if_bge.c revision 1.256 1 /* $NetBSD: if_bge.c,v 1.256 2013/07/05 07:08:26 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.256 2013/07/05 07:08:26 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rnd.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
680 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS)
682
683 static const struct bge_revision {
684 uint32_t br_chipid;
685 const char *br_name;
686 } bge_revisions[] = {
687 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
688 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
689 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
690 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
691 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
692 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
693 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
694 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
695 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
696 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
697 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
698 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
699 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
700 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
701 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
702 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
703 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
704 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
705 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
706 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
707 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
708 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
709 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
710 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
711 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
712 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
713 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
714 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
715 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
716 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
717 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
718 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
719 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
720 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
721 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
722 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
723 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
724 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
725 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
726 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
727 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
728 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
729 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
730 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
731 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
732 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
733 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
734 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
735 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
736 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
737 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
738 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
739 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
740 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
741 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
742 /* 5754 and 5787 share the same ASIC ID */
743 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
744 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
745 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
746 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
747 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
748 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
749 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
750 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
751 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
752 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
753
754 { 0, NULL }
755 };
756
757 /*
758 * Some defaults for major revisions, so that newer steppings
759 * that we don't know about have a shot at working.
760 */
761 static const struct bge_revision bge_majorrevs[] = {
762 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
763 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
764 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
765 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
766 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
767 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
768 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
769 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
771 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
772 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
773 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
774 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
775 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
776 /* 5754 and 5787 share the same ASIC ID */
777 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
778 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
779 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
780 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
781 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
782 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
783 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
784 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
785
786 { 0, NULL }
787 };
788
789 static int bge_allow_asf = 1;
790
791 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
792 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
793
794 static uint32_t
795 bge_readmem_ind(struct bge_softc *sc, int off)
796 {
797 pcireg_t val;
798
799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
800 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
801 return 0;
802
803 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
804 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
806 return val;
807 }
808
809 static void
810 bge_writemem_ind(struct bge_softc *sc, int off, int val)
811 {
812
813 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
816 }
817
818 /*
819 * PCI Express only
820 */
821 static void
822 bge_set_max_readrq(struct bge_softc *sc)
823 {
824 pcireg_t val;
825
826 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
827 + PCIE_DCSR);
828 val &= ~PCIE_DCSR_MAX_READ_REQ;
829 switch (sc->bge_expmrq) {
830 case 2048:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
832 break;
833 case 4096:
834 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
835 break;
836 default:
837 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
838 break;
839 }
840 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
841 + PCIE_DCSR, val);
842 }
843
844 #ifdef notdef
845 static uint32_t
846 bge_readreg_ind(struct bge_softc *sc, int off)
847 {
848 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
849 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
850 }
851 #endif
852
853 static void
854 bge_writereg_ind(struct bge_softc *sc, int off, int val)
855 {
856 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
858 }
859
860 static void
861 bge_writemem_direct(struct bge_softc *sc, int off, int val)
862 {
863 CSR_WRITE_4(sc, off, val);
864 }
865
866 static void
867 bge_writembx(struct bge_softc *sc, int off, int val)
868 {
869 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
870 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
871
872 CSR_WRITE_4(sc, off, val);
873 }
874
875 static void
876 bge_writembx_flush(struct bge_softc *sc, int off, int val)
877 {
878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
879 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
880
881 CSR_WRITE_4_FLUSH(sc, off, val);
882 }
883
884 /*
885 * Clear all stale locks and select the lock for this driver instance.
886 */
887 void
888 bge_ape_lock_init(struct bge_softc *sc)
889 {
890 struct pci_attach_args *pa = &(sc->bge_pa);
891 uint32_t bit, regbase;
892 int i;
893
894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
895 regbase = BGE_APE_LOCK_GRANT;
896 else
897 regbase = BGE_APE_PER_LOCK_GRANT;
898
899 /* Clear any stale locks. */
900 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
901 switch (i) {
902 case BGE_APE_LOCK_PHY0:
903 case BGE_APE_LOCK_PHY1:
904 case BGE_APE_LOCK_PHY2:
905 case BGE_APE_LOCK_PHY3:
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 break;
908 default:
909 if (pa->pa_function == 0)
910 bit = BGE_APE_LOCK_GRANT_DRIVER0;
911 else
912 bit = (1 << pa->pa_function);
913 }
914 APE_WRITE_4(sc, regbase + 4 * i, bit);
915 }
916
917 /* Select the PHY lock based on the device's function number. */
918 switch (pa->pa_function) {
919 case 0:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
921 break;
922 case 1:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
924 break;
925 case 2:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
927 break;
928 case 3:
929 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
930 break;
931 default:
932 printf("%s: PHY lock not supported on function\n",
933 device_xname(sc->bge_dev));
934 break;
935 }
936 }
937
938 /*
939 * Check for APE firmware, set flags, and print version info.
940 */
941 void
942 bge_ape_read_fw_ver(struct bge_softc *sc)
943 {
944 const char *fwtype;
945 uint32_t apedata, features;
946
947 /* Check for a valid APE signature in shared memory. */
948 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
949 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
950 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
951 return;
952 }
953
954 /* Check if APE firmware is running. */
955 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
956 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
957 printf("%s: APE signature found but FW status not ready! "
958 "0x%08x\n", device_xname(sc->bge_dev), apedata);
959 return;
960 }
961
962 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
963
964 /* Fetch the APE firwmare type and version. */
965 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
966 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
967 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
969 fwtype = "NCSI";
970 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
971 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
972 fwtype = "DASH";
973 } else
974 fwtype = "UNKN";
975
976 /* Print the APE firmware version. */
977 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
978 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
979 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
980 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
981 (apedata & BGE_APE_FW_VERSION_BLDMSK));
982 }
983
984 int
985 bge_ape_lock(struct bge_softc *sc, int locknum)
986 {
987 struct pci_attach_args *pa = &(sc->bge_pa);
988 uint32_t bit, gnt, req, status;
989 int i, off;
990
991 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
992 return (0);
993
994 /* Lock request/grant registers have different bases. */
995 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
996 req = BGE_APE_LOCK_REQ;
997 gnt = BGE_APE_LOCK_GRANT;
998 } else {
999 req = BGE_APE_PER_LOCK_REQ;
1000 gnt = BGE_APE_PER_LOCK_GRANT;
1001 }
1002
1003 off = 4 * locknum;
1004
1005 switch (locknum) {
1006 case BGE_APE_LOCK_GPIO:
1007 /* Lock required when using GPIO. */
1008 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1009 return (0);
1010 if (pa->pa_function == 0)
1011 bit = BGE_APE_LOCK_REQ_DRIVER0;
1012 else
1013 bit = (1 << pa->pa_function);
1014 break;
1015 case BGE_APE_LOCK_GRC:
1016 /* Lock required to reset the device. */
1017 if (pa->pa_function == 0)
1018 bit = BGE_APE_LOCK_REQ_DRIVER0;
1019 else
1020 bit = (1 << pa->pa_function);
1021 break;
1022 case BGE_APE_LOCK_MEM:
1023 /* Lock required when accessing certain APE memory. */
1024 if (pa->pa_function == 0)
1025 bit = BGE_APE_LOCK_REQ_DRIVER0;
1026 else
1027 bit = (1 << pa->pa_function);
1028 break;
1029 case BGE_APE_LOCK_PHY0:
1030 case BGE_APE_LOCK_PHY1:
1031 case BGE_APE_LOCK_PHY2:
1032 case BGE_APE_LOCK_PHY3:
1033 /* Lock required when accessing PHYs. */
1034 bit = BGE_APE_LOCK_REQ_DRIVER0;
1035 break;
1036 default:
1037 return (EINVAL);
1038 }
1039
1040 /* Request a lock. */
1041 APE_WRITE_4_FLUSH(sc, req + off, bit);
1042
1043 /* Wait up to 1 second to acquire lock. */
1044 for (i = 0; i < 20000; i++) {
1045 status = APE_READ_4(sc, gnt + off);
1046 if (status == bit)
1047 break;
1048 DELAY(50);
1049 }
1050
1051 /* Handle any errors. */
1052 if (status != bit) {
1053 printf("%s: APE lock %d request failed! "
1054 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1055 device_xname(sc->bge_dev),
1056 locknum, req + off, bit & 0xFFFF, gnt + off,
1057 status & 0xFFFF);
1058 /* Revoke the lock request. */
1059 APE_WRITE_4(sc, gnt + off, bit);
1060 return (EBUSY);
1061 }
1062
1063 return (0);
1064 }
1065
1066 void
1067 bge_ape_unlock(struct bge_softc *sc, int locknum)
1068 {
1069 struct pci_attach_args *pa = &(sc->bge_pa);
1070 uint32_t bit, gnt;
1071 int off;
1072
1073 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1074 return;
1075
1076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1077 gnt = BGE_APE_LOCK_GRANT;
1078 else
1079 gnt = BGE_APE_PER_LOCK_GRANT;
1080
1081 off = 4 * locknum;
1082
1083 switch (locknum) {
1084 case BGE_APE_LOCK_GPIO:
1085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1086 return;
1087 if (pa->pa_function == 0)
1088 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1089 else
1090 bit = (1 << pa->pa_function);
1091 break;
1092 case BGE_APE_LOCK_GRC:
1093 if (pa->pa_function == 0)
1094 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1095 else
1096 bit = (1 << pa->pa_function);
1097 break;
1098 case BGE_APE_LOCK_MEM:
1099 if (pa->pa_function == 0)
1100 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1101 else
1102 bit = (1 << pa->pa_function);
1103 break;
1104 case BGE_APE_LOCK_PHY0:
1105 case BGE_APE_LOCK_PHY1:
1106 case BGE_APE_LOCK_PHY2:
1107 case BGE_APE_LOCK_PHY3:
1108 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1109 break;
1110 default:
1111 return;
1112 }
1113
1114 /* Write and flush for consecutive bge_ape_lock() */
1115 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1116 }
1117
1118 /*
1119 * Send an event to the APE firmware.
1120 */
1121 void
1122 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1123 {
1124 uint32_t apedata;
1125 int i;
1126
1127 /* NCSI does not support APE events. */
1128 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1129 return;
1130
1131 /* Wait up to 1ms for APE to service previous event. */
1132 for (i = 10; i > 0; i--) {
1133 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1134 break;
1135 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1136 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1137 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1138 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1141 break;
1142 }
1143 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1144 DELAY(100);
1145 }
1146 if (i == 0) {
1147 printf("%s: APE event 0x%08x send timed out\n",
1148 device_xname(sc->bge_dev), event);
1149 }
1150 }
1151
1152 void
1153 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1154 {
1155 uint32_t apedata, event;
1156
1157 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1158 return;
1159
1160 switch (kind) {
1161 case BGE_RESET_START:
1162 /* If this is the first load, clear the load counter. */
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1164 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1166 else {
1167 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1168 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1169 }
1170 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1171 BGE_APE_HOST_SEG_SIG_MAGIC);
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1173 BGE_APE_HOST_SEG_LEN_MAGIC);
1174
1175 /* Add some version info if bge(4) supports it. */
1176 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1177 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1178 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1179 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1180 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1181 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_START);
1184 event = BGE_APE_EVENT_STATUS_STATE_START;
1185 break;
1186 case BGE_RESET_SHUTDOWN:
1187 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1188 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1189 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1190 break;
1191 case BGE_RESET_SUSPEND:
1192 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1193 break;
1194 default:
1195 return;
1196 }
1197
1198 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1199 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1200 }
1201
1202 static uint8_t
1203 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1204 {
1205 uint32_t access, byte = 0;
1206 int i;
1207
1208 /* Lock. */
1209 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1210 for (i = 0; i < 8000; i++) {
1211 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1212 break;
1213 DELAY(20);
1214 }
1215 if (i == 8000)
1216 return 1;
1217
1218 /* Enable access. */
1219 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1220 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1221
1222 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1223 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1224 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1225 DELAY(10);
1226 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1227 DELAY(10);
1228 break;
1229 }
1230 }
1231
1232 if (i == BGE_TIMEOUT * 10) {
1233 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1234 return 1;
1235 }
1236
1237 /* Get result. */
1238 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1239
1240 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1241
1242 /* Disable access. */
1243 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1244
1245 /* Unlock. */
1246 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * Read a sequence of bytes from NVRAM.
1253 */
1254 static int
1255 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1256 {
1257 int error = 0, i;
1258 uint8_t byte = 0;
1259
1260 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1261 return 1;
1262
1263 for (i = 0; i < cnt; i++) {
1264 error = bge_nvram_getbyte(sc, off + i, &byte);
1265 if (error)
1266 break;
1267 *(dest + i) = byte;
1268 }
1269
1270 return (error ? 1 : 0);
1271 }
1272
1273 /*
1274 * Read a byte of data stored in the EEPROM at address 'addr.' The
1275 * BCM570x supports both the traditional bitbang interface and an
1276 * auto access interface for reading the EEPROM. We use the auto
1277 * access method.
1278 */
1279 static uint8_t
1280 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1281 {
1282 int i;
1283 uint32_t byte = 0;
1284
1285 /*
1286 * Enable use of auto EEPROM access so we can avoid
1287 * having to use the bitbang method.
1288 */
1289 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1290
1291 /* Reset the EEPROM, load the clock period. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR,
1293 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1294 DELAY(20);
1295
1296 /* Issue the read EEPROM command. */
1297 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1298
1299 /* Wait for completion */
1300 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1301 DELAY(10);
1302 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1303 break;
1304 }
1305
1306 if (i == BGE_TIMEOUT * 10) {
1307 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1308 return 1;
1309 }
1310
1311 /* Get result. */
1312 byte = CSR_READ_4(sc, BGE_EE_DATA);
1313
1314 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1315
1316 return 0;
1317 }
1318
1319 /*
1320 * Read a sequence of bytes from the EEPROM.
1321 */
1322 static int
1323 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1324 {
1325 int error = 0, i;
1326 uint8_t byte = 0;
1327 char *dest = destv;
1328
1329 for (i = 0; i < cnt; i++) {
1330 error = bge_eeprom_getbyte(sc, off + i, &byte);
1331 if (error)
1332 break;
1333 *(dest + i) = byte;
1334 }
1335
1336 return (error ? 1 : 0);
1337 }
1338
1339 static int
1340 bge_miibus_readreg(device_t dev, int phy, int reg)
1341 {
1342 struct bge_softc *sc = device_private(dev);
1343 uint32_t val;
1344 uint32_t autopoll;
1345 int i;
1346
1347 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1348 return 0;
1349
1350 /* Reading with autopolling on may trigger PCI errors */
1351 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1352 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1353 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1354 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1355 DELAY(80);
1356 }
1357
1358 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1359 BGE_MIPHY(phy) | BGE_MIREG(reg));
1360
1361 for (i = 0; i < BGE_TIMEOUT; i++) {
1362 delay(10);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 if (!(val & BGE_MICOMM_BUSY)) {
1365 DELAY(5);
1366 val = CSR_READ_4(sc, BGE_MI_COMM);
1367 break;
1368 }
1369 }
1370
1371 if (i == BGE_TIMEOUT) {
1372 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1373 val = 0;
1374 goto done;
1375 }
1376
1377 done:
1378 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1379 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1380 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1381 DELAY(80);
1382 }
1383
1384 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1385
1386 if (val & BGE_MICOMM_READFAIL)
1387 return 0;
1388
1389 return (val & 0xFFFF);
1390 }
1391
1392 static void
1393 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1394 {
1395 struct bge_softc *sc = device_private(dev);
1396 uint32_t autopoll;
1397 int i;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1403 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1404 return;
1405
1406 /* Reading with autopolling on may trigger PCI errors */
1407 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1408 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1409 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1410 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1411 DELAY(80);
1412 }
1413
1414 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1415 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1416
1417 for (i = 0; i < BGE_TIMEOUT; i++) {
1418 delay(10);
1419 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1420 delay(5);
1421 CSR_READ_4(sc, BGE_MI_COMM);
1422 break;
1423 }
1424 }
1425
1426 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1427 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1428 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1429 delay(80);
1430 }
1431
1432 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1433
1434 if (i == BGE_TIMEOUT)
1435 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1436 }
1437
1438 static void
1439 bge_miibus_statchg(struct ifnet *ifp)
1440 {
1441 struct bge_softc *sc = ifp->if_softc;
1442 struct mii_data *mii = &sc->bge_mii;
1443 uint32_t mac_mode, rx_mode, tx_mode;
1444
1445 /*
1446 * Get flow control negotiation result.
1447 */
1448 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1449 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1450 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1451
1452 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1453 mii->mii_media_status & IFM_ACTIVE &&
1454 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1455 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1456 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1457 (!(mii->mii_media_status & IFM_ACTIVE) ||
1458 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1459 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1460
1461 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1462 return;
1463
1464 /* Set the port mode (MII/GMII) to match the link speed. */
1465 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1466 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1467 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1468 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1469 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1470 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1471 mac_mode |= BGE_PORTMODE_GMII;
1472 else
1473 mac_mode |= BGE_PORTMODE_MII;
1474
1475 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1476 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1477 if ((mii->mii_media_active & IFM_FDX) != 0) {
1478 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1479 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1480 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1481 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1482 } else
1483 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1484
1485 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1486 DELAY(40);
1487 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1488 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1489 }
1490
1491 /*
1492 * Update rx threshold levels to values in a particular slot
1493 * of the interrupt-mitigation table bge_rx_threshes.
1494 */
1495 static void
1496 bge_set_thresh(struct ifnet *ifp, int lvl)
1497 {
1498 struct bge_softc *sc = ifp->if_softc;
1499 int s;
1500
1501 /* For now, just save the new Rx-intr thresholds and record
1502 * that a threshold update is pending. Updating the hardware
1503 * registers here (even at splhigh()) is observed to
1504 * occasionaly cause glitches where Rx-interrupts are not
1505 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1506 */
1507 s = splnet();
1508 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1509 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1510 sc->bge_pending_rxintr_change = 1;
1511 splx(s);
1512 }
1513
1514
1515 /*
1516 * Update Rx thresholds of all bge devices
1517 */
1518 static void
1519 bge_update_all_threshes(int lvl)
1520 {
1521 struct ifnet *ifp;
1522 const char * const namebuf = "bge";
1523 int namelen;
1524
1525 if (lvl < 0)
1526 lvl = 0;
1527 else if (lvl >= NBGE_RX_THRESH)
1528 lvl = NBGE_RX_THRESH - 1;
1529
1530 namelen = strlen(namebuf);
1531 /*
1532 * Now search all the interfaces for this name/number
1533 */
1534 IFNET_FOREACH(ifp) {
1535 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1536 continue;
1537 /* We got a match: update if doing auto-threshold-tuning */
1538 if (bge_auto_thresh)
1539 bge_set_thresh(ifp, lvl);
1540 }
1541 }
1542
1543 /*
1544 * Handle events that have triggered interrupts.
1545 */
1546 static void
1547 bge_handle_events(struct bge_softc *sc)
1548 {
1549
1550 return;
1551 }
1552
1553 /*
1554 * Memory management for jumbo frames.
1555 */
1556
1557 static int
1558 bge_alloc_jumbo_mem(struct bge_softc *sc)
1559 {
1560 char *ptr, *kva;
1561 bus_dma_segment_t seg;
1562 int i, rseg, state, error;
1563 struct bge_jpool_entry *entry;
1564
1565 state = error = 0;
1566
1567 /* Grab a big chunk o' storage. */
1568 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1569 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1570 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1571 return ENOBUFS;
1572 }
1573
1574 state = 1;
1575 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1576 BUS_DMA_NOWAIT)) {
1577 aprint_error_dev(sc->bge_dev,
1578 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1579 error = ENOBUFS;
1580 goto out;
1581 }
1582
1583 state = 2;
1584 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1585 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1586 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1587 error = ENOBUFS;
1588 goto out;
1589 }
1590
1591 state = 3;
1592 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1593 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1594 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1595 error = ENOBUFS;
1596 goto out;
1597 }
1598
1599 state = 4;
1600 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1601 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1602
1603 SLIST_INIT(&sc->bge_jfree_listhead);
1604 SLIST_INIT(&sc->bge_jinuse_listhead);
1605
1606 /*
1607 * Now divide it up into 9K pieces and save the addresses
1608 * in an array.
1609 */
1610 ptr = sc->bge_cdata.bge_jumbo_buf;
1611 for (i = 0; i < BGE_JSLOTS; i++) {
1612 sc->bge_cdata.bge_jslots[i] = ptr;
1613 ptr += BGE_JLEN;
1614 entry = malloc(sizeof(struct bge_jpool_entry),
1615 M_DEVBUF, M_NOWAIT);
1616 if (entry == NULL) {
1617 aprint_error_dev(sc->bge_dev,
1618 "no memory for jumbo buffer queue!\n");
1619 error = ENOBUFS;
1620 goto out;
1621 }
1622 entry->slot = i;
1623 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1624 entry, jpool_entries);
1625 }
1626 out:
1627 if (error != 0) {
1628 switch (state) {
1629 case 4:
1630 bus_dmamap_unload(sc->bge_dmatag,
1631 sc->bge_cdata.bge_rx_jumbo_map);
1632 case 3:
1633 bus_dmamap_destroy(sc->bge_dmatag,
1634 sc->bge_cdata.bge_rx_jumbo_map);
1635 case 2:
1636 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1637 case 1:
1638 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1639 break;
1640 default:
1641 break;
1642 }
1643 }
1644
1645 return error;
1646 }
1647
1648 /*
1649 * Allocate a jumbo buffer.
1650 */
1651 static void *
1652 bge_jalloc(struct bge_softc *sc)
1653 {
1654 struct bge_jpool_entry *entry;
1655
1656 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1657
1658 if (entry == NULL) {
1659 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1660 return NULL;
1661 }
1662
1663 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1664 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1665 return (sc->bge_cdata.bge_jslots[entry->slot]);
1666 }
1667
1668 /*
1669 * Release a jumbo buffer.
1670 */
1671 static void
1672 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1673 {
1674 struct bge_jpool_entry *entry;
1675 struct bge_softc *sc;
1676 int i, s;
1677
1678 /* Extract the softc struct pointer. */
1679 sc = (struct bge_softc *)arg;
1680
1681 if (sc == NULL)
1682 panic("bge_jfree: can't find softc pointer!");
1683
1684 /* calculate the slot this buffer belongs to */
1685
1686 i = ((char *)buf
1687 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1688
1689 if ((i < 0) || (i >= BGE_JSLOTS))
1690 panic("bge_jfree: asked to free buffer that we don't manage!");
1691
1692 s = splvm();
1693 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1694 if (entry == NULL)
1695 panic("bge_jfree: buffer not in use!");
1696 entry->slot = i;
1697 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1698 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1699
1700 if (__predict_true(m != NULL))
1701 pool_cache_put(mb_cache, m);
1702 splx(s);
1703 }
1704
1705
1706 /*
1707 * Initialize a standard receive ring descriptor.
1708 */
1709 static int
1710 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1711 bus_dmamap_t dmamap)
1712 {
1713 struct mbuf *m_new = NULL;
1714 struct bge_rx_bd *r;
1715 int error;
1716
1717 if (dmamap == NULL) {
1718 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1719 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1720 if (error != 0)
1721 return error;
1722 }
1723
1724 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1725
1726 if (m == NULL) {
1727 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1728 if (m_new == NULL)
1729 return ENOBUFS;
1730
1731 MCLGET(m_new, M_DONTWAIT);
1732 if (!(m_new->m_flags & M_EXT)) {
1733 m_freem(m_new);
1734 return ENOBUFS;
1735 }
1736 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1737
1738 } else {
1739 m_new = m;
1740 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1741 m_new->m_data = m_new->m_ext.ext_buf;
1742 }
1743 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1744 m_adj(m_new, ETHER_ALIGN);
1745 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1746 BUS_DMA_READ|BUS_DMA_NOWAIT))
1747 return ENOBUFS;
1748 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1749 BUS_DMASYNC_PREREAD);
1750
1751 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1752 r = &sc->bge_rdata->bge_rx_std_ring[i];
1753 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1754 r->bge_flags = BGE_RXBDFLAG_END;
1755 r->bge_len = m_new->m_len;
1756 r->bge_idx = i;
1757
1758 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1759 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1760 i * sizeof (struct bge_rx_bd),
1761 sizeof (struct bge_rx_bd),
1762 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1763
1764 return 0;
1765 }
1766
1767 /*
1768 * Initialize a jumbo receive ring descriptor. This allocates
1769 * a jumbo buffer from the pool managed internally by the driver.
1770 */
1771 static int
1772 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1773 {
1774 struct mbuf *m_new = NULL;
1775 struct bge_rx_bd *r;
1776 void *buf = NULL;
1777
1778 if (m == NULL) {
1779
1780 /* Allocate the mbuf. */
1781 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1782 if (m_new == NULL)
1783 return ENOBUFS;
1784
1785 /* Allocate the jumbo buffer */
1786 buf = bge_jalloc(sc);
1787 if (buf == NULL) {
1788 m_freem(m_new);
1789 aprint_error_dev(sc->bge_dev,
1790 "jumbo allocation failed -- packet dropped!\n");
1791 return ENOBUFS;
1792 }
1793
1794 /* Attach the buffer to the mbuf. */
1795 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1796 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1797 bge_jfree, sc);
1798 m_new->m_flags |= M_EXT_RW;
1799 } else {
1800 m_new = m;
1801 buf = m_new->m_data = m_new->m_ext.ext_buf;
1802 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1803 }
1804 if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1805 m_adj(m_new, ETHER_ALIGN);
1806 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1807 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1808 BUS_DMASYNC_PREREAD);
1809 /* Set up the descriptor. */
1810 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1811 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1812 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1813 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1814 r->bge_len = m_new->m_len;
1815 r->bge_idx = i;
1816
1817 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1818 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1819 i * sizeof (struct bge_rx_bd),
1820 sizeof (struct bge_rx_bd),
1821 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1822
1823 return 0;
1824 }
1825
1826 /*
1827 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1828 * that's 1MB or memory, which is a lot. For now, we fill only the first
1829 * 256 ring entries and hope that our CPU is fast enough to keep up with
1830 * the NIC.
1831 */
1832 static int
1833 bge_init_rx_ring_std(struct bge_softc *sc)
1834 {
1835 int i;
1836
1837 if (sc->bge_flags & BGE_RXRING_VALID)
1838 return 0;
1839
1840 for (i = 0; i < BGE_SSLOTS; i++) {
1841 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1842 return ENOBUFS;
1843 }
1844
1845 sc->bge_std = i - 1;
1846 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1847
1848 sc->bge_flags |= BGE_RXRING_VALID;
1849
1850 return 0;
1851 }
1852
1853 static void
1854 bge_free_rx_ring_std(struct bge_softc *sc)
1855 {
1856 int i;
1857
1858 if (!(sc->bge_flags & BGE_RXRING_VALID))
1859 return;
1860
1861 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1862 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1863 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1864 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1865 bus_dmamap_destroy(sc->bge_dmatag,
1866 sc->bge_cdata.bge_rx_std_map[i]);
1867 }
1868 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1869 sizeof(struct bge_rx_bd));
1870 }
1871
1872 sc->bge_flags &= ~BGE_RXRING_VALID;
1873 }
1874
1875 static int
1876 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1877 {
1878 int i;
1879 volatile struct bge_rcb *rcb;
1880
1881 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1882 return 0;
1883
1884 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1885 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1886 return ENOBUFS;
1887 }
1888
1889 sc->bge_jumbo = i - 1;
1890 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1891
1892 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1893 rcb->bge_maxlen_flags = 0;
1894 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1895
1896 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1897
1898 return 0;
1899 }
1900
1901 static void
1902 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1903 {
1904 int i;
1905
1906 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1907 return;
1908
1909 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1910 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1911 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1912 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1913 }
1914 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1915 sizeof(struct bge_rx_bd));
1916 }
1917
1918 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1919 }
1920
1921 static void
1922 bge_free_tx_ring(struct bge_softc *sc)
1923 {
1924 int i;
1925 struct txdmamap_pool_entry *dma;
1926
1927 if (!(sc->bge_flags & BGE_TXRING_VALID))
1928 return;
1929
1930 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1931 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1932 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1933 sc->bge_cdata.bge_tx_chain[i] = NULL;
1934 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1935 link);
1936 sc->txdma[i] = 0;
1937 }
1938 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1939 sizeof(struct bge_tx_bd));
1940 }
1941
1942 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1943 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1944 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1945 free(dma, M_DEVBUF);
1946 }
1947
1948 sc->bge_flags &= ~BGE_TXRING_VALID;
1949 }
1950
1951 static int
1952 bge_init_tx_ring(struct bge_softc *sc)
1953 {
1954 int i;
1955 bus_dmamap_t dmamap;
1956 struct txdmamap_pool_entry *dma;
1957
1958 if (sc->bge_flags & BGE_TXRING_VALID)
1959 return 0;
1960
1961 sc->bge_txcnt = 0;
1962 sc->bge_tx_saved_considx = 0;
1963
1964 /* Initialize transmit producer index for host-memory send ring. */
1965 sc->bge_tx_prodidx = 0;
1966 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1967 /* 5700 b2 errata */
1968 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1969 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970
1971 /* NIC-memory send ring not used; initialize to zero. */
1972 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1973 /* 5700 b2 errata */
1974 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1975 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976
1977 SLIST_INIT(&sc->txdma_list);
1978 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1979 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1980 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1981 &dmamap))
1982 return ENOBUFS;
1983 if (dmamap == NULL)
1984 panic("dmamap NULL in bge_init_tx_ring");
1985 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1986 if (dma == NULL) {
1987 aprint_error_dev(sc->bge_dev,
1988 "can't alloc txdmamap_pool_entry\n");
1989 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1990 return ENOMEM;
1991 }
1992 dma->dmamap = dmamap;
1993 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1994 }
1995
1996 sc->bge_flags |= BGE_TXRING_VALID;
1997
1998 return 0;
1999 }
2000
2001 static void
2002 bge_setmulti(struct bge_softc *sc)
2003 {
2004 struct ethercom *ac = &sc->ethercom;
2005 struct ifnet *ifp = &ac->ec_if;
2006 struct ether_multi *enm;
2007 struct ether_multistep step;
2008 uint32_t hashes[4] = { 0, 0, 0, 0 };
2009 uint32_t h;
2010 int i;
2011
2012 if (ifp->if_flags & IFF_PROMISC)
2013 goto allmulti;
2014
2015 /* Now program new ones. */
2016 ETHER_FIRST_MULTI(step, ac, enm);
2017 while (enm != NULL) {
2018 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2019 /*
2020 * We must listen to a range of multicast addresses.
2021 * For now, just accept all multicasts, rather than
2022 * trying to set only those filter bits needed to match
2023 * the range. (At this time, the only use of address
2024 * ranges is for IP multicast routing, for which the
2025 * range is big enough to require all bits set.)
2026 */
2027 goto allmulti;
2028 }
2029
2030 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2031
2032 /* Just want the 7 least-significant bits. */
2033 h &= 0x7f;
2034
2035 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2036 ETHER_NEXT_MULTI(step, enm);
2037 }
2038
2039 ifp->if_flags &= ~IFF_ALLMULTI;
2040 goto setit;
2041
2042 allmulti:
2043 ifp->if_flags |= IFF_ALLMULTI;
2044 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2045
2046 setit:
2047 for (i = 0; i < 4; i++)
2048 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2049 }
2050
2051 static void
2052 bge_sig_pre_reset(struct bge_softc *sc, int type)
2053 {
2054
2055 /*
2056 * Some chips don't like this so only do this if ASF is enabled
2057 */
2058 if (sc->bge_asf_mode)
2059 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2060
2061 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2062 switch (type) {
2063 case BGE_RESET_START:
2064 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2065 BGE_FW_DRV_STATE_START);
2066 break;
2067 case BGE_RESET_SHUTDOWN:
2068 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2069 BGE_FW_DRV_STATE_UNLOAD);
2070 break;
2071 case BGE_RESET_SUSPEND:
2072 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2073 BGE_FW_DRV_STATE_SUSPEND);
2074 break;
2075 }
2076 }
2077
2078 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2079 bge_ape_driver_state_change(sc, type);
2080 }
2081
2082 static void
2083 bge_sig_post_reset(struct bge_softc *sc, int type)
2084 {
2085
2086 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2087 switch (type) {
2088 case BGE_RESET_START:
2089 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2090 BGE_FW_DRV_STATE_START_DONE);
2091 /* START DONE */
2092 break;
2093 case BGE_RESET_SHUTDOWN:
2094 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2095 BGE_FW_DRV_STATE_UNLOAD_DONE);
2096 break;
2097 }
2098 }
2099
2100 if (type == BGE_RESET_SHUTDOWN)
2101 bge_ape_driver_state_change(sc, type);
2102 }
2103
2104 static void
2105 bge_sig_legacy(struct bge_softc *sc, int type)
2106 {
2107
2108 if (sc->bge_asf_mode) {
2109 switch (type) {
2110 case BGE_RESET_START:
2111 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2112 BGE_FW_DRV_STATE_START);
2113 break;
2114 case BGE_RESET_SHUTDOWN:
2115 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2116 BGE_FW_DRV_STATE_UNLOAD);
2117 break;
2118 }
2119 }
2120 }
2121
2122 static void
2123 bge_wait_for_event_ack(struct bge_softc *sc)
2124 {
2125 int i;
2126
2127 /* wait up to 2500usec */
2128 for (i = 0; i < 250; i++) {
2129 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2130 BGE_RX_CPU_DRV_EVENT))
2131 break;
2132 DELAY(10);
2133 }
2134 }
2135
2136 static void
2137 bge_stop_fw(struct bge_softc *sc)
2138 {
2139
2140 if (sc->bge_asf_mode) {
2141 bge_wait_for_event_ack(sc);
2142
2143 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2144 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2145 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2146
2147 bge_wait_for_event_ack(sc);
2148 }
2149 }
2150
2151 static int
2152 bge_poll_fw(struct bge_softc *sc)
2153 {
2154 uint32_t val;
2155 int i;
2156
2157 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2158 for (i = 0; i < BGE_TIMEOUT; i++) {
2159 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2160 if (val & BGE_VCPU_STATUS_INIT_DONE)
2161 break;
2162 DELAY(100);
2163 }
2164 if (i >= BGE_TIMEOUT) {
2165 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2166 return -1;
2167 }
2168 } else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2169 /*
2170 * Poll the value location we just wrote until
2171 * we see the 1's complement of the magic number.
2172 * This indicates that the firmware initialization
2173 * is complete.
2174 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2175 */
2176 for (i = 0; i < BGE_TIMEOUT; i++) {
2177 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2178 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2179 break;
2180 DELAY(10);
2181 }
2182
2183 if (i >= BGE_TIMEOUT) {
2184 aprint_error_dev(sc->bge_dev,
2185 "firmware handshake timed out, val = %x\n", val);
2186 return -1;
2187 }
2188 }
2189
2190 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2191 /* tg3 says we have to wait extra time */
2192 delay(10 * 1000);
2193 }
2194
2195 return 0;
2196 }
2197
2198 int
2199 bge_phy_addr(struct bge_softc *sc)
2200 {
2201 struct pci_attach_args *pa = &(sc->bge_pa);
2202 int phy_addr = 1;
2203
2204 /*
2205 * PHY address mapping for various devices.
2206 *
2207 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2208 * ---------+-------+-------+-------+-------+
2209 * BCM57XX | 1 | X | X | X |
2210 * BCM5704 | 1 | X | 1 | X |
2211 * BCM5717 | 1 | 8 | 2 | 9 |
2212 * BCM5719 | 1 | 8 | 2 | 9 |
2213 * BCM5720 | 1 | 8 | 2 | 9 |
2214 *
2215 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2216 * ---------+-------+-------+-------+-------+
2217 * BCM57XX | X | X | X | X |
2218 * BCM5704 | X | X | X | X |
2219 * BCM5717 | X | X | X | X |
2220 * BCM5719 | 3 | 10 | 4 | 11 |
2221 * BCM5720 | X | X | X | X |
2222 *
2223 * Other addresses may respond but they are not
2224 * IEEE compliant PHYs and should be ignored.
2225 */
2226 switch (BGE_ASICREV(sc->bge_chipid)) {
2227 case BGE_ASICREV_BCM5717:
2228 case BGE_ASICREV_BCM5719:
2229 case BGE_ASICREV_BCM5720:
2230 phy_addr = pa->pa_function;
2231 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2232 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2233 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2234 } else {
2235 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2236 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2237 }
2238 }
2239
2240 return phy_addr;
2241 }
2242
2243 /*
2244 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2245 * self-test results.
2246 */
2247 static int
2248 bge_chipinit(struct bge_softc *sc)
2249 {
2250 uint32_t dma_rw_ctl, mode_ctl, reg;
2251 int i;
2252
2253 /* Set endianness before we access any non-PCI registers. */
2254 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2255 BGE_INIT);
2256
2257 /*
2258 * Clear the MAC statistics block in the NIC's
2259 * internal memory.
2260 */
2261 for (i = BGE_STATS_BLOCK;
2262 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2263 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2264
2265 for (i = BGE_STATUS_BLOCK;
2266 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2267 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2268
2269 /* 5717 workaround from tg3 */
2270 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2271 /* Save */
2272 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2273
2274 /* Temporary modify MODE_CTL to control TLP */
2275 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2276 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2277
2278 /* Control TLP */
2279 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2280 BGE_TLP_PHYCTL1);
2281 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2282 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2283
2284 /* Restore */
2285 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2286 }
2287
2288 /* XXX Should we use 57765_FAMILY? */
2289 if (BGE_IS_57765_PLUS(sc)) {
2290 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2291 /* Save */
2292 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2293
2294 /* Temporary modify MODE_CTL to control TLP */
2295 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2296 CSR_WRITE_4(sc, BGE_MODE_CTL,
2297 reg | BGE_MODECTL_PCIE_TLPADDR1);
2298
2299 /* Control TLP */
2300 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2301 BGE_TLP_PHYCTL5);
2302 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2303 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2304
2305 /* Restore */
2306 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2307 }
2308 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2309 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2310 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2311 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2312
2313 /* Save */
2314 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2315
2316 /* Temporary modify MODE_CTL to control TLP */
2317 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2318 CSR_WRITE_4(sc, BGE_MODE_CTL,
2319 reg | BGE_MODECTL_PCIE_TLPADDR0);
2320
2321 /* Control TLP */
2322 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2323 BGE_TLP_FTSMAX);
2324 reg &= ~BGE_TLP_FTSMAX_MSK;
2325 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2326 reg | BGE_TLP_FTSMAX_VAL);
2327
2328 /* Restore */
2329 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2330 }
2331
2332 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2333 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2334 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2335 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2336 }
2337
2338 /* Set up the PCI DMA control register. */
2339 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2340 if (sc->bge_flags & BGE_PCIE) {
2341 /* Read watermark not used, 128 bytes for write. */
2342 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2343 device_xname(sc->bge_dev)));
2344 if (sc->bge_mps >= 256)
2345 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2346 else
2347 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2348 } else if (sc->bge_flags & BGE_PCIX) {
2349 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2350 device_xname(sc->bge_dev)));
2351 /* PCI-X bus */
2352 if (BGE_IS_5714_FAMILY(sc)) {
2353 /* 256 bytes for read and write. */
2354 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2355 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2356
2357 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2358 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2359 else
2360 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2361 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2362 /* 1536 bytes for read, 384 bytes for write. */
2363 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2364 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2365 } else {
2366 /* 384 bytes for read and write. */
2367 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2368 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2369 (0x0F);
2370 }
2371
2372 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2373 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2374 uint32_t tmp;
2375
2376 /* Set ONEDMA_ATONCE for hardware workaround. */
2377 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2378 if (tmp == 6 || tmp == 7)
2379 dma_rw_ctl |=
2380 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2381
2382 /* Set PCI-X DMA write workaround. */
2383 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2384 }
2385 } else {
2386 /* Conventional PCI bus: 256 bytes for read and write. */
2387 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2388 device_xname(sc->bge_dev)));
2389 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2390 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2391
2392 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2393 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2394 dma_rw_ctl |= 0x0F;
2395 }
2396
2397 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2398 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2399 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2400 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2401
2402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2403 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2404 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2405
2406 if (BGE_IS_5717_PLUS(sc)) {
2407 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2408 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2409 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2410
2411 /*
2412 * Enable HW workaround for controllers that misinterpret
2413 * a status tag update and leave interrupts permanently
2414 * disabled.
2415 */
2416 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2417 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2418 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2419 }
2420
2421 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2422 dma_rw_ctl);
2423
2424 /*
2425 * Set up general mode register.
2426 */
2427 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2428 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2429 /* Retain Host-2-BMC settings written by APE firmware. */
2430 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2431 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2432 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2433 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2434 }
2435 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2436 BGE_MODECTL_TX_NO_PHDR_CSUM;
2437
2438 /*
2439 * BCM5701 B5 have a bug causing data corruption when using
2440 * 64-bit DMA reads, which can be terminated early and then
2441 * completed later as 32-bit accesses, in combination with
2442 * certain bridges.
2443 */
2444 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2445 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2446 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2447
2448 /*
2449 * Tell the firmware the driver is running
2450 */
2451 if (sc->bge_asf_mode & ASF_STACKUP)
2452 mode_ctl |= BGE_MODECTL_STACKUP;
2453
2454 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2455
2456 /*
2457 * Disable memory write invalidate. Apparently it is not supported
2458 * properly by these devices.
2459 */
2460 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2461 PCI_COMMAND_INVALIDATE_ENABLE);
2462
2463 #ifdef __brokenalpha__
2464 /*
2465 * Must insure that we do not cross an 8K (bytes) boundary
2466 * for DMA reads. Our highest limit is 1K bytes. This is a
2467 * restriction on some ALPHA platforms with early revision
2468 * 21174 PCI chipsets, such as the AlphaPC 164lx
2469 */
2470 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2471 #endif
2472
2473 /* Set the timer prescaler (always 66MHz) */
2474 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2475
2476 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2477 DELAY(40); /* XXX */
2478
2479 /* Put PHY into ready state */
2480 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2481 DELAY(40);
2482 }
2483
2484 return 0;
2485 }
2486
2487 static int
2488 bge_blockinit(struct bge_softc *sc)
2489 {
2490 volatile struct bge_rcb *rcb;
2491 bus_size_t rcb_addr;
2492 struct ifnet *ifp = &sc->ethercom.ec_if;
2493 bge_hostaddr taddr;
2494 uint32_t dmactl, val;
2495 int i, limit;
2496
2497 /*
2498 * Initialize the memory window pointer register so that
2499 * we can access the first 32K of internal NIC RAM. This will
2500 * allow us to set up the TX send ring RCBs and the RX return
2501 * ring RCBs, plus other things which live in NIC memory.
2502 */
2503 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2504
2505 if (!BGE_IS_5705_PLUS(sc)) {
2506 /* 57XX step 33 */
2507 /* Configure mbuf memory pool */
2508 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2509 BGE_BUFFPOOL_1);
2510
2511 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2512 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2513 else
2514 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2515
2516 /* 57XX step 34 */
2517 /* Configure DMA resource pool */
2518 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2519 BGE_DMA_DESCRIPTORS);
2520 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2521 }
2522
2523 /* 5718 step 11, 57XX step 35 */
2524 /*
2525 * Configure mbuf pool watermarks. New broadcom docs strongly
2526 * recommend these.
2527 */
2528 if (BGE_IS_5717_PLUS(sc)) {
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2530 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2532 } else if (BGE_IS_5705_PLUS(sc)) {
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2534
2535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2536 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2537 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2538 } else {
2539 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2540 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2541 }
2542 } else {
2543 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2544 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2545 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2546 }
2547
2548 /* 57XX step 36 */
2549 /* Configure DMA resource watermarks */
2550 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2551 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2552
2553 /* 5718 step 13, 57XX step 38 */
2554 /* Enable buffer manager */
2555 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2556 /*
2557 * Change the arbitration algorithm of TXMBUF read request to
2558 * round-robin instead of priority based for BCM5719. When
2559 * TXFIFO is almost empty, RDMA will hold its request until
2560 * TXFIFO is not almost empty.
2561 */
2562 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2563 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2564 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2565 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2566 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2567 val |= BGE_BMANMODE_LOMBUF_ATTN;
2568 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2569
2570 /* 57XX step 39 */
2571 /* Poll for buffer manager start indication */
2572 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2573 DELAY(10);
2574 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2575 break;
2576 }
2577
2578 if (i == BGE_TIMEOUT * 2) {
2579 aprint_error_dev(sc->bge_dev,
2580 "buffer manager failed to start\n");
2581 return ENXIO;
2582 }
2583
2584 /* 57XX step 40 */
2585 /* Enable flow-through queues */
2586 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2587 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2588
2589 /* Wait until queue initialization is complete */
2590 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2591 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2592 break;
2593 DELAY(10);
2594 }
2595
2596 if (i == BGE_TIMEOUT * 2) {
2597 aprint_error_dev(sc->bge_dev,
2598 "flow-through queue init failed\n");
2599 return ENXIO;
2600 }
2601
2602 /*
2603 * Summary of rings supported by the controller:
2604 *
2605 * Standard Receive Producer Ring
2606 * - This ring is used to feed receive buffers for "standard"
2607 * sized frames (typically 1536 bytes) to the controller.
2608 *
2609 * Jumbo Receive Producer Ring
2610 * - This ring is used to feed receive buffers for jumbo sized
2611 * frames (i.e. anything bigger than the "standard" frames)
2612 * to the controller.
2613 *
2614 * Mini Receive Producer Ring
2615 * - This ring is used to feed receive buffers for "mini"
2616 * sized frames to the controller.
2617 * - This feature required external memory for the controller
2618 * but was never used in a production system. Should always
2619 * be disabled.
2620 *
2621 * Receive Return Ring
2622 * - After the controller has placed an incoming frame into a
2623 * receive buffer that buffer is moved into a receive return
2624 * ring. The driver is then responsible to passing the
2625 * buffer up to the stack. Many versions of the controller
2626 * support multiple RR rings.
2627 *
2628 * Send Ring
2629 * - This ring is used for outgoing frames. Many versions of
2630 * the controller support multiple send rings.
2631 */
2632
2633 /* 5718 step 15, 57XX step 41 */
2634 /* Initialize the standard RX ring control block */
2635 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2636 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2637 /* 5718 step 16 */
2638 if (BGE_IS_5717_PLUS(sc)) {
2639 /*
2640 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2641 * Bits 15-2 : Maximum RX frame size
2642 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2643 * Bit 0 : Reserved
2644 */
2645 rcb->bge_maxlen_flags =
2646 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2647 } else if (BGE_IS_5705_PLUS(sc)) {
2648 /*
2649 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2650 * Bits 15-2 : Reserved (should be 0)
2651 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2652 * Bit 0 : Reserved
2653 */
2654 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2655 } else {
2656 /*
2657 * Ring size is always XXX entries
2658 * Bits 31-16: Maximum RX frame size
2659 * Bits 15-2 : Reserved (should be 0)
2660 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2661 * Bit 0 : Reserved
2662 */
2663 rcb->bge_maxlen_flags =
2664 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2665 }
2666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2667 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2668 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2669 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2670 else
2671 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2672 /* Write the standard receive producer ring control block. */
2673 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2674 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2675 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2676 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2677
2678 /* Reset the standard receive producer ring producer index. */
2679 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2680
2681 /* 57XX step 42 */
2682 /*
2683 * Initialize the jumbo RX ring control block
2684 * We set the 'ring disabled' bit in the flags
2685 * field until we're actually ready to start
2686 * using this ring (i.e. once we set the MTU
2687 * high enough to require it).
2688 */
2689 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2690 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2691 BGE_HOSTADDR(rcb->bge_hostaddr,
2692 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2693 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2694 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2695 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2696 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2697 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2698 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2699 else
2700 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2701 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2702 rcb->bge_hostaddr.bge_addr_hi);
2703 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2704 rcb->bge_hostaddr.bge_addr_lo);
2705 /* Program the jumbo receive producer ring RCB parameters. */
2706 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2707 rcb->bge_maxlen_flags);
2708 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2709 /* Reset the jumbo receive producer ring producer index. */
2710 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2711 }
2712
2713 /* 57XX step 43 */
2714 /* Disable the mini receive producer ring RCB. */
2715 if (BGE_IS_5700_FAMILY(sc)) {
2716 /* Set up dummy disabled mini ring RCB */
2717 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2718 rcb->bge_maxlen_flags =
2719 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2720 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2721 rcb->bge_maxlen_flags);
2722 /* Reset the mini receive producer ring producer index. */
2723 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2724
2725 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2726 offsetof(struct bge_ring_data, bge_info),
2727 sizeof (struct bge_gib),
2728 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2729 }
2730
2731 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2732 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2733 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2734 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2735 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2736 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2737 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2738 }
2739 /* 5718 step 14, 57XX step 44 */
2740 /*
2741 * The BD ring replenish thresholds control how often the
2742 * hardware fetches new BD's from the producer rings in host
2743 * memory. Setting the value too low on a busy system can
2744 * starve the hardware and recue the throughpout.
2745 *
2746 * Set the BD ring replenish thresholds. The recommended
2747 * values are 1/8th the number of descriptors allocated to
2748 * each ring, but since we try to avoid filling the entire
2749 * ring we set these to the minimal value of 8. This needs to
2750 * be done on several of the supported chip revisions anyway,
2751 * to work around HW bugs.
2752 */
2753 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2754 if (BGE_IS_JUMBO_CAPABLE(sc))
2755 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2756
2757 /* 5718 step 18 */
2758 if (BGE_IS_5717_PLUS(sc)) {
2759 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2760 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2761 }
2762
2763 /* 57XX step 45 */
2764 /*
2765 * Disable all send rings by setting the 'ring disabled' bit
2766 * in the flags field of all the TX send ring control blocks,
2767 * located in NIC memory.
2768 */
2769 if (BGE_IS_5700_FAMILY(sc)) {
2770 /* 5700 to 5704 had 16 send rings. */
2771 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2772 } else
2773 limit = 1;
2774 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2775 for (i = 0; i < limit; i++) {
2776 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2777 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2778 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2779 rcb_addr += sizeof(struct bge_rcb);
2780 }
2781
2782 /* 57XX step 46 and 47 */
2783 /* Configure send ring RCB 0 (we use only the first ring) */
2784 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2785 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2786 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2787 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2788 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2789 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2790 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2791 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2792 else
2793 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2794 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2795 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2796 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2797
2798 /* 57XX step 48 */
2799 /*
2800 * Disable all receive return rings by setting the
2801 * 'ring diabled' bit in the flags field of all the receive
2802 * return ring control blocks, located in NIC memory.
2803 */
2804 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2805 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2806 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2807 /* Should be 17, use 16 until we get an SRAM map. */
2808 limit = 16;
2809 } else if (BGE_IS_5700_FAMILY(sc))
2810 limit = BGE_RX_RINGS_MAX;
2811 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2812 BGE_IS_57765_PLUS(sc))
2813 limit = 4;
2814 else
2815 limit = 1;
2816 /* Disable all receive return rings */
2817 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2818 for (i = 0; i < limit; i++) {
2819 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2820 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2821 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2822 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2823 BGE_RCB_FLAG_RING_DISABLED));
2824 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2825 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2826 (i * (sizeof(uint64_t))), 0);
2827 rcb_addr += sizeof(struct bge_rcb);
2828 }
2829
2830 /* 57XX step 49 */
2831 /*
2832 * Set up receive return ring 0. Note that the NIC address
2833 * for RX return rings is 0x0. The return rings live entirely
2834 * within the host, so the nicaddr field in the RCB isn't used.
2835 */
2836 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2837 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2838 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2839 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2840 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2841 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2842 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2843
2844 /* 5718 step 24, 57XX step 53 */
2845 /* Set random backoff seed for TX */
2846 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2847 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2848 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2849 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2850 BGE_TX_BACKOFF_SEED_MASK);
2851
2852 /* 5718 step 26, 57XX step 55 */
2853 /* Set inter-packet gap */
2854 val = 0x2620;
2855 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2856 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2857 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2858 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2859
2860 /* 5718 step 27, 57XX step 56 */
2861 /*
2862 * Specify which ring to use for packets that don't match
2863 * any RX rules.
2864 */
2865 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2866
2867 /* 5718 step 28, 57XX step 57 */
2868 /*
2869 * Configure number of RX lists. One interrupt distribution
2870 * list, sixteen active lists, one bad frames class.
2871 */
2872 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2873
2874 /* 5718 step 29, 57XX step 58 */
2875 /* Inialize RX list placement stats mask. */
2876 if (BGE_IS_575X_PLUS(sc)) {
2877 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2878 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2879 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2880 } else
2881 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2882
2883 /* 5718 step 30, 57XX step 59 */
2884 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2885
2886 /* 5718 step 33, 57XX step 62 */
2887 /* Disable host coalescing until we get it set up */
2888 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2889
2890 /* 5718 step 34, 57XX step 63 */
2891 /* Poll to make sure it's shut down. */
2892 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2893 DELAY(10);
2894 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2895 break;
2896 }
2897
2898 if (i == BGE_TIMEOUT * 2) {
2899 aprint_error_dev(sc->bge_dev,
2900 "host coalescing engine failed to idle\n");
2901 return ENXIO;
2902 }
2903
2904 /* 5718 step 35, 36, 37 */
2905 /* Set up host coalescing defaults */
2906 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2907 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2908 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2909 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2910 if (!(BGE_IS_5705_PLUS(sc))) {
2911 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2912 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2913 }
2914 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2915 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2916
2917 /* Set up address of statistics block */
2918 if (BGE_IS_5700_FAMILY(sc)) {
2919 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2920 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2921 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2922 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2923 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2924 }
2925
2926 /* 5718 step 38 */
2927 /* Set up address of status block */
2928 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2929 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2930 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2931 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2932 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2933 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2934
2935 /* Set up status block size. */
2936 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2937 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2938 val = BGE_STATBLKSZ_FULL;
2939 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2940 } else {
2941 val = BGE_STATBLKSZ_32BYTE;
2942 bzero(&sc->bge_rdata->bge_status_block, 32);
2943 }
2944
2945 /* 5718 step 39, 57XX step 73 */
2946 /* Turn on host coalescing state machine */
2947 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2948
2949 /* 5718 step 40, 57XX step 74 */
2950 /* Turn on RX BD completion state machine and enable attentions */
2951 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2952 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2953
2954 /* 5718 step 41, 57XX step 75 */
2955 /* Turn on RX list placement state machine */
2956 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2957
2958 /* 57XX step 76 */
2959 /* Turn on RX list selector state machine. */
2960 if (!(BGE_IS_5705_PLUS(sc)))
2961 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2962
2963 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2964 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2965 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2966 BGE_MACMODE_FRMHDR_DMA_ENB;
2967
2968 if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2969 val |= BGE_PORTMODE_TBI;
2970 else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2971 val |= BGE_PORTMODE_GMII;
2972 else
2973 val |= BGE_PORTMODE_MII;
2974
2975 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2976 /* Allow APE to send/receive frames. */
2977 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2978 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2979
2980 /* Turn on DMA, clear stats */
2981 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2982 /* 5718 step 44 */
2983 DELAY(40);
2984
2985 /* 5718 step 45, 57XX step 79 */
2986 /* Set misc. local control, enable interrupts on attentions */
2987 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2988 if (BGE_IS_5717_PLUS(sc)) {
2989 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2990 /* 5718 step 46 */
2991 DELAY(100);
2992 }
2993
2994 /* 57XX step 81 */
2995 /* Turn on DMA completion state machine */
2996 if (!(BGE_IS_5705_PLUS(sc)))
2997 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2998
2999 /* 5718 step 47, 57XX step 82 */
3000 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3001
3002 /* 5718 step 48 */
3003 /* Enable host coalescing bug fix. */
3004 if (BGE_IS_5755_PLUS(sc))
3005 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3006
3007 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3008 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3009
3010 /* Turn on write DMA state machine */
3011 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3012 /* 5718 step 49 */
3013 DELAY(40);
3014
3015 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3016
3017 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3018 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3019
3020 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3021 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3022 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3023 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3024 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3025 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3026
3027 if (sc->bge_flags & BGE_PCIE)
3028 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3029 if (sc->bge_flags & BGE_TSO)
3030 val |= BGE_RDMAMODE_TSO4_ENABLE;
3031
3032 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3033 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3034 BGE_RDMAMODE_H2BNC_VLAN_DET;
3035 /*
3036 * Allow multiple outstanding read requests from
3037 * non-LSO read DMA engine.
3038 */
3039 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3040 }
3041
3042 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3044 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3045 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3046 BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
3047 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3048 /*
3049 * Adjust tx margin to prevent TX data corruption and
3050 * fix internal FIFO overflow.
3051 */
3052 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3053 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3054 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3055 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3056 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3057 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3058 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3059 }
3060 /*
3061 * Enable fix for read DMA FIFO overruns.
3062 * The fix is to limit the number of RX BDs
3063 * the hardware would fetch at a fime.
3064 */
3065 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3066 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3067 }
3068
3069 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3070 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3071 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3072 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3073 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3074 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3075 /*
3076 * Allow 4KB burst length reads for non-LSO frames.
3077 * Enable 512B burst length reads for buffer descriptors.
3078 */
3079 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3080 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3081 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3082 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3083 }
3084
3085 /* Turn on read DMA state machine */
3086 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3087 /* 5718 step 52 */
3088 delay(40);
3089
3090 /* 5718 step 56, 57XX step 84 */
3091 /* Turn on RX data completion state machine */
3092 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3093
3094 /* Turn on RX data and RX BD initiator state machine */
3095 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3096
3097 /* 57XX step 85 */
3098 /* Turn on Mbuf cluster free state machine */
3099 if (!BGE_IS_5705_PLUS(sc))
3100 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3101
3102 /* 5718 step 57, 57XX step 86 */
3103 /* Turn on send data completion state machine */
3104 val = BGE_SDCMODE_ENABLE;
3105 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3106 val |= BGE_SDCMODE_CDELAY;
3107 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3108
3109 /* 5718 step 58 */
3110 /* Turn on send BD completion state machine */
3111 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3112
3113 /* 57XX step 88 */
3114 /* Turn on RX BD initiator state machine */
3115 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3116
3117 /* 5718 step 60, 57XX step 90 */
3118 /* Turn on send data initiator state machine */
3119 if (sc->bge_flags & BGE_TSO) {
3120 /* XXX: magic value from Linux driver */
3121 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3122 BGE_SDIMODE_HW_LSO_PRE_DMA);
3123 } else
3124 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3125
3126 /* 5718 step 61, 57XX step 91 */
3127 /* Turn on send BD initiator state machine */
3128 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3129
3130 /* 5718 step 62, 57XX step 92 */
3131 /* Turn on send BD selector state machine */
3132 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3133
3134 /* 5718 step 31, 57XX step 60 */
3135 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3136 /* 5718 step 32, 57XX step 61 */
3137 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3138 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3139
3140 /* ack/clear link change events */
3141 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3142 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3143 BGE_MACSTAT_LINK_CHANGED);
3144 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3145
3146 /*
3147 * Enable attention when the link has changed state for
3148 * devices that use auto polling.
3149 */
3150 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3151 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3152 } else {
3153 /* 5718 step 68 */
3154 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3155 /* 5718 step 69 (optionally) */
3156 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3157 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3158 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3159 BGE_EVTENB_MI_INTERRUPT);
3160 }
3161
3162 /*
3163 * Clear any pending link state attention.
3164 * Otherwise some link state change events may be lost until attention
3165 * is cleared by bge_intr() -> bge_link_upd() sequence.
3166 * It's not necessary on newer BCM chips - perhaps enabling link
3167 * state change attentions implies clearing pending attention.
3168 */
3169 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3170 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3171 BGE_MACSTAT_LINK_CHANGED);
3172
3173 /* Enable link state change attentions. */
3174 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3175
3176 return 0;
3177 }
3178
3179 static const struct bge_revision *
3180 bge_lookup_rev(uint32_t chipid)
3181 {
3182 const struct bge_revision *br;
3183
3184 for (br = bge_revisions; br->br_name != NULL; br++) {
3185 if (br->br_chipid == chipid)
3186 return br;
3187 }
3188
3189 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3190 if (br->br_chipid == BGE_ASICREV(chipid))
3191 return br;
3192 }
3193
3194 return NULL;
3195 }
3196
3197 static const struct bge_product *
3198 bge_lookup(const struct pci_attach_args *pa)
3199 {
3200 const struct bge_product *bp;
3201
3202 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3203 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3204 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3205 return bp;
3206 }
3207
3208 return NULL;
3209 }
3210
3211 static uint32_t
3212 bge_chipid(const struct pci_attach_args *pa)
3213 {
3214 uint32_t id;
3215
3216 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3217 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3218
3219 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3220 switch (PCI_PRODUCT(pa->pa_id)) {
3221 case PCI_PRODUCT_BROADCOM_BCM5717:
3222 case PCI_PRODUCT_BROADCOM_BCM5718:
3223 case PCI_PRODUCT_BROADCOM_BCM5719:
3224 case PCI_PRODUCT_BROADCOM_BCM5720:
3225 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3226 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3227 BGE_PCI_GEN2_PRODID_ASICREV);
3228 break;
3229 case PCI_PRODUCT_BROADCOM_BCM57761:
3230 case PCI_PRODUCT_BROADCOM_BCM57762:
3231 case PCI_PRODUCT_BROADCOM_BCM57765:
3232 case PCI_PRODUCT_BROADCOM_BCM57766:
3233 case PCI_PRODUCT_BROADCOM_BCM57781:
3234 case PCI_PRODUCT_BROADCOM_BCM57785:
3235 case PCI_PRODUCT_BROADCOM_BCM57791:
3236 case PCI_PRODUCT_BROADCOM_BCM57795:
3237 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3238 BGE_PCI_GEN15_PRODID_ASICREV);
3239 break;
3240 default:
3241 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3242 BGE_PCI_PRODID_ASICREV);
3243 break;
3244 }
3245 }
3246
3247 return id;
3248 }
3249
3250 /*
3251 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3252 * against our list and return its name if we find a match. Note
3253 * that since the Broadcom controller contains VPD support, we
3254 * can get the device name string from the controller itself instead
3255 * of the compiled-in string. This is a little slow, but it guarantees
3256 * we'll always announce the right product name.
3257 */
3258 static int
3259 bge_probe(device_t parent, cfdata_t match, void *aux)
3260 {
3261 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3262
3263 if (bge_lookup(pa) != NULL)
3264 return 1;
3265
3266 return 0;
3267 }
3268
3269 static void
3270 bge_attach(device_t parent, device_t self, void *aux)
3271 {
3272 struct bge_softc *sc = device_private(self);
3273 struct pci_attach_args *pa = aux;
3274 prop_dictionary_t dict;
3275 const struct bge_product *bp;
3276 const struct bge_revision *br;
3277 pci_chipset_tag_t pc;
3278 pci_intr_handle_t ih;
3279 const char *intrstr = NULL;
3280 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4;
3281 uint32_t command;
3282 struct ifnet *ifp;
3283 uint32_t misccfg, mimode;
3284 void * kva;
3285 u_char eaddr[ETHER_ADDR_LEN];
3286 pcireg_t memtype, subid, reg;
3287 bus_addr_t memaddr;
3288 uint32_t pm_ctl;
3289 bool no_seeprom;
3290 int capmask;
3291
3292 bp = bge_lookup(pa);
3293 KASSERT(bp != NULL);
3294
3295 sc->sc_pc = pa->pa_pc;
3296 sc->sc_pcitag = pa->pa_tag;
3297 sc->bge_dev = self;
3298
3299 sc->bge_pa = *pa;
3300 pc = sc->sc_pc;
3301 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3302
3303 aprint_naive(": Ethernet controller\n");
3304 aprint_normal(": %s\n", bp->bp_name);
3305
3306 /*
3307 * Map control/status registers.
3308 */
3309 DPRINTFN(5, ("Map control/status regs\n"));
3310 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3311 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3312 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3313 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3314
3315 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3316 aprint_error_dev(sc->bge_dev,
3317 "failed to enable memory mapping!\n");
3318 return;
3319 }
3320
3321 DPRINTFN(5, ("pci_mem_find\n"));
3322 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3323 switch (memtype) {
3324 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3325 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3326 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3327 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3328 &memaddr, &sc->bge_bsize) == 0)
3329 break;
3330 default:
3331 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3332 return;
3333 }
3334
3335 DPRINTFN(5, ("pci_intr_map\n"));
3336 if (pci_intr_map(pa, &ih)) {
3337 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3338 return;
3339 }
3340
3341 DPRINTFN(5, ("pci_intr_string\n"));
3342 intrstr = pci_intr_string(pc, ih);
3343
3344 DPRINTFN(5, ("pci_intr_establish\n"));
3345 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3346
3347 if (sc->bge_intrhand == NULL) {
3348 aprint_error_dev(sc->bge_dev,
3349 "couldn't establish interrupt%s%s\n",
3350 intrstr ? " at " : "", intrstr ? intrstr : "");
3351 return;
3352 }
3353 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3354
3355 /* Save various chip information. */
3356 sc->bge_chipid = bge_chipid(pa);
3357 sc->bge_phy_addr = bge_phy_addr(sc);
3358
3359 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3360 &sc->bge_pciecap, NULL) != 0)
3361 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3362 /* PCIe */
3363 sc->bge_flags |= BGE_PCIE;
3364 /* Extract supported maximum payload size. */
3365 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3366 sc->bge_pciecap + PCIE_DCAP);
3367 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3369 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3370 sc->bge_expmrq = 2048;
3371 else
3372 sc->bge_expmrq = 4096;
3373 bge_set_max_readrq(sc);
3374 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3375 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3376 /* PCI-X */
3377 sc->bge_flags |= BGE_PCIX;
3378 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3379 &sc->bge_pcixcap, NULL) == 0)
3380 aprint_error_dev(sc->bge_dev,
3381 "unable to find PCIX capability\n");
3382 }
3383
3384 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3385 /*
3386 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3387 * can clobber the chip's PCI config-space power control
3388 * registers, leaving the card in D3 powersave state. We do
3389 * not have memory-mapped registers in this state, so force
3390 * device into D0 state before starting initialization.
3391 */
3392 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3393 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3394 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3395 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3396 DELAY(1000); /* 27 usec is allegedly sufficent */
3397 }
3398
3399 /* Save chipset family. */
3400 switch (BGE_ASICREV(sc->bge_chipid)) {
3401 case BGE_ASICREV_BCM57765:
3402 case BGE_ASICREV_BCM57766:
3403 sc->bge_flags |= BGE_57765_PLUS;
3404 /* FALLTHROUGH */
3405 case BGE_ASICREV_BCM5717:
3406 case BGE_ASICREV_BCM5719:
3407 case BGE_ASICREV_BCM5720:
3408 sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS |
3409 BGE_575X_PLUS | BGE_5705_PLUS | BGE_JUMBO_CAPABLE;
3410 /* Jumbo frame on BCM5719 A0 does not work. */
3411 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3412 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3413 sc->bge_flags &= ~BGE_JUMBO_CAPABLE;
3414 break;
3415 case BGE_ASICREV_BCM5755:
3416 case BGE_ASICREV_BCM5761:
3417 case BGE_ASICREV_BCM5784:
3418 case BGE_ASICREV_BCM5785:
3419 case BGE_ASICREV_BCM5787:
3420 case BGE_ASICREV_BCM57780:
3421 sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3422 break;
3423 case BGE_ASICREV_BCM5700:
3424 case BGE_ASICREV_BCM5701:
3425 case BGE_ASICREV_BCM5703:
3426 case BGE_ASICREV_BCM5704:
3427 sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3428 break;
3429 case BGE_ASICREV_BCM5714_A0:
3430 case BGE_ASICREV_BCM5780:
3431 case BGE_ASICREV_BCM5714:
3432 sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE;
3433 /* FALLTHROUGH */
3434 case BGE_ASICREV_BCM5750:
3435 case BGE_ASICREV_BCM5752:
3436 case BGE_ASICREV_BCM5906:
3437 sc->bge_flags |= BGE_575X_PLUS;
3438 /* FALLTHROUGH */
3439 case BGE_ASICREV_BCM5705:
3440 sc->bge_flags |= BGE_5705_PLUS;
3441 break;
3442 }
3443
3444 /* Identify chips with APE processor. */
3445 switch (BGE_ASICREV(sc->bge_chipid)) {
3446 case BGE_ASICREV_BCM5717:
3447 case BGE_ASICREV_BCM5719:
3448 case BGE_ASICREV_BCM5720:
3449 case BGE_ASICREV_BCM5761:
3450 sc->bge_flags |= BGE_APE;
3451 break;
3452 }
3453
3454 /* Chips with APE need BAR2 access for APE registers/memory. */
3455 if ((sc->bge_flags & BGE_APE) != 0) {
3456 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3457 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3458 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3459 &sc->bge_apesize)) {
3460 aprint_error_dev(sc->bge_dev,
3461 "couldn't map BAR2 memory\n");
3462 return;
3463 }
3464
3465 /* Enable APE register/memory access by host driver. */
3466 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3467 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3468 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3469 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3470 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3471
3472 bge_ape_lock_init(sc);
3473 bge_ape_read_fw_ver(sc);
3474 }
3475
3476 /* Identify the chips that use an CPMU. */
3477 if (BGE_IS_5717_PLUS(sc) ||
3478 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3479 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3480 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3481 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3482 sc->bge_flags |= BGE_CPMU_PRESENT;
3483
3484 /* Set MI_MODE */
3485 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3486 if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3487 mimode |= BGE_MIMODE_500KHZ_CONST;
3488 else
3489 mimode |= BGE_MIMODE_BASE;
3490 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3491
3492 /*
3493 * When using the BCM5701 in PCI-X mode, data corruption has
3494 * been observed in the first few bytes of some received packets.
3495 * Aligning the packet buffer in memory eliminates the corruption.
3496 * Unfortunately, this misaligns the packet payloads. On platforms
3497 * which do not support unaligned accesses, we will realign the
3498 * payloads by copying the received packets.
3499 */
3500 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3501 sc->bge_flags & BGE_PCIX)
3502 sc->bge_flags |= BGE_RX_ALIGNBUG;
3503
3504 if (BGE_IS_5700_FAMILY(sc))
3505 sc->bge_flags |= BGE_JUMBO_CAPABLE;
3506
3507 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3508 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3509
3510 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3511 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3512 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3513 sc->bge_flags |= BGE_IS_5788;
3514
3515 /*
3516 * Some controllers seem to require a special firmware to use
3517 * TSO. But the firmware is not available to FreeBSD and Linux
3518 * claims that the TSO performed by the firmware is slower than
3519 * hardware based TSO. Moreover the firmware based TSO has one
3520 * known bug which can't handle TSO if ethernet header + IP/TCP
3521 * header is greater than 80 bytes. The workaround for the TSO
3522 * bug exist but it seems it's too expensive than not using
3523 * TSO at all. Some hardwares also have the TSO bug so limit
3524 * the TSO to the controllers that are not affected TSO issues
3525 * (e.g. 5755 or higher).
3526 */
3527 if (BGE_IS_5755_PLUS(sc)) {
3528 /*
3529 * BCM5754 and BCM5787 shares the same ASIC id so
3530 * explicit device id check is required.
3531 */
3532 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3533 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3534 sc->bge_flags |= BGE_TSO;
3535 }
3536
3537 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3538 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3539 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3540 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3541 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3542 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3543 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3544 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3545 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3546 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3548 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3549 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3550 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3551 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3552 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3553 capmask &= ~BMSR_EXTSTAT;
3554 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3555 }
3556
3557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3558 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3559 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3560 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3561 sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3562
3563 /* Set various PHY bug flags. */
3564 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3565 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3566 sc->bge_flags |= BGE_PHY_CRC_BUG;
3567 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3568 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3569 sc->bge_flags |= BGE_PHY_ADC_BUG;
3570 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3571 sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3572 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3574 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3575 sc->bge_flags |= BGE_PHY_NO_3LED;
3576 if (BGE_IS_5705_PLUS(sc) &&
3577 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3578 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3579 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3580 !BGE_IS_5717_PLUS(sc)) {
3581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3582 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3583 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3585 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3586 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3587 sc->bge_flags |= BGE_PHY_JITTER_BUG;
3588 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3589 sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3590 } else
3591 sc->bge_flags |= BGE_PHY_BER_BUG;
3592 }
3593
3594 /*
3595 * SEEPROM check.
3596 * First check if firmware knows we do not have SEEPROM.
3597 */
3598 if (prop_dictionary_get_bool(device_properties(self),
3599 "without-seeprom", &no_seeprom) && no_seeprom)
3600 sc->bge_flags |= BGE_NO_EEPROM;
3601
3602 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3603 sc->bge_flags |= BGE_NO_EEPROM;
3604
3605 /* Now check the 'ROM failed' bit on the RX CPU */
3606 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3607 sc->bge_flags |= BGE_NO_EEPROM;
3608
3609 sc->bge_asf_mode = 0;
3610 /* No ASF if APE present. */
3611 if ((sc->bge_flags & BGE_APE) == 0) {
3612 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3613 BGE_SRAM_DATA_SIG_MAGIC)) {
3614 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3615 BGE_HWCFG_ASF) {
3616 sc->bge_asf_mode |= ASF_ENABLE;
3617 sc->bge_asf_mode |= ASF_STACKUP;
3618 if (BGE_IS_575X_PLUS(sc))
3619 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3620 }
3621 }
3622 }
3623
3624 /*
3625 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3626 * lock in bge_reset().
3627 */
3628 CSR_WRITE_4(sc, BGE_EE_ADDR,
3629 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3630 delay(1000);
3631 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3632
3633 bge_stop_fw(sc);
3634 bge_sig_pre_reset(sc, BGE_RESET_START);
3635 if (bge_reset(sc))
3636 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3637
3638 /*
3639 * Read the hardware config word in the first 32k of NIC internal
3640 * memory, or fall back to the config word in the EEPROM.
3641 * Note: on some BCM5700 cards, this value appears to be unset.
3642 */
3643 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3644 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3645 BGE_SRAM_DATA_SIG_MAGIC) {
3646 uint32_t tmp;
3647
3648 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3649 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3650 BGE_SRAM_DATA_VER_SHIFT;
3651 if ((0 < tmp) && (tmp < 0x100))
3652 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3653 if (sc->bge_flags & BGE_PCIE)
3654 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3655 if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3656 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3657 } else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3658 bge_read_eeprom(sc, (void *)&hwcfg,
3659 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3660 hwcfg = be32toh(hwcfg);
3661 }
3662 aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3663 hwcfg, hwcfg2, hwcfg3, hwcfg4);
3664
3665 bge_sig_legacy(sc, BGE_RESET_START);
3666 bge_sig_post_reset(sc, BGE_RESET_START);
3667
3668 if (bge_chipinit(sc)) {
3669 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3670 bge_release_resources(sc);
3671 return;
3672 }
3673
3674 /*
3675 * Get station address from the EEPROM.
3676 */
3677 if (bge_get_eaddr(sc, eaddr)) {
3678 aprint_error_dev(sc->bge_dev,
3679 "failed to read station address\n");
3680 bge_release_resources(sc);
3681 return;
3682 }
3683
3684 br = bge_lookup_rev(sc->bge_chipid);
3685
3686 if (br == NULL) {
3687 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3688 sc->bge_chipid);
3689 } else {
3690 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3691 br->br_name, sc->bge_chipid);
3692 }
3693 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3694
3695 /* Allocate the general information block and ring buffers. */
3696 if (pci_dma64_available(pa))
3697 sc->bge_dmatag = pa->pa_dmat64;
3698 else
3699 sc->bge_dmatag = pa->pa_dmat;
3700 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3701 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3702 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3703 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3704 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3705 return;
3706 }
3707 DPRINTFN(5, ("bus_dmamem_map\n"));
3708 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3709 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3710 BUS_DMA_NOWAIT)) {
3711 aprint_error_dev(sc->bge_dev,
3712 "can't map DMA buffers (%zu bytes)\n",
3713 sizeof(struct bge_ring_data));
3714 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3715 sc->bge_ring_rseg);
3716 return;
3717 }
3718 DPRINTFN(5, ("bus_dmamem_create\n"));
3719 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3720 sizeof(struct bge_ring_data), 0,
3721 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3722 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3723 bus_dmamem_unmap(sc->bge_dmatag, kva,
3724 sizeof(struct bge_ring_data));
3725 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3726 sc->bge_ring_rseg);
3727 return;
3728 }
3729 DPRINTFN(5, ("bus_dmamem_load\n"));
3730 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3731 sizeof(struct bge_ring_data), NULL,
3732 BUS_DMA_NOWAIT)) {
3733 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3734 bus_dmamem_unmap(sc->bge_dmatag, kva,
3735 sizeof(struct bge_ring_data));
3736 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3737 sc->bge_ring_rseg);
3738 return;
3739 }
3740
3741 DPRINTFN(5, ("bzero\n"));
3742 sc->bge_rdata = (struct bge_ring_data *)kva;
3743
3744 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3745
3746 /* Try to allocate memory for jumbo buffers. */
3747 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3748 if (bge_alloc_jumbo_mem(sc)) {
3749 aprint_error_dev(sc->bge_dev,
3750 "jumbo buffer allocation failed\n");
3751 } else
3752 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3753 }
3754
3755 /* Set default tuneable values. */
3756 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3757 sc->bge_rx_coal_ticks = 150;
3758 sc->bge_rx_max_coal_bds = 64;
3759 sc->bge_tx_coal_ticks = 300;
3760 sc->bge_tx_max_coal_bds = 400;
3761 if (BGE_IS_5705_PLUS(sc)) {
3762 sc->bge_tx_coal_ticks = (12 * 5);
3763 sc->bge_tx_max_coal_bds = (12 * 5);
3764 aprint_verbose_dev(sc->bge_dev,
3765 "setting short Tx thresholds\n");
3766 }
3767
3768 if (BGE_IS_5717_PLUS(sc))
3769 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3770 else if (BGE_IS_5705_PLUS(sc))
3771 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3772 else
3773 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3774
3775 /* Set up ifnet structure */
3776 ifp = &sc->ethercom.ec_if;
3777 ifp->if_softc = sc;
3778 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3779 ifp->if_ioctl = bge_ioctl;
3780 ifp->if_stop = bge_stop;
3781 ifp->if_start = bge_start;
3782 ifp->if_init = bge_init;
3783 ifp->if_watchdog = bge_watchdog;
3784 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3785 IFQ_SET_READY(&ifp->if_snd);
3786 DPRINTFN(5, ("strcpy if_xname\n"));
3787 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3788
3789 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3790 sc->ethercom.ec_if.if_capabilities |=
3791 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3792 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3793 sc->ethercom.ec_if.if_capabilities |=
3794 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3795 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3796 #endif
3797 sc->ethercom.ec_capabilities |=
3798 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3799
3800 if (sc->bge_flags & BGE_TSO)
3801 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3802
3803 /*
3804 * Do MII setup.
3805 */
3806 DPRINTFN(5, ("mii setup\n"));
3807 sc->bge_mii.mii_ifp = ifp;
3808 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3809 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3810 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3811
3812 /*
3813 * Figure out what sort of media we have by checking the hardware
3814 * config word. Note: on some BCM5700 cards, this value appears to be
3815 * unset. If that's the case, we have to rely on identifying the NIC
3816 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3817 * The SysKonnect SK-9D41 is a 1000baseSX card.
3818 */
3819 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3820 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3821 if (BGE_IS_5714_FAMILY(sc))
3822 sc->bge_flags |= BGE_PHY_FIBER_MII;
3823 else
3824 sc->bge_flags |= BGE_PHY_FIBER_TBI;
3825 }
3826
3827 /* set phyflags and chipid before mii_attach() */
3828 dict = device_properties(self);
3829 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3830 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3831
3832 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3833 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3834 bge_ifmedia_sts);
3835 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3836 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3837 0, NULL);
3838 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3839 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3840 /* Pretend the user requested this setting */
3841 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3842 } else {
3843 /*
3844 * Do transceiver setup and tell the firmware the
3845 * driver is down so we can try to get access the
3846 * probe if ASF is running. Retry a couple of times
3847 * if we get a conflict with the ASF firmware accessing
3848 * the PHY.
3849 */
3850 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3851 bge_asf_driver_up(sc);
3852
3853 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3854 bge_ifmedia_sts);
3855 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3856 sc->bge_phy_addr, MII_OFFSET_ANY,
3857 MIIF_DOPAUSE);
3858
3859 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3860 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3861 ifmedia_add(&sc->bge_mii.mii_media,
3862 IFM_ETHER|IFM_MANUAL, 0, NULL);
3863 ifmedia_set(&sc->bge_mii.mii_media,
3864 IFM_ETHER|IFM_MANUAL);
3865 } else
3866 ifmedia_set(&sc->bge_mii.mii_media,
3867 IFM_ETHER|IFM_AUTO);
3868
3869 /*
3870 * Now tell the firmware we are going up after probing the PHY
3871 */
3872 if (sc->bge_asf_mode & ASF_STACKUP)
3873 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3874 }
3875
3876 /*
3877 * Call MI attach routine.
3878 */
3879 DPRINTFN(5, ("if_attach\n"));
3880 if_attach(ifp);
3881 DPRINTFN(5, ("ether_ifattach\n"));
3882 ether_ifattach(ifp, eaddr);
3883 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3884 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3885 RND_TYPE_NET, 0);
3886 #ifdef BGE_EVENT_COUNTERS
3887 /*
3888 * Attach event counters.
3889 */
3890 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3891 NULL, device_xname(sc->bge_dev), "intr");
3892 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3893 NULL, device_xname(sc->bge_dev), "tx_xoff");
3894 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3895 NULL, device_xname(sc->bge_dev), "tx_xon");
3896 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3897 NULL, device_xname(sc->bge_dev), "rx_xoff");
3898 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3899 NULL, device_xname(sc->bge_dev), "rx_xon");
3900 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3901 NULL, device_xname(sc->bge_dev), "rx_macctl");
3902 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3903 NULL, device_xname(sc->bge_dev), "xoffentered");
3904 #endif /* BGE_EVENT_COUNTERS */
3905 DPRINTFN(5, ("callout_init\n"));
3906 callout_init(&sc->bge_timeout, 0);
3907
3908 if (pmf_device_register(self, NULL, NULL))
3909 pmf_class_network_register(self, ifp);
3910 else
3911 aprint_error_dev(self, "couldn't establish power handler\n");
3912
3913 bge_sysctl_init(sc);
3914
3915 #ifdef BGE_DEBUG
3916 bge_debug_info(sc);
3917 #endif
3918 }
3919
3920 /*
3921 * Stop all chip I/O so that the kernel's probe routines don't
3922 * get confused by errant DMAs when rebooting.
3923 */
3924 static int
3925 bge_detach(device_t self, int flags __unused)
3926 {
3927 struct bge_softc *sc = device_private(self);
3928 struct ifnet *ifp = &sc->ethercom.ec_if;
3929 int s;
3930
3931 s = splnet();
3932 /* Stop the interface. Callouts are stopped in it. */
3933 bge_stop(ifp, 1);
3934 splx(s);
3935
3936 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3937
3938 /* Delete all remaining media. */
3939 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3940
3941 ether_ifdetach(ifp);
3942 if_detach(ifp);
3943
3944 bge_release_resources(sc);
3945
3946 return 0;
3947 }
3948
3949 static void
3950 bge_release_resources(struct bge_softc *sc)
3951 {
3952
3953 /* Disestablish the interrupt handler */
3954 if (sc->bge_intrhand != NULL) {
3955 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3956 sc->bge_intrhand = NULL;
3957 }
3958
3959 if (sc->bge_dmatag != NULL) {
3960 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3961 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3962 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3963 sizeof(struct bge_ring_data));
3964 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3965 }
3966
3967 /* Unmap the device registers */
3968 if (sc->bge_bsize != 0) {
3969 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3970 sc->bge_bsize = 0;
3971 }
3972
3973 /* Unmap the APE registers */
3974 if (sc->bge_apesize != 0) {
3975 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3976 sc->bge_apesize);
3977 sc->bge_apesize = 0;
3978 }
3979 }
3980
3981 static int
3982 bge_reset(struct bge_softc *sc)
3983 {
3984 uint32_t cachesize, command;
3985 uint32_t reset, mac_mode, mac_mode_mask;
3986 pcireg_t devctl, reg;
3987 int i, val;
3988 void (*write_op)(struct bge_softc *, int, int);
3989
3990 /* Make mask for BGE_MAC_MODE register. */
3991 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3993 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3994 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
3995 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3996
3997 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3998 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3999 if (sc->bge_flags & BGE_PCIE)
4000 write_op = bge_writemem_direct;
4001 else
4002 write_op = bge_writemem_ind;
4003 } else
4004 write_op = bge_writereg_ind;
4005
4006 /* 57XX step 4 */
4007 /* Acquire the NVM lock */
4008 if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
4009 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4010 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4011 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4012 for (i = 0; i < 8000; i++) {
4013 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4014 BGE_NVRAMSWARB_GNT1)
4015 break;
4016 DELAY(20);
4017 }
4018 if (i == 8000) {
4019 printf("%s: NVRAM lock timedout!\n",
4020 device_xname(sc->bge_dev));
4021 }
4022 }
4023
4024 /* Take APE lock when performing reset. */
4025 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4026
4027 /* 57XX step 3 */
4028 /* Save some important PCI state. */
4029 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4030 /* 5718 reset step 3 */
4031 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4032
4033 /* 5718 reset step 5, 57XX step 5b-5d */
4034 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4035 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4036 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4037
4038 /* XXX ???: Disable fastboot on controllers that support it. */
4039 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4040 BGE_IS_5755_PLUS(sc))
4041 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4042
4043 /* 5718 reset step 2, 57XX step 6 */
4044 /*
4045 * Write the magic number to SRAM at offset 0xB50.
4046 * When firmware finishes its initialization it will
4047 * write ~BGE_MAGIC_NUMBER to the same location.
4048 */
4049 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4050
4051 /* 5718 reset step 6, 57XX step 7 */
4052 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4053 /*
4054 * XXX: from FreeBSD/Linux; no documentation
4055 */
4056 if (sc->bge_flags & BGE_PCIE) {
4057 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4058 !BGE_IS_57765_PLUS(sc) &&
4059 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4060 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4061 /* PCI Express 1.0 system */
4062 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4063 BGE_PHY_PCIE_SCRAM_MODE);
4064 }
4065 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4066 /*
4067 * Prevent PCI Express link training
4068 * during global reset.
4069 */
4070 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4071 reset |= (1 << 29);
4072 }
4073 }
4074
4075 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4076 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4077 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4078 i | BGE_VCPU_STATUS_DRV_RESET);
4079 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4080 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4081 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4082 }
4083
4084 /*
4085 * Set GPHY Power Down Override to leave GPHY
4086 * powered up in D0 uninitialized.
4087 */
4088 if (BGE_IS_5705_PLUS(sc) &&
4089 (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4090 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4091
4092 /* Issue global reset */
4093 write_op(sc, BGE_MISC_CFG, reset);
4094
4095 /* 5718 reset step 7, 57XX step 8 */
4096 if (sc->bge_flags & BGE_PCIE)
4097 delay(100*1000); /* too big */
4098 else
4099 delay(1000);
4100
4101 if (sc->bge_flags & BGE_PCIE) {
4102 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4103 DELAY(500000);
4104 /* XXX: Magic Numbers */
4105 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4106 BGE_PCI_UNKNOWN0);
4107 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4108 BGE_PCI_UNKNOWN0,
4109 reg | (1 << 15));
4110 }
4111 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4112 sc->bge_pciecap + PCIE_DCSR);
4113 /* Clear enable no snoop and disable relaxed ordering. */
4114 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4115 PCIE_DCSR_ENA_NO_SNOOP);
4116
4117 /* Set PCIE max payload size to 128 for older PCIe devices */
4118 if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4119 devctl &= ~(0x00e0);
4120 /* Clear device status register. Write 1b to clear */
4121 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4122 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4123 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4124 sc->bge_pciecap + PCIE_DCSR, devctl);
4125 bge_set_max_readrq(sc);
4126 }
4127
4128 /* From Linux: dummy read to flush PCI posted writes */
4129 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4130
4131 /*
4132 * Reset some of the PCI state that got zapped by reset
4133 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4134 * set, too.
4135 */
4136 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4137 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4138 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4139 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4140 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4141 (sc->bge_flags & BGE_PCIX) != 0)
4142 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4143 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4144 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4145 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4146 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4147 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4148 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4149 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4150
4151 /* Step 11: disable PCI-X Relaxed Ordering. */
4152 if (sc->bge_flags & BGE_PCIX) {
4153 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4154 + PCIX_CMD);
4155 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4156 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4157 }
4158
4159 /* 5718 reset step 10, 57XX step 12 */
4160 /* Enable memory arbiter. */
4161 if (BGE_IS_5714_FAMILY(sc)) {
4162 val = CSR_READ_4(sc, BGE_MARB_MODE);
4163 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4164 } else
4165 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4166
4167 /* XXX 5721, 5751 and 5752 */
4168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4169 /* Step 19: */
4170 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4171 /* Step 20: */
4172 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4173 }
4174
4175 /* 5718 reset step 13, 57XX step 17 */
4176 /* Poll until the firmware initialization is complete */
4177 bge_poll_fw(sc);
4178
4179 /* 5718 reset step 12, 57XX step 15 and 16 */
4180 /* Fix up byte swapping */
4181 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4182
4183 /* 57XX step 21 */
4184 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4185 pcireg_t msidata;
4186
4187 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4188 BGE_PCI_MSI_DATA);
4189 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4190 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4191 msidata);
4192 }
4193
4194 /* 57XX step 18 */
4195 /* Write mac mode. */
4196 val = CSR_READ_4(sc, BGE_MAC_MODE);
4197 /* Restore mac_mode_mask's bits using mac_mode */
4198 val = (val & ~mac_mode_mask) | mac_mode;
4199 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4200 DELAY(40);
4201
4202 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4203
4204 /*
4205 * The 5704 in TBI mode apparently needs some special
4206 * adjustment to insure the SERDES drive level is set
4207 * to 1.2V.
4208 */
4209 if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4210 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4211 uint32_t serdescfg;
4212
4213 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4214 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4215 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4216 }
4217
4218 if (sc->bge_flags & BGE_PCIE &&
4219 !BGE_IS_57765_PLUS(sc) &&
4220 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4221 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4222 uint32_t v;
4223
4224 /* Enable PCI Express bug fix */
4225 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4226 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4227 v | BGE_TLP_DATA_FIFO_PROTECT);
4228 }
4229
4230 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4231 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4232 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4233
4234 return 0;
4235 }
4236
4237 /*
4238 * Frame reception handling. This is called if there's a frame
4239 * on the receive return list.
4240 *
4241 * Note: we have to be able to handle two possibilities here:
4242 * 1) the frame is from the jumbo receive ring
4243 * 2) the frame is from the standard receive ring
4244 */
4245
4246 static void
4247 bge_rxeof(struct bge_softc *sc)
4248 {
4249 struct ifnet *ifp;
4250 uint16_t rx_prod, rx_cons;
4251 int stdcnt = 0, jumbocnt = 0;
4252 bus_dmamap_t dmamap;
4253 bus_addr_t offset, toff;
4254 bus_size_t tlen;
4255 int tosync;
4256
4257 rx_cons = sc->bge_rx_saved_considx;
4258 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4259
4260 /* Nothing to do */
4261 if (rx_cons == rx_prod)
4262 return;
4263
4264 ifp = &sc->ethercom.ec_if;
4265
4266 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4267 offsetof(struct bge_ring_data, bge_status_block),
4268 sizeof (struct bge_status_block),
4269 BUS_DMASYNC_POSTREAD);
4270
4271 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4272 tosync = rx_prod - rx_cons;
4273
4274 if (tosync != 0)
4275 rnd_add_uint32(&sc->rnd_source, tosync);
4276
4277 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4278
4279 if (tosync < 0) {
4280 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4281 sizeof (struct bge_rx_bd);
4282 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4283 toff, tlen, BUS_DMASYNC_POSTREAD);
4284 tosync = -tosync;
4285 }
4286
4287 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4288 offset, tosync * sizeof (struct bge_rx_bd),
4289 BUS_DMASYNC_POSTREAD);
4290
4291 while (rx_cons != rx_prod) {
4292 struct bge_rx_bd *cur_rx;
4293 uint32_t rxidx;
4294 struct mbuf *m = NULL;
4295
4296 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4297
4298 rxidx = cur_rx->bge_idx;
4299 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4300
4301 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4302 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4303 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4304 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4305 jumbocnt++;
4306 bus_dmamap_sync(sc->bge_dmatag,
4307 sc->bge_cdata.bge_rx_jumbo_map,
4308 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4309 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4310 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4311 ifp->if_ierrors++;
4312 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4313 continue;
4314 }
4315 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4316 NULL)== ENOBUFS) {
4317 ifp->if_ierrors++;
4318 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4319 continue;
4320 }
4321 } else {
4322 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4323 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4324
4325 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4326 stdcnt++;
4327 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4328 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4329 if (dmamap == NULL) {
4330 ifp->if_ierrors++;
4331 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4332 continue;
4333 }
4334 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4335 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4336 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4337 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4338 ifp->if_ierrors++;
4339 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4340 continue;
4341 }
4342 if (bge_newbuf_std(sc, sc->bge_std,
4343 NULL, dmamap) == ENOBUFS) {
4344 ifp->if_ierrors++;
4345 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4346 continue;
4347 }
4348 }
4349
4350 ifp->if_ipackets++;
4351 #ifndef __NO_STRICT_ALIGNMENT
4352 /*
4353 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4354 * the Rx buffer has the layer-2 header unaligned.
4355 * If our CPU requires alignment, re-align by copying.
4356 */
4357 if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4358 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4359 cur_rx->bge_len);
4360 m->m_data += ETHER_ALIGN;
4361 }
4362 #endif
4363
4364 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4365 m->m_pkthdr.rcvif = ifp;
4366
4367 /*
4368 * Handle BPF listeners. Let the BPF user see the packet.
4369 */
4370 bpf_mtap(ifp, m);
4371
4372 bge_rxcsum(sc, cur_rx, m);
4373
4374 /*
4375 * If we received a packet with a vlan tag, pass it
4376 * to vlan_input() instead of ether_input().
4377 */
4378 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4379 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4380 }
4381
4382 (*ifp->if_input)(ifp, m);
4383 }
4384
4385 sc->bge_rx_saved_considx = rx_cons;
4386 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4387 if (stdcnt)
4388 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4389 if (jumbocnt)
4390 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4391 }
4392
4393 static void
4394 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4395 {
4396
4397 if (BGE_IS_5717_PLUS(sc)) {
4398 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4399 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4400 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4401 if ((cur_rx->bge_error_flag &
4402 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4403 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4404 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4405 m->m_pkthdr.csum_data =
4406 cur_rx->bge_tcp_udp_csum;
4407 m->m_pkthdr.csum_flags |=
4408 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4409 M_CSUM_DATA);
4410 }
4411 }
4412 } else {
4413 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4414 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4415 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4416 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4417 /*
4418 * Rx transport checksum-offload may also
4419 * have bugs with packets which, when transmitted,
4420 * were `runts' requiring padding.
4421 */
4422 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4423 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4424 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4425 m->m_pkthdr.csum_data =
4426 cur_rx->bge_tcp_udp_csum;
4427 m->m_pkthdr.csum_flags |=
4428 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4429 M_CSUM_DATA);
4430 }
4431 }
4432 }
4433
4434 static void
4435 bge_txeof(struct bge_softc *sc)
4436 {
4437 struct bge_tx_bd *cur_tx = NULL;
4438 struct ifnet *ifp;
4439 struct txdmamap_pool_entry *dma;
4440 bus_addr_t offset, toff;
4441 bus_size_t tlen;
4442 int tosync;
4443 struct mbuf *m;
4444
4445 ifp = &sc->ethercom.ec_if;
4446
4447 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4448 offsetof(struct bge_ring_data, bge_status_block),
4449 sizeof (struct bge_status_block),
4450 BUS_DMASYNC_POSTREAD);
4451
4452 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4453 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4454 sc->bge_tx_saved_considx;
4455
4456 if (tosync != 0)
4457 rnd_add_uint32(&sc->rnd_source, tosync);
4458
4459 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4460
4461 if (tosync < 0) {
4462 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4463 sizeof (struct bge_tx_bd);
4464 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4465 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4466 tosync = -tosync;
4467 }
4468
4469 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4470 offset, tosync * sizeof (struct bge_tx_bd),
4471 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4472
4473 /*
4474 * Go through our tx ring and free mbufs for those
4475 * frames that have been sent.
4476 */
4477 while (sc->bge_tx_saved_considx !=
4478 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4479 uint32_t idx = 0;
4480
4481 idx = sc->bge_tx_saved_considx;
4482 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4483 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4484 ifp->if_opackets++;
4485 m = sc->bge_cdata.bge_tx_chain[idx];
4486 if (m != NULL) {
4487 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4488 dma = sc->txdma[idx];
4489 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4490 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4491 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4492 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4493 sc->txdma[idx] = NULL;
4494
4495 m_freem(m);
4496 }
4497 sc->bge_txcnt--;
4498 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4499 ifp->if_timer = 0;
4500 }
4501
4502 if (cur_tx != NULL)
4503 ifp->if_flags &= ~IFF_OACTIVE;
4504 }
4505
4506 static int
4507 bge_intr(void *xsc)
4508 {
4509 struct bge_softc *sc;
4510 struct ifnet *ifp;
4511 uint32_t statusword;
4512 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4513
4514 sc = xsc;
4515 ifp = &sc->ethercom.ec_if;
4516
4517 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4518 if (BGE_IS_5717_PLUS(sc))
4519 intrmask = 0;
4520
4521 /* It is possible for the interrupt to arrive before
4522 * the status block is updated prior to the interrupt.
4523 * Reading the PCI State register will confirm whether the
4524 * interrupt is ours and will flush the status block.
4525 */
4526
4527 /* read status word from status block */
4528 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4529 offsetof(struct bge_ring_data, bge_status_block),
4530 sizeof (struct bge_status_block),
4531 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4532 statusword = sc->bge_rdata->bge_status_block.bge_status;
4533
4534 if ((statusword & BGE_STATFLAG_UPDATED) ||
4535 (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4536 /* Ack interrupt and stop others from occuring. */
4537 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4538
4539 BGE_EVCNT_INCR(sc->bge_ev_intr);
4540
4541 /* clear status word */
4542 sc->bge_rdata->bge_status_block.bge_status = 0;
4543
4544 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4545 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4546 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4547 bge_link_upd(sc);
4548
4549 if (ifp->if_flags & IFF_RUNNING) {
4550 /* Check RX return ring producer/consumer */
4551 bge_rxeof(sc);
4552
4553 /* Check TX ring producer/consumer */
4554 bge_txeof(sc);
4555 }
4556
4557 if (sc->bge_pending_rxintr_change) {
4558 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4559 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4560 uint32_t junk;
4561
4562 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4563 DELAY(10);
4564 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4565
4566 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4567 DELAY(10);
4568 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4569
4570 sc->bge_pending_rxintr_change = 0;
4571 }
4572 bge_handle_events(sc);
4573
4574 /* Re-enable interrupts. */
4575 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4576
4577 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4578 bge_start(ifp);
4579
4580 return 1;
4581 } else
4582 return 0;
4583 }
4584
4585 static void
4586 bge_asf_driver_up(struct bge_softc *sc)
4587 {
4588 if (sc->bge_asf_mode & ASF_STACKUP) {
4589 /* Send ASF heartbeat aprox. every 2s */
4590 if (sc->bge_asf_count)
4591 sc->bge_asf_count --;
4592 else {
4593 sc->bge_asf_count = 2;
4594
4595 bge_wait_for_event_ack(sc);
4596
4597 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4598 BGE_FW_CMD_DRV_ALIVE);
4599 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4600 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4601 BGE_FW_HB_TIMEOUT_SEC);
4602 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4603 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4604 BGE_RX_CPU_DRV_EVENT);
4605 }
4606 }
4607 }
4608
4609 static void
4610 bge_tick(void *xsc)
4611 {
4612 struct bge_softc *sc = xsc;
4613 struct mii_data *mii = &sc->bge_mii;
4614 int s;
4615
4616 s = splnet();
4617
4618 if (BGE_IS_5705_PLUS(sc))
4619 bge_stats_update_regs(sc);
4620 else
4621 bge_stats_update(sc);
4622
4623 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4624 /*
4625 * Since in TBI mode auto-polling can't be used we should poll
4626 * link status manually. Here we register pending link event
4627 * and trigger interrupt.
4628 */
4629 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4630 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4631 } else {
4632 /*
4633 * Do not touch PHY if we have link up. This could break
4634 * IPMI/ASF mode or produce extra input errors.
4635 * (extra input errors was reported for bcm5701 & bcm5704).
4636 */
4637 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4638 mii_tick(mii);
4639 }
4640
4641 bge_asf_driver_up(sc);
4642
4643 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4644
4645 splx(s);
4646 }
4647
4648 static void
4649 bge_stats_update_regs(struct bge_softc *sc)
4650 {
4651 struct ifnet *ifp = &sc->ethercom.ec_if;
4652
4653 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4654 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4655
4656 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4657 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4658 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4659 }
4660
4661 static void
4662 bge_stats_update(struct bge_softc *sc)
4663 {
4664 struct ifnet *ifp = &sc->ethercom.ec_if;
4665 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4666
4667 #define READ_STAT(sc, stats, stat) \
4668 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4669
4670 ifp->if_collisions +=
4671 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4672 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4673 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4674 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4675 ifp->if_collisions;
4676
4677 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4678 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4679 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4680 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4681 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4682 READ_STAT(sc, stats,
4683 xoffPauseFramesReceived.bge_addr_lo));
4684 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4685 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4686 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4687 READ_STAT(sc, stats,
4688 macControlFramesReceived.bge_addr_lo));
4689 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4690 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4691
4692 #undef READ_STAT
4693
4694 #ifdef notdef
4695 ifp->if_collisions +=
4696 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4697 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4698 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4699 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4700 ifp->if_collisions;
4701 #endif
4702 }
4703
4704 /*
4705 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4706 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4707 * but when such padded frames employ the bge IP/TCP checksum offload,
4708 * the hardware checksum assist gives incorrect results (possibly
4709 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4710 * If we pad such runts with zeros, the onboard checksum comes out correct.
4711 */
4712 static inline int
4713 bge_cksum_pad(struct mbuf *pkt)
4714 {
4715 struct mbuf *last = NULL;
4716 int padlen;
4717
4718 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4719
4720 /* if there's only the packet-header and we can pad there, use it. */
4721 if (pkt->m_pkthdr.len == pkt->m_len &&
4722 M_TRAILINGSPACE(pkt) >= padlen) {
4723 last = pkt;
4724 } else {
4725 /*
4726 * Walk packet chain to find last mbuf. We will either
4727 * pad there, or append a new mbuf and pad it
4728 * (thus perhaps avoiding the bcm5700 dma-min bug).
4729 */
4730 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4731 continue; /* do nothing */
4732 }
4733
4734 /* `last' now points to last in chain. */
4735 if (M_TRAILINGSPACE(last) < padlen) {
4736 /* Allocate new empty mbuf, pad it. Compact later. */
4737 struct mbuf *n;
4738 MGET(n, M_DONTWAIT, MT_DATA);
4739 if (n == NULL)
4740 return ENOBUFS;
4741 n->m_len = 0;
4742 last->m_next = n;
4743 last = n;
4744 }
4745 }
4746
4747 KDASSERT(!M_READONLY(last));
4748 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4749
4750 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4751 memset(mtod(last, char *) + last->m_len, 0, padlen);
4752 last->m_len += padlen;
4753 pkt->m_pkthdr.len += padlen;
4754 return 0;
4755 }
4756
4757 /*
4758 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4759 */
4760 static inline int
4761 bge_compact_dma_runt(struct mbuf *pkt)
4762 {
4763 struct mbuf *m, *prev;
4764 int totlen, prevlen;
4765
4766 prev = NULL;
4767 totlen = 0;
4768 prevlen = -1;
4769
4770 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4771 int mlen = m->m_len;
4772 int shortfall = 8 - mlen ;
4773
4774 totlen += mlen;
4775 if (mlen == 0)
4776 continue;
4777 if (mlen >= 8)
4778 continue;
4779
4780 /* If we get here, mbuf data is too small for DMA engine.
4781 * Try to fix by shuffling data to prev or next in chain.
4782 * If that fails, do a compacting deep-copy of the whole chain.
4783 */
4784
4785 /* Internal frag. If fits in prev, copy it there. */
4786 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4787 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4788 prev->m_len += mlen;
4789 m->m_len = 0;
4790 /* XXX stitch chain */
4791 prev->m_next = m_free(m);
4792 m = prev;
4793 continue;
4794 }
4795 else if (m->m_next != NULL &&
4796 M_TRAILINGSPACE(m) >= shortfall &&
4797 m->m_next->m_len >= (8 + shortfall)) {
4798 /* m is writable and have enough data in next, pull up. */
4799
4800 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4801 shortfall);
4802 m->m_len += shortfall;
4803 m->m_next->m_len -= shortfall;
4804 m->m_next->m_data += shortfall;
4805 }
4806 else if (m->m_next == NULL || 1) {
4807 /* Got a runt at the very end of the packet.
4808 * borrow data from the tail of the preceding mbuf and
4809 * update its length in-place. (The original data is still
4810 * valid, so we can do this even if prev is not writable.)
4811 */
4812
4813 /* if we'd make prev a runt, just move all of its data. */
4814 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4815 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4816
4817 if ((prev->m_len - shortfall) < 8)
4818 shortfall = prev->m_len;
4819
4820 #ifdef notyet /* just do the safe slow thing for now */
4821 if (!M_READONLY(m)) {
4822 if (M_LEADINGSPACE(m) < shorfall) {
4823 void *m_dat;
4824 m_dat = (m->m_flags & M_PKTHDR) ?
4825 m->m_pktdat : m->dat;
4826 memmove(m_dat, mtod(m, void*), m->m_len);
4827 m->m_data = m_dat;
4828 }
4829 } else
4830 #endif /* just do the safe slow thing */
4831 {
4832 struct mbuf * n = NULL;
4833 int newprevlen = prev->m_len - shortfall;
4834
4835 MGET(n, M_NOWAIT, MT_DATA);
4836 if (n == NULL)
4837 return ENOBUFS;
4838 KASSERT(m->m_len + shortfall < MLEN
4839 /*,
4840 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4841
4842 /* first copy the data we're stealing from prev */
4843 memcpy(n->m_data, prev->m_data + newprevlen,
4844 shortfall);
4845
4846 /* update prev->m_len accordingly */
4847 prev->m_len -= shortfall;
4848
4849 /* copy data from runt m */
4850 memcpy(n->m_data + shortfall, m->m_data,
4851 m->m_len);
4852
4853 /* n holds what we stole from prev, plus m */
4854 n->m_len = shortfall + m->m_len;
4855
4856 /* stitch n into chain and free m */
4857 n->m_next = m->m_next;
4858 prev->m_next = n;
4859 /* KASSERT(m->m_next == NULL); */
4860 m->m_next = NULL;
4861 m_free(m);
4862 m = n; /* for continuing loop */
4863 }
4864 }
4865 prevlen = m->m_len;
4866 }
4867 return 0;
4868 }
4869
4870 /*
4871 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4872 * pointers to descriptors.
4873 */
4874 static int
4875 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4876 {
4877 struct bge_tx_bd *f = NULL;
4878 uint32_t frag, cur;
4879 uint16_t csum_flags = 0;
4880 uint16_t txbd_tso_flags = 0;
4881 struct txdmamap_pool_entry *dma;
4882 bus_dmamap_t dmamap;
4883 int i = 0;
4884 struct m_tag *mtag;
4885 int use_tso, maxsegsize, error;
4886
4887 cur = frag = *txidx;
4888
4889 if (m_head->m_pkthdr.csum_flags) {
4890 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4891 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4892 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4893 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4894 }
4895
4896 /*
4897 * If we were asked to do an outboard checksum, and the NIC
4898 * has the bug where it sometimes adds in the Ethernet padding,
4899 * explicitly pad with zeros so the cksum will be correct either way.
4900 * (For now, do this for all chip versions, until newer
4901 * are confirmed to not require the workaround.)
4902 */
4903 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4904 #ifdef notyet
4905 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4906 #endif
4907 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4908 goto check_dma_bug;
4909
4910 if (bge_cksum_pad(m_head) != 0)
4911 return ENOBUFS;
4912
4913 check_dma_bug:
4914 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4915 goto doit;
4916
4917 /*
4918 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4919 * less than eight bytes. If we encounter a teeny mbuf
4920 * at the end of a chain, we can pad. Otherwise, copy.
4921 */
4922 if (bge_compact_dma_runt(m_head) != 0)
4923 return ENOBUFS;
4924
4925 doit:
4926 dma = SLIST_FIRST(&sc->txdma_list);
4927 if (dma == NULL)
4928 return ENOBUFS;
4929 dmamap = dma->dmamap;
4930
4931 /*
4932 * Set up any necessary TSO state before we start packing...
4933 */
4934 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4935 if (!use_tso) {
4936 maxsegsize = 0;
4937 } else { /* TSO setup */
4938 unsigned mss;
4939 struct ether_header *eh;
4940 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4941 struct mbuf * m0 = m_head;
4942 struct ip *ip;
4943 struct tcphdr *th;
4944 int iphl, hlen;
4945
4946 /*
4947 * XXX It would be nice if the mbuf pkthdr had offset
4948 * fields for the protocol headers.
4949 */
4950
4951 eh = mtod(m0, struct ether_header *);
4952 switch (htons(eh->ether_type)) {
4953 case ETHERTYPE_IP:
4954 offset = ETHER_HDR_LEN;
4955 break;
4956
4957 case ETHERTYPE_VLAN:
4958 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4959 break;
4960
4961 default:
4962 /*
4963 * Don't support this protocol or encapsulation.
4964 */
4965 return ENOBUFS;
4966 }
4967
4968 /*
4969 * TCP/IP headers are in the first mbuf; we can do
4970 * this the easy way.
4971 */
4972 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4973 hlen = iphl + offset;
4974 if (__predict_false(m0->m_len <
4975 (hlen + sizeof(struct tcphdr)))) {
4976
4977 aprint_debug_dev(sc->bge_dev,
4978 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4979 "not handled yet\n",
4980 m0->m_len, hlen+ sizeof(struct tcphdr));
4981 #ifdef NOTYET
4982 /*
4983 * XXX jonathan (at) NetBSD.org: untested.
4984 * how to force this branch to be taken?
4985 */
4986 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4987
4988 m_copydata(m0, offset, sizeof(ip), &ip);
4989 m_copydata(m0, hlen, sizeof(th), &th);
4990
4991 ip.ip_len = 0;
4992
4993 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4994 sizeof(ip.ip_len), &ip.ip_len);
4995
4996 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4997 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4998
4999 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5000 sizeof(th.th_sum), &th.th_sum);
5001
5002 hlen += th.th_off << 2;
5003 iptcp_opt_words = hlen;
5004 #else
5005 /*
5006 * if_wm "hard" case not yet supported, can we not
5007 * mandate it out of existence?
5008 */
5009 (void) ip; (void)th; (void) ip_tcp_hlen;
5010
5011 return ENOBUFS;
5012 #endif
5013 } else {
5014 ip = (struct ip *) (mtod(m0, char *) + offset);
5015 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5016 ip_tcp_hlen = iphl + (th->th_off << 2);
5017
5018 /* Total IP/TCP options, in 32-bit words */
5019 iptcp_opt_words = (ip_tcp_hlen
5020 - sizeof(struct tcphdr)
5021 - sizeof(struct ip)) >> 2;
5022 }
5023 if (BGE_IS_575X_PLUS(sc)) {
5024 th->th_sum = 0;
5025 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5026 } else {
5027 /*
5028 * XXX jonathan (at) NetBSD.org: 5705 untested.
5029 * Requires TSO firmware patch for 5701/5703/5704.
5030 */
5031 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5032 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5033 }
5034
5035 mss = m_head->m_pkthdr.segsz;
5036 txbd_tso_flags |=
5037 BGE_TXBDFLAG_CPU_PRE_DMA |
5038 BGE_TXBDFLAG_CPU_POST_DMA;
5039
5040 /*
5041 * Our NIC TSO-assist assumes TSO has standard, optionless
5042 * IPv4 and TCP headers, which total 40 bytes. By default,
5043 * the NIC copies 40 bytes of IP/TCP header from the
5044 * supplied header into the IP/TCP header portion of
5045 * each post-TSO-segment. If the supplied packet has IP or
5046 * TCP options, we need to tell the NIC to copy those extra
5047 * bytes into each post-TSO header, in addition to the normal
5048 * 40-byte IP/TCP header (and to leave space accordingly).
5049 * Unfortunately, the driver encoding of option length
5050 * varies across different ASIC families.
5051 */
5052 tcp_seg_flags = 0;
5053 if (iptcp_opt_words) {
5054 if (BGE_IS_5705_PLUS(sc)) {
5055 tcp_seg_flags =
5056 iptcp_opt_words << 11;
5057 } else {
5058 txbd_tso_flags |=
5059 iptcp_opt_words << 12;
5060 }
5061 }
5062 maxsegsize = mss | tcp_seg_flags;
5063 ip->ip_len = htons(mss + ip_tcp_hlen);
5064
5065 } /* TSO setup */
5066
5067 /*
5068 * Start packing the mbufs in this chain into
5069 * the fragment pointers. Stop when we run out
5070 * of fragments or hit the end of the mbuf chain.
5071 */
5072 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5073 BUS_DMA_NOWAIT);
5074 if (error)
5075 return ENOBUFS;
5076 /*
5077 * Sanity check: avoid coming within 16 descriptors
5078 * of the end of the ring.
5079 */
5080 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5081 BGE_TSO_PRINTF(("%s: "
5082 " dmamap_load_mbuf too close to ring wrap\n",
5083 device_xname(sc->bge_dev)));
5084 goto fail_unload;
5085 }
5086
5087 mtag = sc->ethercom.ec_nvlans ?
5088 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5089
5090
5091 /* Iterate over dmap-map fragments. */
5092 for (i = 0; i < dmamap->dm_nsegs; i++) {
5093 f = &sc->bge_rdata->bge_tx_ring[frag];
5094 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5095 break;
5096
5097 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5098 f->bge_len = dmamap->dm_segs[i].ds_len;
5099
5100 /*
5101 * For 5751 and follow-ons, for TSO we must turn
5102 * off checksum-assist flag in the tx-descr, and
5103 * supply the ASIC-revision-specific encoding
5104 * of TSO flags and segsize.
5105 */
5106 if (use_tso) {
5107 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5108 f->bge_rsvd = maxsegsize;
5109 f->bge_flags = csum_flags | txbd_tso_flags;
5110 } else {
5111 f->bge_rsvd = 0;
5112 f->bge_flags =
5113 (csum_flags | txbd_tso_flags) & 0x0fff;
5114 }
5115 } else {
5116 f->bge_rsvd = 0;
5117 f->bge_flags = csum_flags;
5118 }
5119
5120 if (mtag != NULL) {
5121 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5122 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5123 } else {
5124 f->bge_vlan_tag = 0;
5125 }
5126 cur = frag;
5127 BGE_INC(frag, BGE_TX_RING_CNT);
5128 }
5129
5130 if (i < dmamap->dm_nsegs) {
5131 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5132 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5133 goto fail_unload;
5134 }
5135
5136 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5137 BUS_DMASYNC_PREWRITE);
5138
5139 if (frag == sc->bge_tx_saved_considx) {
5140 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5141 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5142
5143 goto fail_unload;
5144 }
5145
5146 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5147 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5148 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5149 sc->txdma[cur] = dma;
5150 sc->bge_txcnt += dmamap->dm_nsegs;
5151
5152 *txidx = frag;
5153
5154 return 0;
5155
5156 fail_unload:
5157 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5158
5159 return ENOBUFS;
5160 }
5161
5162 /*
5163 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5164 * to the mbuf data regions directly in the transmit descriptors.
5165 */
5166 static void
5167 bge_start(struct ifnet *ifp)
5168 {
5169 struct bge_softc *sc;
5170 struct mbuf *m_head = NULL;
5171 uint32_t prodidx;
5172 int pkts = 0;
5173
5174 sc = ifp->if_softc;
5175
5176 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5177 return;
5178
5179 prodidx = sc->bge_tx_prodidx;
5180
5181 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5182 IFQ_POLL(&ifp->if_snd, m_head);
5183 if (m_head == NULL)
5184 break;
5185
5186 #if 0
5187 /*
5188 * XXX
5189 * safety overkill. If this is a fragmented packet chain
5190 * with delayed TCP/UDP checksums, then only encapsulate
5191 * it if we have enough descriptors to handle the entire
5192 * chain at once.
5193 * (paranoia -- may not actually be needed)
5194 */
5195 if (m_head->m_flags & M_FIRSTFRAG &&
5196 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5197 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5198 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5199 ifp->if_flags |= IFF_OACTIVE;
5200 break;
5201 }
5202 }
5203 #endif
5204
5205 /*
5206 * Pack the data into the transmit ring. If we
5207 * don't have room, set the OACTIVE flag and wait
5208 * for the NIC to drain the ring.
5209 */
5210 if (bge_encap(sc, m_head, &prodidx)) {
5211 ifp->if_flags |= IFF_OACTIVE;
5212 break;
5213 }
5214
5215 /* now we are committed to transmit the packet */
5216 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5217 pkts++;
5218
5219 /*
5220 * If there's a BPF listener, bounce a copy of this frame
5221 * to him.
5222 */
5223 bpf_mtap(ifp, m_head);
5224 }
5225 if (pkts == 0)
5226 return;
5227
5228 /* Transmit */
5229 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5230 /* 5700 b2 errata */
5231 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5232 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5233
5234 sc->bge_tx_prodidx = prodidx;
5235
5236 /*
5237 * Set a timeout in case the chip goes out to lunch.
5238 */
5239 ifp->if_timer = 5;
5240 }
5241
5242 static int
5243 bge_init(struct ifnet *ifp)
5244 {
5245 struct bge_softc *sc = ifp->if_softc;
5246 const uint16_t *m;
5247 uint32_t mode;
5248 int s, error = 0;
5249
5250 s = splnet();
5251
5252 ifp = &sc->ethercom.ec_if;
5253
5254 /* Cancel pending I/O and flush buffers. */
5255 bge_stop(ifp, 0);
5256
5257 bge_stop_fw(sc);
5258 bge_sig_pre_reset(sc, BGE_RESET_START);
5259 bge_reset(sc);
5260 bge_sig_legacy(sc, BGE_RESET_START);
5261 bge_sig_post_reset(sc, BGE_RESET_START);
5262
5263 bge_chipinit(sc);
5264
5265 /*
5266 * Init the various state machines, ring
5267 * control blocks and firmware.
5268 */
5269 error = bge_blockinit(sc);
5270 if (error != 0) {
5271 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5272 error);
5273 splx(s);
5274 return error;
5275 }
5276
5277 ifp = &sc->ethercom.ec_if;
5278
5279 /* 5718 step 25, 57XX step 54 */
5280 /* Specify MTU. */
5281 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5282 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5283
5284 /* 5718 step 23 */
5285 /* Load our MAC address. */
5286 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5287 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5288 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5289
5290 /* Enable or disable promiscuous mode as needed. */
5291 if (ifp->if_flags & IFF_PROMISC)
5292 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5293 else
5294 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5295
5296 /* Program multicast filter. */
5297 bge_setmulti(sc);
5298
5299 /* Init RX ring. */
5300 bge_init_rx_ring_std(sc);
5301
5302 /*
5303 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5304 * memory to insure that the chip has in fact read the first
5305 * entry of the ring.
5306 */
5307 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5308 uint32_t v, i;
5309 for (i = 0; i < 10; i++) {
5310 DELAY(20);
5311 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5312 if (v == (MCLBYTES - ETHER_ALIGN))
5313 break;
5314 }
5315 if (i == 10)
5316 aprint_error_dev(sc->bge_dev,
5317 "5705 A0 chip failed to load RX ring\n");
5318 }
5319
5320 /* Init jumbo RX ring. */
5321 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5322 bge_init_rx_ring_jumbo(sc);
5323
5324 /* Init our RX return ring index */
5325 sc->bge_rx_saved_considx = 0;
5326
5327 /* Init TX ring. */
5328 bge_init_tx_ring(sc);
5329
5330 /* 5718 step 63, 57XX step 94 */
5331 /* Enable TX MAC state machine lockup fix. */
5332 mode = CSR_READ_4(sc, BGE_TX_MODE);
5333 if (BGE_IS_5755_PLUS(sc) ||
5334 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5335 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5336 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5337 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5338 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5339 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5340 }
5341
5342 /* Turn on transmitter */
5343 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5344 /* 5718 step 64 */
5345 DELAY(100);
5346
5347 /* 5718 step 65, 57XX step 95 */
5348 /* Turn on receiver */
5349 mode = CSR_READ_4(sc, BGE_RX_MODE);
5350 if (BGE_IS_5755_PLUS(sc))
5351 mode |= BGE_RXMODE_IPV6_ENABLE;
5352 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5353 /* 5718 step 66 */
5354 DELAY(10);
5355
5356 /* 5718 step 12 */
5357 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5358
5359 /* Tell firmware we're alive. */
5360 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5361
5362 /* Enable host interrupts. */
5363 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5364 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5365 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5366
5367 if ((error = bge_ifmedia_upd(ifp)) != 0)
5368 goto out;
5369
5370 ifp->if_flags |= IFF_RUNNING;
5371 ifp->if_flags &= ~IFF_OACTIVE;
5372
5373 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5374
5375 out:
5376 sc->bge_if_flags = ifp->if_flags;
5377 splx(s);
5378
5379 return error;
5380 }
5381
5382 /*
5383 * Set media options.
5384 */
5385 static int
5386 bge_ifmedia_upd(struct ifnet *ifp)
5387 {
5388 struct bge_softc *sc = ifp->if_softc;
5389 struct mii_data *mii = &sc->bge_mii;
5390 struct ifmedia *ifm = &sc->bge_ifmedia;
5391 int rc;
5392
5393 /* If this is a 1000baseX NIC, enable the TBI port. */
5394 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5395 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5396 return EINVAL;
5397 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5398 case IFM_AUTO:
5399 /*
5400 * The BCM5704 ASIC appears to have a special
5401 * mechanism for programming the autoneg
5402 * advertisement registers in TBI mode.
5403 */
5404 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5405 uint32_t sgdig;
5406 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5407 if (sgdig & BGE_SGDIGSTS_DONE) {
5408 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5409 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5410 sgdig |= BGE_SGDIGCFG_AUTO |
5411 BGE_SGDIGCFG_PAUSE_CAP |
5412 BGE_SGDIGCFG_ASYM_PAUSE;
5413 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5414 sgdig | BGE_SGDIGCFG_SEND);
5415 DELAY(5);
5416 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5417 sgdig);
5418 }
5419 }
5420 break;
5421 case IFM_1000_SX:
5422 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5423 BGE_CLRBIT(sc, BGE_MAC_MODE,
5424 BGE_MACMODE_HALF_DUPLEX);
5425 } else {
5426 BGE_SETBIT(sc, BGE_MAC_MODE,
5427 BGE_MACMODE_HALF_DUPLEX);
5428 }
5429 DELAY(40);
5430 break;
5431 default:
5432 return EINVAL;
5433 }
5434 /* XXX 802.3x flow control for 1000BASE-SX */
5435 return 0;
5436 }
5437
5438 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5439 if ((rc = mii_mediachg(mii)) == ENXIO)
5440 return 0;
5441
5442 /*
5443 * Force an interrupt so that we will call bge_link_upd
5444 * if needed and clear any pending link state attention.
5445 * Without this we are not getting any further interrupts
5446 * for link state changes and thus will not UP the link and
5447 * not be able to send in bge_start. The only way to get
5448 * things working was to receive a packet and get a RX intr.
5449 */
5450 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5451 sc->bge_flags & BGE_IS_5788)
5452 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5453 else
5454 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5455
5456 return rc;
5457 }
5458
5459 /*
5460 * Report current media status.
5461 */
5462 static void
5463 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5464 {
5465 struct bge_softc *sc = ifp->if_softc;
5466 struct mii_data *mii = &sc->bge_mii;
5467
5468 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5469 ifmr->ifm_status = IFM_AVALID;
5470 ifmr->ifm_active = IFM_ETHER;
5471 if (CSR_READ_4(sc, BGE_MAC_STS) &
5472 BGE_MACSTAT_TBI_PCS_SYNCHED)
5473 ifmr->ifm_status |= IFM_ACTIVE;
5474 ifmr->ifm_active |= IFM_1000_SX;
5475 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5476 ifmr->ifm_active |= IFM_HDX;
5477 else
5478 ifmr->ifm_active |= IFM_FDX;
5479 return;
5480 }
5481
5482 mii_pollstat(mii);
5483 ifmr->ifm_status = mii->mii_media_status;
5484 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5485 sc->bge_flowflags;
5486 }
5487
5488 static int
5489 bge_ifflags_cb(struct ethercom *ec)
5490 {
5491 struct ifnet *ifp = &ec->ec_if;
5492 struct bge_softc *sc = ifp->if_softc;
5493 int change = ifp->if_flags ^ sc->bge_if_flags;
5494
5495 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5496 return ENETRESET;
5497 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5498 return 0;
5499
5500 if ((ifp->if_flags & IFF_PROMISC) == 0)
5501 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5502 else
5503 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5504
5505 bge_setmulti(sc);
5506
5507 sc->bge_if_flags = ifp->if_flags;
5508 return 0;
5509 }
5510
5511 static int
5512 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5513 {
5514 struct bge_softc *sc = ifp->if_softc;
5515 struct ifreq *ifr = (struct ifreq *) data;
5516 int s, error = 0;
5517 struct mii_data *mii;
5518
5519 s = splnet();
5520
5521 switch (command) {
5522 case SIOCSIFMEDIA:
5523 /* XXX Flow control is not supported for 1000BASE-SX */
5524 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5525 ifr->ifr_media &= ~IFM_ETH_FMASK;
5526 sc->bge_flowflags = 0;
5527 }
5528
5529 /* Flow control requires full-duplex mode. */
5530 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5531 (ifr->ifr_media & IFM_FDX) == 0) {
5532 ifr->ifr_media &= ~IFM_ETH_FMASK;
5533 }
5534 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5535 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5536 /* We can do both TXPAUSE and RXPAUSE. */
5537 ifr->ifr_media |=
5538 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5539 }
5540 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5541 }
5542 /* FALLTHROUGH */
5543 case SIOCGIFMEDIA:
5544 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5545 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5546 command);
5547 } else {
5548 mii = &sc->bge_mii;
5549 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5550 command);
5551 }
5552 break;
5553 default:
5554 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5555 break;
5556
5557 error = 0;
5558
5559 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5560 ;
5561 else if (ifp->if_flags & IFF_RUNNING)
5562 bge_setmulti(sc);
5563 break;
5564 }
5565
5566 splx(s);
5567
5568 return error;
5569 }
5570
5571 static void
5572 bge_watchdog(struct ifnet *ifp)
5573 {
5574 struct bge_softc *sc;
5575
5576 sc = ifp->if_softc;
5577
5578 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5579
5580 ifp->if_flags &= ~IFF_RUNNING;
5581 bge_init(ifp);
5582
5583 ifp->if_oerrors++;
5584 }
5585
5586 static void
5587 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5588 {
5589 int i;
5590
5591 BGE_CLRBIT_FLUSH(sc, reg, bit);
5592
5593 for (i = 0; i < 1000; i++) {
5594 delay(100);
5595 if ((CSR_READ_4(sc, reg) & bit) == 0)
5596 return;
5597 }
5598
5599 /*
5600 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5601 * on some environment (and once after boot?)
5602 */
5603 if (reg != BGE_SRS_MODE)
5604 aprint_error_dev(sc->bge_dev,
5605 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5606 (u_long)reg, bit);
5607 }
5608
5609 /*
5610 * Stop the adapter and free any mbufs allocated to the
5611 * RX and TX lists.
5612 */
5613 static void
5614 bge_stop(struct ifnet *ifp, int disable)
5615 {
5616 struct bge_softc *sc = ifp->if_softc;
5617
5618 callout_stop(&sc->bge_timeout);
5619
5620 /* Disable host interrupts. */
5621 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5622 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5623
5624 /*
5625 * Tell firmware we're shutting down.
5626 */
5627 bge_stop_fw(sc);
5628 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5629
5630 /*
5631 * Disable all of the receiver blocks.
5632 */
5633 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5634 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5635 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5636 if (BGE_IS_5700_FAMILY(sc))
5637 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5638 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5639 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5640 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5641
5642 /*
5643 * Disable all of the transmit blocks.
5644 */
5645 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5646 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5647 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5648 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5649 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5650 if (BGE_IS_5700_FAMILY(sc))
5651 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5652 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5653
5654 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5655 delay(40);
5656
5657 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5658
5659 /*
5660 * Shut down all of the memory managers and related
5661 * state machines.
5662 */
5663 /* 5718 step 5a,5b */
5664 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5665 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5666 if (BGE_IS_5700_FAMILY(sc))
5667 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5668
5669 /* 5718 step 5c,5d */
5670 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5671 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5672
5673 if (BGE_IS_5700_FAMILY(sc)) {
5674 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5675 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5676 }
5677
5678 bge_reset(sc);
5679 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5680 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5681
5682 /*
5683 * Keep the ASF firmware running if up.
5684 */
5685 if (sc->bge_asf_mode & ASF_STACKUP)
5686 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5687 else
5688 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5689
5690 /* Free the RX lists. */
5691 bge_free_rx_ring_std(sc);
5692
5693 /* Free jumbo RX list. */
5694 if (BGE_IS_JUMBO_CAPABLE(sc))
5695 bge_free_rx_ring_jumbo(sc);
5696
5697 /* Free TX buffers. */
5698 bge_free_tx_ring(sc);
5699
5700 /*
5701 * Isolate/power down the PHY.
5702 */
5703 if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5704 mii_down(&sc->bge_mii);
5705
5706 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5707
5708 /* Clear MAC's link state (PHY may still have link UP). */
5709 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5710
5711 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5712 }
5713
5714 static void
5715 bge_link_upd(struct bge_softc *sc)
5716 {
5717 struct ifnet *ifp = &sc->ethercom.ec_if;
5718 struct mii_data *mii = &sc->bge_mii;
5719 uint32_t status;
5720 int link;
5721
5722 /* Clear 'pending link event' flag */
5723 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5724
5725 /*
5726 * Process link state changes.
5727 * Grrr. The link status word in the status block does
5728 * not work correctly on the BCM5700 rev AX and BX chips,
5729 * according to all available information. Hence, we have
5730 * to enable MII interrupts in order to properly obtain
5731 * async link changes. Unfortunately, this also means that
5732 * we have to read the MAC status register to detect link
5733 * changes, thereby adding an additional register access to
5734 * the interrupt handler.
5735 */
5736
5737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5738 status = CSR_READ_4(sc, BGE_MAC_STS);
5739 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5740 mii_pollstat(mii);
5741
5742 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5743 mii->mii_media_status & IFM_ACTIVE &&
5744 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5745 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5746 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5747 (!(mii->mii_media_status & IFM_ACTIVE) ||
5748 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5749 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5750
5751 /* Clear the interrupt */
5752 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5753 BGE_EVTENB_MI_INTERRUPT);
5754 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5755 BRGPHY_MII_ISR);
5756 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5757 BRGPHY_MII_IMR, BRGPHY_INTRS);
5758 }
5759 return;
5760 }
5761
5762 if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5763 status = CSR_READ_4(sc, BGE_MAC_STS);
5764 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5765 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5766 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5767 if (BGE_ASICREV(sc->bge_chipid)
5768 == BGE_ASICREV_BCM5704) {
5769 BGE_CLRBIT(sc, BGE_MAC_MODE,
5770 BGE_MACMODE_TBI_SEND_CFGS);
5771 DELAY(40);
5772 }
5773 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5774 if_link_state_change(ifp, LINK_STATE_UP);
5775 }
5776 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5777 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5778 if_link_state_change(ifp, LINK_STATE_DOWN);
5779 }
5780 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5781 /*
5782 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5783 * bit in status word always set. Workaround this bug by
5784 * reading PHY link status directly.
5785 */
5786 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5787 BGE_STS_LINK : 0;
5788
5789 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5790 mii_pollstat(mii);
5791
5792 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5793 mii->mii_media_status & IFM_ACTIVE &&
5794 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5795 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5796 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5797 (!(mii->mii_media_status & IFM_ACTIVE) ||
5798 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5799 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5800 }
5801 } else {
5802 /*
5803 * For controllers that call mii_tick, we have to poll
5804 * link status.
5805 */
5806 mii_pollstat(mii);
5807 }
5808
5809 /* Clear the attention */
5810 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5811 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5812 BGE_MACSTAT_LINK_CHANGED);
5813 }
5814
5815 static int
5816 bge_sysctl_verify(SYSCTLFN_ARGS)
5817 {
5818 int error, t;
5819 struct sysctlnode node;
5820
5821 node = *rnode;
5822 t = *(int*)rnode->sysctl_data;
5823 node.sysctl_data = &t;
5824 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5825 if (error || newp == NULL)
5826 return error;
5827
5828 #if 0
5829 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5830 node.sysctl_num, rnode->sysctl_num));
5831 #endif
5832
5833 if (node.sysctl_num == bge_rxthresh_nodenum) {
5834 if (t < 0 || t >= NBGE_RX_THRESH)
5835 return EINVAL;
5836 bge_update_all_threshes(t);
5837 } else
5838 return EINVAL;
5839
5840 *(int*)rnode->sysctl_data = t;
5841
5842 return 0;
5843 }
5844
5845 /*
5846 * Set up sysctl(3) MIB, hw.bge.*.
5847 */
5848 static void
5849 bge_sysctl_init(struct bge_softc *sc)
5850 {
5851 int rc, bge_root_num;
5852 const struct sysctlnode *node;
5853
5854 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5855 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5856 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5857 goto out;
5858 }
5859
5860 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5861 0, CTLTYPE_NODE, "bge",
5862 SYSCTL_DESCR("BGE interface controls"),
5863 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5864 goto out;
5865 }
5866
5867 bge_root_num = node->sysctl_num;
5868
5869 /* BGE Rx interrupt mitigation level */
5870 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5871 CTLFLAG_READWRITE,
5872 CTLTYPE_INT, "rx_lvl",
5873 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5874 bge_sysctl_verify, 0,
5875 &bge_rx_thresh_lvl,
5876 0, CTL_HW, bge_root_num, CTL_CREATE,
5877 CTL_EOL)) != 0) {
5878 goto out;
5879 }
5880
5881 bge_rxthresh_nodenum = node->sysctl_num;
5882
5883 return;
5884
5885 out:
5886 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5887 }
5888
5889 #ifdef BGE_DEBUG
5890 void
5891 bge_debug_info(struct bge_softc *sc)
5892 {
5893
5894 printf("Hardware Flags:\n");
5895 if (BGE_IS_57765_PLUS(sc))
5896 printf(" - 57765 Plus\n");
5897 if (BGE_IS_5717_PLUS(sc))
5898 printf(" - 5717 Plus\n");
5899 if (BGE_IS_5755_PLUS(sc))
5900 printf(" - 5755 Plus\n");
5901 if (BGE_IS_575X_PLUS(sc))
5902 printf(" - 575X Plus\n");
5903 if (BGE_IS_5705_PLUS(sc))
5904 printf(" - 5705 Plus\n");
5905 if (BGE_IS_5714_FAMILY(sc))
5906 printf(" - 5714 Family\n");
5907 if (BGE_IS_5700_FAMILY(sc))
5908 printf(" - 5700 Family\n");
5909 if (sc->bge_flags & BGE_IS_5788)
5910 printf(" - 5788\n");
5911 if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5912 printf(" - Supports Jumbo Frames\n");
5913 if (sc->bge_flags & BGE_NO_EEPROM)
5914 printf(" - No EEPROM\n");
5915 if (sc->bge_flags & BGE_PCIX)
5916 printf(" - PCI-X Bus\n");
5917 if (sc->bge_flags & BGE_PCIE)
5918 printf(" - PCI Express Bus\n");
5919 if (sc->bge_flags & BGE_RX_ALIGNBUG)
5920 printf(" - RX Alignment Bug\n");
5921 if (sc->bge_flags & BGE_APE)
5922 printf(" - APE\n");
5923 if (sc->bge_flags & BGE_CPMU_PRESENT)
5924 printf(" - CPMU\n");
5925 if (sc->bge_flags & BGE_TSO)
5926 printf(" - TSO\n");
5927
5928 if (sc->bge_flags & BGE_PHY_NO_3LED)
5929 printf(" - No 3 LEDs\n");
5930 if (sc->bge_flags & BGE_PHY_CRC_BUG)
5931 printf(" - CRC bug\n");
5932 if (sc->bge_flags & BGE_PHY_ADC_BUG)
5933 printf(" - ADC bug\n");
5934 if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5935 printf(" - 5704 A0 bug\n");
5936 if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5937 printf(" - jitter bug\n");
5938 if (sc->bge_flags & BGE_PHY_BER_BUG)
5939 printf(" - BER bug\n");
5940 if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5941 printf(" - adjust trim\n");
5942 if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5943 printf(" - no wirespeed\n");
5944 }
5945 #endif /* BGE_DEBUG */
5946
5947 static int
5948 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5949 {
5950 prop_dictionary_t dict;
5951 prop_data_t ea;
5952
5953 if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5954 return 1;
5955
5956 dict = device_properties(sc->bge_dev);
5957 ea = prop_dictionary_get(dict, "mac-address");
5958 if (ea != NULL) {
5959 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5960 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5961 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5962 return 0;
5963 }
5964
5965 return 1;
5966 }
5967
5968 static int
5969 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5970 {
5971 uint32_t mac_addr;
5972
5973 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5974 if ((mac_addr >> 16) == 0x484b) {
5975 ether_addr[0] = (uint8_t)(mac_addr >> 8);
5976 ether_addr[1] = (uint8_t)mac_addr;
5977 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5978 ether_addr[2] = (uint8_t)(mac_addr >> 24);
5979 ether_addr[3] = (uint8_t)(mac_addr >> 16);
5980 ether_addr[4] = (uint8_t)(mac_addr >> 8);
5981 ether_addr[5] = (uint8_t)mac_addr;
5982 return 0;
5983 }
5984 return 1;
5985 }
5986
5987 static int
5988 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5989 {
5990 int mac_offset = BGE_EE_MAC_OFFSET;
5991
5992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5993 mac_offset = BGE_EE_MAC_OFFSET_5906;
5994
5995 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5996 ETHER_ADDR_LEN));
5997 }
5998
5999 static int
6000 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6001 {
6002
6003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6004 return 1;
6005
6006 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6007 ETHER_ADDR_LEN));
6008 }
6009
6010 static int
6011 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6012 {
6013 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6014 /* NOTE: Order is critical */
6015 bge_get_eaddr_fw,
6016 bge_get_eaddr_mem,
6017 bge_get_eaddr_nvram,
6018 bge_get_eaddr_eeprom,
6019 NULL
6020 };
6021 const bge_eaddr_fcn_t *func;
6022
6023 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6024 if ((*func)(sc, eaddr) == 0)
6025 break;
6026 }
6027 return (*func == NULL ? ENXIO : 0);
6028 }
6029