if_bge.c revision 1.261 1 /* $NetBSD: if_bge.c,v 1.261 2013/10/31 04:26:40 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.261 2013/10/31 04:26:40 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rnd.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
680 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
682 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
683
684 static const struct bge_revision {
685 uint32_t br_chipid;
686 const char *br_name;
687 } bge_revisions[] = {
688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 /* 5754 and 5787 share the same ASIC ID */
744 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754
755 { 0, NULL }
756 };
757
758 /*
759 * Some defaults for major revisions, so that newer steppings
760 * that we don't know about have a shot at working.
761 */
762 static const struct bge_revision bge_majorrevs[] = {
763 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 /* 5754 and 5787 share the same ASIC ID */
778 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
786
787 { 0, NULL }
788 };
789
790 static int bge_allow_asf = 1;
791
792 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
793 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
794
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 pcireg_t val;
799
800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 return 0;
803
804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 return val;
808 }
809
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813
814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818
819 /*
820 * PCI Express only
821 */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 pcireg_t val;
826
827 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 + PCIE_DCSR);
829 val &= ~PCIE_DCSR_MAX_READ_REQ;
830 switch (sc->bge_expmrq) {
831 case 2048:
832 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 break;
834 case 4096:
835 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 break;
837 default:
838 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 break;
840 }
841 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 + PCIE_DCSR, val);
843 }
844
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 CSR_WRITE_4(sc, off, val);
865 }
866
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872
873 CSR_WRITE_4(sc, off, val);
874 }
875
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881
882 CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884
885 /*
886 * Clear all stale locks and select the lock for this driver instance.
887 */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 struct pci_attach_args *pa = &(sc->bge_pa);
892 uint32_t bit, regbase;
893 int i;
894
895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 regbase = BGE_APE_LOCK_GRANT;
897 else
898 regbase = BGE_APE_PER_LOCK_GRANT;
899
900 /* Clear any stale locks. */
901 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 switch (i) {
903 case BGE_APE_LOCK_PHY0:
904 case BGE_APE_LOCK_PHY1:
905 case BGE_APE_LOCK_PHY2:
906 case BGE_APE_LOCK_PHY3:
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 break;
909 default:
910 if (pa->pa_function == 0)
911 bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 else
913 bit = (1 << pa->pa_function);
914 }
915 APE_WRITE_4(sc, regbase + 4 * i, bit);
916 }
917
918 /* Select the PHY lock based on the device's function number. */
919 switch (pa->pa_function) {
920 case 0:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 break;
923 case 1:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 break;
926 case 2:
927 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 break;
929 case 3:
930 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 break;
932 default:
933 printf("%s: PHY lock not supported on function\n",
934 device_xname(sc->bge_dev));
935 break;
936 }
937 }
938
939 /*
940 * Check for APE firmware, set flags, and print version info.
941 */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 const char *fwtype;
946 uint32_t apedata, features;
947
948 /* Check for a valid APE signature in shared memory. */
949 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 return;
953 }
954
955 /* Check if APE firmware is running. */
956 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 printf("%s: APE signature found but FW status not ready! "
959 "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 return;
961 }
962
963 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964
965 /* Fetch the APE firwmare type and version. */
966 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 fwtype = "NCSI";
971 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 fwtype = "DASH";
974 } else
975 fwtype = "UNKN";
976
977 /* Print the APE firmware version. */
978 printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 struct pci_attach_args *pa = &(sc->bge_pa);
989 uint32_t bit, gnt, req, status;
990 int i, off;
991
992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 return (0);
994
995 /* Lock request/grant registers have different bases. */
996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 req = BGE_APE_LOCK_REQ;
998 gnt = BGE_APE_LOCK_GRANT;
999 } else {
1000 req = BGE_APE_PER_LOCK_REQ;
1001 gnt = BGE_APE_PER_LOCK_GRANT;
1002 }
1003
1004 off = 4 * locknum;
1005
1006 switch (locknum) {
1007 case BGE_APE_LOCK_GPIO:
1008 /* Lock required when using GPIO. */
1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 return (0);
1011 if (pa->pa_function == 0)
1012 bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 else
1014 bit = (1 << pa->pa_function);
1015 break;
1016 case BGE_APE_LOCK_GRC:
1017 /* Lock required to reset the device. */
1018 if (pa->pa_function == 0)
1019 bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 else
1021 bit = (1 << pa->pa_function);
1022 break;
1023 case BGE_APE_LOCK_MEM:
1024 /* Lock required when accessing certain APE memory. */
1025 if (pa->pa_function == 0)
1026 bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 else
1028 bit = (1 << pa->pa_function);
1029 break;
1030 case BGE_APE_LOCK_PHY0:
1031 case BGE_APE_LOCK_PHY1:
1032 case BGE_APE_LOCK_PHY2:
1033 case BGE_APE_LOCK_PHY3:
1034 /* Lock required when accessing PHYs. */
1035 bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 break;
1037 default:
1038 return (EINVAL);
1039 }
1040
1041 /* Request a lock. */
1042 APE_WRITE_4_FLUSH(sc, req + off, bit);
1043
1044 /* Wait up to 1 second to acquire lock. */
1045 for (i = 0; i < 20000; i++) {
1046 status = APE_READ_4(sc, gnt + off);
1047 if (status == bit)
1048 break;
1049 DELAY(50);
1050 }
1051
1052 /* Handle any errors. */
1053 if (status != bit) {
1054 printf("%s: APE lock %d request failed! "
1055 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 device_xname(sc->bge_dev),
1057 locknum, req + off, bit & 0xFFFF, gnt + off,
1058 status & 0xFFFF);
1059 /* Revoke the lock request. */
1060 APE_WRITE_4(sc, gnt + off, bit);
1061 return (EBUSY);
1062 }
1063
1064 return (0);
1065 }
1066
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 struct pci_attach_args *pa = &(sc->bge_pa);
1071 uint32_t bit, gnt;
1072 int off;
1073
1074 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 return;
1076
1077 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 gnt = BGE_APE_LOCK_GRANT;
1079 else
1080 gnt = BGE_APE_PER_LOCK_GRANT;
1081
1082 off = 4 * locknum;
1083
1084 switch (locknum) {
1085 case BGE_APE_LOCK_GPIO:
1086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 return;
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_GRC:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_MEM:
1100 if (pa->pa_function == 0)
1101 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 else
1103 bit = (1 << pa->pa_function);
1104 break;
1105 case BGE_APE_LOCK_PHY0:
1106 case BGE_APE_LOCK_PHY1:
1107 case BGE_APE_LOCK_PHY2:
1108 case BGE_APE_LOCK_PHY3:
1109 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 break;
1111 default:
1112 return;
1113 }
1114
1115 /* Write and flush for consecutive bge_ape_lock() */
1116 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118
1119 /*
1120 * Send an event to the APE firmware.
1121 */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 uint32_t apedata;
1126 int i;
1127
1128 /* NCSI does not support APE events. */
1129 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 return;
1131
1132 /* Wait up to 1ms for APE to service previous event. */
1133 for (i = 10; i > 0; i--) {
1134 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 break;
1136 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 break;
1143 }
1144 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 DELAY(100);
1146 }
1147 if (i == 0) {
1148 printf("%s: APE event 0x%08x send timed out\n",
1149 device_xname(sc->bge_dev), event);
1150 }
1151 }
1152
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 uint32_t apedata, event;
1157
1158 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 return;
1160
1161 switch (kind) {
1162 case BGE_RESET_START:
1163 /* If this is the first load, clear the load counter. */
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 else {
1168 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 }
1171 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 BGE_APE_HOST_SEG_SIG_MAGIC);
1173 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 BGE_APE_HOST_SEG_LEN_MAGIC);
1175
1176 /* Add some version info if bge(4) supports it. */
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_START);
1185 event = BGE_APE_EVENT_STATUS_STATE_START;
1186 break;
1187 case BGE_RESET_SHUTDOWN:
1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 break;
1192 case BGE_RESET_SUSPEND:
1193 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 break;
1195 default:
1196 return;
1197 }
1198
1199 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 uint32_t access, byte = 0;
1207 int i;
1208
1209 /* Lock. */
1210 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 for (i = 0; i < 8000; i++) {
1212 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 break;
1214 DELAY(20);
1215 }
1216 if (i == 8000)
1217 return 1;
1218
1219 /* Enable access. */
1220 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222
1223 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 DELAY(10);
1227 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 DELAY(10);
1229 break;
1230 }
1231 }
1232
1233 if (i == BGE_TIMEOUT * 10) {
1234 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 return 1;
1236 }
1237
1238 /* Get result. */
1239 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240
1241 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242
1243 /* Disable access. */
1244 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245
1246 /* Unlock. */
1247 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Read a sequence of bytes from NVRAM.
1254 */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 int error = 0, i;
1259 uint8_t byte = 0;
1260
1261 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 return 1;
1263
1264 for (i = 0; i < cnt; i++) {
1265 error = bge_nvram_getbyte(sc, off + i, &byte);
1266 if (error)
1267 break;
1268 *(dest + i) = byte;
1269 }
1270
1271 return (error ? 1 : 0);
1272 }
1273
1274 /*
1275 * Read a byte of data stored in the EEPROM at address 'addr.' The
1276 * BCM570x supports both the traditional bitbang interface and an
1277 * auto access interface for reading the EEPROM. We use the auto
1278 * access method.
1279 */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 int i;
1284 uint32_t byte = 0;
1285
1286 /*
1287 * Enable use of auto EEPROM access so we can avoid
1288 * having to use the bitbang method.
1289 */
1290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291
1292 /* Reset the EEPROM, load the clock period. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 DELAY(20);
1296
1297 /* Issue the read EEPROM command. */
1298 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299
1300 /* Wait for completion */
1301 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 DELAY(10);
1303 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 break;
1305 }
1306
1307 if (i == BGE_TIMEOUT * 10) {
1308 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 return 1;
1310 }
1311
1312 /* Get result. */
1313 byte = CSR_READ_4(sc, BGE_EE_DATA);
1314
1315 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * Read a sequence of bytes from the EEPROM.
1322 */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 int error = 0, i;
1327 uint8_t byte = 0;
1328 char *dest = destv;
1329
1330 for (i = 0; i < cnt; i++) {
1331 error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 if (error)
1333 break;
1334 *(dest + i) = byte;
1335 }
1336
1337 return (error ? 1 : 0);
1338 }
1339
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 struct bge_softc *sc = device_private(dev);
1344 uint32_t val;
1345 uint32_t autopoll;
1346 int i;
1347
1348 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 return 0;
1350
1351 /* Reading with autopolling on may trigger PCI errors */
1352 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 DELAY(80);
1357 }
1358
1359 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 BGE_MIPHY(phy) | BGE_MIREG(reg));
1361
1362 for (i = 0; i < BGE_TIMEOUT; i++) {
1363 delay(10);
1364 val = CSR_READ_4(sc, BGE_MI_COMM);
1365 if (!(val & BGE_MICOMM_BUSY)) {
1366 DELAY(5);
1367 val = CSR_READ_4(sc, BGE_MI_COMM);
1368 break;
1369 }
1370 }
1371
1372 if (i == BGE_TIMEOUT) {
1373 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 val = 0;
1375 goto done;
1376 }
1377
1378 done:
1379 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 DELAY(80);
1383 }
1384
1385 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386
1387 if (val & BGE_MICOMM_READFAIL)
1388 return 0;
1389
1390 return (val & 0xFFFF);
1391 }
1392
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 struct bge_softc *sc = device_private(dev);
1397 uint32_t autopoll;
1398 int i;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 return;
1406
1407 /* Reading with autopolling on may trigger PCI errors */
1408 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 DELAY(80);
1413 }
1414
1415 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417
1418 for (i = 0; i < BGE_TIMEOUT; i++) {
1419 delay(10);
1420 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 delay(5);
1422 CSR_READ_4(sc, BGE_MI_COMM);
1423 break;
1424 }
1425 }
1426
1427 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 delay(80);
1431 }
1432
1433 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434
1435 if (i == BGE_TIMEOUT)
1436 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 struct bge_softc *sc = ifp->if_softc;
1443 struct mii_data *mii = &sc->bge_mii;
1444 uint32_t mac_mode, rx_mode, tx_mode;
1445
1446 /*
1447 * Get flow control negotiation result.
1448 */
1449 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1451 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452
1453 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1454 mii->mii_media_status & IFM_ACTIVE &&
1455 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1456 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1457 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1458 (!(mii->mii_media_status & IFM_ACTIVE) ||
1459 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1460 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1461
1462 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1463 return;
1464
1465 /* Set the port mode (MII/GMII) to match the link speed. */
1466 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1467 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1468 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1469 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1470 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1471 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1472 mac_mode |= BGE_PORTMODE_GMII;
1473 else
1474 mac_mode |= BGE_PORTMODE_MII;
1475
1476 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1477 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1478 if ((mii->mii_media_active & IFM_FDX) != 0) {
1479 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1480 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1481 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1482 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1483 } else
1484 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1485
1486 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1487 DELAY(40);
1488 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1489 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1490 }
1491
1492 /*
1493 * Update rx threshold levels to values in a particular slot
1494 * of the interrupt-mitigation table bge_rx_threshes.
1495 */
1496 static void
1497 bge_set_thresh(struct ifnet *ifp, int lvl)
1498 {
1499 struct bge_softc *sc = ifp->if_softc;
1500 int s;
1501
1502 /* For now, just save the new Rx-intr thresholds and record
1503 * that a threshold update is pending. Updating the hardware
1504 * registers here (even at splhigh()) is observed to
1505 * occasionaly cause glitches where Rx-interrupts are not
1506 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1507 */
1508 s = splnet();
1509 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1510 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1511 sc->bge_pending_rxintr_change = 1;
1512 splx(s);
1513 }
1514
1515
1516 /*
1517 * Update Rx thresholds of all bge devices
1518 */
1519 static void
1520 bge_update_all_threshes(int lvl)
1521 {
1522 struct ifnet *ifp;
1523 const char * const namebuf = "bge";
1524 int namelen;
1525
1526 if (lvl < 0)
1527 lvl = 0;
1528 else if (lvl >= NBGE_RX_THRESH)
1529 lvl = NBGE_RX_THRESH - 1;
1530
1531 namelen = strlen(namebuf);
1532 /*
1533 * Now search all the interfaces for this name/number
1534 */
1535 IFNET_FOREACH(ifp) {
1536 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1537 continue;
1538 /* We got a match: update if doing auto-threshold-tuning */
1539 if (bge_auto_thresh)
1540 bge_set_thresh(ifp, lvl);
1541 }
1542 }
1543
1544 /*
1545 * Handle events that have triggered interrupts.
1546 */
1547 static void
1548 bge_handle_events(struct bge_softc *sc)
1549 {
1550
1551 return;
1552 }
1553
1554 /*
1555 * Memory management for jumbo frames.
1556 */
1557
1558 static int
1559 bge_alloc_jumbo_mem(struct bge_softc *sc)
1560 {
1561 char *ptr, *kva;
1562 bus_dma_segment_t seg;
1563 int i, rseg, state, error;
1564 struct bge_jpool_entry *entry;
1565
1566 state = error = 0;
1567
1568 /* Grab a big chunk o' storage. */
1569 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1570 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1571 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1572 return ENOBUFS;
1573 }
1574
1575 state = 1;
1576 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1577 BUS_DMA_NOWAIT)) {
1578 aprint_error_dev(sc->bge_dev,
1579 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1580 error = ENOBUFS;
1581 goto out;
1582 }
1583
1584 state = 2;
1585 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1586 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1587 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1588 error = ENOBUFS;
1589 goto out;
1590 }
1591
1592 state = 3;
1593 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1594 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1595 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1596 error = ENOBUFS;
1597 goto out;
1598 }
1599
1600 state = 4;
1601 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1602 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1603
1604 SLIST_INIT(&sc->bge_jfree_listhead);
1605 SLIST_INIT(&sc->bge_jinuse_listhead);
1606
1607 /*
1608 * Now divide it up into 9K pieces and save the addresses
1609 * in an array.
1610 */
1611 ptr = sc->bge_cdata.bge_jumbo_buf;
1612 for (i = 0; i < BGE_JSLOTS; i++) {
1613 sc->bge_cdata.bge_jslots[i] = ptr;
1614 ptr += BGE_JLEN;
1615 entry = malloc(sizeof(struct bge_jpool_entry),
1616 M_DEVBUF, M_NOWAIT);
1617 if (entry == NULL) {
1618 aprint_error_dev(sc->bge_dev,
1619 "no memory for jumbo buffer queue!\n");
1620 error = ENOBUFS;
1621 goto out;
1622 }
1623 entry->slot = i;
1624 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1625 entry, jpool_entries);
1626 }
1627 out:
1628 if (error != 0) {
1629 switch (state) {
1630 case 4:
1631 bus_dmamap_unload(sc->bge_dmatag,
1632 sc->bge_cdata.bge_rx_jumbo_map);
1633 case 3:
1634 bus_dmamap_destroy(sc->bge_dmatag,
1635 sc->bge_cdata.bge_rx_jumbo_map);
1636 case 2:
1637 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1638 case 1:
1639 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1640 break;
1641 default:
1642 break;
1643 }
1644 }
1645
1646 return error;
1647 }
1648
1649 /*
1650 * Allocate a jumbo buffer.
1651 */
1652 static void *
1653 bge_jalloc(struct bge_softc *sc)
1654 {
1655 struct bge_jpool_entry *entry;
1656
1657 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1658
1659 if (entry == NULL) {
1660 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1661 return NULL;
1662 }
1663
1664 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1665 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1666 return (sc->bge_cdata.bge_jslots[entry->slot]);
1667 }
1668
1669 /*
1670 * Release a jumbo buffer.
1671 */
1672 static void
1673 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1674 {
1675 struct bge_jpool_entry *entry;
1676 struct bge_softc *sc;
1677 int i, s;
1678
1679 /* Extract the softc struct pointer. */
1680 sc = (struct bge_softc *)arg;
1681
1682 if (sc == NULL)
1683 panic("bge_jfree: can't find softc pointer!");
1684
1685 /* calculate the slot this buffer belongs to */
1686
1687 i = ((char *)buf
1688 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1689
1690 if ((i < 0) || (i >= BGE_JSLOTS))
1691 panic("bge_jfree: asked to free buffer that we don't manage!");
1692
1693 s = splvm();
1694 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1695 if (entry == NULL)
1696 panic("bge_jfree: buffer not in use!");
1697 entry->slot = i;
1698 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1699 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1700
1701 if (__predict_true(m != NULL))
1702 pool_cache_put(mb_cache, m);
1703 splx(s);
1704 }
1705
1706
1707 /*
1708 * Initialize a standard receive ring descriptor.
1709 */
1710 static int
1711 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1712 bus_dmamap_t dmamap)
1713 {
1714 struct mbuf *m_new = NULL;
1715 struct bge_rx_bd *r;
1716 int error;
1717
1718 if (dmamap == NULL) {
1719 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1720 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1721 if (error != 0)
1722 return error;
1723 }
1724
1725 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1726
1727 if (m == NULL) {
1728 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1729 if (m_new == NULL)
1730 return ENOBUFS;
1731
1732 MCLGET(m_new, M_DONTWAIT);
1733 if (!(m_new->m_flags & M_EXT)) {
1734 m_freem(m_new);
1735 return ENOBUFS;
1736 }
1737 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1738
1739 } else {
1740 m_new = m;
1741 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1742 m_new->m_data = m_new->m_ext.ext_buf;
1743 }
1744 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1745 m_adj(m_new, ETHER_ALIGN);
1746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1747 BUS_DMA_READ|BUS_DMA_NOWAIT))
1748 return ENOBUFS;
1749 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1750 BUS_DMASYNC_PREREAD);
1751
1752 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1753 r = &sc->bge_rdata->bge_rx_std_ring[i];
1754 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1755 r->bge_flags = BGE_RXBDFLAG_END;
1756 r->bge_len = m_new->m_len;
1757 r->bge_idx = i;
1758
1759 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1760 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1761 i * sizeof (struct bge_rx_bd),
1762 sizeof (struct bge_rx_bd),
1763 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * Initialize a jumbo receive ring descriptor. This allocates
1770 * a jumbo buffer from the pool managed internally by the driver.
1771 */
1772 static int
1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1774 {
1775 struct mbuf *m_new = NULL;
1776 struct bge_rx_bd *r;
1777 void *buf = NULL;
1778
1779 if (m == NULL) {
1780
1781 /* Allocate the mbuf. */
1782 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1783 if (m_new == NULL)
1784 return ENOBUFS;
1785
1786 /* Allocate the jumbo buffer */
1787 buf = bge_jalloc(sc);
1788 if (buf == NULL) {
1789 m_freem(m_new);
1790 aprint_error_dev(sc->bge_dev,
1791 "jumbo allocation failed -- packet dropped!\n");
1792 return ENOBUFS;
1793 }
1794
1795 /* Attach the buffer to the mbuf. */
1796 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1797 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1798 bge_jfree, sc);
1799 m_new->m_flags |= M_EXT_RW;
1800 } else {
1801 m_new = m;
1802 buf = m_new->m_data = m_new->m_ext.ext_buf;
1803 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1804 }
1805 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1806 m_adj(m_new, ETHER_ALIGN);
1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1808 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1809 BUS_DMASYNC_PREREAD);
1810 /* Set up the descriptor. */
1811 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1812 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1813 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1814 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1815 r->bge_len = m_new->m_len;
1816 r->bge_idx = i;
1817
1818 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1819 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1820 i * sizeof (struct bge_rx_bd),
1821 sizeof (struct bge_rx_bd),
1822 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1823
1824 return 0;
1825 }
1826
1827 /*
1828 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1829 * that's 1MB or memory, which is a lot. For now, we fill only the first
1830 * 256 ring entries and hope that our CPU is fast enough to keep up with
1831 * the NIC.
1832 */
1833 static int
1834 bge_init_rx_ring_std(struct bge_softc *sc)
1835 {
1836 int i;
1837
1838 if (sc->bge_flags & BGEF_RXRING_VALID)
1839 return 0;
1840
1841 for (i = 0; i < BGE_SSLOTS; i++) {
1842 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1843 return ENOBUFS;
1844 }
1845
1846 sc->bge_std = i - 1;
1847 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1848
1849 sc->bge_flags |= BGEF_RXRING_VALID;
1850
1851 return 0;
1852 }
1853
1854 static void
1855 bge_free_rx_ring_std(struct bge_softc *sc)
1856 {
1857 int i;
1858
1859 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1860 return;
1861
1862 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1863 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1864 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1865 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1866 bus_dmamap_destroy(sc->bge_dmatag,
1867 sc->bge_cdata.bge_rx_std_map[i]);
1868 }
1869 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1870 sizeof(struct bge_rx_bd));
1871 }
1872
1873 sc->bge_flags &= ~BGEF_RXRING_VALID;
1874 }
1875
1876 static int
1877 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1878 {
1879 int i;
1880 volatile struct bge_rcb *rcb;
1881
1882 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1883 return 0;
1884
1885 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1886 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1887 return ENOBUFS;
1888 }
1889
1890 sc->bge_jumbo = i - 1;
1891 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1892
1893 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1894 rcb->bge_maxlen_flags = 0;
1895 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1896
1897 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1898
1899 return 0;
1900 }
1901
1902 static void
1903 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1904 {
1905 int i;
1906
1907 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1908 return;
1909
1910 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1911 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1912 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1913 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1914 }
1915 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1916 sizeof(struct bge_rx_bd));
1917 }
1918
1919 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1920 }
1921
1922 static void
1923 bge_free_tx_ring(struct bge_softc *sc)
1924 {
1925 int i;
1926 struct txdmamap_pool_entry *dma;
1927
1928 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1929 return;
1930
1931 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1932 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1933 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1934 sc->bge_cdata.bge_tx_chain[i] = NULL;
1935 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1936 link);
1937 sc->txdma[i] = 0;
1938 }
1939 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1940 sizeof(struct bge_tx_bd));
1941 }
1942
1943 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1944 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1945 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1946 free(dma, M_DEVBUF);
1947 }
1948
1949 sc->bge_flags &= ~BGEF_TXRING_VALID;
1950 }
1951
1952 static int
1953 bge_init_tx_ring(struct bge_softc *sc)
1954 {
1955 struct ifnet *ifp = &sc->ethercom.ec_if;
1956 int i;
1957 bus_dmamap_t dmamap;
1958 bus_size_t maxsegsz;
1959 struct txdmamap_pool_entry *dma;
1960
1961 if (sc->bge_flags & BGEF_TXRING_VALID)
1962 return 0;
1963
1964 sc->bge_txcnt = 0;
1965 sc->bge_tx_saved_considx = 0;
1966
1967 /* Initialize transmit producer index for host-memory send ring. */
1968 sc->bge_tx_prodidx = 0;
1969 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970 /* 5700 b2 errata */
1971 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1972 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973
1974 /* NIC-memory send ring not used; initialize to zero. */
1975 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976 /* 5700 b2 errata */
1977 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1978 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979
1980 /* Limit DMA segment size for some chips */
1981 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1982 (ifp->if_mtu <= ETHERMTU))
1983 maxsegsz = 2048;
1984 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1985 maxsegsz = 4096;
1986 else
1987 maxsegsz = ETHER_MAX_LEN_JUMBO;
1988 SLIST_INIT(&sc->txdma_list);
1989 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1990 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1991 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1992 &dmamap))
1993 return ENOBUFS;
1994 if (dmamap == NULL)
1995 panic("dmamap NULL in bge_init_tx_ring");
1996 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1997 if (dma == NULL) {
1998 aprint_error_dev(sc->bge_dev,
1999 "can't alloc txdmamap_pool_entry\n");
2000 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2001 return ENOMEM;
2002 }
2003 dma->dmamap = dmamap;
2004 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2005 }
2006
2007 sc->bge_flags |= BGEF_TXRING_VALID;
2008
2009 return 0;
2010 }
2011
2012 static void
2013 bge_setmulti(struct bge_softc *sc)
2014 {
2015 struct ethercom *ac = &sc->ethercom;
2016 struct ifnet *ifp = &ac->ec_if;
2017 struct ether_multi *enm;
2018 struct ether_multistep step;
2019 uint32_t hashes[4] = { 0, 0, 0, 0 };
2020 uint32_t h;
2021 int i;
2022
2023 if (ifp->if_flags & IFF_PROMISC)
2024 goto allmulti;
2025
2026 /* Now program new ones. */
2027 ETHER_FIRST_MULTI(step, ac, enm);
2028 while (enm != NULL) {
2029 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 /*
2031 * We must listen to a range of multicast addresses.
2032 * For now, just accept all multicasts, rather than
2033 * trying to set only those filter bits needed to match
2034 * the range. (At this time, the only use of address
2035 * ranges is for IP multicast routing, for which the
2036 * range is big enough to require all bits set.)
2037 */
2038 goto allmulti;
2039 }
2040
2041 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042
2043 /* Just want the 7 least-significant bits. */
2044 h &= 0x7f;
2045
2046 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2047 ETHER_NEXT_MULTI(step, enm);
2048 }
2049
2050 ifp->if_flags &= ~IFF_ALLMULTI;
2051 goto setit;
2052
2053 allmulti:
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2056
2057 setit:
2058 for (i = 0; i < 4; i++)
2059 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2060 }
2061
2062 static void
2063 bge_sig_pre_reset(struct bge_softc *sc, int type)
2064 {
2065
2066 /*
2067 * Some chips don't like this so only do this if ASF is enabled
2068 */
2069 if (sc->bge_asf_mode)
2070 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2071
2072 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2073 switch (type) {
2074 case BGE_RESET_START:
2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 BGE_FW_DRV_STATE_START);
2077 break;
2078 case BGE_RESET_SHUTDOWN:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_UNLOAD);
2081 break;
2082 case BGE_RESET_SUSPEND:
2083 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2084 BGE_FW_DRV_STATE_SUSPEND);
2085 break;
2086 }
2087 }
2088
2089 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2090 bge_ape_driver_state_change(sc, type);
2091 }
2092
2093 static void
2094 bge_sig_post_reset(struct bge_softc *sc, int type)
2095 {
2096
2097 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2098 switch (type) {
2099 case BGE_RESET_START:
2100 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2101 BGE_FW_DRV_STATE_START_DONE);
2102 /* START DONE */
2103 break;
2104 case BGE_RESET_SHUTDOWN:
2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 BGE_FW_DRV_STATE_UNLOAD_DONE);
2107 break;
2108 }
2109 }
2110
2111 if (type == BGE_RESET_SHUTDOWN)
2112 bge_ape_driver_state_change(sc, type);
2113 }
2114
2115 static void
2116 bge_sig_legacy(struct bge_softc *sc, int type)
2117 {
2118
2119 if (sc->bge_asf_mode) {
2120 switch (type) {
2121 case BGE_RESET_START:
2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 BGE_FW_DRV_STATE_START);
2124 break;
2125 case BGE_RESET_SHUTDOWN:
2126 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2127 BGE_FW_DRV_STATE_UNLOAD);
2128 break;
2129 }
2130 }
2131 }
2132
2133 static void
2134 bge_wait_for_event_ack(struct bge_softc *sc)
2135 {
2136 int i;
2137
2138 /* wait up to 2500usec */
2139 for (i = 0; i < 250; i++) {
2140 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2141 BGE_RX_CPU_DRV_EVENT))
2142 break;
2143 DELAY(10);
2144 }
2145 }
2146
2147 static void
2148 bge_stop_fw(struct bge_softc *sc)
2149 {
2150
2151 if (sc->bge_asf_mode) {
2152 bge_wait_for_event_ack(sc);
2153
2154 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2155 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2156 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2157
2158 bge_wait_for_event_ack(sc);
2159 }
2160 }
2161
2162 static int
2163 bge_poll_fw(struct bge_softc *sc)
2164 {
2165 uint32_t val;
2166 int i;
2167
2168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2169 for (i = 0; i < BGE_TIMEOUT; i++) {
2170 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2171 if (val & BGE_VCPU_STATUS_INIT_DONE)
2172 break;
2173 DELAY(100);
2174 }
2175 if (i >= BGE_TIMEOUT) {
2176 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2177 return -1;
2178 }
2179 } else if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) {
2180 /*
2181 * Poll the value location we just wrote until
2182 * we see the 1's complement of the magic number.
2183 * This indicates that the firmware initialization
2184 * is complete.
2185 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2186 */
2187 for (i = 0; i < BGE_TIMEOUT; i++) {
2188 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2189 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2190 break;
2191 DELAY(10);
2192 }
2193
2194 if (i >= BGE_TIMEOUT) {
2195 aprint_error_dev(sc->bge_dev,
2196 "firmware handshake timed out, val = %x\n", val);
2197 return -1;
2198 }
2199 }
2200
2201 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2202 /* tg3 says we have to wait extra time */
2203 delay(10 * 1000);
2204 }
2205
2206 return 0;
2207 }
2208
2209 int
2210 bge_phy_addr(struct bge_softc *sc)
2211 {
2212 struct pci_attach_args *pa = &(sc->bge_pa);
2213 int phy_addr = 1;
2214
2215 /*
2216 * PHY address mapping for various devices.
2217 *
2218 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2219 * ---------+-------+-------+-------+-------+
2220 * BCM57XX | 1 | X | X | X |
2221 * BCM5704 | 1 | X | 1 | X |
2222 * BCM5717 | 1 | 8 | 2 | 9 |
2223 * BCM5719 | 1 | 8 | 2 | 9 |
2224 * BCM5720 | 1 | 8 | 2 | 9 |
2225 *
2226 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2227 * ---------+-------+-------+-------+-------+
2228 * BCM57XX | X | X | X | X |
2229 * BCM5704 | X | X | X | X |
2230 * BCM5717 | X | X | X | X |
2231 * BCM5719 | 3 | 10 | 4 | 11 |
2232 * BCM5720 | X | X | X | X |
2233 *
2234 * Other addresses may respond but they are not
2235 * IEEE compliant PHYs and should be ignored.
2236 */
2237 switch (BGE_ASICREV(sc->bge_chipid)) {
2238 case BGE_ASICREV_BCM5717:
2239 case BGE_ASICREV_BCM5719:
2240 case BGE_ASICREV_BCM5720:
2241 phy_addr = pa->pa_function;
2242 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2243 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2244 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2245 } else {
2246 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2247 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2248 }
2249 }
2250
2251 return phy_addr;
2252 }
2253
2254 /*
2255 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2256 * self-test results.
2257 */
2258 static int
2259 bge_chipinit(struct bge_softc *sc)
2260 {
2261 uint32_t dma_rw_ctl, mode_ctl, reg;
2262 int i;
2263
2264 /* Set endianness before we access any non-PCI registers. */
2265 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 BGE_INIT);
2267
2268 /*
2269 * Clear the MAC statistics block in the NIC's
2270 * internal memory.
2271 */
2272 for (i = BGE_STATS_BLOCK;
2273 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275
2276 for (i = BGE_STATUS_BLOCK;
2277 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279
2280 /* 5717 workaround from tg3 */
2281 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL1);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298
2299 if (BGE_IS_57765_FAMILY(sc)) {
2300 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 /* Save */
2302 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303
2304 /* Temporary modify MODE_CTL to control TLP */
2305 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 reg | BGE_MODECTL_PCIE_TLPADDR1);
2308
2309 /* Control TLP */
2310 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 BGE_TLP_PHYCTL5);
2312 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314
2315 /* Restore */
2316 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 }
2318 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322
2323 /* Save */
2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325
2326 /* Temporary modify MODE_CTL to control TLP */
2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 reg | BGE_MODECTL_PCIE_TLPADDR0);
2330
2331 /* Control TLP */
2332 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 BGE_TLP_FTSMAX);
2334 reg &= ~BGE_TLP_FTSMAX_MSK;
2335 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 reg | BGE_TLP_FTSMAX_VAL);
2337
2338 /* Restore */
2339 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 }
2341
2342 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 }
2347
2348 /* Set up the PCI DMA control register. */
2349 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 if (sc->bge_flags & BGEF_PCIE) {
2351 /* Read watermark not used, 128 bytes for write. */
2352 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 device_xname(sc->bge_dev)));
2354 if (sc->bge_mps >= 256)
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 else
2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 } else if (sc->bge_flags & BGEF_PCIX) {
2359 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 device_xname(sc->bge_dev)));
2361 /* PCI-X bus */
2362 if (BGE_IS_5714_FAMILY(sc)) {
2363 /* 256 bytes for read and write. */
2364 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366
2367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 else
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2372 /* 1536 bytes for read, 384 bytes for write. */
2373 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2374 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2375 } else {
2376 /* 384 bytes for read and write. */
2377 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2378 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2379 (0x0F);
2380 }
2381
2382 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2383 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2384 uint32_t tmp;
2385
2386 /* Set ONEDMA_ATONCE for hardware workaround. */
2387 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2388 if (tmp == 6 || tmp == 7)
2389 dma_rw_ctl |=
2390 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2391
2392 /* Set PCI-X DMA write workaround. */
2393 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2394 }
2395 } else {
2396 /* Conventional PCI bus: 256 bytes for read and write. */
2397 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2398 device_xname(sc->bge_dev)));
2399 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2400 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2401
2402 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2403 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2404 dma_rw_ctl |= 0x0F;
2405 }
2406
2407 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2408 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2409 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2410 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2411
2412 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2413 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2414 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2415
2416 if (BGE_IS_57765_PLUS(sc)) {
2417 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2418 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2419 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2420
2421 /*
2422 * Enable HW workaround for controllers that misinterpret
2423 * a status tag update and leave interrupts permanently
2424 * disabled.
2425 */
2426 if (!BGE_IS_57765_FAMILY(sc) &&
2427 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2428 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2429 }
2430
2431 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2432 dma_rw_ctl);
2433
2434 /*
2435 * Set up general mode register.
2436 */
2437 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2438 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2439 /* Retain Host-2-BMC settings written by APE firmware. */
2440 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2441 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2442 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2443 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2444 }
2445 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2446 BGE_MODECTL_TX_NO_PHDR_CSUM;
2447
2448 /*
2449 * BCM5701 B5 have a bug causing data corruption when using
2450 * 64-bit DMA reads, which can be terminated early and then
2451 * completed later as 32-bit accesses, in combination with
2452 * certain bridges.
2453 */
2454 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2455 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2456 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2457
2458 /*
2459 * Tell the firmware the driver is running
2460 */
2461 if (sc->bge_asf_mode & ASF_STACKUP)
2462 mode_ctl |= BGE_MODECTL_STACKUP;
2463
2464 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2465
2466 /*
2467 * Disable memory write invalidate. Apparently it is not supported
2468 * properly by these devices.
2469 */
2470 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2471 PCI_COMMAND_INVALIDATE_ENABLE);
2472
2473 #ifdef __brokenalpha__
2474 /*
2475 * Must insure that we do not cross an 8K (bytes) boundary
2476 * for DMA reads. Our highest limit is 1K bytes. This is a
2477 * restriction on some ALPHA platforms with early revision
2478 * 21174 PCI chipsets, such as the AlphaPC 164lx
2479 */
2480 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2481 #endif
2482
2483 /* Set the timer prescaler (always 66MHz) */
2484 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2485
2486 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2487 DELAY(40); /* XXX */
2488
2489 /* Put PHY into ready state */
2490 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2491 DELAY(40);
2492 }
2493
2494 return 0;
2495 }
2496
2497 static int
2498 bge_blockinit(struct bge_softc *sc)
2499 {
2500 volatile struct bge_rcb *rcb;
2501 bus_size_t rcb_addr;
2502 struct ifnet *ifp = &sc->ethercom.ec_if;
2503 bge_hostaddr taddr;
2504 uint32_t dmactl, val;
2505 int i, limit;
2506
2507 /*
2508 * Initialize the memory window pointer register so that
2509 * we can access the first 32K of internal NIC RAM. This will
2510 * allow us to set up the TX send ring RCBs and the RX return
2511 * ring RCBs, plus other things which live in NIC memory.
2512 */
2513 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2514
2515 if (!BGE_IS_5705_PLUS(sc)) {
2516 /* 57XX step 33 */
2517 /* Configure mbuf memory pool */
2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2519 BGE_BUFFPOOL_1);
2520
2521 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2522 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2523 else
2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2525
2526 /* 57XX step 34 */
2527 /* Configure DMA resource pool */
2528 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2529 BGE_DMA_DESCRIPTORS);
2530 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2531 }
2532
2533 /* 5718 step 11, 57XX step 35 */
2534 /*
2535 * Configure mbuf pool watermarks. New broadcom docs strongly
2536 * recommend these.
2537 */
2538 if (BGE_IS_5717_PLUS(sc)) {
2539 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2540 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2541 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2542 } else if (BGE_IS_5705_PLUS(sc)) {
2543 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2544
2545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2546 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2547 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2548 } else {
2549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2551 }
2552 } else {
2553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2556 }
2557
2558 /* 57XX step 36 */
2559 /* Configure DMA resource watermarks */
2560 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2561 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2562
2563 /* 5718 step 13, 57XX step 38 */
2564 /* Enable buffer manager */
2565 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2566 /*
2567 * Change the arbitration algorithm of TXMBUF read request to
2568 * round-robin instead of priority based for BCM5719. When
2569 * TXFIFO is almost empty, RDMA will hold its request until
2570 * TXFIFO is not almost empty.
2571 */
2572 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2573 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2574 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2575 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2576 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2577 val |= BGE_BMANMODE_LOMBUF_ATTN;
2578 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2579
2580 /* 57XX step 39 */
2581 /* Poll for buffer manager start indication */
2582 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2583 DELAY(10);
2584 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2585 break;
2586 }
2587
2588 if (i == BGE_TIMEOUT * 2) {
2589 aprint_error_dev(sc->bge_dev,
2590 "buffer manager failed to start\n");
2591 return ENXIO;
2592 }
2593
2594 /* 57XX step 40 */
2595 /* Enable flow-through queues */
2596 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2597 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2598
2599 /* Wait until queue initialization is complete */
2600 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2601 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2602 break;
2603 DELAY(10);
2604 }
2605
2606 if (i == BGE_TIMEOUT * 2) {
2607 aprint_error_dev(sc->bge_dev,
2608 "flow-through queue init failed\n");
2609 return ENXIO;
2610 }
2611
2612 /*
2613 * Summary of rings supported by the controller:
2614 *
2615 * Standard Receive Producer Ring
2616 * - This ring is used to feed receive buffers for "standard"
2617 * sized frames (typically 1536 bytes) to the controller.
2618 *
2619 * Jumbo Receive Producer Ring
2620 * - This ring is used to feed receive buffers for jumbo sized
2621 * frames (i.e. anything bigger than the "standard" frames)
2622 * to the controller.
2623 *
2624 * Mini Receive Producer Ring
2625 * - This ring is used to feed receive buffers for "mini"
2626 * sized frames to the controller.
2627 * - This feature required external memory for the controller
2628 * but was never used in a production system. Should always
2629 * be disabled.
2630 *
2631 * Receive Return Ring
2632 * - After the controller has placed an incoming frame into a
2633 * receive buffer that buffer is moved into a receive return
2634 * ring. The driver is then responsible to passing the
2635 * buffer up to the stack. Many versions of the controller
2636 * support multiple RR rings.
2637 *
2638 * Send Ring
2639 * - This ring is used for outgoing frames. Many versions of
2640 * the controller support multiple send rings.
2641 */
2642
2643 /* 5718 step 15, 57XX step 41 */
2644 /* Initialize the standard RX ring control block */
2645 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2646 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2647 /* 5718 step 16 */
2648 if (BGE_IS_57765_PLUS(sc)) {
2649 /*
2650 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2651 * Bits 15-2 : Maximum RX frame size
2652 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2653 * Bit 0 : Reserved
2654 */
2655 rcb->bge_maxlen_flags =
2656 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2657 } else if (BGE_IS_5705_PLUS(sc)) {
2658 /*
2659 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2660 * Bits 15-2 : Reserved (should be 0)
2661 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2662 * Bit 0 : Reserved
2663 */
2664 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2665 } else {
2666 /*
2667 * Ring size is always XXX entries
2668 * Bits 31-16: Maximum RX frame size
2669 * Bits 15-2 : Reserved (should be 0)
2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2671 * Bit 0 : Reserved
2672 */
2673 rcb->bge_maxlen_flags =
2674 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2675 }
2676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2679 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2680 else
2681 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2682 /* Write the standard receive producer ring control block. */
2683 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2684 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2685 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2686 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2687
2688 /* Reset the standard receive producer ring producer index. */
2689 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2690
2691 /* 57XX step 42 */
2692 /*
2693 * Initialize the jumbo RX ring control block
2694 * We set the 'ring disabled' bit in the flags
2695 * field until we're actually ready to start
2696 * using this ring (i.e. once we set the MTU
2697 * high enough to require it).
2698 */
2699 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2700 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2701 BGE_HOSTADDR(rcb->bge_hostaddr,
2702 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2703 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2704 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2705 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2706 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2707 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2708 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2709 else
2710 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2711 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2712 rcb->bge_hostaddr.bge_addr_hi);
2713 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2714 rcb->bge_hostaddr.bge_addr_lo);
2715 /* Program the jumbo receive producer ring RCB parameters. */
2716 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2717 rcb->bge_maxlen_flags);
2718 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2719 /* Reset the jumbo receive producer ring producer index. */
2720 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2721 }
2722
2723 /* 57XX step 43 */
2724 /* Disable the mini receive producer ring RCB. */
2725 if (BGE_IS_5700_FAMILY(sc)) {
2726 /* Set up dummy disabled mini ring RCB */
2727 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2728 rcb->bge_maxlen_flags =
2729 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2730 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2731 rcb->bge_maxlen_flags);
2732 /* Reset the mini receive producer ring producer index. */
2733 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2734
2735 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2736 offsetof(struct bge_ring_data, bge_info),
2737 sizeof (struct bge_gib),
2738 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2739 }
2740
2741 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2742 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2743 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2744 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2745 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2746 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2747 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2748 }
2749 /* 5718 step 14, 57XX step 44 */
2750 /*
2751 * The BD ring replenish thresholds control how often the
2752 * hardware fetches new BD's from the producer rings in host
2753 * memory. Setting the value too low on a busy system can
2754 * starve the hardware and recue the throughpout.
2755 *
2756 * Set the BD ring replenish thresholds. The recommended
2757 * values are 1/8th the number of descriptors allocated to
2758 * each ring, but since we try to avoid filling the entire
2759 * ring we set these to the minimal value of 8. This needs to
2760 * be done on several of the supported chip revisions anyway,
2761 * to work around HW bugs.
2762 */
2763 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2764 if (BGE_IS_JUMBO_CAPABLE(sc))
2765 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2766
2767 /* 5718 step 18 */
2768 if (BGE_IS_5717_PLUS(sc)) {
2769 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2770 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2771 }
2772
2773 /* 57XX step 45 */
2774 /*
2775 * Disable all send rings by setting the 'ring disabled' bit
2776 * in the flags field of all the TX send ring control blocks,
2777 * located in NIC memory.
2778 */
2779 if (BGE_IS_5700_FAMILY(sc)) {
2780 /* 5700 to 5704 had 16 send rings. */
2781 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2782 } else if (BGE_IS_5717_PLUS(sc)) {
2783 limit = BGE_TX_RINGS_5717_MAX;
2784 } else if (BGE_IS_57765_FAMILY(sc)) {
2785 limit = BGE_TX_RINGS_57765_MAX;
2786 } else
2787 limit = 1;
2788 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2789 for (i = 0; i < limit; i++) {
2790 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2791 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2792 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2793 rcb_addr += sizeof(struct bge_rcb);
2794 }
2795
2796 /* 57XX step 46 and 47 */
2797 /* Configure send ring RCB 0 (we use only the first ring) */
2798 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2799 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2800 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2801 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2802 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2803 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2804 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2805 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2806 else
2807 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2808 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2809 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2810 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2811
2812 /* 57XX step 48 */
2813 /*
2814 * Disable all receive return rings by setting the
2815 * 'ring diabled' bit in the flags field of all the receive
2816 * return ring control blocks, located in NIC memory.
2817 */
2818 if (BGE_IS_5717_PLUS(sc)) {
2819 /* Should be 17, use 16 until we get an SRAM map. */
2820 limit = 16;
2821 } else if (BGE_IS_5700_FAMILY(sc))
2822 limit = BGE_RX_RINGS_MAX;
2823 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2824 BGE_IS_57765_FAMILY(sc))
2825 limit = 4;
2826 else
2827 limit = 1;
2828 /* Disable all receive return rings */
2829 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2830 for (i = 0; i < limit; i++) {
2831 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2832 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2833 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2834 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2835 BGE_RCB_FLAG_RING_DISABLED));
2836 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2837 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2838 (i * (sizeof(uint64_t))), 0);
2839 rcb_addr += sizeof(struct bge_rcb);
2840 }
2841
2842 /* 57XX step 49 */
2843 /*
2844 * Set up receive return ring 0. Note that the NIC address
2845 * for RX return rings is 0x0. The return rings live entirely
2846 * within the host, so the nicaddr field in the RCB isn't used.
2847 */
2848 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2849 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2850 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2851 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2852 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2853 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2854 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2855
2856 /* 5718 step 24, 57XX step 53 */
2857 /* Set random backoff seed for TX */
2858 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2859 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2860 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2861 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2862 BGE_TX_BACKOFF_SEED_MASK);
2863
2864 /* 5718 step 26, 57XX step 55 */
2865 /* Set inter-packet gap */
2866 val = 0x2620;
2867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2868 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2869 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2870 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2871
2872 /* 5718 step 27, 57XX step 56 */
2873 /*
2874 * Specify which ring to use for packets that don't match
2875 * any RX rules.
2876 */
2877 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2878
2879 /* 5718 step 28, 57XX step 57 */
2880 /*
2881 * Configure number of RX lists. One interrupt distribution
2882 * list, sixteen active lists, one bad frames class.
2883 */
2884 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2885
2886 /* 5718 step 29, 57XX step 58 */
2887 /* Inialize RX list placement stats mask. */
2888 if (BGE_IS_575X_PLUS(sc)) {
2889 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2890 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2891 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2892 } else
2893 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2894
2895 /* 5718 step 30, 57XX step 59 */
2896 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2897
2898 /* 5718 step 33, 57XX step 62 */
2899 /* Disable host coalescing until we get it set up */
2900 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2901
2902 /* 5718 step 34, 57XX step 63 */
2903 /* Poll to make sure it's shut down. */
2904 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2905 DELAY(10);
2906 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2907 break;
2908 }
2909
2910 if (i == BGE_TIMEOUT * 2) {
2911 aprint_error_dev(sc->bge_dev,
2912 "host coalescing engine failed to idle\n");
2913 return ENXIO;
2914 }
2915
2916 /* 5718 step 35, 36, 37 */
2917 /* Set up host coalescing defaults */
2918 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2919 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2920 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2921 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2922 if (!(BGE_IS_5705_PLUS(sc))) {
2923 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2924 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2925 }
2926 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2927 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2928
2929 /* Set up address of statistics block */
2930 if (BGE_IS_5700_FAMILY(sc)) {
2931 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2932 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2933 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2934 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2935 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2936 }
2937
2938 /* 5718 step 38 */
2939 /* Set up address of status block */
2940 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2941 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2942 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2943 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2944 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2945 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2946
2947 /* Set up status block size. */
2948 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2949 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2950 val = BGE_STATBLKSZ_FULL;
2951 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2952 } else {
2953 val = BGE_STATBLKSZ_32BYTE;
2954 bzero(&sc->bge_rdata->bge_status_block, 32);
2955 }
2956
2957 /* 5718 step 39, 57XX step 73 */
2958 /* Turn on host coalescing state machine */
2959 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2960
2961 /* 5718 step 40, 57XX step 74 */
2962 /* Turn on RX BD completion state machine and enable attentions */
2963 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2964 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2965
2966 /* 5718 step 41, 57XX step 75 */
2967 /* Turn on RX list placement state machine */
2968 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2969
2970 /* 57XX step 76 */
2971 /* Turn on RX list selector state machine. */
2972 if (!(BGE_IS_5705_PLUS(sc)))
2973 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2974
2975 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2976 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2977 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2978 BGE_MACMODE_FRMHDR_DMA_ENB;
2979
2980 if (sc->bge_flags & BGEF_FIBER_TBI)
2981 val |= BGE_PORTMODE_TBI;
2982 else if (sc->bge_flags & BGEF_FIBER_MII)
2983 val |= BGE_PORTMODE_GMII;
2984 else
2985 val |= BGE_PORTMODE_MII;
2986
2987 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2988 /* Allow APE to send/receive frames. */
2989 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2990 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2991
2992 /* Turn on DMA, clear stats */
2993 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2994 /* 5718 step 44 */
2995 DELAY(40);
2996
2997 /* 5718 step 45, 57XX step 79 */
2998 /* Set misc. local control, enable interrupts on attentions */
2999 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3000 if (BGE_IS_5717_PLUS(sc)) {
3001 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3002 /* 5718 step 46 */
3003 DELAY(100);
3004 }
3005
3006 /* 57XX step 81 */
3007 /* Turn on DMA completion state machine */
3008 if (!(BGE_IS_5705_PLUS(sc)))
3009 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3010
3011 /* 5718 step 47, 57XX step 82 */
3012 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3013
3014 /* 5718 step 48 */
3015 /* Enable host coalescing bug fix. */
3016 if (BGE_IS_5755_PLUS(sc))
3017 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3018
3019 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3020 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3021
3022 /* Turn on write DMA state machine */
3023 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3024 /* 5718 step 49 */
3025 DELAY(40);
3026
3027 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3028
3029 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3030 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3031
3032 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3033 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3034 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3035 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3036 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3037 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3038
3039 if (sc->bge_flags & BGEF_PCIE)
3040 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3042 if (ifp->if_mtu <= ETHERMTU)
3043 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3044 }
3045 if (sc->bge_flags & BGEF_TSO)
3046 val |= BGE_RDMAMODE_TSO4_ENABLE;
3047
3048 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3049 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3050 BGE_RDMAMODE_H2BNC_VLAN_DET;
3051 /*
3052 * Allow multiple outstanding read requests from
3053 * non-LSO read DMA engine.
3054 */
3055 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3056 }
3057
3058 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3059 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3060 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3061 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3062 BGE_IS_57765_PLUS(sc)) {
3063 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3064 /*
3065 * Adjust tx margin to prevent TX data corruption and
3066 * fix internal FIFO overflow.
3067 */
3068 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3069 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3070 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3071 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3072 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3073 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3074 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3075 }
3076 /*
3077 * Enable fix for read DMA FIFO overruns.
3078 * The fix is to limit the number of RX BDs
3079 * the hardware would fetch at a fime.
3080 */
3081 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3082 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3083 }
3084
3085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3086 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3087 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3088 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3089 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3090 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3091 /*
3092 * Allow 4KB burst length reads for non-LSO frames.
3093 * Enable 512B burst length reads for buffer descriptors.
3094 */
3095 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3098 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 }
3100
3101 /* Turn on read DMA state machine */
3102 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3103 /* 5718 step 52 */
3104 delay(40);
3105
3106 /* 5718 step 56, 57XX step 84 */
3107 /* Turn on RX data completion state machine */
3108 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3109
3110 /* Turn on RX data and RX BD initiator state machine */
3111 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3112
3113 /* 57XX step 85 */
3114 /* Turn on Mbuf cluster free state machine */
3115 if (!BGE_IS_5705_PLUS(sc))
3116 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3117
3118 /* 5718 step 57, 57XX step 86 */
3119 /* Turn on send data completion state machine */
3120 val = BGE_SDCMODE_ENABLE;
3121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3122 val |= BGE_SDCMODE_CDELAY;
3123 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3124
3125 /* 5718 step 58 */
3126 /* Turn on send BD completion state machine */
3127 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3128
3129 /* 57XX step 88 */
3130 /* Turn on RX BD initiator state machine */
3131 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3132
3133 /* 5718 step 60, 57XX step 90 */
3134 /* Turn on send data initiator state machine */
3135 if (sc->bge_flags & BGEF_TSO) {
3136 /* XXX: magic value from Linux driver */
3137 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3138 BGE_SDIMODE_HW_LSO_PRE_DMA);
3139 } else
3140 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3141
3142 /* 5718 step 61, 57XX step 91 */
3143 /* Turn on send BD initiator state machine */
3144 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3145
3146 /* 5718 step 62, 57XX step 92 */
3147 /* Turn on send BD selector state machine */
3148 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3149
3150 /* 5718 step 31, 57XX step 60 */
3151 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3152 /* 5718 step 32, 57XX step 61 */
3153 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3154 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3155
3156 /* ack/clear link change events */
3157 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3158 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3159 BGE_MACSTAT_LINK_CHANGED);
3160 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3161
3162 /*
3163 * Enable attention when the link has changed state for
3164 * devices that use auto polling.
3165 */
3166 if (sc->bge_flags & BGEF_FIBER_TBI) {
3167 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3168 } else {
3169 /* 5718 step 68 */
3170 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3171 /* 5718 step 69 (optionally) */
3172 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3173 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3174 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3175 BGE_EVTENB_MI_INTERRUPT);
3176 }
3177
3178 /*
3179 * Clear any pending link state attention.
3180 * Otherwise some link state change events may be lost until attention
3181 * is cleared by bge_intr() -> bge_link_upd() sequence.
3182 * It's not necessary on newer BCM chips - perhaps enabling link
3183 * state change attentions implies clearing pending attention.
3184 */
3185 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3186 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3187 BGE_MACSTAT_LINK_CHANGED);
3188
3189 /* Enable link state change attentions. */
3190 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3191
3192 return 0;
3193 }
3194
3195 static const struct bge_revision *
3196 bge_lookup_rev(uint32_t chipid)
3197 {
3198 const struct bge_revision *br;
3199
3200 for (br = bge_revisions; br->br_name != NULL; br++) {
3201 if (br->br_chipid == chipid)
3202 return br;
3203 }
3204
3205 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3206 if (br->br_chipid == BGE_ASICREV(chipid))
3207 return br;
3208 }
3209
3210 return NULL;
3211 }
3212
3213 static const struct bge_product *
3214 bge_lookup(const struct pci_attach_args *pa)
3215 {
3216 const struct bge_product *bp;
3217
3218 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3219 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3220 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3221 return bp;
3222 }
3223
3224 return NULL;
3225 }
3226
3227 static uint32_t
3228 bge_chipid(const struct pci_attach_args *pa)
3229 {
3230 uint32_t id;
3231
3232 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3233 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3234
3235 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3236 switch (PCI_PRODUCT(pa->pa_id)) {
3237 case PCI_PRODUCT_BROADCOM_BCM5717:
3238 case PCI_PRODUCT_BROADCOM_BCM5718:
3239 case PCI_PRODUCT_BROADCOM_BCM5719:
3240 case PCI_PRODUCT_BROADCOM_BCM5720:
3241 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3242 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3243 BGE_PCI_GEN2_PRODID_ASICREV);
3244 break;
3245 case PCI_PRODUCT_BROADCOM_BCM57761:
3246 case PCI_PRODUCT_BROADCOM_BCM57762:
3247 case PCI_PRODUCT_BROADCOM_BCM57765:
3248 case PCI_PRODUCT_BROADCOM_BCM57766:
3249 case PCI_PRODUCT_BROADCOM_BCM57781:
3250 case PCI_PRODUCT_BROADCOM_BCM57785:
3251 case PCI_PRODUCT_BROADCOM_BCM57791:
3252 case PCI_PRODUCT_BROADCOM_BCM57795:
3253 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3254 BGE_PCI_GEN15_PRODID_ASICREV);
3255 break;
3256 default:
3257 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3258 BGE_PCI_PRODID_ASICREV);
3259 break;
3260 }
3261 }
3262
3263 return id;
3264 }
3265
3266 /*
3267 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3268 * against our list and return its name if we find a match. Note
3269 * that since the Broadcom controller contains VPD support, we
3270 * can get the device name string from the controller itself instead
3271 * of the compiled-in string. This is a little slow, but it guarantees
3272 * we'll always announce the right product name.
3273 */
3274 static int
3275 bge_probe(device_t parent, cfdata_t match, void *aux)
3276 {
3277 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3278
3279 if (bge_lookup(pa) != NULL)
3280 return 1;
3281
3282 return 0;
3283 }
3284
3285 static void
3286 bge_attach(device_t parent, device_t self, void *aux)
3287 {
3288 struct bge_softc *sc = device_private(self);
3289 struct pci_attach_args *pa = aux;
3290 prop_dictionary_t dict;
3291 const struct bge_product *bp;
3292 const struct bge_revision *br;
3293 pci_chipset_tag_t pc;
3294 pci_intr_handle_t ih;
3295 const char *intrstr = NULL;
3296 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4;
3297 uint32_t command;
3298 struct ifnet *ifp;
3299 uint32_t misccfg, mimode;
3300 void * kva;
3301 u_char eaddr[ETHER_ADDR_LEN];
3302 pcireg_t memtype, subid, reg;
3303 bus_addr_t memaddr;
3304 uint32_t pm_ctl;
3305 bool no_seeprom;
3306 int capmask;
3307
3308 bp = bge_lookup(pa);
3309 KASSERT(bp != NULL);
3310
3311 sc->sc_pc = pa->pa_pc;
3312 sc->sc_pcitag = pa->pa_tag;
3313 sc->bge_dev = self;
3314
3315 sc->bge_pa = *pa;
3316 pc = sc->sc_pc;
3317 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3318
3319 aprint_naive(": Ethernet controller\n");
3320 aprint_normal(": %s\n", bp->bp_name);
3321
3322 /*
3323 * Map control/status registers.
3324 */
3325 DPRINTFN(5, ("Map control/status regs\n"));
3326 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3327 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3328 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3329 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3330
3331 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3332 aprint_error_dev(sc->bge_dev,
3333 "failed to enable memory mapping!\n");
3334 return;
3335 }
3336
3337 DPRINTFN(5, ("pci_mem_find\n"));
3338 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3339 switch (memtype) {
3340 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3341 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3342 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3343 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3344 &memaddr, &sc->bge_bsize) == 0)
3345 break;
3346 default:
3347 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3348 return;
3349 }
3350
3351 DPRINTFN(5, ("pci_intr_map\n"));
3352 if (pci_intr_map(pa, &ih)) {
3353 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3354 return;
3355 }
3356
3357 DPRINTFN(5, ("pci_intr_string\n"));
3358 intrstr = pci_intr_string(pc, ih);
3359
3360 DPRINTFN(5, ("pci_intr_establish\n"));
3361 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3362
3363 if (sc->bge_intrhand == NULL) {
3364 aprint_error_dev(sc->bge_dev,
3365 "couldn't establish interrupt%s%s\n",
3366 intrstr ? " at " : "", intrstr ? intrstr : "");
3367 return;
3368 }
3369 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3370
3371 /* Save various chip information. */
3372 sc->bge_chipid = bge_chipid(pa);
3373 sc->bge_phy_addr = bge_phy_addr(sc);
3374
3375 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3376 &sc->bge_pciecap, NULL) != 0)
3377 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3378 /* PCIe */
3379 sc->bge_flags |= BGEF_PCIE;
3380 /* Extract supported maximum payload size. */
3381 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3382 sc->bge_pciecap + PCIE_DCAP);
3383 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3384 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3385 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3386 sc->bge_expmrq = 2048;
3387 else
3388 sc->bge_expmrq = 4096;
3389 bge_set_max_readrq(sc);
3390 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3391 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3392 /* PCI-X */
3393 sc->bge_flags |= BGEF_PCIX;
3394 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3395 &sc->bge_pcixcap, NULL) == 0)
3396 aprint_error_dev(sc->bge_dev,
3397 "unable to find PCIX capability\n");
3398 }
3399
3400 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3401 /*
3402 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3403 * can clobber the chip's PCI config-space power control
3404 * registers, leaving the card in D3 powersave state. We do
3405 * not have memory-mapped registers in this state, so force
3406 * device into D0 state before starting initialization.
3407 */
3408 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3409 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3410 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3411 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3412 DELAY(1000); /* 27 usec is allegedly sufficent */
3413 }
3414
3415 /* Save chipset family. */
3416 switch (BGE_ASICREV(sc->bge_chipid)) {
3417 case BGE_ASICREV_BCM5717:
3418 case BGE_ASICREV_BCM5719:
3419 case BGE_ASICREV_BCM5720:
3420 sc->bge_flags |= BGEF_5717_PLUS;
3421 /* FALLTHROUGH */
3422 case BGE_ASICREV_BCM57765:
3423 case BGE_ASICREV_BCM57766:
3424 if (!BGE_IS_5717_PLUS(sc))
3425 sc->bge_flags |= BGEF_57765_FAMILY;
3426 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3427 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3428 /* Jumbo frame on BCM5719 A0 does not work. */
3429 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3430 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3431 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3432 break;
3433 case BGE_ASICREV_BCM5755:
3434 case BGE_ASICREV_BCM5761:
3435 case BGE_ASICREV_BCM5784:
3436 case BGE_ASICREV_BCM5785:
3437 case BGE_ASICREV_BCM5787:
3438 case BGE_ASICREV_BCM57780:
3439 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3440 break;
3441 case BGE_ASICREV_BCM5700:
3442 case BGE_ASICREV_BCM5701:
3443 case BGE_ASICREV_BCM5703:
3444 case BGE_ASICREV_BCM5704:
3445 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3446 break;
3447 case BGE_ASICREV_BCM5714_A0:
3448 case BGE_ASICREV_BCM5780:
3449 case BGE_ASICREV_BCM5714:
3450 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3451 /* FALLTHROUGH */
3452 case BGE_ASICREV_BCM5750:
3453 case BGE_ASICREV_BCM5752:
3454 case BGE_ASICREV_BCM5906:
3455 sc->bge_flags |= BGEF_575X_PLUS;
3456 /* FALLTHROUGH */
3457 case BGE_ASICREV_BCM5705:
3458 sc->bge_flags |= BGEF_5705_PLUS;
3459 break;
3460 }
3461
3462 /* Identify chips with APE processor. */
3463 switch (BGE_ASICREV(sc->bge_chipid)) {
3464 case BGE_ASICREV_BCM5717:
3465 case BGE_ASICREV_BCM5719:
3466 case BGE_ASICREV_BCM5720:
3467 case BGE_ASICREV_BCM5761:
3468 sc->bge_flags |= BGEF_APE;
3469 break;
3470 }
3471
3472 /* Chips with APE need BAR2 access for APE registers/memory. */
3473 if ((sc->bge_flags & BGEF_APE) != 0) {
3474 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3475 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3476 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3477 &sc->bge_apesize)) {
3478 aprint_error_dev(sc->bge_dev,
3479 "couldn't map BAR2 memory\n");
3480 return;
3481 }
3482
3483 /* Enable APE register/memory access by host driver. */
3484 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3485 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3486 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3487 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3488 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3489
3490 bge_ape_lock_init(sc);
3491 bge_ape_read_fw_ver(sc);
3492 }
3493
3494 /* Identify the chips that use an CPMU. */
3495 if (BGE_IS_5717_PLUS(sc) ||
3496 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3497 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3498 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3499 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3500 sc->bge_flags |= BGEF_CPMU_PRESENT;
3501
3502 /* Set MI_MODE */
3503 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3504 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3505 mimode |= BGE_MIMODE_500KHZ_CONST;
3506 else
3507 mimode |= BGE_MIMODE_BASE;
3508 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3509
3510 /*
3511 * When using the BCM5701 in PCI-X mode, data corruption has
3512 * been observed in the first few bytes of some received packets.
3513 * Aligning the packet buffer in memory eliminates the corruption.
3514 * Unfortunately, this misaligns the packet payloads. On platforms
3515 * which do not support unaligned accesses, we will realign the
3516 * payloads by copying the received packets.
3517 */
3518 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3519 sc->bge_flags & BGEF_PCIX)
3520 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3521
3522 if (BGE_IS_5700_FAMILY(sc))
3523 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3524
3525 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3526 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3527
3528 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3529 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3530 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3531 sc->bge_flags |= BGEF_IS_5788;
3532
3533 /*
3534 * Some controllers seem to require a special firmware to use
3535 * TSO. But the firmware is not available to FreeBSD and Linux
3536 * claims that the TSO performed by the firmware is slower than
3537 * hardware based TSO. Moreover the firmware based TSO has one
3538 * known bug which can't handle TSO if ethernet header + IP/TCP
3539 * header is greater than 80 bytes. The workaround for the TSO
3540 * bug exist but it seems it's too expensive than not using
3541 * TSO at all. Some hardwares also have the TSO bug so limit
3542 * the TSO to the controllers that are not affected TSO issues
3543 * (e.g. 5755 or higher).
3544 */
3545 if (BGE_IS_5755_PLUS(sc)) {
3546 /*
3547 * BCM5754 and BCM5787 shares the same ASIC id so
3548 * explicit device id check is required.
3549 */
3550 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3551 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3552 sc->bge_flags |= BGEF_TSO;
3553 }
3554
3555 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3556 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3557 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3558 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3559 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3560 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3561 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3562 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3563 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3564 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3565 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3566 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3567 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3568 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3569 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3570 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3571 capmask &= ~BMSR_EXTSTAT;
3572 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3573 }
3574
3575 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3576 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3577 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3578 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3579 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3580
3581 /* Set various PHY bug flags. */
3582 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3583 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3584 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3585 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3586 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3587 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3588 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3589 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3590 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3591 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3592 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3593 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3594 if (BGE_IS_5705_PLUS(sc) &&
3595 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3596 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3597 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3598 !BGE_IS_57765_PLUS(sc)) {
3599 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3601 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3602 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3603 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3604 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3605 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3606 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3607 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3608 } else
3609 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3610 }
3611
3612 /*
3613 * SEEPROM check.
3614 * First check if firmware knows we do not have SEEPROM.
3615 */
3616 if (prop_dictionary_get_bool(device_properties(self),
3617 "without-seeprom", &no_seeprom) && no_seeprom)
3618 sc->bge_flags |= BGEF_NO_EEPROM;
3619
3620 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3621 sc->bge_flags |= BGEF_NO_EEPROM;
3622
3623 /* Now check the 'ROM failed' bit on the RX CPU */
3624 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3625 sc->bge_flags |= BGEF_NO_EEPROM;
3626
3627 sc->bge_asf_mode = 0;
3628 /* No ASF if APE present. */
3629 if ((sc->bge_flags & BGEF_APE) == 0) {
3630 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3631 BGE_SRAM_DATA_SIG_MAGIC)) {
3632 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3633 BGE_HWCFG_ASF) {
3634 sc->bge_asf_mode |= ASF_ENABLE;
3635 sc->bge_asf_mode |= ASF_STACKUP;
3636 if (BGE_IS_575X_PLUS(sc))
3637 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3638 }
3639 }
3640 }
3641
3642 /*
3643 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3644 * lock in bge_reset().
3645 */
3646 CSR_WRITE_4(sc, BGE_EE_ADDR,
3647 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3648 delay(1000);
3649 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3650
3651 bge_stop_fw(sc);
3652 bge_sig_pre_reset(sc, BGE_RESET_START);
3653 if (bge_reset(sc))
3654 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3655
3656 /*
3657 * Read the hardware config word in the first 32k of NIC internal
3658 * memory, or fall back to the config word in the EEPROM.
3659 * Note: on some BCM5700 cards, this value appears to be unset.
3660 */
3661 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3662 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3663 BGE_SRAM_DATA_SIG_MAGIC) {
3664 uint32_t tmp;
3665
3666 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3667 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3668 BGE_SRAM_DATA_VER_SHIFT;
3669 if ((0 < tmp) && (tmp < 0x100))
3670 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3671 if (sc->bge_flags & BGEF_PCIE)
3672 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3673 if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3674 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3675 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3676 bge_read_eeprom(sc, (void *)&hwcfg,
3677 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3678 hwcfg = be32toh(hwcfg);
3679 }
3680 aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3681 hwcfg, hwcfg2, hwcfg3, hwcfg4);
3682
3683 bge_sig_legacy(sc, BGE_RESET_START);
3684 bge_sig_post_reset(sc, BGE_RESET_START);
3685
3686 if (bge_chipinit(sc)) {
3687 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3688 bge_release_resources(sc);
3689 return;
3690 }
3691
3692 /*
3693 * Get station address from the EEPROM.
3694 */
3695 if (bge_get_eaddr(sc, eaddr)) {
3696 aprint_error_dev(sc->bge_dev,
3697 "failed to read station address\n");
3698 bge_release_resources(sc);
3699 return;
3700 }
3701
3702 br = bge_lookup_rev(sc->bge_chipid);
3703
3704 if (br == NULL) {
3705 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3706 sc->bge_chipid);
3707 } else {
3708 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3709 br->br_name, sc->bge_chipid);
3710 }
3711 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3712
3713 /* Allocate the general information block and ring buffers. */
3714 if (pci_dma64_available(pa))
3715 sc->bge_dmatag = pa->pa_dmat64;
3716 else
3717 sc->bge_dmatag = pa->pa_dmat;
3718 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3719 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3720 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3721 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3722 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3723 return;
3724 }
3725 DPRINTFN(5, ("bus_dmamem_map\n"));
3726 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3727 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3728 BUS_DMA_NOWAIT)) {
3729 aprint_error_dev(sc->bge_dev,
3730 "can't map DMA buffers (%zu bytes)\n",
3731 sizeof(struct bge_ring_data));
3732 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3733 sc->bge_ring_rseg);
3734 return;
3735 }
3736 DPRINTFN(5, ("bus_dmamem_create\n"));
3737 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3738 sizeof(struct bge_ring_data), 0,
3739 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3740 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3741 bus_dmamem_unmap(sc->bge_dmatag, kva,
3742 sizeof(struct bge_ring_data));
3743 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3744 sc->bge_ring_rseg);
3745 return;
3746 }
3747 DPRINTFN(5, ("bus_dmamem_load\n"));
3748 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3749 sizeof(struct bge_ring_data), NULL,
3750 BUS_DMA_NOWAIT)) {
3751 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3752 bus_dmamem_unmap(sc->bge_dmatag, kva,
3753 sizeof(struct bge_ring_data));
3754 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3755 sc->bge_ring_rseg);
3756 return;
3757 }
3758
3759 DPRINTFN(5, ("bzero\n"));
3760 sc->bge_rdata = (struct bge_ring_data *)kva;
3761
3762 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3763
3764 /* Try to allocate memory for jumbo buffers. */
3765 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3766 if (bge_alloc_jumbo_mem(sc)) {
3767 aprint_error_dev(sc->bge_dev,
3768 "jumbo buffer allocation failed\n");
3769 } else
3770 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3771 }
3772
3773 /* Set default tuneable values. */
3774 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3775 sc->bge_rx_coal_ticks = 150;
3776 sc->bge_rx_max_coal_bds = 64;
3777 sc->bge_tx_coal_ticks = 300;
3778 sc->bge_tx_max_coal_bds = 400;
3779 if (BGE_IS_5705_PLUS(sc)) {
3780 sc->bge_tx_coal_ticks = (12 * 5);
3781 sc->bge_tx_max_coal_bds = (12 * 5);
3782 aprint_verbose_dev(sc->bge_dev,
3783 "setting short Tx thresholds\n");
3784 }
3785
3786 if (BGE_IS_5717_PLUS(sc))
3787 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3788 else if (BGE_IS_5705_PLUS(sc))
3789 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3790 else
3791 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3792
3793 /* Set up ifnet structure */
3794 ifp = &sc->ethercom.ec_if;
3795 ifp->if_softc = sc;
3796 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3797 ifp->if_ioctl = bge_ioctl;
3798 ifp->if_stop = bge_stop;
3799 ifp->if_start = bge_start;
3800 ifp->if_init = bge_init;
3801 ifp->if_watchdog = bge_watchdog;
3802 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3803 IFQ_SET_READY(&ifp->if_snd);
3804 DPRINTFN(5, ("strcpy if_xname\n"));
3805 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3806
3807 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3808 sc->ethercom.ec_if.if_capabilities |=
3809 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3810 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3811 sc->ethercom.ec_if.if_capabilities |=
3812 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3813 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3814 #endif
3815 sc->ethercom.ec_capabilities |=
3816 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3817
3818 if (sc->bge_flags & BGEF_TSO)
3819 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3820
3821 /*
3822 * Do MII setup.
3823 */
3824 DPRINTFN(5, ("mii setup\n"));
3825 sc->bge_mii.mii_ifp = ifp;
3826 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3827 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3828 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3829
3830 /*
3831 * Figure out what sort of media we have by checking the hardware
3832 * config word. Note: on some BCM5700 cards, this value appears to be
3833 * unset. If that's the case, we have to rely on identifying the NIC
3834 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3835 * The SysKonnect SK-9D41 is a 1000baseSX card.
3836 */
3837 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3838 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3839 if (BGE_IS_5714_FAMILY(sc))
3840 sc->bge_flags |= BGEF_FIBER_MII;
3841 else
3842 sc->bge_flags |= BGEF_FIBER_TBI;
3843 }
3844
3845 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3846 if (BGE_IS_JUMBO_CAPABLE(sc))
3847 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3848
3849 /* set phyflags and chipid before mii_attach() */
3850 dict = device_properties(self);
3851 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3852 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3853
3854 if (sc->bge_flags & BGEF_FIBER_TBI) {
3855 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3856 bge_ifmedia_sts);
3857 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3858 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3859 0, NULL);
3860 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3861 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3862 /* Pretend the user requested this setting */
3863 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3864 } else {
3865 /*
3866 * Do transceiver setup and tell the firmware the
3867 * driver is down so we can try to get access the
3868 * probe if ASF is running. Retry a couple of times
3869 * if we get a conflict with the ASF firmware accessing
3870 * the PHY.
3871 */
3872 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3873 bge_asf_driver_up(sc);
3874
3875 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3876 bge_ifmedia_sts);
3877 mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3878 sc->bge_phy_addr, MII_OFFSET_ANY,
3879 MIIF_DOPAUSE);
3880
3881 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3882 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3883 ifmedia_add(&sc->bge_mii.mii_media,
3884 IFM_ETHER|IFM_MANUAL, 0, NULL);
3885 ifmedia_set(&sc->bge_mii.mii_media,
3886 IFM_ETHER|IFM_MANUAL);
3887 } else
3888 ifmedia_set(&sc->bge_mii.mii_media,
3889 IFM_ETHER|IFM_AUTO);
3890
3891 /*
3892 * Now tell the firmware we are going up after probing the PHY
3893 */
3894 if (sc->bge_asf_mode & ASF_STACKUP)
3895 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3896 }
3897
3898 /*
3899 * Call MI attach routine.
3900 */
3901 DPRINTFN(5, ("if_attach\n"));
3902 if_attach(ifp);
3903 DPRINTFN(5, ("ether_ifattach\n"));
3904 ether_ifattach(ifp, eaddr);
3905 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3906 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3907 RND_TYPE_NET, 0);
3908 #ifdef BGE_EVENT_COUNTERS
3909 /*
3910 * Attach event counters.
3911 */
3912 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3913 NULL, device_xname(sc->bge_dev), "intr");
3914 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3915 NULL, device_xname(sc->bge_dev), "tx_xoff");
3916 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3917 NULL, device_xname(sc->bge_dev), "tx_xon");
3918 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3919 NULL, device_xname(sc->bge_dev), "rx_xoff");
3920 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3921 NULL, device_xname(sc->bge_dev), "rx_xon");
3922 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3923 NULL, device_xname(sc->bge_dev), "rx_macctl");
3924 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3925 NULL, device_xname(sc->bge_dev), "xoffentered");
3926 #endif /* BGE_EVENT_COUNTERS */
3927 DPRINTFN(5, ("callout_init\n"));
3928 callout_init(&sc->bge_timeout, 0);
3929
3930 if (pmf_device_register(self, NULL, NULL))
3931 pmf_class_network_register(self, ifp);
3932 else
3933 aprint_error_dev(self, "couldn't establish power handler\n");
3934
3935 bge_sysctl_init(sc);
3936
3937 #ifdef BGE_DEBUG
3938 bge_debug_info(sc);
3939 #endif
3940 }
3941
3942 /*
3943 * Stop all chip I/O so that the kernel's probe routines don't
3944 * get confused by errant DMAs when rebooting.
3945 */
3946 static int
3947 bge_detach(device_t self, int flags __unused)
3948 {
3949 struct bge_softc *sc = device_private(self);
3950 struct ifnet *ifp = &sc->ethercom.ec_if;
3951 int s;
3952
3953 s = splnet();
3954 /* Stop the interface. Callouts are stopped in it. */
3955 bge_stop(ifp, 1);
3956 splx(s);
3957
3958 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3959
3960 /* Delete all remaining media. */
3961 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3962
3963 ether_ifdetach(ifp);
3964 if_detach(ifp);
3965
3966 bge_release_resources(sc);
3967
3968 return 0;
3969 }
3970
3971 static void
3972 bge_release_resources(struct bge_softc *sc)
3973 {
3974
3975 /* Disestablish the interrupt handler */
3976 if (sc->bge_intrhand != NULL) {
3977 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3978 sc->bge_intrhand = NULL;
3979 }
3980
3981 if (sc->bge_dmatag != NULL) {
3982 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3983 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3984 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3985 sizeof(struct bge_ring_data));
3986 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3987 }
3988
3989 /* Unmap the device registers */
3990 if (sc->bge_bsize != 0) {
3991 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3992 sc->bge_bsize = 0;
3993 }
3994
3995 /* Unmap the APE registers */
3996 if (sc->bge_apesize != 0) {
3997 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3998 sc->bge_apesize);
3999 sc->bge_apesize = 0;
4000 }
4001 }
4002
4003 static int
4004 bge_reset(struct bge_softc *sc)
4005 {
4006 uint32_t cachesize, command;
4007 uint32_t reset, mac_mode, mac_mode_mask;
4008 pcireg_t devctl, reg;
4009 int i, val;
4010 void (*write_op)(struct bge_softc *, int, int);
4011
4012 /* Make mask for BGE_MAC_MODE register. */
4013 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4014 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4015 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4016 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4017 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4018
4019 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4020 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4021 if (sc->bge_flags & BGEF_PCIE)
4022 write_op = bge_writemem_direct;
4023 else
4024 write_op = bge_writemem_ind;
4025 } else
4026 write_op = bge_writereg_ind;
4027
4028 /* 57XX step 4 */
4029 /* Acquire the NVM lock */
4030 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4031 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4032 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4033 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4034 for (i = 0; i < 8000; i++) {
4035 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4036 BGE_NVRAMSWARB_GNT1)
4037 break;
4038 DELAY(20);
4039 }
4040 if (i == 8000) {
4041 printf("%s: NVRAM lock timedout!\n",
4042 device_xname(sc->bge_dev));
4043 }
4044 }
4045
4046 /* Take APE lock when performing reset. */
4047 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4048
4049 /* 57XX step 3 */
4050 /* Save some important PCI state. */
4051 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4052 /* 5718 reset step 3 */
4053 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4054
4055 /* 5718 reset step 5, 57XX step 5b-5d */
4056 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4057 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4058 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4059
4060 /* XXX ???: Disable fastboot on controllers that support it. */
4061 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4062 BGE_IS_5755_PLUS(sc))
4063 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4064
4065 /* 5718 reset step 2, 57XX step 6 */
4066 /*
4067 * Write the magic number to SRAM at offset 0xB50.
4068 * When firmware finishes its initialization it will
4069 * write ~BGE_MAGIC_NUMBER to the same location.
4070 */
4071 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4072
4073 /* 5718 reset step 6, 57XX step 7 */
4074 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4075 /*
4076 * XXX: from FreeBSD/Linux; no documentation
4077 */
4078 if (sc->bge_flags & BGEF_PCIE) {
4079 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4080 !BGE_IS_57765_PLUS(sc) &&
4081 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4082 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4083 /* PCI Express 1.0 system */
4084 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4085 BGE_PHY_PCIE_SCRAM_MODE);
4086 }
4087 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4088 /*
4089 * Prevent PCI Express link training
4090 * during global reset.
4091 */
4092 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4093 reset |= (1 << 29);
4094 }
4095 }
4096
4097 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4098 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4099 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4100 i | BGE_VCPU_STATUS_DRV_RESET);
4101 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4102 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4103 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4104 }
4105
4106 /*
4107 * Set GPHY Power Down Override to leave GPHY
4108 * powered up in D0 uninitialized.
4109 */
4110 if (BGE_IS_5705_PLUS(sc) &&
4111 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4112 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4113
4114 /* Issue global reset */
4115 write_op(sc, BGE_MISC_CFG, reset);
4116
4117 /* 5718 reset step 7, 57XX step 8 */
4118 if (sc->bge_flags & BGEF_PCIE)
4119 delay(100*1000); /* too big */
4120 else
4121 delay(1000);
4122
4123 if (sc->bge_flags & BGEF_PCIE) {
4124 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4125 DELAY(500000);
4126 /* XXX: Magic Numbers */
4127 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4128 BGE_PCI_UNKNOWN0);
4129 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4130 BGE_PCI_UNKNOWN0,
4131 reg | (1 << 15));
4132 }
4133 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4134 sc->bge_pciecap + PCIE_DCSR);
4135 /* Clear enable no snoop and disable relaxed ordering. */
4136 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4137 PCIE_DCSR_ENA_NO_SNOOP);
4138
4139 /* Set PCIE max payload size to 128 for older PCIe devices */
4140 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4141 devctl &= ~(0x00e0);
4142 /* Clear device status register. Write 1b to clear */
4143 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4144 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4145 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4146 sc->bge_pciecap + PCIE_DCSR, devctl);
4147 bge_set_max_readrq(sc);
4148 }
4149
4150 /* From Linux: dummy read to flush PCI posted writes */
4151 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4152
4153 /*
4154 * Reset some of the PCI state that got zapped by reset
4155 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4156 * set, too.
4157 */
4158 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4159 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4160 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4161 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4162 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4163 (sc->bge_flags & BGEF_PCIX) != 0)
4164 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4165 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4166 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4167 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4168 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4169 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4170 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4171 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4172
4173 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4174 if (sc->bge_flags & BGEF_PCIX) {
4175 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4176 + PCIX_CMD);
4177 /* Set max memory read byte count to 2K */
4178 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4179 reg &= ~PCIX_CMD_BYTECNT_MASK;
4180 reg |= PCIX_CMD_BCNT_2048;
4181 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4182 /*
4183 * For 5704, set max outstanding split transaction
4184 * field to 0 (0 means it supports 1 request)
4185 */
4186 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4187 | PCIX_CMD_BYTECNT_MASK);
4188 reg |= PCIX_CMD_BCNT_2048;
4189 }
4190 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4191 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4192 }
4193
4194 /* 5718 reset step 10, 57XX step 12 */
4195 /* Enable memory arbiter. */
4196 if (BGE_IS_5714_FAMILY(sc)) {
4197 val = CSR_READ_4(sc, BGE_MARB_MODE);
4198 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4199 } else
4200 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4201
4202 /* XXX 5721, 5751 and 5752 */
4203 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4204 /* Step 19: */
4205 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4206 /* Step 20: */
4207 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4208 }
4209
4210 /* 5718 reset step 13, 57XX step 17 */
4211 /* Poll until the firmware initialization is complete */
4212 bge_poll_fw(sc);
4213
4214 /* 5718 reset step 12, 57XX step 15 and 16 */
4215 /* Fix up byte swapping */
4216 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4217
4218 /* 57XX step 21 */
4219 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4220 pcireg_t msidata;
4221
4222 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4223 BGE_PCI_MSI_DATA);
4224 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4225 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4226 msidata);
4227 }
4228
4229 /* 57XX step 18 */
4230 /* Write mac mode. */
4231 val = CSR_READ_4(sc, BGE_MAC_MODE);
4232 /* Restore mac_mode_mask's bits using mac_mode */
4233 val = (val & ~mac_mode_mask) | mac_mode;
4234 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4235 DELAY(40);
4236
4237 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4238
4239 /*
4240 * The 5704 in TBI mode apparently needs some special
4241 * adjustment to insure the SERDES drive level is set
4242 * to 1.2V.
4243 */
4244 if (sc->bge_flags & BGEF_FIBER_TBI &&
4245 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4246 uint32_t serdescfg;
4247
4248 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4249 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4250 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4251 }
4252
4253 if (sc->bge_flags & BGEF_PCIE &&
4254 !BGE_IS_57765_PLUS(sc) &&
4255 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4256 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4257 uint32_t v;
4258
4259 /* Enable PCI Express bug fix */
4260 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4261 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4262 v | BGE_TLP_DATA_FIFO_PROTECT);
4263 }
4264
4265 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4266 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4267 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4268
4269 return 0;
4270 }
4271
4272 /*
4273 * Frame reception handling. This is called if there's a frame
4274 * on the receive return list.
4275 *
4276 * Note: we have to be able to handle two possibilities here:
4277 * 1) the frame is from the jumbo receive ring
4278 * 2) the frame is from the standard receive ring
4279 */
4280
4281 static void
4282 bge_rxeof(struct bge_softc *sc)
4283 {
4284 struct ifnet *ifp;
4285 uint16_t rx_prod, rx_cons;
4286 int stdcnt = 0, jumbocnt = 0;
4287 bus_dmamap_t dmamap;
4288 bus_addr_t offset, toff;
4289 bus_size_t tlen;
4290 int tosync;
4291
4292 rx_cons = sc->bge_rx_saved_considx;
4293 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4294
4295 /* Nothing to do */
4296 if (rx_cons == rx_prod)
4297 return;
4298
4299 ifp = &sc->ethercom.ec_if;
4300
4301 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4302 offsetof(struct bge_ring_data, bge_status_block),
4303 sizeof (struct bge_status_block),
4304 BUS_DMASYNC_POSTREAD);
4305
4306 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4307 tosync = rx_prod - rx_cons;
4308
4309 if (tosync != 0)
4310 rnd_add_uint32(&sc->rnd_source, tosync);
4311
4312 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4313
4314 if (tosync < 0) {
4315 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4316 sizeof (struct bge_rx_bd);
4317 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4318 toff, tlen, BUS_DMASYNC_POSTREAD);
4319 tosync = -tosync;
4320 }
4321
4322 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4323 offset, tosync * sizeof (struct bge_rx_bd),
4324 BUS_DMASYNC_POSTREAD);
4325
4326 while (rx_cons != rx_prod) {
4327 struct bge_rx_bd *cur_rx;
4328 uint32_t rxidx;
4329 struct mbuf *m = NULL;
4330
4331 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4332
4333 rxidx = cur_rx->bge_idx;
4334 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4335
4336 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4337 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4338 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4339 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4340 jumbocnt++;
4341 bus_dmamap_sync(sc->bge_dmatag,
4342 sc->bge_cdata.bge_rx_jumbo_map,
4343 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4344 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4345 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4346 ifp->if_ierrors++;
4347 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4348 continue;
4349 }
4350 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4351 NULL)== ENOBUFS) {
4352 ifp->if_ierrors++;
4353 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4354 continue;
4355 }
4356 } else {
4357 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4358 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4359
4360 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4361 stdcnt++;
4362 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4363 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4364 if (dmamap == NULL) {
4365 ifp->if_ierrors++;
4366 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4367 continue;
4368 }
4369 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4370 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4371 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4372 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4373 ifp->if_ierrors++;
4374 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4375 continue;
4376 }
4377 if (bge_newbuf_std(sc, sc->bge_std,
4378 NULL, dmamap) == ENOBUFS) {
4379 ifp->if_ierrors++;
4380 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4381 continue;
4382 }
4383 }
4384
4385 ifp->if_ipackets++;
4386 #ifndef __NO_STRICT_ALIGNMENT
4387 /*
4388 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4389 * the Rx buffer has the layer-2 header unaligned.
4390 * If our CPU requires alignment, re-align by copying.
4391 */
4392 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4393 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4394 cur_rx->bge_len);
4395 m->m_data += ETHER_ALIGN;
4396 }
4397 #endif
4398
4399 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4400 m->m_pkthdr.rcvif = ifp;
4401
4402 /*
4403 * Handle BPF listeners. Let the BPF user see the packet.
4404 */
4405 bpf_mtap(ifp, m);
4406
4407 bge_rxcsum(sc, cur_rx, m);
4408
4409 /*
4410 * If we received a packet with a vlan tag, pass it
4411 * to vlan_input() instead of ether_input().
4412 */
4413 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4414 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4415 }
4416
4417 (*ifp->if_input)(ifp, m);
4418 }
4419
4420 sc->bge_rx_saved_considx = rx_cons;
4421 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4422 if (stdcnt)
4423 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4424 if (jumbocnt)
4425 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4426 }
4427
4428 static void
4429 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4430 {
4431
4432 if (BGE_IS_57765_PLUS(sc)) {
4433 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4434 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4435 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4436 if ((cur_rx->bge_error_flag &
4437 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4438 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4439 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4440 m->m_pkthdr.csum_data =
4441 cur_rx->bge_tcp_udp_csum;
4442 m->m_pkthdr.csum_flags |=
4443 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4444 M_CSUM_DATA);
4445 }
4446 }
4447 } else {
4448 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4449 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4450 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4451 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4452 /*
4453 * Rx transport checksum-offload may also
4454 * have bugs with packets which, when transmitted,
4455 * were `runts' requiring padding.
4456 */
4457 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4458 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4459 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4460 m->m_pkthdr.csum_data =
4461 cur_rx->bge_tcp_udp_csum;
4462 m->m_pkthdr.csum_flags |=
4463 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4464 M_CSUM_DATA);
4465 }
4466 }
4467 }
4468
4469 static void
4470 bge_txeof(struct bge_softc *sc)
4471 {
4472 struct bge_tx_bd *cur_tx = NULL;
4473 struct ifnet *ifp;
4474 struct txdmamap_pool_entry *dma;
4475 bus_addr_t offset, toff;
4476 bus_size_t tlen;
4477 int tosync;
4478 struct mbuf *m;
4479
4480 ifp = &sc->ethercom.ec_if;
4481
4482 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4483 offsetof(struct bge_ring_data, bge_status_block),
4484 sizeof (struct bge_status_block),
4485 BUS_DMASYNC_POSTREAD);
4486
4487 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4488 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4489 sc->bge_tx_saved_considx;
4490
4491 if (tosync != 0)
4492 rnd_add_uint32(&sc->rnd_source, tosync);
4493
4494 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4495
4496 if (tosync < 0) {
4497 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4498 sizeof (struct bge_tx_bd);
4499 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4500 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4501 tosync = -tosync;
4502 }
4503
4504 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4505 offset, tosync * sizeof (struct bge_tx_bd),
4506 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4507
4508 /*
4509 * Go through our tx ring and free mbufs for those
4510 * frames that have been sent.
4511 */
4512 while (sc->bge_tx_saved_considx !=
4513 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4514 uint32_t idx = 0;
4515
4516 idx = sc->bge_tx_saved_considx;
4517 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4518 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4519 ifp->if_opackets++;
4520 m = sc->bge_cdata.bge_tx_chain[idx];
4521 if (m != NULL) {
4522 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4523 dma = sc->txdma[idx];
4524 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4525 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4526 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4527 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4528 sc->txdma[idx] = NULL;
4529
4530 m_freem(m);
4531 }
4532 sc->bge_txcnt--;
4533 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4534 ifp->if_timer = 0;
4535 }
4536
4537 if (cur_tx != NULL)
4538 ifp->if_flags &= ~IFF_OACTIVE;
4539 }
4540
4541 static int
4542 bge_intr(void *xsc)
4543 {
4544 struct bge_softc *sc;
4545 struct ifnet *ifp;
4546 uint32_t statusword;
4547 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4548
4549 sc = xsc;
4550 ifp = &sc->ethercom.ec_if;
4551
4552 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4553 if (BGE_IS_5717_PLUS(sc))
4554 intrmask = 0;
4555
4556 /* It is possible for the interrupt to arrive before
4557 * the status block is updated prior to the interrupt.
4558 * Reading the PCI State register will confirm whether the
4559 * interrupt is ours and will flush the status block.
4560 */
4561
4562 /* read status word from status block */
4563 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4564 offsetof(struct bge_ring_data, bge_status_block),
4565 sizeof (struct bge_status_block),
4566 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4567 statusword = sc->bge_rdata->bge_status_block.bge_status;
4568
4569 if ((statusword & BGE_STATFLAG_UPDATED) ||
4570 (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4571 /* Ack interrupt and stop others from occuring. */
4572 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4573
4574 BGE_EVCNT_INCR(sc->bge_ev_intr);
4575
4576 /* clear status word */
4577 sc->bge_rdata->bge_status_block.bge_status = 0;
4578
4579 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4580 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4581 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4582 bge_link_upd(sc);
4583
4584 if (ifp->if_flags & IFF_RUNNING) {
4585 /* Check RX return ring producer/consumer */
4586 bge_rxeof(sc);
4587
4588 /* Check TX ring producer/consumer */
4589 bge_txeof(sc);
4590 }
4591
4592 if (sc->bge_pending_rxintr_change) {
4593 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4594 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4595
4596 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4597 DELAY(10);
4598 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4599
4600 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4601 DELAY(10);
4602 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4603
4604 sc->bge_pending_rxintr_change = 0;
4605 }
4606 bge_handle_events(sc);
4607
4608 /* Re-enable interrupts. */
4609 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4610
4611 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4612 bge_start(ifp);
4613
4614 return 1;
4615 } else
4616 return 0;
4617 }
4618
4619 static void
4620 bge_asf_driver_up(struct bge_softc *sc)
4621 {
4622 if (sc->bge_asf_mode & ASF_STACKUP) {
4623 /* Send ASF heartbeat aprox. every 2s */
4624 if (sc->bge_asf_count)
4625 sc->bge_asf_count --;
4626 else {
4627 sc->bge_asf_count = 2;
4628
4629 bge_wait_for_event_ack(sc);
4630
4631 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4632 BGE_FW_CMD_DRV_ALIVE);
4633 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4634 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4635 BGE_FW_HB_TIMEOUT_SEC);
4636 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4637 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4638 BGE_RX_CPU_DRV_EVENT);
4639 }
4640 }
4641 }
4642
4643 static void
4644 bge_tick(void *xsc)
4645 {
4646 struct bge_softc *sc = xsc;
4647 struct mii_data *mii = &sc->bge_mii;
4648 int s;
4649
4650 s = splnet();
4651
4652 if (BGE_IS_5705_PLUS(sc))
4653 bge_stats_update_regs(sc);
4654 else
4655 bge_stats_update(sc);
4656
4657 if (sc->bge_flags & BGEF_FIBER_TBI) {
4658 /*
4659 * Since in TBI mode auto-polling can't be used we should poll
4660 * link status manually. Here we register pending link event
4661 * and trigger interrupt.
4662 */
4663 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4664 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4665 } else {
4666 /*
4667 * Do not touch PHY if we have link up. This could break
4668 * IPMI/ASF mode or produce extra input errors.
4669 * (extra input errors was reported for bcm5701 & bcm5704).
4670 */
4671 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4672 mii_tick(mii);
4673 }
4674
4675 bge_asf_driver_up(sc);
4676
4677 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4678
4679 splx(s);
4680 }
4681
4682 static void
4683 bge_stats_update_regs(struct bge_softc *sc)
4684 {
4685 struct ifnet *ifp = &sc->ethercom.ec_if;
4686
4687 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4688 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4689
4690 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4691 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4692 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4693 }
4694
4695 static void
4696 bge_stats_update(struct bge_softc *sc)
4697 {
4698 struct ifnet *ifp = &sc->ethercom.ec_if;
4699 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4700
4701 #define READ_STAT(sc, stats, stat) \
4702 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4703
4704 ifp->if_collisions +=
4705 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4706 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4707 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4708 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4709 ifp->if_collisions;
4710
4711 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4712 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4713 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4714 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4715 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4716 READ_STAT(sc, stats,
4717 xoffPauseFramesReceived.bge_addr_lo));
4718 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4719 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4720 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4721 READ_STAT(sc, stats,
4722 macControlFramesReceived.bge_addr_lo));
4723 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4724 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4725
4726 #undef READ_STAT
4727
4728 #ifdef notdef
4729 ifp->if_collisions +=
4730 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4731 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4732 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4733 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4734 ifp->if_collisions;
4735 #endif
4736 }
4737
4738 /*
4739 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4740 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4741 * but when such padded frames employ the bge IP/TCP checksum offload,
4742 * the hardware checksum assist gives incorrect results (possibly
4743 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4744 * If we pad such runts with zeros, the onboard checksum comes out correct.
4745 */
4746 static inline int
4747 bge_cksum_pad(struct mbuf *pkt)
4748 {
4749 struct mbuf *last = NULL;
4750 int padlen;
4751
4752 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4753
4754 /* if there's only the packet-header and we can pad there, use it. */
4755 if (pkt->m_pkthdr.len == pkt->m_len &&
4756 M_TRAILINGSPACE(pkt) >= padlen) {
4757 last = pkt;
4758 } else {
4759 /*
4760 * Walk packet chain to find last mbuf. We will either
4761 * pad there, or append a new mbuf and pad it
4762 * (thus perhaps avoiding the bcm5700 dma-min bug).
4763 */
4764 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4765 continue; /* do nothing */
4766 }
4767
4768 /* `last' now points to last in chain. */
4769 if (M_TRAILINGSPACE(last) < padlen) {
4770 /* Allocate new empty mbuf, pad it. Compact later. */
4771 struct mbuf *n;
4772 MGET(n, M_DONTWAIT, MT_DATA);
4773 if (n == NULL)
4774 return ENOBUFS;
4775 n->m_len = 0;
4776 last->m_next = n;
4777 last = n;
4778 }
4779 }
4780
4781 KDASSERT(!M_READONLY(last));
4782 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4783
4784 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4785 memset(mtod(last, char *) + last->m_len, 0, padlen);
4786 last->m_len += padlen;
4787 pkt->m_pkthdr.len += padlen;
4788 return 0;
4789 }
4790
4791 /*
4792 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4793 */
4794 static inline int
4795 bge_compact_dma_runt(struct mbuf *pkt)
4796 {
4797 struct mbuf *m, *prev;
4798 int totlen;
4799
4800 prev = NULL;
4801 totlen = 0;
4802
4803 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4804 int mlen = m->m_len;
4805 int shortfall = 8 - mlen ;
4806
4807 totlen += mlen;
4808 if (mlen == 0)
4809 continue;
4810 if (mlen >= 8)
4811 continue;
4812
4813 /* If we get here, mbuf data is too small for DMA engine.
4814 * Try to fix by shuffling data to prev or next in chain.
4815 * If that fails, do a compacting deep-copy of the whole chain.
4816 */
4817
4818 /* Internal frag. If fits in prev, copy it there. */
4819 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4820 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4821 prev->m_len += mlen;
4822 m->m_len = 0;
4823 /* XXX stitch chain */
4824 prev->m_next = m_free(m);
4825 m = prev;
4826 continue;
4827 }
4828 else if (m->m_next != NULL &&
4829 M_TRAILINGSPACE(m) >= shortfall &&
4830 m->m_next->m_len >= (8 + shortfall)) {
4831 /* m is writable and have enough data in next, pull up. */
4832
4833 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4834 shortfall);
4835 m->m_len += shortfall;
4836 m->m_next->m_len -= shortfall;
4837 m->m_next->m_data += shortfall;
4838 }
4839 else if (m->m_next == NULL || 1) {
4840 /* Got a runt at the very end of the packet.
4841 * borrow data from the tail of the preceding mbuf and
4842 * update its length in-place. (The original data is still
4843 * valid, so we can do this even if prev is not writable.)
4844 */
4845
4846 /* if we'd make prev a runt, just move all of its data. */
4847 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4848 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4849
4850 if ((prev->m_len - shortfall) < 8)
4851 shortfall = prev->m_len;
4852
4853 #ifdef notyet /* just do the safe slow thing for now */
4854 if (!M_READONLY(m)) {
4855 if (M_LEADINGSPACE(m) < shorfall) {
4856 void *m_dat;
4857 m_dat = (m->m_flags & M_PKTHDR) ?
4858 m->m_pktdat : m->dat;
4859 memmove(m_dat, mtod(m, void*), m->m_len);
4860 m->m_data = m_dat;
4861 }
4862 } else
4863 #endif /* just do the safe slow thing */
4864 {
4865 struct mbuf * n = NULL;
4866 int newprevlen = prev->m_len - shortfall;
4867
4868 MGET(n, M_NOWAIT, MT_DATA);
4869 if (n == NULL)
4870 return ENOBUFS;
4871 KASSERT(m->m_len + shortfall < MLEN
4872 /*,
4873 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4874
4875 /* first copy the data we're stealing from prev */
4876 memcpy(n->m_data, prev->m_data + newprevlen,
4877 shortfall);
4878
4879 /* update prev->m_len accordingly */
4880 prev->m_len -= shortfall;
4881
4882 /* copy data from runt m */
4883 memcpy(n->m_data + shortfall, m->m_data,
4884 m->m_len);
4885
4886 /* n holds what we stole from prev, plus m */
4887 n->m_len = shortfall + m->m_len;
4888
4889 /* stitch n into chain and free m */
4890 n->m_next = m->m_next;
4891 prev->m_next = n;
4892 /* KASSERT(m->m_next == NULL); */
4893 m->m_next = NULL;
4894 m_free(m);
4895 m = n; /* for continuing loop */
4896 }
4897 }
4898 }
4899 return 0;
4900 }
4901
4902 /*
4903 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4904 * pointers to descriptors.
4905 */
4906 static int
4907 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4908 {
4909 struct bge_tx_bd *f = NULL;
4910 uint32_t frag, cur;
4911 uint16_t csum_flags = 0;
4912 uint16_t txbd_tso_flags = 0;
4913 struct txdmamap_pool_entry *dma;
4914 bus_dmamap_t dmamap;
4915 int i = 0;
4916 struct m_tag *mtag;
4917 int use_tso, maxsegsize, error;
4918
4919 cur = frag = *txidx;
4920
4921 if (m_head->m_pkthdr.csum_flags) {
4922 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4923 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4924 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4925 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4926 }
4927
4928 /*
4929 * If we were asked to do an outboard checksum, and the NIC
4930 * has the bug where it sometimes adds in the Ethernet padding,
4931 * explicitly pad with zeros so the cksum will be correct either way.
4932 * (For now, do this for all chip versions, until newer
4933 * are confirmed to not require the workaround.)
4934 */
4935 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4936 #ifdef notyet
4937 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4938 #endif
4939 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4940 goto check_dma_bug;
4941
4942 if (bge_cksum_pad(m_head) != 0)
4943 return ENOBUFS;
4944
4945 check_dma_bug:
4946 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4947 goto doit;
4948
4949 /*
4950 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4951 * less than eight bytes. If we encounter a teeny mbuf
4952 * at the end of a chain, we can pad. Otherwise, copy.
4953 */
4954 if (bge_compact_dma_runt(m_head) != 0)
4955 return ENOBUFS;
4956
4957 doit:
4958 dma = SLIST_FIRST(&sc->txdma_list);
4959 if (dma == NULL)
4960 return ENOBUFS;
4961 dmamap = dma->dmamap;
4962
4963 /*
4964 * Set up any necessary TSO state before we start packing...
4965 */
4966 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4967 if (!use_tso) {
4968 maxsegsize = 0;
4969 } else { /* TSO setup */
4970 unsigned mss;
4971 struct ether_header *eh;
4972 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4973 struct mbuf * m0 = m_head;
4974 struct ip *ip;
4975 struct tcphdr *th;
4976 int iphl, hlen;
4977
4978 /*
4979 * XXX It would be nice if the mbuf pkthdr had offset
4980 * fields for the protocol headers.
4981 */
4982
4983 eh = mtod(m0, struct ether_header *);
4984 switch (htons(eh->ether_type)) {
4985 case ETHERTYPE_IP:
4986 offset = ETHER_HDR_LEN;
4987 break;
4988
4989 case ETHERTYPE_VLAN:
4990 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4991 break;
4992
4993 default:
4994 /*
4995 * Don't support this protocol or encapsulation.
4996 */
4997 return ENOBUFS;
4998 }
4999
5000 /*
5001 * TCP/IP headers are in the first mbuf; we can do
5002 * this the easy way.
5003 */
5004 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5005 hlen = iphl + offset;
5006 if (__predict_false(m0->m_len <
5007 (hlen + sizeof(struct tcphdr)))) {
5008
5009 aprint_debug_dev(sc->bge_dev,
5010 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5011 "not handled yet\n",
5012 m0->m_len, hlen+ sizeof(struct tcphdr));
5013 #ifdef NOTYET
5014 /*
5015 * XXX jonathan (at) NetBSD.org: untested.
5016 * how to force this branch to be taken?
5017 */
5018 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
5019
5020 m_copydata(m0, offset, sizeof(ip), &ip);
5021 m_copydata(m0, hlen, sizeof(th), &th);
5022
5023 ip.ip_len = 0;
5024
5025 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5026 sizeof(ip.ip_len), &ip.ip_len);
5027
5028 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5029 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5030
5031 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5032 sizeof(th.th_sum), &th.th_sum);
5033
5034 hlen += th.th_off << 2;
5035 iptcp_opt_words = hlen;
5036 #else
5037 /*
5038 * if_wm "hard" case not yet supported, can we not
5039 * mandate it out of existence?
5040 */
5041 (void) ip; (void)th; (void) ip_tcp_hlen;
5042
5043 return ENOBUFS;
5044 #endif
5045 } else {
5046 ip = (struct ip *) (mtod(m0, char *) + offset);
5047 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5048 ip_tcp_hlen = iphl + (th->th_off << 2);
5049
5050 /* Total IP/TCP options, in 32-bit words */
5051 iptcp_opt_words = (ip_tcp_hlen
5052 - sizeof(struct tcphdr)
5053 - sizeof(struct ip)) >> 2;
5054 }
5055 if (BGE_IS_575X_PLUS(sc)) {
5056 th->th_sum = 0;
5057 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5058 } else {
5059 /*
5060 * XXX jonathan (at) NetBSD.org: 5705 untested.
5061 * Requires TSO firmware patch for 5701/5703/5704.
5062 */
5063 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5064 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5065 }
5066
5067 mss = m_head->m_pkthdr.segsz;
5068 txbd_tso_flags |=
5069 BGE_TXBDFLAG_CPU_PRE_DMA |
5070 BGE_TXBDFLAG_CPU_POST_DMA;
5071
5072 /*
5073 * Our NIC TSO-assist assumes TSO has standard, optionless
5074 * IPv4 and TCP headers, which total 40 bytes. By default,
5075 * the NIC copies 40 bytes of IP/TCP header from the
5076 * supplied header into the IP/TCP header portion of
5077 * each post-TSO-segment. If the supplied packet has IP or
5078 * TCP options, we need to tell the NIC to copy those extra
5079 * bytes into each post-TSO header, in addition to the normal
5080 * 40-byte IP/TCP header (and to leave space accordingly).
5081 * Unfortunately, the driver encoding of option length
5082 * varies across different ASIC families.
5083 */
5084 tcp_seg_flags = 0;
5085 if (iptcp_opt_words) {
5086 if (BGE_IS_5705_PLUS(sc)) {
5087 tcp_seg_flags =
5088 iptcp_opt_words << 11;
5089 } else {
5090 txbd_tso_flags |=
5091 iptcp_opt_words << 12;
5092 }
5093 }
5094 maxsegsize = mss | tcp_seg_flags;
5095 ip->ip_len = htons(mss + ip_tcp_hlen);
5096
5097 } /* TSO setup */
5098
5099 /*
5100 * Start packing the mbufs in this chain into
5101 * the fragment pointers. Stop when we run out
5102 * of fragments or hit the end of the mbuf chain.
5103 */
5104 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5105 BUS_DMA_NOWAIT);
5106 if (error)
5107 return ENOBUFS;
5108 /*
5109 * Sanity check: avoid coming within 16 descriptors
5110 * of the end of the ring.
5111 */
5112 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5113 BGE_TSO_PRINTF(("%s: "
5114 " dmamap_load_mbuf too close to ring wrap\n",
5115 device_xname(sc->bge_dev)));
5116 goto fail_unload;
5117 }
5118
5119 mtag = sc->ethercom.ec_nvlans ?
5120 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5121
5122
5123 /* Iterate over dmap-map fragments. */
5124 for (i = 0; i < dmamap->dm_nsegs; i++) {
5125 f = &sc->bge_rdata->bge_tx_ring[frag];
5126 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5127 break;
5128
5129 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5130 f->bge_len = dmamap->dm_segs[i].ds_len;
5131
5132 /*
5133 * For 5751 and follow-ons, for TSO we must turn
5134 * off checksum-assist flag in the tx-descr, and
5135 * supply the ASIC-revision-specific encoding
5136 * of TSO flags and segsize.
5137 */
5138 if (use_tso) {
5139 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5140 f->bge_rsvd = maxsegsize;
5141 f->bge_flags = csum_flags | txbd_tso_flags;
5142 } else {
5143 f->bge_rsvd = 0;
5144 f->bge_flags =
5145 (csum_flags | txbd_tso_flags) & 0x0fff;
5146 }
5147 } else {
5148 f->bge_rsvd = 0;
5149 f->bge_flags = csum_flags;
5150 }
5151
5152 if (mtag != NULL) {
5153 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5154 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5155 } else {
5156 f->bge_vlan_tag = 0;
5157 }
5158 cur = frag;
5159 BGE_INC(frag, BGE_TX_RING_CNT);
5160 }
5161
5162 if (i < dmamap->dm_nsegs) {
5163 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5164 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5165 goto fail_unload;
5166 }
5167
5168 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5169 BUS_DMASYNC_PREWRITE);
5170
5171 if (frag == sc->bge_tx_saved_considx) {
5172 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5173 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5174
5175 goto fail_unload;
5176 }
5177
5178 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5179 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5180 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5181 sc->txdma[cur] = dma;
5182 sc->bge_txcnt += dmamap->dm_nsegs;
5183
5184 *txidx = frag;
5185
5186 return 0;
5187
5188 fail_unload:
5189 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5190
5191 return ENOBUFS;
5192 }
5193
5194 /*
5195 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5196 * to the mbuf data regions directly in the transmit descriptors.
5197 */
5198 static void
5199 bge_start(struct ifnet *ifp)
5200 {
5201 struct bge_softc *sc;
5202 struct mbuf *m_head = NULL;
5203 uint32_t prodidx;
5204 int pkts = 0;
5205
5206 sc = ifp->if_softc;
5207
5208 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5209 return;
5210
5211 prodidx = sc->bge_tx_prodidx;
5212
5213 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5214 IFQ_POLL(&ifp->if_snd, m_head);
5215 if (m_head == NULL)
5216 break;
5217
5218 #if 0
5219 /*
5220 * XXX
5221 * safety overkill. If this is a fragmented packet chain
5222 * with delayed TCP/UDP checksums, then only encapsulate
5223 * it if we have enough descriptors to handle the entire
5224 * chain at once.
5225 * (paranoia -- may not actually be needed)
5226 */
5227 if (m_head->m_flags & M_FIRSTFRAG &&
5228 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5229 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5230 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5231 ifp->if_flags |= IFF_OACTIVE;
5232 break;
5233 }
5234 }
5235 #endif
5236
5237 /*
5238 * Pack the data into the transmit ring. If we
5239 * don't have room, set the OACTIVE flag and wait
5240 * for the NIC to drain the ring.
5241 */
5242 if (bge_encap(sc, m_head, &prodidx)) {
5243 ifp->if_flags |= IFF_OACTIVE;
5244 break;
5245 }
5246
5247 /* now we are committed to transmit the packet */
5248 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5249 pkts++;
5250
5251 /*
5252 * If there's a BPF listener, bounce a copy of this frame
5253 * to him.
5254 */
5255 bpf_mtap(ifp, m_head);
5256 }
5257 if (pkts == 0)
5258 return;
5259
5260 /* Transmit */
5261 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5262 /* 5700 b2 errata */
5263 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5264 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5265
5266 sc->bge_tx_prodidx = prodidx;
5267
5268 /*
5269 * Set a timeout in case the chip goes out to lunch.
5270 */
5271 ifp->if_timer = 5;
5272 }
5273
5274 static int
5275 bge_init(struct ifnet *ifp)
5276 {
5277 struct bge_softc *sc = ifp->if_softc;
5278 const uint16_t *m;
5279 uint32_t mode, reg;
5280 int s, error = 0;
5281
5282 s = splnet();
5283
5284 ifp = &sc->ethercom.ec_if;
5285
5286 /* Cancel pending I/O and flush buffers. */
5287 bge_stop(ifp, 0);
5288
5289 bge_stop_fw(sc);
5290 bge_sig_pre_reset(sc, BGE_RESET_START);
5291 bge_reset(sc);
5292 bge_sig_legacy(sc, BGE_RESET_START);
5293 bge_sig_post_reset(sc, BGE_RESET_START);
5294
5295 bge_chipinit(sc);
5296
5297 /*
5298 * Init the various state machines, ring
5299 * control blocks and firmware.
5300 */
5301 error = bge_blockinit(sc);
5302 if (error != 0) {
5303 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5304 error);
5305 splx(s);
5306 return error;
5307 }
5308
5309 ifp = &sc->ethercom.ec_if;
5310
5311 /* 5718 step 25, 57XX step 54 */
5312 /* Specify MTU. */
5313 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5314 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5315
5316 /* 5718 step 23 */
5317 /* Load our MAC address. */
5318 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5319 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5320 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5321
5322 /* Enable or disable promiscuous mode as needed. */
5323 if (ifp->if_flags & IFF_PROMISC)
5324 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5325 else
5326 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5327
5328 /* Program multicast filter. */
5329 bge_setmulti(sc);
5330
5331 /* Init RX ring. */
5332 bge_init_rx_ring_std(sc);
5333
5334 /*
5335 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5336 * memory to insure that the chip has in fact read the first
5337 * entry of the ring.
5338 */
5339 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5340 uint32_t v, i;
5341 for (i = 0; i < 10; i++) {
5342 DELAY(20);
5343 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5344 if (v == (MCLBYTES - ETHER_ALIGN))
5345 break;
5346 }
5347 if (i == 10)
5348 aprint_error_dev(sc->bge_dev,
5349 "5705 A0 chip failed to load RX ring\n");
5350 }
5351
5352 /* Init jumbo RX ring. */
5353 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5354 bge_init_rx_ring_jumbo(sc);
5355
5356 /* Init our RX return ring index */
5357 sc->bge_rx_saved_considx = 0;
5358
5359 /* Init TX ring. */
5360 bge_init_tx_ring(sc);
5361
5362 /* 5718 step 63, 57XX step 94 */
5363 /* Enable TX MAC state machine lockup fix. */
5364 mode = CSR_READ_4(sc, BGE_TX_MODE);
5365 if (BGE_IS_5755_PLUS(sc) ||
5366 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5367 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5369 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5370 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5371 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5372 }
5373
5374 /* Turn on transmitter */
5375 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5376 /* 5718 step 64 */
5377 DELAY(100);
5378
5379 /* 5718 step 65, 57XX step 95 */
5380 /* Turn on receiver */
5381 mode = CSR_READ_4(sc, BGE_RX_MODE);
5382 if (BGE_IS_5755_PLUS(sc))
5383 mode |= BGE_RXMODE_IPV6_ENABLE;
5384 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5385 /* 5718 step 66 */
5386 DELAY(10);
5387
5388 /* 5718 step 12, 57XX step 37 */
5389 /*
5390 * XXX Doucments of 5718 series and 577xx say the recommended value
5391 * is 1, but tg3 set 1 only on 57765 series.
5392 */
5393 if (BGE_IS_57765_PLUS(sc))
5394 reg = 1;
5395 else
5396 reg = 2;
5397 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5398
5399 /* Tell firmware we're alive. */
5400 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5401
5402 /* Enable host interrupts. */
5403 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5404 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5405 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5406
5407 if ((error = bge_ifmedia_upd(ifp)) != 0)
5408 goto out;
5409
5410 ifp->if_flags |= IFF_RUNNING;
5411 ifp->if_flags &= ~IFF_OACTIVE;
5412
5413 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5414
5415 out:
5416 sc->bge_if_flags = ifp->if_flags;
5417 splx(s);
5418
5419 return error;
5420 }
5421
5422 /*
5423 * Set media options.
5424 */
5425 static int
5426 bge_ifmedia_upd(struct ifnet *ifp)
5427 {
5428 struct bge_softc *sc = ifp->if_softc;
5429 struct mii_data *mii = &sc->bge_mii;
5430 struct ifmedia *ifm = &sc->bge_ifmedia;
5431 int rc;
5432
5433 /* If this is a 1000baseX NIC, enable the TBI port. */
5434 if (sc->bge_flags & BGEF_FIBER_TBI) {
5435 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5436 return EINVAL;
5437 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5438 case IFM_AUTO:
5439 /*
5440 * The BCM5704 ASIC appears to have a special
5441 * mechanism for programming the autoneg
5442 * advertisement registers in TBI mode.
5443 */
5444 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5445 uint32_t sgdig;
5446 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5447 if (sgdig & BGE_SGDIGSTS_DONE) {
5448 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5449 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5450 sgdig |= BGE_SGDIGCFG_AUTO |
5451 BGE_SGDIGCFG_PAUSE_CAP |
5452 BGE_SGDIGCFG_ASYM_PAUSE;
5453 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5454 sgdig | BGE_SGDIGCFG_SEND);
5455 DELAY(5);
5456 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5457 sgdig);
5458 }
5459 }
5460 break;
5461 case IFM_1000_SX:
5462 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5463 BGE_CLRBIT(sc, BGE_MAC_MODE,
5464 BGE_MACMODE_HALF_DUPLEX);
5465 } else {
5466 BGE_SETBIT(sc, BGE_MAC_MODE,
5467 BGE_MACMODE_HALF_DUPLEX);
5468 }
5469 DELAY(40);
5470 break;
5471 default:
5472 return EINVAL;
5473 }
5474 /* XXX 802.3x flow control for 1000BASE-SX */
5475 return 0;
5476 }
5477
5478 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5479 if ((rc = mii_mediachg(mii)) == ENXIO)
5480 return 0;
5481
5482 /*
5483 * Force an interrupt so that we will call bge_link_upd
5484 * if needed and clear any pending link state attention.
5485 * Without this we are not getting any further interrupts
5486 * for link state changes and thus will not UP the link and
5487 * not be able to send in bge_start. The only way to get
5488 * things working was to receive a packet and get a RX intr.
5489 */
5490 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5491 sc->bge_flags & BGEF_IS_5788)
5492 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5493 else
5494 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5495
5496 return rc;
5497 }
5498
5499 /*
5500 * Report current media status.
5501 */
5502 static void
5503 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5504 {
5505 struct bge_softc *sc = ifp->if_softc;
5506 struct mii_data *mii = &sc->bge_mii;
5507
5508 if (sc->bge_flags & BGEF_FIBER_TBI) {
5509 ifmr->ifm_status = IFM_AVALID;
5510 ifmr->ifm_active = IFM_ETHER;
5511 if (CSR_READ_4(sc, BGE_MAC_STS) &
5512 BGE_MACSTAT_TBI_PCS_SYNCHED)
5513 ifmr->ifm_status |= IFM_ACTIVE;
5514 ifmr->ifm_active |= IFM_1000_SX;
5515 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5516 ifmr->ifm_active |= IFM_HDX;
5517 else
5518 ifmr->ifm_active |= IFM_FDX;
5519 return;
5520 }
5521
5522 mii_pollstat(mii);
5523 ifmr->ifm_status = mii->mii_media_status;
5524 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5525 sc->bge_flowflags;
5526 }
5527
5528 static int
5529 bge_ifflags_cb(struct ethercom *ec)
5530 {
5531 struct ifnet *ifp = &ec->ec_if;
5532 struct bge_softc *sc = ifp->if_softc;
5533 int change = ifp->if_flags ^ sc->bge_if_flags;
5534
5535 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5536 return ENETRESET;
5537 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5538 return 0;
5539
5540 if ((ifp->if_flags & IFF_PROMISC) == 0)
5541 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5542 else
5543 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5544
5545 bge_setmulti(sc);
5546
5547 sc->bge_if_flags = ifp->if_flags;
5548 return 0;
5549 }
5550
5551 static int
5552 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5553 {
5554 struct bge_softc *sc = ifp->if_softc;
5555 struct ifreq *ifr = (struct ifreq *) data;
5556 int s, error = 0;
5557 struct mii_data *mii;
5558
5559 s = splnet();
5560
5561 switch (command) {
5562 case SIOCSIFMEDIA:
5563 /* XXX Flow control is not supported for 1000BASE-SX */
5564 if (sc->bge_flags & BGEF_FIBER_TBI) {
5565 ifr->ifr_media &= ~IFM_ETH_FMASK;
5566 sc->bge_flowflags = 0;
5567 }
5568
5569 /* Flow control requires full-duplex mode. */
5570 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5571 (ifr->ifr_media & IFM_FDX) == 0) {
5572 ifr->ifr_media &= ~IFM_ETH_FMASK;
5573 }
5574 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5575 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5576 /* We can do both TXPAUSE and RXPAUSE. */
5577 ifr->ifr_media |=
5578 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5579 }
5580 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5581 }
5582 /* FALLTHROUGH */
5583 case SIOCGIFMEDIA:
5584 if (sc->bge_flags & BGEF_FIBER_TBI) {
5585 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5586 command);
5587 } else {
5588 mii = &sc->bge_mii;
5589 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5590 command);
5591 }
5592 break;
5593 default:
5594 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5595 break;
5596
5597 error = 0;
5598
5599 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5600 ;
5601 else if (ifp->if_flags & IFF_RUNNING)
5602 bge_setmulti(sc);
5603 break;
5604 }
5605
5606 splx(s);
5607
5608 return error;
5609 }
5610
5611 static void
5612 bge_watchdog(struct ifnet *ifp)
5613 {
5614 struct bge_softc *sc;
5615
5616 sc = ifp->if_softc;
5617
5618 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5619
5620 ifp->if_flags &= ~IFF_RUNNING;
5621 bge_init(ifp);
5622
5623 ifp->if_oerrors++;
5624 }
5625
5626 static void
5627 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5628 {
5629 int i;
5630
5631 BGE_CLRBIT_FLUSH(sc, reg, bit);
5632
5633 for (i = 0; i < 1000; i++) {
5634 delay(100);
5635 if ((CSR_READ_4(sc, reg) & bit) == 0)
5636 return;
5637 }
5638
5639 /*
5640 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5641 * on some environment (and once after boot?)
5642 */
5643 if (reg != BGE_SRS_MODE)
5644 aprint_error_dev(sc->bge_dev,
5645 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5646 (u_long)reg, bit);
5647 }
5648
5649 /*
5650 * Stop the adapter and free any mbufs allocated to the
5651 * RX and TX lists.
5652 */
5653 static void
5654 bge_stop(struct ifnet *ifp, int disable)
5655 {
5656 struct bge_softc *sc = ifp->if_softc;
5657
5658 callout_stop(&sc->bge_timeout);
5659
5660 /* Disable host interrupts. */
5661 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5662 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5663
5664 /*
5665 * Tell firmware we're shutting down.
5666 */
5667 bge_stop_fw(sc);
5668 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5669
5670 /*
5671 * Disable all of the receiver blocks.
5672 */
5673 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5674 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5675 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5676 if (BGE_IS_5700_FAMILY(sc))
5677 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5678 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5679 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5680 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5681
5682 /*
5683 * Disable all of the transmit blocks.
5684 */
5685 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5686 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5687 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5688 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5689 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5690 if (BGE_IS_5700_FAMILY(sc))
5691 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5692 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5693
5694 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5695 delay(40);
5696
5697 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5698
5699 /*
5700 * Shut down all of the memory managers and related
5701 * state machines.
5702 */
5703 /* 5718 step 5a,5b */
5704 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5705 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5706 if (BGE_IS_5700_FAMILY(sc))
5707 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5708
5709 /* 5718 step 5c,5d */
5710 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5711 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5712
5713 if (BGE_IS_5700_FAMILY(sc)) {
5714 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5715 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5716 }
5717
5718 bge_reset(sc);
5719 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5720 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5721
5722 /*
5723 * Keep the ASF firmware running if up.
5724 */
5725 if (sc->bge_asf_mode & ASF_STACKUP)
5726 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5727 else
5728 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5729
5730 /* Free the RX lists. */
5731 bge_free_rx_ring_std(sc);
5732
5733 /* Free jumbo RX list. */
5734 if (BGE_IS_JUMBO_CAPABLE(sc))
5735 bge_free_rx_ring_jumbo(sc);
5736
5737 /* Free TX buffers. */
5738 bge_free_tx_ring(sc);
5739
5740 /*
5741 * Isolate/power down the PHY.
5742 */
5743 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5744 mii_down(&sc->bge_mii);
5745
5746 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5747
5748 /* Clear MAC's link state (PHY may still have link UP). */
5749 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5750
5751 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5752 }
5753
5754 static void
5755 bge_link_upd(struct bge_softc *sc)
5756 {
5757 struct ifnet *ifp = &sc->ethercom.ec_if;
5758 struct mii_data *mii = &sc->bge_mii;
5759 uint32_t status;
5760 int link;
5761
5762 /* Clear 'pending link event' flag */
5763 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5764
5765 /*
5766 * Process link state changes.
5767 * Grrr. The link status word in the status block does
5768 * not work correctly on the BCM5700 rev AX and BX chips,
5769 * according to all available information. Hence, we have
5770 * to enable MII interrupts in order to properly obtain
5771 * async link changes. Unfortunately, this also means that
5772 * we have to read the MAC status register to detect link
5773 * changes, thereby adding an additional register access to
5774 * the interrupt handler.
5775 */
5776
5777 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5778 status = CSR_READ_4(sc, BGE_MAC_STS);
5779 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5780 mii_pollstat(mii);
5781
5782 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5783 mii->mii_media_status & IFM_ACTIVE &&
5784 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5785 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5786 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5787 (!(mii->mii_media_status & IFM_ACTIVE) ||
5788 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5789 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5790
5791 /* Clear the interrupt */
5792 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5793 BGE_EVTENB_MI_INTERRUPT);
5794 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5795 BRGPHY_MII_ISR);
5796 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5797 BRGPHY_MII_IMR, BRGPHY_INTRS);
5798 }
5799 return;
5800 }
5801
5802 if (sc->bge_flags & BGEF_FIBER_TBI) {
5803 status = CSR_READ_4(sc, BGE_MAC_STS);
5804 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5805 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5806 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5807 if (BGE_ASICREV(sc->bge_chipid)
5808 == BGE_ASICREV_BCM5704) {
5809 BGE_CLRBIT(sc, BGE_MAC_MODE,
5810 BGE_MACMODE_TBI_SEND_CFGS);
5811 DELAY(40);
5812 }
5813 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5814 if_link_state_change(ifp, LINK_STATE_UP);
5815 }
5816 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5817 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5818 if_link_state_change(ifp, LINK_STATE_DOWN);
5819 }
5820 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5821 /*
5822 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5823 * bit in status word always set. Workaround this bug by
5824 * reading PHY link status directly.
5825 */
5826 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5827 BGE_STS_LINK : 0;
5828
5829 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5830 mii_pollstat(mii);
5831
5832 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5833 mii->mii_media_status & IFM_ACTIVE &&
5834 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5835 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5836 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5837 (!(mii->mii_media_status & IFM_ACTIVE) ||
5838 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5839 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5840 }
5841 } else {
5842 /*
5843 * For controllers that call mii_tick, we have to poll
5844 * link status.
5845 */
5846 mii_pollstat(mii);
5847 }
5848
5849 /* Clear the attention */
5850 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5851 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5852 BGE_MACSTAT_LINK_CHANGED);
5853 }
5854
5855 static int
5856 bge_sysctl_verify(SYSCTLFN_ARGS)
5857 {
5858 int error, t;
5859 struct sysctlnode node;
5860
5861 node = *rnode;
5862 t = *(int*)rnode->sysctl_data;
5863 node.sysctl_data = &t;
5864 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5865 if (error || newp == NULL)
5866 return error;
5867
5868 #if 0
5869 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5870 node.sysctl_num, rnode->sysctl_num));
5871 #endif
5872
5873 if (node.sysctl_num == bge_rxthresh_nodenum) {
5874 if (t < 0 || t >= NBGE_RX_THRESH)
5875 return EINVAL;
5876 bge_update_all_threshes(t);
5877 } else
5878 return EINVAL;
5879
5880 *(int*)rnode->sysctl_data = t;
5881
5882 return 0;
5883 }
5884
5885 /*
5886 * Set up sysctl(3) MIB, hw.bge.*.
5887 */
5888 static void
5889 bge_sysctl_init(struct bge_softc *sc)
5890 {
5891 int rc, bge_root_num;
5892 const struct sysctlnode *node;
5893
5894 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5895 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5896 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5897 goto out;
5898 }
5899
5900 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5901 0, CTLTYPE_NODE, "bge",
5902 SYSCTL_DESCR("BGE interface controls"),
5903 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5904 goto out;
5905 }
5906
5907 bge_root_num = node->sysctl_num;
5908
5909 /* BGE Rx interrupt mitigation level */
5910 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5911 CTLFLAG_READWRITE,
5912 CTLTYPE_INT, "rx_lvl",
5913 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5914 bge_sysctl_verify, 0,
5915 &bge_rx_thresh_lvl,
5916 0, CTL_HW, bge_root_num, CTL_CREATE,
5917 CTL_EOL)) != 0) {
5918 goto out;
5919 }
5920
5921 bge_rxthresh_nodenum = node->sysctl_num;
5922
5923 return;
5924
5925 out:
5926 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5927 }
5928
5929 #ifdef BGE_DEBUG
5930 void
5931 bge_debug_info(struct bge_softc *sc)
5932 {
5933
5934 printf("Hardware Flags:\n");
5935 if (BGE_IS_57765_PLUS(sc))
5936 printf(" - 57765 Plus\n");
5937 if (BGE_IS_5717_PLUS(sc))
5938 printf(" - 5717 Plus\n");
5939 if (BGE_IS_5755_PLUS(sc))
5940 printf(" - 5755 Plus\n");
5941 if (BGE_IS_575X_PLUS(sc))
5942 printf(" - 575X Plus\n");
5943 if (BGE_IS_5705_PLUS(sc))
5944 printf(" - 5705 Plus\n");
5945 if (BGE_IS_5714_FAMILY(sc))
5946 printf(" - 5714 Family\n");
5947 if (BGE_IS_5700_FAMILY(sc))
5948 printf(" - 5700 Family\n");
5949 if (sc->bge_flags & BGEF_IS_5788)
5950 printf(" - 5788\n");
5951 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
5952 printf(" - Supports Jumbo Frames\n");
5953 if (sc->bge_flags & BGEF_NO_EEPROM)
5954 printf(" - No EEPROM\n");
5955 if (sc->bge_flags & BGEF_PCIX)
5956 printf(" - PCI-X Bus\n");
5957 if (sc->bge_flags & BGEF_PCIE)
5958 printf(" - PCI Express Bus\n");
5959 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
5960 printf(" - RX Alignment Bug\n");
5961 if (sc->bge_flags & BGEF_APE)
5962 printf(" - APE\n");
5963 if (sc->bge_flags & BGEF_CPMU_PRESENT)
5964 printf(" - CPMU\n");
5965 if (sc->bge_flags & BGEF_TSO)
5966 printf(" - TSO\n");
5967
5968 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
5969 printf(" - No 3 LEDs\n");
5970 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
5971 printf(" - CRC bug\n");
5972 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
5973 printf(" - ADC bug\n");
5974 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
5975 printf(" - 5704 A0 bug\n");
5976 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
5977 printf(" - jitter bug\n");
5978 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
5979 printf(" - BER bug\n");
5980 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
5981 printf(" - adjust trim\n");
5982 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
5983 printf(" - no wirespeed\n");
5984 }
5985 #endif /* BGE_DEBUG */
5986
5987 static int
5988 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5989 {
5990 prop_dictionary_t dict;
5991 prop_data_t ea;
5992
5993 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
5994 return 1;
5995
5996 dict = device_properties(sc->bge_dev);
5997 ea = prop_dictionary_get(dict, "mac-address");
5998 if (ea != NULL) {
5999 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6000 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6001 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6002 return 0;
6003 }
6004
6005 return 1;
6006 }
6007
6008 static int
6009 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6010 {
6011 uint32_t mac_addr;
6012
6013 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6014 if ((mac_addr >> 16) == 0x484b) {
6015 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6016 ether_addr[1] = (uint8_t)mac_addr;
6017 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6018 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6019 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6020 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6021 ether_addr[5] = (uint8_t)mac_addr;
6022 return 0;
6023 }
6024 return 1;
6025 }
6026
6027 static int
6028 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6029 {
6030 int mac_offset = BGE_EE_MAC_OFFSET;
6031
6032 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6033 mac_offset = BGE_EE_MAC_OFFSET_5906;
6034
6035 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6036 ETHER_ADDR_LEN));
6037 }
6038
6039 static int
6040 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6041 {
6042
6043 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6044 return 1;
6045
6046 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6047 ETHER_ADDR_LEN));
6048 }
6049
6050 static int
6051 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6052 {
6053 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6054 /* NOTE: Order is critical */
6055 bge_get_eaddr_fw,
6056 bge_get_eaddr_mem,
6057 bge_get_eaddr_nvram,
6058 bge_get_eaddr_eeprom,
6059 NULL
6060 };
6061 const bge_eaddr_fcn_t *func;
6062
6063 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6064 if ((*func)(sc, eaddr) == 0)
6065 break;
6066 }
6067 return (*func == NULL ? ENXIO : 0);
6068 }
6069