if_bge.c revision 1.27 1 /* $NetBSD: if_bge.c,v 1.27 2003/01/17 00:24:29 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * jonathan Stone <joanthan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000011
205
206 /* following bugs are common to bcm5700 rev B, all flavours */
207 #define BGE_QUIRK_5700_COMMON \
208 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
209
210 CFATTACH_DECL(bge, sizeof(struct bge_softc),
211 bge_probe, bge_attach, NULL, NULL);
212
213 u_int32_t
214 bge_readmem_ind(sc, off)
215 struct bge_softc *sc;
216 int off;
217 {
218 struct pci_attach_args *pa = &(sc->bge_pa);
219 pcireg_t val;
220
221 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
222 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
223 return val;
224 }
225
226 void
227 bge_writemem_ind(sc, off, val)
228 struct bge_softc *sc;
229 int off, val;
230 {
231 struct pci_attach_args *pa = &(sc->bge_pa);
232
233 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
235 }
236
237 #ifdef notdef
238 u_int32_t
239 bge_readreg_ind(sc, off)
240 struct bge_softc *sc;
241 int off;
242 {
243 struct pci_attach_args *pa = &(sc->bge_pa);
244
245 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
246 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
247 }
248 #endif
249
250 void
251 bge_writereg_ind(sc, off, val)
252 struct bge_softc *sc;
253 int off, val;
254 {
255 struct pci_attach_args *pa = &(sc->bge_pa);
256
257 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
259 }
260
261 #ifdef notdef
262 u_int8_t
263 bge_vpd_readbyte(sc, addr)
264 struct bge_softc *sc;
265 int addr;
266 {
267 int i;
268 u_int32_t val;
269 struct pci_attach_args *pa = &(sc->bge_pa);
270
271 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
272 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
273 DELAY(10);
274 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
275 BGE_VPD_FLAG)
276 break;
277 }
278
279 if (i == BGE_TIMEOUT) {
280 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
281 return(0);
282 }
283
284 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
285
286 return((val >> ((addr % 4) * 8)) & 0xFF);
287 }
288
289 void
290 bge_vpd_read_res(sc, res, addr)
291 struct bge_softc *sc;
292 struct vpd_res *res;
293 int addr;
294 {
295 int i;
296 u_int8_t *ptr;
297
298 ptr = (u_int8_t *)res;
299 for (i = 0; i < sizeof(struct vpd_res); i++)
300 ptr[i] = bge_vpd_readbyte(sc, i + addr);
301 }
302
303 void
304 bge_vpd_read(sc)
305 struct bge_softc *sc;
306 {
307 int pos = 0, i;
308 struct vpd_res res;
309
310 if (sc->bge_vpd_prodname != NULL)
311 free(sc->bge_vpd_prodname, M_DEVBUF);
312 if (sc->bge_vpd_readonly != NULL)
313 free(sc->bge_vpd_readonly, M_DEVBUF);
314 sc->bge_vpd_prodname = NULL;
315 sc->bge_vpd_readonly = NULL;
316
317 bge_vpd_read_res(sc, &res, pos);
318
319 if (res.vr_id != VPD_RES_ID) {
320 printf("%s: bad VPD resource id: expected %x got %x\n",
321 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
322 return;
323 }
324
325 pos += sizeof(res);
326 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
327 if (sc->bge_vpd_prodname == NULL)
328 panic("bge_vpd_read");
329 for (i = 0; i < res.vr_len; i++)
330 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
331 sc->bge_vpd_prodname[i] = '\0';
332 pos += i;
333
334 bge_vpd_read_res(sc, &res, pos);
335
336 if (res.vr_id != VPD_RES_READ) {
337 printf("%s: bad VPD resource id: expected %x got %x\n",
338 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
339 return;
340 }
341
342 pos += sizeof(res);
343 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
344 if (sc->bge_vpd_readonly == NULL)
345 panic("bge_vpd_read");
346 for (i = 0; i < res.vr_len + 1; i++)
347 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
348 }
349 #endif
350
351 /*
352 * Read a byte of data stored in the EEPROM at address 'addr.' The
353 * BCM570x supports both the traditional bitbang interface and an
354 * auto access interface for reading the EEPROM. We use the auto
355 * access method.
356 */
357 u_int8_t
358 bge_eeprom_getbyte(sc, addr, dest)
359 struct bge_softc *sc;
360 int addr;
361 u_int8_t *dest;
362 {
363 int i;
364 u_int32_t byte = 0;
365
366 /*
367 * Enable use of auto EEPROM access so we can avoid
368 * having to use the bitbang method.
369 */
370 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
371
372 /* Reset the EEPROM, load the clock period. */
373 CSR_WRITE_4(sc, BGE_EE_ADDR,
374 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
375 DELAY(20);
376
377 /* Issue the read EEPROM command. */
378 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
379
380 /* Wait for completion */
381 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
382 DELAY(10);
383 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
384 break;
385 }
386
387 if (i == BGE_TIMEOUT) {
388 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
389 return(0);
390 }
391
392 /* Get result. */
393 byte = CSR_READ_4(sc, BGE_EE_DATA);
394
395 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
396
397 return(0);
398 }
399
400 /*
401 * Read a sequence of bytes from the EEPROM.
402 */
403 int
404 bge_read_eeprom(sc, dest, off, cnt)
405 struct bge_softc *sc;
406 caddr_t dest;
407 int off;
408 int cnt;
409 {
410 int err = 0, i;
411 u_int8_t byte = 0;
412
413 for (i = 0; i < cnt; i++) {
414 err = bge_eeprom_getbyte(sc, off + i, &byte);
415 if (err)
416 break;
417 *(dest + i) = byte;
418 }
419
420 return(err ? 1 : 0);
421 }
422
423 int
424 bge_miibus_readreg(dev, phy, reg)
425 struct device *dev;
426 int phy, reg;
427 {
428 struct bge_softc *sc = (struct bge_softc *)dev;
429 struct ifnet *ifp;
430 u_int32_t val;
431 u_int32_t saved_autopoll;
432 int i;
433
434 ifp = &sc->ethercom.ec_if;
435
436 /*
437 * Several chips with builtin PHYs will incorrectly answer to
438 * other PHY instances than the builtin PHY at id 1.
439 */
440 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
441 return(0);
442
443 /* Reading with autopolling on may trigger PCI errors */
444 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
445 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
446 CSR_WRITE_4(sc, BGE_MI_MODE,
447 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
448 DELAY(40);
449 }
450
451 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
452 BGE_MIPHY(phy)|BGE_MIREG(reg));
453
454 for (i = 0; i < BGE_TIMEOUT; i++) {
455 val = CSR_READ_4(sc, BGE_MI_COMM);
456 if (!(val & BGE_MICOMM_BUSY))
457 break;
458 delay(10);
459 }
460
461 if (i == BGE_TIMEOUT) {
462 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 val = 0;
464 goto done;
465 }
466
467 val = CSR_READ_4(sc, BGE_MI_COMM);
468
469 done:
470 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
471 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
472 DELAY(40);
473 }
474
475 if (val & BGE_MICOMM_READFAIL)
476 return(0);
477
478 return(val & 0xFFFF);
479 }
480
481 void
482 bge_miibus_writereg(dev, phy, reg, val)
483 struct device *dev;
484 int phy, reg, val;
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /* Touching the PHY while autopolling is on may trigger PCI errors */
491 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
492 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
493 delay(40);
494 CSR_WRITE_4(sc, BGE_MI_MODE,
495 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
496 delay(10); /* 40 usec is supposed to be adequate */
497 }
498
499 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
500 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
501
502 for (i = 0; i < BGE_TIMEOUT; i++) {
503 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
504 break;
505 delay(10);
506 }
507
508 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
509 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
510 delay(40);
511 }
512
513 if (i == BGE_TIMEOUT) {
514 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
515 }
516 }
517
518 void
519 bge_miibus_statchg(dev)
520 struct device *dev;
521 {
522 struct bge_softc *sc = (struct bge_softc *)dev;
523 struct mii_data *mii = &sc->bge_mii;
524
525 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
526 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
527 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
528 } else {
529 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
530 }
531
532 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
533 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
534 } else {
535 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
536 }
537 }
538
539 /*
540 * Handle events that have triggered interrupts.
541 */
542 void
543 bge_handle_events(sc)
544 struct bge_softc *sc;
545 {
546
547 return;
548 }
549
550 /*
551 * Memory management for jumbo frames.
552 */
553
554 int
555 bge_alloc_jumbo_mem(sc)
556 struct bge_softc *sc;
557 {
558 caddr_t ptr, kva;
559 bus_dma_segment_t seg;
560 int i, rseg, state, error;
561 struct bge_jpool_entry *entry;
562
563 state = error = 0;
564
565 /* Grab a big chunk o' storage. */
566 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
567 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
568 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
569 return ENOBUFS;
570 }
571
572 state = 1;
573 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
574 BUS_DMA_NOWAIT)) {
575 printf("%s: can't map dma buffers (%d bytes)\n",
576 sc->bge_dev.dv_xname, (int)BGE_JMEM);
577 error = ENOBUFS;
578 goto out;
579 }
580
581 state = 2;
582 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
583 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
584 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
585 error = ENOBUFS;
586 goto out;
587 }
588
589 state = 3;
590 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
591 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
592 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
593 error = ENOBUFS;
594 goto out;
595 }
596
597 state = 4;
598 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
599 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
600
601 SLIST_INIT(&sc->bge_jfree_listhead);
602 SLIST_INIT(&sc->bge_jinuse_listhead);
603
604 /*
605 * Now divide it up into 9K pieces and save the addresses
606 * in an array.
607 */
608 ptr = sc->bge_cdata.bge_jumbo_buf;
609 for (i = 0; i < BGE_JSLOTS; i++) {
610 sc->bge_cdata.bge_jslots[i] = ptr;
611 ptr += BGE_JLEN;
612 entry = malloc(sizeof(struct bge_jpool_entry),
613 M_DEVBUF, M_NOWAIT);
614 if (entry == NULL) {
615 printf("%s: no memory for jumbo buffer queue!\n",
616 sc->bge_dev.dv_xname);
617 error = ENOBUFS;
618 goto out;
619 }
620 entry->slot = i;
621 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 entry, jpool_entries);
623 }
624 out:
625 if (error != 0) {
626 switch (state) {
627 case 4:
628 bus_dmamap_unload(sc->bge_dmatag,
629 sc->bge_cdata.bge_rx_jumbo_map);
630 case 3:
631 bus_dmamap_destroy(sc->bge_dmatag,
632 sc->bge_cdata.bge_rx_jumbo_map);
633 case 2:
634 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
635 case 1:
636 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
637 break;
638 default:
639 break;
640 }
641 }
642
643 return error;
644 }
645
646 /*
647 * Allocate a jumbo buffer.
648 */
649 void *
650 bge_jalloc(sc)
651 struct bge_softc *sc;
652 {
653 struct bge_jpool_entry *entry;
654
655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656
657 if (entry == NULL) {
658 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
659 return(NULL);
660 }
661
662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666
667 /*
668 * Release a jumbo buffer.
669 */
670 void
671 bge_jfree(m, buf, size, arg)
672 struct mbuf *m;
673 caddr_t buf;
674 u_int size;
675 void *arg;
676 {
677 struct bge_jpool_entry *entry;
678 struct bge_softc *sc;
679 int i, s;
680
681 /* Extract the softc struct pointer. */
682 sc = (struct bge_softc *)arg;
683
684 if (sc == NULL)
685 panic("bge_jfree: can't find softc pointer!");
686
687 /* calculate the slot this buffer belongs to */
688
689 i = ((caddr_t)buf
690 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
691
692 if ((i < 0) || (i >= BGE_JSLOTS))
693 panic("bge_jfree: asked to free buffer that we don't manage!");
694
695 s = splvm();
696 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
697 if (entry == NULL)
698 panic("bge_jfree: buffer not in use!");
699 entry->slot = i;
700 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
701 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
702
703 if (__predict_true(m != NULL))
704 pool_cache_put(&mbpool_cache, m);
705 splx(s);
706 }
707
708
709 /*
710 * Intialize a standard receive ring descriptor.
711 */
712 int
713 bge_newbuf_std(sc, i, m, dmamap)
714 struct bge_softc *sc;
715 int i;
716 struct mbuf *m;
717 bus_dmamap_t dmamap;
718 {
719 struct mbuf *m_new = NULL;
720 struct bge_rx_bd *r;
721 int error;
722
723 if (dmamap == NULL) {
724 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
725 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
726 if (error != 0)
727 return error;
728 }
729
730 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
731
732 if (m == NULL) {
733 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
734 if (m_new == NULL) {
735 return(ENOBUFS);
736 }
737
738 MCLGET(m_new, M_DONTWAIT);
739 if (!(m_new->m_flags & M_EXT)) {
740 m_freem(m_new);
741 return(ENOBUFS);
742 }
743 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 m_adj(m_new, ETHER_ALIGN);
745
746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
747 BUS_DMA_READ|BUS_DMA_NOWAIT))
748 return(ENOBUFS);
749 } else {
750 m_new = m;
751 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
752 m_new->m_data = m_new->m_ext.ext_buf;
753 m_adj(m_new, ETHER_ALIGN);
754 }
755
756 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
757 r = &sc->bge_rdata->bge_rx_std_ring[i];
758 bge_set_hostaddr(&r->bge_addr,
759 dmamap->dm_segs[0].ds_addr);
760 r->bge_flags = BGE_RXBDFLAG_END;
761 r->bge_len = m_new->m_len;
762 r->bge_idx = i;
763
764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
765 offsetof(struct bge_ring_data, bge_rx_std_ring) +
766 i * sizeof (struct bge_rx_bd),
767 sizeof (struct bge_rx_bd),
768 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
769
770 return(0);
771 }
772
773 /*
774 * Initialize a jumbo receive ring descriptor. This allocates
775 * a jumbo buffer from the pool managed internally by the driver.
776 */
777 int
778 bge_newbuf_jumbo(sc, i, m)
779 struct bge_softc *sc;
780 int i;
781 struct mbuf *m;
782 {
783 struct mbuf *m_new = NULL;
784 struct bge_rx_bd *r;
785
786 if (m == NULL) {
787 caddr_t *buf = NULL;
788
789 /* Allocate the mbuf. */
790 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 if (m_new == NULL) {
792 return(ENOBUFS);
793 }
794
795 /* Allocate the jumbo buffer */
796 buf = bge_jalloc(sc);
797 if (buf == NULL) {
798 m_freem(m_new);
799 printf("%s: jumbo allocation failed "
800 "-- packet dropped!\n", sc->bge_dev.dv_xname);
801 return(ENOBUFS);
802 }
803
804 /* Attach the buffer to the mbuf. */
805 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
806 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
807 bge_jfree, sc);
808 } else {
809 m_new = m;
810 m_new->m_data = m_new->m_ext.ext_buf;
811 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
812 }
813
814 m_adj(m_new, ETHER_ALIGN);
815 /* Set up the descriptor. */
816 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
817 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
818 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
819 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
820 r->bge_len = m_new->m_len;
821 r->bge_idx = i;
822
823 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
824 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
825 i * sizeof (struct bge_rx_bd),
826 sizeof (struct bge_rx_bd),
827 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
828
829 return(0);
830 }
831
832 /*
833 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
834 * that's 1MB or memory, which is a lot. For now, we fill only the first
835 * 256 ring entries and hope that our CPU is fast enough to keep up with
836 * the NIC.
837 */
838 int
839 bge_init_rx_ring_std(sc)
840 struct bge_softc *sc;
841 {
842 int i;
843
844 if (sc->bge_flags & BGE_RXRING_VALID)
845 return 0;
846
847 for (i = 0; i < BGE_SSLOTS; i++) {
848 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
849 return(ENOBUFS);
850 }
851
852 sc->bge_std = i - 1;
853 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
854
855 sc->bge_flags |= BGE_RXRING_VALID;
856
857 return(0);
858 }
859
860 void
861 bge_free_rx_ring_std(sc)
862 struct bge_softc *sc;
863 {
864 int i;
865
866 if (!(sc->bge_flags & BGE_RXRING_VALID))
867 return;
868
869 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
870 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
871 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
872 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
873 bus_dmamap_destroy(sc->bge_dmatag,
874 sc->bge_cdata.bge_rx_std_map[i]);
875 }
876 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
877 sizeof(struct bge_rx_bd));
878 }
879
880 sc->bge_flags &= ~BGE_RXRING_VALID;
881 }
882
883 int
884 bge_init_rx_ring_jumbo(sc)
885 struct bge_softc *sc;
886 {
887 int i;
888 struct bge_rcb *rcb;
889 struct bge_rcb_opaque *rcbo;
890
891 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
892 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
893 return(ENOBUFS);
894 };
895
896 sc->bge_jumbo = i - 1;
897
898 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
899 rcbo = (struct bge_rcb_opaque *)rcb;
900 rcb->bge_flags = 0;
901 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
902
903 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
904
905 return(0);
906 }
907
908 void
909 bge_free_rx_ring_jumbo(sc)
910 struct bge_softc *sc;
911 {
912 int i;
913
914 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
915 return;
916
917 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
918 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
919 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
920 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
921 }
922 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
923 sizeof(struct bge_rx_bd));
924 }
925
926 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
927 }
928
929 void
930 bge_free_tx_ring(sc)
931 struct bge_softc *sc;
932 {
933 int i, freed;
934 struct txdmamap_pool_entry *dma;
935
936 if (!(sc->bge_flags & BGE_TXRING_VALID))
937 return;
938
939 freed = 0;
940
941 for (i = 0; i < BGE_TX_RING_CNT; i++) {
942 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
943 freed++;
944 m_freem(sc->bge_cdata.bge_tx_chain[i]);
945 sc->bge_cdata.bge_tx_chain[i] = NULL;
946 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
947 link);
948 sc->txdma[i] = 0;
949 }
950 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
951 sizeof(struct bge_tx_bd));
952 }
953
954 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
955 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
956 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
957 free(dma, M_DEVBUF);
958 }
959
960 sc->bge_flags &= ~BGE_TXRING_VALID;
961 }
962
963 int
964 bge_init_tx_ring(sc)
965 struct bge_softc *sc;
966 {
967 int i;
968 bus_dmamap_t dmamap;
969 struct txdmamap_pool_entry *dma;
970
971 if (sc->bge_flags & BGE_TXRING_VALID)
972 return 0;
973
974 sc->bge_txcnt = 0;
975 sc->bge_tx_saved_considx = 0;
976 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
977 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
978 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979
980 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
981 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
982 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983
984 SLIST_INIT(&sc->txdma_list);
985 for (i = 0; i < BGE_RSLOTS; i++) {
986 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
987 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
988 &dmamap))
989 return(ENOBUFS);
990 if (dmamap == NULL)
991 panic("dmamap NULL in bge_init_tx_ring");
992 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
993 if (dma == NULL) {
994 printf("%s: can't alloc txdmamap_pool_entry\n",
995 sc->bge_dev.dv_xname);
996 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
997 return (ENOMEM);
998 }
999 dma->dmamap = dmamap;
1000 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1001 }
1002
1003 sc->bge_flags |= BGE_TXRING_VALID;
1004
1005 return(0);
1006 }
1007
1008 void
1009 bge_setmulti(sc)
1010 struct bge_softc *sc;
1011 {
1012 struct ethercom *ac = &sc->ethercom;
1013 struct ifnet *ifp = &ac->ec_if;
1014 struct ether_multi *enm;
1015 struct ether_multistep step;
1016 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1017 u_int32_t h;
1018 int i;
1019
1020 if (ifp->if_flags & IFF_PROMISC)
1021 goto allmulti;
1022
1023 /* Now program new ones. */
1024 ETHER_FIRST_MULTI(step, ac, enm);
1025 while (enm != NULL) {
1026 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1027 /*
1028 * We must listen to a range of multicast addresses.
1029 * For now, just accept all multicasts, rather than
1030 * trying to set only those filter bits needed to match
1031 * the range. (At this time, the only use of address
1032 * ranges is for IP multicast routing, for which the
1033 * range is big enough to require all bits set.)
1034 */
1035 goto allmulti;
1036 }
1037
1038 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1039
1040 /* Just want the 7 least-significant bits. */
1041 h &= 0x7f;
1042
1043 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1044 ETHER_NEXT_MULTI(step, enm);
1045 }
1046
1047 ifp->if_flags &= ~IFF_ALLMULTI;
1048 goto setit;
1049
1050 allmulti:
1051 ifp->if_flags |= IFF_ALLMULTI;
1052 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1053
1054 setit:
1055 for (i = 0; i < 4; i++)
1056 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1057 }
1058
1059 const int bge_swapbits[] = {
1060 0,
1061 BGE_MODECTL_BYTESWAP_DATA,
1062 BGE_MODECTL_WORDSWAP_DATA,
1063 BGE_MODECTL_BYTESWAP_NONFRAME,
1064 BGE_MODECTL_WORDSWAP_NONFRAME,
1065
1066 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1067 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1068 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1069
1070 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1071 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1072
1073 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1074
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1076 BGE_MODECTL_BYTESWAP_NONFRAME,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 BGE_MODECTL_WORDSWAP_NONFRAME,
1079 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 BGE_MODECTL_WORDSWAP_NONFRAME,
1083
1084 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1085 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1086 };
1087
1088 int bge_swapindex = 0;
1089
1090 /*
1091 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1092 * self-test results.
1093 */
1094 int
1095 bge_chipinit(sc)
1096 struct bge_softc *sc;
1097 {
1098 u_int32_t cachesize;
1099 int i;
1100 u_int32_t dma_rw_ctl;
1101 struct pci_attach_args *pa = &(sc->bge_pa);
1102
1103
1104 /* Set endianness before we access any non-PCI registers. */
1105 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1106 BGE_INIT);
1107
1108 /* Set power state to D0. */
1109 bge_setpowerstate(sc, 0);
1110
1111 /*
1112 * Check the 'ROM failed' bit on the RX CPU to see if
1113 * self-tests passed.
1114 */
1115 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1116 printf("%s: RX CPU self-diagnostics failed!\n",
1117 sc->bge_dev.dv_xname);
1118 return(ENODEV);
1119 }
1120
1121 /* Clear the MAC control register */
1122 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1123
1124 /*
1125 * Clear the MAC statistics block in the NIC's
1126 * internal memory.
1127 */
1128 for (i = BGE_STATS_BLOCK;
1129 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1130 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1131
1132 for (i = BGE_STATUS_BLOCK;
1133 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1134 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1135
1136 /* Set up the PCI DMA control register. */
1137 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1138 BGE_PCISTATE_PCI_BUSMODE) {
1139 /* Conventional PCI bus */
1140 DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1141 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1142 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1143 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1144 (0x0F));
1145 } else {
1146 DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1147 /* PCI-X bus */
1148 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1149 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1150 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1151 (0x0F);
1152 /*
1153 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1154 * for hardware bugs, which means we should also clear
1155 * the low-order MINDMA bits. In addition, the 5704
1156 * uses a different encoding of read/write watermarks.
1157 */
1158 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1159 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1160 /* should be 0x1f0000 */
1161 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1163 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1164 }
1165 else if ((sc->bge_asicrev >> 28) ==
1166 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1167 dma_rw_ctl &= 0xfffffff0;
1168 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1169 }
1170 }
1171
1172 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1173
1174 /*
1175 * Set up general mode register.
1176 */
1177 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1178 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1179 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1180 BGE_MODECTL_RX_NO_PHDR_CSUM);
1181
1182 /* Get cache line size. */
1183 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1184
1185 /*
1186 * Avoid violating PCI spec on certain chip revs.
1187 */
1188 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1189 PCIM_CMD_MWIEN) {
1190 switch(cachesize) {
1191 case 1:
1192 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1193 BGE_PCI_WRITE_BNDRY_16BYTES);
1194 break;
1195 case 2:
1196 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1197 BGE_PCI_WRITE_BNDRY_32BYTES);
1198 break;
1199 case 4:
1200 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 BGE_PCI_WRITE_BNDRY_64BYTES);
1202 break;
1203 case 8:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_128BYTES);
1206 break;
1207 case 16:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_256BYTES);
1210 break;
1211 case 32:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_512BYTES);
1214 break;
1215 case 64:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_1024BYTES);
1218 break;
1219 default:
1220 /* Disable PCI memory write and invalidate. */
1221 #if 0
1222 if (bootverbose)
1223 printf("%s: cache line size %d not "
1224 "supported; disabling PCI MWI\n",
1225 sc->bge_dev.dv_xname, cachesize);
1226 #endif
1227 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1228 PCIM_CMD_MWIEN);
1229 break;
1230 }
1231 }
1232
1233 /*
1234 * Disable memory write invalidate. Apparently it is not supported
1235 * properly by these devices.
1236 */
1237 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1238
1239
1240 #ifdef __brokenalpha__
1241 /*
1242 * Must insure that we do not cross an 8K (bytes) boundary
1243 * for DMA reads. Our highest limit is 1K bytes. This is a
1244 * restriction on some ALPHA platforms with early revision
1245 * 21174 PCI chipsets, such as the AlphaPC 164lx
1246 */
1247 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1248 #endif
1249
1250 /* Set the timer prescaler (always 66Mhz) */
1251 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1252
1253 return(0);
1254 }
1255
1256 int
1257 bge_blockinit(sc)
1258 struct bge_softc *sc;
1259 {
1260 struct bge_rcb *rcb;
1261 struct bge_rcb_opaque *rcbo;
1262 bus_size_t rcb_addr;
1263 int i;
1264 struct ifnet *ifp = &sc->ethercom.ec_if;
1265 bge_hostaddr taddr;
1266
1267 /*
1268 * Initialize the memory window pointer register so that
1269 * we can access the first 32K of internal NIC RAM. This will
1270 * allow us to set up the TX send ring RCBs and the RX return
1271 * ring RCBs, plus other things which live in NIC memory.
1272 */
1273
1274 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1275 BGE_PCI_MEMWIN_BASEADDR, 0);
1276
1277 /* Configure mbuf memory pool */
1278 if (sc->bge_extram) {
1279 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1280 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1281 } else {
1282 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1283 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1284 }
1285
1286 /* Configure DMA resource pool */
1287 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1288 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1289
1290 /* Configure mbuf pool watermarks */
1291 #ifdef ORIG_WPAUL_VALUES
1292 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1293 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1295 #else
1296 /* new broadcom docs strongly recommend these: */
1297 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1299 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1300 #endif
1301
1302 /* Configure DMA resource watermarks */
1303 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1304 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1305
1306 /* Enable buffer manager */
1307 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1308 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1309
1310 /* Poll for buffer manager start indication */
1311 for (i = 0; i < BGE_TIMEOUT; i++) {
1312 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1313 break;
1314 DELAY(10);
1315 }
1316
1317 if (i == BGE_TIMEOUT) {
1318 printf("%s: buffer manager failed to start\n",
1319 sc->bge_dev.dv_xname);
1320 return(ENXIO);
1321 }
1322
1323 /* Enable flow-through queues */
1324 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1325 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1326
1327 /* Wait until queue initialization is complete */
1328 for (i = 0; i < BGE_TIMEOUT; i++) {
1329 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1330 break;
1331 DELAY(10);
1332 }
1333
1334 if (i == BGE_TIMEOUT) {
1335 printf("%s: flow-through queue init failed\n",
1336 sc->bge_dev.dv_xname);
1337 return(ENXIO);
1338 }
1339
1340 /* Initialize the standard RX ring control block */
1341 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1342 bge_set_hostaddr(&rcb->bge_hostaddr,
1343 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1344 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1345 if (sc->bge_extram)
1346 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1347 else
1348 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1349 rcb->bge_flags = 0;
1350 rcbo = (struct bge_rcb_opaque *)rcb;
1351 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1352 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1353 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1354 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1355
1356 /*
1357 * Initialize the jumbo RX ring control block
1358 * We set the 'ring disabled' bit in the flags
1359 * field until we're actually ready to start
1360 * using this ring (i.e. once we set the MTU
1361 * high enough to require it).
1362 */
1363 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1364 bge_set_hostaddr(&rcb->bge_hostaddr,
1365 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1366 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1367 if (sc->bge_extram)
1368 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1369 else
1370 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1371 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1372
1373 rcbo = (struct bge_rcb_opaque *)rcb;
1374 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1375 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1376 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1377 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1378
1379 /* Set up dummy disabled mini ring RCB */
1380 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1381 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1382 rcbo = (struct bge_rcb_opaque *)rcb;
1383 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1384
1385 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1386 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1387 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388
1389 /*
1390 * Set the BD ring replentish thresholds. The recommended
1391 * values are 1/8th the number of descriptors allocated to
1392 * each ring.
1393 */
1394 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1395 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1396
1397 /*
1398 * Disable all unused send rings by setting the 'ring disabled'
1399 * bit in the flags field of all the TX send ring control blocks.
1400 * These are located in NIC memory.
1401 */
1402 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1403 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1404 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1405 BGE_RCB_FLAG_RING_DISABLED);
1406 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1407 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1408 rcb_addr += sizeof(struct bge_rcb);
1409 }
1410
1411 /* Configure TX RCB 0 (we use only the first ring) */
1412 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1413 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1414 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1415 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1416 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1417 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1418 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1419 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1420
1421 /* Disable all unused RX return rings */
1422 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1423 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1424 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1425 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1426 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1427 BGE_RCB_FLAG_RING_DISABLED);
1428 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1429 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1430 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1431 (i * (sizeof(u_int64_t))), 0);
1432 rcb_addr += sizeof(struct bge_rcb);
1433 }
1434
1435 /* Initialize RX ring indexes */
1436 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1437 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1438 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1439
1440 /*
1441 * Set up RX return ring 0
1442 * Note that the NIC address for RX return rings is 0x00000000.
1443 * The return rings live entirely within the host, so the
1444 * nicaddr field in the RCB isn't used.
1445 */
1446 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1447 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1448 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1449 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1450 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1451 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1452 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1453
1454 /* Set random backoff seed for TX */
1455 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1456 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1457 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1458 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1459 BGE_TX_BACKOFF_SEED_MASK);
1460
1461 /* Set inter-packet gap */
1462 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1463
1464 /*
1465 * Specify which ring to use for packets that don't match
1466 * any RX rules.
1467 */
1468 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1469
1470 /*
1471 * Configure number of RX lists. One interrupt distribution
1472 * list, sixteen active lists, one bad frames class.
1473 */
1474 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1475
1476 /* Inialize RX list placement stats mask. */
1477 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1478 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1479
1480 /* Disable host coalescing until we get it set up */
1481 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1482
1483 /* Poll to make sure it's shut down. */
1484 for (i = 0; i < BGE_TIMEOUT; i++) {
1485 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1486 break;
1487 DELAY(10);
1488 }
1489
1490 if (i == BGE_TIMEOUT) {
1491 printf("%s: host coalescing engine failed to idle\n",
1492 sc->bge_dev.dv_xname);
1493 return(ENXIO);
1494 }
1495
1496 /* Set up host coalescing defaults */
1497 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1498 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1499 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1500 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1501 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1502 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1503 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1504 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1505 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1506
1507 /* Set up address of statistics block */
1508 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1509 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1510 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1511 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1512
1513 /* Set up address of status block */
1514 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1515 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1516 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1517 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1518 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1519 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1520
1521 /* Turn on host coalescing state machine */
1522 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1523
1524 /* Turn on RX BD completion state machine and enable attentions */
1525 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1526 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1527
1528 /* Turn on RX list placement state machine */
1529 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1530
1531 /* Turn on RX list selector state machine. */
1532 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1533
1534 /* Turn on DMA, clear stats */
1535 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1536 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1537 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1538 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1539 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1540
1541 /* Set misc. local control, enable interrupts on attentions */
1542 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1543
1544 #ifdef notdef
1545 /* Assert GPIO pins for PHY reset */
1546 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1547 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1548 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1549 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1550 #endif
1551
1552 #if defined(not_quite_yet)
1553 /* Linux driver enables enable gpio pin #1 on 5700s */
1554 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1555 sc->bge_local_ctrl_reg |=
1556 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1557 }
1558 #endif
1559 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1560
1561 /* Turn on DMA completion state machine */
1562 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1563
1564 /* Turn on write DMA state machine */
1565 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1566 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1567
1568 /* Turn on read DMA state machine */
1569 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1570 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1571
1572 /* Turn on RX data completion state machine */
1573 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1574
1575 /* Turn on RX BD initiator state machine */
1576 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1577
1578 /* Turn on RX data and RX BD initiator state machine */
1579 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1580
1581 /* Turn on Mbuf cluster free state machine */
1582 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1583
1584 /* Turn on send BD completion state machine */
1585 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1586
1587 /* Turn on send data completion state machine */
1588 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1589
1590 /* Turn on send data initiator state machine */
1591 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1592
1593 /* Turn on send BD initiator state machine */
1594 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1595
1596 /* Turn on send BD selector state machine */
1597 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1598
1599 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1600 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1601 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1602
1603 /* init LED register */
1604 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1605
1606 /* ack/clear link change events */
1607 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1608 BGE_MACSTAT_CFG_CHANGED);
1609 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1610
1611 /* Enable PHY auto polling (for MII/GMII only) */
1612 if (sc->bge_tbi) {
1613 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1614 } else {
1615 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1616 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1617 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1618 BGE_EVTENB_MI_INTERRUPT);
1619 }
1620
1621 /* Enable link state change attentions. */
1622 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1623
1624 return(0);
1625 }
1626
1627 static const struct bge_revision {
1628 uint32_t br_asicrev;
1629 uint32_t br_quirks;
1630 const char *br_name;
1631 } bge_revisions[] = {
1632 { BGE_ASICREV_BCM5700_A0,
1633 BGE_QUIRK_LINK_STATE_BROKEN,
1634 "BCM5700 A0" },
1635
1636 { BGE_ASICREV_BCM5700_A1,
1637 BGE_QUIRK_LINK_STATE_BROKEN,
1638 "BCM5700 A1" },
1639
1640 { BGE_ASICREV_BCM5700_B0,
1641 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1642 "BCM5700 B0" },
1643
1644 { BGE_ASICREV_BCM5700_B1,
1645 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1646 "BCM5700 B1" },
1647
1648 { BGE_ASICREV_BCM5700_B2,
1649 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1650 "BCM5700 B2" },
1651
1652 /* This is treated like a BCM5700 Bx */
1653 { BGE_ASICREV_BCM5700_ALTIMA,
1654 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1655 "BCM5700 Altima" },
1656
1657 { BGE_ASICREV_BCM5700_C0,
1658 0,
1659 "BCM5700 C0" },
1660
1661 { BGE_ASICREV_BCM5701_A0,
1662 0,
1663 "BCM5701 A0" },
1664
1665 { BGE_ASICREV_BCM5701_B0,
1666 0,
1667 "BCM5701 B0" },
1668
1669 { BGE_ASICREV_BCM5701_B2,
1670 0,
1671 "BCM5701 B2" },
1672
1673 { BGE_ASICREV_BCM5701_B5,
1674 BGE_QUIRK_ONLY_PHY_1,
1675 "BCM5701 B5" },
1676
1677 { BGE_ASICREV_BCM5703_A0,
1678 0,
1679 "BCM5703 A0" },
1680
1681 { BGE_ASICREV_BCM5703_A1,
1682 0,
1683 "BCM5703 A1" },
1684
1685 { BGE_ASICREV_BCM5703_A2,
1686 BGE_QUIRK_ONLY_PHY_1,
1687 "BCM5703 A2" },
1688
1689 { BGE_ASICREV_BCM5704_A0,
1690 BGE_QUIRK_ONLY_PHY_1,
1691 "BCM5704 A0" },
1692
1693 { 0, 0, NULL }
1694 };
1695
1696 static const struct bge_revision *
1697 bge_lookup_rev(uint32_t asicrev)
1698 {
1699 const struct bge_revision *br;
1700
1701 for (br = bge_revisions; br->br_name != NULL; br++) {
1702 if (br->br_asicrev == asicrev)
1703 return (br);
1704 }
1705
1706 return (NULL);
1707 }
1708
1709 static const struct bge_product {
1710 pci_vendor_id_t bp_vendor;
1711 pci_product_id_t bp_product;
1712 const char *bp_name;
1713 } bge_products[] = {
1714 /*
1715 * The BCM5700 documentation seems to indicate that the hardware
1716 * still has the Alteon vendor ID burned into it, though it
1717 * should always be overridden by the value in the EEPROM. We'll
1718 * check for it anyway.
1719 */
1720 { PCI_VENDOR_ALTEON,
1721 PCI_PRODUCT_ALTEON_BCM5700,
1722 "Broadcom BCM5700 Gigabit Ethernet" },
1723 { PCI_VENDOR_ALTEON,
1724 PCI_PRODUCT_ALTEON_BCM5701,
1725 "Broadcom BCM5701 Gigabit Ethernet" },
1726
1727 { PCI_VENDOR_ALTIMA,
1728 PCI_PRODUCT_ALTIMA_AC1000,
1729 "Altima AC1000 Gigabit Ethernet" },
1730 { PCI_VENDOR_ALTIMA,
1731 PCI_PRODUCT_ALTIMA_AC1001,
1732 "Altima AC1001 Gigabit Ethernet" },
1733 { PCI_VENDOR_ALTIMA,
1734 PCI_PRODUCT_ALTIMA_AC9100,
1735 "Altima AC9100 Gigabit Ethernet" },
1736
1737 { PCI_VENDOR_BROADCOM,
1738 PCI_PRODUCT_BROADCOM_BCM5700,
1739 "Broadcom BCM5700 Gigabit Ethernet" },
1740 { PCI_VENDOR_BROADCOM,
1741 PCI_PRODUCT_BROADCOM_BCM5701,
1742 "Broadcom BCM5701 Gigabit Ethernet" },
1743 { PCI_VENDOR_BROADCOM,
1744 PCI_PRODUCT_BROADCOM_BCM5702,
1745 "Broadcom BCM5702 Gigabit Ethernet" },
1746 { PCI_VENDOR_BROADCOM,
1747 PCI_PRODUCT_BROADCOM_BCM5702X,
1748 "Broadcom BCM5702X Gigabit Ethernet" },
1749 { PCI_VENDOR_BROADCOM,
1750 PCI_PRODUCT_BROADCOM_BCM5703,
1751 "Broadcom BCM5703 Gigabit Ethernet" },
1752 { PCI_VENDOR_BROADCOM,
1753 PCI_PRODUCT_BROADCOM_BCM5703X,
1754 "Broadcom BCM5703X Gigabit Ethernet" },
1755 { PCI_VENDOR_BROADCOM,
1756 PCI_PRODUCT_BROADCOM_BCM5704C,
1757 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1758 { PCI_VENDOR_BROADCOM,
1759 PCI_PRODUCT_BROADCOM_BCM5704S,
1760 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1761
1762
1763 { PCI_VENDOR_SCHNEIDERKOCH,
1764 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1765 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1766
1767 { PCI_VENDOR_3COM,
1768 PCI_PRODUCT_3COM_3C996,
1769 "3Com 3c996 Gigabit Ethernet" },
1770
1771 { 0,
1772 0,
1773 NULL },
1774 };
1775
1776 static const struct bge_product *
1777 bge_lookup(const struct pci_attach_args *pa)
1778 {
1779 const struct bge_product *bp;
1780
1781 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1782 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1783 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1784 return (bp);
1785 }
1786
1787 return (NULL);
1788 }
1789
1790 int
1791 bge_setpowerstate(sc, powerlevel)
1792 struct bge_softc *sc;
1793 int powerlevel;
1794 {
1795 #ifdef NOTYET
1796 u_int32_t pm_ctl = 0;
1797
1798 /* XXX FIXME: make sure indirect accesses enabled? */
1799 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1800 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1801 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1802
1803 /* clear the PME_assert bit and power state bits, enable PME */
1804 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1805 pm_ctl &= ~PCIM_PSTAT_DMASK;
1806 pm_ctl |= (1 << 8);
1807
1808 if (powerlevel == 0) {
1809 pm_ctl |= PCIM_PSTAT_D0;
1810 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1811 pm_ctl, 2);
1812 DELAY(10000);
1813 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1814 DELAY(10000);
1815
1816 #ifdef NOTYET
1817 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1818 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1819 #endif
1820 DELAY(40); DELAY(40); DELAY(40);
1821 DELAY(10000); /* above not quite adequate on 5700 */
1822 return 0;
1823 }
1824
1825
1826 /*
1827 * Entering ACPI power states D1-D3 is achieved by wiggling
1828 * GMII gpio pins. Example code assumes all hardware vendors
1829 * followed Broadom's sample pcb layout. Until we verify that
1830 * for all supported OEM cards, states D1-D3 are unsupported.
1831 */
1832 printf("%s: power state %d unimplemented; check GPIO pins\n",
1833 sc->bge_dev.dv_xname, powerlevel);
1834 #endif
1835 return EOPNOTSUPP;
1836 }
1837
1838
1839 /*
1840 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1841 * against our list and return its name if we find a match. Note
1842 * that since the Broadcom controller contains VPD support, we
1843 * can get the device name string from the controller itself instead
1844 * of the compiled-in string. This is a little slow, but it guarantees
1845 * we'll always announce the right product name.
1846 */
1847 int
1848 bge_probe(parent, match, aux)
1849 struct device *parent;
1850 struct cfdata *match;
1851 void *aux;
1852 {
1853 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1854
1855 if (bge_lookup(pa) != NULL)
1856 return (1);
1857
1858 return (0);
1859 }
1860
1861 void
1862 bge_attach(parent, self, aux)
1863 struct device *parent, *self;
1864 void *aux;
1865 {
1866 struct bge_softc *sc = (struct bge_softc *)self;
1867 struct pci_attach_args *pa = aux;
1868 const struct bge_product *bp;
1869 const struct bge_revision *br;
1870 pci_chipset_tag_t pc = pa->pa_pc;
1871 pci_intr_handle_t ih;
1872 const char *intrstr = NULL;
1873 bus_dma_segment_t seg;
1874 int rseg;
1875 u_int32_t hwcfg = 0;
1876 u_int32_t mac_addr = 0;
1877 u_int32_t command;
1878 struct ifnet *ifp;
1879 caddr_t kva;
1880 u_char eaddr[ETHER_ADDR_LEN];
1881 pcireg_t memtype;
1882 bus_addr_t memaddr;
1883 bus_size_t memsize;
1884 u_int32_t pm_ctl;
1885
1886 bp = bge_lookup(pa);
1887 KASSERT(bp != NULL);
1888
1889 sc->bge_pa = *pa;
1890
1891 printf(": %s\n", bp->bp_name);
1892
1893 /*
1894 * Map control/status registers.
1895 */
1896 DPRINTFN(5, ("Map control/status regs\n"));
1897 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1898 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1899 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1900 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1901
1902 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1903 printf("%s: failed to enable memory mapping!\n",
1904 sc->bge_dev.dv_xname);
1905 return;
1906 }
1907
1908 DPRINTFN(5, ("pci_mem_find\n"));
1909 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1910 switch (memtype) {
1911 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1912 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1913 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1914 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1915 &memaddr, &memsize) == 0)
1916 break;
1917 default:
1918 printf("%s: can't find mem space\n",
1919 sc->bge_dev.dv_xname);
1920 return;
1921 }
1922
1923 DPRINTFN(5, ("pci_intr_map\n"));
1924 if (pci_intr_map(pa, &ih)) {
1925 printf("%s: couldn't map interrupt\n",
1926 sc->bge_dev.dv_xname);
1927 return;
1928 }
1929
1930 DPRINTFN(5, ("pci_intr_string\n"));
1931 intrstr = pci_intr_string(pc, ih);
1932
1933 DPRINTFN(5, ("pci_intr_establish\n"));
1934 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1935
1936 if (sc->bge_intrhand == NULL) {
1937 printf("%s: couldn't establish interrupt",
1938 sc->bge_dev.dv_xname);
1939 if (intrstr != NULL)
1940 printf(" at %s", intrstr);
1941 printf("\n");
1942 return;
1943 }
1944 printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1945
1946 /*
1947 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1948 * can clobber the chip's PCI config-space power control registers,
1949 * leaving the card in D3 powersave state.
1950 * We do not have memory-mapped registers in this state,
1951 * so force device into D0 state before starting initialization.
1952 */
1953 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1954 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1955 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1956 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1957 DELAY(1000); /* 27 usec is allegedly sufficent */
1958
1959 /* Try to reset the chip. */
1960 DPRINTFN(5, ("bge_reset\n"));
1961 bge_reset(sc);
1962
1963 if (bge_chipinit(sc)) {
1964 printf("%s: chip initialization failed\n",
1965 sc->bge_dev.dv_xname);
1966 bge_release_resources(sc);
1967 return;
1968 }
1969
1970 /*
1971 * Get station address from the EEPROM.
1972 */
1973 mac_addr = bge_readmem_ind(sc, 0x0c14);
1974 if ((mac_addr >> 16) == 0x484b) {
1975 eaddr[0] = (u_char)(mac_addr >> 8);
1976 eaddr[1] = (u_char)(mac_addr >> 0);
1977 mac_addr = bge_readmem_ind(sc, 0x0c18);
1978 eaddr[2] = (u_char)(mac_addr >> 24);
1979 eaddr[3] = (u_char)(mac_addr >> 16);
1980 eaddr[4] = (u_char)(mac_addr >> 8);
1981 eaddr[5] = (u_char)(mac_addr >> 0);
1982 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1983 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1984 printf("%s: failed to read station address\n",
1985 sc->bge_dev.dv_xname);
1986 bge_release_resources(sc);
1987 return;
1988 }
1989
1990 /*
1991 * Save ASIC rev. Look up any quirks associated with this
1992 * ASIC.
1993 */
1994 sc->bge_asicrev =
1995 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1996 BGE_PCIMISCCTL_ASICREV;
1997 br = bge_lookup_rev(sc->bge_asicrev);
1998
1999 printf("%s: ", sc->bge_dev.dv_xname);
2000 if (br == NULL) {
2001 printf("unknown ASIC 0x%08x", sc->bge_asicrev);
2002 sc->bge_quirks = 0;
2003 } else {
2004 printf("ASIC %s", br->br_name);
2005 sc->bge_quirks = br->br_quirks;
2006 }
2007 printf(", Ethernet address %s\n", ether_sprintf(eaddr));
2008
2009 /* Allocate the general information block and ring buffers. */
2010 sc->bge_dmatag = pa->pa_dmat;
2011 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2012 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2013 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2014 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
2015 return;
2016 }
2017 DPRINTFN(5, ("bus_dmamem_map\n"));
2018 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2019 sizeof(struct bge_ring_data), &kva,
2020 BUS_DMA_NOWAIT)) {
2021 printf("%s: can't map dma buffers (%d bytes)\n",
2022 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2023 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2024 return;
2025 }
2026 DPRINTFN(5, ("bus_dmamem_create\n"));
2027 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2028 sizeof(struct bge_ring_data), 0,
2029 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2030 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
2031 bus_dmamem_unmap(sc->bge_dmatag, kva,
2032 sizeof(struct bge_ring_data));
2033 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2034 return;
2035 }
2036 DPRINTFN(5, ("bus_dmamem_load\n"));
2037 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2038 sizeof(struct bge_ring_data), NULL,
2039 BUS_DMA_NOWAIT)) {
2040 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2041 bus_dmamem_unmap(sc->bge_dmatag, kva,
2042 sizeof(struct bge_ring_data));
2043 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2044 return;
2045 }
2046
2047 DPRINTFN(5, ("bzero\n"));
2048 sc->bge_rdata = (struct bge_ring_data *)kva;
2049
2050 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2051
2052 /* Try to allocate memory for jumbo buffers. */
2053 if (bge_alloc_jumbo_mem(sc)) {
2054 printf("%s: jumbo buffer allocation failed\n",
2055 sc->bge_dev.dv_xname);
2056 } else
2057 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2058
2059 /* Set default tuneable values. */
2060 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2061 sc->bge_rx_coal_ticks = 150;
2062 sc->bge_rx_max_coal_bds = 64;
2063 #ifdef ORIG_WPAUL_VALUES
2064 sc->bge_tx_coal_ticks = 150;
2065 sc->bge_tx_max_coal_bds = 128;
2066 #else
2067 sc->bge_tx_coal_ticks = 300;
2068 sc->bge_tx_max_coal_bds = 400;
2069 #endif
2070
2071 /* Set up ifnet structure */
2072 ifp = &sc->ethercom.ec_if;
2073 ifp->if_softc = sc;
2074 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2075 ifp->if_ioctl = bge_ioctl;
2076 ifp->if_start = bge_start;
2077 ifp->if_init = bge_init;
2078 ifp->if_watchdog = bge_watchdog;
2079 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2080 IFQ_SET_READY(&ifp->if_snd);
2081 DPRINTFN(5, ("bcopy\n"));
2082 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2083
2084 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2085 sc->ethercom.ec_if.if_capabilities |=
2086 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2087 sc->ethercom.ec_capabilities |=
2088 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2089
2090 /*
2091 * Do MII setup.
2092 */
2093 DPRINTFN(5, ("mii setup\n"));
2094 sc->bge_mii.mii_ifp = ifp;
2095 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2096 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2097 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2098
2099 /*
2100 * Figure out what sort of media we have by checking the
2101 * hardware config word in the EEPROM. Note: on some BCM5700
2102 * cards, this value appears to be unset. If that's the
2103 * case, we have to rely on identifying the NIC by its PCI
2104 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2105 */
2106 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2107 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2108 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2109 sc->bge_tbi = 1;
2110
2111 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2112 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2113 SK_SUBSYSID_9D41)
2114 sc->bge_tbi = 1;
2115
2116 if (sc->bge_tbi) {
2117 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2118 bge_ifmedia_sts);
2119 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2120 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2121 0, NULL);
2122 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2123 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2124 } else {
2125 /*
2126 * Do transceiver setup.
2127 */
2128 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2129 bge_ifmedia_sts);
2130 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2131 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2132
2133 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2134 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2135 ifmedia_add(&sc->bge_mii.mii_media,
2136 IFM_ETHER|IFM_MANUAL, 0, NULL);
2137 ifmedia_set(&sc->bge_mii.mii_media,
2138 IFM_ETHER|IFM_MANUAL);
2139 } else
2140 ifmedia_set(&sc->bge_mii.mii_media,
2141 IFM_ETHER|IFM_AUTO);
2142 }
2143
2144 /*
2145 * Call MI attach routine.
2146 */
2147 DPRINTFN(5, ("if_attach\n"));
2148 if_attach(ifp);
2149 DPRINTFN(5, ("ether_ifattach\n"));
2150 ether_ifattach(ifp, eaddr);
2151 DPRINTFN(5, ("callout_init\n"));
2152 callout_init(&sc->bge_timeout);
2153 }
2154
2155 void
2156 bge_release_resources(sc)
2157 struct bge_softc *sc;
2158 {
2159 if (sc->bge_vpd_prodname != NULL)
2160 free(sc->bge_vpd_prodname, M_DEVBUF);
2161
2162 if (sc->bge_vpd_readonly != NULL)
2163 free(sc->bge_vpd_readonly, M_DEVBUF);
2164 }
2165
2166 void
2167 bge_reset(sc)
2168 struct bge_softc *sc;
2169 {
2170 struct pci_attach_args *pa = &sc->bge_pa;
2171 u_int32_t cachesize, command, pcistate;
2172 int i, val = 0;
2173
2174 /* Save some important PCI state. */
2175 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2176 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2177 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2178
2179 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2180 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2181 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2182
2183 /* Issue global reset */
2184 bge_writereg_ind(sc, BGE_MISC_CFG,
2185 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2186
2187 DELAY(1000);
2188
2189 /* Reset some of the PCI state that got zapped by reset */
2190 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2191 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2192 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2193 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2194 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2195 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2196
2197 /* Enable memory arbiter. */
2198 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2199
2200 /*
2201 * Prevent PXE restart: write a magic number to the
2202 * general communications memory at 0xB50.
2203 */
2204 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2205
2206 /*
2207 * Poll the value location we just wrote until
2208 * we see the 1's complement of the magic number.
2209 * This indicates that the firmware initialization
2210 * is complete.
2211 */
2212 for (i = 0; i < 750; i++) {
2213 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2214 if (val == ~BGE_MAGIC_NUMBER)
2215 break;
2216 DELAY(1000);
2217 }
2218
2219 if (i == 750) {
2220 printf("%s: firmware handshake timed out, val = %x\n",
2221 sc->bge_dev.dv_xname, val);
2222 return;
2223 }
2224
2225 /*
2226 * XXX Wait for the value of the PCISTATE register to
2227 * return to its original pre-reset state. This is a
2228 * fairly good indicator of reset completion. If we don't
2229 * wait for the reset to fully complete, trying to read
2230 * from the device's non-PCI registers may yield garbage
2231 * results.
2232 */
2233 for (i = 0; i < BGE_TIMEOUT; i++) {
2234 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2235 pcistate)
2236 break;
2237 DELAY(10);
2238 }
2239
2240 /* Enable memory arbiter. */
2241 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2242
2243 /* Fix up byte swapping */
2244 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2245
2246 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2247
2248 DELAY(10000);
2249 }
2250
2251 /*
2252 * Frame reception handling. This is called if there's a frame
2253 * on the receive return list.
2254 *
2255 * Note: we have to be able to handle two possibilities here:
2256 * 1) the frame is from the jumbo recieve ring
2257 * 2) the frame is from the standard receive ring
2258 */
2259
2260 void
2261 bge_rxeof(sc)
2262 struct bge_softc *sc;
2263 {
2264 struct ifnet *ifp;
2265 int stdcnt = 0, jumbocnt = 0;
2266 int have_tag = 0;
2267 u_int16_t vlan_tag = 0;
2268 bus_dmamap_t dmamap;
2269 bus_addr_t offset, toff;
2270 bus_size_t tlen;
2271 int tosync;
2272
2273 ifp = &sc->ethercom.ec_if;
2274
2275 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2276 offsetof(struct bge_ring_data, bge_status_block),
2277 sizeof (struct bge_status_block),
2278 BUS_DMASYNC_POSTREAD);
2279
2280 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2281 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2282 sc->bge_rx_saved_considx;
2283
2284 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2285
2286 if (tosync < 0) {
2287 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2288 sizeof (struct bge_rx_bd);
2289 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2290 toff, tlen, BUS_DMASYNC_POSTREAD);
2291 tosync = -tosync;
2292 }
2293
2294 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2295 offset, tosync * sizeof (struct bge_rx_bd),
2296 BUS_DMASYNC_POSTREAD);
2297
2298 while(sc->bge_rx_saved_considx !=
2299 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2300 struct bge_rx_bd *cur_rx;
2301 u_int32_t rxidx;
2302 struct mbuf *m = NULL;
2303
2304 cur_rx = &sc->bge_rdata->
2305 bge_rx_return_ring[sc->bge_rx_saved_considx];
2306
2307 rxidx = cur_rx->bge_idx;
2308 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2309
2310 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2311 have_tag = 1;
2312 vlan_tag = cur_rx->bge_vlan_tag;
2313 }
2314
2315 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2316 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2317 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2318 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2319 jumbocnt++;
2320 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2321 ifp->if_ierrors++;
2322 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2323 continue;
2324 }
2325 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2326 NULL)== ENOBUFS) {
2327 ifp->if_ierrors++;
2328 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2329 continue;
2330 }
2331 } else {
2332 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2333 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2334 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2335 stdcnt++;
2336 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2337 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2338 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2339 ifp->if_ierrors++;
2340 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2341 continue;
2342 }
2343 if (bge_newbuf_std(sc, sc->bge_std,
2344 NULL, dmamap) == ENOBUFS) {
2345 ifp->if_ierrors++;
2346 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2347 continue;
2348 }
2349 }
2350
2351 ifp->if_ipackets++;
2352 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2353 m->m_pkthdr.rcvif = ifp;
2354
2355 #if NBPFILTER > 0
2356 /*
2357 * Handle BPF listeners. Let the BPF user see the packet.
2358 */
2359 if (ifp->if_bpf)
2360 bpf_mtap(ifp->if_bpf, m);
2361 #endif
2362
2363 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2364 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2365 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2366 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2367 #if 0 /* XXX appears to be broken */
2368 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2369 m->m_pkthdr.csum_data =
2370 cur_rx->bge_tcp_udp_csum;
2371 m->m_pkthdr.csum_flags |=
2372 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2373 }
2374 #endif
2375 }
2376
2377 /*
2378 * If we received a packet with a vlan tag, pass it
2379 * to vlan_input() instead of ether_input().
2380 */
2381 if (have_tag) {
2382 struct mbuf *n;
2383
2384 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2385 if (n != NULL) {
2386 *mtod(n, int *) = vlan_tag;
2387 n->m_len = sizeof(int);
2388 have_tag = vlan_tag = 0;
2389 } else {
2390 printf("%s: no mbuf for tag\n", ifp->if_xname);
2391 m_freem(m);
2392 have_tag = vlan_tag = 0;
2393 continue;
2394 }
2395 }
2396 (*ifp->if_input)(ifp, m);
2397 }
2398
2399 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2400 if (stdcnt)
2401 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2402 if (jumbocnt)
2403 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2404 }
2405
2406 void
2407 bge_txeof(sc)
2408 struct bge_softc *sc;
2409 {
2410 struct bge_tx_bd *cur_tx = NULL;
2411 struct ifnet *ifp;
2412 struct txdmamap_pool_entry *dma;
2413 bus_addr_t offset, toff;
2414 bus_size_t tlen;
2415 int tosync;
2416 struct mbuf *m;
2417
2418 ifp = &sc->ethercom.ec_if;
2419
2420 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2421 offsetof(struct bge_ring_data, bge_status_block),
2422 sizeof (struct bge_status_block),
2423 BUS_DMASYNC_POSTREAD);
2424
2425 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2426 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2427 sc->bge_tx_saved_considx;
2428
2429 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2430
2431 if (tosync < 0) {
2432 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2433 sizeof (struct bge_tx_bd);
2434 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2435 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2436 tosync = -tosync;
2437 }
2438
2439 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2440 offset, tosync * sizeof (struct bge_tx_bd),
2441 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2442
2443 /*
2444 * Go through our tx ring and free mbufs for those
2445 * frames that have been sent.
2446 */
2447 while (sc->bge_tx_saved_considx !=
2448 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2449 u_int32_t idx = 0;
2450
2451 idx = sc->bge_tx_saved_considx;
2452 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2453 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2454 ifp->if_opackets++;
2455 m = sc->bge_cdata.bge_tx_chain[idx];
2456 if (m != NULL) {
2457 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2458 dma = sc->txdma[idx];
2459 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2460 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2461 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2462 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2463 sc->txdma[idx] = NULL;
2464
2465 m_freem(m);
2466 }
2467 sc->bge_txcnt--;
2468 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2469 ifp->if_timer = 0;
2470 }
2471
2472 if (cur_tx != NULL)
2473 ifp->if_flags &= ~IFF_OACTIVE;
2474 }
2475
2476 int
2477 bge_intr(xsc)
2478 void *xsc;
2479 {
2480 struct bge_softc *sc;
2481 struct ifnet *ifp;
2482
2483 sc = xsc;
2484 ifp = &sc->ethercom.ec_if;
2485
2486 #ifdef notdef
2487 /* Avoid this for now -- checking this register is expensive. */
2488 /* Make sure this is really our interrupt. */
2489 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2490 return (0);
2491 #endif
2492 /* Ack interrupt and stop others from occuring. */
2493 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2494
2495 /*
2496 * Process link state changes.
2497 * Grrr. The link status word in the status block does
2498 * not work correctly on the BCM5700 rev AX and BX chips,
2499 * according to all avaibable information. Hence, we have
2500 * to enable MII interrupts in order to properly obtain
2501 * async link changes. Unfortunately, this also means that
2502 * we have to read the MAC status register to detect link
2503 * changes, thereby adding an additional register access to
2504 * the interrupt handler.
2505 */
2506
2507 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2508 u_int32_t status;
2509
2510 status = CSR_READ_4(sc, BGE_MAC_STS);
2511 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2512 sc->bge_link = 0;
2513 callout_stop(&sc->bge_timeout);
2514 bge_tick(sc);
2515 /* Clear the interrupt */
2516 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2517 BGE_EVTENB_MI_INTERRUPT);
2518 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2519 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2520 BRGPHY_INTRS);
2521 }
2522 } else {
2523 if (sc->bge_rdata->bge_status_block.bge_status &
2524 BGE_STATFLAG_LINKSTATE_CHANGED) {
2525 sc->bge_link = 0;
2526 callout_stop(&sc->bge_timeout);
2527 bge_tick(sc);
2528 /* Clear the interrupt */
2529 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2530 BGE_MACSTAT_CFG_CHANGED);
2531 }
2532 }
2533
2534 if (ifp->if_flags & IFF_RUNNING) {
2535 /* Check RX return ring producer/consumer */
2536 bge_rxeof(sc);
2537
2538 /* Check TX ring producer/consumer */
2539 bge_txeof(sc);
2540 }
2541
2542 bge_handle_events(sc);
2543
2544 /* Re-enable interrupts. */
2545 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2546
2547 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2548 bge_start(ifp);
2549
2550 return (1);
2551 }
2552
2553 void
2554 bge_tick(xsc)
2555 void *xsc;
2556 {
2557 struct bge_softc *sc = xsc;
2558 struct mii_data *mii = &sc->bge_mii;
2559 struct ifmedia *ifm = NULL;
2560 struct ifnet *ifp = &sc->ethercom.ec_if;
2561 int s;
2562
2563 s = splnet();
2564
2565 bge_stats_update(sc);
2566 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2567 if (sc->bge_link) {
2568 splx(s);
2569 return;
2570 }
2571
2572 if (sc->bge_tbi) {
2573 ifm = &sc->bge_ifmedia;
2574 if (CSR_READ_4(sc, BGE_MAC_STS) &
2575 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2576 sc->bge_link++;
2577 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2578 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2579 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2580 bge_start(ifp);
2581 }
2582 splx(s);
2583 return;
2584 }
2585
2586 mii_tick(mii);
2587
2588 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2589 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2590 sc->bge_link++;
2591 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2592 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2593 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2594 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2595 bge_start(ifp);
2596 }
2597
2598 splx(s);
2599 }
2600
2601 void
2602 bge_stats_update(sc)
2603 struct bge_softc *sc;
2604 {
2605 struct ifnet *ifp = &sc->ethercom.ec_if;
2606 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2607
2608 #define READ_STAT(sc, stats, stat) \
2609 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2610
2611 ifp->if_collisions +=
2612 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2613 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2614 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2615 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2616 ifp->if_collisions;
2617
2618 #undef READ_STAT
2619
2620 #ifdef notdef
2621 ifp->if_collisions +=
2622 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2623 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2624 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2625 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2626 ifp->if_collisions;
2627 #endif
2628 }
2629
2630 /*
2631 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2632 * pointers to descriptors.
2633 */
2634 int
2635 bge_encap(sc, m_head, txidx)
2636 struct bge_softc *sc;
2637 struct mbuf *m_head;
2638 u_int32_t *txidx;
2639 {
2640 struct bge_tx_bd *f = NULL;
2641 u_int32_t frag, cur, cnt = 0;
2642 u_int16_t csum_flags = 0;
2643 struct txdmamap_pool_entry *dma;
2644 bus_dmamap_t dmamap;
2645 int i = 0;
2646 struct mbuf *n;
2647 struct mbuf *prev, *m;
2648 int totlen, prevlen;
2649
2650 cur = frag = *txidx;
2651
2652 if (m_head->m_pkthdr.csum_flags) {
2653 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2654 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2655 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2656 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2657 }
2658
2659 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2660 goto doit;
2661 /*
2662 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2663 * less than eight bytes. If we encounter a teeny mbuf
2664 * at the end of a chain, we can pad. Otherwise, copy.
2665 */
2666 prev = NULL;
2667 totlen = 0;
2668 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2669 int mlen = m->m_len;
2670
2671 totlen += mlen;
2672 if (mlen == 0) {
2673 /* print a warning? */
2674 continue;
2675 }
2676 if (mlen >= 8)
2677 continue;
2678
2679 /* If we get here, mbuf data is too small for DMA engine. */
2680 if (m->m_next != 0) {
2681 /* Internal frag. If fits in prev, copy it there. */
2682 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2683 !M_READONLY(prev)) {
2684 bcopy(m->m_data,
2685 prev->m_data+prev->m_len,
2686 mlen);
2687 prev->m_len += mlen;
2688 m->m_len = 0;
2689 MFREE(m, prev->m_next); /* XXX stitch chain */
2690 m = prev;
2691 continue;
2692 } else {
2693 struct mbuf *n;
2694 /* slow copy */
2695 slowcopy:
2696 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2697 m_freem(m_head);
2698 if (n == 0)
2699 return 0;
2700 m_head = n;
2701 goto doit;
2702 }
2703 } else if ((totlen -mlen +8) >= 1500) {
2704 goto slowcopy;
2705 }
2706 prevlen = m->m_len;
2707 }
2708
2709 doit:
2710 dma = SLIST_FIRST(&sc->txdma_list);
2711 if (dma == NULL)
2712 return ENOBUFS;
2713 dmamap = dma->dmamap;
2714
2715 /*
2716 * Start packing the mbufs in this chain into
2717 * the fragment pointers. Stop when we run out
2718 * of fragments or hit the end of the mbuf chain.
2719 */
2720 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2721 BUS_DMA_NOWAIT))
2722 return(ENOBUFS);
2723
2724 n = sc->ethercom.ec_nvlans ?
2725 m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2726
2727 for (i = 0; i < dmamap->dm_nsegs; i++) {
2728 f = &sc->bge_rdata->bge_tx_ring[frag];
2729 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2730 break;
2731 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2732 f->bge_len = dmamap->dm_segs[i].ds_len;
2733 f->bge_flags = csum_flags;
2734
2735 if (n != NULL) {
2736 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2737 f->bge_vlan_tag = *mtod(n, int *);
2738 } else {
2739 f->bge_vlan_tag = 0;
2740 }
2741 /*
2742 * Sanity check: avoid coming within 16 descriptors
2743 * of the end of the ring.
2744 */
2745 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2746 return(ENOBUFS);
2747 cur = frag;
2748 BGE_INC(frag, BGE_TX_RING_CNT);
2749 cnt++;
2750 }
2751
2752 if (i < dmamap->dm_nsegs)
2753 return ENOBUFS;
2754
2755 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2756 BUS_DMASYNC_PREWRITE);
2757
2758 if (frag == sc->bge_tx_saved_considx)
2759 return(ENOBUFS);
2760
2761 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2762 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2763 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2764 sc->txdma[cur] = dma;
2765 sc->bge_txcnt += cnt;
2766
2767 *txidx = frag;
2768
2769 return(0);
2770 }
2771
2772 /*
2773 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2774 * to the mbuf data regions directly in the transmit descriptors.
2775 */
2776 void
2777 bge_start(ifp)
2778 struct ifnet *ifp;
2779 {
2780 struct bge_softc *sc;
2781 struct mbuf *m_head = NULL;
2782 u_int32_t prodidx = 0;
2783 int pkts = 0;
2784
2785 sc = ifp->if_softc;
2786
2787 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2788 return;
2789
2790 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2791
2792 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2793 IFQ_POLL(&ifp->if_snd, m_head);
2794 if (m_head == NULL)
2795 break;
2796
2797 #if 0
2798 /*
2799 * XXX
2800 * safety overkill. If this is a fragmented packet chain
2801 * with delayed TCP/UDP checksums, then only encapsulate
2802 * it if we have enough descriptors to handle the entire
2803 * chain at once.
2804 * (paranoia -- may not actually be needed)
2805 */
2806 if (m_head->m_flags & M_FIRSTFRAG &&
2807 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2808 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2809 m_head->m_pkthdr.csum_data + 16) {
2810 ifp->if_flags |= IFF_OACTIVE;
2811 break;
2812 }
2813 }
2814 #endif
2815
2816 /*
2817 * Pack the data into the transmit ring. If we
2818 * don't have room, set the OACTIVE flag and wait
2819 * for the NIC to drain the ring.
2820 */
2821 if (bge_encap(sc, m_head, &prodidx)) {
2822 ifp->if_flags |= IFF_OACTIVE;
2823 break;
2824 }
2825
2826 /* now we are committed to transmit the packet */
2827 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2828 pkts++;
2829
2830 #if NBPFILTER > 0
2831 /*
2832 * If there's a BPF listener, bounce a copy of this frame
2833 * to him.
2834 */
2835 if (ifp->if_bpf)
2836 bpf_mtap(ifp->if_bpf, m_head);
2837 #endif
2838 }
2839 if (pkts == 0)
2840 return;
2841
2842 /* Transmit */
2843 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2844 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2845 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2846
2847 /*
2848 * Set a timeout in case the chip goes out to lunch.
2849 */
2850 ifp->if_timer = 5;
2851 }
2852
2853 int
2854 bge_init(ifp)
2855 struct ifnet *ifp;
2856 {
2857 struct bge_softc *sc = ifp->if_softc;
2858 u_int16_t *m;
2859 int s, error;
2860
2861 s = splnet();
2862
2863 ifp = &sc->ethercom.ec_if;
2864
2865 /* Cancel pending I/O and flush buffers. */
2866 bge_stop(sc);
2867 bge_reset(sc);
2868 bge_chipinit(sc);
2869
2870 /*
2871 * Init the various state machines, ring
2872 * control blocks and firmware.
2873 */
2874 error = bge_blockinit(sc);
2875 if (error != 0) {
2876 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2877 error);
2878 splx(s);
2879 return error;
2880 }
2881
2882 ifp = &sc->ethercom.ec_if;
2883
2884 /* Specify MTU. */
2885 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2886 ETHER_HDR_LEN + ETHER_CRC_LEN);
2887
2888 /* Load our MAC address. */
2889 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2890 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2891 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2892
2893 /* Enable or disable promiscuous mode as needed. */
2894 if (ifp->if_flags & IFF_PROMISC) {
2895 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2896 } else {
2897 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2898 }
2899
2900 /* Program multicast filter. */
2901 bge_setmulti(sc);
2902
2903 /* Init RX ring. */
2904 bge_init_rx_ring_std(sc);
2905
2906 /* Init jumbo RX ring. */
2907 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2908 bge_init_rx_ring_jumbo(sc);
2909
2910 /* Init our RX return ring index */
2911 sc->bge_rx_saved_considx = 0;
2912
2913 /* Init TX ring. */
2914 bge_init_tx_ring(sc);
2915
2916 /* Turn on transmitter */
2917 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2918
2919 /* Turn on receiver */
2920 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2921
2922 /* Tell firmware we're alive. */
2923 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2924
2925 /* Enable host interrupts. */
2926 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2927 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2928 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2929
2930 bge_ifmedia_upd(ifp);
2931
2932 ifp->if_flags |= IFF_RUNNING;
2933 ifp->if_flags &= ~IFF_OACTIVE;
2934
2935 splx(s);
2936
2937 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2938
2939 return 0;
2940 }
2941
2942 /*
2943 * Set media options.
2944 */
2945 int
2946 bge_ifmedia_upd(ifp)
2947 struct ifnet *ifp;
2948 {
2949 struct bge_softc *sc = ifp->if_softc;
2950 struct mii_data *mii = &sc->bge_mii;
2951 struct ifmedia *ifm = &sc->bge_ifmedia;
2952
2953 /* If this is a 1000baseX NIC, enable the TBI port. */
2954 if (sc->bge_tbi) {
2955 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2956 return(EINVAL);
2957 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2958 case IFM_AUTO:
2959 break;
2960 case IFM_1000_SX:
2961 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2962 BGE_CLRBIT(sc, BGE_MAC_MODE,
2963 BGE_MACMODE_HALF_DUPLEX);
2964 } else {
2965 BGE_SETBIT(sc, BGE_MAC_MODE,
2966 BGE_MACMODE_HALF_DUPLEX);
2967 }
2968 break;
2969 default:
2970 return(EINVAL);
2971 }
2972 return(0);
2973 }
2974
2975 sc->bge_link = 0;
2976 mii_mediachg(mii);
2977
2978 return(0);
2979 }
2980
2981 /*
2982 * Report current media status.
2983 */
2984 void
2985 bge_ifmedia_sts(ifp, ifmr)
2986 struct ifnet *ifp;
2987 struct ifmediareq *ifmr;
2988 {
2989 struct bge_softc *sc = ifp->if_softc;
2990 struct mii_data *mii = &sc->bge_mii;
2991
2992 if (sc->bge_tbi) {
2993 ifmr->ifm_status = IFM_AVALID;
2994 ifmr->ifm_active = IFM_ETHER;
2995 if (CSR_READ_4(sc, BGE_MAC_STS) &
2996 BGE_MACSTAT_TBI_PCS_SYNCHED)
2997 ifmr->ifm_status |= IFM_ACTIVE;
2998 ifmr->ifm_active |= IFM_1000_SX;
2999 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3000 ifmr->ifm_active |= IFM_HDX;
3001 else
3002 ifmr->ifm_active |= IFM_FDX;
3003 return;
3004 }
3005
3006 mii_pollstat(mii);
3007 ifmr->ifm_active = mii->mii_media_active;
3008 ifmr->ifm_status = mii->mii_media_status;
3009 }
3010
3011 int
3012 bge_ioctl(ifp, command, data)
3013 struct ifnet *ifp;
3014 u_long command;
3015 caddr_t data;
3016 {
3017 struct bge_softc *sc = ifp->if_softc;
3018 struct ifreq *ifr = (struct ifreq *) data;
3019 int s, error = 0;
3020 struct mii_data *mii;
3021
3022 s = splnet();
3023
3024 switch(command) {
3025 case SIOCSIFFLAGS:
3026 if (ifp->if_flags & IFF_UP) {
3027 /*
3028 * If only the state of the PROMISC flag changed,
3029 * then just use the 'set promisc mode' command
3030 * instead of reinitializing the entire NIC. Doing
3031 * a full re-init means reloading the firmware and
3032 * waiting for it to start up, which may take a
3033 * second or two.
3034 */
3035 if (ifp->if_flags & IFF_RUNNING &&
3036 ifp->if_flags & IFF_PROMISC &&
3037 !(sc->bge_if_flags & IFF_PROMISC)) {
3038 BGE_SETBIT(sc, BGE_RX_MODE,
3039 BGE_RXMODE_RX_PROMISC);
3040 } else if (ifp->if_flags & IFF_RUNNING &&
3041 !(ifp->if_flags & IFF_PROMISC) &&
3042 sc->bge_if_flags & IFF_PROMISC) {
3043 BGE_CLRBIT(sc, BGE_RX_MODE,
3044 BGE_RXMODE_RX_PROMISC);
3045 } else
3046 bge_init(ifp);
3047 } else {
3048 if (ifp->if_flags & IFF_RUNNING) {
3049 bge_stop(sc);
3050 }
3051 }
3052 sc->bge_if_flags = ifp->if_flags;
3053 error = 0;
3054 break;
3055 case SIOCSIFMEDIA:
3056 case SIOCGIFMEDIA:
3057 if (sc->bge_tbi) {
3058 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3059 command);
3060 } else {
3061 mii = &sc->bge_mii;
3062 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3063 command);
3064 }
3065 error = 0;
3066 break;
3067 default:
3068 error = ether_ioctl(ifp, command, data);
3069 if (error == ENETRESET) {
3070 bge_setmulti(sc);
3071 error = 0;
3072 }
3073 break;
3074 }
3075
3076 splx(s);
3077
3078 return(error);
3079 }
3080
3081 void
3082 bge_watchdog(ifp)
3083 struct ifnet *ifp;
3084 {
3085 struct bge_softc *sc;
3086
3087 sc = ifp->if_softc;
3088
3089 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3090
3091 ifp->if_flags &= ~IFF_RUNNING;
3092 bge_init(ifp);
3093
3094 ifp->if_oerrors++;
3095 }
3096
3097 static void
3098 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3099 {
3100 int i;
3101
3102 BGE_CLRBIT(sc, reg, bit);
3103
3104 for (i = 0; i < BGE_TIMEOUT; i++) {
3105 if ((CSR_READ_4(sc, reg) & bit) == 0)
3106 return;
3107 delay(100);
3108 }
3109
3110 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3111 sc->bge_dev.dv_xname, (u_long) reg, bit);
3112 }
3113
3114 /*
3115 * Stop the adapter and free any mbufs allocated to the
3116 * RX and TX lists.
3117 */
3118 void
3119 bge_stop(sc)
3120 struct bge_softc *sc;
3121 {
3122 struct ifnet *ifp = &sc->ethercom.ec_if;
3123
3124 callout_stop(&sc->bge_timeout);
3125
3126 /*
3127 * Disable all of the receiver blocks
3128 */
3129 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3130 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3131 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3132 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3133 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3134 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3135 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3136
3137 /*
3138 * Disable all of the transmit blocks
3139 */
3140 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3141 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3142 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3143 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3144 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3145 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3146 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3147
3148 /*
3149 * Shut down all of the memory managers and related
3150 * state machines.
3151 */
3152 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3153 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3154 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3155
3156 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3157 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3158
3159 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3160 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3161
3162 /* Disable host interrupts. */
3163 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3164 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3165
3166 /*
3167 * Tell firmware we're shutting down.
3168 */
3169 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3170
3171 /* Free the RX lists. */
3172 bge_free_rx_ring_std(sc);
3173
3174 /* Free jumbo RX list. */
3175 bge_free_rx_ring_jumbo(sc);
3176
3177 /* Free TX buffers. */
3178 bge_free_tx_ring(sc);
3179
3180 /*
3181 * Isolate/power down the PHY.
3182 */
3183 if (!sc->bge_tbi)
3184 mii_down(&sc->bge_mii);
3185
3186 sc->bge_link = 0;
3187
3188 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3189
3190 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3191 }
3192
3193 /*
3194 * Stop all chip I/O so that the kernel's probe routines don't
3195 * get confused by errant DMAs when rebooting.
3196 */
3197 void
3198 bge_shutdown(xsc)
3199 void *xsc;
3200 {
3201 struct bge_softc *sc = (struct bge_softc *)xsc;
3202
3203 bge_stop(sc);
3204 bge_reset(sc);
3205 }
3206