Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.284
      1 /*	$NetBSD: if_bge.c,v 1.284 2015/04/30 15:48:46 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.284 2015/04/30 15:48:46 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rndsource.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static int bge_ifflags_cb(struct ethercom *);
    210 static int bge_ioctl(struct ifnet *, u_long, void *);
    211 static int bge_init(struct ifnet *);
    212 static void bge_stop(struct ifnet *, int);
    213 static void bge_watchdog(struct ifnet *);
    214 static int bge_ifmedia_upd(struct ifnet *);
    215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    219 
    220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    222 static void bge_setmulti(struct bge_softc *);
    223 
    224 static void bge_handle_events(struct bge_softc *);
    225 static int bge_alloc_jumbo_mem(struct bge_softc *);
    226 #if 0 /* XXX */
    227 static void bge_free_jumbo_mem(struct bge_softc *);
    228 #endif
    229 static void *bge_jalloc(struct bge_softc *);
    230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    232 			       bus_dmamap_t);
    233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    234 static int bge_init_rx_ring_std(struct bge_softc *);
    235 static void bge_free_rx_ring_std(struct bge_softc *);
    236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_tx_ring(struct bge_softc *);
    239 static int bge_init_tx_ring(struct bge_softc *);
    240 
    241 static int bge_chipinit(struct bge_softc *);
    242 static int bge_blockinit(struct bge_softc *);
    243 static int bge_phy_addr(struct bge_softc *);
    244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    245 static void bge_writemem_ind(struct bge_softc *, int, int);
    246 static void bge_writembx(struct bge_softc *, int, int);
    247 static void bge_writembx_flush(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int);
    253 static void bge_miibus_writereg(device_t, int, int, int);
    254 static void bge_miibus_statchg(struct ifnet *);
    255 
    256 #define BGE_RESET_SHUTDOWN	0
    257 #define	BGE_RESET_START		1
    258 #define	BGE_RESET_SUSPEND	2
    259 static void bge_sig_post_reset(struct bge_softc *, int);
    260 static void bge_sig_legacy(struct bge_softc *, int);
    261 static void bge_sig_pre_reset(struct bge_softc *, int);
    262 static void bge_wait_for_event_ack(struct bge_softc *);
    263 static void bge_stop_fw(struct bge_softc *);
    264 static int bge_reset(struct bge_softc *);
    265 static void bge_link_upd(struct bge_softc *);
    266 static void bge_sysctl_init(struct bge_softc *);
    267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    268 
    269 static void bge_ape_lock_init(struct bge_softc *);
    270 static void bge_ape_read_fw_ver(struct bge_softc *);
    271 static int bge_ape_lock(struct bge_softc *, int);
    272 static void bge_ape_unlock(struct bge_softc *, int);
    273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    274 static void bge_ape_driver_state_change(struct bge_softc *, int);
    275 
    276 #ifdef BGE_DEBUG
    277 #define DPRINTF(x)	if (bgedebug) printf x
    278 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    280 int	bgedebug = 0;
    281 int	bge_tso_debug = 0;
    282 void		bge_debug_info(struct bge_softc *);
    283 #else
    284 #define DPRINTF(x)
    285 #define DPRINTFN(n,x)
    286 #define BGE_TSO_PRINTF(x)
    287 #endif
    288 
    289 #ifdef BGE_EVENT_COUNTERS
    290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    293 #else
    294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    297 #endif
    298 
    299 static const struct bge_product {
    300 	pci_vendor_id_t		bp_vendor;
    301 	pci_product_id_t	bp_product;
    302 	const char		*bp_name;
    303 } bge_products[] = {
    304 	/*
    305 	 * The BCM5700 documentation seems to indicate that the hardware
    306 	 * still has the Alteon vendor ID burned into it, though it
    307 	 * should always be overridden by the value in the EEPROM.  We'll
    308 	 * check for it anyway.
    309 	 */
    310 	{ PCI_VENDOR_ALTEON,
    311 	  PCI_PRODUCT_ALTEON_BCM5700,
    312 	  "Broadcom BCM5700 Gigabit Ethernet",
    313 	  },
    314 	{ PCI_VENDOR_ALTEON,
    315 	  PCI_PRODUCT_ALTEON_BCM5701,
    316 	  "Broadcom BCM5701 Gigabit Ethernet",
    317 	  },
    318 	{ PCI_VENDOR_ALTIMA,
    319 	  PCI_PRODUCT_ALTIMA_AC1000,
    320 	  "Altima AC1000 Gigabit Ethernet",
    321 	  },
    322 	{ PCI_VENDOR_ALTIMA,
    323 	  PCI_PRODUCT_ALTIMA_AC1001,
    324 	  "Altima AC1001 Gigabit Ethernet",
    325 	   },
    326 	{ PCI_VENDOR_ALTIMA,
    327 	  PCI_PRODUCT_ALTIMA_AC1003,
    328 	  "Altima AC1003 Gigabit Ethernet",
    329 	   },
    330 	{ PCI_VENDOR_ALTIMA,
    331 	  PCI_PRODUCT_ALTIMA_AC9100,
    332 	  "Altima AC9100 Gigabit Ethernet",
    333 	  },
    334 	{ PCI_VENDOR_APPLE,
    335 	  PCI_PRODUCT_APPLE_BCM5701,
    336 	  "APPLE BCM5701 Gigabit Ethernet",
    337 	  },
    338 	{ PCI_VENDOR_BROADCOM,
    339 	  PCI_PRODUCT_BROADCOM_BCM5700,
    340 	  "Broadcom BCM5700 Gigabit Ethernet",
    341 	  },
    342 	{ PCI_VENDOR_BROADCOM,
    343 	  PCI_PRODUCT_BROADCOM_BCM5701,
    344 	  "Broadcom BCM5701 Gigabit Ethernet",
    345 	  },
    346 	{ PCI_VENDOR_BROADCOM,
    347 	  PCI_PRODUCT_BROADCOM_BCM5702,
    348 	  "Broadcom BCM5702 Gigabit Ethernet",
    349 	  },
    350 	{ PCI_VENDOR_BROADCOM,
    351 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    352 	  "Broadcom BCM5702X Gigabit Ethernet" },
    353 	{ PCI_VENDOR_BROADCOM,
    354 	  PCI_PRODUCT_BROADCOM_BCM5703,
    355 	  "Broadcom BCM5703 Gigabit Ethernet",
    356 	  },
    357 	{ PCI_VENDOR_BROADCOM,
    358 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    359 	  "Broadcom BCM5703X Gigabit Ethernet",
    360 	  },
    361 	{ PCI_VENDOR_BROADCOM,
    362 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    363 	  "Broadcom BCM5703 Gigabit Ethernet",
    364 	  },
    365 	{ PCI_VENDOR_BROADCOM,
    366 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    367 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    368 	  },
    369 	{ PCI_VENDOR_BROADCOM,
    370 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    371 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    372 	  },
    373 	{ PCI_VENDOR_BROADCOM,
    374 	  PCI_PRODUCT_BROADCOM_BCM5705,
    375 	  "Broadcom BCM5705 Gigabit Ethernet",
    376 	  },
    377 	{ PCI_VENDOR_BROADCOM,
    378 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    379 	  "Broadcom BCM5705F Gigabit Ethernet",
    380 	  },
    381 	{ PCI_VENDOR_BROADCOM,
    382 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    383 	  "Broadcom BCM5705K Gigabit Ethernet",
    384 	  },
    385 	{ PCI_VENDOR_BROADCOM,
    386 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    387 	  "Broadcom BCM5705M Gigabit Ethernet",
    388 	  },
    389 	{ PCI_VENDOR_BROADCOM,
    390 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    391 	  "Broadcom BCM5705M Gigabit Ethernet",
    392 	  },
    393 	{ PCI_VENDOR_BROADCOM,
    394 	  PCI_PRODUCT_BROADCOM_BCM5714,
    395 	  "Broadcom BCM5714 Gigabit Ethernet",
    396 	  },
    397 	{ PCI_VENDOR_BROADCOM,
    398 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    399 	  "Broadcom BCM5714S Gigabit Ethernet",
    400 	  },
    401 	{ PCI_VENDOR_BROADCOM,
    402 	  PCI_PRODUCT_BROADCOM_BCM5715,
    403 	  "Broadcom BCM5715 Gigabit Ethernet",
    404 	  },
    405 	{ PCI_VENDOR_BROADCOM,
    406 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    407 	  "Broadcom BCM5715S Gigabit Ethernet",
    408 	  },
    409 	{ PCI_VENDOR_BROADCOM,
    410 	  PCI_PRODUCT_BROADCOM_BCM5717,
    411 	  "Broadcom BCM5717 Gigabit Ethernet",
    412 	  },
    413 	{ PCI_VENDOR_BROADCOM,
    414 	  PCI_PRODUCT_BROADCOM_BCM5718,
    415 	  "Broadcom BCM5718 Gigabit Ethernet",
    416 	  },
    417 	{ PCI_VENDOR_BROADCOM,
    418 	  PCI_PRODUCT_BROADCOM_BCM5719,
    419 	  "Broadcom BCM5719 Gigabit Ethernet",
    420 	  },
    421 	{ PCI_VENDOR_BROADCOM,
    422 	  PCI_PRODUCT_BROADCOM_BCM5720,
    423 	  "Broadcom BCM5720 Gigabit Ethernet",
    424 	  },
    425 	{ PCI_VENDOR_BROADCOM,
    426 	  PCI_PRODUCT_BROADCOM_BCM5721,
    427 	  "Broadcom BCM5721 Gigabit Ethernet",
    428 	  },
    429 	{ PCI_VENDOR_BROADCOM,
    430 	  PCI_PRODUCT_BROADCOM_BCM5722,
    431 	  "Broadcom BCM5722 Gigabit Ethernet",
    432 	  },
    433 	{ PCI_VENDOR_BROADCOM,
    434 	  PCI_PRODUCT_BROADCOM_BCM5723,
    435 	  "Broadcom BCM5723 Gigabit Ethernet",
    436 	  },
    437 	{ PCI_VENDOR_BROADCOM,
    438 	  PCI_PRODUCT_BROADCOM_BCM5724,
    439 	  "Broadcom BCM5724 Gigabit Ethernet",
    440 	  },
    441 	{ PCI_VENDOR_BROADCOM,
    442 	  PCI_PRODUCT_BROADCOM_BCM5750,
    443 	  "Broadcom BCM5750 Gigabit Ethernet",
    444 	  },
    445 	{ PCI_VENDOR_BROADCOM,
    446 	  PCI_PRODUCT_BROADCOM_BCM5750M,
    447 	  "Broadcom BCM5750M Gigabit Ethernet",
    448 	  },
    449 	{ PCI_VENDOR_BROADCOM,
    450 	  PCI_PRODUCT_BROADCOM_BCM5751,
    451 	  "Broadcom BCM5751 Gigabit Ethernet",
    452 	  },
    453 	{ PCI_VENDOR_BROADCOM,
    454 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    455 	  "Broadcom BCM5751F Gigabit Ethernet",
    456 	  },
    457 	{ PCI_VENDOR_BROADCOM,
    458 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    459 	  "Broadcom BCM5751M Gigabit Ethernet",
    460 	  },
    461 	{ PCI_VENDOR_BROADCOM,
    462 	  PCI_PRODUCT_BROADCOM_BCM5752,
    463 	  "Broadcom BCM5752 Gigabit Ethernet",
    464 	  },
    465 	{ PCI_VENDOR_BROADCOM,
    466 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    467 	  "Broadcom BCM5752M Gigabit Ethernet",
    468 	  },
    469 	{ PCI_VENDOR_BROADCOM,
    470 	  PCI_PRODUCT_BROADCOM_BCM5753,
    471 	  "Broadcom BCM5753 Gigabit Ethernet",
    472 	  },
    473 	{ PCI_VENDOR_BROADCOM,
    474 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    475 	  "Broadcom BCM5753F Gigabit Ethernet",
    476 	  },
    477 	{ PCI_VENDOR_BROADCOM,
    478 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    479 	  "Broadcom BCM5753M Gigabit Ethernet",
    480 	  },
    481 	{ PCI_VENDOR_BROADCOM,
    482 	  PCI_PRODUCT_BROADCOM_BCM5754,
    483 	  "Broadcom BCM5754 Gigabit Ethernet",
    484 	},
    485 	{ PCI_VENDOR_BROADCOM,
    486 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    487 	  "Broadcom BCM5754M Gigabit Ethernet",
    488 	},
    489 	{ PCI_VENDOR_BROADCOM,
    490 	  PCI_PRODUCT_BROADCOM_BCM5755,
    491 	  "Broadcom BCM5755 Gigabit Ethernet",
    492 	},
    493 	{ PCI_VENDOR_BROADCOM,
    494 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    495 	  "Broadcom BCM5755M Gigabit Ethernet",
    496 	},
    497 	{ PCI_VENDOR_BROADCOM,
    498 	  PCI_PRODUCT_BROADCOM_BCM5756,
    499 	  "Broadcom BCM5756 Gigabit Ethernet",
    500 	},
    501 	{ PCI_VENDOR_BROADCOM,
    502 	  PCI_PRODUCT_BROADCOM_BCM5761,
    503 	  "Broadcom BCM5761 Gigabit Ethernet",
    504 	},
    505 	{ PCI_VENDOR_BROADCOM,
    506 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    507 	  "Broadcom BCM5761E Gigabit Ethernet",
    508 	},
    509 	{ PCI_VENDOR_BROADCOM,
    510 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    511 	  "Broadcom BCM5761S Gigabit Ethernet",
    512 	},
    513 	{ PCI_VENDOR_BROADCOM,
    514 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    515 	  "Broadcom BCM5761SE Gigabit Ethernet",
    516 	},
    517 	{ PCI_VENDOR_BROADCOM,
    518 	  PCI_PRODUCT_BROADCOM_BCM5764,
    519 	  "Broadcom BCM5764 Gigabit Ethernet",
    520 	  },
    521 	{ PCI_VENDOR_BROADCOM,
    522 	  PCI_PRODUCT_BROADCOM_BCM5780,
    523 	  "Broadcom BCM5780 Gigabit Ethernet",
    524 	  },
    525 	{ PCI_VENDOR_BROADCOM,
    526 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    527 	  "Broadcom BCM5780S Gigabit Ethernet",
    528 	  },
    529 	{ PCI_VENDOR_BROADCOM,
    530 	  PCI_PRODUCT_BROADCOM_BCM5781,
    531 	  "Broadcom BCM5781 Gigabit Ethernet",
    532 	  },
    533 	{ PCI_VENDOR_BROADCOM,
    534 	  PCI_PRODUCT_BROADCOM_BCM5782,
    535 	  "Broadcom BCM5782 Gigabit Ethernet",
    536 	},
    537 	{ PCI_VENDOR_BROADCOM,
    538 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    539 	  "BCM5784M NetLink 1000baseT Ethernet",
    540 	},
    541 	{ PCI_VENDOR_BROADCOM,
    542 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    543 	  "BCM5785F NetLink 10/100 Ethernet",
    544 	},
    545 	{ PCI_VENDOR_BROADCOM,
    546 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    547 	  "BCM5785G NetLink 1000baseT Ethernet",
    548 	},
    549 	{ PCI_VENDOR_BROADCOM,
    550 	  PCI_PRODUCT_BROADCOM_BCM5786,
    551 	  "Broadcom BCM5786 Gigabit Ethernet",
    552 	},
    553 	{ PCI_VENDOR_BROADCOM,
    554 	  PCI_PRODUCT_BROADCOM_BCM5787,
    555 	  "Broadcom BCM5787 Gigabit Ethernet",
    556 	},
    557 	{ PCI_VENDOR_BROADCOM,
    558 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    559 	  "Broadcom BCM5787F 10/100 Ethernet",
    560 	},
    561 	{ PCI_VENDOR_BROADCOM,
    562 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    563 	  "Broadcom BCM5787M Gigabit Ethernet",
    564 	},
    565 	{ PCI_VENDOR_BROADCOM,
    566 	  PCI_PRODUCT_BROADCOM_BCM5788,
    567 	  "Broadcom BCM5788 Gigabit Ethernet",
    568 	  },
    569 	{ PCI_VENDOR_BROADCOM,
    570 	  PCI_PRODUCT_BROADCOM_BCM5789,
    571 	  "Broadcom BCM5789 Gigabit Ethernet",
    572 	  },
    573 	{ PCI_VENDOR_BROADCOM,
    574 	  PCI_PRODUCT_BROADCOM_BCM5901,
    575 	  "Broadcom BCM5901 Fast Ethernet",
    576 	  },
    577 	{ PCI_VENDOR_BROADCOM,
    578 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    579 	  "Broadcom BCM5901A2 Fast Ethernet",
    580 	  },
    581 	{ PCI_VENDOR_BROADCOM,
    582 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    583 	  "Broadcom BCM5903M Fast Ethernet",
    584 	  },
    585 	{ PCI_VENDOR_BROADCOM,
    586 	  PCI_PRODUCT_BROADCOM_BCM5906,
    587 	  "Broadcom BCM5906 Fast Ethernet",
    588 	  },
    589 	{ PCI_VENDOR_BROADCOM,
    590 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    591 	  "Broadcom BCM5906M Fast Ethernet",
    592 	  },
    593 	{ PCI_VENDOR_BROADCOM,
    594 	  PCI_PRODUCT_BROADCOM_BCM57760,
    595 	  "Broadcom BCM57760 Fast Ethernet",
    596 	  },
    597 	{ PCI_VENDOR_BROADCOM,
    598 	  PCI_PRODUCT_BROADCOM_BCM57761,
    599 	  "Broadcom BCM57761 Fast Ethernet",
    600 	  },
    601 	{ PCI_VENDOR_BROADCOM,
    602 	  PCI_PRODUCT_BROADCOM_BCM57762,
    603 	  "Broadcom BCM57762 Gigabit Ethernet",
    604 	  },
    605 	{ PCI_VENDOR_BROADCOM,
    606 	  PCI_PRODUCT_BROADCOM_BCM57765,
    607 	  "Broadcom BCM57765 Fast Ethernet",
    608 	  },
    609 	{ PCI_VENDOR_BROADCOM,
    610 	  PCI_PRODUCT_BROADCOM_BCM57766,
    611 	  "Broadcom BCM57766 Fast Ethernet",
    612 	  },
    613 	{ PCI_VENDOR_BROADCOM,
    614 	  PCI_PRODUCT_BROADCOM_BCM57780,
    615 	  "Broadcom BCM57780 Fast Ethernet",
    616 	  },
    617 	{ PCI_VENDOR_BROADCOM,
    618 	  PCI_PRODUCT_BROADCOM_BCM57781,
    619 	  "Broadcom BCM57781 Fast Ethernet",
    620 	  },
    621 	{ PCI_VENDOR_BROADCOM,
    622 	  PCI_PRODUCT_BROADCOM_BCM57782,
    623 	  "Broadcom BCM57782 Fast Ethernet",
    624 	  },
    625 	{ PCI_VENDOR_BROADCOM,
    626 	  PCI_PRODUCT_BROADCOM_BCM57785,
    627 	  "Broadcom BCM57785 Fast Ethernet",
    628 	  },
    629 	{ PCI_VENDOR_BROADCOM,
    630 	  PCI_PRODUCT_BROADCOM_BCM57786,
    631 	  "Broadcom BCM57786 Fast Ethernet",
    632 	  },
    633 	{ PCI_VENDOR_BROADCOM,
    634 	  PCI_PRODUCT_BROADCOM_BCM57788,
    635 	  "Broadcom BCM57788 Fast Ethernet",
    636 	  },
    637 	{ PCI_VENDOR_BROADCOM,
    638 	  PCI_PRODUCT_BROADCOM_BCM57790,
    639 	  "Broadcom BCM57790 Fast Ethernet",
    640 	  },
    641 	{ PCI_VENDOR_BROADCOM,
    642 	  PCI_PRODUCT_BROADCOM_BCM57791,
    643 	  "Broadcom BCM57791 Fast Ethernet",
    644 	  },
    645 	{ PCI_VENDOR_BROADCOM,
    646 	  PCI_PRODUCT_BROADCOM_BCM57795,
    647 	  "Broadcom BCM57795 Fast Ethernet",
    648 	  },
    649 	{ PCI_VENDOR_SCHNEIDERKOCH,
    650 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    651 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    652 	  },
    653 	{ PCI_VENDOR_3COM,
    654 	  PCI_PRODUCT_3COM_3C996,
    655 	  "3Com 3c996 Gigabit Ethernet",
    656 	  },
    657 	{ PCI_VENDOR_FUJITSU4,
    658 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    659 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    660 	  },
    661 	{ PCI_VENDOR_FUJITSU4,
    662 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    663 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    664 	  },
    665 	{ PCI_VENDOR_FUJITSU4,
    666 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    667 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    668 	  },
    669 	{ 0,
    670 	  0,
    671 	  NULL },
    672 };
    673 
    674 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    675 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    676 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    677 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    678 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    679 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    680 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    681 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    683 
    684 static const struct bge_revision {
    685 	uint32_t		br_chipid;
    686 	const char		*br_name;
    687 } bge_revisions[] = {
    688 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    689 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    690 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    691 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    692 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    693 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    694 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    695 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    696 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    697 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    698 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    699 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    700 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    701 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    702 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    703 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    704 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    705 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    706 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    707 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    708 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    709 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    710 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    711 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    712 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    713 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    714 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    715 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    716 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    717 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    718 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    719 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    720 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    721 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    722 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    723 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    724 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    725 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    726 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    727 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    728 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    729 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    730 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    731 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    732 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    733 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    734 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    735 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    736 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    737 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    738 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    739 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    740 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    741 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    742 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    743 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    744 	/* 5754 and 5787 share the same ASIC ID */
    745 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    746 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    747 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    748 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    749 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    750 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    751 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    752 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    753 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    754 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    755 
    756 	{ 0, NULL }
    757 };
    758 
    759 /*
    760  * Some defaults for major revisions, so that newer steppings
    761  * that we don't know about have a shot at working.
    762  */
    763 static const struct bge_revision bge_majorrevs[] = {
    764 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    765 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    766 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    767 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    768 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    769 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    770 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    771 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    772 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    773 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    774 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    775 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    776 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    777 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    778 	/* 5754 and 5787 share the same ASIC ID */
    779 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    780 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    781 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    782 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    783 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    784 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    785 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    786 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    787 
    788 	{ 0, NULL }
    789 };
    790 
    791 static int bge_allow_asf = 1;
    792 
    793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    794     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    795 
    796 static uint32_t
    797 bge_readmem_ind(struct bge_softc *sc, int off)
    798 {
    799 	pcireg_t val;
    800 
    801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    802 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    803 		return 0;
    804 
    805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    806 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    807 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    808 	return val;
    809 }
    810 
    811 static void
    812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    813 {
    814 
    815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    817 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    818 }
    819 
    820 /*
    821  * PCI Express only
    822  */
    823 static void
    824 bge_set_max_readrq(struct bge_softc *sc)
    825 {
    826 	pcireg_t val;
    827 
    828 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    829 	    + PCIE_DCSR);
    830 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    831 	switch (sc->bge_expmrq) {
    832 	case 2048:
    833 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    834 		break;
    835 	case 4096:
    836 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    837 		break;
    838 	default:
    839 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    840 		break;
    841 	}
    842 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    843 	    + PCIE_DCSR, val);
    844 }
    845 
    846 #ifdef notdef
    847 static uint32_t
    848 bge_readreg_ind(struct bge_softc *sc, int off)
    849 {
    850 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    851 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    852 }
    853 #endif
    854 
    855 static void
    856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    857 {
    858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    859 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    860 }
    861 
    862 static void
    863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    864 {
    865 	CSR_WRITE_4(sc, off, val);
    866 }
    867 
    868 static void
    869 bge_writembx(struct bge_softc *sc, int off, int val)
    870 {
    871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    872 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    873 
    874 	CSR_WRITE_4(sc, off, val);
    875 }
    876 
    877 static void
    878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    879 {
    880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    881 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    882 
    883 	CSR_WRITE_4_FLUSH(sc, off, val);
    884 }
    885 
    886 /*
    887  * Clear all stale locks and select the lock for this driver instance.
    888  */
    889 void
    890 bge_ape_lock_init(struct bge_softc *sc)
    891 {
    892 	struct pci_attach_args *pa = &(sc->bge_pa);
    893 	uint32_t bit, regbase;
    894 	int i;
    895 
    896 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    897 		regbase = BGE_APE_LOCK_GRANT;
    898 	else
    899 		regbase = BGE_APE_PER_LOCK_GRANT;
    900 
    901 	/* Clear any stale locks. */
    902 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    903 		switch (i) {
    904 		case BGE_APE_LOCK_PHY0:
    905 		case BGE_APE_LOCK_PHY1:
    906 		case BGE_APE_LOCK_PHY2:
    907 		case BGE_APE_LOCK_PHY3:
    908 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    909 			break;
    910 		default:
    911 			if (pa->pa_function == 0)
    912 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    913 			else
    914 				bit = (1 << pa->pa_function);
    915 		}
    916 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    917 	}
    918 
    919 	/* Select the PHY lock based on the device's function number. */
    920 	switch (pa->pa_function) {
    921 	case 0:
    922 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    923 		break;
    924 	case 1:
    925 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    926 		break;
    927 	case 2:
    928 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    929 		break;
    930 	case 3:
    931 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    932 		break;
    933 	default:
    934 		printf("%s: PHY lock not supported on function\n",
    935 		    device_xname(sc->bge_dev));
    936 		break;
    937 	}
    938 }
    939 
    940 /*
    941  * Check for APE firmware, set flags, and print version info.
    942  */
    943 void
    944 bge_ape_read_fw_ver(struct bge_softc *sc)
    945 {
    946 	const char *fwtype;
    947 	uint32_t apedata, features;
    948 
    949 	/* Check for a valid APE signature in shared memory. */
    950 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    951 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    952 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    953 		return;
    954 	}
    955 
    956 	/* Check if APE firmware is running. */
    957 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    958 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    959 		printf("%s: APE signature found but FW status not ready! "
    960 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    961 		return;
    962 	}
    963 
    964 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    965 
    966 	/* Fetch the APE firwmare type and version. */
    967 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    968 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    969 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    970 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    971 		fwtype = "NCSI";
    972 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    973 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    974 		fwtype = "DASH";
    975 	} else
    976 		fwtype = "UNKN";
    977 
    978 	/* Print the APE firmware version. */
    979 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    980 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    981 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    982 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    983 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    984 }
    985 
    986 int
    987 bge_ape_lock(struct bge_softc *sc, int locknum)
    988 {
    989 	struct pci_attach_args *pa = &(sc->bge_pa);
    990 	uint32_t bit, gnt, req, status;
    991 	int i, off;
    992 
    993 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    994 		return (0);
    995 
    996 	/* Lock request/grant registers have different bases. */
    997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    998 		req = BGE_APE_LOCK_REQ;
    999 		gnt = BGE_APE_LOCK_GRANT;
   1000 	} else {
   1001 		req = BGE_APE_PER_LOCK_REQ;
   1002 		gnt = BGE_APE_PER_LOCK_GRANT;
   1003 	}
   1004 
   1005 	off = 4 * locknum;
   1006 
   1007 	switch (locknum) {
   1008 	case BGE_APE_LOCK_GPIO:
   1009 		/* Lock required when using GPIO. */
   1010 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1011 			return (0);
   1012 		if (pa->pa_function == 0)
   1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1014 		else
   1015 			bit = (1 << pa->pa_function);
   1016 		break;
   1017 	case BGE_APE_LOCK_GRC:
   1018 		/* Lock required to reset the device. */
   1019 		if (pa->pa_function == 0)
   1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1021 		else
   1022 			bit = (1 << pa->pa_function);
   1023 		break;
   1024 	case BGE_APE_LOCK_MEM:
   1025 		/* Lock required when accessing certain APE memory. */
   1026 		if (pa->pa_function == 0)
   1027 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1028 		else
   1029 			bit = (1 << pa->pa_function);
   1030 		break;
   1031 	case BGE_APE_LOCK_PHY0:
   1032 	case BGE_APE_LOCK_PHY1:
   1033 	case BGE_APE_LOCK_PHY2:
   1034 	case BGE_APE_LOCK_PHY3:
   1035 		/* Lock required when accessing PHYs. */
   1036 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1037 		break;
   1038 	default:
   1039 		return (EINVAL);
   1040 	}
   1041 
   1042 	/* Request a lock. */
   1043 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1044 
   1045 	/* Wait up to 1 second to acquire lock. */
   1046 	for (i = 0; i < 20000; i++) {
   1047 		status = APE_READ_4(sc, gnt + off);
   1048 		if (status == bit)
   1049 			break;
   1050 		DELAY(50);
   1051 	}
   1052 
   1053 	/* Handle any errors. */
   1054 	if (status != bit) {
   1055 		printf("%s: APE lock %d request failed! "
   1056 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1057 		    device_xname(sc->bge_dev),
   1058 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1059 		    status & 0xFFFF);
   1060 		/* Revoke the lock request. */
   1061 		APE_WRITE_4(sc, gnt + off, bit);
   1062 		return (EBUSY);
   1063 	}
   1064 
   1065 	return (0);
   1066 }
   1067 
   1068 void
   1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1070 {
   1071 	struct pci_attach_args *pa = &(sc->bge_pa);
   1072 	uint32_t bit, gnt;
   1073 	int off;
   1074 
   1075 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1076 		return;
   1077 
   1078 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1079 		gnt = BGE_APE_LOCK_GRANT;
   1080 	else
   1081 		gnt = BGE_APE_PER_LOCK_GRANT;
   1082 
   1083 	off = 4 * locknum;
   1084 
   1085 	switch (locknum) {
   1086 	case BGE_APE_LOCK_GPIO:
   1087 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1088 			return;
   1089 		if (pa->pa_function == 0)
   1090 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1091 		else
   1092 			bit = (1 << pa->pa_function);
   1093 		break;
   1094 	case BGE_APE_LOCK_GRC:
   1095 		if (pa->pa_function == 0)
   1096 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1097 		else
   1098 			bit = (1 << pa->pa_function);
   1099 		break;
   1100 	case BGE_APE_LOCK_MEM:
   1101 		if (pa->pa_function == 0)
   1102 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1103 		else
   1104 			bit = (1 << pa->pa_function);
   1105 		break;
   1106 	case BGE_APE_LOCK_PHY0:
   1107 	case BGE_APE_LOCK_PHY1:
   1108 	case BGE_APE_LOCK_PHY2:
   1109 	case BGE_APE_LOCK_PHY3:
   1110 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1111 		break;
   1112 	default:
   1113 		return;
   1114 	}
   1115 
   1116 	/* Write and flush for consecutive bge_ape_lock() */
   1117 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1118 }
   1119 
   1120 /*
   1121  * Send an event to the APE firmware.
   1122  */
   1123 void
   1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1125 {
   1126 	uint32_t apedata;
   1127 	int i;
   1128 
   1129 	/* NCSI does not support APE events. */
   1130 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1131 		return;
   1132 
   1133 	/* Wait up to 1ms for APE to service previous event. */
   1134 	for (i = 10; i > 0; i--) {
   1135 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1136 			break;
   1137 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1138 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1139 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1140 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1141 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1142 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1143 			break;
   1144 		}
   1145 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1146 		DELAY(100);
   1147 	}
   1148 	if (i == 0) {
   1149 		printf("%s: APE event 0x%08x send timed out\n",
   1150 		    device_xname(sc->bge_dev), event);
   1151 	}
   1152 }
   1153 
   1154 void
   1155 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1156 {
   1157 	uint32_t apedata, event;
   1158 
   1159 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1160 		return;
   1161 
   1162 	switch (kind) {
   1163 	case BGE_RESET_START:
   1164 		/* If this is the first load, clear the load counter. */
   1165 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1166 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1167 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1168 		else {
   1169 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1170 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1171 		}
   1172 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1173 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1174 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1175 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1176 
   1177 		/* Add some version info if bge(4) supports it. */
   1178 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1179 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1180 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1181 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1183 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1184 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1185 		    BGE_APE_HOST_DRVR_STATE_START);
   1186 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1187 		break;
   1188 	case BGE_RESET_SHUTDOWN:
   1189 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1190 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1191 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1192 		break;
   1193 	case BGE_RESET_SUSPEND:
   1194 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1195 		break;
   1196 	default:
   1197 		return;
   1198 	}
   1199 
   1200 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1201 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1202 }
   1203 
   1204 static uint8_t
   1205 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1206 {
   1207 	uint32_t access, byte = 0;
   1208 	int i;
   1209 
   1210 	/* Lock. */
   1211 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1212 	for (i = 0; i < 8000; i++) {
   1213 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1214 			break;
   1215 		DELAY(20);
   1216 	}
   1217 	if (i == 8000)
   1218 		return 1;
   1219 
   1220 	/* Enable access. */
   1221 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1222 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1223 
   1224 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1225 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1226 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1227 		DELAY(10);
   1228 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1229 			DELAY(10);
   1230 			break;
   1231 		}
   1232 	}
   1233 
   1234 	if (i == BGE_TIMEOUT * 10) {
   1235 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1236 		return 1;
   1237 	}
   1238 
   1239 	/* Get result. */
   1240 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1241 
   1242 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1243 
   1244 	/* Disable access. */
   1245 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1246 
   1247 	/* Unlock. */
   1248 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1249 
   1250 	return 0;
   1251 }
   1252 
   1253 /*
   1254  * Read a sequence of bytes from NVRAM.
   1255  */
   1256 static int
   1257 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1258 {
   1259 	int error = 0, i;
   1260 	uint8_t byte = 0;
   1261 
   1262 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1263 		return 1;
   1264 
   1265 	for (i = 0; i < cnt; i++) {
   1266 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1267 		if (error)
   1268 			break;
   1269 		*(dest + i) = byte;
   1270 	}
   1271 
   1272 	return (error ? 1 : 0);
   1273 }
   1274 
   1275 /*
   1276  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1277  * BCM570x supports both the traditional bitbang interface and an
   1278  * auto access interface for reading the EEPROM. We use the auto
   1279  * access method.
   1280  */
   1281 static uint8_t
   1282 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1283 {
   1284 	int i;
   1285 	uint32_t byte = 0;
   1286 
   1287 	/*
   1288 	 * Enable use of auto EEPROM access so we can avoid
   1289 	 * having to use the bitbang method.
   1290 	 */
   1291 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1292 
   1293 	/* Reset the EEPROM, load the clock period. */
   1294 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1295 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1296 	DELAY(20);
   1297 
   1298 	/* Issue the read EEPROM command. */
   1299 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1300 
   1301 	/* Wait for completion */
   1302 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1303 		DELAY(10);
   1304 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1305 			break;
   1306 	}
   1307 
   1308 	if (i == BGE_TIMEOUT * 10) {
   1309 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1310 		return 1;
   1311 	}
   1312 
   1313 	/* Get result. */
   1314 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1315 
   1316 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1317 
   1318 	return 0;
   1319 }
   1320 
   1321 /*
   1322  * Read a sequence of bytes from the EEPROM.
   1323  */
   1324 static int
   1325 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1326 {
   1327 	int error = 0, i;
   1328 	uint8_t byte = 0;
   1329 	char *dest = destv;
   1330 
   1331 	for (i = 0; i < cnt; i++) {
   1332 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1333 		if (error)
   1334 			break;
   1335 		*(dest + i) = byte;
   1336 	}
   1337 
   1338 	return (error ? 1 : 0);
   1339 }
   1340 
   1341 static int
   1342 bge_miibus_readreg(device_t dev, int phy, int reg)
   1343 {
   1344 	struct bge_softc *sc = device_private(dev);
   1345 	uint32_t val;
   1346 	uint32_t autopoll;
   1347 	int i;
   1348 
   1349 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1350 		return 0;
   1351 
   1352 	/* Reading with autopolling on may trigger PCI errors */
   1353 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1354 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1355 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1356 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1357 		DELAY(80);
   1358 	}
   1359 
   1360 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1361 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1362 
   1363 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1364 		delay(10);
   1365 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1366 		if (!(val & BGE_MICOMM_BUSY)) {
   1367 			DELAY(5);
   1368 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1369 			break;
   1370 		}
   1371 	}
   1372 
   1373 	if (i == BGE_TIMEOUT) {
   1374 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1375 		val = 0;
   1376 		goto done;
   1377 	}
   1378 
   1379 done:
   1380 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1381 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1382 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1383 		DELAY(80);
   1384 	}
   1385 
   1386 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1387 
   1388 	if (val & BGE_MICOMM_READFAIL)
   1389 		return 0;
   1390 
   1391 	return (val & 0xFFFF);
   1392 }
   1393 
   1394 static void
   1395 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1396 {
   1397 	struct bge_softc *sc = device_private(dev);
   1398 	uint32_t autopoll;
   1399 	int i;
   1400 
   1401 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1402 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1403 		return;
   1404 
   1405 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1406 		return;
   1407 
   1408 	/* Reading with autopolling on may trigger PCI errors */
   1409 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1410 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1411 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1412 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1413 		DELAY(80);
   1414 	}
   1415 
   1416 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1417 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1418 
   1419 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1420 		delay(10);
   1421 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1422 			delay(5);
   1423 			CSR_READ_4(sc, BGE_MI_COMM);
   1424 			break;
   1425 		}
   1426 	}
   1427 
   1428 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1429 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1430 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1431 		delay(80);
   1432 	}
   1433 
   1434 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1435 
   1436 	if (i == BGE_TIMEOUT)
   1437 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1438 }
   1439 
   1440 static void
   1441 bge_miibus_statchg(struct ifnet *ifp)
   1442 {
   1443 	struct bge_softc *sc = ifp->if_softc;
   1444 	struct mii_data *mii = &sc->bge_mii;
   1445 	uint32_t mac_mode, rx_mode, tx_mode;
   1446 
   1447 	/*
   1448 	 * Get flow control negotiation result.
   1449 	 */
   1450 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1451 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1452 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1453 
   1454 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1455 	    mii->mii_media_status & IFM_ACTIVE &&
   1456 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1457 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1458 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1459 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1460 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1461 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1462 
   1463 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1464 		return;
   1465 
   1466 	/* Set the port mode (MII/GMII) to match the link speed. */
   1467 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1468 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1469 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1470 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1471 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1472 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1473 		mac_mode |= BGE_PORTMODE_GMII;
   1474 	else
   1475 		mac_mode |= BGE_PORTMODE_MII;
   1476 
   1477 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1478 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1479 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1480 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1481 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1482 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1483 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1484 	} else
   1485 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1486 
   1487 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1488 	DELAY(40);
   1489 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1490 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1491 }
   1492 
   1493 /*
   1494  * Update rx threshold levels to values in a particular slot
   1495  * of the interrupt-mitigation table bge_rx_threshes.
   1496  */
   1497 static void
   1498 bge_set_thresh(struct ifnet *ifp, int lvl)
   1499 {
   1500 	struct bge_softc *sc = ifp->if_softc;
   1501 	int s;
   1502 
   1503 	/* For now, just save the new Rx-intr thresholds and record
   1504 	 * that a threshold update is pending.  Updating the hardware
   1505 	 * registers here (even at splhigh()) is observed to
   1506 	 * occasionaly cause glitches where Rx-interrupts are not
   1507 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1508 	 */
   1509 	s = splnet();
   1510 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1511 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1512 	sc->bge_pending_rxintr_change = 1;
   1513 	splx(s);
   1514 }
   1515 
   1516 
   1517 /*
   1518  * Update Rx thresholds of all bge devices
   1519  */
   1520 static void
   1521 bge_update_all_threshes(int lvl)
   1522 {
   1523 	struct ifnet *ifp;
   1524 	const char * const namebuf = "bge";
   1525 	int namelen;
   1526 
   1527 	if (lvl < 0)
   1528 		lvl = 0;
   1529 	else if (lvl >= NBGE_RX_THRESH)
   1530 		lvl = NBGE_RX_THRESH - 1;
   1531 
   1532 	namelen = strlen(namebuf);
   1533 	/*
   1534 	 * Now search all the interfaces for this name/number
   1535 	 */
   1536 	IFNET_FOREACH(ifp) {
   1537 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1538 		      continue;
   1539 		/* We got a match: update if doing auto-threshold-tuning */
   1540 		if (bge_auto_thresh)
   1541 			bge_set_thresh(ifp, lvl);
   1542 	}
   1543 }
   1544 
   1545 /*
   1546  * Handle events that have triggered interrupts.
   1547  */
   1548 static void
   1549 bge_handle_events(struct bge_softc *sc)
   1550 {
   1551 
   1552 	return;
   1553 }
   1554 
   1555 /*
   1556  * Memory management for jumbo frames.
   1557  */
   1558 
   1559 static int
   1560 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1561 {
   1562 	char *ptr, *kva;
   1563 	bus_dma_segment_t	seg;
   1564 	int		i, rseg, state, error;
   1565 	struct bge_jpool_entry   *entry;
   1566 
   1567 	state = error = 0;
   1568 
   1569 	/* Grab a big chunk o' storage. */
   1570 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1571 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1572 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1573 		return ENOBUFS;
   1574 	}
   1575 
   1576 	state = 1;
   1577 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1578 	    BUS_DMA_NOWAIT)) {
   1579 		aprint_error_dev(sc->bge_dev,
   1580 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1581 		error = ENOBUFS;
   1582 		goto out;
   1583 	}
   1584 
   1585 	state = 2;
   1586 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1587 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1588 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1589 		error = ENOBUFS;
   1590 		goto out;
   1591 	}
   1592 
   1593 	state = 3;
   1594 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1595 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1596 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1597 		error = ENOBUFS;
   1598 		goto out;
   1599 	}
   1600 
   1601 	state = 4;
   1602 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1603 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1604 
   1605 	SLIST_INIT(&sc->bge_jfree_listhead);
   1606 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1607 
   1608 	/*
   1609 	 * Now divide it up into 9K pieces and save the addresses
   1610 	 * in an array.
   1611 	 */
   1612 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1613 	for (i = 0; i < BGE_JSLOTS; i++) {
   1614 		sc->bge_cdata.bge_jslots[i] = ptr;
   1615 		ptr += BGE_JLEN;
   1616 		entry = malloc(sizeof(struct bge_jpool_entry),
   1617 		    M_DEVBUF, M_NOWAIT);
   1618 		if (entry == NULL) {
   1619 			aprint_error_dev(sc->bge_dev,
   1620 			    "no memory for jumbo buffer queue!\n");
   1621 			error = ENOBUFS;
   1622 			goto out;
   1623 		}
   1624 		entry->slot = i;
   1625 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1626 				 entry, jpool_entries);
   1627 	}
   1628 out:
   1629 	if (error != 0) {
   1630 		switch (state) {
   1631 		case 4:
   1632 			bus_dmamap_unload(sc->bge_dmatag,
   1633 			    sc->bge_cdata.bge_rx_jumbo_map);
   1634 		case 3:
   1635 			bus_dmamap_destroy(sc->bge_dmatag,
   1636 			    sc->bge_cdata.bge_rx_jumbo_map);
   1637 		case 2:
   1638 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1639 		case 1:
   1640 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1641 			break;
   1642 		default:
   1643 			break;
   1644 		}
   1645 	}
   1646 
   1647 	return error;
   1648 }
   1649 
   1650 /*
   1651  * Allocate a jumbo buffer.
   1652  */
   1653 static void *
   1654 bge_jalloc(struct bge_softc *sc)
   1655 {
   1656 	struct bge_jpool_entry   *entry;
   1657 
   1658 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1659 
   1660 	if (entry == NULL) {
   1661 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1662 		return NULL;
   1663 	}
   1664 
   1665 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1666 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1667 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1668 }
   1669 
   1670 /*
   1671  * Release a jumbo buffer.
   1672  */
   1673 static void
   1674 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1675 {
   1676 	struct bge_jpool_entry *entry;
   1677 	struct bge_softc *sc;
   1678 	int i, s;
   1679 
   1680 	/* Extract the softc struct pointer. */
   1681 	sc = (struct bge_softc *)arg;
   1682 
   1683 	if (sc == NULL)
   1684 		panic("bge_jfree: can't find softc pointer!");
   1685 
   1686 	/* calculate the slot this buffer belongs to */
   1687 
   1688 	i = ((char *)buf
   1689 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1690 
   1691 	if ((i < 0) || (i >= BGE_JSLOTS))
   1692 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1693 
   1694 	s = splvm();
   1695 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1696 	if (entry == NULL)
   1697 		panic("bge_jfree: buffer not in use!");
   1698 	entry->slot = i;
   1699 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1700 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1701 
   1702 	if (__predict_true(m != NULL))
   1703   		pool_cache_put(mb_cache, m);
   1704 	splx(s);
   1705 }
   1706 
   1707 
   1708 /*
   1709  * Initialize a standard receive ring descriptor.
   1710  */
   1711 static int
   1712 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1713     bus_dmamap_t dmamap)
   1714 {
   1715 	struct mbuf		*m_new = NULL;
   1716 	struct bge_rx_bd	*r;
   1717 	int			error;
   1718 
   1719 	if (dmamap == NULL) {
   1720 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1721 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1722 		if (error != 0)
   1723 			return error;
   1724 	}
   1725 
   1726 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1727 
   1728 	if (m == NULL) {
   1729 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1730 		if (m_new == NULL)
   1731 			return ENOBUFS;
   1732 
   1733 		MCLGET(m_new, M_DONTWAIT);
   1734 		if (!(m_new->m_flags & M_EXT)) {
   1735 			m_freem(m_new);
   1736 			return ENOBUFS;
   1737 		}
   1738 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1739 
   1740 	} else {
   1741 		m_new = m;
   1742 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1743 		m_new->m_data = m_new->m_ext.ext_buf;
   1744 	}
   1745 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1746 	    m_adj(m_new, ETHER_ALIGN);
   1747 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1748 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
   1749 		m_freem(m_new);
   1750 		return ENOBUFS;
   1751 	}
   1752 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1753 	    BUS_DMASYNC_PREREAD);
   1754 
   1755 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1756 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1757 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1758 	r->bge_flags = BGE_RXBDFLAG_END;
   1759 	r->bge_len = m_new->m_len;
   1760 	r->bge_idx = i;
   1761 
   1762 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1763 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1764 		i * sizeof (struct bge_rx_bd),
   1765 	    sizeof (struct bge_rx_bd),
   1766 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1767 
   1768 	return 0;
   1769 }
   1770 
   1771 /*
   1772  * Initialize a jumbo receive ring descriptor. This allocates
   1773  * a jumbo buffer from the pool managed internally by the driver.
   1774  */
   1775 static int
   1776 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1777 {
   1778 	struct mbuf *m_new = NULL;
   1779 	struct bge_rx_bd *r;
   1780 	void *buf = NULL;
   1781 
   1782 	if (m == NULL) {
   1783 
   1784 		/* Allocate the mbuf. */
   1785 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1786 		if (m_new == NULL)
   1787 			return ENOBUFS;
   1788 
   1789 		/* Allocate the jumbo buffer */
   1790 		buf = bge_jalloc(sc);
   1791 		if (buf == NULL) {
   1792 			m_freem(m_new);
   1793 			aprint_error_dev(sc->bge_dev,
   1794 			    "jumbo allocation failed -- packet dropped!\n");
   1795 			return ENOBUFS;
   1796 		}
   1797 
   1798 		/* Attach the buffer to the mbuf. */
   1799 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1800 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1801 		    bge_jfree, sc);
   1802 		m_new->m_flags |= M_EXT_RW;
   1803 	} else {
   1804 		m_new = m;
   1805 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1806 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1807 	}
   1808 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1809 	    m_adj(m_new, ETHER_ALIGN);
   1810 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1811 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1812 	    BUS_DMASYNC_PREREAD);
   1813 	/* Set up the descriptor. */
   1814 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1815 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1816 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1817 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1818 	r->bge_len = m_new->m_len;
   1819 	r->bge_idx = i;
   1820 
   1821 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1822 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1823 		i * sizeof (struct bge_rx_bd),
   1824 	    sizeof (struct bge_rx_bd),
   1825 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1826 
   1827 	return 0;
   1828 }
   1829 
   1830 /*
   1831  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1832  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1833  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1834  * the NIC.
   1835  */
   1836 static int
   1837 bge_init_rx_ring_std(struct bge_softc *sc)
   1838 {
   1839 	int i;
   1840 
   1841 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1842 		return 0;
   1843 
   1844 	for (i = 0; i < BGE_SSLOTS; i++) {
   1845 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1846 			return ENOBUFS;
   1847 	}
   1848 
   1849 	sc->bge_std = i - 1;
   1850 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1851 
   1852 	sc->bge_flags |= BGEF_RXRING_VALID;
   1853 
   1854 	return 0;
   1855 }
   1856 
   1857 static void
   1858 bge_free_rx_ring_std(struct bge_softc *sc)
   1859 {
   1860 	int i;
   1861 
   1862 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1863 		return;
   1864 
   1865 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1866 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1867 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1868 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1869 			bus_dmamap_destroy(sc->bge_dmatag,
   1870 			    sc->bge_cdata.bge_rx_std_map[i]);
   1871 		}
   1872 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1873 		    sizeof(struct bge_rx_bd));
   1874 	}
   1875 
   1876 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1877 }
   1878 
   1879 static int
   1880 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1881 {
   1882 	int i;
   1883 	volatile struct bge_rcb *rcb;
   1884 
   1885 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1886 		return 0;
   1887 
   1888 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1889 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1890 			return ENOBUFS;
   1891 	}
   1892 
   1893 	sc->bge_jumbo = i - 1;
   1894 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1895 
   1896 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1897 	rcb->bge_maxlen_flags = 0;
   1898 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1899 
   1900 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1901 
   1902 	return 0;
   1903 }
   1904 
   1905 static void
   1906 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1907 {
   1908 	int i;
   1909 
   1910 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1911 		return;
   1912 
   1913 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1914 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1915 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1916 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1917 		}
   1918 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1919 		    sizeof(struct bge_rx_bd));
   1920 	}
   1921 
   1922 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1923 }
   1924 
   1925 static void
   1926 bge_free_tx_ring(struct bge_softc *sc)
   1927 {
   1928 	int i;
   1929 	struct txdmamap_pool_entry *dma;
   1930 
   1931 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1932 		return;
   1933 
   1934 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1935 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1936 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1937 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1938 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1939 					    link);
   1940 			sc->txdma[i] = 0;
   1941 		}
   1942 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1943 		    sizeof(struct bge_tx_bd));
   1944 	}
   1945 
   1946 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1947 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1948 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1949 		free(dma, M_DEVBUF);
   1950 	}
   1951 
   1952 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1953 }
   1954 
   1955 static int
   1956 bge_init_tx_ring(struct bge_softc *sc)
   1957 {
   1958 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1959 	int i;
   1960 	bus_dmamap_t dmamap;
   1961 	bus_size_t maxsegsz;
   1962 	struct txdmamap_pool_entry *dma;
   1963 
   1964 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1965 		return 0;
   1966 
   1967 	sc->bge_txcnt = 0;
   1968 	sc->bge_tx_saved_considx = 0;
   1969 
   1970 	/* Initialize transmit producer index for host-memory send ring. */
   1971 	sc->bge_tx_prodidx = 0;
   1972 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1973 	/* 5700 b2 errata */
   1974 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1975 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1976 
   1977 	/* NIC-memory send ring not used; initialize to zero. */
   1978 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1979 	/* 5700 b2 errata */
   1980 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1981 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1982 
   1983 	/* Limit DMA segment size for some chips */
   1984 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1985 	    (ifp->if_mtu <= ETHERMTU))
   1986 		maxsegsz = 2048;
   1987 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1988 		maxsegsz = 4096;
   1989 	else
   1990 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1991 	SLIST_INIT(&sc->txdma_list);
   1992 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1993 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1994 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
   1995 		    &dmamap))
   1996 			return ENOBUFS;
   1997 		if (dmamap == NULL)
   1998 			panic("dmamap NULL in bge_init_tx_ring");
   1999 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   2000 		if (dma == NULL) {
   2001 			aprint_error_dev(sc->bge_dev,
   2002 			    "can't alloc txdmamap_pool_entry\n");
   2003 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   2004 			return ENOMEM;
   2005 		}
   2006 		dma->dmamap = dmamap;
   2007 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2008 	}
   2009 
   2010 	sc->bge_flags |= BGEF_TXRING_VALID;
   2011 
   2012 	return 0;
   2013 }
   2014 
   2015 static void
   2016 bge_setmulti(struct bge_softc *sc)
   2017 {
   2018 	struct ethercom		*ac = &sc->ethercom;
   2019 	struct ifnet		*ifp = &ac->ec_if;
   2020 	struct ether_multi	*enm;
   2021 	struct ether_multistep  step;
   2022 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2023 	uint32_t		h;
   2024 	int			i;
   2025 
   2026 	if (ifp->if_flags & IFF_PROMISC)
   2027 		goto allmulti;
   2028 
   2029 	/* Now program new ones. */
   2030 	ETHER_FIRST_MULTI(step, ac, enm);
   2031 	while (enm != NULL) {
   2032 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2033 			/*
   2034 			 * We must listen to a range of multicast addresses.
   2035 			 * For now, just accept all multicasts, rather than
   2036 			 * trying to set only those filter bits needed to match
   2037 			 * the range.  (At this time, the only use of address
   2038 			 * ranges is for IP multicast routing, for which the
   2039 			 * range is big enough to require all bits set.)
   2040 			 */
   2041 			goto allmulti;
   2042 		}
   2043 
   2044 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2045 
   2046 		/* Just want the 7 least-significant bits. */
   2047 		h &= 0x7f;
   2048 
   2049 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2050 		ETHER_NEXT_MULTI(step, enm);
   2051 	}
   2052 
   2053 	ifp->if_flags &= ~IFF_ALLMULTI;
   2054 	goto setit;
   2055 
   2056  allmulti:
   2057 	ifp->if_flags |= IFF_ALLMULTI;
   2058 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2059 
   2060  setit:
   2061 	for (i = 0; i < 4; i++)
   2062 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2063 }
   2064 
   2065 static void
   2066 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2067 {
   2068 
   2069 	/*
   2070 	 * Some chips don't like this so only do this if ASF is enabled
   2071 	 */
   2072 	if (sc->bge_asf_mode)
   2073 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2074 
   2075 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2076 		switch (type) {
   2077 		case BGE_RESET_START:
   2078 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2079 			    BGE_FW_DRV_STATE_START);
   2080 			break;
   2081 		case BGE_RESET_SHUTDOWN:
   2082 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2083 			    BGE_FW_DRV_STATE_UNLOAD);
   2084 			break;
   2085 		case BGE_RESET_SUSPEND:
   2086 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2087 			    BGE_FW_DRV_STATE_SUSPEND);
   2088 			break;
   2089 		}
   2090 	}
   2091 
   2092 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2093 		bge_ape_driver_state_change(sc, type);
   2094 }
   2095 
   2096 static void
   2097 bge_sig_post_reset(struct bge_softc *sc, int type)
   2098 {
   2099 
   2100 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2101 		switch (type) {
   2102 		case BGE_RESET_START:
   2103 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2104 			    BGE_FW_DRV_STATE_START_DONE);
   2105 			/* START DONE */
   2106 			break;
   2107 		case BGE_RESET_SHUTDOWN:
   2108 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2109 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2110 			break;
   2111 		}
   2112 	}
   2113 
   2114 	if (type == BGE_RESET_SHUTDOWN)
   2115 		bge_ape_driver_state_change(sc, type);
   2116 }
   2117 
   2118 static void
   2119 bge_sig_legacy(struct bge_softc *sc, int type)
   2120 {
   2121 
   2122 	if (sc->bge_asf_mode) {
   2123 		switch (type) {
   2124 		case BGE_RESET_START:
   2125 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2126 			    BGE_FW_DRV_STATE_START);
   2127 			break;
   2128 		case BGE_RESET_SHUTDOWN:
   2129 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2130 			    BGE_FW_DRV_STATE_UNLOAD);
   2131 			break;
   2132 		}
   2133 	}
   2134 }
   2135 
   2136 static void
   2137 bge_wait_for_event_ack(struct bge_softc *sc)
   2138 {
   2139 	int i;
   2140 
   2141 	/* wait up to 2500usec */
   2142 	for (i = 0; i < 250; i++) {
   2143 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2144 			BGE_RX_CPU_DRV_EVENT))
   2145 			break;
   2146 		DELAY(10);
   2147 	}
   2148 }
   2149 
   2150 static void
   2151 bge_stop_fw(struct bge_softc *sc)
   2152 {
   2153 
   2154 	if (sc->bge_asf_mode) {
   2155 		bge_wait_for_event_ack(sc);
   2156 
   2157 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2158 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2159 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2160 
   2161 		bge_wait_for_event_ack(sc);
   2162 	}
   2163 }
   2164 
   2165 static int
   2166 bge_poll_fw(struct bge_softc *sc)
   2167 {
   2168 	uint32_t val;
   2169 	int i;
   2170 
   2171 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2172 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2173 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2174 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2175 				break;
   2176 			DELAY(100);
   2177 		}
   2178 		if (i >= BGE_TIMEOUT) {
   2179 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2180 			return -1;
   2181 		}
   2182 	} else {
   2183 		/*
   2184 		 * Poll the value location we just wrote until
   2185 		 * we see the 1's complement of the magic number.
   2186 		 * This indicates that the firmware initialization
   2187 		 * is complete.
   2188 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2189 		 */
   2190 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2191 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2192 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2193 				break;
   2194 			DELAY(10);
   2195 		}
   2196 
   2197 		if ((i >= BGE_TIMEOUT)
   2198 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2199 			aprint_error_dev(sc->bge_dev,
   2200 			    "firmware handshake timed out, val = %x\n", val);
   2201 			return -1;
   2202 		}
   2203 	}
   2204 
   2205 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2206 		/* tg3 says we have to wait extra time */
   2207 		delay(10 * 1000);
   2208 	}
   2209 
   2210 	return 0;
   2211 }
   2212 
   2213 int
   2214 bge_phy_addr(struct bge_softc *sc)
   2215 {
   2216 	struct pci_attach_args *pa = &(sc->bge_pa);
   2217 	int phy_addr = 1;
   2218 
   2219 	/*
   2220 	 * PHY address mapping for various devices.
   2221 	 *
   2222 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2223 	 * ---------+-------+-------+-------+-------+
   2224 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2225 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2226 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2227 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2228 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2229 	 *
   2230 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2231 	 * ---------+-------+-------+-------+-------+
   2232 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2233 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2234 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2235 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2236 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2237 	 *
   2238 	 * Other addresses may respond but they are not
   2239 	 * IEEE compliant PHYs and should be ignored.
   2240 	 */
   2241 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2242 	case BGE_ASICREV_BCM5717:
   2243 	case BGE_ASICREV_BCM5719:
   2244 	case BGE_ASICREV_BCM5720:
   2245 		phy_addr = pa->pa_function;
   2246 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2247 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2248 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2249 		} else {
   2250 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2251 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2252 		}
   2253 	}
   2254 
   2255 	return phy_addr;
   2256 }
   2257 
   2258 /*
   2259  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2260  * self-test results.
   2261  */
   2262 static int
   2263 bge_chipinit(struct bge_softc *sc)
   2264 {
   2265 	uint32_t dma_rw_ctl, mode_ctl, reg;
   2266 	int i;
   2267 
   2268 	/* Set endianness before we access any non-PCI registers. */
   2269 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2270 	    BGE_INIT);
   2271 
   2272 	/*
   2273 	 * Clear the MAC statistics block in the NIC's
   2274 	 * internal memory.
   2275 	 */
   2276 	for (i = BGE_STATS_BLOCK;
   2277 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2279 
   2280 	for (i = BGE_STATUS_BLOCK;
   2281 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2282 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2283 
   2284 	/* 5717 workaround from tg3 */
   2285 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2286 		/* Save */
   2287 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2288 
   2289 		/* Temporary modify MODE_CTL to control TLP */
   2290 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2291 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2292 
   2293 		/* Control TLP */
   2294 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2295 		    BGE_TLP_PHYCTL1);
   2296 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2297 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2298 
   2299 		/* Restore */
   2300 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2301 	}
   2302 
   2303 	if (BGE_IS_57765_FAMILY(sc)) {
   2304 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2305 			/* Save */
   2306 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2307 
   2308 			/* Temporary modify MODE_CTL to control TLP */
   2309 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2310 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2311 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2312 
   2313 			/* Control TLP */
   2314 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2315 			    BGE_TLP_PHYCTL5);
   2316 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2317 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2318 
   2319 			/* Restore */
   2320 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2321 		}
   2322 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2323 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2324 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2325 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2326 
   2327 			/* Save */
   2328 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2329 
   2330 			/* Temporary modify MODE_CTL to control TLP */
   2331 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2332 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2333 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2334 
   2335 			/* Control TLP */
   2336 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2337 			    BGE_TLP_FTSMAX);
   2338 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2339 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2340 			    reg | BGE_TLP_FTSMAX_VAL);
   2341 
   2342 			/* Restore */
   2343 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2344 		}
   2345 
   2346 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2347 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2348 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2349 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2350 	}
   2351 
   2352 	/* Set up the PCI DMA control register. */
   2353 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2354 	if (sc->bge_flags & BGEF_PCIE) {
   2355 		/* Read watermark not used, 128 bytes for write. */
   2356 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2357 		    device_xname(sc->bge_dev)));
   2358 		if (sc->bge_mps >= 256)
   2359 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2360 		else
   2361 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2362 	} else if (sc->bge_flags & BGEF_PCIX) {
   2363 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2364 		    device_xname(sc->bge_dev)));
   2365 		/* PCI-X bus */
   2366 		if (BGE_IS_5714_FAMILY(sc)) {
   2367 			/* 256 bytes for read and write. */
   2368 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2369 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2370 
   2371 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2372 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2373 			else
   2374 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2375 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2376 			/*
   2377 			 * In the BCM5703, the DMA read watermark should
   2378 			 * be set to less than or equal to the maximum
   2379 			 * memory read byte count of the PCI-X command
   2380 			 * register.
   2381 			 */
   2382 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2383 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2384 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2385 			/* 1536 bytes for read, 384 bytes for write. */
   2386 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2387 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2388 		} else {
   2389 			/* 384 bytes for read and write. */
   2390 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2391 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2392 			    (0x0F);
   2393 		}
   2394 
   2395 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2396 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2397 			uint32_t tmp;
   2398 
   2399 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2400 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2401 			if (tmp == 6 || tmp == 7)
   2402 				dma_rw_ctl |=
   2403 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2404 
   2405 			/* Set PCI-X DMA write workaround. */
   2406 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2407 		}
   2408 	} else {
   2409 		/* Conventional PCI bus: 256 bytes for read and write. */
   2410 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2411 		    device_xname(sc->bge_dev)));
   2412 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2413 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2414 
   2415 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2416 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2417 			dma_rw_ctl |= 0x0F;
   2418 	}
   2419 
   2420 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2421 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2422 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2423 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2424 
   2425 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2426 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2427 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2428 
   2429 	if (BGE_IS_57765_PLUS(sc)) {
   2430 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2431 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2432 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2433 
   2434 		/*
   2435 		 * Enable HW workaround for controllers that misinterpret
   2436 		 * a status tag update and leave interrupts permanently
   2437 		 * disabled.
   2438 		 */
   2439 		if (!BGE_IS_57765_FAMILY(sc) &&
   2440 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
   2441 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2442 	}
   2443 
   2444 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2445 	    dma_rw_ctl);
   2446 
   2447 	/*
   2448 	 * Set up general mode register.
   2449 	 */
   2450 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2451 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2452 		/* Retain Host-2-BMC settings written by APE firmware. */
   2453 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2454 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2455 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2456 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2457 	}
   2458 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2459 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2460 
   2461 	/*
   2462 	 * BCM5701 B5 have a bug causing data corruption when using
   2463 	 * 64-bit DMA reads, which can be terminated early and then
   2464 	 * completed later as 32-bit accesses, in combination with
   2465 	 * certain bridges.
   2466 	 */
   2467 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2468 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2469 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2470 
   2471 	/*
   2472 	 * Tell the firmware the driver is running
   2473 	 */
   2474 	if (sc->bge_asf_mode & ASF_STACKUP)
   2475 		mode_ctl |= BGE_MODECTL_STACKUP;
   2476 
   2477 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2478 
   2479 	/*
   2480 	 * Disable memory write invalidate.  Apparently it is not supported
   2481 	 * properly by these devices.
   2482 	 */
   2483 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2484 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2485 
   2486 #ifdef __brokenalpha__
   2487 	/*
   2488 	 * Must insure that we do not cross an 8K (bytes) boundary
   2489 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2490 	 * restriction on some ALPHA platforms with early revision
   2491 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2492 	 */
   2493 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2494 #endif
   2495 
   2496 	/* Set the timer prescaler (always 66MHz) */
   2497 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2498 
   2499 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2500 		DELAY(40);	/* XXX */
   2501 
   2502 		/* Put PHY into ready state */
   2503 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2504 		DELAY(40);
   2505 	}
   2506 
   2507 	return 0;
   2508 }
   2509 
   2510 static int
   2511 bge_blockinit(struct bge_softc *sc)
   2512 {
   2513 	volatile struct bge_rcb	 *rcb;
   2514 	bus_size_t rcb_addr;
   2515 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2516 	bge_hostaddr taddr;
   2517 	uint32_t	dmactl, mimode, val;
   2518 	int		i, limit;
   2519 
   2520 	/*
   2521 	 * Initialize the memory window pointer register so that
   2522 	 * we can access the first 32K of internal NIC RAM. This will
   2523 	 * allow us to set up the TX send ring RCBs and the RX return
   2524 	 * ring RCBs, plus other things which live in NIC memory.
   2525 	 */
   2526 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2527 
   2528 	if (!BGE_IS_5705_PLUS(sc)) {
   2529 		/* 57XX step 33 */
   2530 		/* Configure mbuf memory pool */
   2531 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2532 		    BGE_BUFFPOOL_1);
   2533 
   2534 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2535 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2536 		else
   2537 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2538 
   2539 		/* 57XX step 34 */
   2540 		/* Configure DMA resource pool */
   2541 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2542 		    BGE_DMA_DESCRIPTORS);
   2543 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2544 	}
   2545 
   2546 	/* 5718 step 11, 57XX step 35 */
   2547 	/*
   2548 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2549 	 * recommend these.
   2550 	 */
   2551 	if (BGE_IS_5717_PLUS(sc)) {
   2552 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2553 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2554 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2555 	} else if (BGE_IS_5705_PLUS(sc)) {
   2556 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2557 
   2558 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2559 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2560 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2561 		} else {
   2562 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2563 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2564 		}
   2565 	} else {
   2566 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2567 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2568 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2569 	}
   2570 
   2571 	/* 57XX step 36 */
   2572 	/* Configure DMA resource watermarks */
   2573 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2574 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2575 
   2576 	/* 5718 step 13, 57XX step 38 */
   2577 	/* Enable buffer manager */
   2578 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2579 	/*
   2580 	 * Change the arbitration algorithm of TXMBUF read request to
   2581 	 * round-robin instead of priority based for BCM5719.  When
   2582 	 * TXFIFO is almost empty, RDMA will hold its request until
   2583 	 * TXFIFO is not almost empty.
   2584 	 */
   2585 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2586 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2587 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2588 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2589 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2590 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2591 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2592 
   2593 	/* 57XX step 39 */
   2594 	/* Poll for buffer manager start indication */
   2595 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2596 		DELAY(10);
   2597 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2598 			break;
   2599 	}
   2600 
   2601 	if (i == BGE_TIMEOUT * 2) {
   2602 		aprint_error_dev(sc->bge_dev,
   2603 		    "buffer manager failed to start\n");
   2604 		return ENXIO;
   2605 	}
   2606 
   2607 	/* 57XX step 40 */
   2608 	/* Enable flow-through queues */
   2609 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2610 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2611 
   2612 	/* Wait until queue initialization is complete */
   2613 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2614 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2615 			break;
   2616 		DELAY(10);
   2617 	}
   2618 
   2619 	if (i == BGE_TIMEOUT * 2) {
   2620 		aprint_error_dev(sc->bge_dev,
   2621 		    "flow-through queue init failed\n");
   2622 		return ENXIO;
   2623 	}
   2624 
   2625 	/*
   2626 	 * Summary of rings supported by the controller:
   2627 	 *
   2628 	 * Standard Receive Producer Ring
   2629 	 * - This ring is used to feed receive buffers for "standard"
   2630 	 *   sized frames (typically 1536 bytes) to the controller.
   2631 	 *
   2632 	 * Jumbo Receive Producer Ring
   2633 	 * - This ring is used to feed receive buffers for jumbo sized
   2634 	 *   frames (i.e. anything bigger than the "standard" frames)
   2635 	 *   to the controller.
   2636 	 *
   2637 	 * Mini Receive Producer Ring
   2638 	 * - This ring is used to feed receive buffers for "mini"
   2639 	 *   sized frames to the controller.
   2640 	 * - This feature required external memory for the controller
   2641 	 *   but was never used in a production system.  Should always
   2642 	 *   be disabled.
   2643 	 *
   2644 	 * Receive Return Ring
   2645 	 * - After the controller has placed an incoming frame into a
   2646 	 *   receive buffer that buffer is moved into a receive return
   2647 	 *   ring.  The driver is then responsible to passing the
   2648 	 *   buffer up to the stack.  Many versions of the controller
   2649 	 *   support multiple RR rings.
   2650 	 *
   2651 	 * Send Ring
   2652 	 * - This ring is used for outgoing frames.  Many versions of
   2653 	 *   the controller support multiple send rings.
   2654 	 */
   2655 
   2656 	/* 5718 step 15, 57XX step 41 */
   2657 	/* Initialize the standard RX ring control block */
   2658 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2659 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2660 	/* 5718 step 16 */
   2661 	if (BGE_IS_57765_PLUS(sc)) {
   2662 		/*
   2663 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2664 		 * Bits 15-2 : Maximum RX frame size
   2665 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2666 		 * Bit 0     : Reserved
   2667 		 */
   2668 		rcb->bge_maxlen_flags =
   2669 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2670 	} else if (BGE_IS_5705_PLUS(sc)) {
   2671 		/*
   2672 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2673 		 * Bits 15-2 : Reserved (should be 0)
   2674 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2675 		 * Bit 0     : Reserved
   2676 		 */
   2677 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2678 	} else {
   2679 		/*
   2680 		 * Ring size is always XXX entries
   2681 		 * Bits 31-16: Maximum RX frame size
   2682 		 * Bits 15-2 : Reserved (should be 0)
   2683 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2684 		 * Bit 0     : Reserved
   2685 		 */
   2686 		rcb->bge_maxlen_flags =
   2687 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2688 	}
   2689 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2690 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2691 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2692 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2693 	else
   2694 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2695 	/* Write the standard receive producer ring control block. */
   2696 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2697 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2698 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2699 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2700 
   2701 	/* Reset the standard receive producer ring producer index. */
   2702 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2703 
   2704 	/* 57XX step 42 */
   2705 	/*
   2706 	 * Initialize the jumbo RX ring control block
   2707 	 * We set the 'ring disabled' bit in the flags
   2708 	 * field until we're actually ready to start
   2709 	 * using this ring (i.e. once we set the MTU
   2710 	 * high enough to require it).
   2711 	 */
   2712 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2713 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2714 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2715 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2716 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2717 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2718 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2719 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2720 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2721 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2722 		else
   2723 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2724 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2725 		    rcb->bge_hostaddr.bge_addr_hi);
   2726 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2727 		    rcb->bge_hostaddr.bge_addr_lo);
   2728 		/* Program the jumbo receive producer ring RCB parameters. */
   2729 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2730 		    rcb->bge_maxlen_flags);
   2731 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2732 		/* Reset the jumbo receive producer ring producer index. */
   2733 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2734 	}
   2735 
   2736 	/* 57XX step 43 */
   2737 	/* Disable the mini receive producer ring RCB. */
   2738 	if (BGE_IS_5700_FAMILY(sc)) {
   2739 		/* Set up dummy disabled mini ring RCB */
   2740 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2741 		rcb->bge_maxlen_flags =
   2742 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2743 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2744 		    rcb->bge_maxlen_flags);
   2745 		/* Reset the mini receive producer ring producer index. */
   2746 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2747 
   2748 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2749 		    offsetof(struct bge_ring_data, bge_info),
   2750 		    sizeof (struct bge_gib),
   2751 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2752 	}
   2753 
   2754 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2755 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2756 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2757 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2758 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2759 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2760 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2761 	}
   2762 	/* 5718 step 14, 57XX step 44 */
   2763 	/*
   2764 	 * The BD ring replenish thresholds control how often the
   2765 	 * hardware fetches new BD's from the producer rings in host
   2766 	 * memory.  Setting the value too low on a busy system can
   2767 	 * starve the hardware and recue the throughpout.
   2768 	 *
   2769 	 * Set the BD ring replenish thresholds. The recommended
   2770 	 * values are 1/8th the number of descriptors allocated to
   2771 	 * each ring, but since we try to avoid filling the entire
   2772 	 * ring we set these to the minimal value of 8.  This needs to
   2773 	 * be done on several of the supported chip revisions anyway,
   2774 	 * to work around HW bugs.
   2775 	 */
   2776 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2777 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2778 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2779 
   2780 	/* 5718 step 18 */
   2781 	if (BGE_IS_5717_PLUS(sc)) {
   2782 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2783 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2784 	}
   2785 
   2786 	/* 57XX step 45 */
   2787 	/*
   2788 	 * Disable all send rings by setting the 'ring disabled' bit
   2789 	 * in the flags field of all the TX send ring control blocks,
   2790 	 * located in NIC memory.
   2791 	 */
   2792 	if (BGE_IS_5700_FAMILY(sc)) {
   2793 		/* 5700 to 5704 had 16 send rings. */
   2794 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2795 	} else if (BGE_IS_5717_PLUS(sc)) {
   2796 		limit = BGE_TX_RINGS_5717_MAX;
   2797 	} else if (BGE_IS_57765_FAMILY(sc)) {
   2798 		limit = BGE_TX_RINGS_57765_MAX;
   2799 	} else
   2800 		limit = 1;
   2801 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2802 	for (i = 0; i < limit; i++) {
   2803 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2804 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2805 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2806 		rcb_addr += sizeof(struct bge_rcb);
   2807 	}
   2808 
   2809 	/* 57XX step 46 and 47 */
   2810 	/* Configure send ring RCB 0 (we use only the first ring) */
   2811 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2812 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2813 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2814 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2815 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2816 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2817 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2818 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2819 	else
   2820 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2821 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2822 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2823 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2824 
   2825 	/* 57XX step 48 */
   2826 	/*
   2827 	 * Disable all receive return rings by setting the
   2828 	 * 'ring diabled' bit in the flags field of all the receive
   2829 	 * return ring control blocks, located in NIC memory.
   2830 	 */
   2831 	if (BGE_IS_5717_PLUS(sc)) {
   2832 		/* Should be 17, use 16 until we get an SRAM map. */
   2833 		limit = 16;
   2834 	} else if (BGE_IS_5700_FAMILY(sc))
   2835 		limit = BGE_RX_RINGS_MAX;
   2836 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2837 	    BGE_IS_57765_FAMILY(sc))
   2838 		limit = 4;
   2839 	else
   2840 		limit = 1;
   2841 	/* Disable all receive return rings */
   2842 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2843 	for (i = 0; i < limit; i++) {
   2844 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2845 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2846 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2847 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2848 			BGE_RCB_FLAG_RING_DISABLED));
   2849 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2850 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2851 		    (i * (sizeof(uint64_t))), 0);
   2852 		rcb_addr += sizeof(struct bge_rcb);
   2853 	}
   2854 
   2855 	/* 57XX step 49 */
   2856 	/*
   2857 	 * Set up receive return ring 0.  Note that the NIC address
   2858 	 * for RX return rings is 0x0.  The return rings live entirely
   2859 	 * within the host, so the nicaddr field in the RCB isn't used.
   2860 	 */
   2861 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2862 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2863 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2864 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2865 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2866 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2867 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2868 
   2869 	/* 5718 step 24, 57XX step 53 */
   2870 	/* Set random backoff seed for TX */
   2871 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2872 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2873 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2874 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2875 	    BGE_TX_BACKOFF_SEED_MASK);
   2876 
   2877 	/* 5718 step 26, 57XX step 55 */
   2878 	/* Set inter-packet gap */
   2879 	val = 0x2620;
   2880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2881 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2882 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2883 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2884 
   2885 	/* 5718 step 27, 57XX step 56 */
   2886 	/*
   2887 	 * Specify which ring to use for packets that don't match
   2888 	 * any RX rules.
   2889 	 */
   2890 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2891 
   2892 	/* 5718 step 28, 57XX step 57 */
   2893 	/*
   2894 	 * Configure number of RX lists. One interrupt distribution
   2895 	 * list, sixteen active lists, one bad frames class.
   2896 	 */
   2897 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2898 
   2899 	/* 5718 step 29, 57XX step 58 */
   2900 	/* Inialize RX list placement stats mask. */
   2901 	if (BGE_IS_575X_PLUS(sc)) {
   2902 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2903 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2904 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2905 	} else
   2906 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2907 
   2908 	/* 5718 step 30, 57XX step 59 */
   2909 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2910 
   2911 	/* 5718 step 33, 57XX step 62 */
   2912 	/* Disable host coalescing until we get it set up */
   2913 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2914 
   2915 	/* 5718 step 34, 57XX step 63 */
   2916 	/* Poll to make sure it's shut down. */
   2917 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2918 		DELAY(10);
   2919 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2920 			break;
   2921 	}
   2922 
   2923 	if (i == BGE_TIMEOUT * 2) {
   2924 		aprint_error_dev(sc->bge_dev,
   2925 		    "host coalescing engine failed to idle\n");
   2926 		return ENXIO;
   2927 	}
   2928 
   2929 	/* 5718 step 35, 36, 37 */
   2930 	/* Set up host coalescing defaults */
   2931 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2932 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2933 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2934 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2935 	if (!(BGE_IS_5705_PLUS(sc))) {
   2936 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2937 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2938 	}
   2939 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2940 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2941 
   2942 	/* Set up address of statistics block */
   2943 	if (BGE_IS_5700_FAMILY(sc)) {
   2944 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2945 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2946 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2947 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2948 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2949 	}
   2950 
   2951 	/* 5718 step 38 */
   2952 	/* Set up address of status block */
   2953 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2954 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2955 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2956 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2957 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2958 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2959 
   2960 	/* Set up status block size. */
   2961 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2962 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2963 		val = BGE_STATBLKSZ_FULL;
   2964 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2965 	} else {
   2966 		val = BGE_STATBLKSZ_32BYTE;
   2967 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2968 	}
   2969 
   2970 	/* 5718 step 39, 57XX step 73 */
   2971 	/* Turn on host coalescing state machine */
   2972 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2973 
   2974 	/* 5718 step 40, 57XX step 74 */
   2975 	/* Turn on RX BD completion state machine and enable attentions */
   2976 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2977 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2978 
   2979 	/* 5718 step 41, 57XX step 75 */
   2980 	/* Turn on RX list placement state machine */
   2981 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2982 
   2983 	/* 57XX step 76 */
   2984 	/* Turn on RX list selector state machine. */
   2985 	if (!(BGE_IS_5705_PLUS(sc)))
   2986 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2987 
   2988 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2989 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2990 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2991 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2992 
   2993 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2994 		val |= BGE_PORTMODE_TBI;
   2995 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2996 		val |= BGE_PORTMODE_GMII;
   2997 	else
   2998 		val |= BGE_PORTMODE_MII;
   2999 
   3000 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   3001 	/* Allow APE to send/receive frames. */
   3002 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3003 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3004 
   3005 	/* Turn on DMA, clear stats */
   3006 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   3007 	/* 5718 step 44 */
   3008 	DELAY(40);
   3009 
   3010 	/* 5718 step 45, 57XX step 79 */
   3011 	/* Set misc. local control, enable interrupts on attentions */
   3012 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   3013 	if (BGE_IS_5717_PLUS(sc)) {
   3014 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   3015 		/* 5718 step 46 */
   3016 		DELAY(100);
   3017 	}
   3018 
   3019 	/* 57XX step 81 */
   3020 	/* Turn on DMA completion state machine */
   3021 	if (!(BGE_IS_5705_PLUS(sc)))
   3022 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3023 
   3024 	/* 5718 step 47, 57XX step 82 */
   3025 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   3026 
   3027 	/* 5718 step 48 */
   3028 	/* Enable host coalescing bug fix. */
   3029 	if (BGE_IS_5755_PLUS(sc))
   3030 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   3031 
   3032 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3033 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   3034 
   3035 	/* Turn on write DMA state machine */
   3036 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   3037 	/* 5718 step 49 */
   3038 	DELAY(40);
   3039 
   3040 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   3041 
   3042 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   3043 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3044 
   3045 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3046 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3047 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3048 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   3049 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   3050 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   3051 
   3052 	if (sc->bge_flags & BGEF_PCIE)
   3053 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   3054 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   3055 		if (ifp->if_mtu <= ETHERMTU)
   3056 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   3057 	}
   3058 	if (sc->bge_flags & BGEF_TSO)
   3059 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   3060 
   3061 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3062 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   3063 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   3064 		/*
   3065 		 * Allow multiple outstanding read requests from
   3066 		 * non-LSO read DMA engine.
   3067 		 */
   3068 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3069 	}
   3070 
   3071 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3072 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3073 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3074 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   3075 	    BGE_IS_57765_PLUS(sc)) {
   3076 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   3077 		/*
   3078 		 * Adjust tx margin to prevent TX data corruption and
   3079 		 * fix internal FIFO overflow.
   3080 		 */
   3081 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   3082 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3083 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3084 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3085 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3086 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3087 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3088 		}
   3089 		/*
   3090 		 * Enable fix for read DMA FIFO overruns.
   3091 		 * The fix is to limit the number of RX BDs
   3092 		 * the hardware would fetch at a fime.
   3093 		 */
   3094 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3095 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3096 	}
   3097 
   3098 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3099 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3100 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3101 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3102 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3103 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3104 		/*
   3105 		 * Allow 4KB burst length reads for non-LSO frames.
   3106 		 * Enable 512B burst length reads for buffer descriptors.
   3107 		 */
   3108 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3109 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3110 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3111 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3112 	}
   3113 
   3114 	/* Turn on read DMA state machine */
   3115 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3116 	/* 5718 step 52 */
   3117 	delay(40);
   3118 
   3119 	/* 5718 step 56, 57XX step 84 */
   3120 	/* Turn on RX data completion state machine */
   3121 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3122 
   3123 	/* Turn on RX data and RX BD initiator state machine */
   3124 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3125 
   3126 	/* 57XX step 85 */
   3127 	/* Turn on Mbuf cluster free state machine */
   3128 	if (!BGE_IS_5705_PLUS(sc))
   3129 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3130 
   3131 	/* 5718 step 57, 57XX step 86 */
   3132 	/* Turn on send data completion state machine */
   3133 	val = BGE_SDCMODE_ENABLE;
   3134 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3135 		val |= BGE_SDCMODE_CDELAY;
   3136 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3137 
   3138 	/* 5718 step 58 */
   3139 	/* Turn on send BD completion state machine */
   3140 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3141 
   3142 	/* 57XX step 88 */
   3143 	/* Turn on RX BD initiator state machine */
   3144 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3145 
   3146 	/* 5718 step 60, 57XX step 90 */
   3147 	/* Turn on send data initiator state machine */
   3148 	if (sc->bge_flags & BGEF_TSO) {
   3149 		/* XXX: magic value from Linux driver */
   3150 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3151 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3152 	} else
   3153 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3154 
   3155 	/* 5718 step 61, 57XX step 91 */
   3156 	/* Turn on send BD initiator state machine */
   3157 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3158 
   3159 	/* 5718 step 62, 57XX step 92 */
   3160 	/* Turn on send BD selector state machine */
   3161 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3162 
   3163 	/* 5718 step 31, 57XX step 60 */
   3164 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3165 	/* 5718 step 32, 57XX step 61 */
   3166 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3167 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3168 
   3169 	/* ack/clear link change events */
   3170 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3171 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3172 	    BGE_MACSTAT_LINK_CHANGED);
   3173 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3174 
   3175 	/*
   3176 	 * Enable attention when the link has changed state for
   3177 	 * devices that use auto polling.
   3178 	 */
   3179 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3180 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3181 	} else {
   3182 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3183 			mimode = BGE_MIMODE_500KHZ_CONST;
   3184 		else
   3185 			mimode = BGE_MIMODE_BASE;
   3186 		/* 5718 step 68. 5718 step 69 (optionally). */
   3187 		if (BGE_IS_5700_FAMILY(sc) ||
   3188 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3189 			mimode |= BGE_MIMODE_AUTOPOLL;
   3190 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3191 		}
   3192 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3193 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3194 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3195 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3196 			    BGE_EVTENB_MI_INTERRUPT);
   3197 	}
   3198 
   3199 	/*
   3200 	 * Clear any pending link state attention.
   3201 	 * Otherwise some link state change events may be lost until attention
   3202 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3203 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3204 	 * state change attentions implies clearing pending attention.
   3205 	 */
   3206 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3207 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3208 	    BGE_MACSTAT_LINK_CHANGED);
   3209 
   3210 	/* Enable link state change attentions. */
   3211 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3212 
   3213 	return 0;
   3214 }
   3215 
   3216 static const struct bge_revision *
   3217 bge_lookup_rev(uint32_t chipid)
   3218 {
   3219 	const struct bge_revision *br;
   3220 
   3221 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3222 		if (br->br_chipid == chipid)
   3223 			return br;
   3224 	}
   3225 
   3226 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3227 		if (br->br_chipid == BGE_ASICREV(chipid))
   3228 			return br;
   3229 	}
   3230 
   3231 	return NULL;
   3232 }
   3233 
   3234 static const struct bge_product *
   3235 bge_lookup(const struct pci_attach_args *pa)
   3236 {
   3237 	const struct bge_product *bp;
   3238 
   3239 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3240 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3241 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3242 			return bp;
   3243 	}
   3244 
   3245 	return NULL;
   3246 }
   3247 
   3248 static uint32_t
   3249 bge_chipid(const struct pci_attach_args *pa)
   3250 {
   3251 	uint32_t id;
   3252 
   3253 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3254 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3255 
   3256 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3257 		switch (PCI_PRODUCT(pa->pa_id)) {
   3258 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3259 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3260 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3261 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3262 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
   3263 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3264 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3265 			break;
   3266 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3267 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3268 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3269 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3270 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3271 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3272 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3273 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3274 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3275 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3276 			break;
   3277 		default:
   3278 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3279 			    BGE_PCI_PRODID_ASICREV);
   3280 			break;
   3281 		}
   3282 	}
   3283 
   3284 	return id;
   3285 }
   3286 
   3287 /*
   3288  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3289  * against our list and return its name if we find a match. Note
   3290  * that since the Broadcom controller contains VPD support, we
   3291  * can get the device name string from the controller itself instead
   3292  * of the compiled-in string. This is a little slow, but it guarantees
   3293  * we'll always announce the right product name.
   3294  */
   3295 static int
   3296 bge_probe(device_t parent, cfdata_t match, void *aux)
   3297 {
   3298 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3299 
   3300 	if (bge_lookup(pa) != NULL)
   3301 		return 1;
   3302 
   3303 	return 0;
   3304 }
   3305 
   3306 static void
   3307 bge_attach(device_t parent, device_t self, void *aux)
   3308 {
   3309 	struct bge_softc	*sc = device_private(self);
   3310 	struct pci_attach_args	*pa = aux;
   3311 	prop_dictionary_t dict;
   3312 	const struct bge_product *bp;
   3313 	const struct bge_revision *br;
   3314 	pci_chipset_tag_t	pc;
   3315 	pci_intr_handle_t	ih;
   3316 	const char		*intrstr = NULL;
   3317 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3318 	uint32_t		command;
   3319 	struct ifnet		*ifp;
   3320 	uint32_t		misccfg, mimode;
   3321 	void *			kva;
   3322 	u_char			eaddr[ETHER_ADDR_LEN];
   3323 	pcireg_t		memtype, subid, reg;
   3324 	bus_addr_t		memaddr;
   3325 	uint32_t		pm_ctl;
   3326 	bool			no_seeprom;
   3327 	int			capmask;
   3328 	int			mii_flags;
   3329 	int			map_flags;
   3330 	char intrbuf[PCI_INTRSTR_LEN];
   3331 
   3332 	bp = bge_lookup(pa);
   3333 	KASSERT(bp != NULL);
   3334 
   3335 	sc->sc_pc = pa->pa_pc;
   3336 	sc->sc_pcitag = pa->pa_tag;
   3337 	sc->bge_dev = self;
   3338 
   3339 	sc->bge_pa = *pa;
   3340 	pc = sc->sc_pc;
   3341 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3342 
   3343 	aprint_naive(": Ethernet controller\n");
   3344 	aprint_normal(": %s\n", bp->bp_name);
   3345 
   3346 	/*
   3347 	 * Map control/status registers.
   3348 	 */
   3349 	DPRINTFN(5, ("Map control/status regs\n"));
   3350 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3351 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3352 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3353 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3354 
   3355 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3356 		aprint_error_dev(sc->bge_dev,
   3357 		    "failed to enable memory mapping!\n");
   3358 		return;
   3359 	}
   3360 
   3361 	DPRINTFN(5, ("pci_mem_find\n"));
   3362 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3363 	switch (memtype) {
   3364 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3365 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3366 #if 0
   3367 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3368 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3369 		    &memaddr, &sc->bge_bsize) == 0)
   3370 			break;
   3371 #else
   3372 		/*
   3373 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3374 		 * system get NMI on boot (PR#48451). This problem might not be
   3375 		 * the driver's bug but our PCI common part's bug. Until we
   3376 		 * find a real reason, we ignore the prefetchable bit.
   3377 		 */
   3378 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3379 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3380 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3381 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3382 			    map_flags, &sc->bge_bhandle) == 0) {
   3383 				sc->bge_btag = pa->pa_memt;
   3384 				break;
   3385 			}
   3386 		}
   3387 #endif
   3388 	default:
   3389 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3390 		return;
   3391 	}
   3392 
   3393 	DPRINTFN(5, ("pci_intr_map\n"));
   3394 	if (pci_intr_map(pa, &ih)) {
   3395 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3396 		return;
   3397 	}
   3398 
   3399 	DPRINTFN(5, ("pci_intr_string\n"));
   3400 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   3401 
   3402 	DPRINTFN(5, ("pci_intr_establish\n"));
   3403 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3404 
   3405 	if (sc->bge_intrhand == NULL) {
   3406 		aprint_error_dev(sc->bge_dev,
   3407 		    "couldn't establish interrupt%s%s\n",
   3408 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3409 		return;
   3410 	}
   3411 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3412 
   3413 	/* Save various chip information. */
   3414 	sc->bge_chipid = bge_chipid(pa);
   3415 	sc->bge_phy_addr = bge_phy_addr(sc);
   3416 
   3417 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3418 	        &sc->bge_pciecap, NULL) != 0)
   3419 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3420 		/* PCIe */
   3421 		sc->bge_flags |= BGEF_PCIE;
   3422 		/* Extract supported maximum payload size. */
   3423 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3424 		    sc->bge_pciecap + PCIE_DCAP);
   3425 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3426 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3427 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3428 			sc->bge_expmrq = 2048;
   3429 		else
   3430 			sc->bge_expmrq = 4096;
   3431 		bge_set_max_readrq(sc);
   3432 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3433 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3434 		/* PCI-X */
   3435 		sc->bge_flags |= BGEF_PCIX;
   3436 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3437 			&sc->bge_pcixcap, NULL) == 0)
   3438 			aprint_error_dev(sc->bge_dev,
   3439 			    "unable to find PCIX capability\n");
   3440 	}
   3441 
   3442 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3443 		/*
   3444 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3445 		 * can clobber the chip's PCI config-space power control
   3446 		 * registers, leaving the card in D3 powersave state. We do
   3447 		 * not have memory-mapped registers in this state, so force
   3448 		 * device into D0 state before starting initialization.
   3449 		 */
   3450 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3451 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3452 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3453 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3454 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3455 	}
   3456 
   3457 	/* Save chipset family. */
   3458 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3459 	case BGE_ASICREV_BCM5717:
   3460 	case BGE_ASICREV_BCM5719:
   3461 	case BGE_ASICREV_BCM5720:
   3462 		sc->bge_flags |= BGEF_5717_PLUS;
   3463 		/* FALLTHROUGH */
   3464 	case BGE_ASICREV_BCM57765:
   3465 	case BGE_ASICREV_BCM57766:
   3466 		if (!BGE_IS_5717_PLUS(sc))
   3467 			sc->bge_flags |= BGEF_57765_FAMILY;
   3468 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3469 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3470 		/* Jumbo frame on BCM5719 A0 does not work. */
   3471 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3472 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3473 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3474 		break;
   3475 	case BGE_ASICREV_BCM5755:
   3476 	case BGE_ASICREV_BCM5761:
   3477 	case BGE_ASICREV_BCM5784:
   3478 	case BGE_ASICREV_BCM5785:
   3479 	case BGE_ASICREV_BCM5787:
   3480 	case BGE_ASICREV_BCM57780:
   3481 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3482 		break;
   3483 	case BGE_ASICREV_BCM5700:
   3484 	case BGE_ASICREV_BCM5701:
   3485 	case BGE_ASICREV_BCM5703:
   3486 	case BGE_ASICREV_BCM5704:
   3487 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3488 		break;
   3489 	case BGE_ASICREV_BCM5714_A0:
   3490 	case BGE_ASICREV_BCM5780:
   3491 	case BGE_ASICREV_BCM5714:
   3492 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3493 		/* FALLTHROUGH */
   3494 	case BGE_ASICREV_BCM5750:
   3495 	case BGE_ASICREV_BCM5752:
   3496 	case BGE_ASICREV_BCM5906:
   3497 		sc->bge_flags |= BGEF_575X_PLUS;
   3498 		/* FALLTHROUGH */
   3499 	case BGE_ASICREV_BCM5705:
   3500 		sc->bge_flags |= BGEF_5705_PLUS;
   3501 		break;
   3502 	}
   3503 
   3504 	/* Identify chips with APE processor. */
   3505 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3506 	case BGE_ASICREV_BCM5717:
   3507 	case BGE_ASICREV_BCM5719:
   3508 	case BGE_ASICREV_BCM5720:
   3509 	case BGE_ASICREV_BCM5761:
   3510 		sc->bge_flags |= BGEF_APE;
   3511 		break;
   3512 	}
   3513 
   3514 	/*
   3515 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3516 	 * not actually a MAC controller bug but an issue with the embedded
   3517 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3518 	 */
   3519 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3520 		sc->bge_flags |= BGEF_40BIT_BUG;
   3521 
   3522 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3523 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3524 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3525 #if 0
   3526 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3527 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3528 			&sc->bge_apesize)) {
   3529 			aprint_error_dev(sc->bge_dev,
   3530 			    "couldn't map BAR2 memory\n");
   3531 			return;
   3532 		}
   3533 #else
   3534 		/*
   3535 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3536 		 * system get NMI on boot (PR#48451). This problem might not be
   3537 		 * the driver's bug but our PCI common part's bug. Until we
   3538 		 * find a real reason, we ignore the prefetchable bit.
   3539 		 */
   3540 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3541 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3542 			aprint_error_dev(sc->bge_dev,
   3543 			    "couldn't map BAR2 memory\n");
   3544 			return;
   3545 		}
   3546 
   3547 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3548 		if (bus_space_map(pa->pa_memt, memaddr,
   3549 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3550 			aprint_error_dev(sc->bge_dev,
   3551 			    "couldn't map BAR2 memory\n");
   3552 			return;
   3553 		}
   3554 		sc->bge_apetag = pa->pa_memt;
   3555 #endif
   3556 
   3557 		/* Enable APE register/memory access by host driver. */
   3558 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3559 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3560 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3561 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3562 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3563 
   3564 		bge_ape_lock_init(sc);
   3565 		bge_ape_read_fw_ver(sc);
   3566 	}
   3567 
   3568 	/* Identify the chips that use an CPMU. */
   3569 	if (BGE_IS_5717_PLUS(sc) ||
   3570 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3571 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3572 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3573 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3574 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3575 
   3576 	/* Set MI_MODE */
   3577 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3578 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3579 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3580 	else
   3581 		mimode |= BGE_MIMODE_BASE;
   3582 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3583 
   3584 	/*
   3585 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3586 	 * been observed in the first few bytes of some received packets.
   3587 	 * Aligning the packet buffer in memory eliminates the corruption.
   3588 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3589 	 * which do not support unaligned accesses, we will realign the
   3590 	 * payloads by copying the received packets.
   3591 	 */
   3592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3593 	    sc->bge_flags & BGEF_PCIX)
   3594 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3595 
   3596 	if (BGE_IS_5700_FAMILY(sc))
   3597 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3598 
   3599 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3600 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3601 
   3602 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3603 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3604 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3605 		sc->bge_flags |= BGEF_IS_5788;
   3606 
   3607 	/*
   3608 	 * Some controllers seem to require a special firmware to use
   3609 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3610 	 * claims that the TSO performed by the firmware is slower than
   3611 	 * hardware based TSO. Moreover the firmware based TSO has one
   3612 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3613 	 * header is greater than 80 bytes. The workaround for the TSO
   3614 	 * bug exist but it seems it's too expensive than not using
   3615 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3616 	 * the TSO to the controllers that are not affected TSO issues
   3617 	 * (e.g. 5755 or higher).
   3618 	 */
   3619 	if (BGE_IS_5755_PLUS(sc)) {
   3620 		/*
   3621 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3622 		 * explicit device id check is required.
   3623 		 */
   3624 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3625 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3626 			sc->bge_flags |= BGEF_TSO;
   3627 	}
   3628 
   3629 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3630 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3631 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3632 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3633 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3634 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3635 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3636 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3637 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3638 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3639 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3640 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3641 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3642 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3643 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3645 		/* These chips are 10/100 only. */
   3646 		capmask &= ~BMSR_EXTSTAT;
   3647 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3648 	}
   3649 
   3650 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3651 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3652 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3653 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3654 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3655 
   3656 	/* Set various PHY bug flags. */
   3657 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3658 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3659 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3660 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3661 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3662 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3663 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3664 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3665 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3666 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3667 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3668 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3669 	if (BGE_IS_5705_PLUS(sc) &&
   3670 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3671 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3672 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3673 	    !BGE_IS_57765_PLUS(sc)) {
   3674 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3675 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3676 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3677 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3678 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3679 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3680 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3681 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3682 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3683 		} else
   3684 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3685 	}
   3686 
   3687 	/*
   3688 	 * SEEPROM check.
   3689 	 * First check if firmware knows we do not have SEEPROM.
   3690 	 */
   3691 	if (prop_dictionary_get_bool(device_properties(self),
   3692 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3693 	 	sc->bge_flags |= BGEF_NO_EEPROM;
   3694 
   3695 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3696 		sc->bge_flags |= BGEF_NO_EEPROM;
   3697 
   3698 	/* Now check the 'ROM failed' bit on the RX CPU */
   3699 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3700 		sc->bge_flags |= BGEF_NO_EEPROM;
   3701 
   3702 	sc->bge_asf_mode = 0;
   3703 	/* No ASF if APE present. */
   3704 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3705 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3706 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3707 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3708 			    BGE_HWCFG_ASF) {
   3709 				sc->bge_asf_mode |= ASF_ENABLE;
   3710 				sc->bge_asf_mode |= ASF_STACKUP;
   3711 				if (BGE_IS_575X_PLUS(sc))
   3712 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3713 			}
   3714 		}
   3715 	}
   3716 
   3717 	/*
   3718 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3719 	 * lock in bge_reset().
   3720 	 */
   3721 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3722 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3723 	delay(1000);
   3724 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3725 
   3726 	bge_stop_fw(sc);
   3727 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3728 	if (bge_reset(sc))
   3729 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3730 
   3731 	/*
   3732 	 * Read the hardware config word in the first 32k of NIC internal
   3733 	 * memory, or fall back to the config word in the EEPROM.
   3734 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3735 	 */
   3736 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3737 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3738 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3739 		uint32_t tmp;
   3740 
   3741 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3742 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3743 		    BGE_SRAM_DATA_VER_SHIFT;
   3744 		if ((0 < tmp) && (tmp < 0x100))
   3745 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3746 		if (sc->bge_flags & BGEF_PCIE)
   3747 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3748 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3749 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3750 		if (BGE_IS_5717_PLUS(sc))
   3751 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3752 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3753 		bge_read_eeprom(sc, (void *)&hwcfg,
   3754 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3755 		hwcfg = be32toh(hwcfg);
   3756 	}
   3757 	aprint_normal_dev(sc->bge_dev,
   3758 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3759 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3760 
   3761 	bge_sig_legacy(sc, BGE_RESET_START);
   3762 	bge_sig_post_reset(sc, BGE_RESET_START);
   3763 
   3764 	if (bge_chipinit(sc)) {
   3765 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3766 		bge_release_resources(sc);
   3767 		return;
   3768 	}
   3769 
   3770 	/*
   3771 	 * Get station address from the EEPROM.
   3772 	 */
   3773 	if (bge_get_eaddr(sc, eaddr)) {
   3774 		aprint_error_dev(sc->bge_dev,
   3775 		    "failed to read station address\n");
   3776 		bge_release_resources(sc);
   3777 		return;
   3778 	}
   3779 
   3780 	br = bge_lookup_rev(sc->bge_chipid);
   3781 
   3782 	if (br == NULL) {
   3783 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3784 		    sc->bge_chipid);
   3785 	} else {
   3786 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3787 		    br->br_name, sc->bge_chipid);
   3788 	}
   3789 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3790 
   3791 	/* Allocate the general information block and ring buffers. */
   3792 	if (pci_dma64_available(pa))
   3793 		sc->bge_dmatag = pa->pa_dmat64;
   3794 	else
   3795 		sc->bge_dmatag = pa->pa_dmat;
   3796 
   3797 	/* 40bit DMA workaround */
   3798 	if (sizeof(bus_addr_t) > 4) {
   3799 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3800 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3801 
   3802 			if (bus_dmatag_subregion(olddmatag, 0,
   3803 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
   3804 				BUS_DMA_NOWAIT) != 0) {
   3805 				aprint_error_dev(self,
   3806 				    "WARNING: failed to restrict dma range,"
   3807 				    " falling back to parent bus dma range\n");
   3808 				sc->bge_dmatag = olddmatag;
   3809 			}
   3810 		}
   3811 	}
   3812 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3813 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3814 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3815 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3816 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3817 		return;
   3818 	}
   3819 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3820 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3821 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3822 			   BUS_DMA_NOWAIT)) {
   3823 		aprint_error_dev(sc->bge_dev,
   3824 		    "can't map DMA buffers (%zu bytes)\n",
   3825 		    sizeof(struct bge_ring_data));
   3826 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3827 		    sc->bge_ring_rseg);
   3828 		return;
   3829 	}
   3830 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3831 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3832 	    sizeof(struct bge_ring_data), 0,
   3833 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3834 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3835 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3836 				 sizeof(struct bge_ring_data));
   3837 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3838 		    sc->bge_ring_rseg);
   3839 		return;
   3840 	}
   3841 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3842 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3843 			    sizeof(struct bge_ring_data), NULL,
   3844 			    BUS_DMA_NOWAIT)) {
   3845 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3846 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3847 				 sizeof(struct bge_ring_data));
   3848 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3849 		    sc->bge_ring_rseg);
   3850 		return;
   3851 	}
   3852 
   3853 	DPRINTFN(5, ("bzero\n"));
   3854 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3855 
   3856 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3857 
   3858 	/* Try to allocate memory for jumbo buffers. */
   3859 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3860 		if (bge_alloc_jumbo_mem(sc)) {
   3861 			aprint_error_dev(sc->bge_dev,
   3862 			    "jumbo buffer allocation failed\n");
   3863 		} else
   3864 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3865 	}
   3866 
   3867 	/* Set default tuneable values. */
   3868 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3869 	sc->bge_rx_coal_ticks = 150;
   3870 	sc->bge_rx_max_coal_bds = 64;
   3871 	sc->bge_tx_coal_ticks = 300;
   3872 	sc->bge_tx_max_coal_bds = 400;
   3873 	if (BGE_IS_5705_PLUS(sc)) {
   3874 		sc->bge_tx_coal_ticks = (12 * 5);
   3875 		sc->bge_tx_max_coal_bds = (12 * 5);
   3876 			aprint_verbose_dev(sc->bge_dev,
   3877 			    "setting short Tx thresholds\n");
   3878 	}
   3879 
   3880 	if (BGE_IS_5717_PLUS(sc))
   3881 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3882 	else if (BGE_IS_5705_PLUS(sc))
   3883 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3884 	else
   3885 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3886 
   3887 	/* Set up ifnet structure */
   3888 	ifp = &sc->ethercom.ec_if;
   3889 	ifp->if_softc = sc;
   3890 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3891 	ifp->if_ioctl = bge_ioctl;
   3892 	ifp->if_stop = bge_stop;
   3893 	ifp->if_start = bge_start;
   3894 	ifp->if_init = bge_init;
   3895 	ifp->if_watchdog = bge_watchdog;
   3896 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3897 	IFQ_SET_READY(&ifp->if_snd);
   3898 	DPRINTFN(5, ("strcpy if_xname\n"));
   3899 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3900 
   3901 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3902 		sc->ethercom.ec_if.if_capabilities |=
   3903 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3904 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3905 		sc->ethercom.ec_if.if_capabilities |=
   3906 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3907 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3908 #endif
   3909 	sc->ethercom.ec_capabilities |=
   3910 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3911 
   3912 	if (sc->bge_flags & BGEF_TSO)
   3913 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3914 
   3915 	/*
   3916 	 * Do MII setup.
   3917 	 */
   3918 	DPRINTFN(5, ("mii setup\n"));
   3919 	sc->bge_mii.mii_ifp = ifp;
   3920 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3921 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3922 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3923 
   3924 	/*
   3925 	 * Figure out what sort of media we have by checking the hardware
   3926 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3927 	 * unset. If that's the case, we have to rely on identifying the NIC
   3928 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3929 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3930 	 */
   3931 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3932 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3933 		if (BGE_IS_5705_PLUS(sc)) {
   3934 			sc->bge_flags |= BGEF_FIBER_MII;
   3935 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3936 		} else
   3937 			sc->bge_flags |= BGEF_FIBER_TBI;
   3938 	}
   3939 
   3940 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3941 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3942 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3943 
   3944 	/* set phyflags and chipid before mii_attach() */
   3945 	dict = device_properties(self);
   3946 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3947 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3948 
   3949 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3950 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3951 		    bge_ifmedia_sts);
   3952 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3953 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3954 			    0, NULL);
   3955 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3956 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3957 		/* Pretend the user requested this setting */
   3958 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3959 	} else {
   3960 		/*
   3961 		 * Do transceiver setup and tell the firmware the
   3962 		 * driver is down so we can try to get access the
   3963 		 * probe if ASF is running.  Retry a couple of times
   3964 		 * if we get a conflict with the ASF firmware accessing
   3965 		 * the PHY.
   3966 		 */
   3967 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3968 		bge_asf_driver_up(sc);
   3969 
   3970 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3971 			     bge_ifmedia_sts);
   3972 		mii_flags = MIIF_DOPAUSE;
   3973 		if (sc->bge_flags & BGEF_FIBER_MII)
   3974 			mii_flags |= MIIF_HAVEFIBER;
   3975 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
   3976 		    MII_OFFSET_ANY, mii_flags);
   3977 
   3978 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3979 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3980 			ifmedia_add(&sc->bge_mii.mii_media,
   3981 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3982 			ifmedia_set(&sc->bge_mii.mii_media,
   3983 				    IFM_ETHER|IFM_MANUAL);
   3984 		} else
   3985 			ifmedia_set(&sc->bge_mii.mii_media,
   3986 				    IFM_ETHER|IFM_AUTO);
   3987 
   3988 		/*
   3989 		 * Now tell the firmware we are going up after probing the PHY
   3990 		 */
   3991 		if (sc->bge_asf_mode & ASF_STACKUP)
   3992 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3993 	}
   3994 
   3995 	/*
   3996 	 * Call MI attach routine.
   3997 	 */
   3998 	DPRINTFN(5, ("if_attach\n"));
   3999 	if_attach(ifp);
   4000 	DPRINTFN(5, ("ether_ifattach\n"));
   4001 	ether_ifattach(ifp, eaddr);
   4002 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4003 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4004 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4005 #ifdef BGE_EVENT_COUNTERS
   4006 	/*
   4007 	 * Attach event counters.
   4008 	 */
   4009 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4010 	    NULL, device_xname(sc->bge_dev), "intr");
   4011 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4012 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4013 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4014 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4015 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4016 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4017 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4018 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4019 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4020 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4021 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4022 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4023 #endif /* BGE_EVENT_COUNTERS */
   4024 	DPRINTFN(5, ("callout_init\n"));
   4025 	callout_init(&sc->bge_timeout, 0);
   4026 
   4027 	if (pmf_device_register(self, NULL, NULL))
   4028 		pmf_class_network_register(self, ifp);
   4029 	else
   4030 		aprint_error_dev(self, "couldn't establish power handler\n");
   4031 
   4032 	bge_sysctl_init(sc);
   4033 
   4034 #ifdef BGE_DEBUG
   4035 	bge_debug_info(sc);
   4036 #endif
   4037 }
   4038 
   4039 /*
   4040  * Stop all chip I/O so that the kernel's probe routines don't
   4041  * get confused by errant DMAs when rebooting.
   4042  */
   4043 static int
   4044 bge_detach(device_t self, int flags __unused)
   4045 {
   4046 	struct bge_softc *sc = device_private(self);
   4047 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4048 	int s;
   4049 
   4050 	s = splnet();
   4051 	/* Stop the interface. Callouts are stopped in it. */
   4052 	bge_stop(ifp, 1);
   4053 	splx(s);
   4054 
   4055 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4056 
   4057 	/* Delete all remaining media. */
   4058 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   4059 
   4060 	ether_ifdetach(ifp);
   4061 	if_detach(ifp);
   4062 
   4063 	bge_release_resources(sc);
   4064 
   4065 	return 0;
   4066 }
   4067 
   4068 static void
   4069 bge_release_resources(struct bge_softc *sc)
   4070 {
   4071 
   4072 	/* Disestablish the interrupt handler */
   4073 	if (sc->bge_intrhand != NULL) {
   4074 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4075 		sc->bge_intrhand = NULL;
   4076 	}
   4077 
   4078 	if (sc->bge_dmatag != NULL) {
   4079 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4080 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4081 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4082 		    sizeof(struct bge_ring_data));
   4083 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   4084 	}
   4085 
   4086 	/* Unmap the device registers */
   4087 	if (sc->bge_bsize != 0) {
   4088 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4089 		sc->bge_bsize = 0;
   4090 	}
   4091 
   4092 	/* Unmap the APE registers */
   4093 	if (sc->bge_apesize != 0) {
   4094 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4095 		    sc->bge_apesize);
   4096 		sc->bge_apesize = 0;
   4097 	}
   4098 }
   4099 
   4100 static int
   4101 bge_reset(struct bge_softc *sc)
   4102 {
   4103 	uint32_t cachesize, command;
   4104 	uint32_t reset, mac_mode, mac_mode_mask;
   4105 	pcireg_t devctl, reg;
   4106 	int i, val;
   4107 	void (*write_op)(struct bge_softc *, int, int);
   4108 
   4109 	/* Make mask for BGE_MAC_MODE register. */
   4110 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4111 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4112 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4113 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4114 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4115 
   4116 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4117 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4118 	    	if (sc->bge_flags & BGEF_PCIE)
   4119 			write_op = bge_writemem_direct;
   4120 		else
   4121 			write_op = bge_writemem_ind;
   4122 	} else
   4123 		write_op = bge_writereg_ind;
   4124 
   4125 	/* 57XX step 4 */
   4126 	/* Acquire the NVM lock */
   4127 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4128 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4129 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4130 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4131 		for (i = 0; i < 8000; i++) {
   4132 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4133 			    BGE_NVRAMSWARB_GNT1)
   4134 				break;
   4135 			DELAY(20);
   4136 		}
   4137 		if (i == 8000) {
   4138 			printf("%s: NVRAM lock timedout!\n",
   4139 			    device_xname(sc->bge_dev));
   4140 		}
   4141 	}
   4142 
   4143 	/* Take APE lock when performing reset. */
   4144 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4145 
   4146 	/* 57XX step 3 */
   4147 	/* Save some important PCI state. */
   4148 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4149 	/* 5718 reset step 3 */
   4150 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4151 
   4152 	/* 5718 reset step 5, 57XX step 5b-5d */
   4153 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4154 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4155 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4156 
   4157 	/* XXX ???: Disable fastboot on controllers that support it. */
   4158 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4159 	    BGE_IS_5755_PLUS(sc))
   4160 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4161 
   4162 	/* 5718 reset step 2, 57XX step 6 */
   4163 	/*
   4164 	 * Write the magic number to SRAM at offset 0xB50.
   4165 	 * When firmware finishes its initialization it will
   4166 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4167 	 */
   4168 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4169 
   4170 	/* 5718 reset step 6, 57XX step 7 */
   4171 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4172 	/*
   4173 	 * XXX: from FreeBSD/Linux; no documentation
   4174 	 */
   4175 	if (sc->bge_flags & BGEF_PCIE) {
   4176 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4177 		    !BGE_IS_57765_PLUS(sc) &&
   4178 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4179 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4180 			/* PCI Express 1.0 system */
   4181 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4182 			    BGE_PHY_PCIE_SCRAM_MODE);
   4183 		}
   4184 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4185 			/*
   4186 			 * Prevent PCI Express link training
   4187 			 * during global reset.
   4188 			 */
   4189 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4190 			reset |= (1 << 29);
   4191 		}
   4192 	}
   4193 
   4194 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4195 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4196 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4197 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4198 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4199 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4200 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4201 	}
   4202 
   4203 	/*
   4204 	 * Set GPHY Power Down Override to leave GPHY
   4205 	 * powered up in D0 uninitialized.
   4206 	 */
   4207 	if (BGE_IS_5705_PLUS(sc) &&
   4208 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4209 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4210 
   4211 	/* Issue global reset */
   4212 	write_op(sc, BGE_MISC_CFG, reset);
   4213 
   4214 	/* 5718 reset step 7, 57XX step 8 */
   4215 	if (sc->bge_flags & BGEF_PCIE)
   4216 		delay(100*1000); /* too big */
   4217 	else
   4218 		delay(1000);
   4219 
   4220 	if (sc->bge_flags & BGEF_PCIE) {
   4221 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4222 			DELAY(500000);
   4223 			/* XXX: Magic Numbers */
   4224 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4225 			    BGE_PCI_UNKNOWN0);
   4226 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4227 			    BGE_PCI_UNKNOWN0,
   4228 			    reg | (1 << 15));
   4229 		}
   4230 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4231 		    sc->bge_pciecap + PCIE_DCSR);
   4232 		/* Clear enable no snoop and disable relaxed ordering. */
   4233 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4234 		    PCIE_DCSR_ENA_NO_SNOOP);
   4235 
   4236 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4237 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4238 			devctl &= ~(0x00e0);
   4239 		/* Clear device status register. Write 1b to clear */
   4240 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4241 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4242 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4243 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4244 		bge_set_max_readrq(sc);
   4245 	}
   4246 
   4247 	/* From Linux: dummy read to flush PCI posted writes */
   4248 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4249 
   4250 	/*
   4251 	 * Reset some of the PCI state that got zapped by reset
   4252 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4253 	 * set, too.
   4254 	 */
   4255 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4256 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4257 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4258 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4259 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4260 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4261 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4262 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4263 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4264 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4265 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4266 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4267 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4268 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4269 
   4270 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4271 	if (sc->bge_flags & BGEF_PCIX) {
   4272 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4273 		    + PCIX_CMD);
   4274 		/* Set max memory read byte count to 2K */
   4275 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4276 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4277 			reg |= PCIX_CMD_BCNT_2048;
   4278 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4279 			/*
   4280 			 * For 5704, set max outstanding split transaction
   4281 			 * field to 0 (0 means it supports 1 request)
   4282 			 */
   4283 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4284 			    | PCIX_CMD_BYTECNT_MASK);
   4285 			reg |= PCIX_CMD_BCNT_2048;
   4286 		}
   4287 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4288 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4289 	}
   4290 
   4291 	/* 5718 reset step 10, 57XX step 12 */
   4292 	/* Enable memory arbiter. */
   4293 	if (BGE_IS_5714_FAMILY(sc)) {
   4294 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4295 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4296 	} else
   4297 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4298 
   4299 	/* XXX 5721, 5751 and 5752 */
   4300 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4301 		/* Step 19: */
   4302 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4303 		/* Step 20: */
   4304 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4305 	}
   4306 
   4307 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4308 	/* Fix up byte swapping */
   4309 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4310 
   4311 	/* 5718 reset step 13, 57XX step 17 */
   4312 	/* Poll until the firmware initialization is complete */
   4313 	bge_poll_fw(sc);
   4314 
   4315 	/* 57XX step 21 */
   4316 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4317 		pcireg_t msidata;
   4318 
   4319 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4320 		    BGE_PCI_MSI_DATA);
   4321 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4322 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4323 		    msidata);
   4324 	}
   4325 
   4326 	/* 57XX step 18 */
   4327 	/* Write mac mode. */
   4328 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4329 	/* Restore mac_mode_mask's bits using mac_mode */
   4330 	val = (val & ~mac_mode_mask) | mac_mode;
   4331 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4332 	DELAY(40);
   4333 
   4334 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4335 
   4336 	/*
   4337 	 * The 5704 in TBI mode apparently needs some special
   4338 	 * adjustment to insure the SERDES drive level is set
   4339 	 * to 1.2V.
   4340 	 */
   4341 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4342 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4343 		uint32_t serdescfg;
   4344 
   4345 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4346 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4347 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4348 	}
   4349 
   4350 	if (sc->bge_flags & BGEF_PCIE &&
   4351 	    !BGE_IS_57765_PLUS(sc) &&
   4352 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4353 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4354 		uint32_t v;
   4355 
   4356 		/* Enable PCI Express bug fix */
   4357 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4358 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4359 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4360 	}
   4361 
   4362 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4363 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4364 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4365 
   4366 	return 0;
   4367 }
   4368 
   4369 /*
   4370  * Frame reception handling. This is called if there's a frame
   4371  * on the receive return list.
   4372  *
   4373  * Note: we have to be able to handle two possibilities here:
   4374  * 1) the frame is from the jumbo receive ring
   4375  * 2) the frame is from the standard receive ring
   4376  */
   4377 
   4378 static void
   4379 bge_rxeof(struct bge_softc *sc)
   4380 {
   4381 	struct ifnet *ifp;
   4382 	uint16_t rx_prod, rx_cons;
   4383 	int stdcnt = 0, jumbocnt = 0;
   4384 	bus_dmamap_t dmamap;
   4385 	bus_addr_t offset, toff;
   4386 	bus_size_t tlen;
   4387 	int tosync;
   4388 
   4389 	rx_cons = sc->bge_rx_saved_considx;
   4390 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4391 
   4392 	/* Nothing to do */
   4393 	if (rx_cons == rx_prod)
   4394 		return;
   4395 
   4396 	ifp = &sc->ethercom.ec_if;
   4397 
   4398 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4399 	    offsetof(struct bge_ring_data, bge_status_block),
   4400 	    sizeof (struct bge_status_block),
   4401 	    BUS_DMASYNC_POSTREAD);
   4402 
   4403 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4404 	tosync = rx_prod - rx_cons;
   4405 
   4406 	if (tosync != 0)
   4407 		rnd_add_uint32(&sc->rnd_source, tosync);
   4408 
   4409 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4410 
   4411 	if (tosync < 0) {
   4412 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4413 		    sizeof (struct bge_rx_bd);
   4414 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4415 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4416 		tosync = -tosync;
   4417 	}
   4418 
   4419 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4420 	    offset, tosync * sizeof (struct bge_rx_bd),
   4421 	    BUS_DMASYNC_POSTREAD);
   4422 
   4423 	while (rx_cons != rx_prod) {
   4424 		struct bge_rx_bd	*cur_rx;
   4425 		uint32_t		rxidx;
   4426 		struct mbuf		*m = NULL;
   4427 
   4428 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4429 
   4430 		rxidx = cur_rx->bge_idx;
   4431 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4432 
   4433 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4434 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4435 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4436 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4437 			jumbocnt++;
   4438 			bus_dmamap_sync(sc->bge_dmatag,
   4439 			    sc->bge_cdata.bge_rx_jumbo_map,
   4440 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4441 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4442 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4443 				ifp->if_ierrors++;
   4444 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4445 				continue;
   4446 			}
   4447 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4448 					     NULL)== ENOBUFS) {
   4449 				ifp->if_ierrors++;
   4450 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4451 				continue;
   4452 			}
   4453 		} else {
   4454 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4455 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4456 
   4457 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4458 			stdcnt++;
   4459 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4460 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4461 			if (dmamap == NULL) {
   4462 				ifp->if_ierrors++;
   4463 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4464 				continue;
   4465 			}
   4466 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4467 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4468 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4469 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4470 				ifp->if_ierrors++;
   4471 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4472 				continue;
   4473 			}
   4474 			if (bge_newbuf_std(sc, sc->bge_std,
   4475 			    NULL, dmamap) == ENOBUFS) {
   4476 				ifp->if_ierrors++;
   4477 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4478 				continue;
   4479 			}
   4480 		}
   4481 
   4482 		ifp->if_ipackets++;
   4483 #ifndef __NO_STRICT_ALIGNMENT
   4484 		/*
   4485 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4486 		 * the Rx buffer has the layer-2 header unaligned.
   4487 		 * If our CPU requires alignment, re-align by copying.
   4488 		 */
   4489 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4490 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4491 				cur_rx->bge_len);
   4492 			m->m_data += ETHER_ALIGN;
   4493 		}
   4494 #endif
   4495 
   4496 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4497 		m->m_pkthdr.rcvif = ifp;
   4498 
   4499 		/*
   4500 		 * Handle BPF listeners. Let the BPF user see the packet.
   4501 		 */
   4502 		bpf_mtap(ifp, m);
   4503 
   4504 		bge_rxcsum(sc, cur_rx, m);
   4505 
   4506 		/*
   4507 		 * If we received a packet with a vlan tag, pass it
   4508 		 * to vlan_input() instead of ether_input().
   4509 		 */
   4510 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4511 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4512 		}
   4513 
   4514 		(*ifp->if_input)(ifp, m);
   4515 	}
   4516 
   4517 	sc->bge_rx_saved_considx = rx_cons;
   4518 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4519 	if (stdcnt)
   4520 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4521 	if (jumbocnt)
   4522 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4523 }
   4524 
   4525 static void
   4526 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4527 {
   4528 
   4529 	if (BGE_IS_57765_PLUS(sc)) {
   4530 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4531 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4532 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4533 			if ((cur_rx->bge_error_flag &
   4534 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4535 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4536 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4537 				m->m_pkthdr.csum_data =
   4538 				    cur_rx->bge_tcp_udp_csum;
   4539 				m->m_pkthdr.csum_flags |=
   4540 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4541 					M_CSUM_DATA);
   4542 			}
   4543 		}
   4544 	} else {
   4545 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4546 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4547 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4548 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4549 		/*
   4550 		 * Rx transport checksum-offload may also
   4551 		 * have bugs with packets which, when transmitted,
   4552 		 * were `runts' requiring padding.
   4553 		 */
   4554 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4555 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4556 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4557 			m->m_pkthdr.csum_data =
   4558 			    cur_rx->bge_tcp_udp_csum;
   4559 			m->m_pkthdr.csum_flags |=
   4560 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4561 				M_CSUM_DATA);
   4562 		}
   4563 	}
   4564 }
   4565 
   4566 static void
   4567 bge_txeof(struct bge_softc *sc)
   4568 {
   4569 	struct bge_tx_bd *cur_tx = NULL;
   4570 	struct ifnet *ifp;
   4571 	struct txdmamap_pool_entry *dma;
   4572 	bus_addr_t offset, toff;
   4573 	bus_size_t tlen;
   4574 	int tosync;
   4575 	struct mbuf *m;
   4576 
   4577 	ifp = &sc->ethercom.ec_if;
   4578 
   4579 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4580 	    offsetof(struct bge_ring_data, bge_status_block),
   4581 	    sizeof (struct bge_status_block),
   4582 	    BUS_DMASYNC_POSTREAD);
   4583 
   4584 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4585 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4586 	    sc->bge_tx_saved_considx;
   4587 
   4588 	if (tosync != 0)
   4589 		rnd_add_uint32(&sc->rnd_source, tosync);
   4590 
   4591 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4592 
   4593 	if (tosync < 0) {
   4594 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4595 		    sizeof (struct bge_tx_bd);
   4596 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4597 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4598 		tosync = -tosync;
   4599 	}
   4600 
   4601 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4602 	    offset, tosync * sizeof (struct bge_tx_bd),
   4603 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4604 
   4605 	/*
   4606 	 * Go through our tx ring and free mbufs for those
   4607 	 * frames that have been sent.
   4608 	 */
   4609 	while (sc->bge_tx_saved_considx !=
   4610 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4611 		uint32_t		idx = 0;
   4612 
   4613 		idx = sc->bge_tx_saved_considx;
   4614 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4615 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4616 			ifp->if_opackets++;
   4617 		m = sc->bge_cdata.bge_tx_chain[idx];
   4618 		if (m != NULL) {
   4619 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4620 			dma = sc->txdma[idx];
   4621 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4622 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4623 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4624 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4625 			sc->txdma[idx] = NULL;
   4626 
   4627 			m_freem(m);
   4628 		}
   4629 		sc->bge_txcnt--;
   4630 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4631 		ifp->if_timer = 0;
   4632 	}
   4633 
   4634 	if (cur_tx != NULL)
   4635 		ifp->if_flags &= ~IFF_OACTIVE;
   4636 }
   4637 
   4638 static int
   4639 bge_intr(void *xsc)
   4640 {
   4641 	struct bge_softc *sc;
   4642 	struct ifnet *ifp;
   4643 	uint32_t statusword;
   4644 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4645 
   4646 	sc = xsc;
   4647 	ifp = &sc->ethercom.ec_if;
   4648 
   4649 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4650 	if (BGE_IS_5717_PLUS(sc))
   4651 		intrmask = 0;
   4652 
   4653 	/* It is possible for the interrupt to arrive before
   4654 	 * the status block is updated prior to the interrupt.
   4655 	 * Reading the PCI State register will confirm whether the
   4656 	 * interrupt is ours and will flush the status block.
   4657 	 */
   4658 
   4659 	/* read status word from status block */
   4660 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4661 	    offsetof(struct bge_ring_data, bge_status_block),
   4662 	    sizeof (struct bge_status_block),
   4663 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4664 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4665 
   4666 	if ((statusword & BGE_STATFLAG_UPDATED) ||
   4667 	    (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
   4668 		/* Ack interrupt and stop others from occuring. */
   4669 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4670 
   4671 		BGE_EVCNT_INCR(sc->bge_ev_intr);
   4672 
   4673 		/* clear status word */
   4674 		sc->bge_rdata->bge_status_block.bge_status = 0;
   4675 
   4676 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4677 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4678 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4679 			bge_link_upd(sc);
   4680 
   4681 		if (ifp->if_flags & IFF_RUNNING) {
   4682 			/* Check RX return ring producer/consumer */
   4683 			bge_rxeof(sc);
   4684 
   4685 			/* Check TX ring producer/consumer */
   4686 			bge_txeof(sc);
   4687 		}
   4688 
   4689 		if (sc->bge_pending_rxintr_change) {
   4690 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4691 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4692 
   4693 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4694 			DELAY(10);
   4695 			(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4696 
   4697 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4698 			DELAY(10);
   4699 			(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4700 
   4701 			sc->bge_pending_rxintr_change = 0;
   4702 		}
   4703 		bge_handle_events(sc);
   4704 
   4705 		/* Re-enable interrupts. */
   4706 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   4707 
   4708 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4709 			bge_start(ifp);
   4710 
   4711 		return 1;
   4712 	} else
   4713 		return 0;
   4714 }
   4715 
   4716 static void
   4717 bge_asf_driver_up(struct bge_softc *sc)
   4718 {
   4719 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4720 		/* Send ASF heartbeat aprox. every 2s */
   4721 		if (sc->bge_asf_count)
   4722 			sc->bge_asf_count --;
   4723 		else {
   4724 			sc->bge_asf_count = 2;
   4725 
   4726 			bge_wait_for_event_ack(sc);
   4727 
   4728 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4729 			    BGE_FW_CMD_DRV_ALIVE);
   4730 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4731 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4732 			    BGE_FW_HB_TIMEOUT_SEC);
   4733 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4734 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4735 			    BGE_RX_CPU_DRV_EVENT);
   4736 		}
   4737 	}
   4738 }
   4739 
   4740 static void
   4741 bge_tick(void *xsc)
   4742 {
   4743 	struct bge_softc *sc = xsc;
   4744 	struct mii_data *mii = &sc->bge_mii;
   4745 	int s;
   4746 
   4747 	s = splnet();
   4748 
   4749 	if (BGE_IS_5705_PLUS(sc))
   4750 		bge_stats_update_regs(sc);
   4751 	else
   4752 		bge_stats_update(sc);
   4753 
   4754 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4755 		/*
   4756 		 * Since in TBI mode auto-polling can't be used we should poll
   4757 		 * link status manually. Here we register pending link event
   4758 		 * and trigger interrupt.
   4759 		 */
   4760 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4761 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4762 	} else {
   4763 		/*
   4764 		 * Do not touch PHY if we have link up. This could break
   4765 		 * IPMI/ASF mode or produce extra input errors.
   4766 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4767 		 */
   4768 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4769 			mii_tick(mii);
   4770 	}
   4771 
   4772 	bge_asf_driver_up(sc);
   4773 
   4774 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4775 
   4776 	splx(s);
   4777 }
   4778 
   4779 static void
   4780 bge_stats_update_regs(struct bge_softc *sc)
   4781 {
   4782 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4783 
   4784 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4785 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4786 
   4787 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4788 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4789 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4790 }
   4791 
   4792 static void
   4793 bge_stats_update(struct bge_softc *sc)
   4794 {
   4795 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4796 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4797 
   4798 #define READ_STAT(sc, stats, stat) \
   4799 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4800 
   4801 	ifp->if_collisions +=
   4802 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4803 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4804 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4805 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4806 	  ifp->if_collisions;
   4807 
   4808 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4809 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4810 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4811 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4812 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4813 		      READ_STAT(sc, stats,
   4814 		      		xoffPauseFramesReceived.bge_addr_lo));
   4815 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4816 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4817 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4818 		      READ_STAT(sc, stats,
   4819 		      		macControlFramesReceived.bge_addr_lo));
   4820 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4821 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4822 
   4823 #undef READ_STAT
   4824 
   4825 #ifdef notdef
   4826 	ifp->if_collisions +=
   4827 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4828 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4829 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4830 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4831 	   ifp->if_collisions;
   4832 #endif
   4833 }
   4834 
   4835 /*
   4836  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4837  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4838  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4839  * the hardware checksum assist gives incorrect results (possibly
   4840  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4841  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4842  */
   4843 static inline int
   4844 bge_cksum_pad(struct mbuf *pkt)
   4845 {
   4846 	struct mbuf *last = NULL;
   4847 	int padlen;
   4848 
   4849 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4850 
   4851 	/* if there's only the packet-header and we can pad there, use it. */
   4852 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4853 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4854 		last = pkt;
   4855 	} else {
   4856 		/*
   4857 		 * Walk packet chain to find last mbuf. We will either
   4858 		 * pad there, or append a new mbuf and pad it
   4859 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4860 		 */
   4861 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4862 	      	       continue; /* do nothing */
   4863 		}
   4864 
   4865 		/* `last' now points to last in chain. */
   4866 		if (M_TRAILINGSPACE(last) < padlen) {
   4867 			/* Allocate new empty mbuf, pad it. Compact later. */
   4868 			struct mbuf *n;
   4869 			MGET(n, M_DONTWAIT, MT_DATA);
   4870 			if (n == NULL)
   4871 				return ENOBUFS;
   4872 			n->m_len = 0;
   4873 			last->m_next = n;
   4874 			last = n;
   4875 		}
   4876 	}
   4877 
   4878 	KDASSERT(!M_READONLY(last));
   4879 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4880 
   4881 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4882 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4883 	last->m_len += padlen;
   4884 	pkt->m_pkthdr.len += padlen;
   4885 	return 0;
   4886 }
   4887 
   4888 /*
   4889  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4890  */
   4891 static inline int
   4892 bge_compact_dma_runt(struct mbuf *pkt)
   4893 {
   4894 	struct mbuf	*m, *prev;
   4895 	int 		totlen;
   4896 
   4897 	prev = NULL;
   4898 	totlen = 0;
   4899 
   4900 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4901 		int mlen = m->m_len;
   4902 		int shortfall = 8 - mlen ;
   4903 
   4904 		totlen += mlen;
   4905 		if (mlen == 0)
   4906 			continue;
   4907 		if (mlen >= 8)
   4908 			continue;
   4909 
   4910 		/* If we get here, mbuf data is too small for DMA engine.
   4911 		 * Try to fix by shuffling data to prev or next in chain.
   4912 		 * If that fails, do a compacting deep-copy of the whole chain.
   4913 		 */
   4914 
   4915 		/* Internal frag. If fits in prev, copy it there. */
   4916 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4917 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4918 			prev->m_len += mlen;
   4919 			m->m_len = 0;
   4920 			/* XXX stitch chain */
   4921 			prev->m_next = m_free(m);
   4922 			m = prev;
   4923 			continue;
   4924 		}
   4925 		else if (m->m_next != NULL &&
   4926 			     M_TRAILINGSPACE(m) >= shortfall &&
   4927 			     m->m_next->m_len >= (8 + shortfall)) {
   4928 		    /* m is writable and have enough data in next, pull up. */
   4929 
   4930 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4931 			    shortfall);
   4932 			m->m_len += shortfall;
   4933 			m->m_next->m_len -= shortfall;
   4934 			m->m_next->m_data += shortfall;
   4935 		}
   4936 		else if (m->m_next == NULL || 1) {
   4937 		  	/* Got a runt at the very end of the packet.
   4938 			 * borrow data from the tail of the preceding mbuf and
   4939 			 * update its length in-place. (The original data is still
   4940 			 * valid, so we can do this even if prev is not writable.)
   4941 			 */
   4942 
   4943 			/* if we'd make prev a runt, just move all of its data. */
   4944 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4945 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4946 
   4947 			if ((prev->m_len - shortfall) < 8)
   4948 				shortfall = prev->m_len;
   4949 
   4950 #ifdef notyet	/* just do the safe slow thing for now */
   4951 			if (!M_READONLY(m)) {
   4952 				if (M_LEADINGSPACE(m) < shorfall) {
   4953 					void *m_dat;
   4954 					m_dat = (m->m_flags & M_PKTHDR) ?
   4955 					  m->m_pktdat : m->dat;
   4956 					memmove(m_dat, mtod(m, void*), m->m_len);
   4957 					m->m_data = m_dat;
   4958 				    }
   4959 			} else
   4960 #endif	/* just do the safe slow thing */
   4961 			{
   4962 				struct mbuf * n = NULL;
   4963 				int newprevlen = prev->m_len - shortfall;
   4964 
   4965 				MGET(n, M_NOWAIT, MT_DATA);
   4966 				if (n == NULL)
   4967 				   return ENOBUFS;
   4968 				KASSERT(m->m_len + shortfall < MLEN
   4969 					/*,
   4970 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4971 
   4972 				/* first copy the data we're stealing from prev */
   4973 				memcpy(n->m_data, prev->m_data + newprevlen,
   4974 				    shortfall);
   4975 
   4976 				/* update prev->m_len accordingly */
   4977 				prev->m_len -= shortfall;
   4978 
   4979 				/* copy data from runt m */
   4980 				memcpy(n->m_data + shortfall, m->m_data,
   4981 				    m->m_len);
   4982 
   4983 				/* n holds what we stole from prev, plus m */
   4984 				n->m_len = shortfall + m->m_len;
   4985 
   4986 				/* stitch n into chain and free m */
   4987 				n->m_next = m->m_next;
   4988 				prev->m_next = n;
   4989 				/* KASSERT(m->m_next == NULL); */
   4990 				m->m_next = NULL;
   4991 				m_free(m);
   4992 				m = n;	/* for continuing loop */
   4993 			}
   4994 		}
   4995 	}
   4996 	return 0;
   4997 }
   4998 
   4999 /*
   5000  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5001  * pointers to descriptors.
   5002  */
   5003 static int
   5004 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5005 {
   5006 	struct bge_tx_bd	*f = NULL;
   5007 	uint32_t		frag, cur;
   5008 	uint16_t		csum_flags = 0;
   5009 	uint16_t		txbd_tso_flags = 0;
   5010 	struct txdmamap_pool_entry *dma;
   5011 	bus_dmamap_t dmamap;
   5012 	int			i = 0;
   5013 	struct m_tag		*mtag;
   5014 	int			use_tso, maxsegsize, error;
   5015 
   5016 	cur = frag = *txidx;
   5017 
   5018 	if (m_head->m_pkthdr.csum_flags) {
   5019 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5020 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5021 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   5022 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5023 	}
   5024 
   5025 	/*
   5026 	 * If we were asked to do an outboard checksum, and the NIC
   5027 	 * has the bug where it sometimes adds in the Ethernet padding,
   5028 	 * explicitly pad with zeros so the cksum will be correct either way.
   5029 	 * (For now, do this for all chip versions, until newer
   5030 	 * are confirmed to not require the workaround.)
   5031 	 */
   5032 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5033 #ifdef notyet
   5034 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5035 #endif
   5036 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5037 		goto check_dma_bug;
   5038 
   5039 	if (bge_cksum_pad(m_head) != 0)
   5040 	    return ENOBUFS;
   5041 
   5042 check_dma_bug:
   5043 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5044 		goto doit;
   5045 
   5046 	/*
   5047 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5048 	 * less than eight bytes.  If we encounter a teeny mbuf
   5049 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5050 	 */
   5051 	if (bge_compact_dma_runt(m_head) != 0)
   5052 		return ENOBUFS;
   5053 
   5054 doit:
   5055 	dma = SLIST_FIRST(&sc->txdma_list);
   5056 	if (dma == NULL)
   5057 		return ENOBUFS;
   5058 	dmamap = dma->dmamap;
   5059 
   5060 	/*
   5061 	 * Set up any necessary TSO state before we start packing...
   5062 	 */
   5063 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5064 	if (!use_tso) {
   5065 		maxsegsize = 0;
   5066 	} else {	/* TSO setup */
   5067 		unsigned  mss;
   5068 		struct ether_header *eh;
   5069 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5070 		struct mbuf * m0 = m_head;
   5071 		struct ip *ip;
   5072 		struct tcphdr *th;
   5073 		int iphl, hlen;
   5074 
   5075 		/*
   5076 		 * XXX It would be nice if the mbuf pkthdr had offset
   5077 		 * fields for the protocol headers.
   5078 		 */
   5079 
   5080 		eh = mtod(m0, struct ether_header *);
   5081 		switch (htons(eh->ether_type)) {
   5082 		case ETHERTYPE_IP:
   5083 			offset = ETHER_HDR_LEN;
   5084 			break;
   5085 
   5086 		case ETHERTYPE_VLAN:
   5087 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5088 			break;
   5089 
   5090 		default:
   5091 			/*
   5092 			 * Don't support this protocol or encapsulation.
   5093 			 */
   5094 			return ENOBUFS;
   5095 		}
   5096 
   5097 		/*
   5098 		 * TCP/IP headers are in the first mbuf; we can do
   5099 		 * this the easy way.
   5100 		 */
   5101 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5102 		hlen = iphl + offset;
   5103 		if (__predict_false(m0->m_len <
   5104 				    (hlen + sizeof(struct tcphdr)))) {
   5105 
   5106 			aprint_debug_dev(sc->bge_dev,
   5107 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5108 			    "not handled yet\n",
   5109 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   5110 #ifdef NOTYET
   5111 			/*
   5112 			 * XXX jonathan (at) NetBSD.org: untested.
   5113 			 * how to force  this branch to be taken?
   5114 			 */
   5115 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5116 
   5117 			m_copydata(m0, offset, sizeof(ip), &ip);
   5118 			m_copydata(m0, hlen, sizeof(th), &th);
   5119 
   5120 			ip.ip_len = 0;
   5121 
   5122 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5123 			    sizeof(ip.ip_len), &ip.ip_len);
   5124 
   5125 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5126 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5127 
   5128 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5129 			    sizeof(th.th_sum), &th.th_sum);
   5130 
   5131 			hlen += th.th_off << 2;
   5132 			iptcp_opt_words	= hlen;
   5133 #else
   5134 			/*
   5135 			 * if_wm "hard" case not yet supported, can we not
   5136 			 * mandate it out of existence?
   5137 			 */
   5138 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5139 
   5140 			return ENOBUFS;
   5141 #endif
   5142 		} else {
   5143 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5144 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5145 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5146 
   5147 			/* Total IP/TCP options, in 32-bit words */
   5148 			iptcp_opt_words = (ip_tcp_hlen
   5149 					   - sizeof(struct tcphdr)
   5150 					   - sizeof(struct ip)) >> 2;
   5151 		}
   5152 		if (BGE_IS_575X_PLUS(sc)) {
   5153 			th->th_sum = 0;
   5154 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   5155 		} else {
   5156 			/*
   5157 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5158 			 * Requires TSO firmware patch for 5701/5703/5704.
   5159 			 */
   5160 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5161 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5162 		}
   5163 
   5164 		mss = m_head->m_pkthdr.segsz;
   5165 		txbd_tso_flags |=
   5166 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5167 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5168 
   5169 		/*
   5170 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5171 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5172 		 * the NIC copies 40 bytes of IP/TCP header from the
   5173 		 * supplied header into the IP/TCP header portion of
   5174 		 * each post-TSO-segment. If the supplied packet has IP or
   5175 		 * TCP options, we need to tell the NIC to copy those extra
   5176 		 * bytes into each  post-TSO header, in addition to the normal
   5177 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5178 		 * Unfortunately, the driver encoding of option length
   5179 		 * varies across different ASIC families.
   5180 		 */
   5181 		tcp_seg_flags = 0;
   5182 		if (iptcp_opt_words) {
   5183 			if (BGE_IS_5705_PLUS(sc)) {
   5184 				tcp_seg_flags =
   5185 					iptcp_opt_words << 11;
   5186 			} else {
   5187 				txbd_tso_flags |=
   5188 					iptcp_opt_words << 12;
   5189 			}
   5190 		}
   5191 		maxsegsize = mss | tcp_seg_flags;
   5192 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5193 
   5194 	}	/* TSO setup */
   5195 
   5196 	/*
   5197 	 * Start packing the mbufs in this chain into
   5198 	 * the fragment pointers. Stop when we run out
   5199 	 * of fragments or hit the end of the mbuf chain.
   5200 	 */
   5201 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   5202 	    BUS_DMA_NOWAIT);
   5203 	if (error)
   5204 		return ENOBUFS;
   5205 	/*
   5206 	 * Sanity check: avoid coming within 16 descriptors
   5207 	 * of the end of the ring.
   5208 	 */
   5209 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5210 		BGE_TSO_PRINTF(("%s: "
   5211 		    " dmamap_load_mbuf too close to ring wrap\n",
   5212 		    device_xname(sc->bge_dev)));
   5213 		goto fail_unload;
   5214 	}
   5215 
   5216 	mtag = sc->ethercom.ec_nvlans ?
   5217 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   5218 
   5219 
   5220 	/* Iterate over dmap-map fragments. */
   5221 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5222 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5223 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5224 			break;
   5225 
   5226 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5227 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5228 
   5229 		/*
   5230 		 * For 5751 and follow-ons, for TSO we must turn
   5231 		 * off checksum-assist flag in the tx-descr, and
   5232 		 * supply the ASIC-revision-specific encoding
   5233 		 * of TSO flags and segsize.
   5234 		 */
   5235 		if (use_tso) {
   5236 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5237 				f->bge_rsvd = maxsegsize;
   5238 				f->bge_flags = csum_flags | txbd_tso_flags;
   5239 			} else {
   5240 				f->bge_rsvd = 0;
   5241 				f->bge_flags =
   5242 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5243 			}
   5244 		} else {
   5245 			f->bge_rsvd = 0;
   5246 			f->bge_flags = csum_flags;
   5247 		}
   5248 
   5249 		if (mtag != NULL) {
   5250 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5251 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5252 		} else {
   5253 			f->bge_vlan_tag = 0;
   5254 		}
   5255 		cur = frag;
   5256 		BGE_INC(frag, BGE_TX_RING_CNT);
   5257 	}
   5258 
   5259 	if (i < dmamap->dm_nsegs) {
   5260 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5261 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5262 		goto fail_unload;
   5263 	}
   5264 
   5265 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5266 	    BUS_DMASYNC_PREWRITE);
   5267 
   5268 	if (frag == sc->bge_tx_saved_considx) {
   5269 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5270 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5271 
   5272 		goto fail_unload;
   5273 	}
   5274 
   5275 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5276 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5277 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5278 	sc->txdma[cur] = dma;
   5279 	sc->bge_txcnt += dmamap->dm_nsegs;
   5280 
   5281 	*txidx = frag;
   5282 
   5283 	return 0;
   5284 
   5285 fail_unload:
   5286 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5287 
   5288 	return ENOBUFS;
   5289 }
   5290 
   5291 /*
   5292  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5293  * to the mbuf data regions directly in the transmit descriptors.
   5294  */
   5295 static void
   5296 bge_start(struct ifnet *ifp)
   5297 {
   5298 	struct bge_softc *sc;
   5299 	struct mbuf *m_head = NULL;
   5300 	uint32_t prodidx;
   5301 	int pkts = 0;
   5302 
   5303 	sc = ifp->if_softc;
   5304 
   5305 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5306 		return;
   5307 
   5308 	prodidx = sc->bge_tx_prodidx;
   5309 
   5310 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5311 		IFQ_POLL(&ifp->if_snd, m_head);
   5312 		if (m_head == NULL)
   5313 			break;
   5314 
   5315 #if 0
   5316 		/*
   5317 		 * XXX
   5318 		 * safety overkill.  If this is a fragmented packet chain
   5319 		 * with delayed TCP/UDP checksums, then only encapsulate
   5320 		 * it if we have enough descriptors to handle the entire
   5321 		 * chain at once.
   5322 		 * (paranoia -- may not actually be needed)
   5323 		 */
   5324 		if (m_head->m_flags & M_FIRSTFRAG &&
   5325 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5326 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5327 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5328 				ifp->if_flags |= IFF_OACTIVE;
   5329 				break;
   5330 			}
   5331 		}
   5332 #endif
   5333 
   5334 		/*
   5335 		 * Pack the data into the transmit ring. If we
   5336 		 * don't have room, set the OACTIVE flag and wait
   5337 		 * for the NIC to drain the ring.
   5338 		 */
   5339 		if (bge_encap(sc, m_head, &prodidx)) {
   5340 			ifp->if_flags |= IFF_OACTIVE;
   5341 			break;
   5342 		}
   5343 
   5344 		/* now we are committed to transmit the packet */
   5345 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5346 		pkts++;
   5347 
   5348 		/*
   5349 		 * If there's a BPF listener, bounce a copy of this frame
   5350 		 * to him.
   5351 		 */
   5352 		bpf_mtap(ifp, m_head);
   5353 	}
   5354 	if (pkts == 0)
   5355 		return;
   5356 
   5357 	/* Transmit */
   5358 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5359 	/* 5700 b2 errata */
   5360 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5361 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5362 
   5363 	sc->bge_tx_prodidx = prodidx;
   5364 
   5365 	/*
   5366 	 * Set a timeout in case the chip goes out to lunch.
   5367 	 */
   5368 	ifp->if_timer = 5;
   5369 }
   5370 
   5371 static int
   5372 bge_init(struct ifnet *ifp)
   5373 {
   5374 	struct bge_softc *sc = ifp->if_softc;
   5375 	const uint16_t *m;
   5376 	uint32_t mode, reg;
   5377 	int s, error = 0;
   5378 
   5379 	s = splnet();
   5380 
   5381 	ifp = &sc->ethercom.ec_if;
   5382 
   5383 	/* Cancel pending I/O and flush buffers. */
   5384 	bge_stop(ifp, 0);
   5385 
   5386 	bge_stop_fw(sc);
   5387 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5388 	bge_reset(sc);
   5389 	bge_sig_legacy(sc, BGE_RESET_START);
   5390 	bge_sig_post_reset(sc, BGE_RESET_START);
   5391 
   5392 	bge_chipinit(sc);
   5393 
   5394 	/*
   5395 	 * Init the various state machines, ring
   5396 	 * control blocks and firmware.
   5397 	 */
   5398 	error = bge_blockinit(sc);
   5399 	if (error != 0) {
   5400 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5401 		    error);
   5402 		splx(s);
   5403 		return error;
   5404 	}
   5405 
   5406 	ifp = &sc->ethercom.ec_if;
   5407 
   5408 	/* 5718 step 25, 57XX step 54 */
   5409 	/* Specify MTU. */
   5410 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5411 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5412 
   5413 	/* 5718 step 23 */
   5414 	/* Load our MAC address. */
   5415 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5416 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5417 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5418 
   5419 	/* Enable or disable promiscuous mode as needed. */
   5420 	if (ifp->if_flags & IFF_PROMISC)
   5421 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5422 	else
   5423 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5424 
   5425 	/* Program multicast filter. */
   5426 	bge_setmulti(sc);
   5427 
   5428 	/* Init RX ring. */
   5429 	bge_init_rx_ring_std(sc);
   5430 
   5431 	/*
   5432 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5433 	 * memory to insure that the chip has in fact read the first
   5434 	 * entry of the ring.
   5435 	 */
   5436 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5437 		uint32_t		v, i;
   5438 		for (i = 0; i < 10; i++) {
   5439 			DELAY(20);
   5440 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5441 			if (v == (MCLBYTES - ETHER_ALIGN))
   5442 				break;
   5443 		}
   5444 		if (i == 10)
   5445 			aprint_error_dev(sc->bge_dev,
   5446 			    "5705 A0 chip failed to load RX ring\n");
   5447 	}
   5448 
   5449 	/* Init jumbo RX ring. */
   5450 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5451 		bge_init_rx_ring_jumbo(sc);
   5452 
   5453 	/* Init our RX return ring index */
   5454 	sc->bge_rx_saved_considx = 0;
   5455 
   5456 	/* Init TX ring. */
   5457 	bge_init_tx_ring(sc);
   5458 
   5459 	/* 5718 step 63, 57XX step 94 */
   5460 	/* Enable TX MAC state machine lockup fix. */
   5461 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5462 	if (BGE_IS_5755_PLUS(sc) ||
   5463 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5464 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5466 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5467 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5468 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5469 	}
   5470 
   5471 	/* Turn on transmitter */
   5472 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5473 	/* 5718 step 64 */
   5474 	DELAY(100);
   5475 
   5476 	/* 5718 step 65, 57XX step 95 */
   5477 	/* Turn on receiver */
   5478 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5479 	if (BGE_IS_5755_PLUS(sc))
   5480 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5481 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5482 	/* 5718 step 66 */
   5483 	DELAY(10);
   5484 
   5485 	/* 5718 step 12, 57XX step 37 */
   5486 	/*
   5487 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5488 	 * is 1, but tg3 set 1 only on 57765 series.
   5489 	 */
   5490 	if (BGE_IS_57765_PLUS(sc))
   5491 		reg = 1;
   5492 	else
   5493 		reg = 2;
   5494 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5495 
   5496 	/* Tell firmware we're alive. */
   5497 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5498 
   5499 	/* Enable host interrupts. */
   5500 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5501 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5502 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5503 
   5504 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5505 		goto out;
   5506 
   5507 	ifp->if_flags |= IFF_RUNNING;
   5508 	ifp->if_flags &= ~IFF_OACTIVE;
   5509 
   5510 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5511 
   5512 out:
   5513 	sc->bge_if_flags = ifp->if_flags;
   5514 	splx(s);
   5515 
   5516 	return error;
   5517 }
   5518 
   5519 /*
   5520  * Set media options.
   5521  */
   5522 static int
   5523 bge_ifmedia_upd(struct ifnet *ifp)
   5524 {
   5525 	struct bge_softc *sc = ifp->if_softc;
   5526 	struct mii_data *mii = &sc->bge_mii;
   5527 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5528 	int rc;
   5529 
   5530 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5531 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5532 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5533 			return EINVAL;
   5534 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5535 		case IFM_AUTO:
   5536 			/*
   5537 			 * The BCM5704 ASIC appears to have a special
   5538 			 * mechanism for programming the autoneg
   5539 			 * advertisement registers in TBI mode.
   5540 			 */
   5541 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5542 				uint32_t sgdig;
   5543 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5544 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5545 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5546 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5547 					sgdig |= BGE_SGDIGCFG_AUTO |
   5548 					    BGE_SGDIGCFG_PAUSE_CAP |
   5549 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5550 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5551 					    sgdig | BGE_SGDIGCFG_SEND);
   5552 					DELAY(5);
   5553 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5554 					    sgdig);
   5555 				}
   5556 			}
   5557 			break;
   5558 		case IFM_1000_SX:
   5559 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5560 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5561 				    BGE_MACMODE_HALF_DUPLEX);
   5562 			} else {
   5563 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5564 				    BGE_MACMODE_HALF_DUPLEX);
   5565 			}
   5566 			DELAY(40);
   5567 			break;
   5568 		default:
   5569 			return EINVAL;
   5570 		}
   5571 		/* XXX 802.3x flow control for 1000BASE-SX */
   5572 		return 0;
   5573 	}
   5574 
   5575 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5576 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5577 		return 0;
   5578 
   5579 	/*
   5580 	 * Force an interrupt so that we will call bge_link_upd
   5581 	 * if needed and clear any pending link state attention.
   5582 	 * Without this we are not getting any further interrupts
   5583 	 * for link state changes and thus will not UP the link and
   5584 	 * not be able to send in bge_start. The only way to get
   5585 	 * things working was to receive a packet and get a RX intr.
   5586 	 */
   5587 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5588 	    sc->bge_flags & BGEF_IS_5788)
   5589 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5590 	else
   5591 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5592 
   5593 	return rc;
   5594 }
   5595 
   5596 /*
   5597  * Report current media status.
   5598  */
   5599 static void
   5600 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5601 {
   5602 	struct bge_softc *sc = ifp->if_softc;
   5603 	struct mii_data *mii = &sc->bge_mii;
   5604 
   5605 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5606 		ifmr->ifm_status = IFM_AVALID;
   5607 		ifmr->ifm_active = IFM_ETHER;
   5608 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5609 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5610 			ifmr->ifm_status |= IFM_ACTIVE;
   5611 		ifmr->ifm_active |= IFM_1000_SX;
   5612 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5613 			ifmr->ifm_active |= IFM_HDX;
   5614 		else
   5615 			ifmr->ifm_active |= IFM_FDX;
   5616 		return;
   5617 	}
   5618 
   5619 	mii_pollstat(mii);
   5620 	ifmr->ifm_status = mii->mii_media_status;
   5621 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5622 	    sc->bge_flowflags;
   5623 }
   5624 
   5625 static int
   5626 bge_ifflags_cb(struct ethercom *ec)
   5627 {
   5628 	struct ifnet *ifp = &ec->ec_if;
   5629 	struct bge_softc *sc = ifp->if_softc;
   5630 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5631 
   5632 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5633 		return ENETRESET;
   5634 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5635 		return 0;
   5636 
   5637 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5638 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5639 	else
   5640 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5641 
   5642 	bge_setmulti(sc);
   5643 
   5644 	sc->bge_if_flags = ifp->if_flags;
   5645 	return 0;
   5646 }
   5647 
   5648 static int
   5649 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5650 {
   5651 	struct bge_softc *sc = ifp->if_softc;
   5652 	struct ifreq *ifr = (struct ifreq *) data;
   5653 	int s, error = 0;
   5654 	struct mii_data *mii;
   5655 
   5656 	s = splnet();
   5657 
   5658 	switch (command) {
   5659 	case SIOCSIFMEDIA:
   5660 		/* XXX Flow control is not supported for 1000BASE-SX */
   5661 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5662 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5663 			sc->bge_flowflags = 0;
   5664 		}
   5665 
   5666 		/* Flow control requires full-duplex mode. */
   5667 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5668 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5669 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5670 		}
   5671 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5672 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5673 				/* We can do both TXPAUSE and RXPAUSE. */
   5674 				ifr->ifr_media |=
   5675 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5676 			}
   5677 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5678 		}
   5679 		/* FALLTHROUGH */
   5680 	case SIOCGIFMEDIA:
   5681 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5682 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5683 			    command);
   5684 		} else {
   5685 			mii = &sc->bge_mii;
   5686 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5687 			    command);
   5688 		}
   5689 		break;
   5690 	default:
   5691 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5692 			break;
   5693 
   5694 		error = 0;
   5695 
   5696 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5697 			;
   5698 		else if (ifp->if_flags & IFF_RUNNING)
   5699 			bge_setmulti(sc);
   5700 		break;
   5701 	}
   5702 
   5703 	splx(s);
   5704 
   5705 	return error;
   5706 }
   5707 
   5708 static void
   5709 bge_watchdog(struct ifnet *ifp)
   5710 {
   5711 	struct bge_softc *sc;
   5712 
   5713 	sc = ifp->if_softc;
   5714 
   5715 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5716 
   5717 	ifp->if_flags &= ~IFF_RUNNING;
   5718 	bge_init(ifp);
   5719 
   5720 	ifp->if_oerrors++;
   5721 }
   5722 
   5723 static void
   5724 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5725 {
   5726 	int i;
   5727 
   5728 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5729 
   5730 	for (i = 0; i < 1000; i++) {
   5731 		delay(100);
   5732 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5733 			return;
   5734 	}
   5735 
   5736 	/*
   5737 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5738 	 * on some environment (and once after boot?)
   5739 	 */
   5740 	if (reg != BGE_SRS_MODE)
   5741 		aprint_error_dev(sc->bge_dev,
   5742 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5743 		    (u_long)reg, bit);
   5744 }
   5745 
   5746 /*
   5747  * Stop the adapter and free any mbufs allocated to the
   5748  * RX and TX lists.
   5749  */
   5750 static void
   5751 bge_stop(struct ifnet *ifp, int disable)
   5752 {
   5753 	struct bge_softc *sc = ifp->if_softc;
   5754 
   5755 	if (disable)
   5756 		callout_halt(&sc->bge_timeout, NULL);
   5757 	else
   5758 		callout_stop(&sc->bge_timeout);
   5759 
   5760 	/* Disable host interrupts. */
   5761 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5762 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5763 
   5764 	/*
   5765 	 * Tell firmware we're shutting down.
   5766 	 */
   5767 	bge_stop_fw(sc);
   5768 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5769 
   5770 	/*
   5771 	 * Disable all of the receiver blocks.
   5772 	 */
   5773 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5774 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5775 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5776 	if (BGE_IS_5700_FAMILY(sc))
   5777 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5778 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5779 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5780 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5781 
   5782 	/*
   5783 	 * Disable all of the transmit blocks.
   5784 	 */
   5785 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5786 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5787 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5788 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5789 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5790 	if (BGE_IS_5700_FAMILY(sc))
   5791 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5792 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5793 
   5794 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5795 	delay(40);
   5796 
   5797 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5798 
   5799 	/*
   5800 	 * Shut down all of the memory managers and related
   5801 	 * state machines.
   5802 	 */
   5803 	/* 5718 step 5a,5b */
   5804 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5805 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5806 	if (BGE_IS_5700_FAMILY(sc))
   5807 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5808 
   5809 	/* 5718 step 5c,5d */
   5810 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5811 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5812 
   5813 	if (BGE_IS_5700_FAMILY(sc)) {
   5814 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5815 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5816 	}
   5817 
   5818 	bge_reset(sc);
   5819 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5820 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5821 
   5822 	/*
   5823 	 * Keep the ASF firmware running if up.
   5824 	 */
   5825 	if (sc->bge_asf_mode & ASF_STACKUP)
   5826 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5827 	else
   5828 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5829 
   5830 	/* Free the RX lists. */
   5831 	bge_free_rx_ring_std(sc);
   5832 
   5833 	/* Free jumbo RX list. */
   5834 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5835 		bge_free_rx_ring_jumbo(sc);
   5836 
   5837 	/* Free TX buffers. */
   5838 	bge_free_tx_ring(sc);
   5839 
   5840 	/*
   5841 	 * Isolate/power down the PHY.
   5842 	 */
   5843 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   5844 		mii_down(&sc->bge_mii);
   5845 
   5846 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5847 
   5848 	/* Clear MAC's link state (PHY may still have link UP). */
   5849 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5850 
   5851 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5852 }
   5853 
   5854 static void
   5855 bge_link_upd(struct bge_softc *sc)
   5856 {
   5857 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5858 	struct mii_data *mii = &sc->bge_mii;
   5859 	uint32_t status;
   5860 	int link;
   5861 
   5862 	/* Clear 'pending link event' flag */
   5863 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5864 
   5865 	/*
   5866 	 * Process link state changes.
   5867 	 * Grrr. The link status word in the status block does
   5868 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5869 	 * according to all available information. Hence, we have
   5870 	 * to enable MII interrupts in order to properly obtain
   5871 	 * async link changes. Unfortunately, this also means that
   5872 	 * we have to read the MAC status register to detect link
   5873 	 * changes, thereby adding an additional register access to
   5874 	 * the interrupt handler.
   5875 	 */
   5876 
   5877 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5878 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5879 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5880 			mii_pollstat(mii);
   5881 
   5882 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5883 			    mii->mii_media_status & IFM_ACTIVE &&
   5884 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5885 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5886 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5887 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5888 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5889 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5890 
   5891 			/* Clear the interrupt */
   5892 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5893 			    BGE_EVTENB_MI_INTERRUPT);
   5894 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5895 			    BRGPHY_MII_ISR);
   5896 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5897 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5898 		}
   5899 		return;
   5900 	}
   5901 
   5902 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5903 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5904 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   5905 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5906 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5907 				if (BGE_ASICREV(sc->bge_chipid)
   5908 				    == BGE_ASICREV_BCM5704) {
   5909 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   5910 					    BGE_MACMODE_TBI_SEND_CFGS);
   5911 					DELAY(40);
   5912 				}
   5913 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   5914 				if_link_state_change(ifp, LINK_STATE_UP);
   5915 			}
   5916 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   5917 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5918 			if_link_state_change(ifp, LINK_STATE_DOWN);
   5919 		}
   5920 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   5921 		/*
   5922 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   5923 		 * bit in status word always set. Workaround this bug by
   5924 		 * reading PHY link status directly.
   5925 		 */
   5926 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   5927 		    BGE_STS_LINK : 0;
   5928 
   5929 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   5930 			mii_pollstat(mii);
   5931 
   5932 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5933 			    mii->mii_media_status & IFM_ACTIVE &&
   5934 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5935 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5936 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5937 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5938 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5939 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5940 		}
   5941 	} else {
   5942 		/*
   5943 		 * For controllers that call mii_tick, we have to poll
   5944 		 * link status.
   5945 		 */
   5946 		mii_pollstat(mii);
   5947 	}
   5948 
   5949 	/* Clear the attention */
   5950 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   5951 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   5952 	    BGE_MACSTAT_LINK_CHANGED);
   5953 }
   5954 
   5955 static int
   5956 bge_sysctl_verify(SYSCTLFN_ARGS)
   5957 {
   5958 	int error, t;
   5959 	struct sysctlnode node;
   5960 
   5961 	node = *rnode;
   5962 	t = *(int*)rnode->sysctl_data;
   5963 	node.sysctl_data = &t;
   5964 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   5965 	if (error || newp == NULL)
   5966 		return error;
   5967 
   5968 #if 0
   5969 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   5970 	    node.sysctl_num, rnode->sysctl_num));
   5971 #endif
   5972 
   5973 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   5974 		if (t < 0 || t >= NBGE_RX_THRESH)
   5975 			return EINVAL;
   5976 		bge_update_all_threshes(t);
   5977 	} else
   5978 		return EINVAL;
   5979 
   5980 	*(int*)rnode->sysctl_data = t;
   5981 
   5982 	return 0;
   5983 }
   5984 
   5985 /*
   5986  * Set up sysctl(3) MIB, hw.bge.*.
   5987  */
   5988 static void
   5989 bge_sysctl_init(struct bge_softc *sc)
   5990 {
   5991 	int rc, bge_root_num;
   5992 	const struct sysctlnode *node;
   5993 
   5994 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   5995 	    0, CTLTYPE_NODE, "bge",
   5996 	    SYSCTL_DESCR("BGE interface controls"),
   5997 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   5998 		goto out;
   5999 	}
   6000 
   6001 	bge_root_num = node->sysctl_num;
   6002 
   6003 	/* BGE Rx interrupt mitigation level */
   6004 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6005 	    CTLFLAG_READWRITE,
   6006 	    CTLTYPE_INT, "rx_lvl",
   6007 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6008 	    bge_sysctl_verify, 0,
   6009 	    &bge_rx_thresh_lvl,
   6010 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6011 	    CTL_EOL)) != 0) {
   6012 		goto out;
   6013 	}
   6014 
   6015 	bge_rxthresh_nodenum = node->sysctl_num;
   6016 
   6017 	return;
   6018 
   6019 out:
   6020 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6021 }
   6022 
   6023 #ifdef BGE_DEBUG
   6024 void
   6025 bge_debug_info(struct bge_softc *sc)
   6026 {
   6027 
   6028 	printf("Hardware Flags:\n");
   6029 	if (BGE_IS_57765_PLUS(sc))
   6030 		printf(" - 57765 Plus\n");
   6031 	if (BGE_IS_5717_PLUS(sc))
   6032 		printf(" - 5717 Plus\n");
   6033 	if (BGE_IS_5755_PLUS(sc))
   6034 		printf(" - 5755 Plus\n");
   6035 	if (BGE_IS_575X_PLUS(sc))
   6036 		printf(" - 575X Plus\n");
   6037 	if (BGE_IS_5705_PLUS(sc))
   6038 		printf(" - 5705 Plus\n");
   6039 	if (BGE_IS_5714_FAMILY(sc))
   6040 		printf(" - 5714 Family\n");
   6041 	if (BGE_IS_5700_FAMILY(sc))
   6042 		printf(" - 5700 Family\n");
   6043 	if (sc->bge_flags & BGEF_IS_5788)
   6044 		printf(" - 5788\n");
   6045 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6046 		printf(" - Supports Jumbo Frames\n");
   6047 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6048 		printf(" - No EEPROM\n");
   6049 	if (sc->bge_flags & BGEF_PCIX)
   6050 		printf(" - PCI-X Bus\n");
   6051 	if (sc->bge_flags & BGEF_PCIE)
   6052 		printf(" - PCI Express Bus\n");
   6053 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6054 		printf(" - RX Alignment Bug\n");
   6055 	if (sc->bge_flags & BGEF_APE)
   6056 		printf(" - APE\n");
   6057 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6058 		printf(" - CPMU\n");
   6059 	if (sc->bge_flags & BGEF_TSO)
   6060 		printf(" - TSO\n");
   6061 
   6062 	/* PHY related */
   6063 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6064 		printf(" - No 3 LEDs\n");
   6065 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6066 		printf(" - CRC bug\n");
   6067 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6068 		printf(" - ADC bug\n");
   6069 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6070 		printf(" - 5704 A0 bug\n");
   6071 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6072 		printf(" - jitter bug\n");
   6073 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6074 		printf(" - BER bug\n");
   6075 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6076 		printf(" - adjust trim\n");
   6077 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6078 		printf(" - no wirespeed\n");
   6079 
   6080 	/* ASF related */
   6081 	if (sc->bge_asf_mode & ASF_ENABLE)
   6082 		printf(" - ASF enable\n");
   6083 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6084 		printf(" - ASF new handshake\n");
   6085 	if (sc->bge_asf_mode & ASF_STACKUP)
   6086 		printf(" - ASF stackup\n");
   6087 }
   6088 #endif /* BGE_DEBUG */
   6089 
   6090 static int
   6091 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6092 {
   6093 	prop_dictionary_t dict;
   6094 	prop_data_t ea;
   6095 
   6096 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6097 		return 1;
   6098 
   6099 	dict = device_properties(sc->bge_dev);
   6100 	ea = prop_dictionary_get(dict, "mac-address");
   6101 	if (ea != NULL) {
   6102 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6103 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6104 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   6105 		return 0;
   6106 	}
   6107 
   6108 	return 1;
   6109 }
   6110 
   6111 static int
   6112 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6113 {
   6114 	uint32_t mac_addr;
   6115 
   6116 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6117 	if ((mac_addr >> 16) == 0x484b) {
   6118 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6119 		ether_addr[1] = (uint8_t)mac_addr;
   6120 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6121 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6122 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6123 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6124 		ether_addr[5] = (uint8_t)mac_addr;
   6125 		return 0;
   6126 	}
   6127 	return 1;
   6128 }
   6129 
   6130 static int
   6131 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6132 {
   6133 	int mac_offset = BGE_EE_MAC_OFFSET;
   6134 
   6135 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6136 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6137 
   6138 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6139 	    ETHER_ADDR_LEN));
   6140 }
   6141 
   6142 static int
   6143 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6144 {
   6145 
   6146 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6147 		return 1;
   6148 
   6149 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6150 	   ETHER_ADDR_LEN));
   6151 }
   6152 
   6153 static int
   6154 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6155 {
   6156 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6157 		/* NOTE: Order is critical */
   6158 		bge_get_eaddr_fw,
   6159 		bge_get_eaddr_mem,
   6160 		bge_get_eaddr_nvram,
   6161 		bge_get_eaddr_eeprom,
   6162 		NULL
   6163 	};
   6164 	const bge_eaddr_fcn_t *func;
   6165 
   6166 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6167 		if ((*func)(sc, eaddr) == 0)
   6168 			break;
   6169 	}
   6170 	return (*func == NULL ? ENXIO : 0);
   6171 }
   6172