IS_575X_PLUS(sc))
   5891 		printf(" - 575X Plus\n");
   5892 	if (BGE_IS_5705_PLUS(sc))
   5893 		printf(" - 5705 Plus\n");
   5894 	if (BGE_IS_5714_FAMILY(sc))
   5895 		printf(" - 5714 Family\n");
   5896 	if (BGE_IS_5700_FAMILY(sc))
   5897 		printf(" - 5700 Family\n");
   5898 	if (sc->bge_flags & BGE_IS_5788)
   5899 		printf(" - 5788\n");
   5900 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5901 		printf(" - Supports Jumbo Frames\n");
   5902 	if (sc->bge_flags & BGE_NO_EEPROM)
   5903 		printf(" - No EEPROM\n");
   5904 	if (sc->bge_flags & BGE_PCIX)
   5905 		printf(" - PCI-X Bus\n");
   5906 	if (sc->bge_flags & BGE_PCIE)
   5907 		printf(" - PCI Express Bus\n");
   5908 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5909 		printf(" - RX Alignment Bug\n");
   5910 	if (sc->bge_flags & BGE_APE)
   5911 		printf(" - APE\n");
   5912 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5913 		printf(" - CPMU\n");
   5914 	if (sc->bge_flags & BGE_TSO)
   5915 		printf(" - TSO\n");
   5916 
   5917 	if (sc->bge_flags & BGE_PHY_NO_3LED)
   5918 		printf(" - No 3 LEDs\n");
   5919 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
   5920 		printf(" - CRC bug\n");
   5921 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
   5922 		printf(" - ADC bug\n");
   5923 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
   5924 		printf(" - 5704 A0 bug\n");
   5925 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
   5926 		printf(" - jitter bug\n");
   5927 	if (sc->bge_flags & BGE_PHY_BER_BUG)
   5928 		printf(" - BER bug\n");
   5929 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
   5930 		printf(" - adjust trim\n");
   5931 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
   5932 		printf(" - no wirespeed\n");
   5933 }
   5934 #endif /* BGE_DEBUG */
   5935 
   5936 static int
   5937 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5938 {
   5939 	prop_dictionary_t dict;
   5940 	prop_data_t ea;
   5941 
   5942 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5943 		return 1;
   5944 
   5945 	dict = device_properties(sc->bge_dev);
   5946 	ea = prop_dictionary_get(dict, "mac-address");
   5947 	if (ea != NULL) {
   5948 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5949 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5950 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5951 		return 0;
   5952 	}
   5953 
   5954 	return 1;
   5955 }
   5956 
   5957 static int
   5958 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5959 {
   5960 	uint32_t mac_addr;
   5961 
   5962 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5963 	if ((mac_addr >> 16) == 0x484b) {
   5964 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5965 		ether_addr[1] = (uint8_t)mac_addr;
   5966 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5967 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5968 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5969 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5970 		ether_addr[5] = (uint8_t)mac_addr;
   5971 		return 0;
   5972 	}
   5973 	return 1;
   5974 }
   5975 
   5976 static int
   5977 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5978 {
   5979 	int mac_offset = BGE_EE_MAC_OFFSET;
   5980 
   5981 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5982 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5983 
   5984 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5985 	    ETHER_ADDR_LEN));
   5986 }
   5987 
   5988 static int
   5989 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   5990 {
   5991 
   5992 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5993 		return 1;
   5994 
   5995 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   5996 	   ETHER_ADDR_LEN));
   5997 }
   5998 
   5999 static int
   6000 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6001 {
   6002 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6003 		/* NOTE: Order is critical */
   6004 		bge_get_eaddr_fw,
   6005 		bge_get_eaddr_mem,
   6006 		bge_get_eaddr_nvram,
   6007 		bge_get_eaddr_eeprom,
   6008 		NULL
   6009 	};
   6010 	const bge_eaddr_fcn_t *func;
   6011 
   6012 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6013 		if ((*func)(sc, eaddr) == 0)
   6014 			break;
   6015 	}
   6016 	return (*func == NULL ? ENXIO : 0);
   6017 }
   6018