Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.256
      1 /*	$NetBSD: if_bge.c,v 1.256 2013/07/05 07:08:26 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.256 2013/07/05 07:08:26 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rnd.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static int bge_ifflags_cb(struct ethercom *);
    210 static int bge_ioctl(struct ifnet *, u_long, void *);
    211 static int bge_init(struct ifnet *);
    212 static void bge_stop(struct ifnet *, int);
    213 static void bge_watchdog(struct ifnet *);
    214 static int bge_ifmedia_upd(struct ifnet *);
    215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    219 
    220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    222 static void bge_setmulti(struct bge_softc *);
    223 
    224 static void bge_handle_events(struct bge_softc *);
    225 static int bge_alloc_jumbo_mem(struct bge_softc *);
    226 #if 0 /* XXX */
    227 static void bge_free_jumbo_mem(struct bge_softc *);
    228 #endif
    229 static void *bge_jalloc(struct bge_softc *);
    230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    232 			       bus_dmamap_t);
    233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    234 static int bge_init_rx_ring_std(struct bge_softc *);
    235 static void bge_free_rx_ring_std(struct bge_softc *);
    236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_tx_ring(struct bge_softc *);
    239 static int bge_init_tx_ring(struct bge_softc *);
    240 
    241 static int bge_chipinit(struct bge_softc *);
    242 static int bge_blockinit(struct bge_softc *);
    243 static int bge_phy_addr(struct bge_softc *);
    244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    245 static void bge_writemem_ind(struct bge_softc *, int, int);
    246 static void bge_writembx(struct bge_softc *, int, int);
    247 static void bge_writembx_flush(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(struct ifnet *);
    255 
    256 #define BGE_RESET_SHUTDOWN	0
    257 #define	BGE_RESET_START		1
    258 #define	BGE_RESET_SUSPEND	2
    259 static void bge_sig_post_reset(struct bge_softc *, int);
    260 static void bge_sig_legacy(struct bge_softc *, int);
    261 static void bge_sig_pre_reset(struct bge_softc *, int);
    262 static void bge_wait_for_event_ack(struct bge_softc *);
    263 static void bge_stop_fw(struct bge_softc *);
    264 static int bge_reset(struct bge_softc *);
    265 static void bge_link_upd(struct bge_softc *);
    266 static void bge_sysctl_init(struct bge_softc *);
    267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    268 
    269 static void bge_ape_lock_init(struct bge_softc *);
    270 static void bge_ape_read_fw_ver(struct bge_softc *);
    271 static int bge_ape_lock(struct bge_softc *, int);
    272 static void bge_ape_unlock(struct bge_softc *, int);
    273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    274 static void bge_ape_driver_state_change(struct bge_softc *, int);
    275 
    276 #ifdef BGE_DEBUG
    277 #define DPRINTF(x)	if (bgedebug) printf x
    278 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    280 int	bgedebug = 0;
    281 int	bge_tso_debug = 0;
    282 void		bge_debug_info(struct bge_softc *);
    283 #else
    284 #define DPRINTF(x)
    285 #define DPRINTFN(n,x)
    286 #define BGE_TSO_PRINTF(x)
    287 #endif
    288 
    289 #ifdef BGE_EVENT_COUNTERS
    290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    293 #else
    294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    297 #endif
    298 
    299 static const struct bge_product {
    300 	pci_vendor_id_t		bp_vendor;
    301 	pci_product_id_t	bp_product;
    302 	const char		*bp_name;
    303 } bge_products[] = {
    304 	/*
    305 	 * The BCM5700 documentation seems to indicate that the hardware
    306 	 * still has the Alteon vendor ID burned into it, though it
    307 	 * should always be overridden by the value in the EEPROM.  We'll
    308 	 * check for it anyway.
    309 	 */
    310 	{ PCI_VENDOR_ALTEON,
    311 	  PCI_PRODUCT_ALTEON_BCM5700,
    312 	  "Broadcom BCM5700 Gigabit Ethernet",
    313 	  },
    314 	{ PCI_VENDOR_ALTEON,
    315 	  PCI_PRODUCT_ALTEON_BCM5701,
    316 	  "Broadcom BCM5701 Gigabit Ethernet",
    317 	  },
    318 	{ PCI_VENDOR_ALTIMA,
    319 	  PCI_PRODUCT_ALTIMA_AC1000,
    320 	  "Altima AC1000 Gigabit Ethernet",
    321 	  },
    322 	{ PCI_VENDOR_ALTIMA,
    323 	  PCI_PRODUCT_ALTIMA_AC1001,
    324 	  "Altima AC1001 Gigabit Ethernet",
    325 	   },
    326 	{ PCI_VENDOR_ALTIMA,
    327 	  PCI_PRODUCT_ALTIMA_AC1003,
    328 	  "Altima AC1003 Gigabit Ethernet",
    329 	   },
    330 	{ PCI_VENDOR_ALTIMA,
    331 	  PCI_PRODUCT_ALTIMA_AC9100,
    332 	  "Altima AC9100 Gigabit Ethernet",
    333 	  },
    334 	{ PCI_VENDOR_APPLE,
    335 	  PCI_PRODUCT_APPLE_BCM5701,
    336 	  "APPLE BCM5701 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5700,
    340 	  "Broadcom BCM5700 Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5701,
    344 	  "Broadcom BCM5701 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5702,
    348 	  "Broadcom BCM5702 Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    352 	  "Broadcom BCM5702X Gigabit Ethernet" },
    353 	{ PCI_VENDOR_BROADCOM,
    354 	  PCI_PRODUCT_BROADCOM_BCM5703,
    355 	  "Broadcom BCM5703 Gigabit Ethernet",
    356 	  },
    357 	{ PCI_VENDOR_BROADCOM,
    358 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    359 	  "Broadcom BCM5703X Gigabit Ethernet",
    360 	  },
    361 	{ PCI_VENDOR_BROADCOM,
    362 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    363 	  "Broadcom BCM5703 Gigabit Ethernet",
    364 	  },
    365 	{ PCI_VENDOR_BROADCOM,
    366 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    367 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    368 	  },
    369 	{ PCI_VENDOR_BROADCOM,
    370 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    371 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    372 	  },
    373 	{ PCI_VENDOR_BROADCOM,
    374 	  PCI_PRODUCT_BROADCOM_BCM5705,
    375 	  "Broadcom BCM5705 Gigabit Ethernet",
    376 	  },
    377 	{ PCI_VENDOR_BROADCOM,
    378 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    379 	  "Broadcom BCM5705F Gigabit Ethernet",
    380 	  },
    381 	{ PCI_VENDOR_BROADCOM,
    382 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    383 	  "Broadcom BCM5705K Gigabit Ethernet",
    384 	  },
    385 	{ PCI_VENDOR_BROADCOM,
    386 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    387 	  "Broadcom BCM5705M Gigabit Ethernet",
    388 	  },
    389 	{ PCI_VENDOR_BROADCOM,
    390 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    391 	  "Broadcom BCM5705M Gigabit Ethernet",
    392 	  },
    393 	{ PCI_VENDOR_BROADCOM,
    394 	  PCI_PRODUCT_BROADCOM_BCM5714,
    395 	  "Broadcom BCM5714 Gigabit Ethernet",
    396 	  },
    397 	{ PCI_VENDOR_BROADCOM,
    398 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    399 	  "Broadcom BCM5714S Gigabit Ethernet",
    400 	  },
    401 	{ PCI_VENDOR_BROADCOM,
    402 	  PCI_PRODUCT_BROADCOM_BCM5715,
    403 	  "Broadcom BCM5715 Gigabit Ethernet",
    404 	  },
    405 	{ PCI_VENDOR_BROADCOM,
    406 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    407 	  "Broadcom BCM5715S Gigabit Ethernet",
    408 	  },
    409 	{ PCI_VENDOR_BROADCOM,
    410 	  PCI_PRODUCT_BROADCOM_BCM5717,
    411 	  "Broadcom BCM5717 Gigabit Ethernet",
    412 	  },
    413 	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5718,
    415 	  "Broadcom BCM5718 Gigabit Ethernet",
    416 	  },
    417 	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5719,
    419 	  "Broadcom BCM5719 Gigabit Ethernet",
    420 	  },
    421 	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5720,
    423 	  "Broadcom BCM5720 Gigabit Ethernet",
    424 	  },
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5721,
    427 	  "Broadcom BCM5721 Gigabit Ethernet",
    428 	  },
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5722,
    431 	  "Broadcom BCM5722 Gigabit Ethernet",
    432 	  },
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5723,
    435 	  "Broadcom BCM5723 Gigabit Ethernet",
    436 	  },
    437 	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5724,
    439 	  "Broadcom BCM5724 Gigabit Ethernet",
    440 	  },
    441 	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5750,
    443 	  "Broadcom BCM5750 Gigabit Ethernet",
    444 	  },
    445 	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    447 	  "Broadcom BCM5750M Gigabit Ethernet",
    448 	  },
    449 	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5751,
    451 	  "Broadcom BCM5751 Gigabit Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_BROADCOM,
    454 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    455 	  "Broadcom BCM5751F Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_BROADCOM,
    458 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    459 	  "Broadcom BCM5751M Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5752,
    463 	  "Broadcom BCM5752 Gigabit Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    467 	  "Broadcom BCM5752M Gigabit Ethernet",
    468 	  },
    469 	{ PCI_VENDOR_BROADCOM,
    470 	  PCI_PRODUCT_BROADCOM_BCM5753,
    471 	  "Broadcom BCM5753 Gigabit Ethernet",
    472 	  },
    473 	{ PCI_VENDOR_BROADCOM,
    474 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    475 	  "Broadcom BCM5753F Gigabit Ethernet",
    476 	  },
    477 	{ PCI_VENDOR_BROADCOM,
    478 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    479 	  "Broadcom BCM5753M Gigabit Ethernet",
    480 	  },
    481 	{ PCI_VENDOR_BROADCOM,
    482 	  PCI_PRODUCT_BROADCOM_BCM5754,
    483 	  "Broadcom BCM5754 Gigabit Ethernet",
    484 	},
    485 	{ PCI_VENDOR_BROADCOM,
    486 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    487 	  "Broadcom BCM5754M Gigabit Ethernet",
    488 	},
    489 	{ PCI_VENDOR_BROADCOM,
    490 	  PCI_PRODUCT_BROADCOM_BCM5755,
    491 	  "Broadcom BCM5755 Gigabit Ethernet",
    492 	},
    493 	{ PCI_VENDOR_BROADCOM,
    494 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    495 	  "Broadcom BCM5755M Gigabit Ethernet",
    496 	},
    497 	{ PCI_VENDOR_BROADCOM,
    498 	  PCI_PRODUCT_BROADCOM_BCM5756,
    499 	  "Broadcom BCM5756 Gigabit Ethernet",
    500 	},
    501 	{ PCI_VENDOR_BROADCOM,
    502 	  PCI_PRODUCT_BROADCOM_BCM5761,
    503 	  "Broadcom BCM5761 Gigabit Ethernet",
    504 	},
    505 	{ PCI_VENDOR_BROADCOM,
    506 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    507 	  "Broadcom BCM5761E Gigabit Ethernet",
    508 	},
    509 	{ PCI_VENDOR_BROADCOM,
    510 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    511 	  "Broadcom BCM5761S Gigabit Ethernet",
    512 	},
    513 	{ PCI_VENDOR_BROADCOM,
    514 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    515 	  "Broadcom BCM5761SE Gigabit Ethernet",
    516 	},
    517 	{ PCI_VENDOR_BROADCOM,
    518 	  PCI_PRODUCT_BROADCOM_BCM5764,
    519 	  "Broadcom BCM5764 Gigabit Ethernet",
    520 	  },
    521 	{ PCI_VENDOR_BROADCOM,
    522 	  PCI_PRODUCT_BROADCOM_BCM5780,
    523 	  "Broadcom BCM5780 Gigabit Ethernet",
    524 	  },
    525 	{ PCI_VENDOR_BROADCOM,
    526 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    527 	  "Broadcom BCM5780S Gigabit Ethernet",
    528 	  },
    529 	{ PCI_VENDOR_BROADCOM,
    530 	  PCI_PRODUCT_BROADCOM_BCM5781,
    531 	  "Broadcom BCM5781 Gigabit Ethernet",
    532 	  },
    533 	{ PCI_VENDOR_BROADCOM,
    534 	  PCI_PRODUCT_BROADCOM_BCM5782,
    535 	  "Broadcom BCM5782 Gigabit Ethernet",
    536 	},
    537 	{ PCI_VENDOR_BROADCOM,
    538 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    539 	  "BCM5784M NetLink 1000baseT Ethernet",
    540 	},
    541 	{ PCI_VENDOR_BROADCOM,
    542 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    543 	  "BCM5785F NetLink 10/100 Ethernet",
    544 	},
    545 	{ PCI_VENDOR_BROADCOM,
    546 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    547 	  "BCM5785G NetLink 1000baseT Ethernet",
    548 	},
    549 	{ PCI_VENDOR_BROADCOM,
    550 	  PCI_PRODUCT_BROADCOM_BCM5786,
    551 	  "Broadcom BCM5786 Gigabit Ethernet",
    552 	},
    553 	{ PCI_VENDOR_BROADCOM,
    554 	  PCI_PRODUCT_BROADCOM_BCM5787,
    555 	  "Broadcom BCM5787 Gigabit Ethernet",
    556 	},
    557 	{ PCI_VENDOR_BROADCOM,
    558 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    559 	  "Broadcom BCM5787F 10/100 Ethernet",
    560 	},
    561 	{ PCI_VENDOR_BROADCOM,
    562 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    563 	  "Broadcom BCM5787M Gigabit Ethernet",
    564 	},
    565 	{ PCI_VENDOR_BROADCOM,
    566 	  PCI_PRODUCT_BROADCOM_BCM5788,
    567 	  "Broadcom BCM5788 Gigabit Ethernet",
    568 	  },
    569 	{ PCI_VENDOR_BROADCOM,
    570 	  PCI_PRODUCT_BROADCOM_BCM5789,
    571 	  "Broadcom BCM5789 Gigabit Ethernet",
    572 	  },
    573 	{ PCI_VENDOR_BROADCOM,
    574 	  PCI_PRODUCT_BROADCOM_BCM5901,
    575 	  "Broadcom BCM5901 Fast Ethernet",
    576 	  },
    577 	{ PCI_VENDOR_BROADCOM,
    578 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    579 	  "Broadcom BCM5901A2 Fast Ethernet",
    580 	  },
    581 	{ PCI_VENDOR_BROADCOM,
    582 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    583 	  "Broadcom BCM5903M Fast Ethernet",
    584 	  },
    585 	{ PCI_VENDOR_BROADCOM,
    586 	  PCI_PRODUCT_BROADCOM_BCM5906,
    587 	  "Broadcom BCM5906 Fast Ethernet",
    588 	  },
    589 	{ PCI_VENDOR_BROADCOM,
    590 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    591 	  "Broadcom BCM5906M Fast Ethernet",
    592 	  },
    593 	{ PCI_VENDOR_BROADCOM,
    594 	  PCI_PRODUCT_BROADCOM_BCM57760,
    595 	  "Broadcom BCM57760 Fast Ethernet",
    596 	  },
    597 	{ PCI_VENDOR_BROADCOM,
    598 	  PCI_PRODUCT_BROADCOM_BCM57761,
    599 	  "Broadcom BCM57761 Fast Ethernet",
    600 	  },
    601 	{ PCI_VENDOR_BROADCOM,
    602 	  PCI_PRODUCT_BROADCOM_BCM57762,
    603 	  "Broadcom BCM57762 Gigabit Ethernet",
    604 	  },
    605 	{ PCI_VENDOR_BROADCOM,
    606 	  PCI_PRODUCT_BROADCOM_BCM57765,
    607 	  "Broadcom BCM57765 Fast Ethernet",
    608 	  },
    609 	{ PCI_VENDOR_BROADCOM,
    610 	  PCI_PRODUCT_BROADCOM_BCM57766,
    611 	  "Broadcom BCM57766 Fast Ethernet",
    612 	  },
    613 	{ PCI_VENDOR_BROADCOM,
    614 	  PCI_PRODUCT_BROADCOM_BCM57780,
    615 	  "Broadcom BCM57780 Fast Ethernet",
    616 	  },
    617 	{ PCI_VENDOR_BROADCOM,
    618 	  PCI_PRODUCT_BROADCOM_BCM57781,
    619 	  "Broadcom BCM57781 Fast Ethernet",
    620 	  },
    621 	{ PCI_VENDOR_BROADCOM,
    622 	  PCI_PRODUCT_BROADCOM_BCM57782,
    623 	  "Broadcom BCM57782 Fast Ethernet",
    624 	  },
    625 	{ PCI_VENDOR_BROADCOM,
    626 	  PCI_PRODUCT_BROADCOM_BCM57785,
    627 	  "Broadcom BCM57785 Fast Ethernet",
    628 	  },
    629 	{ PCI_VENDOR_BROADCOM,
    630 	  PCI_PRODUCT_BROADCOM_BCM57786,
    631 	  "Broadcom BCM57786 Fast Ethernet",
    632 	  },
    633 	{ PCI_VENDOR_BROADCOM,
    634 	  PCI_PRODUCT_BROADCOM_BCM57788,
    635 	  "Broadcom BCM57788 Fast Ethernet",
    636 	  },
    637 	{ PCI_VENDOR_BROADCOM,
    638 	  PCI_PRODUCT_BROADCOM_BCM57790,
    639 	  "Broadcom BCM57790 Fast Ethernet",
    640 	  },
    641 	{ PCI_VENDOR_BROADCOM,
    642 	  PCI_PRODUCT_BROADCOM_BCM57791,
    643 	  "Broadcom BCM57791 Fast Ethernet",
    644 	  },
    645 	{ PCI_VENDOR_BROADCOM,
    646 	  PCI_PRODUCT_BROADCOM_BCM57795,
    647 	  "Broadcom BCM57795 Fast Ethernet",
    648 	  },
    649 	{ PCI_VENDOR_SCHNEIDERKOCH,
    650 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    651 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    652 	  },
    653 	{ PCI_VENDOR_3COM,
    654 	  PCI_PRODUCT_3COM_3C996,
    655 	  "3Com 3c996 Gigabit Ethernet",
    656 	  },
    657 	{ PCI_VENDOR_FUJITSU4,
    658 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    659 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    660 	  },
    661 	{ PCI_VENDOR_FUJITSU4,
    662 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    663 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    664 	  },
    665 	{ PCI_VENDOR_FUJITSU4,
    666 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    667 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    668 	  },
    669 	{ 0,
    670 	  0,
    671 	  NULL },
    672 };
    673 
    674 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
    675 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
    676 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
    677 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
    678 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
    679 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
    680 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
    681 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
    682 
    683 static const struct bge_revision {
    684 	uint32_t		br_chipid;
    685 	const char		*br_name;
    686 } bge_revisions[] = {
    687 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    688 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    689 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    690 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    691 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    692 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    693 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    694 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    695 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    696 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    697 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    698 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    699 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    700 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    701 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    702 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    703 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    704 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    705 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    706 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    707 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    708 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    709 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    710 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    711 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    712 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    713 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    714 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    715 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    716 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    717 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    718 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    719 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    720 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    721 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    722 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    723 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    724 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    725 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    726 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    727 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    728 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    729 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    730 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    731 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    732 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    733 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    734 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    735 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    736 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    737 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    738 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    739 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    740 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    741 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    742 	/* 5754 and 5787 share the same ASIC ID */
    743 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    744 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    745 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    746 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    747 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    748 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    749 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    750 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    751 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    752 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    753 
    754 	{ 0, NULL }
    755 };
    756 
    757 /*
    758  * Some defaults for major revisions, so that newer steppings
    759  * that we don't know about have a shot at working.
    760  */
    761 static const struct bge_revision bge_majorrevs[] = {
    762 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    763 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    764 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    765 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    766 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    767 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    768 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    769 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    770 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    771 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    772 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    773 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    774 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    775 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    776 	/* 5754 and 5787 share the same ASIC ID */
    777 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    778 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    779 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    780 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    781 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    782 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    783 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    784 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    785 
    786 	{ 0, NULL }
    787 };
    788 
    789 static int bge_allow_asf = 1;
    790 
    791 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    792     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    793 
    794 static uint32_t
    795 bge_readmem_ind(struct bge_softc *sc, int off)
    796 {
    797 	pcireg_t val;
    798 
    799 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    800 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    801 		return 0;
    802 
    803 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    804 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    806 	return val;
    807 }
    808 
    809 static void
    810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    811 {
    812 
    813 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    816 }
    817 
    818 /*
    819  * PCI Express only
    820  */
    821 static void
    822 bge_set_max_readrq(struct bge_softc *sc)
    823 {
    824 	pcireg_t val;
    825 
    826 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    827 	    + PCIE_DCSR);
    828 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    829 	switch (sc->bge_expmrq) {
    830 	case 2048:
    831 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    832 		break;
    833 	case 4096:
    834 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    835 		break;
    836 	default:
    837 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    838 		break;
    839 	}
    840 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    841 	    + PCIE_DCSR, val);
    842 }
    843 
    844 #ifdef notdef
    845 static uint32_t
    846 bge_readreg_ind(struct bge_softc *sc, int off)
    847 {
    848 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    849 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    850 }
    851 #endif
    852 
    853 static void
    854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    855 {
    856 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    858 }
    859 
    860 static void
    861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    862 {
    863 	CSR_WRITE_4(sc, off, val);
    864 }
    865 
    866 static void
    867 bge_writembx(struct bge_softc *sc, int off, int val)
    868 {
    869 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    870 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    871 
    872 	CSR_WRITE_4(sc, off, val);
    873 }
    874 
    875 static void
    876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    877 {
    878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    879 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    880 
    881 	CSR_WRITE_4_FLUSH(sc, off, val);
    882 }
    883 
    884 /*
    885  * Clear all stale locks and select the lock for this driver instance.
    886  */
    887 void
    888 bge_ape_lock_init(struct bge_softc *sc)
    889 {
    890 	struct pci_attach_args *pa = &(sc->bge_pa);
    891 	uint32_t bit, regbase;
    892 	int i;
    893 
    894 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    895 		regbase = BGE_APE_LOCK_GRANT;
    896 	else
    897 		regbase = BGE_APE_PER_LOCK_GRANT;
    898 
    899 	/* Clear any stale locks. */
    900 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    901 		switch (i) {
    902 		case BGE_APE_LOCK_PHY0:
    903 		case BGE_APE_LOCK_PHY1:
    904 		case BGE_APE_LOCK_PHY2:
    905 		case BGE_APE_LOCK_PHY3:
    906 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    907 			break;
    908 		default:
    909 			if (pa->pa_function == 0)
    910 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    911 			else
    912 				bit = (1 << pa->pa_function);
    913 		}
    914 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    915 	}
    916 
    917 	/* Select the PHY lock based on the device's function number. */
    918 	switch (pa->pa_function) {
    919 	case 0:
    920 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    921 		break;
    922 	case 1:
    923 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    924 		break;
    925 	case 2:
    926 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    927 		break;
    928 	case 3:
    929 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    930 		break;
    931 	default:
    932 		printf("%s: PHY lock not supported on function\n",
    933 		    device_xname(sc->bge_dev));
    934 		break;
    935 	}
    936 }
    937 
    938 /*
    939  * Check for APE firmware, set flags, and print version info.
    940  */
    941 void
    942 bge_ape_read_fw_ver(struct bge_softc *sc)
    943 {
    944 	const char *fwtype;
    945 	uint32_t apedata, features;
    946 
    947 	/* Check for a valid APE signature in shared memory. */
    948 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    949 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    950 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    951 		return;
    952 	}
    953 
    954 	/* Check if APE firmware is running. */
    955 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    956 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    957 		printf("%s: APE signature found but FW status not ready! "
    958 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    959 		return;
    960 	}
    961 
    962 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    963 
    964 	/* Fetch the APE firwmare type and version. */
    965 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    966 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    967 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    968 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    969 		fwtype = "NCSI";
    970 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    971 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    972 		fwtype = "DASH";
    973 	} else
    974 		fwtype = "UNKN";
    975 
    976 	/* Print the APE firmware version. */
    977 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
    978 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    979 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    980 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    982 }
    983 
    984 int
    985 bge_ape_lock(struct bge_softc *sc, int locknum)
    986 {
    987 	struct pci_attach_args *pa = &(sc->bge_pa);
    988 	uint32_t bit, gnt, req, status;
    989 	int i, off;
    990 
    991 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    992 		return (0);
    993 
    994 	/* Lock request/grant registers have different bases. */
    995 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    996 		req = BGE_APE_LOCK_REQ;
    997 		gnt = BGE_APE_LOCK_GRANT;
    998 	} else {
    999 		req = BGE_APE_PER_LOCK_REQ;
   1000 		gnt = BGE_APE_PER_LOCK_GRANT;
   1001 	}
   1002 
   1003 	off = 4 * locknum;
   1004 
   1005 	switch (locknum) {
   1006 	case BGE_APE_LOCK_GPIO:
   1007 		/* Lock required when using GPIO. */
   1008 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1009 			return (0);
   1010 		if (pa->pa_function == 0)
   1011 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1012 		else
   1013 			bit = (1 << pa->pa_function);
   1014 		break;
   1015 	case BGE_APE_LOCK_GRC:
   1016 		/* Lock required to reset the device. */
   1017 		if (pa->pa_function == 0)
   1018 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1019 		else
   1020 			bit = (1 << pa->pa_function);
   1021 		break;
   1022 	case BGE_APE_LOCK_MEM:
   1023 		/* Lock required when accessing certain APE memory. */
   1024 		if (pa->pa_function == 0)
   1025 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1026 		else
   1027 			bit = (1 << pa->pa_function);
   1028 		break;
   1029 	case BGE_APE_LOCK_PHY0:
   1030 	case BGE_APE_LOCK_PHY1:
   1031 	case BGE_APE_LOCK_PHY2:
   1032 	case BGE_APE_LOCK_PHY3:
   1033 		/* Lock required when accessing PHYs. */
   1034 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1035 		break;
   1036 	default:
   1037 		return (EINVAL);
   1038 	}
   1039 
   1040 	/* Request a lock. */
   1041 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1042 
   1043 	/* Wait up to 1 second to acquire lock. */
   1044 	for (i = 0; i < 20000; i++) {
   1045 		status = APE_READ_4(sc, gnt + off);
   1046 		if (status == bit)
   1047 			break;
   1048 		DELAY(50);
   1049 	}
   1050 
   1051 	/* Handle any errors. */
   1052 	if (status != bit) {
   1053 		printf("%s: APE lock %d request failed! "
   1054 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1055 		    device_xname(sc->bge_dev),
   1056 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1057 		    status & 0xFFFF);
   1058 		/* Revoke the lock request. */
   1059 		APE_WRITE_4(sc, gnt + off, bit);
   1060 		return (EBUSY);
   1061 	}
   1062 
   1063 	return (0);
   1064 }
   1065 
   1066 void
   1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1068 {
   1069 	struct pci_attach_args *pa = &(sc->bge_pa);
   1070 	uint32_t bit, gnt;
   1071 	int off;
   1072 
   1073 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1074 		return;
   1075 
   1076 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1077 		gnt = BGE_APE_LOCK_GRANT;
   1078 	else
   1079 		gnt = BGE_APE_PER_LOCK_GRANT;
   1080 
   1081 	off = 4 * locknum;
   1082 
   1083 	switch (locknum) {
   1084 	case BGE_APE_LOCK_GPIO:
   1085 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1086 			return;
   1087 		if (pa->pa_function == 0)
   1088 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1089 		else
   1090 			bit = (1 << pa->pa_function);
   1091 		break;
   1092 	case BGE_APE_LOCK_GRC:
   1093 		if (pa->pa_function == 0)
   1094 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1095 		else
   1096 			bit = (1 << pa->pa_function);
   1097 		break;
   1098 	case BGE_APE_LOCK_MEM:
   1099 		if (pa->pa_function == 0)
   1100 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1101 		else
   1102 			bit = (1 << pa->pa_function);
   1103 		break;
   1104 	case BGE_APE_LOCK_PHY0:
   1105 	case BGE_APE_LOCK_PHY1:
   1106 	case BGE_APE_LOCK_PHY2:
   1107 	case BGE_APE_LOCK_PHY3:
   1108 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1109 		break;
   1110 	default:
   1111 		return;
   1112 	}
   1113 
   1114 	/* Write and flush for consecutive bge_ape_lock() */
   1115 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1116 }
   1117 
   1118 /*
   1119  * Send an event to the APE firmware.
   1120  */
   1121 void
   1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1123 {
   1124 	uint32_t apedata;
   1125 	int i;
   1126 
   1127 	/* NCSI does not support APE events. */
   1128 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1129 		return;
   1130 
   1131 	/* Wait up to 1ms for APE to service previous event. */
   1132 	for (i = 10; i > 0; i--) {
   1133 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1134 			break;
   1135 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1136 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1137 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1138 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1139 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1140 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1141 			break;
   1142 		}
   1143 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1144 		DELAY(100);
   1145 	}
   1146 	if (i == 0) {
   1147 		printf("%s: APE event 0x%08x send timed out\n",
   1148 		    device_xname(sc->bge_dev), event);
   1149 	}
   1150 }
   1151 
   1152 void
   1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1154 {
   1155 	uint32_t apedata, event;
   1156 
   1157 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1158 		return;
   1159 
   1160 	switch (kind) {
   1161 	case BGE_RESET_START:
   1162 		/* If this is the first load, clear the load counter. */
   1163 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1164 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1165 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1166 		else {
   1167 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1168 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1169 		}
   1170 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1171 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1172 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1173 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1174 
   1175 		/* Add some version info if bge(4) supports it. */
   1176 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1177 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1178 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1179 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1180 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1181 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1183 		    BGE_APE_HOST_DRVR_STATE_START);
   1184 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1185 		break;
   1186 	case BGE_RESET_SHUTDOWN:
   1187 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1188 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1189 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1190 		break;
   1191 	case BGE_RESET_SUSPEND:
   1192 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1193 		break;
   1194 	default:
   1195 		return;
   1196 	}
   1197 
   1198 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1199 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1200 }
   1201 
   1202 static uint8_t
   1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1204 {
   1205 	uint32_t access, byte = 0;
   1206 	int i;
   1207 
   1208 	/* Lock. */
   1209 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1210 	for (i = 0; i < 8000; i++) {
   1211 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1212 			break;
   1213 		DELAY(20);
   1214 	}
   1215 	if (i == 8000)
   1216 		return 1;
   1217 
   1218 	/* Enable access. */
   1219 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1220 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1221 
   1222 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1223 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1224 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1225 		DELAY(10);
   1226 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1227 			DELAY(10);
   1228 			break;
   1229 		}
   1230 	}
   1231 
   1232 	if (i == BGE_TIMEOUT * 10) {
   1233 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1234 		return 1;
   1235 	}
   1236 
   1237 	/* Get result. */
   1238 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1239 
   1240 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1241 
   1242 	/* Disable access. */
   1243 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1244 
   1245 	/* Unlock. */
   1246 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1247 
   1248 	return 0;
   1249 }
   1250 
   1251 /*
   1252  * Read a sequence of bytes from NVRAM.
   1253  */
   1254 static int
   1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1256 {
   1257 	int error = 0, i;
   1258 	uint8_t byte = 0;
   1259 
   1260 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1261 		return 1;
   1262 
   1263 	for (i = 0; i < cnt; i++) {
   1264 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1265 		if (error)
   1266 			break;
   1267 		*(dest + i) = byte;
   1268 	}
   1269 
   1270 	return (error ? 1 : 0);
   1271 }
   1272 
   1273 /*
   1274  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1275  * BCM570x supports both the traditional bitbang interface and an
   1276  * auto access interface for reading the EEPROM. We use the auto
   1277  * access method.
   1278  */
   1279 static uint8_t
   1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1281 {
   1282 	int i;
   1283 	uint32_t byte = 0;
   1284 
   1285 	/*
   1286 	 * Enable use of auto EEPROM access so we can avoid
   1287 	 * having to use the bitbang method.
   1288 	 */
   1289 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1290 
   1291 	/* Reset the EEPROM, load the clock period. */
   1292 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1293 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1294 	DELAY(20);
   1295 
   1296 	/* Issue the read EEPROM command. */
   1297 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1298 
   1299 	/* Wait for completion */
   1300 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1301 		DELAY(10);
   1302 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1303 			break;
   1304 	}
   1305 
   1306 	if (i == BGE_TIMEOUT * 10) {
   1307 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1308 		return 1;
   1309 	}
   1310 
   1311 	/* Get result. */
   1312 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1313 
   1314 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1315 
   1316 	return 0;
   1317 }
   1318 
   1319 /*
   1320  * Read a sequence of bytes from the EEPROM.
   1321  */
   1322 static int
   1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1324 {
   1325 	int error = 0, i;
   1326 	uint8_t byte = 0;
   1327 	char *dest = destv;
   1328 
   1329 	for (i = 0; i < cnt; i++) {
   1330 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1331 		if (error)
   1332 			break;
   1333 		*(dest + i) = byte;
   1334 	}
   1335 
   1336 	return (error ? 1 : 0);
   1337 }
   1338 
   1339 static int
   1340 bge_miibus_readreg(device_t dev, int phy, int reg)
   1341 {
   1342 	struct bge_softc *sc = device_private(dev);
   1343 	uint32_t val;
   1344 	uint32_t autopoll;
   1345 	int i;
   1346 
   1347 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1348 		return 0;
   1349 
   1350 	/* Reading with autopolling on may trigger PCI errors */
   1351 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1352 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1353 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1354 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1355 		DELAY(80);
   1356 	}
   1357 
   1358 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1359 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1360 
   1361 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1362 		delay(10);
   1363 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1364 		if (!(val & BGE_MICOMM_BUSY)) {
   1365 			DELAY(5);
   1366 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1367 			break;
   1368 		}
   1369 	}
   1370 
   1371 	if (i == BGE_TIMEOUT) {
   1372 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1373 		val = 0;
   1374 		goto done;
   1375 	}
   1376 
   1377 done:
   1378 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1379 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1380 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1381 		DELAY(80);
   1382 	}
   1383 
   1384 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1385 
   1386 	if (val & BGE_MICOMM_READFAIL)
   1387 		return 0;
   1388 
   1389 	return (val & 0xFFFF);
   1390 }
   1391 
   1392 static void
   1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1394 {
   1395 	struct bge_softc *sc = device_private(dev);
   1396 	uint32_t autopoll;
   1397 	int i;
   1398 
   1399 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1400 		return;
   1401 
   1402 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1403 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1404 		return;
   1405 
   1406 	/* Reading with autopolling on may trigger PCI errors */
   1407 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1408 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1409 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1410 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1411 		DELAY(80);
   1412 	}
   1413 
   1414 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1415 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1416 
   1417 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1418 		delay(10);
   1419 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1420 			delay(5);
   1421 			CSR_READ_4(sc, BGE_MI_COMM);
   1422 			break;
   1423 		}
   1424 	}
   1425 
   1426 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1427 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1428 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1429 		delay(80);
   1430 	}
   1431 
   1432 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1433 
   1434 	if (i == BGE_TIMEOUT)
   1435 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1436 }
   1437 
   1438 static void
   1439 bge_miibus_statchg(struct ifnet *ifp)
   1440 {
   1441 	struct bge_softc *sc = ifp->if_softc;
   1442 	struct mii_data *mii = &sc->bge_mii;
   1443 	uint32_t mac_mode, rx_mode, tx_mode;
   1444 
   1445 	/*
   1446 	 * Get flow control negotiation result.
   1447 	 */
   1448 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1449 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1450 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1451 
   1452 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1453 	    mii->mii_media_status & IFM_ACTIVE &&
   1454 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1455 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1456 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1457 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1458 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1459 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1460 
   1461 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1462 		return;
   1463 
   1464 	/* Set the port mode (MII/GMII) to match the link speed. */
   1465 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1466 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1467 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1468 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1469 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1470 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1471 		mac_mode |= BGE_PORTMODE_GMII;
   1472 	else
   1473 		mac_mode |= BGE_PORTMODE_MII;
   1474 
   1475 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1476 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1477 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1478 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1479 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1480 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1481 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1482 	} else
   1483 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1484 
   1485 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1486 	DELAY(40);
   1487 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1488 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1489 }
   1490 
   1491 /*
   1492  * Update rx threshold levels to values in a particular slot
   1493  * of the interrupt-mitigation table bge_rx_threshes.
   1494  */
   1495 static void
   1496 bge_set_thresh(struct ifnet *ifp, int lvl)
   1497 {
   1498 	struct bge_softc *sc = ifp->if_softc;
   1499 	int s;
   1500 
   1501 	/* For now, just save the new Rx-intr thresholds and record
   1502 	 * that a threshold update is pending.  Updating the hardware
   1503 	 * registers here (even at splhigh()) is observed to
   1504 	 * occasionaly cause glitches where Rx-interrupts are not
   1505 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1506 	 */
   1507 	s = splnet();
   1508 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1509 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1510 	sc->bge_pending_rxintr_change = 1;
   1511 	splx(s);
   1512 }
   1513 
   1514 
   1515 /*
   1516  * Update Rx thresholds of all bge devices
   1517  */
   1518 static void
   1519 bge_update_all_threshes(int lvl)
   1520 {
   1521 	struct ifnet *ifp;
   1522 	const char * const namebuf = "bge";
   1523 	int namelen;
   1524 
   1525 	if (lvl < 0)
   1526 		lvl = 0;
   1527 	else if (lvl >= NBGE_RX_THRESH)
   1528 		lvl = NBGE_RX_THRESH - 1;
   1529 
   1530 	namelen = strlen(namebuf);
   1531 	/*
   1532 	 * Now search all the interfaces for this name/number
   1533 	 */
   1534 	IFNET_FOREACH(ifp) {
   1535 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1536 		      continue;
   1537 		/* We got a match: update if doing auto-threshold-tuning */
   1538 		if (bge_auto_thresh)
   1539 			bge_set_thresh(ifp, lvl);
   1540 	}
   1541 }
   1542 
   1543 /*
   1544  * Handle events that have triggered interrupts.
   1545  */
   1546 static void
   1547 bge_handle_events(struct bge_softc *sc)
   1548 {
   1549 
   1550 	return;
   1551 }
   1552 
   1553 /*
   1554  * Memory management for jumbo frames.
   1555  */
   1556 
   1557 static int
   1558 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1559 {
   1560 	char *ptr, *kva;
   1561 	bus_dma_segment_t	seg;
   1562 	int		i, rseg, state, error;
   1563 	struct bge_jpool_entry   *entry;
   1564 
   1565 	state = error = 0;
   1566 
   1567 	/* Grab a big chunk o' storage. */
   1568 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1569 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1570 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1571 		return ENOBUFS;
   1572 	}
   1573 
   1574 	state = 1;
   1575 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1576 	    BUS_DMA_NOWAIT)) {
   1577 		aprint_error_dev(sc->bge_dev,
   1578 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1579 		error = ENOBUFS;
   1580 		goto out;
   1581 	}
   1582 
   1583 	state = 2;
   1584 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1585 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1586 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1587 		error = ENOBUFS;
   1588 		goto out;
   1589 	}
   1590 
   1591 	state = 3;
   1592 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1593 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1594 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1595 		error = ENOBUFS;
   1596 		goto out;
   1597 	}
   1598 
   1599 	state = 4;
   1600 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1601 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1602 
   1603 	SLIST_INIT(&sc->bge_jfree_listhead);
   1604 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1605 
   1606 	/*
   1607 	 * Now divide it up into 9K pieces and save the addresses
   1608 	 * in an array.
   1609 	 */
   1610 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1611 	for (i = 0; i < BGE_JSLOTS; i++) {
   1612 		sc->bge_cdata.bge_jslots[i] = ptr;
   1613 		ptr += BGE_JLEN;
   1614 		entry = malloc(sizeof(struct bge_jpool_entry),
   1615 		    M_DEVBUF, M_NOWAIT);
   1616 		if (entry == NULL) {
   1617 			aprint_error_dev(sc->bge_dev,
   1618 			    "no memory for jumbo buffer queue!\n");
   1619 			error = ENOBUFS;
   1620 			goto out;
   1621 		}
   1622 		entry->slot = i;
   1623 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1624 				 entry, jpool_entries);
   1625 	}
   1626 out:
   1627 	if (error != 0) {
   1628 		switch (state) {
   1629 		case 4:
   1630 			bus_dmamap_unload(sc->bge_dmatag,
   1631 			    sc->bge_cdata.bge_rx_jumbo_map);
   1632 		case 3:
   1633 			bus_dmamap_destroy(sc->bge_dmatag,
   1634 			    sc->bge_cdata.bge_rx_jumbo_map);
   1635 		case 2:
   1636 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1637 		case 1:
   1638 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1639 			break;
   1640 		default:
   1641 			break;
   1642 		}
   1643 	}
   1644 
   1645 	return error;
   1646 }
   1647 
   1648 /*
   1649  * Allocate a jumbo buffer.
   1650  */
   1651 static void *
   1652 bge_jalloc(struct bge_softc *sc)
   1653 {
   1654 	struct bge_jpool_entry   *entry;
   1655 
   1656 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1657 
   1658 	if (entry == NULL) {
   1659 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1660 		return NULL;
   1661 	}
   1662 
   1663 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1664 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1665 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1666 }
   1667 
   1668 /*
   1669  * Release a jumbo buffer.
   1670  */
   1671 static void
   1672 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1673 {
   1674 	struct bge_jpool_entry *entry;
   1675 	struct bge_softc *sc;
   1676 	int i, s;
   1677 
   1678 	/* Extract the softc struct pointer. */
   1679 	sc = (struct bge_softc *)arg;
   1680 
   1681 	if (sc == NULL)
   1682 		panic("bge_jfree: can't find softc pointer!");
   1683 
   1684 	/* calculate the slot this buffer belongs to */
   1685 
   1686 	i = ((char *)buf
   1687 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1688 
   1689 	if ((i < 0) || (i >= BGE_JSLOTS))
   1690 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1691 
   1692 	s = splvm();
   1693 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1694 	if (entry == NULL)
   1695 		panic("bge_jfree: buffer not in use!");
   1696 	entry->slot = i;
   1697 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1698 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1699 
   1700 	if (__predict_true(m != NULL))
   1701   		pool_cache_put(mb_cache, m);
   1702 	splx(s);
   1703 }
   1704 
   1705 
   1706 /*
   1707  * Initialize a standard receive ring descriptor.
   1708  */
   1709 static int
   1710 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1711     bus_dmamap_t dmamap)
   1712 {
   1713 	struct mbuf		*m_new = NULL;
   1714 	struct bge_rx_bd	*r;
   1715 	int			error;
   1716 
   1717 	if (dmamap == NULL) {
   1718 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1719 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1720 		if (error != 0)
   1721 			return error;
   1722 	}
   1723 
   1724 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1725 
   1726 	if (m == NULL) {
   1727 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1728 		if (m_new == NULL)
   1729 			return ENOBUFS;
   1730 
   1731 		MCLGET(m_new, M_DONTWAIT);
   1732 		if (!(m_new->m_flags & M_EXT)) {
   1733 			m_freem(m_new);
   1734 			return ENOBUFS;
   1735 		}
   1736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1737 
   1738 	} else {
   1739 		m_new = m;
   1740 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1741 		m_new->m_data = m_new->m_ext.ext_buf;
   1742 	}
   1743 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1744 	    m_adj(m_new, ETHER_ALIGN);
   1745 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1746 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
   1747 		return ENOBUFS;
   1748 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1749 	    BUS_DMASYNC_PREREAD);
   1750 
   1751 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1752 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1753 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1754 	r->bge_flags = BGE_RXBDFLAG_END;
   1755 	r->bge_len = m_new->m_len;
   1756 	r->bge_idx = i;
   1757 
   1758 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1759 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1760 		i * sizeof (struct bge_rx_bd),
   1761 	    sizeof (struct bge_rx_bd),
   1762 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1763 
   1764 	return 0;
   1765 }
   1766 
   1767 /*
   1768  * Initialize a jumbo receive ring descriptor. This allocates
   1769  * a jumbo buffer from the pool managed internally by the driver.
   1770  */
   1771 static int
   1772 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1773 {
   1774 	struct mbuf *m_new = NULL;
   1775 	struct bge_rx_bd *r;
   1776 	void *buf = NULL;
   1777 
   1778 	if (m == NULL) {
   1779 
   1780 		/* Allocate the mbuf. */
   1781 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1782 		if (m_new == NULL)
   1783 			return ENOBUFS;
   1784 
   1785 		/* Allocate the jumbo buffer */
   1786 		buf = bge_jalloc(sc);
   1787 		if (buf == NULL) {
   1788 			m_freem(m_new);
   1789 			aprint_error_dev(sc->bge_dev,
   1790 			    "jumbo allocation failed -- packet dropped!\n");
   1791 			return ENOBUFS;
   1792 		}
   1793 
   1794 		/* Attach the buffer to the mbuf. */
   1795 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1796 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1797 		    bge_jfree, sc);
   1798 		m_new->m_flags |= M_EXT_RW;
   1799 	} else {
   1800 		m_new = m;
   1801 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1802 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1803 	}
   1804 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
   1805 	    m_adj(m_new, ETHER_ALIGN);
   1806 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1807 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1808 	    BUS_DMASYNC_PREREAD);
   1809 	/* Set up the descriptor. */
   1810 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1811 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1812 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1813 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1814 	r->bge_len = m_new->m_len;
   1815 	r->bge_idx = i;
   1816 
   1817 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1818 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1819 		i * sizeof (struct bge_rx_bd),
   1820 	    sizeof (struct bge_rx_bd),
   1821 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1822 
   1823 	return 0;
   1824 }
   1825 
   1826 /*
   1827  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1828  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1829  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1830  * the NIC.
   1831  */
   1832 static int
   1833 bge_init_rx_ring_std(struct bge_softc *sc)
   1834 {
   1835 	int i;
   1836 
   1837 	if (sc->bge_flags & BGE_RXRING_VALID)
   1838 		return 0;
   1839 
   1840 	for (i = 0; i < BGE_SSLOTS; i++) {
   1841 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1842 			return ENOBUFS;
   1843 	}
   1844 
   1845 	sc->bge_std = i - 1;
   1846 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1847 
   1848 	sc->bge_flags |= BGE_RXRING_VALID;
   1849 
   1850 	return 0;
   1851 }
   1852 
   1853 static void
   1854 bge_free_rx_ring_std(struct bge_softc *sc)
   1855 {
   1856 	int i;
   1857 
   1858 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1859 		return;
   1860 
   1861 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1862 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1863 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1864 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1865 			bus_dmamap_destroy(sc->bge_dmatag,
   1866 			    sc->bge_cdata.bge_rx_std_map[i]);
   1867 		}
   1868 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1869 		    sizeof(struct bge_rx_bd));
   1870 	}
   1871 
   1872 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1873 }
   1874 
   1875 static int
   1876 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1877 {
   1878 	int i;
   1879 	volatile struct bge_rcb *rcb;
   1880 
   1881 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1882 		return 0;
   1883 
   1884 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1885 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1886 			return ENOBUFS;
   1887 	}
   1888 
   1889 	sc->bge_jumbo = i - 1;
   1890 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1891 
   1892 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1893 	rcb->bge_maxlen_flags = 0;
   1894 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1895 
   1896 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1897 
   1898 	return 0;
   1899 }
   1900 
   1901 static void
   1902 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1903 {
   1904 	int i;
   1905 
   1906 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1907 		return;
   1908 
   1909 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1910 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1911 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1912 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1913 		}
   1914 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1915 		    sizeof(struct bge_rx_bd));
   1916 	}
   1917 
   1918 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1919 }
   1920 
   1921 static void
   1922 bge_free_tx_ring(struct bge_softc *sc)
   1923 {
   1924 	int i;
   1925 	struct txdmamap_pool_entry *dma;
   1926 
   1927 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1928 		return;
   1929 
   1930 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1931 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1932 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1933 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1934 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1935 					    link);
   1936 			sc->txdma[i] = 0;
   1937 		}
   1938 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1939 		    sizeof(struct bge_tx_bd));
   1940 	}
   1941 
   1942 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1943 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1944 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1945 		free(dma, M_DEVBUF);
   1946 	}
   1947 
   1948 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1949 }
   1950 
   1951 static int
   1952 bge_init_tx_ring(struct bge_softc *sc)
   1953 {
   1954 	int i;
   1955 	bus_dmamap_t dmamap;
   1956 	struct txdmamap_pool_entry *dma;
   1957 
   1958 	if (sc->bge_flags & BGE_TXRING_VALID)
   1959 		return 0;
   1960 
   1961 	sc->bge_txcnt = 0;
   1962 	sc->bge_tx_saved_considx = 0;
   1963 
   1964 	/* Initialize transmit producer index for host-memory send ring. */
   1965 	sc->bge_tx_prodidx = 0;
   1966 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1967 	/* 5700 b2 errata */
   1968 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1969 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1970 
   1971 	/* NIC-memory send ring not used; initialize to zero. */
   1972 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1973 	/* 5700 b2 errata */
   1974 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1975 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1976 
   1977 	SLIST_INIT(&sc->txdma_list);
   1978 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1979 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1980 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1981 		    &dmamap))
   1982 			return ENOBUFS;
   1983 		if (dmamap == NULL)
   1984 			panic("dmamap NULL in bge_init_tx_ring");
   1985 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1986 		if (dma == NULL) {
   1987 			aprint_error_dev(sc->bge_dev,
   1988 			    "can't alloc txdmamap_pool_entry\n");
   1989 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1990 			return ENOMEM;
   1991 		}
   1992 		dma->dmamap = dmamap;
   1993 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1994 	}
   1995 
   1996 	sc->bge_flags |= BGE_TXRING_VALID;
   1997 
   1998 	return 0;
   1999 }
   2000 
   2001 static void
   2002 bge_setmulti(struct bge_softc *sc)
   2003 {
   2004 	struct ethercom		*ac = &sc->ethercom;
   2005 	struct ifnet		*ifp = &ac->ec_if;
   2006 	struct ether_multi	*enm;
   2007 	struct ether_multistep  step;
   2008 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2009 	uint32_t		h;
   2010 	int			i;
   2011 
   2012 	if (ifp->if_flags & IFF_PROMISC)
   2013 		goto allmulti;
   2014 
   2015 	/* Now program new ones. */
   2016 	ETHER_FIRST_MULTI(step, ac, enm);
   2017 	while (enm != NULL) {
   2018 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2019 			/*
   2020 			 * We must listen to a range of multicast addresses.
   2021 			 * For now, just accept all multicasts, rather than
   2022 			 * trying to set only those filter bits needed to match
   2023 			 * the range.  (At this time, the only use of address
   2024 			 * ranges is for IP multicast routing, for which the
   2025 			 * range is big enough to require all bits set.)
   2026 			 */
   2027 			goto allmulti;
   2028 		}
   2029 
   2030 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2031 
   2032 		/* Just want the 7 least-significant bits. */
   2033 		h &= 0x7f;
   2034 
   2035 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2036 		ETHER_NEXT_MULTI(step, enm);
   2037 	}
   2038 
   2039 	ifp->if_flags &= ~IFF_ALLMULTI;
   2040 	goto setit;
   2041 
   2042  allmulti:
   2043 	ifp->if_flags |= IFF_ALLMULTI;
   2044 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2045 
   2046  setit:
   2047 	for (i = 0; i < 4; i++)
   2048 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2049 }
   2050 
   2051 static void
   2052 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2053 {
   2054 
   2055 	/*
   2056 	 * Some chips don't like this so only do this if ASF is enabled
   2057 	 */
   2058 	if (sc->bge_asf_mode)
   2059 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2060 
   2061 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2062 		switch (type) {
   2063 		case BGE_RESET_START:
   2064 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2065 			    BGE_FW_DRV_STATE_START);
   2066 			break;
   2067 		case BGE_RESET_SHUTDOWN:
   2068 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2069 			    BGE_FW_DRV_STATE_UNLOAD);
   2070 			break;
   2071 		case BGE_RESET_SUSPEND:
   2072 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2073 			    BGE_FW_DRV_STATE_SUSPEND);
   2074 			break;
   2075 		}
   2076 	}
   2077 
   2078 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2079 		bge_ape_driver_state_change(sc, type);
   2080 }
   2081 
   2082 static void
   2083 bge_sig_post_reset(struct bge_softc *sc, int type)
   2084 {
   2085 
   2086 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2087 		switch (type) {
   2088 		case BGE_RESET_START:
   2089 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2090 			    BGE_FW_DRV_STATE_START_DONE);
   2091 			/* START DONE */
   2092 			break;
   2093 		case BGE_RESET_SHUTDOWN:
   2094 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2095 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2096 			break;
   2097 		}
   2098 	}
   2099 
   2100 	if (type == BGE_RESET_SHUTDOWN)
   2101 		bge_ape_driver_state_change(sc, type);
   2102 }
   2103 
   2104 static void
   2105 bge_sig_legacy(struct bge_softc *sc, int type)
   2106 {
   2107 
   2108 	if (sc->bge_asf_mode) {
   2109 		switch (type) {
   2110 		case BGE_RESET_START:
   2111 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2112 			    BGE_FW_DRV_STATE_START);
   2113 			break;
   2114 		case BGE_RESET_SHUTDOWN:
   2115 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2116 			    BGE_FW_DRV_STATE_UNLOAD);
   2117 			break;
   2118 		}
   2119 	}
   2120 }
   2121 
   2122 static void
   2123 bge_wait_for_event_ack(struct bge_softc *sc)
   2124 {
   2125 	int i;
   2126 
   2127 	/* wait up to 2500usec */
   2128 	for (i = 0; i < 250; i++) {
   2129 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2130 			BGE_RX_CPU_DRV_EVENT))
   2131 			break;
   2132 		DELAY(10);
   2133 	}
   2134 }
   2135 
   2136 static void
   2137 bge_stop_fw(struct bge_softc *sc)
   2138 {
   2139 
   2140 	if (sc->bge_asf_mode) {
   2141 		bge_wait_for_event_ack(sc);
   2142 
   2143 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2144 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2145 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2146 
   2147 		bge_wait_for_event_ack(sc);
   2148 	}
   2149 }
   2150 
   2151 static int
   2152 bge_poll_fw(struct bge_softc *sc)
   2153 {
   2154 	uint32_t val;
   2155 	int i;
   2156 
   2157 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2158 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2159 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2160 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2161 				break;
   2162 			DELAY(100);
   2163 		}
   2164 		if (i >= BGE_TIMEOUT) {
   2165 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2166 			return -1;
   2167 		}
   2168 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
   2169 		/*
   2170 		 * Poll the value location we just wrote until
   2171 		 * we see the 1's complement of the magic number.
   2172 		 * This indicates that the firmware initialization
   2173 		 * is complete.
   2174 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2175 		 */
   2176 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2177 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2178 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2179 				break;
   2180 			DELAY(10);
   2181 		}
   2182 
   2183 		if (i >= BGE_TIMEOUT) {
   2184 			aprint_error_dev(sc->bge_dev,
   2185 			    "firmware handshake timed out, val = %x\n", val);
   2186 			return -1;
   2187 		}
   2188 	}
   2189 
   2190 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2191 		/* tg3 says we have to wait extra time */
   2192 		delay(10 * 1000);
   2193 	}
   2194 
   2195 	return 0;
   2196 }
   2197 
   2198 int
   2199 bge_phy_addr(struct bge_softc *sc)
   2200 {
   2201 	struct pci_attach_args *pa = &(sc->bge_pa);
   2202 	int phy_addr = 1;
   2203 
   2204 	/*
   2205 	 * PHY address mapping for various devices.
   2206 	 *
   2207 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2208 	 * ---------+-------+-------+-------+-------+
   2209 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2210 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2211 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2212 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2213 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2214 	 *
   2215 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2216 	 * ---------+-------+-------+-------+-------+
   2217 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2218 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2219 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2220 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2221 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2222 	 *
   2223 	 * Other addresses may respond but they are not
   2224 	 * IEEE compliant PHYs and should be ignored.
   2225 	 */
   2226 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2227 	case BGE_ASICREV_BCM5717:
   2228 	case BGE_ASICREV_BCM5719:
   2229 	case BGE_ASICREV_BCM5720:
   2230 		phy_addr = pa->pa_function;
   2231 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2232 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2233 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2234 		} else {
   2235 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2236 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2237 		}
   2238 	}
   2239 
   2240 	return phy_addr;
   2241 }
   2242 
   2243 /*
   2244  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2245  * self-test results.
   2246  */
   2247 static int
   2248 bge_chipinit(struct bge_softc *sc)
   2249 {
   2250 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2251 	int i;
   2252 
   2253 	/* Set endianness before we access any non-PCI registers. */
   2254 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2255 	    BGE_INIT);
   2256 
   2257 	/*
   2258 	 * Clear the MAC statistics block in the NIC's
   2259 	 * internal memory.
   2260 	 */
   2261 	for (i = BGE_STATS_BLOCK;
   2262 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2263 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2264 
   2265 	for (i = BGE_STATUS_BLOCK;
   2266 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2267 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2268 
   2269 	/* 5717 workaround from tg3 */
   2270 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2271 		/* Save */
   2272 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2273 
   2274 		/* Temporary modify MODE_CTL to control TLP */
   2275 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2276 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2277 
   2278 		/* Control TLP */
   2279 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2280 		    BGE_TLP_PHYCTL1);
   2281 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2282 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2283 
   2284 		/* Restore */
   2285 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2286 	}
   2287 
   2288 	/* XXX Should we use 57765_FAMILY? */
   2289 	if (BGE_IS_57765_PLUS(sc)) {
   2290 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2291 			/* Save */
   2292 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2293 
   2294 			/* Temporary modify MODE_CTL to control TLP */
   2295 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2296 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2297 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2298 
   2299 			/* Control TLP */
   2300 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2301 			    BGE_TLP_PHYCTL5);
   2302 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2303 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2304 
   2305 			/* Restore */
   2306 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2307 		}
   2308 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2309 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2310 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2311 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2312 
   2313 			/* Save */
   2314 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2315 
   2316 			/* Temporary modify MODE_CTL to control TLP */
   2317 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2318 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2319 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2320 
   2321 			/* Control TLP */
   2322 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2323 			    BGE_TLP_FTSMAX);
   2324 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2325 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2326 			    reg | BGE_TLP_FTSMAX_VAL);
   2327 
   2328 			/* Restore */
   2329 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2330 		}
   2331 
   2332 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2333 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2334 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2335 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2336 	}
   2337 
   2338 	/* Set up the PCI DMA control register. */
   2339 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2340 	if (sc->bge_flags & BGE_PCIE) {
   2341 		/* Read watermark not used, 128 bytes for write. */
   2342 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2343 		    device_xname(sc->bge_dev)));
   2344 		if (sc->bge_mps >= 256)
   2345 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2346 		else
   2347 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2348 	} else if (sc->bge_flags & BGE_PCIX) {
   2349 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2350 		    device_xname(sc->bge_dev)));
   2351 		/* PCI-X bus */
   2352 		if (BGE_IS_5714_FAMILY(sc)) {
   2353 			/* 256 bytes for read and write. */
   2354 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2355 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2356 
   2357 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2358 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2359 			else
   2360 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2361 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2362 			/* 1536 bytes for read, 384 bytes for write. */
   2363 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2364 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2365 		} else {
   2366 			/* 384 bytes for read and write. */
   2367 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2368 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2369 			    (0x0F);
   2370 		}
   2371 
   2372 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2373 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2374 			uint32_t tmp;
   2375 
   2376 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2377 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2378 			if (tmp == 6 || tmp == 7)
   2379 				dma_rw_ctl |=
   2380 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2381 
   2382 			/* Set PCI-X DMA write workaround. */
   2383 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2384 		}
   2385 	} else {
   2386 		/* Conventional PCI bus: 256 bytes for read and write. */
   2387 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2388 		    device_xname(sc->bge_dev)));
   2389 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2390 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2391 
   2392 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2393 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2394 			dma_rw_ctl |= 0x0F;
   2395 	}
   2396 
   2397 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2398 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2399 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2400 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2401 
   2402 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2403 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2404 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2405 
   2406 	if (BGE_IS_5717_PLUS(sc)) {
   2407 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2408 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2409 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2410 
   2411 		/*
   2412 		 * Enable HW workaround for controllers that misinterpret
   2413 		 * a status tag update and leave interrupts permanently
   2414 		 * disabled.
   2415 		 */
   2416 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2417 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
   2418 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2419 	}
   2420 
   2421 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2422 	    dma_rw_ctl);
   2423 
   2424 	/*
   2425 	 * Set up general mode register.
   2426 	 */
   2427 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2428 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2429 		/* Retain Host-2-BMC settings written by APE firmware. */
   2430 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2431 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2432 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2433 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2434 	}
   2435 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2436 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2437 
   2438 	/*
   2439 	 * BCM5701 B5 have a bug causing data corruption when using
   2440 	 * 64-bit DMA reads, which can be terminated early and then
   2441 	 * completed later as 32-bit accesses, in combination with
   2442 	 * certain bridges.
   2443 	 */
   2444 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2445 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2446 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2447 
   2448 	/*
   2449 	 * Tell the firmware the driver is running
   2450 	 */
   2451 	if (sc->bge_asf_mode & ASF_STACKUP)
   2452 		mode_ctl |= BGE_MODECTL_STACKUP;
   2453 
   2454 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2455 
   2456 	/*
   2457 	 * Disable memory write invalidate.  Apparently it is not supported
   2458 	 * properly by these devices.
   2459 	 */
   2460 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2461 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2462 
   2463 #ifdef __brokenalpha__
   2464 	/*
   2465 	 * Must insure that we do not cross an 8K (bytes) boundary
   2466 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2467 	 * restriction on some ALPHA platforms with early revision
   2468 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2469 	 */
   2470 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2471 #endif
   2472 
   2473 	/* Set the timer prescaler (always 66MHz) */
   2474 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2475 
   2476 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2477 		DELAY(40);	/* XXX */
   2478 
   2479 		/* Put PHY into ready state */
   2480 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2481 		DELAY(40);
   2482 	}
   2483 
   2484 	return 0;
   2485 }
   2486 
   2487 static int
   2488 bge_blockinit(struct bge_softc *sc)
   2489 {
   2490 	volatile struct bge_rcb	 *rcb;
   2491 	bus_size_t rcb_addr;
   2492 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2493 	bge_hostaddr taddr;
   2494 	uint32_t	dmactl, val;
   2495 	int		i, limit;
   2496 
   2497 	/*
   2498 	 * Initialize the memory window pointer register so that
   2499 	 * we can access the first 32K of internal NIC RAM. This will
   2500 	 * allow us to set up the TX send ring RCBs and the RX return
   2501 	 * ring RCBs, plus other things which live in NIC memory.
   2502 	 */
   2503 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2504 
   2505 	if (!BGE_IS_5705_PLUS(sc)) {
   2506 		/* 57XX step 33 */
   2507 		/* Configure mbuf memory pool */
   2508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2509 		    BGE_BUFFPOOL_1);
   2510 
   2511 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2512 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2513 		else
   2514 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2515 
   2516 		/* 57XX step 34 */
   2517 		/* Configure DMA resource pool */
   2518 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2519 		    BGE_DMA_DESCRIPTORS);
   2520 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2521 	}
   2522 
   2523 	/* 5718 step 11, 57XX step 35 */
   2524 	/*
   2525 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2526 	 * recommend these.
   2527 	 */
   2528 	if (BGE_IS_5717_PLUS(sc)) {
   2529 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2530 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2531 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2532 	} else if (BGE_IS_5705_PLUS(sc)) {
   2533 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2534 
   2535 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2536 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2537 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2538 		} else {
   2539 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2540 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2541 		}
   2542 	} else {
   2543 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2544 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2545 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2546 	}
   2547 
   2548 	/* 57XX step 36 */
   2549 	/* Configure DMA resource watermarks */
   2550 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2551 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2552 
   2553 	/* 5718 step 13, 57XX step 38 */
   2554 	/* Enable buffer manager */
   2555 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2556 	/*
   2557 	 * Change the arbitration algorithm of TXMBUF read request to
   2558 	 * round-robin instead of priority based for BCM5719.  When
   2559 	 * TXFIFO is almost empty, RDMA will hold its request until
   2560 	 * TXFIFO is not almost empty.
   2561 	 */
   2562 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2563 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2564 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2565 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2566 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2567 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2568 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2569 
   2570 	/* 57XX step 39 */
   2571 	/* Poll for buffer manager start indication */
   2572 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2573 		DELAY(10);
   2574 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2575 			break;
   2576 	}
   2577 
   2578 	if (i == BGE_TIMEOUT * 2) {
   2579 		aprint_error_dev(sc->bge_dev,
   2580 		    "buffer manager failed to start\n");
   2581 		return ENXIO;
   2582 	}
   2583 
   2584 	/* 57XX step 40 */
   2585 	/* Enable flow-through queues */
   2586 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2587 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2588 
   2589 	/* Wait until queue initialization is complete */
   2590 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2591 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2592 			break;
   2593 		DELAY(10);
   2594 	}
   2595 
   2596 	if (i == BGE_TIMEOUT * 2) {
   2597 		aprint_error_dev(sc->bge_dev,
   2598 		    "flow-through queue init failed\n");
   2599 		return ENXIO;
   2600 	}
   2601 
   2602 	/*
   2603 	 * Summary of rings supported by the controller:
   2604 	 *
   2605 	 * Standard Receive Producer Ring
   2606 	 * - This ring is used to feed receive buffers for "standard"
   2607 	 *   sized frames (typically 1536 bytes) to the controller.
   2608 	 *
   2609 	 * Jumbo Receive Producer Ring
   2610 	 * - This ring is used to feed receive buffers for jumbo sized
   2611 	 *   frames (i.e. anything bigger than the "standard" frames)
   2612 	 *   to the controller.
   2613 	 *
   2614 	 * Mini Receive Producer Ring
   2615 	 * - This ring is used to feed receive buffers for "mini"
   2616 	 *   sized frames to the controller.
   2617 	 * - This feature required external memory for the controller
   2618 	 *   but was never used in a production system.  Should always
   2619 	 *   be disabled.
   2620 	 *
   2621 	 * Receive Return Ring
   2622 	 * - After the controller has placed an incoming frame into a
   2623 	 *   receive buffer that buffer is moved into a receive return
   2624 	 *   ring.  The driver is then responsible to passing the
   2625 	 *   buffer up to the stack.  Many versions of the controller
   2626 	 *   support multiple RR rings.
   2627 	 *
   2628 	 * Send Ring
   2629 	 * - This ring is used for outgoing frames.  Many versions of
   2630 	 *   the controller support multiple send rings.
   2631 	 */
   2632 
   2633 	/* 5718 step 15, 57XX step 41 */
   2634 	/* Initialize the standard RX ring control block */
   2635 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2636 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2637 	/* 5718 step 16 */
   2638 	if (BGE_IS_5717_PLUS(sc)) {
   2639 		/*
   2640 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2641 		 * Bits 15-2 : Maximum RX frame size
   2642 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2643 		 * Bit 0     : Reserved
   2644 		 */
   2645 		rcb->bge_maxlen_flags =
   2646 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2647 	} else if (BGE_IS_5705_PLUS(sc)) {
   2648 		/*
   2649 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2650 		 * Bits 15-2 : Reserved (should be 0)
   2651 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2652 		 * Bit 0     : Reserved
   2653 		 */
   2654 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2655 	} else {
   2656 		/*
   2657 		 * Ring size is always XXX entries
   2658 		 * Bits 31-16: Maximum RX frame size
   2659 		 * Bits 15-2 : Reserved (should be 0)
   2660 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2661 		 * Bit 0     : Reserved
   2662 		 */
   2663 		rcb->bge_maxlen_flags =
   2664 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2665 	}
   2666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2667 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2668 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2669 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2670 	else
   2671 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2672 	/* Write the standard receive producer ring control block. */
   2673 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2674 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2675 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2676 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2677 
   2678 	/* Reset the standard receive producer ring producer index. */
   2679 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2680 
   2681 	/* 57XX step 42 */
   2682 	/*
   2683 	 * Initialize the jumbo RX ring control block
   2684 	 * We set the 'ring disabled' bit in the flags
   2685 	 * field until we're actually ready to start
   2686 	 * using this ring (i.e. once we set the MTU
   2687 	 * high enough to require it).
   2688 	 */
   2689 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2690 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2691 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2692 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2693 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2694 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2695 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2696 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2697 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2698 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2699 		else
   2700 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2701 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2702 		    rcb->bge_hostaddr.bge_addr_hi);
   2703 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2704 		    rcb->bge_hostaddr.bge_addr_lo);
   2705 		/* Program the jumbo receive producer ring RCB parameters. */
   2706 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2707 		    rcb->bge_maxlen_flags);
   2708 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2709 		/* Reset the jumbo receive producer ring producer index. */
   2710 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2711 	}
   2712 
   2713 	/* 57XX step 43 */
   2714 	/* Disable the mini receive producer ring RCB. */
   2715 	if (BGE_IS_5700_FAMILY(sc)) {
   2716 		/* Set up dummy disabled mini ring RCB */
   2717 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2718 		rcb->bge_maxlen_flags =
   2719 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2720 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2721 		    rcb->bge_maxlen_flags);
   2722 		/* Reset the mini receive producer ring producer index. */
   2723 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2724 
   2725 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2726 		    offsetof(struct bge_ring_data, bge_info),
   2727 		    sizeof (struct bge_gib),
   2728 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2729 	}
   2730 
   2731 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2732 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2733 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2734 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2735 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2736 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2737 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2738 	}
   2739 	/* 5718 step 14, 57XX step 44 */
   2740 	/*
   2741 	 * The BD ring replenish thresholds control how often the
   2742 	 * hardware fetches new BD's from the producer rings in host
   2743 	 * memory.  Setting the value too low on a busy system can
   2744 	 * starve the hardware and recue the throughpout.
   2745 	 *
   2746 	 * Set the BD ring replenish thresholds. The recommended
   2747 	 * values are 1/8th the number of descriptors allocated to
   2748 	 * each ring, but since we try to avoid filling the entire
   2749 	 * ring we set these to the minimal value of 8.  This needs to
   2750 	 * be done on several of the supported chip revisions anyway,
   2751 	 * to work around HW bugs.
   2752 	 */
   2753 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2754 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2755 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2756 
   2757 	/* 5718 step 18 */
   2758 	if (BGE_IS_5717_PLUS(sc)) {
   2759 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2760 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2761 	}
   2762 
   2763 	/* 57XX step 45 */
   2764 	/*
   2765 	 * Disable all send rings by setting the 'ring disabled' bit
   2766 	 * in the flags field of all the TX send ring control blocks,
   2767 	 * located in NIC memory.
   2768 	 */
   2769 	if (BGE_IS_5700_FAMILY(sc)) {
   2770 		/* 5700 to 5704 had 16 send rings. */
   2771 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2772 	} else
   2773 		limit = 1;
   2774 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2775 	for (i = 0; i < limit; i++) {
   2776 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2777 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2778 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2779 		rcb_addr += sizeof(struct bge_rcb);
   2780 	}
   2781 
   2782 	/* 57XX step 46 and 47 */
   2783 	/* Configure send ring RCB 0 (we use only the first ring) */
   2784 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2785 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2786 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2787 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2788 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2789 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2790 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2791 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2792 	else
   2793 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2794 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2795 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2796 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2797 
   2798 	/* 57XX step 48 */
   2799 	/*
   2800 	 * Disable all receive return rings by setting the
   2801 	 * 'ring diabled' bit in the flags field of all the receive
   2802 	 * return ring control blocks, located in NIC memory.
   2803 	 */
   2804 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2805 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2806 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2807 		/* Should be 17, use 16 until we get an SRAM map. */
   2808 		limit = 16;
   2809 	} else if (BGE_IS_5700_FAMILY(sc))
   2810 		limit = BGE_RX_RINGS_MAX;
   2811 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2812 	    BGE_IS_57765_PLUS(sc))
   2813 		limit = 4;
   2814 	else
   2815 		limit = 1;
   2816 	/* Disable all receive return rings */
   2817 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2818 	for (i = 0; i < limit; i++) {
   2819 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2820 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2821 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2822 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2823 			BGE_RCB_FLAG_RING_DISABLED));
   2824 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2825 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2826 		    (i * (sizeof(uint64_t))), 0);
   2827 		rcb_addr += sizeof(struct bge_rcb);
   2828 	}
   2829 
   2830 	/* 57XX step 49 */
   2831 	/*
   2832 	 * Set up receive return ring 0.  Note that the NIC address
   2833 	 * for RX return rings is 0x0.  The return rings live entirely
   2834 	 * within the host, so the nicaddr field in the RCB isn't used.
   2835 	 */
   2836 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2837 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2838 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2839 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2840 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2841 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2842 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2843 
   2844 	/* 5718 step 24, 57XX step 53 */
   2845 	/* Set random backoff seed for TX */
   2846 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2847 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2848 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2849 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2850 	    BGE_TX_BACKOFF_SEED_MASK);
   2851 
   2852 	/* 5718 step 26, 57XX step 55 */
   2853 	/* Set inter-packet gap */
   2854 	val = 0x2620;
   2855 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2856 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2857 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2858 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2859 
   2860 	/* 5718 step 27, 57XX step 56 */
   2861 	/*
   2862 	 * Specify which ring to use for packets that don't match
   2863 	 * any RX rules.
   2864 	 */
   2865 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2866 
   2867 	/* 5718 step 28, 57XX step 57 */
   2868 	/*
   2869 	 * Configure number of RX lists. One interrupt distribution
   2870 	 * list, sixteen active lists, one bad frames class.
   2871 	 */
   2872 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2873 
   2874 	/* 5718 step 29, 57XX step 58 */
   2875 	/* Inialize RX list placement stats mask. */
   2876 	if (BGE_IS_575X_PLUS(sc)) {
   2877 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2878 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2879 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2880 	} else
   2881 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2882 
   2883 	/* 5718 step 30, 57XX step 59 */
   2884 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2885 
   2886 	/* 5718 step 33, 57XX step 62 */
   2887 	/* Disable host coalescing until we get it set up */
   2888 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2889 
   2890 	/* 5718 step 34, 57XX step 63 */
   2891 	/* Poll to make sure it's shut down. */
   2892 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2893 		DELAY(10);
   2894 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2895 			break;
   2896 	}
   2897 
   2898 	if (i == BGE_TIMEOUT * 2) {
   2899 		aprint_error_dev(sc->bge_dev,
   2900 		    "host coalescing engine failed to idle\n");
   2901 		return ENXIO;
   2902 	}
   2903 
   2904 	/* 5718 step 35, 36, 37 */
   2905 	/* Set up host coalescing defaults */
   2906 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2907 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2908 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2909 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2910 	if (!(BGE_IS_5705_PLUS(sc))) {
   2911 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2912 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2913 	}
   2914 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2915 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2916 
   2917 	/* Set up address of statistics block */
   2918 	if (BGE_IS_5700_FAMILY(sc)) {
   2919 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2920 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2921 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2922 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2923 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2924 	}
   2925 
   2926 	/* 5718 step 38 */
   2927 	/* Set up address of status block */
   2928 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2929 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2930 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2931 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2932 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2933 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2934 
   2935 	/* Set up status block size. */
   2936 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2937 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2938 		val = BGE_STATBLKSZ_FULL;
   2939 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2940 	} else {
   2941 		val = BGE_STATBLKSZ_32BYTE;
   2942 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2943 	}
   2944 
   2945 	/* 5718 step 39, 57XX step 73 */
   2946 	/* Turn on host coalescing state machine */
   2947 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2948 
   2949 	/* 5718 step 40, 57XX step 74 */
   2950 	/* Turn on RX BD completion state machine and enable attentions */
   2951 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2952 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2953 
   2954 	/* 5718 step 41, 57XX step 75 */
   2955 	/* Turn on RX list placement state machine */
   2956 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2957 
   2958 	/* 57XX step 76 */
   2959 	/* Turn on RX list selector state machine. */
   2960 	if (!(BGE_IS_5705_PLUS(sc)))
   2961 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2962 
   2963 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2964 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2965 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2966 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2967 
   2968 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
   2969 		val |= BGE_PORTMODE_TBI;
   2970 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
   2971 		val |= BGE_PORTMODE_GMII;
   2972 	else
   2973 		val |= BGE_PORTMODE_MII;
   2974 
   2975 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2976 	/* Allow APE to send/receive frames. */
   2977 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2978 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2979 
   2980 	/* Turn on DMA, clear stats */
   2981 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2982 	/* 5718 step 44 */
   2983 	DELAY(40);
   2984 
   2985 	/* 5718 step 45, 57XX step 79 */
   2986 	/* Set misc. local control, enable interrupts on attentions */
   2987 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2988 	if (BGE_IS_5717_PLUS(sc)) {
   2989 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2990 		/* 5718 step 46 */
   2991 		DELAY(100);
   2992 	}
   2993 
   2994 	/* 57XX step 81 */
   2995 	/* Turn on DMA completion state machine */
   2996 	if (!(BGE_IS_5705_PLUS(sc)))
   2997 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2998 
   2999 	/* 5718 step 47, 57XX step 82 */
   3000 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   3001 
   3002 	/* 5718 step 48 */
   3003 	/* Enable host coalescing bug fix. */
   3004 	if (BGE_IS_5755_PLUS(sc))
   3005 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   3006 
   3007 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3008 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   3009 
   3010 	/* Turn on write DMA state machine */
   3011 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   3012 	/* 5718 step 49 */
   3013 	DELAY(40);
   3014 
   3015 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   3016 
   3017 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   3018 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3019 
   3020 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3021 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3022 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3023 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   3024 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   3025 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   3026 
   3027 	if (sc->bge_flags & BGE_PCIE)
   3028 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   3029 	if (sc->bge_flags & BGE_TSO)
   3030 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   3031 
   3032 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3033 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   3034 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   3035 		/*
   3036 		 * Allow multiple outstanding read requests from
   3037 		 * non-LSO read DMA engine.
   3038 		 */
   3039 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3040 	}
   3041 
   3042 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3043 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3044 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3045 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   3046 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
   3047 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   3048 		/*
   3049 		 * Adjust tx margin to prevent TX data corruption and
   3050 		 * fix internal FIFO overflow.
   3051 		 */
   3052 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   3053 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3054 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3055 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3056 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3057 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3058 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3059 		}
   3060 		/*
   3061 		 * Enable fix for read DMA FIFO overruns.
   3062 		 * The fix is to limit the number of RX BDs
   3063 		 * the hardware would fetch at a fime.
   3064 		 */
   3065 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3066 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3067 	}
   3068 
   3069 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3070 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3071 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3072 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3073 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3074 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3075 		/*
   3076 		 * Allow 4KB burst length reads for non-LSO frames.
   3077 		 * Enable 512B burst length reads for buffer descriptors.
   3078 		 */
   3079 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3080 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3081 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3082 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3083 	}
   3084 
   3085 	/* Turn on read DMA state machine */
   3086 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3087 	/* 5718 step 52 */
   3088 	delay(40);
   3089 
   3090 	/* 5718 step 56, 57XX step 84 */
   3091 	/* Turn on RX data completion state machine */
   3092 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3093 
   3094 	/* Turn on RX data and RX BD initiator state machine */
   3095 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3096 
   3097 	/* 57XX step 85 */
   3098 	/* Turn on Mbuf cluster free state machine */
   3099 	if (!BGE_IS_5705_PLUS(sc))
   3100 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3101 
   3102 	/* 5718 step 57, 57XX step 86 */
   3103 	/* Turn on send data completion state machine */
   3104 	val = BGE_SDCMODE_ENABLE;
   3105 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3106 		val |= BGE_SDCMODE_CDELAY;
   3107 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3108 
   3109 	/* 5718 step 58 */
   3110 	/* Turn on send BD completion state machine */
   3111 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3112 
   3113 	/* 57XX step 88 */
   3114 	/* Turn on RX BD initiator state machine */
   3115 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3116 
   3117 	/* 5718 step 60, 57XX step 90 */
   3118 	/* Turn on send data initiator state machine */
   3119 	if (sc->bge_flags & BGE_TSO) {
   3120 		/* XXX: magic value from Linux driver */
   3121 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3122 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3123 	} else
   3124 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3125 
   3126 	/* 5718 step 61, 57XX step 91 */
   3127 	/* Turn on send BD initiator state machine */
   3128 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3129 
   3130 	/* 5718 step 62, 57XX step 92 */
   3131 	/* Turn on send BD selector state machine */
   3132 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3133 
   3134 	/* 5718 step 31, 57XX step 60 */
   3135 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3136 	/* 5718 step 32, 57XX step 61 */
   3137 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3138 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3139 
   3140 	/* ack/clear link change events */
   3141 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3142 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3143 	    BGE_MACSTAT_LINK_CHANGED);
   3144 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3145 
   3146 	/*
   3147 	 * Enable attention when the link has changed state for
   3148 	 * devices that use auto polling.
   3149 	 */
   3150 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3151 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3152 	} else {
   3153 		/* 5718 step 68 */
   3154 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3155 		/* 5718 step 69 (optionally) */
   3156 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
   3157 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3158 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3159 			    BGE_EVTENB_MI_INTERRUPT);
   3160 	}
   3161 
   3162 	/*
   3163 	 * Clear any pending link state attention.
   3164 	 * Otherwise some link state change events may be lost until attention
   3165 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3166 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3167 	 * state change attentions implies clearing pending attention.
   3168 	 */
   3169 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3170 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3171 	    BGE_MACSTAT_LINK_CHANGED);
   3172 
   3173 	/* Enable link state change attentions. */
   3174 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3175 
   3176 	return 0;
   3177 }
   3178 
   3179 static const struct bge_revision *
   3180 bge_lookup_rev(uint32_t chipid)
   3181 {
   3182 	const struct bge_revision *br;
   3183 
   3184 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3185 		if (br->br_chipid == chipid)
   3186 			return br;
   3187 	}
   3188 
   3189 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3190 		if (br->br_chipid == BGE_ASICREV(chipid))
   3191 			return br;
   3192 	}
   3193 
   3194 	return NULL;
   3195 }
   3196 
   3197 static const struct bge_product *
   3198 bge_lookup(const struct pci_attach_args *pa)
   3199 {
   3200 	const struct bge_product *bp;
   3201 
   3202 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3203 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3204 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3205 			return bp;
   3206 	}
   3207 
   3208 	return NULL;
   3209 }
   3210 
   3211 static uint32_t
   3212 bge_chipid(const struct pci_attach_args *pa)
   3213 {
   3214 	uint32_t id;
   3215 
   3216 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3217 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3218 
   3219 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3220 		switch (PCI_PRODUCT(pa->pa_id)) {
   3221 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3222 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3223 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3224 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3225 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3226 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3227 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3228 			break;
   3229 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3230 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3231 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3232 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3233 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3234 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3235 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3236 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3237 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3238 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3239 			break;
   3240 		default:
   3241 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3242 			    BGE_PCI_PRODID_ASICREV);
   3243 			break;
   3244 		}
   3245 	}
   3246 
   3247 	return id;
   3248 }
   3249 
   3250 /*
   3251  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3252  * against our list and return its name if we find a match. Note
   3253  * that since the Broadcom controller contains VPD support, we
   3254  * can get the device name string from the controller itself instead
   3255  * of the compiled-in string. This is a little slow, but it guarantees
   3256  * we'll always announce the right product name.
   3257  */
   3258 static int
   3259 bge_probe(device_t parent, cfdata_t match, void *aux)
   3260 {
   3261 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3262 
   3263 	if (bge_lookup(pa) != NULL)
   3264 		return 1;
   3265 
   3266 	return 0;
   3267 }
   3268 
   3269 static void
   3270 bge_attach(device_t parent, device_t self, void *aux)
   3271 {
   3272 	struct bge_softc	*sc = device_private(self);
   3273 	struct pci_attach_args	*pa = aux;
   3274 	prop_dictionary_t dict;
   3275 	const struct bge_product *bp;
   3276 	const struct bge_revision *br;
   3277 	pci_chipset_tag_t	pc;
   3278 	pci_intr_handle_t	ih;
   3279 	const char		*intrstr = NULL;
   3280 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4;
   3281 	uint32_t		command;
   3282 	struct ifnet		*ifp;
   3283 	uint32_t		misccfg, mimode;
   3284 	void *			kva;
   3285 	u_char			eaddr[ETHER_ADDR_LEN];
   3286 	pcireg_t		memtype, subid, reg;
   3287 	bus_addr_t		memaddr;
   3288 	uint32_t		pm_ctl;
   3289 	bool			no_seeprom;
   3290 	int			capmask;
   3291 
   3292 	bp = bge_lookup(pa);
   3293 	KASSERT(bp != NULL);
   3294 
   3295 	sc->sc_pc = pa->pa_pc;
   3296 	sc->sc_pcitag = pa->pa_tag;
   3297 	sc->bge_dev = self;
   3298 
   3299 	sc->bge_pa = *pa;
   3300 	pc = sc->sc_pc;
   3301 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3302 
   3303 	aprint_naive(": Ethernet controller\n");
   3304 	aprint_normal(": %s\n", bp->bp_name);
   3305 
   3306 	/*
   3307 	 * Map control/status registers.
   3308 	 */
   3309 	DPRINTFN(5, ("Map control/status regs\n"));
   3310 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3311 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3312 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3313 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3314 
   3315 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3316 		aprint_error_dev(sc->bge_dev,
   3317 		    "failed to enable memory mapping!\n");
   3318 		return;
   3319 	}
   3320 
   3321 	DPRINTFN(5, ("pci_mem_find\n"));
   3322 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3323 	switch (memtype) {
   3324 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3325 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3326 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3327 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3328 		    &memaddr, &sc->bge_bsize) == 0)
   3329 			break;
   3330 	default:
   3331 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3332 		return;
   3333 	}
   3334 
   3335 	DPRINTFN(5, ("pci_intr_map\n"));
   3336 	if (pci_intr_map(pa, &ih)) {
   3337 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3338 		return;
   3339 	}
   3340 
   3341 	DPRINTFN(5, ("pci_intr_string\n"));
   3342 	intrstr = pci_intr_string(pc, ih);
   3343 
   3344 	DPRINTFN(5, ("pci_intr_establish\n"));
   3345 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3346 
   3347 	if (sc->bge_intrhand == NULL) {
   3348 		aprint_error_dev(sc->bge_dev,
   3349 		    "couldn't establish interrupt%s%s\n",
   3350 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3351 		return;
   3352 	}
   3353 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3354 
   3355 	/* Save various chip information. */
   3356 	sc->bge_chipid = bge_chipid(pa);
   3357 	sc->bge_phy_addr = bge_phy_addr(sc);
   3358 
   3359 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3360 	        &sc->bge_pciecap, NULL) != 0)
   3361 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3362 		/* PCIe */
   3363 		sc->bge_flags |= BGE_PCIE;
   3364 		/* Extract supported maximum payload size. */
   3365 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3366 		    sc->bge_pciecap + PCIE_DCAP);
   3367 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3368 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3369 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3370 			sc->bge_expmrq = 2048;
   3371 		else
   3372 			sc->bge_expmrq = 4096;
   3373 		bge_set_max_readrq(sc);
   3374 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3375 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3376 		/* PCI-X */
   3377 		sc->bge_flags |= BGE_PCIX;
   3378 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3379 			&sc->bge_pcixcap, NULL) == 0)
   3380 			aprint_error_dev(sc->bge_dev,
   3381 			    "unable to find PCIX capability\n");
   3382 	}
   3383 
   3384 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3385 		/*
   3386 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3387 		 * can clobber the chip's PCI config-space power control
   3388 		 * registers, leaving the card in D3 powersave state. We do
   3389 		 * not have memory-mapped registers in this state, so force
   3390 		 * device into D0 state before starting initialization.
   3391 		 */
   3392 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3393 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3394 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3395 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3396 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3397 	}
   3398 
   3399 	/* Save chipset family. */
   3400 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3401 	case BGE_ASICREV_BCM57765:
   3402 	case BGE_ASICREV_BCM57766:
   3403 		sc->bge_flags |= BGE_57765_PLUS;
   3404 		/* FALLTHROUGH */
   3405 	case BGE_ASICREV_BCM5717:
   3406 	case BGE_ASICREV_BCM5719:
   3407 	case BGE_ASICREV_BCM5720:
   3408 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS |
   3409 		    BGE_575X_PLUS | BGE_5705_PLUS | BGE_JUMBO_CAPABLE;
   3410 		/* Jumbo frame on BCM5719 A0 does not work. */
   3411 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3412 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3413 			sc->bge_flags &= ~BGE_JUMBO_CAPABLE;
   3414 		break;
   3415 	case BGE_ASICREV_BCM5755:
   3416 	case BGE_ASICREV_BCM5761:
   3417 	case BGE_ASICREV_BCM5784:
   3418 	case BGE_ASICREV_BCM5785:
   3419 	case BGE_ASICREV_BCM5787:
   3420 	case BGE_ASICREV_BCM57780:
   3421 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
   3422 		break;
   3423 	case BGE_ASICREV_BCM5700:
   3424 	case BGE_ASICREV_BCM5701:
   3425 	case BGE_ASICREV_BCM5703:
   3426 	case BGE_ASICREV_BCM5704:
   3427 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
   3428 		break;
   3429 	case BGE_ASICREV_BCM5714_A0:
   3430 	case BGE_ASICREV_BCM5780:
   3431 	case BGE_ASICREV_BCM5714:
   3432 		sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE;
   3433 		/* FALLTHROUGH */
   3434 	case BGE_ASICREV_BCM5750:
   3435 	case BGE_ASICREV_BCM5752:
   3436 	case BGE_ASICREV_BCM5906:
   3437 		sc->bge_flags |= BGE_575X_PLUS;
   3438 		/* FALLTHROUGH */
   3439 	case BGE_ASICREV_BCM5705:
   3440 		sc->bge_flags |= BGE_5705_PLUS;
   3441 		break;
   3442 	}
   3443 
   3444 	/* Identify chips with APE processor. */
   3445 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3446 	case BGE_ASICREV_BCM5717:
   3447 	case BGE_ASICREV_BCM5719:
   3448 	case BGE_ASICREV_BCM5720:
   3449 	case BGE_ASICREV_BCM5761:
   3450 		sc->bge_flags |= BGE_APE;
   3451 		break;
   3452 	}
   3453 
   3454 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3455 	if ((sc->bge_flags & BGE_APE) != 0) {
   3456 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3457 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3458 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3459 			&sc->bge_apesize)) {
   3460 			aprint_error_dev(sc->bge_dev,
   3461 			    "couldn't map BAR2 memory\n");
   3462 			return;
   3463 		}
   3464 
   3465 		/* Enable APE register/memory access by host driver. */
   3466 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3467 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3468 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3469 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3470 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3471 
   3472 		bge_ape_lock_init(sc);
   3473 		bge_ape_read_fw_ver(sc);
   3474 	}
   3475 
   3476 	/* Identify the chips that use an CPMU. */
   3477 	if (BGE_IS_5717_PLUS(sc) ||
   3478 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3479 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3480 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3481 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3482 		sc->bge_flags |= BGE_CPMU_PRESENT;
   3483 
   3484 	/* Set MI_MODE */
   3485 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3486 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
   3487 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3488 	else
   3489 		mimode |= BGE_MIMODE_BASE;
   3490 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3491 
   3492 	/*
   3493 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3494 	 * been observed in the first few bytes of some received packets.
   3495 	 * Aligning the packet buffer in memory eliminates the corruption.
   3496 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3497 	 * which do not support unaligned accesses, we will realign the
   3498 	 * payloads by copying the received packets.
   3499 	 */
   3500 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3501 	    sc->bge_flags & BGE_PCIX)
   3502 		sc->bge_flags |= BGE_RX_ALIGNBUG;
   3503 
   3504 	if (BGE_IS_5700_FAMILY(sc))
   3505 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
   3506 
   3507 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3508 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3509 
   3510 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3511 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3512 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3513 		sc->bge_flags |= BGE_IS_5788;
   3514 
   3515 	/*
   3516 	 * Some controllers seem to require a special firmware to use
   3517 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3518 	 * claims that the TSO performed by the firmware is slower than
   3519 	 * hardware based TSO. Moreover the firmware based TSO has one
   3520 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3521 	 * header is greater than 80 bytes. The workaround for the TSO
   3522 	 * bug exist but it seems it's too expensive than not using
   3523 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3524 	 * the TSO to the controllers that are not affected TSO issues
   3525 	 * (e.g. 5755 or higher).
   3526 	 */
   3527 	if (BGE_IS_5755_PLUS(sc)) {
   3528 		/*
   3529 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3530 		 * explicit device id check is required.
   3531 		 */
   3532 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3533 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3534 			sc->bge_flags |= BGE_TSO;
   3535 	}
   3536 
   3537 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3538 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3539 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3540 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3541 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3542 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3543 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3544 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3545 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3546 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3547 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3548 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3549 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3550 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3551 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3552 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3553 		capmask &= ~BMSR_EXTSTAT;
   3554 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3555 	}
   3556 
   3557 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3558 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3559 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3560 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3561 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
   3562 
   3563 	/* Set various PHY bug flags. */
   3564 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3565 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3566 		sc->bge_flags |= BGE_PHY_CRC_BUG;
   3567 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3568 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3569 		sc->bge_flags |= BGE_PHY_ADC_BUG;
   3570 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3571 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
   3572 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3573 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3574 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3575 		sc->bge_flags |= BGE_PHY_NO_3LED;
   3576 	if (BGE_IS_5705_PLUS(sc) &&
   3577 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3578 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3579 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3580 	    !BGE_IS_5717_PLUS(sc)) {
   3581 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3582 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3583 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3584 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3585 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3586 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3587 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
   3588 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3589 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
   3590 		} else
   3591 			sc->bge_flags |= BGE_PHY_BER_BUG;
   3592 	}
   3593 
   3594 	/*
   3595 	 * SEEPROM check.
   3596 	 * First check if firmware knows we do not have SEEPROM.
   3597 	 */
   3598 	if (prop_dictionary_get_bool(device_properties(self),
   3599 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3600 	 	sc->bge_flags |= BGE_NO_EEPROM;
   3601 
   3602 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3603 		sc->bge_flags |= BGE_NO_EEPROM;
   3604 
   3605 	/* Now check the 'ROM failed' bit on the RX CPU */
   3606 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3607 		sc->bge_flags |= BGE_NO_EEPROM;
   3608 
   3609 	sc->bge_asf_mode = 0;
   3610 	/* No ASF if APE present. */
   3611 	if ((sc->bge_flags & BGE_APE) == 0) {
   3612 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3613 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3614 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3615 			    BGE_HWCFG_ASF) {
   3616 				sc->bge_asf_mode |= ASF_ENABLE;
   3617 				sc->bge_asf_mode |= ASF_STACKUP;
   3618 				if (BGE_IS_575X_PLUS(sc))
   3619 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3620 			}
   3621 		}
   3622 	}
   3623 
   3624 	/*
   3625 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3626 	 * lock in bge_reset().
   3627 	 */
   3628 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3629 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3630 	delay(1000);
   3631 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3632 
   3633 	bge_stop_fw(sc);
   3634 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3635 	if (bge_reset(sc))
   3636 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3637 
   3638 	/*
   3639 	 * Read the hardware config word in the first 32k of NIC internal
   3640 	 * memory, or fall back to the config word in the EEPROM.
   3641 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3642 	 */
   3643 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
   3644 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3645 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3646 		uint32_t tmp;
   3647 
   3648 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3649 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3650 		    BGE_SRAM_DATA_VER_SHIFT;
   3651 		if ((0 < tmp) && (tmp < 0x100))
   3652 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3653 		if (sc->bge_flags & BGE_PCIE)
   3654 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3655 		if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
   3656 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3657 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
   3658 		bge_read_eeprom(sc, (void *)&hwcfg,
   3659 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3660 		hwcfg = be32toh(hwcfg);
   3661 	}
   3662 	aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
   3663 	    hwcfg, hwcfg2, hwcfg3, hwcfg4);
   3664 
   3665 	bge_sig_legacy(sc, BGE_RESET_START);
   3666 	bge_sig_post_reset(sc, BGE_RESET_START);
   3667 
   3668 	if (bge_chipinit(sc)) {
   3669 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3670 		bge_release_resources(sc);
   3671 		return;
   3672 	}
   3673 
   3674 	/*
   3675 	 * Get station address from the EEPROM.
   3676 	 */
   3677 	if (bge_get_eaddr(sc, eaddr)) {
   3678 		aprint_error_dev(sc->bge_dev,
   3679 		    "failed to read station address\n");
   3680 		bge_release_resources(sc);
   3681 		return;
   3682 	}
   3683 
   3684 	br = bge_lookup_rev(sc->bge_chipid);
   3685 
   3686 	if (br == NULL) {
   3687 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3688 		    sc->bge_chipid);
   3689 	} else {
   3690 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3691 		    br->br_name, sc->bge_chipid);
   3692 	}
   3693 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3694 
   3695 	/* Allocate the general information block and ring buffers. */
   3696 	if (pci_dma64_available(pa))
   3697 		sc->bge_dmatag = pa->pa_dmat64;
   3698 	else
   3699 		sc->bge_dmatag = pa->pa_dmat;
   3700 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3701 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3702 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3703 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3704 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3705 		return;
   3706 	}
   3707 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3708 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3709 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3710 			   BUS_DMA_NOWAIT)) {
   3711 		aprint_error_dev(sc->bge_dev,
   3712 		    "can't map DMA buffers (%zu bytes)\n",
   3713 		    sizeof(struct bge_ring_data));
   3714 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3715 		    sc->bge_ring_rseg);
   3716 		return;
   3717 	}
   3718 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3719 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3720 	    sizeof(struct bge_ring_data), 0,
   3721 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3722 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3723 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3724 				 sizeof(struct bge_ring_data));
   3725 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3726 		    sc->bge_ring_rseg);
   3727 		return;
   3728 	}
   3729 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3730 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3731 			    sizeof(struct bge_ring_data), NULL,
   3732 			    BUS_DMA_NOWAIT)) {
   3733 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3734 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3735 				 sizeof(struct bge_ring_data));
   3736 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3737 		    sc->bge_ring_rseg);
   3738 		return;
   3739 	}
   3740 
   3741 	DPRINTFN(5, ("bzero\n"));
   3742 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3743 
   3744 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3745 
   3746 	/* Try to allocate memory for jumbo buffers. */
   3747 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3748 		if (bge_alloc_jumbo_mem(sc)) {
   3749 			aprint_error_dev(sc->bge_dev,
   3750 			    "jumbo buffer allocation failed\n");
   3751 		} else
   3752 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3753 	}
   3754 
   3755 	/* Set default tuneable values. */
   3756 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3757 	sc->bge_rx_coal_ticks = 150;
   3758 	sc->bge_rx_max_coal_bds = 64;
   3759 	sc->bge_tx_coal_ticks = 300;
   3760 	sc->bge_tx_max_coal_bds = 400;
   3761 	if (BGE_IS_5705_PLUS(sc)) {
   3762 		sc->bge_tx_coal_ticks = (12 * 5);
   3763 		sc->bge_tx_max_coal_bds = (12 * 5);
   3764 			aprint_verbose_dev(sc->bge_dev,
   3765 			    "setting short Tx thresholds\n");
   3766 	}
   3767 
   3768 	if (BGE_IS_5717_PLUS(sc))
   3769 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3770 	else if (BGE_IS_5705_PLUS(sc))
   3771 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3772 	else
   3773 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3774 
   3775 	/* Set up ifnet structure */
   3776 	ifp = &sc->ethercom.ec_if;
   3777 	ifp->if_softc = sc;
   3778 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3779 	ifp->if_ioctl = bge_ioctl;
   3780 	ifp->if_stop = bge_stop;
   3781 	ifp->if_start = bge_start;
   3782 	ifp->if_init = bge_init;
   3783 	ifp->if_watchdog = bge_watchdog;
   3784 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3785 	IFQ_SET_READY(&ifp->if_snd);
   3786 	DPRINTFN(5, ("strcpy if_xname\n"));
   3787 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3788 
   3789 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3790 		sc->ethercom.ec_if.if_capabilities |=
   3791 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3792 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3793 		sc->ethercom.ec_if.if_capabilities |=
   3794 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3795 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3796 #endif
   3797 	sc->ethercom.ec_capabilities |=
   3798 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3799 
   3800 	if (sc->bge_flags & BGE_TSO)
   3801 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3802 
   3803 	/*
   3804 	 * Do MII setup.
   3805 	 */
   3806 	DPRINTFN(5, ("mii setup\n"));
   3807 	sc->bge_mii.mii_ifp = ifp;
   3808 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3809 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3810 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3811 
   3812 	/*
   3813 	 * Figure out what sort of media we have by checking the hardware
   3814 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3815 	 * unset. If that's the case, we have to rely on identifying the NIC
   3816 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3817 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3818 	 */
   3819 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3820 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3821 		if (BGE_IS_5714_FAMILY(sc))
   3822 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
   3823 		else
   3824 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
   3825 	}
   3826 
   3827 	/* set phyflags and chipid before mii_attach() */
   3828 	dict = device_properties(self);
   3829 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
   3830 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3831 
   3832 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   3833 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3834 		    bge_ifmedia_sts);
   3835 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3836 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3837 			    0, NULL);
   3838 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3839 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3840 		/* Pretend the user requested this setting */
   3841 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3842 	} else {
   3843 		/*
   3844 		 * Do transceiver setup and tell the firmware the
   3845 		 * driver is down so we can try to get access the
   3846 		 * probe if ASF is running.  Retry a couple of times
   3847 		 * if we get a conflict with the ASF firmware accessing
   3848 		 * the PHY.
   3849 		 */
   3850 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3851 		bge_asf_driver_up(sc);
   3852 
   3853 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3854 			     bge_ifmedia_sts);
   3855 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
   3856 			   sc->bge_phy_addr, MII_OFFSET_ANY,
   3857 			   MIIF_DOPAUSE);
   3858 
   3859 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3860 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3861 			ifmedia_add(&sc->bge_mii.mii_media,
   3862 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3863 			ifmedia_set(&sc->bge_mii.mii_media,
   3864 				    IFM_ETHER|IFM_MANUAL);
   3865 		} else
   3866 			ifmedia_set(&sc->bge_mii.mii_media,
   3867 				    IFM_ETHER|IFM_AUTO);
   3868 
   3869 		/*
   3870 		 * Now tell the firmware we are going up after probing the PHY
   3871 		 */
   3872 		if (sc->bge_asf_mode & ASF_STACKUP)
   3873 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3874 	}
   3875 
   3876 	/*
   3877 	 * Call MI attach routine.
   3878 	 */
   3879 	DPRINTFN(5, ("if_attach\n"));
   3880 	if_attach(ifp);
   3881 	DPRINTFN(5, ("ether_ifattach\n"));
   3882 	ether_ifattach(ifp, eaddr);
   3883 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3884 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3885 		RND_TYPE_NET, 0);
   3886 #ifdef BGE_EVENT_COUNTERS
   3887 	/*
   3888 	 * Attach event counters.
   3889 	 */
   3890 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3891 	    NULL, device_xname(sc->bge_dev), "intr");
   3892 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3893 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3894 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3895 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3896 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3897 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3898 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3899 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3900 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3901 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3902 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3903 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3904 #endif /* BGE_EVENT_COUNTERS */
   3905 	DPRINTFN(5, ("callout_init\n"));
   3906 	callout_init(&sc->bge_timeout, 0);
   3907 
   3908 	if (pmf_device_register(self, NULL, NULL))
   3909 		pmf_class_network_register(self, ifp);
   3910 	else
   3911 		aprint_error_dev(self, "couldn't establish power handler\n");
   3912 
   3913 	bge_sysctl_init(sc);
   3914 
   3915 #ifdef BGE_DEBUG
   3916 	bge_debug_info(sc);
   3917 #endif
   3918 }
   3919 
   3920 /*
   3921  * Stop all chip I/O so that the kernel's probe routines don't
   3922  * get confused by errant DMAs when rebooting.
   3923  */
   3924 static int
   3925 bge_detach(device_t self, int flags __unused)
   3926 {
   3927 	struct bge_softc *sc = device_private(self);
   3928 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3929 	int s;
   3930 
   3931 	s = splnet();
   3932 	/* Stop the interface. Callouts are stopped in it. */
   3933 	bge_stop(ifp, 1);
   3934 	splx(s);
   3935 
   3936 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3937 
   3938 	/* Delete all remaining media. */
   3939 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3940 
   3941 	ether_ifdetach(ifp);
   3942 	if_detach(ifp);
   3943 
   3944 	bge_release_resources(sc);
   3945 
   3946 	return 0;
   3947 }
   3948 
   3949 static void
   3950 bge_release_resources(struct bge_softc *sc)
   3951 {
   3952 
   3953 	/* Disestablish the interrupt handler */
   3954 	if (sc->bge_intrhand != NULL) {
   3955 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   3956 		sc->bge_intrhand = NULL;
   3957 	}
   3958 
   3959 	if (sc->bge_dmatag != NULL) {
   3960 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   3961 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3962 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   3963 		    sizeof(struct bge_ring_data));
   3964 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   3965 	}
   3966 
   3967 	/* Unmap the device registers */
   3968 	if (sc->bge_bsize != 0) {
   3969 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   3970 		sc->bge_bsize = 0;
   3971 	}
   3972 
   3973 	/* Unmap the APE registers */
   3974 	if (sc->bge_apesize != 0) {
   3975 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   3976 		    sc->bge_apesize);
   3977 		sc->bge_apesize = 0;
   3978 	}
   3979 }
   3980 
   3981 static int
   3982 bge_reset(struct bge_softc *sc)
   3983 {
   3984 	uint32_t cachesize, command;
   3985 	uint32_t reset, mac_mode, mac_mode_mask;
   3986 	pcireg_t devctl, reg;
   3987 	int i, val;
   3988 	void (*write_op)(struct bge_softc *, int, int);
   3989 
   3990 	/* Make mask for BGE_MAC_MODE register. */
   3991 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   3992 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3993 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3994 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   3995 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   3996 
   3997 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   3998 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   3999 	    	if (sc->bge_flags & BGE_PCIE)
   4000 			write_op = bge_writemem_direct;
   4001 		else
   4002 			write_op = bge_writemem_ind;
   4003 	} else
   4004 		write_op = bge_writereg_ind;
   4005 
   4006 	/* 57XX step 4 */
   4007 	/* Acquire the NVM lock */
   4008 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
   4009 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4010 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4011 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4012 		for (i = 0; i < 8000; i++) {
   4013 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4014 			    BGE_NVRAMSWARB_GNT1)
   4015 				break;
   4016 			DELAY(20);
   4017 		}
   4018 		if (i == 8000) {
   4019 			printf("%s: NVRAM lock timedout!\n",
   4020 			    device_xname(sc->bge_dev));
   4021 		}
   4022 	}
   4023 
   4024 	/* Take APE lock when performing reset. */
   4025 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4026 
   4027 	/* 57XX step 3 */
   4028 	/* Save some important PCI state. */
   4029 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4030 	/* 5718 reset step 3 */
   4031 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4032 
   4033 	/* 5718 reset step 5, 57XX step 5b-5d */
   4034 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4035 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4036 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4037 
   4038 	/* XXX ???: Disable fastboot on controllers that support it. */
   4039 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4040 	    BGE_IS_5755_PLUS(sc))
   4041 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4042 
   4043 	/* 5718 reset step 2, 57XX step 6 */
   4044 	/*
   4045 	 * Write the magic number to SRAM at offset 0xB50.
   4046 	 * When firmware finishes its initialization it will
   4047 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4048 	 */
   4049 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4050 
   4051 	/* 5718 reset step 6, 57XX step 7 */
   4052 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4053 	/*
   4054 	 * XXX: from FreeBSD/Linux; no documentation
   4055 	 */
   4056 	if (sc->bge_flags & BGE_PCIE) {
   4057 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
   4058 		    !BGE_IS_57765_PLUS(sc) &&
   4059 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4060 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4061 			/* PCI Express 1.0 system */
   4062 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4063 			    BGE_PHY_PCIE_SCRAM_MODE);
   4064 		}
   4065 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4066 			/*
   4067 			 * Prevent PCI Express link training
   4068 			 * during global reset.
   4069 			 */
   4070 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4071 			reset |= (1 << 29);
   4072 		}
   4073 	}
   4074 
   4075 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4076 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4077 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4078 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4079 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4080 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4081 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4082 	}
   4083 
   4084 	/*
   4085 	 * Set GPHY Power Down Override to leave GPHY
   4086 	 * powered up in D0 uninitialized.
   4087 	 */
   4088 	if (BGE_IS_5705_PLUS(sc) &&
   4089 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4090 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4091 
   4092 	/* Issue global reset */
   4093 	write_op(sc, BGE_MISC_CFG, reset);
   4094 
   4095 	/* 5718 reset step 7, 57XX step 8 */
   4096 	if (sc->bge_flags & BGE_PCIE)
   4097 		delay(100*1000); /* too big */
   4098 	else
   4099 		delay(1000);
   4100 
   4101 	if (sc->bge_flags & BGE_PCIE) {
   4102 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4103 			DELAY(500000);
   4104 			/* XXX: Magic Numbers */
   4105 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4106 			    BGE_PCI_UNKNOWN0);
   4107 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4108 			    BGE_PCI_UNKNOWN0,
   4109 			    reg | (1 << 15));
   4110 		}
   4111 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4112 		    sc->bge_pciecap + PCIE_DCSR);
   4113 		/* Clear enable no snoop and disable relaxed ordering. */
   4114 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4115 		    PCIE_DCSR_ENA_NO_SNOOP);
   4116 
   4117 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4118 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
   4119 			devctl &= ~(0x00e0);
   4120 		/* Clear device status register. Write 1b to clear */
   4121 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4122 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4123 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4124 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4125 		bge_set_max_readrq(sc);
   4126 	}
   4127 
   4128 	/* From Linux: dummy read to flush PCI posted writes */
   4129 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4130 
   4131 	/*
   4132 	 * Reset some of the PCI state that got zapped by reset
   4133 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4134 	 * set, too.
   4135 	 */
   4136 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4137 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4138 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4139 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4140 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4141 	    (sc->bge_flags & BGE_PCIX) != 0)
   4142 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4143 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4144 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4145 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4146 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4147 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4148 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4149 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4150 
   4151 	/* Step 11: disable PCI-X Relaxed Ordering. */
   4152 	if (sc->bge_flags & BGE_PCIX) {
   4153 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4154 		    + PCIX_CMD);
   4155 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4156 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4157 	}
   4158 
   4159 	/* 5718 reset step 10, 57XX step 12 */
   4160 	/* Enable memory arbiter. */
   4161 	if (BGE_IS_5714_FAMILY(sc)) {
   4162 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4163 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4164 	} else
   4165 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4166 
   4167 	/* XXX 5721, 5751 and 5752 */
   4168 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4169 		/* Step 19: */
   4170 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4171 		/* Step 20: */
   4172 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4173 	}
   4174 
   4175 	/* 5718 reset step 13, 57XX step 17 */
   4176 	/* Poll until the firmware initialization is complete */
   4177 	bge_poll_fw(sc);
   4178 
   4179 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4180 	/* Fix up byte swapping */
   4181 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4182 
   4183 	/* 57XX step 21 */
   4184 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4185 		pcireg_t msidata;
   4186 
   4187 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4188 		    BGE_PCI_MSI_DATA);
   4189 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4190 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4191 		    msidata);
   4192 	}
   4193 
   4194 	/* 57XX step 18 */
   4195 	/* Write mac mode. */
   4196 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4197 	/* Restore mac_mode_mask's bits using mac_mode */
   4198 	val = (val & ~mac_mode_mask) | mac_mode;
   4199 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4200 	DELAY(40);
   4201 
   4202 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4203 
   4204 	/*
   4205 	 * The 5704 in TBI mode apparently needs some special
   4206 	 * adjustment to insure the SERDES drive level is set
   4207 	 * to 1.2V.
   4208 	 */
   4209 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
   4210 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4211 		uint32_t serdescfg;
   4212 
   4213 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4214 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4215 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4216 	}
   4217 
   4218 	if (sc->bge_flags & BGE_PCIE &&
   4219 	    !BGE_IS_57765_PLUS(sc) &&
   4220 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4221 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4222 		uint32_t v;
   4223 
   4224 		/* Enable PCI Express bug fix */
   4225 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4226 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4227 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4228 	}
   4229 
   4230 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4231 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4232 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4233 
   4234 	return 0;
   4235 }
   4236 
   4237 /*
   4238  * Frame reception handling. This is called if there's a frame
   4239  * on the receive return list.
   4240  *
   4241  * Note: we have to be able to handle two possibilities here:
   4242  * 1) the frame is from the jumbo receive ring
   4243  * 2) the frame is from the standard receive ring
   4244  */
   4245 
   4246 static void
   4247 bge_rxeof(struct bge_softc *sc)
   4248 {
   4249 	struct ifnet *ifp;
   4250 	uint16_t rx_prod, rx_cons;
   4251 	int stdcnt = 0, jumbocnt = 0;
   4252 	bus_dmamap_t dmamap;
   4253 	bus_addr_t offset, toff;
   4254 	bus_size_t tlen;
   4255 	int tosync;
   4256 
   4257 	rx_cons = sc->bge_rx_saved_considx;
   4258 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4259 
   4260 	/* Nothing to do */
   4261 	if (rx_cons == rx_prod)
   4262 		return;
   4263 
   4264 	ifp = &sc->ethercom.ec_if;
   4265 
   4266 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4267 	    offsetof(struct bge_ring_data, bge_status_block),
   4268 	    sizeof (struct bge_status_block),
   4269 	    BUS_DMASYNC_POSTREAD);
   4270 
   4271 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4272 	tosync = rx_prod - rx_cons;
   4273 
   4274 	if (tosync != 0)
   4275 		rnd_add_uint32(&sc->rnd_source, tosync);
   4276 
   4277 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4278 
   4279 	if (tosync < 0) {
   4280 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4281 		    sizeof (struct bge_rx_bd);
   4282 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4283 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4284 		tosync = -tosync;
   4285 	}
   4286 
   4287 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4288 	    offset, tosync * sizeof (struct bge_rx_bd),
   4289 	    BUS_DMASYNC_POSTREAD);
   4290 
   4291 	while (rx_cons != rx_prod) {
   4292 		struct bge_rx_bd	*cur_rx;
   4293 		uint32_t		rxidx;
   4294 		struct mbuf		*m = NULL;
   4295 
   4296 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4297 
   4298 		rxidx = cur_rx->bge_idx;
   4299 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4300 
   4301 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4302 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4303 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4304 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4305 			jumbocnt++;
   4306 			bus_dmamap_sync(sc->bge_dmatag,
   4307 			    sc->bge_cdata.bge_rx_jumbo_map,
   4308 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4309 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4310 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4311 				ifp->if_ierrors++;
   4312 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4313 				continue;
   4314 			}
   4315 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4316 					     NULL)== ENOBUFS) {
   4317 				ifp->if_ierrors++;
   4318 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4319 				continue;
   4320 			}
   4321 		} else {
   4322 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4323 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4324 
   4325 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4326 			stdcnt++;
   4327 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4328 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4329 			if (dmamap == NULL) {
   4330 				ifp->if_ierrors++;
   4331 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4332 				continue;
   4333 			}
   4334 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4335 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4336 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4337 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4338 				ifp->if_ierrors++;
   4339 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4340 				continue;
   4341 			}
   4342 			if (bge_newbuf_std(sc, sc->bge_std,
   4343 			    NULL, dmamap) == ENOBUFS) {
   4344 				ifp->if_ierrors++;
   4345 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4346 				continue;
   4347 			}
   4348 		}
   4349 
   4350 		ifp->if_ipackets++;
   4351 #ifndef __NO_STRICT_ALIGNMENT
   4352 		/*
   4353 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4354 		 * the Rx buffer has the layer-2 header unaligned.
   4355 		 * If our CPU requires alignment, re-align by copying.
   4356 		 */
   4357 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
   4358 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4359 				cur_rx->bge_len);
   4360 			m->m_data += ETHER_ALIGN;
   4361 		}
   4362 #endif
   4363 
   4364 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4365 		m->m_pkthdr.rcvif = ifp;
   4366 
   4367 		/*
   4368 		 * Handle BPF listeners. Let the BPF user see the packet.
   4369 		 */
   4370 		bpf_mtap(ifp, m);
   4371 
   4372 		bge_rxcsum(sc, cur_rx, m);
   4373 
   4374 		/*
   4375 		 * If we received a packet with a vlan tag, pass it
   4376 		 * to vlan_input() instead of ether_input().
   4377 		 */
   4378 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4379 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4380 		}
   4381 
   4382 		(*ifp->if_input)(ifp, m);
   4383 	}
   4384 
   4385 	sc->bge_rx_saved_considx = rx_cons;
   4386 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4387 	if (stdcnt)
   4388 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4389 	if (jumbocnt)
   4390 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4391 }
   4392 
   4393 static void
   4394 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4395 {
   4396 
   4397 	if (BGE_IS_5717_PLUS(sc)) {
   4398 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4399 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4400 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4401 			if ((cur_rx->bge_error_flag &
   4402 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4403 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4404 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4405 				m->m_pkthdr.csum_data =
   4406 				    cur_rx->bge_tcp_udp_csum;
   4407 				m->m_pkthdr.csum_flags |=
   4408 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4409 					M_CSUM_DATA);
   4410 			}
   4411 		}
   4412 	} else {
   4413 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4414 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4415 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4416 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4417 		/*
   4418 		 * Rx transport checksum-offload may also
   4419 		 * have bugs with packets which, when transmitted,
   4420 		 * were `runts' requiring padding.
   4421 		 */
   4422 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4423 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4424 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4425 			m->m_pkthdr.csum_data =
   4426 			    cur_rx->bge_tcp_udp_csum;
   4427 			m->m_pkthdr.csum_flags |=
   4428 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4429 				M_CSUM_DATA);
   4430 		}
   4431 	}
   4432 }
   4433 
   4434 static void
   4435 bge_txeof(struct bge_softc *sc)
   4436 {
   4437 	struct bge_tx_bd *cur_tx = NULL;
   4438 	struct ifnet *ifp;
   4439 	struct txdmamap_pool_entry *dma;
   4440 	bus_addr_t offset, toff;
   4441 	bus_size_t tlen;
   4442 	int tosync;
   4443 	struct mbuf *m;
   4444 
   4445 	ifp = &sc->ethercom.ec_if;
   4446 
   4447 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4448 	    offsetof(struct bge_ring_data, bge_status_block),
   4449 	    sizeof (struct bge_status_block),
   4450 	    BUS_DMASYNC_POSTREAD);
   4451 
   4452 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4453 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4454 	    sc->bge_tx_saved_considx;
   4455 
   4456 	if (tosync != 0)
   4457 		rnd_add_uint32(&sc->rnd_source, tosync);
   4458 
   4459 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4460 
   4461 	if (tosync < 0) {
   4462 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4463 		    sizeof (struct bge_tx_bd);
   4464 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4465 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4466 		tosync = -tosync;
   4467 	}
   4468 
   4469 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4470 	    offset, tosync * sizeof (struct bge_tx_bd),
   4471 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4472 
   4473 	/*
   4474 	 * Go through our tx ring and free mbufs for those
   4475 	 * frames that have been sent.
   4476 	 */
   4477 	while (sc->bge_tx_saved_considx !=
   4478 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4479 		uint32_t		idx = 0;
   4480 
   4481 		idx = sc->bge_tx_saved_considx;
   4482 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4483 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4484 			ifp->if_opackets++;
   4485 		m = sc->bge_cdata.bge_tx_chain[idx];
   4486 		if (m != NULL) {
   4487 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4488 			dma = sc->txdma[idx];
   4489 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4490 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4491 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4492 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4493 			sc->txdma[idx] = NULL;
   4494 
   4495 			m_freem(m);
   4496 		}
   4497 		sc->bge_txcnt--;
   4498 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4499 		ifp->if_timer = 0;
   4500 	}
   4501 
   4502 	if (cur_tx != NULL)
   4503 		ifp->if_flags &= ~IFF_OACTIVE;
   4504 }
   4505 
   4506 static int
   4507 bge_intr(void *xsc)
   4508 {
   4509 	struct bge_softc *sc;
   4510 	struct ifnet *ifp;
   4511 	uint32_t statusword;
   4512 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4513 
   4514 	sc = xsc;
   4515 	ifp = &sc->ethercom.ec_if;
   4516 
   4517 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4518 	if (BGE_IS_5717_PLUS(sc))
   4519 		intrmask = 0;
   4520 
   4521 	/* It is possible for the interrupt to arrive before
   4522 	 * the status block is updated prior to the interrupt.
   4523 	 * Reading the PCI State register will confirm whether the
   4524 	 * interrupt is ours and will flush the status block.
   4525 	 */
   4526 
   4527 	/* read status word from status block */
   4528 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4529 	    offsetof(struct bge_ring_data, bge_status_block),
   4530 	    sizeof (struct bge_status_block),
   4531 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4532 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4533 
   4534 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4535 	    (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
   4536 		/* Ack interrupt and stop others from occuring. */
   4537 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4538 
   4539 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4540 
   4541 		/* clear status word */
   4542 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4543 
   4544 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4545 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4546 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4547 			bge_link_upd(sc);
   4548 
   4549 		if (ifp->if_flags & IFF_RUNNING) {
   4550 			/* Check RX return ring producer/consumer */
   4551 			bge_rxeof(sc);
   4552 
   4553 			/* Check TX ring producer/consumer */
   4554 			bge_txeof(sc);
   4555 		}
   4556 
   4557 		if (sc->bge_pending_rxintr_change) {
   4558 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4559 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4560 			uint32_t junk;
   4561 
   4562 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4563 			DELAY(10);
   4564 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4565 
   4566 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4567 			DELAY(10);
   4568 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4569 
   4570 			sc->bge_pending_rxintr_change = 0;
   4571 		}
   4572 		bge_handle_events(sc);
   4573 
   4574 		/* Re-enable interrupts. */
   4575 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4576 
   4577 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4578 			bge_start(ifp);
   4579 
   4580 		return 1;
   4581 	} else
   4582 		return 0;
   4583 }
   4584 
   4585 static void
   4586 bge_asf_driver_up(struct bge_softc *sc)
   4587 {
   4588 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4589 		/* Send ASF heartbeat aprox. every 2s */
   4590 		if (sc->bge_asf_count)
   4591 			sc->bge_asf_count --;
   4592 		else {
   4593 			sc->bge_asf_count = 2;
   4594 
   4595 			bge_wait_for_event_ack(sc);
   4596 
   4597 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4598 			    BGE_FW_CMD_DRV_ALIVE);
   4599 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4600 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4601 			    BGE_FW_HB_TIMEOUT_SEC);
   4602 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4603 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4604 			    BGE_RX_CPU_DRV_EVENT);
   4605 		}
   4606 	}
   4607 }
   4608 
   4609 static void
   4610 bge_tick(void *xsc)
   4611 {
   4612 	struct bge_softc *sc = xsc;
   4613 	struct mii_data *mii = &sc->bge_mii;
   4614 	int s;
   4615 
   4616 	s = splnet();
   4617 
   4618 	if (BGE_IS_5705_PLUS(sc))
   4619 		bge_stats_update_regs(sc);
   4620 	else
   4621 		bge_stats_update(sc);
   4622 
   4623 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   4624 		/*
   4625 		 * Since in TBI mode auto-polling can't be used we should poll
   4626 		 * link status manually. Here we register pending link event
   4627 		 * and trigger interrupt.
   4628 		 */
   4629 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4630 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4631 	} else {
   4632 		/*
   4633 		 * Do not touch PHY if we have link up. This could break
   4634 		 * IPMI/ASF mode or produce extra input errors.
   4635 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4636 		 */
   4637 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4638 			mii_tick(mii);
   4639 	}
   4640 
   4641 	bge_asf_driver_up(sc);
   4642 
   4643 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4644 
   4645 	splx(s);
   4646 }
   4647 
   4648 static void
   4649 bge_stats_update_regs(struct bge_softc *sc)
   4650 {
   4651 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4652 
   4653 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4654 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4655 
   4656 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4657 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4658 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4659 }
   4660 
   4661 static void
   4662 bge_stats_update(struct bge_softc *sc)
   4663 {
   4664 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4665 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4666 
   4667 #define READ_STAT(sc, stats, stat) \
   4668 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4669 
   4670 	ifp->if_collisions +=
   4671 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4672 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4673 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4674 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4675 	  ifp->if_collisions;
   4676 
   4677 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4678 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4679 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4680 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4681 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4682 		      READ_STAT(sc, stats,
   4683 		      		xoffPauseFramesReceived.bge_addr_lo));
   4684 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4685 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4686 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4687 		      READ_STAT(sc, stats,
   4688 		      		macControlFramesReceived.bge_addr_lo));
   4689 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4690 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4691 
   4692 #undef READ_STAT
   4693 
   4694 #ifdef notdef
   4695 	ifp->if_collisions +=
   4696 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4697 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4698 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4699 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4700 	   ifp->if_collisions;
   4701 #endif
   4702 }
   4703 
   4704 /*
   4705  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4706  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4707  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4708  * the hardware checksum assist gives incorrect results (possibly
   4709  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4710  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4711  */
   4712 static inline int
   4713 bge_cksum_pad(struct mbuf *pkt)
   4714 {
   4715 	struct mbuf *last = NULL;
   4716 	int padlen;
   4717 
   4718 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4719 
   4720 	/* if there's only the packet-header and we can pad there, use it. */
   4721 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4722 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4723 		last = pkt;
   4724 	} else {
   4725 		/*
   4726 		 * Walk packet chain to find last mbuf. We will either
   4727 		 * pad there, or append a new mbuf and pad it
   4728 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4729 		 */
   4730 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4731 	      	       continue; /* do nothing */
   4732 		}
   4733 
   4734 		/* `last' now points to last in chain. */
   4735 		if (M_TRAILINGSPACE(last) < padlen) {
   4736 			/* Allocate new empty mbuf, pad it. Compact later. */
   4737 			struct mbuf *n;
   4738 			MGET(n, M_DONTWAIT, MT_DATA);
   4739 			if (n == NULL)
   4740 				return ENOBUFS;
   4741 			n->m_len = 0;
   4742 			last->m_next = n;
   4743 			last = n;
   4744 		}
   4745 	}
   4746 
   4747 	KDASSERT(!M_READONLY(last));
   4748 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4749 
   4750 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4751 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4752 	last->m_len += padlen;
   4753 	pkt->m_pkthdr.len += padlen;
   4754 	return 0;
   4755 }
   4756 
   4757 /*
   4758  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4759  */
   4760 static inline int
   4761 bge_compact_dma_runt(struct mbuf *pkt)
   4762 {
   4763 	struct mbuf	*m, *prev;
   4764 	int 		totlen, prevlen;
   4765 
   4766 	prev = NULL;
   4767 	totlen = 0;
   4768 	prevlen = -1;
   4769 
   4770 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4771 		int mlen = m->m_len;
   4772 		int shortfall = 8 - mlen ;
   4773 
   4774 		totlen += mlen;
   4775 		if (mlen == 0)
   4776 			continue;
   4777 		if (mlen >= 8)
   4778 			continue;
   4779 
   4780 		/* If we get here, mbuf data is too small for DMA engine.
   4781 		 * Try to fix by shuffling data to prev or next in chain.
   4782 		 * If that fails, do a compacting deep-copy of the whole chain.
   4783 		 */
   4784 
   4785 		/* Internal frag. If fits in prev, copy it there. */
   4786 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4787 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4788 			prev->m_len += mlen;
   4789 			m->m_len = 0;
   4790 			/* XXX stitch chain */
   4791 			prev->m_next = m_free(m);
   4792 			m = prev;
   4793 			continue;
   4794 		}
   4795 		else if (m->m_next != NULL &&
   4796 			     M_TRAILINGSPACE(m) >= shortfall &&
   4797 			     m->m_next->m_len >= (8 + shortfall)) {
   4798 		    /* m is writable and have enough data in next, pull up. */
   4799 
   4800 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4801 			    shortfall);
   4802 			m->m_len += shortfall;
   4803 			m->m_next->m_len -= shortfall;
   4804 			m->m_next->m_data += shortfall;
   4805 		}
   4806 		else if (m->m_next == NULL || 1) {
   4807 		  	/* Got a runt at the very end of the packet.
   4808 			 * borrow data from the tail of the preceding mbuf and
   4809 			 * update its length in-place. (The original data is still
   4810 			 * valid, so we can do this even if prev is not writable.)
   4811 			 */
   4812 
   4813 			/* if we'd make prev a runt, just move all of its data. */
   4814 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4815 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4816 
   4817 			if ((prev->m_len - shortfall) < 8)
   4818 				shortfall = prev->m_len;
   4819 
   4820 #ifdef notyet	/* just do the safe slow thing for now */
   4821 			if (!M_READONLY(m)) {
   4822 				if (M_LEADINGSPACE(m) < shorfall) {
   4823 					void *m_dat;
   4824 					m_dat = (m->m_flags & M_PKTHDR) ?
   4825 					  m->m_pktdat : m->dat;
   4826 					memmove(m_dat, mtod(m, void*), m->m_len);
   4827 					m->m_data = m_dat;
   4828 				    }
   4829 			} else
   4830 #endif	/* just do the safe slow thing */
   4831 			{
   4832 				struct mbuf * n = NULL;
   4833 				int newprevlen = prev->m_len - shortfall;
   4834 
   4835 				MGET(n, M_NOWAIT, MT_DATA);
   4836 				if (n == NULL)
   4837 				   return ENOBUFS;
   4838 				KASSERT(m->m_len + shortfall < MLEN
   4839 					/*,
   4840 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4841 
   4842 				/* first copy the data we're stealing from prev */
   4843 				memcpy(n->m_data, prev->m_data + newprevlen,
   4844 				    shortfall);
   4845 
   4846 				/* update prev->m_len accordingly */
   4847 				prev->m_len -= shortfall;
   4848 
   4849 				/* copy data from runt m */
   4850 				memcpy(n->m_data + shortfall, m->m_data,
   4851 				    m->m_len);
   4852 
   4853 				/* n holds what we stole from prev, plus m */
   4854 				n->m_len = shortfall + m->m_len;
   4855 
   4856 				/* stitch n into chain and free m */
   4857 				n->m_next = m->m_next;
   4858 				prev->m_next = n;
   4859 				/* KASSERT(m->m_next == NULL); */
   4860 				m->m_next = NULL;
   4861 				m_free(m);
   4862 				m = n;	/* for continuing loop */
   4863 			}
   4864 		}
   4865 		prevlen = m->m_len;
   4866 	}
   4867 	return 0;
   4868 }
   4869 
   4870 /*
   4871  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4872  * pointers to descriptors.
   4873  */
   4874 static int
   4875 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4876 {
   4877 	struct bge_tx_bd	*f = NULL;
   4878 	uint32_t		frag, cur;
   4879 	uint16_t		csum_flags = 0;
   4880 	uint16_t		txbd_tso_flags = 0;
   4881 	struct txdmamap_pool_entry *dma;
   4882 	bus_dmamap_t dmamap;
   4883 	int			i = 0;
   4884 	struct m_tag		*mtag;
   4885 	int			use_tso, maxsegsize, error;
   4886 
   4887 	cur = frag = *txidx;
   4888 
   4889 	if (m_head->m_pkthdr.csum_flags) {
   4890 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4891 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4892 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4893 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4894 	}
   4895 
   4896 	/*
   4897 	 * If we were asked to do an outboard checksum, and the NIC
   4898 	 * has the bug where it sometimes adds in the Ethernet padding,
   4899 	 * explicitly pad with zeros so the cksum will be correct either way.
   4900 	 * (For now, do this for all chip versions, until newer
   4901 	 * are confirmed to not require the workaround.)
   4902 	 */
   4903 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4904 #ifdef notyet
   4905 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4906 #endif
   4907 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4908 		goto check_dma_bug;
   4909 
   4910 	if (bge_cksum_pad(m_head) != 0)
   4911 	    return ENOBUFS;
   4912 
   4913 check_dma_bug:
   4914 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4915 		goto doit;
   4916 
   4917 	/*
   4918 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4919 	 * less than eight bytes.  If we encounter a teeny mbuf
   4920 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4921 	 */
   4922 	if (bge_compact_dma_runt(m_head) != 0)
   4923 		return ENOBUFS;
   4924 
   4925 doit:
   4926 	dma = SLIST_FIRST(&sc->txdma_list);
   4927 	if (dma == NULL)
   4928 		return ENOBUFS;
   4929 	dmamap = dma->dmamap;
   4930 
   4931 	/*
   4932 	 * Set up any necessary TSO state before we start packing...
   4933 	 */
   4934 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   4935 	if (!use_tso) {
   4936 		maxsegsize = 0;
   4937 	} else {	/* TSO setup */
   4938 		unsigned  mss;
   4939 		struct ether_header *eh;
   4940 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   4941 		struct mbuf * m0 = m_head;
   4942 		struct ip *ip;
   4943 		struct tcphdr *th;
   4944 		int iphl, hlen;
   4945 
   4946 		/*
   4947 		 * XXX It would be nice if the mbuf pkthdr had offset
   4948 		 * fields for the protocol headers.
   4949 		 */
   4950 
   4951 		eh = mtod(m0, struct ether_header *);
   4952 		switch (htons(eh->ether_type)) {
   4953 		case ETHERTYPE_IP:
   4954 			offset = ETHER_HDR_LEN;
   4955 			break;
   4956 
   4957 		case ETHERTYPE_VLAN:
   4958 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   4959 			break;
   4960 
   4961 		default:
   4962 			/*
   4963 			 * Don't support this protocol or encapsulation.
   4964 			 */
   4965 			return ENOBUFS;
   4966 		}
   4967 
   4968 		/*
   4969 		 * TCP/IP headers are in the first mbuf; we can do
   4970 		 * this the easy way.
   4971 		 */
   4972 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   4973 		hlen = iphl + offset;
   4974 		if (__predict_false(m0->m_len <
   4975 				    (hlen + sizeof(struct tcphdr)))) {
   4976 
   4977 			aprint_debug_dev(sc->bge_dev,
   4978 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   4979 			    "not handled yet\n",
   4980 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   4981 #ifdef NOTYET
   4982 			/*
   4983 			 * XXX jonathan (at) NetBSD.org: untested.
   4984 			 * how to force  this branch to be taken?
   4985 			 */
   4986 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
   4987 
   4988 			m_copydata(m0, offset, sizeof(ip), &ip);
   4989 			m_copydata(m0, hlen, sizeof(th), &th);
   4990 
   4991 			ip.ip_len = 0;
   4992 
   4993 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   4994 			    sizeof(ip.ip_len), &ip.ip_len);
   4995 
   4996 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   4997 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   4998 
   4999 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5000 			    sizeof(th.th_sum), &th.th_sum);
   5001 
   5002 			hlen += th.th_off << 2;
   5003 			iptcp_opt_words	= hlen;
   5004 #else
   5005 			/*
   5006 			 * if_wm "hard" case not yet supported, can we not
   5007 			 * mandate it out of existence?
   5008 			 */
   5009 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5010 
   5011 			return ENOBUFS;
   5012 #endif
   5013 		} else {
   5014 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5015 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5016 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5017 
   5018 			/* Total IP/TCP options, in 32-bit words */
   5019 			iptcp_opt_words = (ip_tcp_hlen
   5020 					   - sizeof(struct tcphdr)
   5021 					   - sizeof(struct ip)) >> 2;
   5022 		}
   5023 		if (BGE_IS_575X_PLUS(sc)) {
   5024 			th->th_sum = 0;
   5025 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   5026 		} else {
   5027 			/*
   5028 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5029 			 * Requires TSO firmware patch for 5701/5703/5704.
   5030 			 */
   5031 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5032 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5033 		}
   5034 
   5035 		mss = m_head->m_pkthdr.segsz;
   5036 		txbd_tso_flags |=
   5037 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5038 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5039 
   5040 		/*
   5041 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5042 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5043 		 * the NIC copies 40 bytes of IP/TCP header from the
   5044 		 * supplied header into the IP/TCP header portion of
   5045 		 * each post-TSO-segment. If the supplied packet has IP or
   5046 		 * TCP options, we need to tell the NIC to copy those extra
   5047 		 * bytes into each  post-TSO header, in addition to the normal
   5048 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5049 		 * Unfortunately, the driver encoding of option length
   5050 		 * varies across different ASIC families.
   5051 		 */
   5052 		tcp_seg_flags = 0;
   5053 		if (iptcp_opt_words) {
   5054 			if (BGE_IS_5705_PLUS(sc)) {
   5055 				tcp_seg_flags =
   5056 					iptcp_opt_words << 11;
   5057 			} else {
   5058 				txbd_tso_flags |=
   5059 					iptcp_opt_words << 12;
   5060 			}
   5061 		}
   5062 		maxsegsize = mss | tcp_seg_flags;
   5063 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5064 
   5065 	}	/* TSO setup */
   5066 
   5067 	/*
   5068 	 * Start packing the mbufs in this chain into
   5069 	 * the fragment pointers. Stop when we run out
   5070 	 * of fragments or hit the end of the mbuf chain.
   5071 	 */
   5072 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   5073 	    BUS_DMA_NOWAIT);
   5074 	if (error)
   5075 		return ENOBUFS;
   5076 	/*
   5077 	 * Sanity check: avoid coming within 16 descriptors
   5078 	 * of the end of the ring.
   5079 	 */
   5080 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5081 		BGE_TSO_PRINTF(("%s: "
   5082 		    " dmamap_load_mbuf too close to ring wrap\n",
   5083 		    device_xname(sc->bge_dev)));
   5084 		goto fail_unload;
   5085 	}
   5086 
   5087 	mtag = sc->ethercom.ec_nvlans ?
   5088 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   5089 
   5090 
   5091 	/* Iterate over dmap-map fragments. */
   5092 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5093 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5094 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5095 			break;
   5096 
   5097 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5098 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5099 
   5100 		/*
   5101 		 * For 5751 and follow-ons, for TSO we must turn
   5102 		 * off checksum-assist flag in the tx-descr, and
   5103 		 * supply the ASIC-revision-specific encoding
   5104 		 * of TSO flags and segsize.
   5105 		 */
   5106 		if (use_tso) {
   5107 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5108 				f->bge_rsvd = maxsegsize;
   5109 				f->bge_flags = csum_flags | txbd_tso_flags;
   5110 			} else {
   5111 				f->bge_rsvd = 0;
   5112 				f->bge_flags =
   5113 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5114 			}
   5115 		} else {
   5116 			f->bge_rsvd = 0;
   5117 			f->bge_flags = csum_flags;
   5118 		}
   5119 
   5120 		if (mtag != NULL) {
   5121 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5122 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5123 		} else {
   5124 			f->bge_vlan_tag = 0;
   5125 		}
   5126 		cur = frag;
   5127 		BGE_INC(frag, BGE_TX_RING_CNT);
   5128 	}
   5129 
   5130 	if (i < dmamap->dm_nsegs) {
   5131 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5132 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5133 		goto fail_unload;
   5134 	}
   5135 
   5136 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5137 	    BUS_DMASYNC_PREWRITE);
   5138 
   5139 	if (frag == sc->bge_tx_saved_considx) {
   5140 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5141 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5142 
   5143 		goto fail_unload;
   5144 	}
   5145 
   5146 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5147 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5148 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5149 	sc->txdma[cur] = dma;
   5150 	sc->bge_txcnt += dmamap->dm_nsegs;
   5151 
   5152 	*txidx = frag;
   5153 
   5154 	return 0;
   5155 
   5156 fail_unload:
   5157 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5158 
   5159 	return ENOBUFS;
   5160 }
   5161 
   5162 /*
   5163  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5164  * to the mbuf data regions directly in the transmit descriptors.
   5165  */
   5166 static void
   5167 bge_start(struct ifnet *ifp)
   5168 {
   5169 	struct bge_softc *sc;
   5170 	struct mbuf *m_head = NULL;
   5171 	uint32_t prodidx;
   5172 	int pkts = 0;
   5173 
   5174 	sc = ifp->if_softc;
   5175 
   5176 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5177 		return;
   5178 
   5179 	prodidx = sc->bge_tx_prodidx;
   5180 
   5181 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5182 		IFQ_POLL(&ifp->if_snd, m_head);
   5183 		if (m_head == NULL)
   5184 			break;
   5185 
   5186 #if 0
   5187 		/*
   5188 		 * XXX
   5189 		 * safety overkill.  If this is a fragmented packet chain
   5190 		 * with delayed TCP/UDP checksums, then only encapsulate
   5191 		 * it if we have enough descriptors to handle the entire
   5192 		 * chain at once.
   5193 		 * (paranoia -- may not actually be needed)
   5194 		 */
   5195 		if (m_head->m_flags & M_FIRSTFRAG &&
   5196 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5197 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5198 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5199 				ifp->if_flags |= IFF_OACTIVE;
   5200 				break;
   5201 			}
   5202 		}
   5203 #endif
   5204 
   5205 		/*
   5206 		 * Pack the data into the transmit ring. If we
   5207 		 * don't have room, set the OACTIVE flag and wait
   5208 		 * for the NIC to drain the ring.
   5209 		 */
   5210 		if (bge_encap(sc, m_head, &prodidx)) {
   5211 			ifp->if_flags |= IFF_OACTIVE;
   5212 			break;
   5213 		}
   5214 
   5215 		/* now we are committed to transmit the packet */
   5216 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5217 		pkts++;
   5218 
   5219 		/*
   5220 		 * If there's a BPF listener, bounce a copy of this frame
   5221 		 * to him.
   5222 		 */
   5223 		bpf_mtap(ifp, m_head);
   5224 	}
   5225 	if (pkts == 0)
   5226 		return;
   5227 
   5228 	/* Transmit */
   5229 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5230 	/* 5700 b2 errata */
   5231 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5232 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5233 
   5234 	sc->bge_tx_prodidx = prodidx;
   5235 
   5236 	/*
   5237 	 * Set a timeout in case the chip goes out to lunch.
   5238 	 */
   5239 	ifp->if_timer = 5;
   5240 }
   5241 
   5242 static int
   5243 bge_init(struct ifnet *ifp)
   5244 {
   5245 	struct bge_softc *sc = ifp->if_softc;
   5246 	const uint16_t *m;
   5247 	uint32_t mode;
   5248 	int s, error = 0;
   5249 
   5250 	s = splnet();
   5251 
   5252 	ifp = &sc->ethercom.ec_if;
   5253 
   5254 	/* Cancel pending I/O and flush buffers. */
   5255 	bge_stop(ifp, 0);
   5256 
   5257 	bge_stop_fw(sc);
   5258 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5259 	bge_reset(sc);
   5260 	bge_sig_legacy(sc, BGE_RESET_START);
   5261 	bge_sig_post_reset(sc, BGE_RESET_START);
   5262 
   5263 	bge_chipinit(sc);
   5264 
   5265 	/*
   5266 	 * Init the various state machines, ring
   5267 	 * control blocks and firmware.
   5268 	 */
   5269 	error = bge_blockinit(sc);
   5270 	if (error != 0) {
   5271 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5272 		    error);
   5273 		splx(s);
   5274 		return error;
   5275 	}
   5276 
   5277 	ifp = &sc->ethercom.ec_if;
   5278 
   5279 	/* 5718 step 25, 57XX step 54 */
   5280 	/* Specify MTU. */
   5281 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5282 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5283 
   5284 	/* 5718 step 23 */
   5285 	/* Load our MAC address. */
   5286 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5287 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5288 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5289 
   5290 	/* Enable or disable promiscuous mode as needed. */
   5291 	if (ifp->if_flags & IFF_PROMISC)
   5292 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5293 	else
   5294 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5295 
   5296 	/* Program multicast filter. */
   5297 	bge_setmulti(sc);
   5298 
   5299 	/* Init RX ring. */
   5300 	bge_init_rx_ring_std(sc);
   5301 
   5302 	/*
   5303 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5304 	 * memory to insure that the chip has in fact read the first
   5305 	 * entry of the ring.
   5306 	 */
   5307 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5308 		uint32_t		v, i;
   5309 		for (i = 0; i < 10; i++) {
   5310 			DELAY(20);
   5311 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5312 			if (v == (MCLBYTES - ETHER_ALIGN))
   5313 				break;
   5314 		}
   5315 		if (i == 10)
   5316 			aprint_error_dev(sc->bge_dev,
   5317 			    "5705 A0 chip failed to load RX ring\n");
   5318 	}
   5319 
   5320 	/* Init jumbo RX ring. */
   5321 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5322 		bge_init_rx_ring_jumbo(sc);
   5323 
   5324 	/* Init our RX return ring index */
   5325 	sc->bge_rx_saved_considx = 0;
   5326 
   5327 	/* Init TX ring. */
   5328 	bge_init_tx_ring(sc);
   5329 
   5330 	/* 5718 step 63, 57XX step 94 */
   5331 	/* Enable TX MAC state machine lockup fix. */
   5332 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5333 	if (BGE_IS_5755_PLUS(sc) ||
   5334 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5335 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5336 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5337 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5338 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5339 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5340 	}
   5341 
   5342 	/* Turn on transmitter */
   5343 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5344 	/* 5718 step 64 */
   5345 	DELAY(100);
   5346 
   5347 	/* 5718 step 65, 57XX step 95 */
   5348 	/* Turn on receiver */
   5349 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5350 	if (BGE_IS_5755_PLUS(sc))
   5351 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5352 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5353 	/* 5718 step 66 */
   5354 	DELAY(10);
   5355 
   5356 	/* 5718 step 12 */
   5357 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   5358 
   5359 	/* Tell firmware we're alive. */
   5360 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5361 
   5362 	/* Enable host interrupts. */
   5363 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5364 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5365 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5366 
   5367 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5368 		goto out;
   5369 
   5370 	ifp->if_flags |= IFF_RUNNING;
   5371 	ifp->if_flags &= ~IFF_OACTIVE;
   5372 
   5373 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5374 
   5375 out:
   5376 	sc->bge_if_flags = ifp->if_flags;
   5377 	splx(s);
   5378 
   5379 	return error;
   5380 }
   5381 
   5382 /*
   5383  * Set media options.
   5384  */
   5385 static int
   5386 bge_ifmedia_upd(struct ifnet *ifp)
   5387 {
   5388 	struct bge_softc *sc = ifp->if_softc;
   5389 	struct mii_data *mii = &sc->bge_mii;
   5390 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5391 	int rc;
   5392 
   5393 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5394 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5395 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5396 			return EINVAL;
   5397 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5398 		case IFM_AUTO:
   5399 			/*
   5400 			 * The BCM5704 ASIC appears to have a special
   5401 			 * mechanism for programming the autoneg
   5402 			 * advertisement registers in TBI mode.
   5403 			 */
   5404 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5405 				uint32_t sgdig;
   5406 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5407 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5408 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5409 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5410 					sgdig |= BGE_SGDIGCFG_AUTO |
   5411 					    BGE_SGDIGCFG_PAUSE_CAP |
   5412 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5413 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5414 					    sgdig | BGE_SGDIGCFG_SEND);
   5415 					DELAY(5);
   5416 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5417 					    sgdig);
   5418 				}
   5419 			}
   5420 			break;
   5421 		case IFM_1000_SX:
   5422 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5423 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5424 				    BGE_MACMODE_HALF_DUPLEX);
   5425 			} else {
   5426 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5427 				    BGE_MACMODE_HALF_DUPLEX);
   5428 			}
   5429 			DELAY(40);
   5430 			break;
   5431 		default:
   5432 			return EINVAL;
   5433 		}
   5434 		/* XXX 802.3x flow control for 1000BASE-SX */
   5435 		return 0;
   5436 	}
   5437 
   5438 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5439 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5440 		return 0;
   5441 
   5442 	/*
   5443 	 * Force an interrupt so that we will call bge_link_upd
   5444 	 * if needed and clear any pending link state attention.
   5445 	 * Without this we are not getting any further interrupts
   5446 	 * for link state changes and thus will not UP the link and
   5447 	 * not be able to send in bge_start. The only way to get
   5448 	 * things working was to receive a packet and get a RX intr.
   5449 	 */
   5450 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5451 	    sc->bge_flags & BGE_IS_5788)
   5452 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5453 	else
   5454 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5455 
   5456 	return rc;
   5457 }
   5458 
   5459 /*
   5460  * Report current media status.
   5461  */
   5462 static void
   5463 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5464 {
   5465 	struct bge_softc *sc = ifp->if_softc;
   5466 	struct mii_data *mii = &sc->bge_mii;
   5467 
   5468 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5469 		ifmr->ifm_status = IFM_AVALID;
   5470 		ifmr->ifm_active = IFM_ETHER;
   5471 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5472 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5473 			ifmr->ifm_status |= IFM_ACTIVE;
   5474 		ifmr->ifm_active |= IFM_1000_SX;
   5475 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5476 			ifmr->ifm_active |= IFM_HDX;
   5477 		else
   5478 			ifmr->ifm_active |= IFM_FDX;
   5479 		return;
   5480 	}
   5481 
   5482 	mii_pollstat(mii);
   5483 	ifmr->ifm_status = mii->mii_media_status;
   5484 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5485 	    sc->bge_flowflags;
   5486 }
   5487 
   5488 static int
   5489 bge_ifflags_cb(struct ethercom *ec)
   5490 {
   5491 	struct ifnet *ifp = &ec->ec_if;
   5492 	struct bge_softc *sc = ifp->if_softc;
   5493 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5494 
   5495 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5496 		return ENETRESET;
   5497 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5498 		return 0;
   5499 
   5500 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5501 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5502 	else
   5503 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5504 
   5505 	bge_setmulti(sc);
   5506 
   5507 	sc->bge_if_flags = ifp->if_flags;
   5508 	return 0;
   5509 }
   5510 
   5511 static int
   5512 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5513 {
   5514 	struct bge_softc *sc = ifp->if_softc;
   5515 	struct ifreq *ifr = (struct ifreq *) data;
   5516 	int s, error = 0;
   5517 	struct mii_data *mii;
   5518 
   5519 	s = splnet();
   5520 
   5521 	switch (command) {
   5522 	case SIOCSIFMEDIA:
   5523 		/* XXX Flow control is not supported for 1000BASE-SX */
   5524 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5525 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5526 			sc->bge_flowflags = 0;
   5527 		}
   5528 
   5529 		/* Flow control requires full-duplex mode. */
   5530 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5531 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5532 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5533 		}
   5534 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5535 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5536 				/* We can do both TXPAUSE and RXPAUSE. */
   5537 				ifr->ifr_media |=
   5538 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5539 			}
   5540 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5541 		}
   5542 		/* FALLTHROUGH */
   5543 	case SIOCGIFMEDIA:
   5544 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5545 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5546 			    command);
   5547 		} else {
   5548 			mii = &sc->bge_mii;
   5549 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5550 			    command);
   5551 		}
   5552 		break;
   5553 	default:
   5554 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5555 			break;
   5556 
   5557 		error = 0;
   5558 
   5559 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5560 			;
   5561 		else if (ifp->if_flags & IFF_RUNNING)
   5562 			bge_setmulti(sc);
   5563 		break;
   5564 	}
   5565 
   5566 	splx(s);
   5567 
   5568 	return error;
   5569 }
   5570 
   5571 static void
   5572 bge_watchdog(struct ifnet *ifp)
   5573 {
   5574 	struct bge_softc *sc;
   5575 
   5576 	sc = ifp->if_softc;
   5577 
   5578 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5579 
   5580 	ifp->if_flags &= ~IFF_RUNNING;
   5581 	bge_init(ifp);
   5582 
   5583 	ifp->if_oerrors++;
   5584 }
   5585 
   5586 static void
   5587 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5588 {
   5589 	int i;
   5590 
   5591 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5592 
   5593 	for (i = 0; i < 1000; i++) {
   5594 		delay(100);
   5595 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5596 			return;
   5597 	}
   5598 
   5599 	/*
   5600 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5601 	 * on some environment (and once after boot?)
   5602 	 */
   5603 	if (reg != BGE_SRS_MODE)
   5604 		aprint_error_dev(sc->bge_dev,
   5605 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5606 		    (u_long)reg, bit);
   5607 }
   5608 
   5609 /*
   5610  * Stop the adapter and free any mbufs allocated to the
   5611  * RX and TX lists.
   5612  */
   5613 static void
   5614 bge_stop(struct ifnet *ifp, int disable)
   5615 {
   5616 	struct bge_softc *sc = ifp->if_softc;
   5617 
   5618 	callout_stop(&sc->bge_timeout);
   5619 
   5620 	/* Disable host interrupts. */
   5621 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5622 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5623 
   5624 	/*
   5625 	 * Tell firmware we're shutting down.
   5626 	 */
   5627 	bge_stop_fw(sc);
   5628 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5629 
   5630 	/*
   5631 	 * Disable all of the receiver blocks.
   5632 	 */
   5633 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5634 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5635 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5636 	if (BGE_IS_5700_FAMILY(sc))
   5637 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5638 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5639 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5640 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5641 
   5642 	/*
   5643 	 * Disable all of the transmit blocks.
   5644 	 */
   5645 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5646 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5647 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5648 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5649 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5650 	if (BGE_IS_5700_FAMILY(sc))
   5651 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5652 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5653 
   5654 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5655 	delay(40);
   5656 
   5657 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5658 
   5659 	/*
   5660 	 * Shut down all of the memory managers and related
   5661 	 * state machines.
   5662 	 */
   5663 	/* 5718 step 5a,5b */
   5664 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5665 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5666 	if (BGE_IS_5700_FAMILY(sc))
   5667 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5668 
   5669 	/* 5718 step 5c,5d */
   5670 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5671 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5672 
   5673 	if (BGE_IS_5700_FAMILY(sc)) {
   5674 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5675 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5676 	}
   5677 
   5678 	bge_reset(sc);
   5679 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5680 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5681 
   5682 	/*
   5683 	 * Keep the ASF firmware running if up.
   5684 	 */
   5685 	if (sc->bge_asf_mode & ASF_STACKUP)
   5686 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5687 	else
   5688 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5689 
   5690 	/* Free the RX lists. */
   5691 	bge_free_rx_ring_std(sc);
   5692 
   5693 	/* Free jumbo RX list. */
   5694 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5695 		bge_free_rx_ring_jumbo(sc);
   5696 
   5697 	/* Free TX buffers. */
   5698 	bge_free_tx_ring(sc);
   5699 
   5700 	/*
   5701 	 * Isolate/power down the PHY.
   5702 	 */
   5703 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
   5704 		mii_down(&sc->bge_mii);
   5705 
   5706 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5707 
   5708 	/* Clear MAC's link state (PHY may still have link UP). */
   5709 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5710 
   5711 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5712 }
   5713 
   5714 static void
   5715 bge_link_upd(struct bge_softc *sc)
   5716 {
   5717 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5718 	struct mii_data *mii = &sc->bge_mii;
   5719 	uint32_t status;
   5720 	int link;
   5721 
   5722 	/* Clear 'pending link event' flag */
   5723 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5724 
   5725 	/*
   5726 	 * Process link state changes.
   5727 	 * Grrr. The link status word in the status block does
   5728 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5729 	 * according to all available information. Hence, we have
   5730 	 * to enable MII interrupts in order to properly obtain
   5731 	 * async link changes. Unfortunately, this also means that
   5732 	 * we have to read the MAC status register to detect link
   5733 	 * changes, thereby adding an additional register access to
   5734 	 * the interrupt handler.
   5735 	 */
   5736 
   5737 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5738 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5739 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5740 			mii_pollstat(mii);
   5741 
   5742 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5743 			    mii->mii_media_status & IFM_ACTIVE &&
   5744 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5745 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5746 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5747 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5748 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5749 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5750 
   5751 			/* Clear the interrupt */
   5752 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5753 			    BGE_EVTENB_MI_INTERRUPT);
   5754 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5755 			    BRGPHY_MII_ISR);
   5756 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5757 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5758 		}
   5759 		return;
   5760 	}
   5761 
   5762 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
   5763 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5764 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5765 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5766 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5767 				if (BGE_ASICREV(sc->bge_chipid)
   5768 				    == BGE_ASICREV_BCM5704) {
   5769 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5770 					    BGE_MACMODE_TBI_SEND_CFGS);
   5771 					DELAY(40);
   5772 				}
   5773 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5774 				if_link_state_change(ifp, LINK_STATE_UP);
   5775 			}
   5776 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5777 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5778 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5779 		}
   5780 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5781 		/*
   5782 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5783 		 * bit in status word always set. Workaround this bug by
   5784 		 * reading PHY link status directly.
   5785 		 */
   5786 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5787 		    BGE_STS_LINK : 0;
   5788 
   5789 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5790 			mii_pollstat(mii);
   5791 
   5792 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5793 			    mii->mii_media_status & IFM_ACTIVE &&
   5794 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5795 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5796 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5797 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5798 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5799 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5800 		}
   5801 	} else {
   5802 		/*
   5803 		 * For controllers that call mii_tick, we have to poll
   5804 		 * link status.
   5805 		 */
   5806 		mii_pollstat(mii);
   5807 	}
   5808 
   5809 	/* Clear the attention */
   5810 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5811 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5812 	    BGE_MACSTAT_LINK_CHANGED);
   5813 }
   5814 
   5815 static int
   5816 bge_sysctl_verify(SYSCTLFN_ARGS)
   5817 {
   5818 	int error, t;
   5819 	struct sysctlnode node;
   5820 
   5821 	node = *rnode;
   5822 	t = *(int*)rnode->sysctl_data;
   5823 	node.sysctl_data = &t;
   5824 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5825 	if (error || newp == NULL)
   5826 		return error;
   5827 
   5828 #if 0
   5829 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5830 	    node.sysctl_num, rnode->sysctl_num));
   5831 #endif
   5832 
   5833 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5834 		if (t < 0 || t >= NBGE_RX_THRESH)
   5835 			return EINVAL;
   5836 		bge_update_all_threshes(t);
   5837 	} else
   5838 		return EINVAL;
   5839 
   5840 	*(int*)rnode->sysctl_data = t;
   5841 
   5842 	return 0;
   5843 }
   5844 
   5845 /*
   5846  * Set up sysctl(3) MIB, hw.bge.*.
   5847  */
   5848 static void
   5849 bge_sysctl_init(struct bge_softc *sc)
   5850 {
   5851 	int rc, bge_root_num;
   5852 	const struct sysctlnode *node;
   5853 
   5854 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
   5855 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   5856 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   5857 		goto out;
   5858 	}
   5859 
   5860 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5861 	    0, CTLTYPE_NODE, "bge",
   5862 	    SYSCTL_DESCR("BGE interface controls"),
   5863 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5864 		goto out;
   5865 	}
   5866 
   5867 	bge_root_num = node->sysctl_num;
   5868 
   5869 	/* BGE Rx interrupt mitigation level */
   5870 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5871 	    CTLFLAG_READWRITE,
   5872 	    CTLTYPE_INT, "rx_lvl",
   5873 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   5874 	    bge_sysctl_verify, 0,
   5875 	    &bge_rx_thresh_lvl,
   5876 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   5877 	    CTL_EOL)) != 0) {
   5878 		goto out;
   5879 	}
   5880 
   5881 	bge_rxthresh_nodenum = node->sysctl_num;
   5882 
   5883 	return;
   5884 
   5885 out:
   5886 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   5887 }
   5888 
   5889 #ifdef BGE_DEBUG
   5890 void
   5891 bge_debug_info(struct bge_softc *sc)
   5892 {
   5893 
   5894 	printf("Hardware Flags:\n");
   5895 	if (BGE_IS_57765_PLUS(sc))
   5896 		printf(" - 57765 Plus\n");
   5897 	if (BGE_IS_5717_PLUS(sc))
   5898 		printf(" - 5717 Plus\n");
   5899 	if (BGE_IS_5755_PLUS(sc))
   5900 		printf(" - 5755 Plus\n");
   5901 	if (BGE_IS_575X_PLUS(sc))
   5902 		printf(" - 575X Plus\n");
   5903 	if (BGE_IS_5705_PLUS(sc))
   5904 		printf(" - 5705 Plus\n");
   5905 	if (BGE_IS_5714_FAMILY(sc))
   5906 		printf(" - 5714 Family\n");
   5907 	if (BGE_IS_5700_FAMILY(sc))
   5908 		printf(" - 5700 Family\n");
   5909 	if (sc->bge_flags & BGE_IS_5788)
   5910 		printf(" - 5788\n");
   5911 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
   5912 		printf(" - Supports Jumbo Frames\n");
   5913 	if (sc->bge_flags & BGE_NO_EEPROM)
   5914 		printf(" - No EEPROM\n");
   5915 	if (sc->bge_flags & BGE_PCIX)
   5916 		printf(" - PCI-X Bus\n");
   5917 	if (sc->bge_flags & BGE_PCIE)
   5918 		printf(" - PCI Express Bus\n");
   5919 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
   5920 		printf(" - RX Alignment Bug\n");
   5921 	if (sc->bge_flags & BGE_APE)
   5922 		printf(" - APE\n");
   5923 	if (sc->bge_flags & BGE_CPMU_PRESENT)
   5924 		printf(" - CPMU\n");
   5925 	if (sc->bge_flags & BGE_TSO)
   5926 		printf(" - TSO\n");
   5927 
   5928 	if (sc->bge_flags & BGE_PHY_NO_3LED)
   5929 		printf(" - No 3 LEDs\n");
   5930 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
   5931 		printf(" - CRC bug\n");
   5932 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
   5933 		printf(" - ADC bug\n");
   5934 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
   5935 		printf(" - 5704 A0 bug\n");
   5936 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
   5937 		printf(" - jitter bug\n");
   5938 	if (sc->bge_flags & BGE_PHY_BER_BUG)
   5939 		printf(" - BER bug\n");
   5940 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
   5941 		printf(" - adjust trim\n");
   5942 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
   5943 		printf(" - no wirespeed\n");
   5944 }
   5945 #endif /* BGE_DEBUG */
   5946 
   5947 static int
   5948 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   5949 {
   5950 	prop_dictionary_t dict;
   5951 	prop_data_t ea;
   5952 
   5953 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
   5954 		return 1;
   5955 
   5956 	dict = device_properties(sc->bge_dev);
   5957 	ea = prop_dictionary_get(dict, "mac-address");
   5958 	if (ea != NULL) {
   5959 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   5960 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   5961 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   5962 		return 0;
   5963 	}
   5964 
   5965 	return 1;
   5966 }
   5967 
   5968 static int
   5969 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   5970 {
   5971 	uint32_t mac_addr;
   5972 
   5973 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   5974 	if ((mac_addr >> 16) == 0x484b) {
   5975 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   5976 		ether_addr[1] = (uint8_t)mac_addr;
   5977 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   5978 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   5979 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   5980 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   5981 		ether_addr[5] = (uint8_t)mac_addr;
   5982 		return 0;
   5983 	}
   5984 	return 1;
   5985 }
   5986 
   5987 static int
   5988 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   5989 {
   5990 	int mac_offset = BGE_EE_MAC_OFFSET;
   5991 
   5992 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5993 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   5994 
   5995 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   5996 	    ETHER_ADDR_LEN));
   5997 }
   5998 
   5999 static int
   6000 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6001 {
   6002 
   6003 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6004 		return 1;
   6005 
   6006 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6007 	   ETHER_ADDR_LEN));
   6008 }
   6009 
   6010 static int
   6011 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6012 {
   6013 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6014 		/* NOTE: Order is critical */
   6015 		bge_get_eaddr_fw,
   6016 		bge_get_eaddr_mem,
   6017 		bge_get_eaddr_nvram,
   6018 		bge_get_eaddr_eeprom,
   6019 		NULL
   6020 	};
   6021 	const bge_eaddr_fcn_t *func;
   6022 
   6023 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6024 		if ((*func)(sc, eaddr) == 0)
   6025 			break;
   6026 	}
   6027 	return (*func == NULL ? ENXIO : 0);
   6028 }
   6029