if_bge.c revision 1.284 1 /* $NetBSD: if_bge.c,v 1.284 2015/04/30 15:48:46 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.284 2015/04/30 15:48:46 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 static const struct bge_product {
300 pci_vendor_id_t bp_vendor;
301 pci_product_id_t bp_product;
302 const char *bp_name;
303 } bge_products[] = {
304 /*
305 * The BCM5700 documentation seems to indicate that the hardware
306 * still has the Alteon vendor ID burned into it, though it
307 * should always be overridden by the value in the EEPROM. We'll
308 * check for it anyway.
309 */
310 { PCI_VENDOR_ALTEON,
311 PCI_PRODUCT_ALTEON_BCM5700,
312 "Broadcom BCM5700 Gigabit Ethernet",
313 },
314 { PCI_VENDOR_ALTEON,
315 PCI_PRODUCT_ALTEON_BCM5701,
316 "Broadcom BCM5701 Gigabit Ethernet",
317 },
318 { PCI_VENDOR_ALTIMA,
319 PCI_PRODUCT_ALTIMA_AC1000,
320 "Altima AC1000 Gigabit Ethernet",
321 },
322 { PCI_VENDOR_ALTIMA,
323 PCI_PRODUCT_ALTIMA_AC1001,
324 "Altima AC1001 Gigabit Ethernet",
325 },
326 { PCI_VENDOR_ALTIMA,
327 PCI_PRODUCT_ALTIMA_AC1003,
328 "Altima AC1003 Gigabit Ethernet",
329 },
330 { PCI_VENDOR_ALTIMA,
331 PCI_PRODUCT_ALTIMA_AC9100,
332 "Altima AC9100 Gigabit Ethernet",
333 },
334 { PCI_VENDOR_APPLE,
335 PCI_PRODUCT_APPLE_BCM5701,
336 "APPLE BCM5701 Gigabit Ethernet",
337 },
338 { PCI_VENDOR_BROADCOM,
339 PCI_PRODUCT_BROADCOM_BCM5700,
340 "Broadcom BCM5700 Gigabit Ethernet",
341 },
342 { PCI_VENDOR_BROADCOM,
343 PCI_PRODUCT_BROADCOM_BCM5701,
344 "Broadcom BCM5701 Gigabit Ethernet",
345 },
346 { PCI_VENDOR_BROADCOM,
347 PCI_PRODUCT_BROADCOM_BCM5702,
348 "Broadcom BCM5702 Gigabit Ethernet",
349 },
350 { PCI_VENDOR_BROADCOM,
351 PCI_PRODUCT_BROADCOM_BCM5702X,
352 "Broadcom BCM5702X Gigabit Ethernet" },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5703,
355 "Broadcom BCM5703 Gigabit Ethernet",
356 },
357 { PCI_VENDOR_BROADCOM,
358 PCI_PRODUCT_BROADCOM_BCM5703X,
359 "Broadcom BCM5703X Gigabit Ethernet",
360 },
361 { PCI_VENDOR_BROADCOM,
362 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 "Broadcom BCM5703 Gigabit Ethernet",
364 },
365 { PCI_VENDOR_BROADCOM,
366 PCI_PRODUCT_BROADCOM_BCM5704C,
367 "Broadcom BCM5704C Dual Gigabit Ethernet",
368 },
369 { PCI_VENDOR_BROADCOM,
370 PCI_PRODUCT_BROADCOM_BCM5704S,
371 "Broadcom BCM5704S Dual Gigabit Ethernet",
372 },
373 { PCI_VENDOR_BROADCOM,
374 PCI_PRODUCT_BROADCOM_BCM5705,
375 "Broadcom BCM5705 Gigabit Ethernet",
376 },
377 { PCI_VENDOR_BROADCOM,
378 PCI_PRODUCT_BROADCOM_BCM5705F,
379 "Broadcom BCM5705F Gigabit Ethernet",
380 },
381 { PCI_VENDOR_BROADCOM,
382 PCI_PRODUCT_BROADCOM_BCM5705K,
383 "Broadcom BCM5705K Gigabit Ethernet",
384 },
385 { PCI_VENDOR_BROADCOM,
386 PCI_PRODUCT_BROADCOM_BCM5705M,
387 "Broadcom BCM5705M Gigabit Ethernet",
388 },
389 { PCI_VENDOR_BROADCOM,
390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 "Broadcom BCM5705M Gigabit Ethernet",
392 },
393 { PCI_VENDOR_BROADCOM,
394 PCI_PRODUCT_BROADCOM_BCM5714,
395 "Broadcom BCM5714 Gigabit Ethernet",
396 },
397 { PCI_VENDOR_BROADCOM,
398 PCI_PRODUCT_BROADCOM_BCM5714S,
399 "Broadcom BCM5714S Gigabit Ethernet",
400 },
401 { PCI_VENDOR_BROADCOM,
402 PCI_PRODUCT_BROADCOM_BCM5715,
403 "Broadcom BCM5715 Gigabit Ethernet",
404 },
405 { PCI_VENDOR_BROADCOM,
406 PCI_PRODUCT_BROADCOM_BCM5715S,
407 "Broadcom BCM5715S Gigabit Ethernet",
408 },
409 { PCI_VENDOR_BROADCOM,
410 PCI_PRODUCT_BROADCOM_BCM5717,
411 "Broadcom BCM5717 Gigabit Ethernet",
412 },
413 { PCI_VENDOR_BROADCOM,
414 PCI_PRODUCT_BROADCOM_BCM5718,
415 "Broadcom BCM5718 Gigabit Ethernet",
416 },
417 { PCI_VENDOR_BROADCOM,
418 PCI_PRODUCT_BROADCOM_BCM5719,
419 "Broadcom BCM5719 Gigabit Ethernet",
420 },
421 { PCI_VENDOR_BROADCOM,
422 PCI_PRODUCT_BROADCOM_BCM5720,
423 "Broadcom BCM5720 Gigabit Ethernet",
424 },
425 { PCI_VENDOR_BROADCOM,
426 PCI_PRODUCT_BROADCOM_BCM5721,
427 "Broadcom BCM5721 Gigabit Ethernet",
428 },
429 { PCI_VENDOR_BROADCOM,
430 PCI_PRODUCT_BROADCOM_BCM5722,
431 "Broadcom BCM5722 Gigabit Ethernet",
432 },
433 { PCI_VENDOR_BROADCOM,
434 PCI_PRODUCT_BROADCOM_BCM5723,
435 "Broadcom BCM5723 Gigabit Ethernet",
436 },
437 { PCI_VENDOR_BROADCOM,
438 PCI_PRODUCT_BROADCOM_BCM5724,
439 "Broadcom BCM5724 Gigabit Ethernet",
440 },
441 { PCI_VENDOR_BROADCOM,
442 PCI_PRODUCT_BROADCOM_BCM5750,
443 "Broadcom BCM5750 Gigabit Ethernet",
444 },
445 { PCI_VENDOR_BROADCOM,
446 PCI_PRODUCT_BROADCOM_BCM5750M,
447 "Broadcom BCM5750M Gigabit Ethernet",
448 },
449 { PCI_VENDOR_BROADCOM,
450 PCI_PRODUCT_BROADCOM_BCM5751,
451 "Broadcom BCM5751 Gigabit Ethernet",
452 },
453 { PCI_VENDOR_BROADCOM,
454 PCI_PRODUCT_BROADCOM_BCM5751F,
455 "Broadcom BCM5751F Gigabit Ethernet",
456 },
457 { PCI_VENDOR_BROADCOM,
458 PCI_PRODUCT_BROADCOM_BCM5751M,
459 "Broadcom BCM5751M Gigabit Ethernet",
460 },
461 { PCI_VENDOR_BROADCOM,
462 PCI_PRODUCT_BROADCOM_BCM5752,
463 "Broadcom BCM5752 Gigabit Ethernet",
464 },
465 { PCI_VENDOR_BROADCOM,
466 PCI_PRODUCT_BROADCOM_BCM5752M,
467 "Broadcom BCM5752M Gigabit Ethernet",
468 },
469 { PCI_VENDOR_BROADCOM,
470 PCI_PRODUCT_BROADCOM_BCM5753,
471 "Broadcom BCM5753 Gigabit Ethernet",
472 },
473 { PCI_VENDOR_BROADCOM,
474 PCI_PRODUCT_BROADCOM_BCM5753F,
475 "Broadcom BCM5753F Gigabit Ethernet",
476 },
477 { PCI_VENDOR_BROADCOM,
478 PCI_PRODUCT_BROADCOM_BCM5753M,
479 "Broadcom BCM5753M Gigabit Ethernet",
480 },
481 { PCI_VENDOR_BROADCOM,
482 PCI_PRODUCT_BROADCOM_BCM5754,
483 "Broadcom BCM5754 Gigabit Ethernet",
484 },
485 { PCI_VENDOR_BROADCOM,
486 PCI_PRODUCT_BROADCOM_BCM5754M,
487 "Broadcom BCM5754M Gigabit Ethernet",
488 },
489 { PCI_VENDOR_BROADCOM,
490 PCI_PRODUCT_BROADCOM_BCM5755,
491 "Broadcom BCM5755 Gigabit Ethernet",
492 },
493 { PCI_VENDOR_BROADCOM,
494 PCI_PRODUCT_BROADCOM_BCM5755M,
495 "Broadcom BCM5755M Gigabit Ethernet",
496 },
497 { PCI_VENDOR_BROADCOM,
498 PCI_PRODUCT_BROADCOM_BCM5756,
499 "Broadcom BCM5756 Gigabit Ethernet",
500 },
501 { PCI_VENDOR_BROADCOM,
502 PCI_PRODUCT_BROADCOM_BCM5761,
503 "Broadcom BCM5761 Gigabit Ethernet",
504 },
505 { PCI_VENDOR_BROADCOM,
506 PCI_PRODUCT_BROADCOM_BCM5761E,
507 "Broadcom BCM5761E Gigabit Ethernet",
508 },
509 { PCI_VENDOR_BROADCOM,
510 PCI_PRODUCT_BROADCOM_BCM5761S,
511 "Broadcom BCM5761S Gigabit Ethernet",
512 },
513 { PCI_VENDOR_BROADCOM,
514 PCI_PRODUCT_BROADCOM_BCM5761SE,
515 "Broadcom BCM5761SE Gigabit Ethernet",
516 },
517 { PCI_VENDOR_BROADCOM,
518 PCI_PRODUCT_BROADCOM_BCM5764,
519 "Broadcom BCM5764 Gigabit Ethernet",
520 },
521 { PCI_VENDOR_BROADCOM,
522 PCI_PRODUCT_BROADCOM_BCM5780,
523 "Broadcom BCM5780 Gigabit Ethernet",
524 },
525 { PCI_VENDOR_BROADCOM,
526 PCI_PRODUCT_BROADCOM_BCM5780S,
527 "Broadcom BCM5780S Gigabit Ethernet",
528 },
529 { PCI_VENDOR_BROADCOM,
530 PCI_PRODUCT_BROADCOM_BCM5781,
531 "Broadcom BCM5781 Gigabit Ethernet",
532 },
533 { PCI_VENDOR_BROADCOM,
534 PCI_PRODUCT_BROADCOM_BCM5782,
535 "Broadcom BCM5782 Gigabit Ethernet",
536 },
537 { PCI_VENDOR_BROADCOM,
538 PCI_PRODUCT_BROADCOM_BCM5784M,
539 "BCM5784M NetLink 1000baseT Ethernet",
540 },
541 { PCI_VENDOR_BROADCOM,
542 PCI_PRODUCT_BROADCOM_BCM5785F,
543 "BCM5785F NetLink 10/100 Ethernet",
544 },
545 { PCI_VENDOR_BROADCOM,
546 PCI_PRODUCT_BROADCOM_BCM5785G,
547 "BCM5785G NetLink 1000baseT Ethernet",
548 },
549 { PCI_VENDOR_BROADCOM,
550 PCI_PRODUCT_BROADCOM_BCM5786,
551 "Broadcom BCM5786 Gigabit Ethernet",
552 },
553 { PCI_VENDOR_BROADCOM,
554 PCI_PRODUCT_BROADCOM_BCM5787,
555 "Broadcom BCM5787 Gigabit Ethernet",
556 },
557 { PCI_VENDOR_BROADCOM,
558 PCI_PRODUCT_BROADCOM_BCM5787F,
559 "Broadcom BCM5787F 10/100 Ethernet",
560 },
561 { PCI_VENDOR_BROADCOM,
562 PCI_PRODUCT_BROADCOM_BCM5787M,
563 "Broadcom BCM5787M Gigabit Ethernet",
564 },
565 { PCI_VENDOR_BROADCOM,
566 PCI_PRODUCT_BROADCOM_BCM5788,
567 "Broadcom BCM5788 Gigabit Ethernet",
568 },
569 { PCI_VENDOR_BROADCOM,
570 PCI_PRODUCT_BROADCOM_BCM5789,
571 "Broadcom BCM5789 Gigabit Ethernet",
572 },
573 { PCI_VENDOR_BROADCOM,
574 PCI_PRODUCT_BROADCOM_BCM5901,
575 "Broadcom BCM5901 Fast Ethernet",
576 },
577 { PCI_VENDOR_BROADCOM,
578 PCI_PRODUCT_BROADCOM_BCM5901A2,
579 "Broadcom BCM5901A2 Fast Ethernet",
580 },
581 { PCI_VENDOR_BROADCOM,
582 PCI_PRODUCT_BROADCOM_BCM5903M,
583 "Broadcom BCM5903M Fast Ethernet",
584 },
585 { PCI_VENDOR_BROADCOM,
586 PCI_PRODUCT_BROADCOM_BCM5906,
587 "Broadcom BCM5906 Fast Ethernet",
588 },
589 { PCI_VENDOR_BROADCOM,
590 PCI_PRODUCT_BROADCOM_BCM5906M,
591 "Broadcom BCM5906M Fast Ethernet",
592 },
593 { PCI_VENDOR_BROADCOM,
594 PCI_PRODUCT_BROADCOM_BCM57760,
595 "Broadcom BCM57760 Fast Ethernet",
596 },
597 { PCI_VENDOR_BROADCOM,
598 PCI_PRODUCT_BROADCOM_BCM57761,
599 "Broadcom BCM57761 Fast Ethernet",
600 },
601 { PCI_VENDOR_BROADCOM,
602 PCI_PRODUCT_BROADCOM_BCM57762,
603 "Broadcom BCM57762 Gigabit Ethernet",
604 },
605 { PCI_VENDOR_BROADCOM,
606 PCI_PRODUCT_BROADCOM_BCM57765,
607 "Broadcom BCM57765 Fast Ethernet",
608 },
609 { PCI_VENDOR_BROADCOM,
610 PCI_PRODUCT_BROADCOM_BCM57766,
611 "Broadcom BCM57766 Fast Ethernet",
612 },
613 { PCI_VENDOR_BROADCOM,
614 PCI_PRODUCT_BROADCOM_BCM57780,
615 "Broadcom BCM57780 Fast Ethernet",
616 },
617 { PCI_VENDOR_BROADCOM,
618 PCI_PRODUCT_BROADCOM_BCM57781,
619 "Broadcom BCM57781 Fast Ethernet",
620 },
621 { PCI_VENDOR_BROADCOM,
622 PCI_PRODUCT_BROADCOM_BCM57782,
623 "Broadcom BCM57782 Fast Ethernet",
624 },
625 { PCI_VENDOR_BROADCOM,
626 PCI_PRODUCT_BROADCOM_BCM57785,
627 "Broadcom BCM57785 Fast Ethernet",
628 },
629 { PCI_VENDOR_BROADCOM,
630 PCI_PRODUCT_BROADCOM_BCM57786,
631 "Broadcom BCM57786 Fast Ethernet",
632 },
633 { PCI_VENDOR_BROADCOM,
634 PCI_PRODUCT_BROADCOM_BCM57788,
635 "Broadcom BCM57788 Fast Ethernet",
636 },
637 { PCI_VENDOR_BROADCOM,
638 PCI_PRODUCT_BROADCOM_BCM57790,
639 "Broadcom BCM57790 Fast Ethernet",
640 },
641 { PCI_VENDOR_BROADCOM,
642 PCI_PRODUCT_BROADCOM_BCM57791,
643 "Broadcom BCM57791 Fast Ethernet",
644 },
645 { PCI_VENDOR_BROADCOM,
646 PCI_PRODUCT_BROADCOM_BCM57795,
647 "Broadcom BCM57795 Fast Ethernet",
648 },
649 { PCI_VENDOR_SCHNEIDERKOCH,
650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 },
653 { PCI_VENDOR_3COM,
654 PCI_PRODUCT_3COM_3C996,
655 "3Com 3c996 Gigabit Ethernet",
656 },
657 { PCI_VENDOR_FUJITSU4,
658 PCI_PRODUCT_FUJITSU4_PW008GE4,
659 "Fujitsu PW008GE4 Gigabit Ethernet",
660 },
661 { PCI_VENDOR_FUJITSU4,
662 PCI_PRODUCT_FUJITSU4_PW008GE5,
663 "Fujitsu PW008GE5 Gigabit Ethernet",
664 },
665 { PCI_VENDOR_FUJITSU4,
666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 },
669 { 0,
670 0,
671 NULL },
672 };
673
674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
680 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
682 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
683
684 static const struct bge_revision {
685 uint32_t br_chipid;
686 const char *br_name;
687 } bge_revisions[] = {
688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
744 /* 5754 and 5787 share the same ASIC ID */
745 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
746 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
747 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
748 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
749 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
750 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
751 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
752 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
753 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
754 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
755
756 { 0, NULL }
757 };
758
759 /*
760 * Some defaults for major revisions, so that newer steppings
761 * that we don't know about have a shot at working.
762 */
763 static const struct bge_revision bge_majorrevs[] = {
764 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
765 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
766 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
767 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
768 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
769 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
770 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
771 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
772 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
773 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
774 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
775 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
776 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
777 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
778 /* 5754 and 5787 share the same ASIC ID */
779 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
780 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
781 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
782 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
783 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
784 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
785 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
786 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
787
788 { 0, NULL }
789 };
790
791 static int bge_allow_asf = 1;
792
793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
794 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
795
796 static uint32_t
797 bge_readmem_ind(struct bge_softc *sc, int off)
798 {
799 pcireg_t val;
800
801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
802 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
803 return 0;
804
805 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
806 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
807 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
808 return val;
809 }
810
811 static void
812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
813 {
814
815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
817 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
818 }
819
820 /*
821 * PCI Express only
822 */
823 static void
824 bge_set_max_readrq(struct bge_softc *sc)
825 {
826 pcireg_t val;
827
828 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
829 + PCIE_DCSR);
830 val &= ~PCIE_DCSR_MAX_READ_REQ;
831 switch (sc->bge_expmrq) {
832 case 2048:
833 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
834 break;
835 case 4096:
836 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
837 break;
838 default:
839 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
840 break;
841 }
842 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
843 + PCIE_DCSR, val);
844 }
845
846 #ifdef notdef
847 static uint32_t
848 bge_readreg_ind(struct bge_softc *sc, int off)
849 {
850 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
851 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
852 }
853 #endif
854
855 static void
856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
857 {
858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
859 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
860 }
861
862 static void
863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
864 {
865 CSR_WRITE_4(sc, off, val);
866 }
867
868 static void
869 bge_writembx(struct bge_softc *sc, int off, int val)
870 {
871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
872 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
873
874 CSR_WRITE_4(sc, off, val);
875 }
876
877 static void
878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
879 {
880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
881 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
882
883 CSR_WRITE_4_FLUSH(sc, off, val);
884 }
885
886 /*
887 * Clear all stale locks and select the lock for this driver instance.
888 */
889 void
890 bge_ape_lock_init(struct bge_softc *sc)
891 {
892 struct pci_attach_args *pa = &(sc->bge_pa);
893 uint32_t bit, regbase;
894 int i;
895
896 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
897 regbase = BGE_APE_LOCK_GRANT;
898 else
899 regbase = BGE_APE_PER_LOCK_GRANT;
900
901 /* Clear any stale locks. */
902 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
903 switch (i) {
904 case BGE_APE_LOCK_PHY0:
905 case BGE_APE_LOCK_PHY1:
906 case BGE_APE_LOCK_PHY2:
907 case BGE_APE_LOCK_PHY3:
908 bit = BGE_APE_LOCK_GRANT_DRIVER0;
909 break;
910 default:
911 if (pa->pa_function == 0)
912 bit = BGE_APE_LOCK_GRANT_DRIVER0;
913 else
914 bit = (1 << pa->pa_function);
915 }
916 APE_WRITE_4(sc, regbase + 4 * i, bit);
917 }
918
919 /* Select the PHY lock based on the device's function number. */
920 switch (pa->pa_function) {
921 case 0:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
923 break;
924 case 1:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
926 break;
927 case 2:
928 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
929 break;
930 case 3:
931 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
932 break;
933 default:
934 printf("%s: PHY lock not supported on function\n",
935 device_xname(sc->bge_dev));
936 break;
937 }
938 }
939
940 /*
941 * Check for APE firmware, set flags, and print version info.
942 */
943 void
944 bge_ape_read_fw_ver(struct bge_softc *sc)
945 {
946 const char *fwtype;
947 uint32_t apedata, features;
948
949 /* Check for a valid APE signature in shared memory. */
950 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
951 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
952 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
953 return;
954 }
955
956 /* Check if APE firmware is running. */
957 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
958 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
959 printf("%s: APE signature found but FW status not ready! "
960 "0x%08x\n", device_xname(sc->bge_dev), apedata);
961 return;
962 }
963
964 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
965
966 /* Fetch the APE firwmare type and version. */
967 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
968 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
969 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
970 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
971 fwtype = "NCSI";
972 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
973 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
974 fwtype = "DASH";
975 } else
976 fwtype = "UNKN";
977
978 /* Print the APE firmware version. */
979 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
980 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
981 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
982 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
983 (apedata & BGE_APE_FW_VERSION_BLDMSK));
984 }
985
986 int
987 bge_ape_lock(struct bge_softc *sc, int locknum)
988 {
989 struct pci_attach_args *pa = &(sc->bge_pa);
990 uint32_t bit, gnt, req, status;
991 int i, off;
992
993 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
994 return (0);
995
996 /* Lock request/grant registers have different bases. */
997 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
998 req = BGE_APE_LOCK_REQ;
999 gnt = BGE_APE_LOCK_GRANT;
1000 } else {
1001 req = BGE_APE_PER_LOCK_REQ;
1002 gnt = BGE_APE_PER_LOCK_GRANT;
1003 }
1004
1005 off = 4 * locknum;
1006
1007 switch (locknum) {
1008 case BGE_APE_LOCK_GPIO:
1009 /* Lock required when using GPIO. */
1010 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1011 return (0);
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_GRC:
1018 /* Lock required to reset the device. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_MEM:
1025 /* Lock required when accessing certain APE memory. */
1026 if (pa->pa_function == 0)
1027 bit = BGE_APE_LOCK_REQ_DRIVER0;
1028 else
1029 bit = (1 << pa->pa_function);
1030 break;
1031 case BGE_APE_LOCK_PHY0:
1032 case BGE_APE_LOCK_PHY1:
1033 case BGE_APE_LOCK_PHY2:
1034 case BGE_APE_LOCK_PHY3:
1035 /* Lock required when accessing PHYs. */
1036 bit = BGE_APE_LOCK_REQ_DRIVER0;
1037 break;
1038 default:
1039 return (EINVAL);
1040 }
1041
1042 /* Request a lock. */
1043 APE_WRITE_4_FLUSH(sc, req + off, bit);
1044
1045 /* Wait up to 1 second to acquire lock. */
1046 for (i = 0; i < 20000; i++) {
1047 status = APE_READ_4(sc, gnt + off);
1048 if (status == bit)
1049 break;
1050 DELAY(50);
1051 }
1052
1053 /* Handle any errors. */
1054 if (status != bit) {
1055 printf("%s: APE lock %d request failed! "
1056 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1057 device_xname(sc->bge_dev),
1058 locknum, req + off, bit & 0xFFFF, gnt + off,
1059 status & 0xFFFF);
1060 /* Revoke the lock request. */
1061 APE_WRITE_4(sc, gnt + off, bit);
1062 return (EBUSY);
1063 }
1064
1065 return (0);
1066 }
1067
1068 void
1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
1070 {
1071 struct pci_attach_args *pa = &(sc->bge_pa);
1072 uint32_t bit, gnt;
1073 int off;
1074
1075 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1076 return;
1077
1078 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1079 gnt = BGE_APE_LOCK_GRANT;
1080 else
1081 gnt = BGE_APE_PER_LOCK_GRANT;
1082
1083 off = 4 * locknum;
1084
1085 switch (locknum) {
1086 case BGE_APE_LOCK_GPIO:
1087 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1088 return;
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_GRC:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_MEM:
1101 if (pa->pa_function == 0)
1102 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1103 else
1104 bit = (1 << pa->pa_function);
1105 break;
1106 case BGE_APE_LOCK_PHY0:
1107 case BGE_APE_LOCK_PHY1:
1108 case BGE_APE_LOCK_PHY2:
1109 case BGE_APE_LOCK_PHY3:
1110 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1111 break;
1112 default:
1113 return;
1114 }
1115
1116 /* Write and flush for consecutive bge_ape_lock() */
1117 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1118 }
1119
1120 /*
1121 * Send an event to the APE firmware.
1122 */
1123 void
1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1125 {
1126 uint32_t apedata;
1127 int i;
1128
1129 /* NCSI does not support APE events. */
1130 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1131 return;
1132
1133 /* Wait up to 1ms for APE to service previous event. */
1134 for (i = 10; i > 0; i--) {
1135 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1136 break;
1137 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1138 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1139 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1140 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1141 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1142 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1143 break;
1144 }
1145 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1146 DELAY(100);
1147 }
1148 if (i == 0) {
1149 printf("%s: APE event 0x%08x send timed out\n",
1150 device_xname(sc->bge_dev), event);
1151 }
1152 }
1153
1154 void
1155 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1156 {
1157 uint32_t apedata, event;
1158
1159 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1160 return;
1161
1162 switch (kind) {
1163 case BGE_RESET_START:
1164 /* If this is the first load, clear the load counter. */
1165 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1166 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1167 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1168 else {
1169 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1170 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1171 }
1172 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1173 BGE_APE_HOST_SEG_SIG_MAGIC);
1174 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1175 BGE_APE_HOST_SEG_LEN_MAGIC);
1176
1177 /* Add some version info if bge(4) supports it. */
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1179 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1180 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1181 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1182 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1183 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1184 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1185 BGE_APE_HOST_DRVR_STATE_START);
1186 event = BGE_APE_EVENT_STATUS_STATE_START;
1187 break;
1188 case BGE_RESET_SHUTDOWN:
1189 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1190 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1191 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1192 break;
1193 case BGE_RESET_SUSPEND:
1194 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1195 break;
1196 default:
1197 return;
1198 }
1199
1200 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1201 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1202 }
1203
1204 static uint8_t
1205 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1206 {
1207 uint32_t access, byte = 0;
1208 int i;
1209
1210 /* Lock. */
1211 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1212 for (i = 0; i < 8000; i++) {
1213 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1214 break;
1215 DELAY(20);
1216 }
1217 if (i == 8000)
1218 return 1;
1219
1220 /* Enable access. */
1221 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1222 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1223
1224 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1225 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1226 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1227 DELAY(10);
1228 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1229 DELAY(10);
1230 break;
1231 }
1232 }
1233
1234 if (i == BGE_TIMEOUT * 10) {
1235 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1236 return 1;
1237 }
1238
1239 /* Get result. */
1240 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1241
1242 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1243
1244 /* Disable access. */
1245 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1246
1247 /* Unlock. */
1248 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1249
1250 return 0;
1251 }
1252
1253 /*
1254 * Read a sequence of bytes from NVRAM.
1255 */
1256 static int
1257 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1258 {
1259 int error = 0, i;
1260 uint8_t byte = 0;
1261
1262 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1263 return 1;
1264
1265 for (i = 0; i < cnt; i++) {
1266 error = bge_nvram_getbyte(sc, off + i, &byte);
1267 if (error)
1268 break;
1269 *(dest + i) = byte;
1270 }
1271
1272 return (error ? 1 : 0);
1273 }
1274
1275 /*
1276 * Read a byte of data stored in the EEPROM at address 'addr.' The
1277 * BCM570x supports both the traditional bitbang interface and an
1278 * auto access interface for reading the EEPROM. We use the auto
1279 * access method.
1280 */
1281 static uint8_t
1282 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1283 {
1284 int i;
1285 uint32_t byte = 0;
1286
1287 /*
1288 * Enable use of auto EEPROM access so we can avoid
1289 * having to use the bitbang method.
1290 */
1291 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1292
1293 /* Reset the EEPROM, load the clock period. */
1294 CSR_WRITE_4(sc, BGE_EE_ADDR,
1295 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1296 DELAY(20);
1297
1298 /* Issue the read EEPROM command. */
1299 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1300
1301 /* Wait for completion */
1302 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1303 DELAY(10);
1304 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1305 break;
1306 }
1307
1308 if (i == BGE_TIMEOUT * 10) {
1309 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1310 return 1;
1311 }
1312
1313 /* Get result. */
1314 byte = CSR_READ_4(sc, BGE_EE_DATA);
1315
1316 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * Read a sequence of bytes from the EEPROM.
1323 */
1324 static int
1325 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1326 {
1327 int error = 0, i;
1328 uint8_t byte = 0;
1329 char *dest = destv;
1330
1331 for (i = 0; i < cnt; i++) {
1332 error = bge_eeprom_getbyte(sc, off + i, &byte);
1333 if (error)
1334 break;
1335 *(dest + i) = byte;
1336 }
1337
1338 return (error ? 1 : 0);
1339 }
1340
1341 static int
1342 bge_miibus_readreg(device_t dev, int phy, int reg)
1343 {
1344 struct bge_softc *sc = device_private(dev);
1345 uint32_t val;
1346 uint32_t autopoll;
1347 int i;
1348
1349 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1350 return 0;
1351
1352 /* Reading with autopolling on may trigger PCI errors */
1353 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1354 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1355 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1356 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1357 DELAY(80);
1358 }
1359
1360 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1361 BGE_MIPHY(phy) | BGE_MIREG(reg));
1362
1363 for (i = 0; i < BGE_TIMEOUT; i++) {
1364 delay(10);
1365 val = CSR_READ_4(sc, BGE_MI_COMM);
1366 if (!(val & BGE_MICOMM_BUSY)) {
1367 DELAY(5);
1368 val = CSR_READ_4(sc, BGE_MI_COMM);
1369 break;
1370 }
1371 }
1372
1373 if (i == BGE_TIMEOUT) {
1374 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1375 val = 0;
1376 goto done;
1377 }
1378
1379 done:
1380 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1381 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1382 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1383 DELAY(80);
1384 }
1385
1386 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1387
1388 if (val & BGE_MICOMM_READFAIL)
1389 return 0;
1390
1391 return (val & 0xFFFF);
1392 }
1393
1394 static void
1395 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1396 {
1397 struct bge_softc *sc = device_private(dev);
1398 uint32_t autopoll;
1399 int i;
1400
1401 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1402 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1403 return;
1404
1405 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1406 return;
1407
1408 /* Reading with autopolling on may trigger PCI errors */
1409 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1410 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1411 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1412 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1413 DELAY(80);
1414 }
1415
1416 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1417 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1418
1419 for (i = 0; i < BGE_TIMEOUT; i++) {
1420 delay(10);
1421 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1422 delay(5);
1423 CSR_READ_4(sc, BGE_MI_COMM);
1424 break;
1425 }
1426 }
1427
1428 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1429 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1430 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1431 delay(80);
1432 }
1433
1434 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1435
1436 if (i == BGE_TIMEOUT)
1437 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1438 }
1439
1440 static void
1441 bge_miibus_statchg(struct ifnet *ifp)
1442 {
1443 struct bge_softc *sc = ifp->if_softc;
1444 struct mii_data *mii = &sc->bge_mii;
1445 uint32_t mac_mode, rx_mode, tx_mode;
1446
1447 /*
1448 * Get flow control negotiation result.
1449 */
1450 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1451 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1452 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1453
1454 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1455 mii->mii_media_status & IFM_ACTIVE &&
1456 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1457 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1458 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1459 (!(mii->mii_media_status & IFM_ACTIVE) ||
1460 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1461 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1462
1463 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1464 return;
1465
1466 /* Set the port mode (MII/GMII) to match the link speed. */
1467 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1468 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1469 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1470 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1471 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1472 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1473 mac_mode |= BGE_PORTMODE_GMII;
1474 else
1475 mac_mode |= BGE_PORTMODE_MII;
1476
1477 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1478 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1479 if ((mii->mii_media_active & IFM_FDX) != 0) {
1480 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1481 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1482 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1483 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1484 } else
1485 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1486
1487 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1488 DELAY(40);
1489 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1490 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1491 }
1492
1493 /*
1494 * Update rx threshold levels to values in a particular slot
1495 * of the interrupt-mitigation table bge_rx_threshes.
1496 */
1497 static void
1498 bge_set_thresh(struct ifnet *ifp, int lvl)
1499 {
1500 struct bge_softc *sc = ifp->if_softc;
1501 int s;
1502
1503 /* For now, just save the new Rx-intr thresholds and record
1504 * that a threshold update is pending. Updating the hardware
1505 * registers here (even at splhigh()) is observed to
1506 * occasionaly cause glitches where Rx-interrupts are not
1507 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1508 */
1509 s = splnet();
1510 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1511 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1512 sc->bge_pending_rxintr_change = 1;
1513 splx(s);
1514 }
1515
1516
1517 /*
1518 * Update Rx thresholds of all bge devices
1519 */
1520 static void
1521 bge_update_all_threshes(int lvl)
1522 {
1523 struct ifnet *ifp;
1524 const char * const namebuf = "bge";
1525 int namelen;
1526
1527 if (lvl < 0)
1528 lvl = 0;
1529 else if (lvl >= NBGE_RX_THRESH)
1530 lvl = NBGE_RX_THRESH - 1;
1531
1532 namelen = strlen(namebuf);
1533 /*
1534 * Now search all the interfaces for this name/number
1535 */
1536 IFNET_FOREACH(ifp) {
1537 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1538 continue;
1539 /* We got a match: update if doing auto-threshold-tuning */
1540 if (bge_auto_thresh)
1541 bge_set_thresh(ifp, lvl);
1542 }
1543 }
1544
1545 /*
1546 * Handle events that have triggered interrupts.
1547 */
1548 static void
1549 bge_handle_events(struct bge_softc *sc)
1550 {
1551
1552 return;
1553 }
1554
1555 /*
1556 * Memory management for jumbo frames.
1557 */
1558
1559 static int
1560 bge_alloc_jumbo_mem(struct bge_softc *sc)
1561 {
1562 char *ptr, *kva;
1563 bus_dma_segment_t seg;
1564 int i, rseg, state, error;
1565 struct bge_jpool_entry *entry;
1566
1567 state = error = 0;
1568
1569 /* Grab a big chunk o' storage. */
1570 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1571 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1572 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1573 return ENOBUFS;
1574 }
1575
1576 state = 1;
1577 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1578 BUS_DMA_NOWAIT)) {
1579 aprint_error_dev(sc->bge_dev,
1580 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1581 error = ENOBUFS;
1582 goto out;
1583 }
1584
1585 state = 2;
1586 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1587 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1588 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1589 error = ENOBUFS;
1590 goto out;
1591 }
1592
1593 state = 3;
1594 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1595 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1596 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1597 error = ENOBUFS;
1598 goto out;
1599 }
1600
1601 state = 4;
1602 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1603 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1604
1605 SLIST_INIT(&sc->bge_jfree_listhead);
1606 SLIST_INIT(&sc->bge_jinuse_listhead);
1607
1608 /*
1609 * Now divide it up into 9K pieces and save the addresses
1610 * in an array.
1611 */
1612 ptr = sc->bge_cdata.bge_jumbo_buf;
1613 for (i = 0; i < BGE_JSLOTS; i++) {
1614 sc->bge_cdata.bge_jslots[i] = ptr;
1615 ptr += BGE_JLEN;
1616 entry = malloc(sizeof(struct bge_jpool_entry),
1617 M_DEVBUF, M_NOWAIT);
1618 if (entry == NULL) {
1619 aprint_error_dev(sc->bge_dev,
1620 "no memory for jumbo buffer queue!\n");
1621 error = ENOBUFS;
1622 goto out;
1623 }
1624 entry->slot = i;
1625 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1626 entry, jpool_entries);
1627 }
1628 out:
1629 if (error != 0) {
1630 switch (state) {
1631 case 4:
1632 bus_dmamap_unload(sc->bge_dmatag,
1633 sc->bge_cdata.bge_rx_jumbo_map);
1634 case 3:
1635 bus_dmamap_destroy(sc->bge_dmatag,
1636 sc->bge_cdata.bge_rx_jumbo_map);
1637 case 2:
1638 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1639 case 1:
1640 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1641 break;
1642 default:
1643 break;
1644 }
1645 }
1646
1647 return error;
1648 }
1649
1650 /*
1651 * Allocate a jumbo buffer.
1652 */
1653 static void *
1654 bge_jalloc(struct bge_softc *sc)
1655 {
1656 struct bge_jpool_entry *entry;
1657
1658 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1659
1660 if (entry == NULL) {
1661 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1662 return NULL;
1663 }
1664
1665 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1666 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1667 return (sc->bge_cdata.bge_jslots[entry->slot]);
1668 }
1669
1670 /*
1671 * Release a jumbo buffer.
1672 */
1673 static void
1674 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1675 {
1676 struct bge_jpool_entry *entry;
1677 struct bge_softc *sc;
1678 int i, s;
1679
1680 /* Extract the softc struct pointer. */
1681 sc = (struct bge_softc *)arg;
1682
1683 if (sc == NULL)
1684 panic("bge_jfree: can't find softc pointer!");
1685
1686 /* calculate the slot this buffer belongs to */
1687
1688 i = ((char *)buf
1689 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1690
1691 if ((i < 0) || (i >= BGE_JSLOTS))
1692 panic("bge_jfree: asked to free buffer that we don't manage!");
1693
1694 s = splvm();
1695 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1696 if (entry == NULL)
1697 panic("bge_jfree: buffer not in use!");
1698 entry->slot = i;
1699 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1700 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1701
1702 if (__predict_true(m != NULL))
1703 pool_cache_put(mb_cache, m);
1704 splx(s);
1705 }
1706
1707
1708 /*
1709 * Initialize a standard receive ring descriptor.
1710 */
1711 static int
1712 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1713 bus_dmamap_t dmamap)
1714 {
1715 struct mbuf *m_new = NULL;
1716 struct bge_rx_bd *r;
1717 int error;
1718
1719 if (dmamap == NULL) {
1720 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1721 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1722 if (error != 0)
1723 return error;
1724 }
1725
1726 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1727
1728 if (m == NULL) {
1729 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1730 if (m_new == NULL)
1731 return ENOBUFS;
1732
1733 MCLGET(m_new, M_DONTWAIT);
1734 if (!(m_new->m_flags & M_EXT)) {
1735 m_freem(m_new);
1736 return ENOBUFS;
1737 }
1738 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1739
1740 } else {
1741 m_new = m;
1742 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1743 m_new->m_data = m_new->m_ext.ext_buf;
1744 }
1745 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1746 m_adj(m_new, ETHER_ALIGN);
1747 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1748 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1749 m_freem(m_new);
1750 return ENOBUFS;
1751 }
1752 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1753 BUS_DMASYNC_PREREAD);
1754
1755 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1756 r = &sc->bge_rdata->bge_rx_std_ring[i];
1757 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1758 r->bge_flags = BGE_RXBDFLAG_END;
1759 r->bge_len = m_new->m_len;
1760 r->bge_idx = i;
1761
1762 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1763 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1764 i * sizeof (struct bge_rx_bd),
1765 sizeof (struct bge_rx_bd),
1766 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1767
1768 return 0;
1769 }
1770
1771 /*
1772 * Initialize a jumbo receive ring descriptor. This allocates
1773 * a jumbo buffer from the pool managed internally by the driver.
1774 */
1775 static int
1776 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1777 {
1778 struct mbuf *m_new = NULL;
1779 struct bge_rx_bd *r;
1780 void *buf = NULL;
1781
1782 if (m == NULL) {
1783
1784 /* Allocate the mbuf. */
1785 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1786 if (m_new == NULL)
1787 return ENOBUFS;
1788
1789 /* Allocate the jumbo buffer */
1790 buf = bge_jalloc(sc);
1791 if (buf == NULL) {
1792 m_freem(m_new);
1793 aprint_error_dev(sc->bge_dev,
1794 "jumbo allocation failed -- packet dropped!\n");
1795 return ENOBUFS;
1796 }
1797
1798 /* Attach the buffer to the mbuf. */
1799 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1800 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1801 bge_jfree, sc);
1802 m_new->m_flags |= M_EXT_RW;
1803 } else {
1804 m_new = m;
1805 buf = m_new->m_data = m_new->m_ext.ext_buf;
1806 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1807 }
1808 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1809 m_adj(m_new, ETHER_ALIGN);
1810 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1811 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1812 BUS_DMASYNC_PREREAD);
1813 /* Set up the descriptor. */
1814 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1815 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1816 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1817 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1818 r->bge_len = m_new->m_len;
1819 r->bge_idx = i;
1820
1821 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1822 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1823 i * sizeof (struct bge_rx_bd),
1824 sizeof (struct bge_rx_bd),
1825 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1832 * that's 1MB or memory, which is a lot. For now, we fill only the first
1833 * 256 ring entries and hope that our CPU is fast enough to keep up with
1834 * the NIC.
1835 */
1836 static int
1837 bge_init_rx_ring_std(struct bge_softc *sc)
1838 {
1839 int i;
1840
1841 if (sc->bge_flags & BGEF_RXRING_VALID)
1842 return 0;
1843
1844 for (i = 0; i < BGE_SSLOTS; i++) {
1845 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1846 return ENOBUFS;
1847 }
1848
1849 sc->bge_std = i - 1;
1850 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1851
1852 sc->bge_flags |= BGEF_RXRING_VALID;
1853
1854 return 0;
1855 }
1856
1857 static void
1858 bge_free_rx_ring_std(struct bge_softc *sc)
1859 {
1860 int i;
1861
1862 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1863 return;
1864
1865 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1866 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1867 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1868 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1869 bus_dmamap_destroy(sc->bge_dmatag,
1870 sc->bge_cdata.bge_rx_std_map[i]);
1871 }
1872 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1873 sizeof(struct bge_rx_bd));
1874 }
1875
1876 sc->bge_flags &= ~BGEF_RXRING_VALID;
1877 }
1878
1879 static int
1880 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1881 {
1882 int i;
1883 volatile struct bge_rcb *rcb;
1884
1885 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1886 return 0;
1887
1888 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1889 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1890 return ENOBUFS;
1891 }
1892
1893 sc->bge_jumbo = i - 1;
1894 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1895
1896 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1897 rcb->bge_maxlen_flags = 0;
1898 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1899
1900 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1901
1902 return 0;
1903 }
1904
1905 static void
1906 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1907 {
1908 int i;
1909
1910 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1911 return;
1912
1913 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1914 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1915 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1916 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1917 }
1918 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1919 sizeof(struct bge_rx_bd));
1920 }
1921
1922 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1923 }
1924
1925 static void
1926 bge_free_tx_ring(struct bge_softc *sc)
1927 {
1928 int i;
1929 struct txdmamap_pool_entry *dma;
1930
1931 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1932 return;
1933
1934 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1935 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1936 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1937 sc->bge_cdata.bge_tx_chain[i] = NULL;
1938 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1939 link);
1940 sc->txdma[i] = 0;
1941 }
1942 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1943 sizeof(struct bge_tx_bd));
1944 }
1945
1946 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1947 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1948 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1949 free(dma, M_DEVBUF);
1950 }
1951
1952 sc->bge_flags &= ~BGEF_TXRING_VALID;
1953 }
1954
1955 static int
1956 bge_init_tx_ring(struct bge_softc *sc)
1957 {
1958 struct ifnet *ifp = &sc->ethercom.ec_if;
1959 int i;
1960 bus_dmamap_t dmamap;
1961 bus_size_t maxsegsz;
1962 struct txdmamap_pool_entry *dma;
1963
1964 if (sc->bge_flags & BGEF_TXRING_VALID)
1965 return 0;
1966
1967 sc->bge_txcnt = 0;
1968 sc->bge_tx_saved_considx = 0;
1969
1970 /* Initialize transmit producer index for host-memory send ring. */
1971 sc->bge_tx_prodidx = 0;
1972 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973 /* 5700 b2 errata */
1974 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1975 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1976
1977 /* NIC-memory send ring not used; initialize to zero. */
1978 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979 /* 5700 b2 errata */
1980 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1981 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1982
1983 /* Limit DMA segment size for some chips */
1984 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1985 (ifp->if_mtu <= ETHERMTU))
1986 maxsegsz = 2048;
1987 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1988 maxsegsz = 4096;
1989 else
1990 maxsegsz = ETHER_MAX_LEN_JUMBO;
1991 SLIST_INIT(&sc->txdma_list);
1992 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1993 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1994 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1995 &dmamap))
1996 return ENOBUFS;
1997 if (dmamap == NULL)
1998 panic("dmamap NULL in bge_init_tx_ring");
1999 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
2000 if (dma == NULL) {
2001 aprint_error_dev(sc->bge_dev,
2002 "can't alloc txdmamap_pool_entry\n");
2003 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2004 return ENOMEM;
2005 }
2006 dma->dmamap = dmamap;
2007 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2008 }
2009
2010 sc->bge_flags |= BGEF_TXRING_VALID;
2011
2012 return 0;
2013 }
2014
2015 static void
2016 bge_setmulti(struct bge_softc *sc)
2017 {
2018 struct ethercom *ac = &sc->ethercom;
2019 struct ifnet *ifp = &ac->ec_if;
2020 struct ether_multi *enm;
2021 struct ether_multistep step;
2022 uint32_t hashes[4] = { 0, 0, 0, 0 };
2023 uint32_t h;
2024 int i;
2025
2026 if (ifp->if_flags & IFF_PROMISC)
2027 goto allmulti;
2028
2029 /* Now program new ones. */
2030 ETHER_FIRST_MULTI(step, ac, enm);
2031 while (enm != NULL) {
2032 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2033 /*
2034 * We must listen to a range of multicast addresses.
2035 * For now, just accept all multicasts, rather than
2036 * trying to set only those filter bits needed to match
2037 * the range. (At this time, the only use of address
2038 * ranges is for IP multicast routing, for which the
2039 * range is big enough to require all bits set.)
2040 */
2041 goto allmulti;
2042 }
2043
2044 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2045
2046 /* Just want the 7 least-significant bits. */
2047 h &= 0x7f;
2048
2049 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2050 ETHER_NEXT_MULTI(step, enm);
2051 }
2052
2053 ifp->if_flags &= ~IFF_ALLMULTI;
2054 goto setit;
2055
2056 allmulti:
2057 ifp->if_flags |= IFF_ALLMULTI;
2058 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2059
2060 setit:
2061 for (i = 0; i < 4; i++)
2062 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2063 }
2064
2065 static void
2066 bge_sig_pre_reset(struct bge_softc *sc, int type)
2067 {
2068
2069 /*
2070 * Some chips don't like this so only do this if ASF is enabled
2071 */
2072 if (sc->bge_asf_mode)
2073 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2074
2075 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2076 switch (type) {
2077 case BGE_RESET_START:
2078 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2079 BGE_FW_DRV_STATE_START);
2080 break;
2081 case BGE_RESET_SHUTDOWN:
2082 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2083 BGE_FW_DRV_STATE_UNLOAD);
2084 break;
2085 case BGE_RESET_SUSPEND:
2086 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2087 BGE_FW_DRV_STATE_SUSPEND);
2088 break;
2089 }
2090 }
2091
2092 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2093 bge_ape_driver_state_change(sc, type);
2094 }
2095
2096 static void
2097 bge_sig_post_reset(struct bge_softc *sc, int type)
2098 {
2099
2100 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2101 switch (type) {
2102 case BGE_RESET_START:
2103 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2104 BGE_FW_DRV_STATE_START_DONE);
2105 /* START DONE */
2106 break;
2107 case BGE_RESET_SHUTDOWN:
2108 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2109 BGE_FW_DRV_STATE_UNLOAD_DONE);
2110 break;
2111 }
2112 }
2113
2114 if (type == BGE_RESET_SHUTDOWN)
2115 bge_ape_driver_state_change(sc, type);
2116 }
2117
2118 static void
2119 bge_sig_legacy(struct bge_softc *sc, int type)
2120 {
2121
2122 if (sc->bge_asf_mode) {
2123 switch (type) {
2124 case BGE_RESET_START:
2125 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2126 BGE_FW_DRV_STATE_START);
2127 break;
2128 case BGE_RESET_SHUTDOWN:
2129 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2130 BGE_FW_DRV_STATE_UNLOAD);
2131 break;
2132 }
2133 }
2134 }
2135
2136 static void
2137 bge_wait_for_event_ack(struct bge_softc *sc)
2138 {
2139 int i;
2140
2141 /* wait up to 2500usec */
2142 for (i = 0; i < 250; i++) {
2143 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2144 BGE_RX_CPU_DRV_EVENT))
2145 break;
2146 DELAY(10);
2147 }
2148 }
2149
2150 static void
2151 bge_stop_fw(struct bge_softc *sc)
2152 {
2153
2154 if (sc->bge_asf_mode) {
2155 bge_wait_for_event_ack(sc);
2156
2157 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2158 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2159 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2160
2161 bge_wait_for_event_ack(sc);
2162 }
2163 }
2164
2165 static int
2166 bge_poll_fw(struct bge_softc *sc)
2167 {
2168 uint32_t val;
2169 int i;
2170
2171 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2172 for (i = 0; i < BGE_TIMEOUT; i++) {
2173 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2174 if (val & BGE_VCPU_STATUS_INIT_DONE)
2175 break;
2176 DELAY(100);
2177 }
2178 if (i >= BGE_TIMEOUT) {
2179 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2180 return -1;
2181 }
2182 } else {
2183 /*
2184 * Poll the value location we just wrote until
2185 * we see the 1's complement of the magic number.
2186 * This indicates that the firmware initialization
2187 * is complete.
2188 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2189 */
2190 for (i = 0; i < BGE_TIMEOUT; i++) {
2191 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2192 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2193 break;
2194 DELAY(10);
2195 }
2196
2197 if ((i >= BGE_TIMEOUT)
2198 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2199 aprint_error_dev(sc->bge_dev,
2200 "firmware handshake timed out, val = %x\n", val);
2201 return -1;
2202 }
2203 }
2204
2205 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2206 /* tg3 says we have to wait extra time */
2207 delay(10 * 1000);
2208 }
2209
2210 return 0;
2211 }
2212
2213 int
2214 bge_phy_addr(struct bge_softc *sc)
2215 {
2216 struct pci_attach_args *pa = &(sc->bge_pa);
2217 int phy_addr = 1;
2218
2219 /*
2220 * PHY address mapping for various devices.
2221 *
2222 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2223 * ---------+-------+-------+-------+-------+
2224 * BCM57XX | 1 | X | X | X |
2225 * BCM5704 | 1 | X | 1 | X |
2226 * BCM5717 | 1 | 8 | 2 | 9 |
2227 * BCM5719 | 1 | 8 | 2 | 9 |
2228 * BCM5720 | 1 | 8 | 2 | 9 |
2229 *
2230 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2231 * ---------+-------+-------+-------+-------+
2232 * BCM57XX | X | X | X | X |
2233 * BCM5704 | X | X | X | X |
2234 * BCM5717 | X | X | X | X |
2235 * BCM5719 | 3 | 10 | 4 | 11 |
2236 * BCM5720 | X | X | X | X |
2237 *
2238 * Other addresses may respond but they are not
2239 * IEEE compliant PHYs and should be ignored.
2240 */
2241 switch (BGE_ASICREV(sc->bge_chipid)) {
2242 case BGE_ASICREV_BCM5717:
2243 case BGE_ASICREV_BCM5719:
2244 case BGE_ASICREV_BCM5720:
2245 phy_addr = pa->pa_function;
2246 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2247 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2248 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2249 } else {
2250 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2251 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2252 }
2253 }
2254
2255 return phy_addr;
2256 }
2257
2258 /*
2259 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2260 * self-test results.
2261 */
2262 static int
2263 bge_chipinit(struct bge_softc *sc)
2264 {
2265 uint32_t dma_rw_ctl, mode_ctl, reg;
2266 int i;
2267
2268 /* Set endianness before we access any non-PCI registers. */
2269 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2270 BGE_INIT);
2271
2272 /*
2273 * Clear the MAC statistics block in the NIC's
2274 * internal memory.
2275 */
2276 for (i = BGE_STATS_BLOCK;
2277 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279
2280 for (i = BGE_STATUS_BLOCK;
2281 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2282 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2283
2284 /* 5717 workaround from tg3 */
2285 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2286 /* Save */
2287 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2288
2289 /* Temporary modify MODE_CTL to control TLP */
2290 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2291 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2292
2293 /* Control TLP */
2294 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2295 BGE_TLP_PHYCTL1);
2296 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2297 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2298
2299 /* Restore */
2300 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2301 }
2302
2303 if (BGE_IS_57765_FAMILY(sc)) {
2304 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2305 /* Save */
2306 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2307
2308 /* Temporary modify MODE_CTL to control TLP */
2309 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2310 CSR_WRITE_4(sc, BGE_MODE_CTL,
2311 reg | BGE_MODECTL_PCIE_TLPADDR1);
2312
2313 /* Control TLP */
2314 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2315 BGE_TLP_PHYCTL5);
2316 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2317 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2318
2319 /* Restore */
2320 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 }
2322 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2323 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2324 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2325 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2326
2327 /* Save */
2328 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2329
2330 /* Temporary modify MODE_CTL to control TLP */
2331 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2332 CSR_WRITE_4(sc, BGE_MODE_CTL,
2333 reg | BGE_MODECTL_PCIE_TLPADDR0);
2334
2335 /* Control TLP */
2336 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2337 BGE_TLP_FTSMAX);
2338 reg &= ~BGE_TLP_FTSMAX_MSK;
2339 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2340 reg | BGE_TLP_FTSMAX_VAL);
2341
2342 /* Restore */
2343 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2344 }
2345
2346 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2347 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2348 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2349 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2350 }
2351
2352 /* Set up the PCI DMA control register. */
2353 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2354 if (sc->bge_flags & BGEF_PCIE) {
2355 /* Read watermark not used, 128 bytes for write. */
2356 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2357 device_xname(sc->bge_dev)));
2358 if (sc->bge_mps >= 256)
2359 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2360 else
2361 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2362 } else if (sc->bge_flags & BGEF_PCIX) {
2363 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2364 device_xname(sc->bge_dev)));
2365 /* PCI-X bus */
2366 if (BGE_IS_5714_FAMILY(sc)) {
2367 /* 256 bytes for read and write. */
2368 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2369 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2370
2371 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2373 else
2374 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2375 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2376 /*
2377 * In the BCM5703, the DMA read watermark should
2378 * be set to less than or equal to the maximum
2379 * memory read byte count of the PCI-X command
2380 * register.
2381 */
2382 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2383 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2384 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2385 /* 1536 bytes for read, 384 bytes for write. */
2386 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2387 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2388 } else {
2389 /* 384 bytes for read and write. */
2390 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2391 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2392 (0x0F);
2393 }
2394
2395 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2396 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2397 uint32_t tmp;
2398
2399 /* Set ONEDMA_ATONCE for hardware workaround. */
2400 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2401 if (tmp == 6 || tmp == 7)
2402 dma_rw_ctl |=
2403 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2404
2405 /* Set PCI-X DMA write workaround. */
2406 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2407 }
2408 } else {
2409 /* Conventional PCI bus: 256 bytes for read and write. */
2410 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2411 device_xname(sc->bge_dev)));
2412 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2413 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2414
2415 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2416 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2417 dma_rw_ctl |= 0x0F;
2418 }
2419
2420 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2421 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2422 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2423 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2424
2425 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2426 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2427 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2428
2429 if (BGE_IS_57765_PLUS(sc)) {
2430 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2431 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2432 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2433
2434 /*
2435 * Enable HW workaround for controllers that misinterpret
2436 * a status tag update and leave interrupts permanently
2437 * disabled.
2438 */
2439 if (!BGE_IS_57765_FAMILY(sc) &&
2440 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2441 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2442 }
2443
2444 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2445 dma_rw_ctl);
2446
2447 /*
2448 * Set up general mode register.
2449 */
2450 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2451 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2452 /* Retain Host-2-BMC settings written by APE firmware. */
2453 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2454 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2455 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2456 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2457 }
2458 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2459 BGE_MODECTL_TX_NO_PHDR_CSUM;
2460
2461 /*
2462 * BCM5701 B5 have a bug causing data corruption when using
2463 * 64-bit DMA reads, which can be terminated early and then
2464 * completed later as 32-bit accesses, in combination with
2465 * certain bridges.
2466 */
2467 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2468 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2469 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2470
2471 /*
2472 * Tell the firmware the driver is running
2473 */
2474 if (sc->bge_asf_mode & ASF_STACKUP)
2475 mode_ctl |= BGE_MODECTL_STACKUP;
2476
2477 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2478
2479 /*
2480 * Disable memory write invalidate. Apparently it is not supported
2481 * properly by these devices.
2482 */
2483 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2484 PCI_COMMAND_INVALIDATE_ENABLE);
2485
2486 #ifdef __brokenalpha__
2487 /*
2488 * Must insure that we do not cross an 8K (bytes) boundary
2489 * for DMA reads. Our highest limit is 1K bytes. This is a
2490 * restriction on some ALPHA platforms with early revision
2491 * 21174 PCI chipsets, such as the AlphaPC 164lx
2492 */
2493 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2494 #endif
2495
2496 /* Set the timer prescaler (always 66MHz) */
2497 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2498
2499 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2500 DELAY(40); /* XXX */
2501
2502 /* Put PHY into ready state */
2503 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2504 DELAY(40);
2505 }
2506
2507 return 0;
2508 }
2509
2510 static int
2511 bge_blockinit(struct bge_softc *sc)
2512 {
2513 volatile struct bge_rcb *rcb;
2514 bus_size_t rcb_addr;
2515 struct ifnet *ifp = &sc->ethercom.ec_if;
2516 bge_hostaddr taddr;
2517 uint32_t dmactl, mimode, val;
2518 int i, limit;
2519
2520 /*
2521 * Initialize the memory window pointer register so that
2522 * we can access the first 32K of internal NIC RAM. This will
2523 * allow us to set up the TX send ring RCBs and the RX return
2524 * ring RCBs, plus other things which live in NIC memory.
2525 */
2526 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2527
2528 if (!BGE_IS_5705_PLUS(sc)) {
2529 /* 57XX step 33 */
2530 /* Configure mbuf memory pool */
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2532 BGE_BUFFPOOL_1);
2533
2534 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2536 else
2537 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2538
2539 /* 57XX step 34 */
2540 /* Configure DMA resource pool */
2541 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2542 BGE_DMA_DESCRIPTORS);
2543 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2544 }
2545
2546 /* 5718 step 11, 57XX step 35 */
2547 /*
2548 * Configure mbuf pool watermarks. New broadcom docs strongly
2549 * recommend these.
2550 */
2551 if (BGE_IS_5717_PLUS(sc)) {
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2555 } else if (BGE_IS_5705_PLUS(sc)) {
2556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2557
2558 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2560 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2561 } else {
2562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2563 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2564 }
2565 } else {
2566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2567 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2568 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2569 }
2570
2571 /* 57XX step 36 */
2572 /* Configure DMA resource watermarks */
2573 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2574 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2575
2576 /* 5718 step 13, 57XX step 38 */
2577 /* Enable buffer manager */
2578 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2579 /*
2580 * Change the arbitration algorithm of TXMBUF read request to
2581 * round-robin instead of priority based for BCM5719. When
2582 * TXFIFO is almost empty, RDMA will hold its request until
2583 * TXFIFO is not almost empty.
2584 */
2585 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2586 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2587 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2588 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2589 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2590 val |= BGE_BMANMODE_LOMBUF_ATTN;
2591 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2592
2593 /* 57XX step 39 */
2594 /* Poll for buffer manager start indication */
2595 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2596 DELAY(10);
2597 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2598 break;
2599 }
2600
2601 if (i == BGE_TIMEOUT * 2) {
2602 aprint_error_dev(sc->bge_dev,
2603 "buffer manager failed to start\n");
2604 return ENXIO;
2605 }
2606
2607 /* 57XX step 40 */
2608 /* Enable flow-through queues */
2609 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2610 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2611
2612 /* Wait until queue initialization is complete */
2613 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2614 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2615 break;
2616 DELAY(10);
2617 }
2618
2619 if (i == BGE_TIMEOUT * 2) {
2620 aprint_error_dev(sc->bge_dev,
2621 "flow-through queue init failed\n");
2622 return ENXIO;
2623 }
2624
2625 /*
2626 * Summary of rings supported by the controller:
2627 *
2628 * Standard Receive Producer Ring
2629 * - This ring is used to feed receive buffers for "standard"
2630 * sized frames (typically 1536 bytes) to the controller.
2631 *
2632 * Jumbo Receive Producer Ring
2633 * - This ring is used to feed receive buffers for jumbo sized
2634 * frames (i.e. anything bigger than the "standard" frames)
2635 * to the controller.
2636 *
2637 * Mini Receive Producer Ring
2638 * - This ring is used to feed receive buffers for "mini"
2639 * sized frames to the controller.
2640 * - This feature required external memory for the controller
2641 * but was never used in a production system. Should always
2642 * be disabled.
2643 *
2644 * Receive Return Ring
2645 * - After the controller has placed an incoming frame into a
2646 * receive buffer that buffer is moved into a receive return
2647 * ring. The driver is then responsible to passing the
2648 * buffer up to the stack. Many versions of the controller
2649 * support multiple RR rings.
2650 *
2651 * Send Ring
2652 * - This ring is used for outgoing frames. Many versions of
2653 * the controller support multiple send rings.
2654 */
2655
2656 /* 5718 step 15, 57XX step 41 */
2657 /* Initialize the standard RX ring control block */
2658 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2659 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2660 /* 5718 step 16 */
2661 if (BGE_IS_57765_PLUS(sc)) {
2662 /*
2663 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2664 * Bits 15-2 : Maximum RX frame size
2665 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2666 * Bit 0 : Reserved
2667 */
2668 rcb->bge_maxlen_flags =
2669 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2670 } else if (BGE_IS_5705_PLUS(sc)) {
2671 /*
2672 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2673 * Bits 15-2 : Reserved (should be 0)
2674 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2675 * Bit 0 : Reserved
2676 */
2677 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2678 } else {
2679 /*
2680 * Ring size is always XXX entries
2681 * Bits 31-16: Maximum RX frame size
2682 * Bits 15-2 : Reserved (should be 0)
2683 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2684 * Bit 0 : Reserved
2685 */
2686 rcb->bge_maxlen_flags =
2687 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2688 }
2689 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2690 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2691 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2692 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2693 else
2694 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2695 /* Write the standard receive producer ring control block. */
2696 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2697 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2698 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2699 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2700
2701 /* Reset the standard receive producer ring producer index. */
2702 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2703
2704 /* 57XX step 42 */
2705 /*
2706 * Initialize the jumbo RX ring control block
2707 * We set the 'ring disabled' bit in the flags
2708 * field until we're actually ready to start
2709 * using this ring (i.e. once we set the MTU
2710 * high enough to require it).
2711 */
2712 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2713 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2714 BGE_HOSTADDR(rcb->bge_hostaddr,
2715 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2716 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2717 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2718 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2719 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2720 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2721 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2722 else
2723 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2724 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2725 rcb->bge_hostaddr.bge_addr_hi);
2726 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2727 rcb->bge_hostaddr.bge_addr_lo);
2728 /* Program the jumbo receive producer ring RCB parameters. */
2729 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2730 rcb->bge_maxlen_flags);
2731 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2732 /* Reset the jumbo receive producer ring producer index. */
2733 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2734 }
2735
2736 /* 57XX step 43 */
2737 /* Disable the mini receive producer ring RCB. */
2738 if (BGE_IS_5700_FAMILY(sc)) {
2739 /* Set up dummy disabled mini ring RCB */
2740 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2741 rcb->bge_maxlen_flags =
2742 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2743 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2744 rcb->bge_maxlen_flags);
2745 /* Reset the mini receive producer ring producer index. */
2746 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2747
2748 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2749 offsetof(struct bge_ring_data, bge_info),
2750 sizeof (struct bge_gib),
2751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2752 }
2753
2754 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2755 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2756 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2757 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2758 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2759 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2760 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2761 }
2762 /* 5718 step 14, 57XX step 44 */
2763 /*
2764 * The BD ring replenish thresholds control how often the
2765 * hardware fetches new BD's from the producer rings in host
2766 * memory. Setting the value too low on a busy system can
2767 * starve the hardware and recue the throughpout.
2768 *
2769 * Set the BD ring replenish thresholds. The recommended
2770 * values are 1/8th the number of descriptors allocated to
2771 * each ring, but since we try to avoid filling the entire
2772 * ring we set these to the minimal value of 8. This needs to
2773 * be done on several of the supported chip revisions anyway,
2774 * to work around HW bugs.
2775 */
2776 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2777 if (BGE_IS_JUMBO_CAPABLE(sc))
2778 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2779
2780 /* 5718 step 18 */
2781 if (BGE_IS_5717_PLUS(sc)) {
2782 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2783 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2784 }
2785
2786 /* 57XX step 45 */
2787 /*
2788 * Disable all send rings by setting the 'ring disabled' bit
2789 * in the flags field of all the TX send ring control blocks,
2790 * located in NIC memory.
2791 */
2792 if (BGE_IS_5700_FAMILY(sc)) {
2793 /* 5700 to 5704 had 16 send rings. */
2794 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2795 } else if (BGE_IS_5717_PLUS(sc)) {
2796 limit = BGE_TX_RINGS_5717_MAX;
2797 } else if (BGE_IS_57765_FAMILY(sc)) {
2798 limit = BGE_TX_RINGS_57765_MAX;
2799 } else
2800 limit = 1;
2801 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2802 for (i = 0; i < limit; i++) {
2803 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2804 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2805 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2806 rcb_addr += sizeof(struct bge_rcb);
2807 }
2808
2809 /* 57XX step 46 and 47 */
2810 /* Configure send ring RCB 0 (we use only the first ring) */
2811 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2812 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2813 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2814 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2815 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2816 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2817 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2818 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2819 else
2820 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2821 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2822 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2823 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2824
2825 /* 57XX step 48 */
2826 /*
2827 * Disable all receive return rings by setting the
2828 * 'ring diabled' bit in the flags field of all the receive
2829 * return ring control blocks, located in NIC memory.
2830 */
2831 if (BGE_IS_5717_PLUS(sc)) {
2832 /* Should be 17, use 16 until we get an SRAM map. */
2833 limit = 16;
2834 } else if (BGE_IS_5700_FAMILY(sc))
2835 limit = BGE_RX_RINGS_MAX;
2836 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2837 BGE_IS_57765_FAMILY(sc))
2838 limit = 4;
2839 else
2840 limit = 1;
2841 /* Disable all receive return rings */
2842 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2843 for (i = 0; i < limit; i++) {
2844 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2845 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2846 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2847 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2848 BGE_RCB_FLAG_RING_DISABLED));
2849 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2850 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2851 (i * (sizeof(uint64_t))), 0);
2852 rcb_addr += sizeof(struct bge_rcb);
2853 }
2854
2855 /* 57XX step 49 */
2856 /*
2857 * Set up receive return ring 0. Note that the NIC address
2858 * for RX return rings is 0x0. The return rings live entirely
2859 * within the host, so the nicaddr field in the RCB isn't used.
2860 */
2861 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2862 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2863 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2864 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2865 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2866 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2867 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2868
2869 /* 5718 step 24, 57XX step 53 */
2870 /* Set random backoff seed for TX */
2871 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2872 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2873 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2874 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2875 BGE_TX_BACKOFF_SEED_MASK);
2876
2877 /* 5718 step 26, 57XX step 55 */
2878 /* Set inter-packet gap */
2879 val = 0x2620;
2880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2881 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2882 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2883 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2884
2885 /* 5718 step 27, 57XX step 56 */
2886 /*
2887 * Specify which ring to use for packets that don't match
2888 * any RX rules.
2889 */
2890 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2891
2892 /* 5718 step 28, 57XX step 57 */
2893 /*
2894 * Configure number of RX lists. One interrupt distribution
2895 * list, sixteen active lists, one bad frames class.
2896 */
2897 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2898
2899 /* 5718 step 29, 57XX step 58 */
2900 /* Inialize RX list placement stats mask. */
2901 if (BGE_IS_575X_PLUS(sc)) {
2902 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2903 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2904 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2905 } else
2906 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2907
2908 /* 5718 step 30, 57XX step 59 */
2909 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2910
2911 /* 5718 step 33, 57XX step 62 */
2912 /* Disable host coalescing until we get it set up */
2913 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2914
2915 /* 5718 step 34, 57XX step 63 */
2916 /* Poll to make sure it's shut down. */
2917 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2918 DELAY(10);
2919 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2920 break;
2921 }
2922
2923 if (i == BGE_TIMEOUT * 2) {
2924 aprint_error_dev(sc->bge_dev,
2925 "host coalescing engine failed to idle\n");
2926 return ENXIO;
2927 }
2928
2929 /* 5718 step 35, 36, 37 */
2930 /* Set up host coalescing defaults */
2931 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2932 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2933 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2934 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2935 if (!(BGE_IS_5705_PLUS(sc))) {
2936 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2937 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2938 }
2939 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2940 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2941
2942 /* Set up address of statistics block */
2943 if (BGE_IS_5700_FAMILY(sc)) {
2944 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2945 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2946 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2947 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2948 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2949 }
2950
2951 /* 5718 step 38 */
2952 /* Set up address of status block */
2953 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2954 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2955 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2956 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2957 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2958 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2959
2960 /* Set up status block size. */
2961 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2962 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2963 val = BGE_STATBLKSZ_FULL;
2964 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2965 } else {
2966 val = BGE_STATBLKSZ_32BYTE;
2967 bzero(&sc->bge_rdata->bge_status_block, 32);
2968 }
2969
2970 /* 5718 step 39, 57XX step 73 */
2971 /* Turn on host coalescing state machine */
2972 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2973
2974 /* 5718 step 40, 57XX step 74 */
2975 /* Turn on RX BD completion state machine and enable attentions */
2976 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2977 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2978
2979 /* 5718 step 41, 57XX step 75 */
2980 /* Turn on RX list placement state machine */
2981 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2982
2983 /* 57XX step 76 */
2984 /* Turn on RX list selector state machine. */
2985 if (!(BGE_IS_5705_PLUS(sc)))
2986 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2987
2988 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2989 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2990 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2991 BGE_MACMODE_FRMHDR_DMA_ENB;
2992
2993 if (sc->bge_flags & BGEF_FIBER_TBI)
2994 val |= BGE_PORTMODE_TBI;
2995 else if (sc->bge_flags & BGEF_FIBER_MII)
2996 val |= BGE_PORTMODE_GMII;
2997 else
2998 val |= BGE_PORTMODE_MII;
2999
3000 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3001 /* Allow APE to send/receive frames. */
3002 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3003 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3004
3005 /* Turn on DMA, clear stats */
3006 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3007 /* 5718 step 44 */
3008 DELAY(40);
3009
3010 /* 5718 step 45, 57XX step 79 */
3011 /* Set misc. local control, enable interrupts on attentions */
3012 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3013 if (BGE_IS_5717_PLUS(sc)) {
3014 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3015 /* 5718 step 46 */
3016 DELAY(100);
3017 }
3018
3019 /* 57XX step 81 */
3020 /* Turn on DMA completion state machine */
3021 if (!(BGE_IS_5705_PLUS(sc)))
3022 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3023
3024 /* 5718 step 47, 57XX step 82 */
3025 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3026
3027 /* 5718 step 48 */
3028 /* Enable host coalescing bug fix. */
3029 if (BGE_IS_5755_PLUS(sc))
3030 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3031
3032 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3033 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3034
3035 /* Turn on write DMA state machine */
3036 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3037 /* 5718 step 49 */
3038 DELAY(40);
3039
3040 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3041
3042 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3043 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3044
3045 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3046 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3047 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3048 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3049 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3050 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3051
3052 if (sc->bge_flags & BGEF_PCIE)
3053 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3054 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3055 if (ifp->if_mtu <= ETHERMTU)
3056 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3057 }
3058 if (sc->bge_flags & BGEF_TSO)
3059 val |= BGE_RDMAMODE_TSO4_ENABLE;
3060
3061 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3062 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3063 BGE_RDMAMODE_H2BNC_VLAN_DET;
3064 /*
3065 * Allow multiple outstanding read requests from
3066 * non-LSO read DMA engine.
3067 */
3068 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3069 }
3070
3071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3073 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3074 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3075 BGE_IS_57765_PLUS(sc)) {
3076 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3077 /*
3078 * Adjust tx margin to prevent TX data corruption and
3079 * fix internal FIFO overflow.
3080 */
3081 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3082 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3083 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3084 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3085 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3086 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3087 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3088 }
3089 /*
3090 * Enable fix for read DMA FIFO overruns.
3091 * The fix is to limit the number of RX BDs
3092 * the hardware would fetch at a fime.
3093 */
3094 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3095 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3096 }
3097
3098 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3099 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3100 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3101 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3102 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3103 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3104 /*
3105 * Allow 4KB burst length reads for non-LSO frames.
3106 * Enable 512B burst length reads for buffer descriptors.
3107 */
3108 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3109 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3110 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3111 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3112 }
3113
3114 /* Turn on read DMA state machine */
3115 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3116 /* 5718 step 52 */
3117 delay(40);
3118
3119 /* 5718 step 56, 57XX step 84 */
3120 /* Turn on RX data completion state machine */
3121 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3122
3123 /* Turn on RX data and RX BD initiator state machine */
3124 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3125
3126 /* 57XX step 85 */
3127 /* Turn on Mbuf cluster free state machine */
3128 if (!BGE_IS_5705_PLUS(sc))
3129 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3130
3131 /* 5718 step 57, 57XX step 86 */
3132 /* Turn on send data completion state machine */
3133 val = BGE_SDCMODE_ENABLE;
3134 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3135 val |= BGE_SDCMODE_CDELAY;
3136 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3137
3138 /* 5718 step 58 */
3139 /* Turn on send BD completion state machine */
3140 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3141
3142 /* 57XX step 88 */
3143 /* Turn on RX BD initiator state machine */
3144 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3145
3146 /* 5718 step 60, 57XX step 90 */
3147 /* Turn on send data initiator state machine */
3148 if (sc->bge_flags & BGEF_TSO) {
3149 /* XXX: magic value from Linux driver */
3150 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3151 BGE_SDIMODE_HW_LSO_PRE_DMA);
3152 } else
3153 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3154
3155 /* 5718 step 61, 57XX step 91 */
3156 /* Turn on send BD initiator state machine */
3157 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3158
3159 /* 5718 step 62, 57XX step 92 */
3160 /* Turn on send BD selector state machine */
3161 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3162
3163 /* 5718 step 31, 57XX step 60 */
3164 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3165 /* 5718 step 32, 57XX step 61 */
3166 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3167 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3168
3169 /* ack/clear link change events */
3170 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3171 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3172 BGE_MACSTAT_LINK_CHANGED);
3173 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3174
3175 /*
3176 * Enable attention when the link has changed state for
3177 * devices that use auto polling.
3178 */
3179 if (sc->bge_flags & BGEF_FIBER_TBI) {
3180 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3181 } else {
3182 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3183 mimode = BGE_MIMODE_500KHZ_CONST;
3184 else
3185 mimode = BGE_MIMODE_BASE;
3186 /* 5718 step 68. 5718 step 69 (optionally). */
3187 if (BGE_IS_5700_FAMILY(sc) ||
3188 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3189 mimode |= BGE_MIMODE_AUTOPOLL;
3190 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3191 }
3192 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3193 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3194 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3195 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3196 BGE_EVTENB_MI_INTERRUPT);
3197 }
3198
3199 /*
3200 * Clear any pending link state attention.
3201 * Otherwise some link state change events may be lost until attention
3202 * is cleared by bge_intr() -> bge_link_upd() sequence.
3203 * It's not necessary on newer BCM chips - perhaps enabling link
3204 * state change attentions implies clearing pending attention.
3205 */
3206 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3207 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3208 BGE_MACSTAT_LINK_CHANGED);
3209
3210 /* Enable link state change attentions. */
3211 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3212
3213 return 0;
3214 }
3215
3216 static const struct bge_revision *
3217 bge_lookup_rev(uint32_t chipid)
3218 {
3219 const struct bge_revision *br;
3220
3221 for (br = bge_revisions; br->br_name != NULL; br++) {
3222 if (br->br_chipid == chipid)
3223 return br;
3224 }
3225
3226 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3227 if (br->br_chipid == BGE_ASICREV(chipid))
3228 return br;
3229 }
3230
3231 return NULL;
3232 }
3233
3234 static const struct bge_product *
3235 bge_lookup(const struct pci_attach_args *pa)
3236 {
3237 const struct bge_product *bp;
3238
3239 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3240 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3241 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3242 return bp;
3243 }
3244
3245 return NULL;
3246 }
3247
3248 static uint32_t
3249 bge_chipid(const struct pci_attach_args *pa)
3250 {
3251 uint32_t id;
3252
3253 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3254 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3255
3256 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3257 switch (PCI_PRODUCT(pa->pa_id)) {
3258 case PCI_PRODUCT_BROADCOM_BCM5717:
3259 case PCI_PRODUCT_BROADCOM_BCM5718:
3260 case PCI_PRODUCT_BROADCOM_BCM5719:
3261 case PCI_PRODUCT_BROADCOM_BCM5720:
3262 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3263 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3264 BGE_PCI_GEN2_PRODID_ASICREV);
3265 break;
3266 case PCI_PRODUCT_BROADCOM_BCM57761:
3267 case PCI_PRODUCT_BROADCOM_BCM57762:
3268 case PCI_PRODUCT_BROADCOM_BCM57765:
3269 case PCI_PRODUCT_BROADCOM_BCM57766:
3270 case PCI_PRODUCT_BROADCOM_BCM57781:
3271 case PCI_PRODUCT_BROADCOM_BCM57785:
3272 case PCI_PRODUCT_BROADCOM_BCM57791:
3273 case PCI_PRODUCT_BROADCOM_BCM57795:
3274 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3275 BGE_PCI_GEN15_PRODID_ASICREV);
3276 break;
3277 default:
3278 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3279 BGE_PCI_PRODID_ASICREV);
3280 break;
3281 }
3282 }
3283
3284 return id;
3285 }
3286
3287 /*
3288 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3289 * against our list and return its name if we find a match. Note
3290 * that since the Broadcom controller contains VPD support, we
3291 * can get the device name string from the controller itself instead
3292 * of the compiled-in string. This is a little slow, but it guarantees
3293 * we'll always announce the right product name.
3294 */
3295 static int
3296 bge_probe(device_t parent, cfdata_t match, void *aux)
3297 {
3298 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3299
3300 if (bge_lookup(pa) != NULL)
3301 return 1;
3302
3303 return 0;
3304 }
3305
3306 static void
3307 bge_attach(device_t parent, device_t self, void *aux)
3308 {
3309 struct bge_softc *sc = device_private(self);
3310 struct pci_attach_args *pa = aux;
3311 prop_dictionary_t dict;
3312 const struct bge_product *bp;
3313 const struct bge_revision *br;
3314 pci_chipset_tag_t pc;
3315 pci_intr_handle_t ih;
3316 const char *intrstr = NULL;
3317 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3318 uint32_t command;
3319 struct ifnet *ifp;
3320 uint32_t misccfg, mimode;
3321 void * kva;
3322 u_char eaddr[ETHER_ADDR_LEN];
3323 pcireg_t memtype, subid, reg;
3324 bus_addr_t memaddr;
3325 uint32_t pm_ctl;
3326 bool no_seeprom;
3327 int capmask;
3328 int mii_flags;
3329 int map_flags;
3330 char intrbuf[PCI_INTRSTR_LEN];
3331
3332 bp = bge_lookup(pa);
3333 KASSERT(bp != NULL);
3334
3335 sc->sc_pc = pa->pa_pc;
3336 sc->sc_pcitag = pa->pa_tag;
3337 sc->bge_dev = self;
3338
3339 sc->bge_pa = *pa;
3340 pc = sc->sc_pc;
3341 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3342
3343 aprint_naive(": Ethernet controller\n");
3344 aprint_normal(": %s\n", bp->bp_name);
3345
3346 /*
3347 * Map control/status registers.
3348 */
3349 DPRINTFN(5, ("Map control/status regs\n"));
3350 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3351 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3352 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3353 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3354
3355 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3356 aprint_error_dev(sc->bge_dev,
3357 "failed to enable memory mapping!\n");
3358 return;
3359 }
3360
3361 DPRINTFN(5, ("pci_mem_find\n"));
3362 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3363 switch (memtype) {
3364 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3365 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3366 #if 0
3367 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3368 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3369 &memaddr, &sc->bge_bsize) == 0)
3370 break;
3371 #else
3372 /*
3373 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3374 * system get NMI on boot (PR#48451). This problem might not be
3375 * the driver's bug but our PCI common part's bug. Until we
3376 * find a real reason, we ignore the prefetchable bit.
3377 */
3378 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3379 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3380 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3381 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3382 map_flags, &sc->bge_bhandle) == 0) {
3383 sc->bge_btag = pa->pa_memt;
3384 break;
3385 }
3386 }
3387 #endif
3388 default:
3389 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3390 return;
3391 }
3392
3393 DPRINTFN(5, ("pci_intr_map\n"));
3394 if (pci_intr_map(pa, &ih)) {
3395 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3396 return;
3397 }
3398
3399 DPRINTFN(5, ("pci_intr_string\n"));
3400 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
3401
3402 DPRINTFN(5, ("pci_intr_establish\n"));
3403 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3404
3405 if (sc->bge_intrhand == NULL) {
3406 aprint_error_dev(sc->bge_dev,
3407 "couldn't establish interrupt%s%s\n",
3408 intrstr ? " at " : "", intrstr ? intrstr : "");
3409 return;
3410 }
3411 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3412
3413 /* Save various chip information. */
3414 sc->bge_chipid = bge_chipid(pa);
3415 sc->bge_phy_addr = bge_phy_addr(sc);
3416
3417 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3418 &sc->bge_pciecap, NULL) != 0)
3419 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3420 /* PCIe */
3421 sc->bge_flags |= BGEF_PCIE;
3422 /* Extract supported maximum payload size. */
3423 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3424 sc->bge_pciecap + PCIE_DCAP);
3425 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3426 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3428 sc->bge_expmrq = 2048;
3429 else
3430 sc->bge_expmrq = 4096;
3431 bge_set_max_readrq(sc);
3432 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3433 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3434 /* PCI-X */
3435 sc->bge_flags |= BGEF_PCIX;
3436 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3437 &sc->bge_pcixcap, NULL) == 0)
3438 aprint_error_dev(sc->bge_dev,
3439 "unable to find PCIX capability\n");
3440 }
3441
3442 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3443 /*
3444 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3445 * can clobber the chip's PCI config-space power control
3446 * registers, leaving the card in D3 powersave state. We do
3447 * not have memory-mapped registers in this state, so force
3448 * device into D0 state before starting initialization.
3449 */
3450 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3451 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3452 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3453 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3454 DELAY(1000); /* 27 usec is allegedly sufficent */
3455 }
3456
3457 /* Save chipset family. */
3458 switch (BGE_ASICREV(sc->bge_chipid)) {
3459 case BGE_ASICREV_BCM5717:
3460 case BGE_ASICREV_BCM5719:
3461 case BGE_ASICREV_BCM5720:
3462 sc->bge_flags |= BGEF_5717_PLUS;
3463 /* FALLTHROUGH */
3464 case BGE_ASICREV_BCM57765:
3465 case BGE_ASICREV_BCM57766:
3466 if (!BGE_IS_5717_PLUS(sc))
3467 sc->bge_flags |= BGEF_57765_FAMILY;
3468 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3469 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3470 /* Jumbo frame on BCM5719 A0 does not work. */
3471 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3472 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3473 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3474 break;
3475 case BGE_ASICREV_BCM5755:
3476 case BGE_ASICREV_BCM5761:
3477 case BGE_ASICREV_BCM5784:
3478 case BGE_ASICREV_BCM5785:
3479 case BGE_ASICREV_BCM5787:
3480 case BGE_ASICREV_BCM57780:
3481 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3482 break;
3483 case BGE_ASICREV_BCM5700:
3484 case BGE_ASICREV_BCM5701:
3485 case BGE_ASICREV_BCM5703:
3486 case BGE_ASICREV_BCM5704:
3487 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3488 break;
3489 case BGE_ASICREV_BCM5714_A0:
3490 case BGE_ASICREV_BCM5780:
3491 case BGE_ASICREV_BCM5714:
3492 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3493 /* FALLTHROUGH */
3494 case BGE_ASICREV_BCM5750:
3495 case BGE_ASICREV_BCM5752:
3496 case BGE_ASICREV_BCM5906:
3497 sc->bge_flags |= BGEF_575X_PLUS;
3498 /* FALLTHROUGH */
3499 case BGE_ASICREV_BCM5705:
3500 sc->bge_flags |= BGEF_5705_PLUS;
3501 break;
3502 }
3503
3504 /* Identify chips with APE processor. */
3505 switch (BGE_ASICREV(sc->bge_chipid)) {
3506 case BGE_ASICREV_BCM5717:
3507 case BGE_ASICREV_BCM5719:
3508 case BGE_ASICREV_BCM5720:
3509 case BGE_ASICREV_BCM5761:
3510 sc->bge_flags |= BGEF_APE;
3511 break;
3512 }
3513
3514 /*
3515 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3516 * not actually a MAC controller bug but an issue with the embedded
3517 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3518 */
3519 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3520 sc->bge_flags |= BGEF_40BIT_BUG;
3521
3522 /* Chips with APE need BAR2 access for APE registers/memory. */
3523 if ((sc->bge_flags & BGEF_APE) != 0) {
3524 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3525 #if 0
3526 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3527 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3528 &sc->bge_apesize)) {
3529 aprint_error_dev(sc->bge_dev,
3530 "couldn't map BAR2 memory\n");
3531 return;
3532 }
3533 #else
3534 /*
3535 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3536 * system get NMI on boot (PR#48451). This problem might not be
3537 * the driver's bug but our PCI common part's bug. Until we
3538 * find a real reason, we ignore the prefetchable bit.
3539 */
3540 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3541 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3542 aprint_error_dev(sc->bge_dev,
3543 "couldn't map BAR2 memory\n");
3544 return;
3545 }
3546
3547 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3548 if (bus_space_map(pa->pa_memt, memaddr,
3549 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3550 aprint_error_dev(sc->bge_dev,
3551 "couldn't map BAR2 memory\n");
3552 return;
3553 }
3554 sc->bge_apetag = pa->pa_memt;
3555 #endif
3556
3557 /* Enable APE register/memory access by host driver. */
3558 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3559 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3560 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3561 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3562 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3563
3564 bge_ape_lock_init(sc);
3565 bge_ape_read_fw_ver(sc);
3566 }
3567
3568 /* Identify the chips that use an CPMU. */
3569 if (BGE_IS_5717_PLUS(sc) ||
3570 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3571 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3572 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3574 sc->bge_flags |= BGEF_CPMU_PRESENT;
3575
3576 /* Set MI_MODE */
3577 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3578 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3579 mimode |= BGE_MIMODE_500KHZ_CONST;
3580 else
3581 mimode |= BGE_MIMODE_BASE;
3582 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3583
3584 /*
3585 * When using the BCM5701 in PCI-X mode, data corruption has
3586 * been observed in the first few bytes of some received packets.
3587 * Aligning the packet buffer in memory eliminates the corruption.
3588 * Unfortunately, this misaligns the packet payloads. On platforms
3589 * which do not support unaligned accesses, we will realign the
3590 * payloads by copying the received packets.
3591 */
3592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3593 sc->bge_flags & BGEF_PCIX)
3594 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3595
3596 if (BGE_IS_5700_FAMILY(sc))
3597 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3598
3599 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3600 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3601
3602 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3603 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3604 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3605 sc->bge_flags |= BGEF_IS_5788;
3606
3607 /*
3608 * Some controllers seem to require a special firmware to use
3609 * TSO. But the firmware is not available to FreeBSD and Linux
3610 * claims that the TSO performed by the firmware is slower than
3611 * hardware based TSO. Moreover the firmware based TSO has one
3612 * known bug which can't handle TSO if ethernet header + IP/TCP
3613 * header is greater than 80 bytes. The workaround for the TSO
3614 * bug exist but it seems it's too expensive than not using
3615 * TSO at all. Some hardwares also have the TSO bug so limit
3616 * the TSO to the controllers that are not affected TSO issues
3617 * (e.g. 5755 or higher).
3618 */
3619 if (BGE_IS_5755_PLUS(sc)) {
3620 /*
3621 * BCM5754 and BCM5787 shares the same ASIC id so
3622 * explicit device id check is required.
3623 */
3624 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3625 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3626 sc->bge_flags |= BGEF_TSO;
3627 }
3628
3629 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3630 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3631 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3632 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3633 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3634 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3635 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3636 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3637 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3638 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3639 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3640 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3641 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3642 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3643 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3644 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3645 /* These chips are 10/100 only. */
3646 capmask &= ~BMSR_EXTSTAT;
3647 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3648 }
3649
3650 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3651 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3652 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3653 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3654 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3655
3656 /* Set various PHY bug flags. */
3657 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3658 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3659 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3660 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3661 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3662 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3663 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3664 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3665 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3666 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3667 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3668 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3669 if (BGE_IS_5705_PLUS(sc) &&
3670 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3671 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3672 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3673 !BGE_IS_57765_PLUS(sc)) {
3674 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3676 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3678 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3679 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3680 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3681 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3682 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3683 } else
3684 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3685 }
3686
3687 /*
3688 * SEEPROM check.
3689 * First check if firmware knows we do not have SEEPROM.
3690 */
3691 if (prop_dictionary_get_bool(device_properties(self),
3692 "without-seeprom", &no_seeprom) && no_seeprom)
3693 sc->bge_flags |= BGEF_NO_EEPROM;
3694
3695 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3696 sc->bge_flags |= BGEF_NO_EEPROM;
3697
3698 /* Now check the 'ROM failed' bit on the RX CPU */
3699 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3700 sc->bge_flags |= BGEF_NO_EEPROM;
3701
3702 sc->bge_asf_mode = 0;
3703 /* No ASF if APE present. */
3704 if ((sc->bge_flags & BGEF_APE) == 0) {
3705 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3706 BGE_SRAM_DATA_SIG_MAGIC)) {
3707 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3708 BGE_HWCFG_ASF) {
3709 sc->bge_asf_mode |= ASF_ENABLE;
3710 sc->bge_asf_mode |= ASF_STACKUP;
3711 if (BGE_IS_575X_PLUS(sc))
3712 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3713 }
3714 }
3715 }
3716
3717 /*
3718 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3719 * lock in bge_reset().
3720 */
3721 CSR_WRITE_4(sc, BGE_EE_ADDR,
3722 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3723 delay(1000);
3724 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3725
3726 bge_stop_fw(sc);
3727 bge_sig_pre_reset(sc, BGE_RESET_START);
3728 if (bge_reset(sc))
3729 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3730
3731 /*
3732 * Read the hardware config word in the first 32k of NIC internal
3733 * memory, or fall back to the config word in the EEPROM.
3734 * Note: on some BCM5700 cards, this value appears to be unset.
3735 */
3736 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3737 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3738 BGE_SRAM_DATA_SIG_MAGIC) {
3739 uint32_t tmp;
3740
3741 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3742 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3743 BGE_SRAM_DATA_VER_SHIFT;
3744 if ((0 < tmp) && (tmp < 0x100))
3745 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3746 if (sc->bge_flags & BGEF_PCIE)
3747 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3748 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3749 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3750 if (BGE_IS_5717_PLUS(sc))
3751 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3752 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3753 bge_read_eeprom(sc, (void *)&hwcfg,
3754 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3755 hwcfg = be32toh(hwcfg);
3756 }
3757 aprint_normal_dev(sc->bge_dev,
3758 "HW config %08x, %08x, %08x, %08x %08x\n",
3759 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3760
3761 bge_sig_legacy(sc, BGE_RESET_START);
3762 bge_sig_post_reset(sc, BGE_RESET_START);
3763
3764 if (bge_chipinit(sc)) {
3765 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3766 bge_release_resources(sc);
3767 return;
3768 }
3769
3770 /*
3771 * Get station address from the EEPROM.
3772 */
3773 if (bge_get_eaddr(sc, eaddr)) {
3774 aprint_error_dev(sc->bge_dev,
3775 "failed to read station address\n");
3776 bge_release_resources(sc);
3777 return;
3778 }
3779
3780 br = bge_lookup_rev(sc->bge_chipid);
3781
3782 if (br == NULL) {
3783 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3784 sc->bge_chipid);
3785 } else {
3786 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3787 br->br_name, sc->bge_chipid);
3788 }
3789 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3790
3791 /* Allocate the general information block and ring buffers. */
3792 if (pci_dma64_available(pa))
3793 sc->bge_dmatag = pa->pa_dmat64;
3794 else
3795 sc->bge_dmatag = pa->pa_dmat;
3796
3797 /* 40bit DMA workaround */
3798 if (sizeof(bus_addr_t) > 4) {
3799 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3800 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3801
3802 if (bus_dmatag_subregion(olddmatag, 0,
3803 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3804 BUS_DMA_NOWAIT) != 0) {
3805 aprint_error_dev(self,
3806 "WARNING: failed to restrict dma range,"
3807 " falling back to parent bus dma range\n");
3808 sc->bge_dmatag = olddmatag;
3809 }
3810 }
3811 }
3812 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3813 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3814 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3815 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3816 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3817 return;
3818 }
3819 DPRINTFN(5, ("bus_dmamem_map\n"));
3820 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3821 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3822 BUS_DMA_NOWAIT)) {
3823 aprint_error_dev(sc->bge_dev,
3824 "can't map DMA buffers (%zu bytes)\n",
3825 sizeof(struct bge_ring_data));
3826 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3827 sc->bge_ring_rseg);
3828 return;
3829 }
3830 DPRINTFN(5, ("bus_dmamem_create\n"));
3831 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3832 sizeof(struct bge_ring_data), 0,
3833 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3834 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3835 bus_dmamem_unmap(sc->bge_dmatag, kva,
3836 sizeof(struct bge_ring_data));
3837 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3838 sc->bge_ring_rseg);
3839 return;
3840 }
3841 DPRINTFN(5, ("bus_dmamem_load\n"));
3842 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3843 sizeof(struct bge_ring_data), NULL,
3844 BUS_DMA_NOWAIT)) {
3845 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3846 bus_dmamem_unmap(sc->bge_dmatag, kva,
3847 sizeof(struct bge_ring_data));
3848 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3849 sc->bge_ring_rseg);
3850 return;
3851 }
3852
3853 DPRINTFN(5, ("bzero\n"));
3854 sc->bge_rdata = (struct bge_ring_data *)kva;
3855
3856 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3857
3858 /* Try to allocate memory for jumbo buffers. */
3859 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3860 if (bge_alloc_jumbo_mem(sc)) {
3861 aprint_error_dev(sc->bge_dev,
3862 "jumbo buffer allocation failed\n");
3863 } else
3864 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3865 }
3866
3867 /* Set default tuneable values. */
3868 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3869 sc->bge_rx_coal_ticks = 150;
3870 sc->bge_rx_max_coal_bds = 64;
3871 sc->bge_tx_coal_ticks = 300;
3872 sc->bge_tx_max_coal_bds = 400;
3873 if (BGE_IS_5705_PLUS(sc)) {
3874 sc->bge_tx_coal_ticks = (12 * 5);
3875 sc->bge_tx_max_coal_bds = (12 * 5);
3876 aprint_verbose_dev(sc->bge_dev,
3877 "setting short Tx thresholds\n");
3878 }
3879
3880 if (BGE_IS_5717_PLUS(sc))
3881 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3882 else if (BGE_IS_5705_PLUS(sc))
3883 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3884 else
3885 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3886
3887 /* Set up ifnet structure */
3888 ifp = &sc->ethercom.ec_if;
3889 ifp->if_softc = sc;
3890 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3891 ifp->if_ioctl = bge_ioctl;
3892 ifp->if_stop = bge_stop;
3893 ifp->if_start = bge_start;
3894 ifp->if_init = bge_init;
3895 ifp->if_watchdog = bge_watchdog;
3896 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3897 IFQ_SET_READY(&ifp->if_snd);
3898 DPRINTFN(5, ("strcpy if_xname\n"));
3899 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3900
3901 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3902 sc->ethercom.ec_if.if_capabilities |=
3903 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3904 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3905 sc->ethercom.ec_if.if_capabilities |=
3906 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3907 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3908 #endif
3909 sc->ethercom.ec_capabilities |=
3910 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3911
3912 if (sc->bge_flags & BGEF_TSO)
3913 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3914
3915 /*
3916 * Do MII setup.
3917 */
3918 DPRINTFN(5, ("mii setup\n"));
3919 sc->bge_mii.mii_ifp = ifp;
3920 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3921 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3922 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3923
3924 /*
3925 * Figure out what sort of media we have by checking the hardware
3926 * config word. Note: on some BCM5700 cards, this value appears to be
3927 * unset. If that's the case, we have to rely on identifying the NIC
3928 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3929 * The SysKonnect SK-9D41 is a 1000baseSX card.
3930 */
3931 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3932 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3933 if (BGE_IS_5705_PLUS(sc)) {
3934 sc->bge_flags |= BGEF_FIBER_MII;
3935 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3936 } else
3937 sc->bge_flags |= BGEF_FIBER_TBI;
3938 }
3939
3940 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3941 if (BGE_IS_JUMBO_CAPABLE(sc))
3942 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3943
3944 /* set phyflags and chipid before mii_attach() */
3945 dict = device_properties(self);
3946 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3947 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3948
3949 if (sc->bge_flags & BGEF_FIBER_TBI) {
3950 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3951 bge_ifmedia_sts);
3952 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3953 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3954 0, NULL);
3955 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3956 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3957 /* Pretend the user requested this setting */
3958 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3959 } else {
3960 /*
3961 * Do transceiver setup and tell the firmware the
3962 * driver is down so we can try to get access the
3963 * probe if ASF is running. Retry a couple of times
3964 * if we get a conflict with the ASF firmware accessing
3965 * the PHY.
3966 */
3967 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3968 bge_asf_driver_up(sc);
3969
3970 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3971 bge_ifmedia_sts);
3972 mii_flags = MIIF_DOPAUSE;
3973 if (sc->bge_flags & BGEF_FIBER_MII)
3974 mii_flags |= MIIF_HAVEFIBER;
3975 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
3976 MII_OFFSET_ANY, mii_flags);
3977
3978 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3979 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3980 ifmedia_add(&sc->bge_mii.mii_media,
3981 IFM_ETHER|IFM_MANUAL, 0, NULL);
3982 ifmedia_set(&sc->bge_mii.mii_media,
3983 IFM_ETHER|IFM_MANUAL);
3984 } else
3985 ifmedia_set(&sc->bge_mii.mii_media,
3986 IFM_ETHER|IFM_AUTO);
3987
3988 /*
3989 * Now tell the firmware we are going up after probing the PHY
3990 */
3991 if (sc->bge_asf_mode & ASF_STACKUP)
3992 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3993 }
3994
3995 /*
3996 * Call MI attach routine.
3997 */
3998 DPRINTFN(5, ("if_attach\n"));
3999 if_attach(ifp);
4000 DPRINTFN(5, ("ether_ifattach\n"));
4001 ether_ifattach(ifp, eaddr);
4002 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4003 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4004 RND_TYPE_NET, RND_FLAG_DEFAULT);
4005 #ifdef BGE_EVENT_COUNTERS
4006 /*
4007 * Attach event counters.
4008 */
4009 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4010 NULL, device_xname(sc->bge_dev), "intr");
4011 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4012 NULL, device_xname(sc->bge_dev), "tx_xoff");
4013 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4014 NULL, device_xname(sc->bge_dev), "tx_xon");
4015 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4016 NULL, device_xname(sc->bge_dev), "rx_xoff");
4017 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4018 NULL, device_xname(sc->bge_dev), "rx_xon");
4019 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4020 NULL, device_xname(sc->bge_dev), "rx_macctl");
4021 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4022 NULL, device_xname(sc->bge_dev), "xoffentered");
4023 #endif /* BGE_EVENT_COUNTERS */
4024 DPRINTFN(5, ("callout_init\n"));
4025 callout_init(&sc->bge_timeout, 0);
4026
4027 if (pmf_device_register(self, NULL, NULL))
4028 pmf_class_network_register(self, ifp);
4029 else
4030 aprint_error_dev(self, "couldn't establish power handler\n");
4031
4032 bge_sysctl_init(sc);
4033
4034 #ifdef BGE_DEBUG
4035 bge_debug_info(sc);
4036 #endif
4037 }
4038
4039 /*
4040 * Stop all chip I/O so that the kernel's probe routines don't
4041 * get confused by errant DMAs when rebooting.
4042 */
4043 static int
4044 bge_detach(device_t self, int flags __unused)
4045 {
4046 struct bge_softc *sc = device_private(self);
4047 struct ifnet *ifp = &sc->ethercom.ec_if;
4048 int s;
4049
4050 s = splnet();
4051 /* Stop the interface. Callouts are stopped in it. */
4052 bge_stop(ifp, 1);
4053 splx(s);
4054
4055 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4056
4057 /* Delete all remaining media. */
4058 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4059
4060 ether_ifdetach(ifp);
4061 if_detach(ifp);
4062
4063 bge_release_resources(sc);
4064
4065 return 0;
4066 }
4067
4068 static void
4069 bge_release_resources(struct bge_softc *sc)
4070 {
4071
4072 /* Disestablish the interrupt handler */
4073 if (sc->bge_intrhand != NULL) {
4074 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4075 sc->bge_intrhand = NULL;
4076 }
4077
4078 if (sc->bge_dmatag != NULL) {
4079 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4080 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4081 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4082 sizeof(struct bge_ring_data));
4083 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
4084 }
4085
4086 /* Unmap the device registers */
4087 if (sc->bge_bsize != 0) {
4088 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4089 sc->bge_bsize = 0;
4090 }
4091
4092 /* Unmap the APE registers */
4093 if (sc->bge_apesize != 0) {
4094 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4095 sc->bge_apesize);
4096 sc->bge_apesize = 0;
4097 }
4098 }
4099
4100 static int
4101 bge_reset(struct bge_softc *sc)
4102 {
4103 uint32_t cachesize, command;
4104 uint32_t reset, mac_mode, mac_mode_mask;
4105 pcireg_t devctl, reg;
4106 int i, val;
4107 void (*write_op)(struct bge_softc *, int, int);
4108
4109 /* Make mask for BGE_MAC_MODE register. */
4110 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4111 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4112 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4113 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4114 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4115
4116 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4117 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4118 if (sc->bge_flags & BGEF_PCIE)
4119 write_op = bge_writemem_direct;
4120 else
4121 write_op = bge_writemem_ind;
4122 } else
4123 write_op = bge_writereg_ind;
4124
4125 /* 57XX step 4 */
4126 /* Acquire the NVM lock */
4127 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4128 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4129 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4130 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4131 for (i = 0; i < 8000; i++) {
4132 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4133 BGE_NVRAMSWARB_GNT1)
4134 break;
4135 DELAY(20);
4136 }
4137 if (i == 8000) {
4138 printf("%s: NVRAM lock timedout!\n",
4139 device_xname(sc->bge_dev));
4140 }
4141 }
4142
4143 /* Take APE lock when performing reset. */
4144 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4145
4146 /* 57XX step 3 */
4147 /* Save some important PCI state. */
4148 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4149 /* 5718 reset step 3 */
4150 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4151
4152 /* 5718 reset step 5, 57XX step 5b-5d */
4153 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4154 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4155 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4156
4157 /* XXX ???: Disable fastboot on controllers that support it. */
4158 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4159 BGE_IS_5755_PLUS(sc))
4160 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4161
4162 /* 5718 reset step 2, 57XX step 6 */
4163 /*
4164 * Write the magic number to SRAM at offset 0xB50.
4165 * When firmware finishes its initialization it will
4166 * write ~BGE_MAGIC_NUMBER to the same location.
4167 */
4168 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4169
4170 /* 5718 reset step 6, 57XX step 7 */
4171 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4172 /*
4173 * XXX: from FreeBSD/Linux; no documentation
4174 */
4175 if (sc->bge_flags & BGEF_PCIE) {
4176 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4177 !BGE_IS_57765_PLUS(sc) &&
4178 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4179 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4180 /* PCI Express 1.0 system */
4181 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4182 BGE_PHY_PCIE_SCRAM_MODE);
4183 }
4184 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4185 /*
4186 * Prevent PCI Express link training
4187 * during global reset.
4188 */
4189 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4190 reset |= (1 << 29);
4191 }
4192 }
4193
4194 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4195 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4196 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4197 i | BGE_VCPU_STATUS_DRV_RESET);
4198 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4199 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4200 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4201 }
4202
4203 /*
4204 * Set GPHY Power Down Override to leave GPHY
4205 * powered up in D0 uninitialized.
4206 */
4207 if (BGE_IS_5705_PLUS(sc) &&
4208 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4209 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4210
4211 /* Issue global reset */
4212 write_op(sc, BGE_MISC_CFG, reset);
4213
4214 /* 5718 reset step 7, 57XX step 8 */
4215 if (sc->bge_flags & BGEF_PCIE)
4216 delay(100*1000); /* too big */
4217 else
4218 delay(1000);
4219
4220 if (sc->bge_flags & BGEF_PCIE) {
4221 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4222 DELAY(500000);
4223 /* XXX: Magic Numbers */
4224 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4225 BGE_PCI_UNKNOWN0);
4226 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4227 BGE_PCI_UNKNOWN0,
4228 reg | (1 << 15));
4229 }
4230 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4231 sc->bge_pciecap + PCIE_DCSR);
4232 /* Clear enable no snoop and disable relaxed ordering. */
4233 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4234 PCIE_DCSR_ENA_NO_SNOOP);
4235
4236 /* Set PCIE max payload size to 128 for older PCIe devices */
4237 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4238 devctl &= ~(0x00e0);
4239 /* Clear device status register. Write 1b to clear */
4240 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4241 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4242 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4243 sc->bge_pciecap + PCIE_DCSR, devctl);
4244 bge_set_max_readrq(sc);
4245 }
4246
4247 /* From Linux: dummy read to flush PCI posted writes */
4248 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4249
4250 /*
4251 * Reset some of the PCI state that got zapped by reset
4252 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4253 * set, too.
4254 */
4255 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4256 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4257 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4258 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4259 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4260 (sc->bge_flags & BGEF_PCIX) != 0)
4261 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4262 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4263 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4264 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4265 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4266 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4267 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4268 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4269
4270 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4271 if (sc->bge_flags & BGEF_PCIX) {
4272 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4273 + PCIX_CMD);
4274 /* Set max memory read byte count to 2K */
4275 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4276 reg &= ~PCIX_CMD_BYTECNT_MASK;
4277 reg |= PCIX_CMD_BCNT_2048;
4278 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4279 /*
4280 * For 5704, set max outstanding split transaction
4281 * field to 0 (0 means it supports 1 request)
4282 */
4283 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4284 | PCIX_CMD_BYTECNT_MASK);
4285 reg |= PCIX_CMD_BCNT_2048;
4286 }
4287 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4288 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4289 }
4290
4291 /* 5718 reset step 10, 57XX step 12 */
4292 /* Enable memory arbiter. */
4293 if (BGE_IS_5714_FAMILY(sc)) {
4294 val = CSR_READ_4(sc, BGE_MARB_MODE);
4295 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4296 } else
4297 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4298
4299 /* XXX 5721, 5751 and 5752 */
4300 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4301 /* Step 19: */
4302 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4303 /* Step 20: */
4304 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4305 }
4306
4307 /* 5718 reset step 12, 57XX step 15 and 16 */
4308 /* Fix up byte swapping */
4309 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4310
4311 /* 5718 reset step 13, 57XX step 17 */
4312 /* Poll until the firmware initialization is complete */
4313 bge_poll_fw(sc);
4314
4315 /* 57XX step 21 */
4316 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4317 pcireg_t msidata;
4318
4319 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4320 BGE_PCI_MSI_DATA);
4321 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4322 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4323 msidata);
4324 }
4325
4326 /* 57XX step 18 */
4327 /* Write mac mode. */
4328 val = CSR_READ_4(sc, BGE_MAC_MODE);
4329 /* Restore mac_mode_mask's bits using mac_mode */
4330 val = (val & ~mac_mode_mask) | mac_mode;
4331 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4332 DELAY(40);
4333
4334 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4335
4336 /*
4337 * The 5704 in TBI mode apparently needs some special
4338 * adjustment to insure the SERDES drive level is set
4339 * to 1.2V.
4340 */
4341 if (sc->bge_flags & BGEF_FIBER_TBI &&
4342 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4343 uint32_t serdescfg;
4344
4345 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4346 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4347 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4348 }
4349
4350 if (sc->bge_flags & BGEF_PCIE &&
4351 !BGE_IS_57765_PLUS(sc) &&
4352 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4353 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4354 uint32_t v;
4355
4356 /* Enable PCI Express bug fix */
4357 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4358 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4359 v | BGE_TLP_DATA_FIFO_PROTECT);
4360 }
4361
4362 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4363 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4364 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4365
4366 return 0;
4367 }
4368
4369 /*
4370 * Frame reception handling. This is called if there's a frame
4371 * on the receive return list.
4372 *
4373 * Note: we have to be able to handle two possibilities here:
4374 * 1) the frame is from the jumbo receive ring
4375 * 2) the frame is from the standard receive ring
4376 */
4377
4378 static void
4379 bge_rxeof(struct bge_softc *sc)
4380 {
4381 struct ifnet *ifp;
4382 uint16_t rx_prod, rx_cons;
4383 int stdcnt = 0, jumbocnt = 0;
4384 bus_dmamap_t dmamap;
4385 bus_addr_t offset, toff;
4386 bus_size_t tlen;
4387 int tosync;
4388
4389 rx_cons = sc->bge_rx_saved_considx;
4390 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4391
4392 /* Nothing to do */
4393 if (rx_cons == rx_prod)
4394 return;
4395
4396 ifp = &sc->ethercom.ec_if;
4397
4398 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4399 offsetof(struct bge_ring_data, bge_status_block),
4400 sizeof (struct bge_status_block),
4401 BUS_DMASYNC_POSTREAD);
4402
4403 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4404 tosync = rx_prod - rx_cons;
4405
4406 if (tosync != 0)
4407 rnd_add_uint32(&sc->rnd_source, tosync);
4408
4409 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4410
4411 if (tosync < 0) {
4412 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4413 sizeof (struct bge_rx_bd);
4414 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4415 toff, tlen, BUS_DMASYNC_POSTREAD);
4416 tosync = -tosync;
4417 }
4418
4419 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4420 offset, tosync * sizeof (struct bge_rx_bd),
4421 BUS_DMASYNC_POSTREAD);
4422
4423 while (rx_cons != rx_prod) {
4424 struct bge_rx_bd *cur_rx;
4425 uint32_t rxidx;
4426 struct mbuf *m = NULL;
4427
4428 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4429
4430 rxidx = cur_rx->bge_idx;
4431 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4432
4433 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4434 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4435 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4436 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4437 jumbocnt++;
4438 bus_dmamap_sync(sc->bge_dmatag,
4439 sc->bge_cdata.bge_rx_jumbo_map,
4440 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4441 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4442 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4443 ifp->if_ierrors++;
4444 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4445 continue;
4446 }
4447 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4448 NULL)== ENOBUFS) {
4449 ifp->if_ierrors++;
4450 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4451 continue;
4452 }
4453 } else {
4454 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4455 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4456
4457 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4458 stdcnt++;
4459 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4460 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4461 if (dmamap == NULL) {
4462 ifp->if_ierrors++;
4463 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4464 continue;
4465 }
4466 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4467 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4468 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4469 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4470 ifp->if_ierrors++;
4471 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4472 continue;
4473 }
4474 if (bge_newbuf_std(sc, sc->bge_std,
4475 NULL, dmamap) == ENOBUFS) {
4476 ifp->if_ierrors++;
4477 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4478 continue;
4479 }
4480 }
4481
4482 ifp->if_ipackets++;
4483 #ifndef __NO_STRICT_ALIGNMENT
4484 /*
4485 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4486 * the Rx buffer has the layer-2 header unaligned.
4487 * If our CPU requires alignment, re-align by copying.
4488 */
4489 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4490 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4491 cur_rx->bge_len);
4492 m->m_data += ETHER_ALIGN;
4493 }
4494 #endif
4495
4496 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4497 m->m_pkthdr.rcvif = ifp;
4498
4499 /*
4500 * Handle BPF listeners. Let the BPF user see the packet.
4501 */
4502 bpf_mtap(ifp, m);
4503
4504 bge_rxcsum(sc, cur_rx, m);
4505
4506 /*
4507 * If we received a packet with a vlan tag, pass it
4508 * to vlan_input() instead of ether_input().
4509 */
4510 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4511 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4512 }
4513
4514 (*ifp->if_input)(ifp, m);
4515 }
4516
4517 sc->bge_rx_saved_considx = rx_cons;
4518 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4519 if (stdcnt)
4520 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4521 if (jumbocnt)
4522 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4523 }
4524
4525 static void
4526 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4527 {
4528
4529 if (BGE_IS_57765_PLUS(sc)) {
4530 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4531 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4532 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4533 if ((cur_rx->bge_error_flag &
4534 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4535 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4536 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4537 m->m_pkthdr.csum_data =
4538 cur_rx->bge_tcp_udp_csum;
4539 m->m_pkthdr.csum_flags |=
4540 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4541 M_CSUM_DATA);
4542 }
4543 }
4544 } else {
4545 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4546 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4547 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4548 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4549 /*
4550 * Rx transport checksum-offload may also
4551 * have bugs with packets which, when transmitted,
4552 * were `runts' requiring padding.
4553 */
4554 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4555 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4556 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4557 m->m_pkthdr.csum_data =
4558 cur_rx->bge_tcp_udp_csum;
4559 m->m_pkthdr.csum_flags |=
4560 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4561 M_CSUM_DATA);
4562 }
4563 }
4564 }
4565
4566 static void
4567 bge_txeof(struct bge_softc *sc)
4568 {
4569 struct bge_tx_bd *cur_tx = NULL;
4570 struct ifnet *ifp;
4571 struct txdmamap_pool_entry *dma;
4572 bus_addr_t offset, toff;
4573 bus_size_t tlen;
4574 int tosync;
4575 struct mbuf *m;
4576
4577 ifp = &sc->ethercom.ec_if;
4578
4579 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4580 offsetof(struct bge_ring_data, bge_status_block),
4581 sizeof (struct bge_status_block),
4582 BUS_DMASYNC_POSTREAD);
4583
4584 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4585 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4586 sc->bge_tx_saved_considx;
4587
4588 if (tosync != 0)
4589 rnd_add_uint32(&sc->rnd_source, tosync);
4590
4591 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4592
4593 if (tosync < 0) {
4594 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4595 sizeof (struct bge_tx_bd);
4596 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4597 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4598 tosync = -tosync;
4599 }
4600
4601 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4602 offset, tosync * sizeof (struct bge_tx_bd),
4603 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4604
4605 /*
4606 * Go through our tx ring and free mbufs for those
4607 * frames that have been sent.
4608 */
4609 while (sc->bge_tx_saved_considx !=
4610 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4611 uint32_t idx = 0;
4612
4613 idx = sc->bge_tx_saved_considx;
4614 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4615 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4616 ifp->if_opackets++;
4617 m = sc->bge_cdata.bge_tx_chain[idx];
4618 if (m != NULL) {
4619 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4620 dma = sc->txdma[idx];
4621 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4622 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4623 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4624 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4625 sc->txdma[idx] = NULL;
4626
4627 m_freem(m);
4628 }
4629 sc->bge_txcnt--;
4630 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4631 ifp->if_timer = 0;
4632 }
4633
4634 if (cur_tx != NULL)
4635 ifp->if_flags &= ~IFF_OACTIVE;
4636 }
4637
4638 static int
4639 bge_intr(void *xsc)
4640 {
4641 struct bge_softc *sc;
4642 struct ifnet *ifp;
4643 uint32_t statusword;
4644 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4645
4646 sc = xsc;
4647 ifp = &sc->ethercom.ec_if;
4648
4649 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4650 if (BGE_IS_5717_PLUS(sc))
4651 intrmask = 0;
4652
4653 /* It is possible for the interrupt to arrive before
4654 * the status block is updated prior to the interrupt.
4655 * Reading the PCI State register will confirm whether the
4656 * interrupt is ours and will flush the status block.
4657 */
4658
4659 /* read status word from status block */
4660 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4661 offsetof(struct bge_ring_data, bge_status_block),
4662 sizeof (struct bge_status_block),
4663 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4664 statusword = sc->bge_rdata->bge_status_block.bge_status;
4665
4666 if ((statusword & BGE_STATFLAG_UPDATED) ||
4667 (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4668 /* Ack interrupt and stop others from occuring. */
4669 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4670
4671 BGE_EVCNT_INCR(sc->bge_ev_intr);
4672
4673 /* clear status word */
4674 sc->bge_rdata->bge_status_block.bge_status = 0;
4675
4676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4677 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4678 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4679 bge_link_upd(sc);
4680
4681 if (ifp->if_flags & IFF_RUNNING) {
4682 /* Check RX return ring producer/consumer */
4683 bge_rxeof(sc);
4684
4685 /* Check TX ring producer/consumer */
4686 bge_txeof(sc);
4687 }
4688
4689 if (sc->bge_pending_rxintr_change) {
4690 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4691 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4692
4693 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4694 DELAY(10);
4695 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4696
4697 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4698 DELAY(10);
4699 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4700
4701 sc->bge_pending_rxintr_change = 0;
4702 }
4703 bge_handle_events(sc);
4704
4705 /* Re-enable interrupts. */
4706 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4707
4708 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4709 bge_start(ifp);
4710
4711 return 1;
4712 } else
4713 return 0;
4714 }
4715
4716 static void
4717 bge_asf_driver_up(struct bge_softc *sc)
4718 {
4719 if (sc->bge_asf_mode & ASF_STACKUP) {
4720 /* Send ASF heartbeat aprox. every 2s */
4721 if (sc->bge_asf_count)
4722 sc->bge_asf_count --;
4723 else {
4724 sc->bge_asf_count = 2;
4725
4726 bge_wait_for_event_ack(sc);
4727
4728 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4729 BGE_FW_CMD_DRV_ALIVE);
4730 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4731 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4732 BGE_FW_HB_TIMEOUT_SEC);
4733 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4734 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4735 BGE_RX_CPU_DRV_EVENT);
4736 }
4737 }
4738 }
4739
4740 static void
4741 bge_tick(void *xsc)
4742 {
4743 struct bge_softc *sc = xsc;
4744 struct mii_data *mii = &sc->bge_mii;
4745 int s;
4746
4747 s = splnet();
4748
4749 if (BGE_IS_5705_PLUS(sc))
4750 bge_stats_update_regs(sc);
4751 else
4752 bge_stats_update(sc);
4753
4754 if (sc->bge_flags & BGEF_FIBER_TBI) {
4755 /*
4756 * Since in TBI mode auto-polling can't be used we should poll
4757 * link status manually. Here we register pending link event
4758 * and trigger interrupt.
4759 */
4760 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4761 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4762 } else {
4763 /*
4764 * Do not touch PHY if we have link up. This could break
4765 * IPMI/ASF mode or produce extra input errors.
4766 * (extra input errors was reported for bcm5701 & bcm5704).
4767 */
4768 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4769 mii_tick(mii);
4770 }
4771
4772 bge_asf_driver_up(sc);
4773
4774 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4775
4776 splx(s);
4777 }
4778
4779 static void
4780 bge_stats_update_regs(struct bge_softc *sc)
4781 {
4782 struct ifnet *ifp = &sc->ethercom.ec_if;
4783
4784 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4785 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4786
4787 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4788 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4789 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4790 }
4791
4792 static void
4793 bge_stats_update(struct bge_softc *sc)
4794 {
4795 struct ifnet *ifp = &sc->ethercom.ec_if;
4796 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4797
4798 #define READ_STAT(sc, stats, stat) \
4799 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4800
4801 ifp->if_collisions +=
4802 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4803 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4804 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4805 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4806 ifp->if_collisions;
4807
4808 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4809 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4810 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4811 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4812 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4813 READ_STAT(sc, stats,
4814 xoffPauseFramesReceived.bge_addr_lo));
4815 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4816 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4817 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4818 READ_STAT(sc, stats,
4819 macControlFramesReceived.bge_addr_lo));
4820 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4821 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4822
4823 #undef READ_STAT
4824
4825 #ifdef notdef
4826 ifp->if_collisions +=
4827 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4828 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4829 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4830 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4831 ifp->if_collisions;
4832 #endif
4833 }
4834
4835 /*
4836 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4837 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4838 * but when such padded frames employ the bge IP/TCP checksum offload,
4839 * the hardware checksum assist gives incorrect results (possibly
4840 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4841 * If we pad such runts with zeros, the onboard checksum comes out correct.
4842 */
4843 static inline int
4844 bge_cksum_pad(struct mbuf *pkt)
4845 {
4846 struct mbuf *last = NULL;
4847 int padlen;
4848
4849 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4850
4851 /* if there's only the packet-header and we can pad there, use it. */
4852 if (pkt->m_pkthdr.len == pkt->m_len &&
4853 M_TRAILINGSPACE(pkt) >= padlen) {
4854 last = pkt;
4855 } else {
4856 /*
4857 * Walk packet chain to find last mbuf. We will either
4858 * pad there, or append a new mbuf and pad it
4859 * (thus perhaps avoiding the bcm5700 dma-min bug).
4860 */
4861 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4862 continue; /* do nothing */
4863 }
4864
4865 /* `last' now points to last in chain. */
4866 if (M_TRAILINGSPACE(last) < padlen) {
4867 /* Allocate new empty mbuf, pad it. Compact later. */
4868 struct mbuf *n;
4869 MGET(n, M_DONTWAIT, MT_DATA);
4870 if (n == NULL)
4871 return ENOBUFS;
4872 n->m_len = 0;
4873 last->m_next = n;
4874 last = n;
4875 }
4876 }
4877
4878 KDASSERT(!M_READONLY(last));
4879 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4880
4881 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4882 memset(mtod(last, char *) + last->m_len, 0, padlen);
4883 last->m_len += padlen;
4884 pkt->m_pkthdr.len += padlen;
4885 return 0;
4886 }
4887
4888 /*
4889 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4890 */
4891 static inline int
4892 bge_compact_dma_runt(struct mbuf *pkt)
4893 {
4894 struct mbuf *m, *prev;
4895 int totlen;
4896
4897 prev = NULL;
4898 totlen = 0;
4899
4900 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4901 int mlen = m->m_len;
4902 int shortfall = 8 - mlen ;
4903
4904 totlen += mlen;
4905 if (mlen == 0)
4906 continue;
4907 if (mlen >= 8)
4908 continue;
4909
4910 /* If we get here, mbuf data is too small for DMA engine.
4911 * Try to fix by shuffling data to prev or next in chain.
4912 * If that fails, do a compacting deep-copy of the whole chain.
4913 */
4914
4915 /* Internal frag. If fits in prev, copy it there. */
4916 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4917 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4918 prev->m_len += mlen;
4919 m->m_len = 0;
4920 /* XXX stitch chain */
4921 prev->m_next = m_free(m);
4922 m = prev;
4923 continue;
4924 }
4925 else if (m->m_next != NULL &&
4926 M_TRAILINGSPACE(m) >= shortfall &&
4927 m->m_next->m_len >= (8 + shortfall)) {
4928 /* m is writable and have enough data in next, pull up. */
4929
4930 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4931 shortfall);
4932 m->m_len += shortfall;
4933 m->m_next->m_len -= shortfall;
4934 m->m_next->m_data += shortfall;
4935 }
4936 else if (m->m_next == NULL || 1) {
4937 /* Got a runt at the very end of the packet.
4938 * borrow data from the tail of the preceding mbuf and
4939 * update its length in-place. (The original data is still
4940 * valid, so we can do this even if prev is not writable.)
4941 */
4942
4943 /* if we'd make prev a runt, just move all of its data. */
4944 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4945 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4946
4947 if ((prev->m_len - shortfall) < 8)
4948 shortfall = prev->m_len;
4949
4950 #ifdef notyet /* just do the safe slow thing for now */
4951 if (!M_READONLY(m)) {
4952 if (M_LEADINGSPACE(m) < shorfall) {
4953 void *m_dat;
4954 m_dat = (m->m_flags & M_PKTHDR) ?
4955 m->m_pktdat : m->dat;
4956 memmove(m_dat, mtod(m, void*), m->m_len);
4957 m->m_data = m_dat;
4958 }
4959 } else
4960 #endif /* just do the safe slow thing */
4961 {
4962 struct mbuf * n = NULL;
4963 int newprevlen = prev->m_len - shortfall;
4964
4965 MGET(n, M_NOWAIT, MT_DATA);
4966 if (n == NULL)
4967 return ENOBUFS;
4968 KASSERT(m->m_len + shortfall < MLEN
4969 /*,
4970 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4971
4972 /* first copy the data we're stealing from prev */
4973 memcpy(n->m_data, prev->m_data + newprevlen,
4974 shortfall);
4975
4976 /* update prev->m_len accordingly */
4977 prev->m_len -= shortfall;
4978
4979 /* copy data from runt m */
4980 memcpy(n->m_data + shortfall, m->m_data,
4981 m->m_len);
4982
4983 /* n holds what we stole from prev, plus m */
4984 n->m_len = shortfall + m->m_len;
4985
4986 /* stitch n into chain and free m */
4987 n->m_next = m->m_next;
4988 prev->m_next = n;
4989 /* KASSERT(m->m_next == NULL); */
4990 m->m_next = NULL;
4991 m_free(m);
4992 m = n; /* for continuing loop */
4993 }
4994 }
4995 }
4996 return 0;
4997 }
4998
4999 /*
5000 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5001 * pointers to descriptors.
5002 */
5003 static int
5004 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5005 {
5006 struct bge_tx_bd *f = NULL;
5007 uint32_t frag, cur;
5008 uint16_t csum_flags = 0;
5009 uint16_t txbd_tso_flags = 0;
5010 struct txdmamap_pool_entry *dma;
5011 bus_dmamap_t dmamap;
5012 int i = 0;
5013 struct m_tag *mtag;
5014 int use_tso, maxsegsize, error;
5015
5016 cur = frag = *txidx;
5017
5018 if (m_head->m_pkthdr.csum_flags) {
5019 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5020 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5021 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5022 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5023 }
5024
5025 /*
5026 * If we were asked to do an outboard checksum, and the NIC
5027 * has the bug where it sometimes adds in the Ethernet padding,
5028 * explicitly pad with zeros so the cksum will be correct either way.
5029 * (For now, do this for all chip versions, until newer
5030 * are confirmed to not require the workaround.)
5031 */
5032 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5033 #ifdef notyet
5034 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5035 #endif
5036 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5037 goto check_dma_bug;
5038
5039 if (bge_cksum_pad(m_head) != 0)
5040 return ENOBUFS;
5041
5042 check_dma_bug:
5043 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5044 goto doit;
5045
5046 /*
5047 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5048 * less than eight bytes. If we encounter a teeny mbuf
5049 * at the end of a chain, we can pad. Otherwise, copy.
5050 */
5051 if (bge_compact_dma_runt(m_head) != 0)
5052 return ENOBUFS;
5053
5054 doit:
5055 dma = SLIST_FIRST(&sc->txdma_list);
5056 if (dma == NULL)
5057 return ENOBUFS;
5058 dmamap = dma->dmamap;
5059
5060 /*
5061 * Set up any necessary TSO state before we start packing...
5062 */
5063 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5064 if (!use_tso) {
5065 maxsegsize = 0;
5066 } else { /* TSO setup */
5067 unsigned mss;
5068 struct ether_header *eh;
5069 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5070 struct mbuf * m0 = m_head;
5071 struct ip *ip;
5072 struct tcphdr *th;
5073 int iphl, hlen;
5074
5075 /*
5076 * XXX It would be nice if the mbuf pkthdr had offset
5077 * fields for the protocol headers.
5078 */
5079
5080 eh = mtod(m0, struct ether_header *);
5081 switch (htons(eh->ether_type)) {
5082 case ETHERTYPE_IP:
5083 offset = ETHER_HDR_LEN;
5084 break;
5085
5086 case ETHERTYPE_VLAN:
5087 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5088 break;
5089
5090 default:
5091 /*
5092 * Don't support this protocol or encapsulation.
5093 */
5094 return ENOBUFS;
5095 }
5096
5097 /*
5098 * TCP/IP headers are in the first mbuf; we can do
5099 * this the easy way.
5100 */
5101 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5102 hlen = iphl + offset;
5103 if (__predict_false(m0->m_len <
5104 (hlen + sizeof(struct tcphdr)))) {
5105
5106 aprint_debug_dev(sc->bge_dev,
5107 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5108 "not handled yet\n",
5109 m0->m_len, hlen+ sizeof(struct tcphdr));
5110 #ifdef NOTYET
5111 /*
5112 * XXX jonathan (at) NetBSD.org: untested.
5113 * how to force this branch to be taken?
5114 */
5115 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5116
5117 m_copydata(m0, offset, sizeof(ip), &ip);
5118 m_copydata(m0, hlen, sizeof(th), &th);
5119
5120 ip.ip_len = 0;
5121
5122 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5123 sizeof(ip.ip_len), &ip.ip_len);
5124
5125 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5126 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5127
5128 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5129 sizeof(th.th_sum), &th.th_sum);
5130
5131 hlen += th.th_off << 2;
5132 iptcp_opt_words = hlen;
5133 #else
5134 /*
5135 * if_wm "hard" case not yet supported, can we not
5136 * mandate it out of existence?
5137 */
5138 (void) ip; (void)th; (void) ip_tcp_hlen;
5139
5140 return ENOBUFS;
5141 #endif
5142 } else {
5143 ip = (struct ip *) (mtod(m0, char *) + offset);
5144 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5145 ip_tcp_hlen = iphl + (th->th_off << 2);
5146
5147 /* Total IP/TCP options, in 32-bit words */
5148 iptcp_opt_words = (ip_tcp_hlen
5149 - sizeof(struct tcphdr)
5150 - sizeof(struct ip)) >> 2;
5151 }
5152 if (BGE_IS_575X_PLUS(sc)) {
5153 th->th_sum = 0;
5154 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5155 } else {
5156 /*
5157 * XXX jonathan (at) NetBSD.org: 5705 untested.
5158 * Requires TSO firmware patch for 5701/5703/5704.
5159 */
5160 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5161 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5162 }
5163
5164 mss = m_head->m_pkthdr.segsz;
5165 txbd_tso_flags |=
5166 BGE_TXBDFLAG_CPU_PRE_DMA |
5167 BGE_TXBDFLAG_CPU_POST_DMA;
5168
5169 /*
5170 * Our NIC TSO-assist assumes TSO has standard, optionless
5171 * IPv4 and TCP headers, which total 40 bytes. By default,
5172 * the NIC copies 40 bytes of IP/TCP header from the
5173 * supplied header into the IP/TCP header portion of
5174 * each post-TSO-segment. If the supplied packet has IP or
5175 * TCP options, we need to tell the NIC to copy those extra
5176 * bytes into each post-TSO header, in addition to the normal
5177 * 40-byte IP/TCP header (and to leave space accordingly).
5178 * Unfortunately, the driver encoding of option length
5179 * varies across different ASIC families.
5180 */
5181 tcp_seg_flags = 0;
5182 if (iptcp_opt_words) {
5183 if (BGE_IS_5705_PLUS(sc)) {
5184 tcp_seg_flags =
5185 iptcp_opt_words << 11;
5186 } else {
5187 txbd_tso_flags |=
5188 iptcp_opt_words << 12;
5189 }
5190 }
5191 maxsegsize = mss | tcp_seg_flags;
5192 ip->ip_len = htons(mss + ip_tcp_hlen);
5193
5194 } /* TSO setup */
5195
5196 /*
5197 * Start packing the mbufs in this chain into
5198 * the fragment pointers. Stop when we run out
5199 * of fragments or hit the end of the mbuf chain.
5200 */
5201 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5202 BUS_DMA_NOWAIT);
5203 if (error)
5204 return ENOBUFS;
5205 /*
5206 * Sanity check: avoid coming within 16 descriptors
5207 * of the end of the ring.
5208 */
5209 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5210 BGE_TSO_PRINTF(("%s: "
5211 " dmamap_load_mbuf too close to ring wrap\n",
5212 device_xname(sc->bge_dev)));
5213 goto fail_unload;
5214 }
5215
5216 mtag = sc->ethercom.ec_nvlans ?
5217 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5218
5219
5220 /* Iterate over dmap-map fragments. */
5221 for (i = 0; i < dmamap->dm_nsegs; i++) {
5222 f = &sc->bge_rdata->bge_tx_ring[frag];
5223 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5224 break;
5225
5226 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5227 f->bge_len = dmamap->dm_segs[i].ds_len;
5228
5229 /*
5230 * For 5751 and follow-ons, for TSO we must turn
5231 * off checksum-assist flag in the tx-descr, and
5232 * supply the ASIC-revision-specific encoding
5233 * of TSO flags and segsize.
5234 */
5235 if (use_tso) {
5236 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5237 f->bge_rsvd = maxsegsize;
5238 f->bge_flags = csum_flags | txbd_tso_flags;
5239 } else {
5240 f->bge_rsvd = 0;
5241 f->bge_flags =
5242 (csum_flags | txbd_tso_flags) & 0x0fff;
5243 }
5244 } else {
5245 f->bge_rsvd = 0;
5246 f->bge_flags = csum_flags;
5247 }
5248
5249 if (mtag != NULL) {
5250 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5251 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5252 } else {
5253 f->bge_vlan_tag = 0;
5254 }
5255 cur = frag;
5256 BGE_INC(frag, BGE_TX_RING_CNT);
5257 }
5258
5259 if (i < dmamap->dm_nsegs) {
5260 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5261 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5262 goto fail_unload;
5263 }
5264
5265 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5266 BUS_DMASYNC_PREWRITE);
5267
5268 if (frag == sc->bge_tx_saved_considx) {
5269 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5270 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5271
5272 goto fail_unload;
5273 }
5274
5275 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5276 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5277 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5278 sc->txdma[cur] = dma;
5279 sc->bge_txcnt += dmamap->dm_nsegs;
5280
5281 *txidx = frag;
5282
5283 return 0;
5284
5285 fail_unload:
5286 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5287
5288 return ENOBUFS;
5289 }
5290
5291 /*
5292 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5293 * to the mbuf data regions directly in the transmit descriptors.
5294 */
5295 static void
5296 bge_start(struct ifnet *ifp)
5297 {
5298 struct bge_softc *sc;
5299 struct mbuf *m_head = NULL;
5300 uint32_t prodidx;
5301 int pkts = 0;
5302
5303 sc = ifp->if_softc;
5304
5305 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5306 return;
5307
5308 prodidx = sc->bge_tx_prodidx;
5309
5310 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5311 IFQ_POLL(&ifp->if_snd, m_head);
5312 if (m_head == NULL)
5313 break;
5314
5315 #if 0
5316 /*
5317 * XXX
5318 * safety overkill. If this is a fragmented packet chain
5319 * with delayed TCP/UDP checksums, then only encapsulate
5320 * it if we have enough descriptors to handle the entire
5321 * chain at once.
5322 * (paranoia -- may not actually be needed)
5323 */
5324 if (m_head->m_flags & M_FIRSTFRAG &&
5325 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5326 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5327 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5328 ifp->if_flags |= IFF_OACTIVE;
5329 break;
5330 }
5331 }
5332 #endif
5333
5334 /*
5335 * Pack the data into the transmit ring. If we
5336 * don't have room, set the OACTIVE flag and wait
5337 * for the NIC to drain the ring.
5338 */
5339 if (bge_encap(sc, m_head, &prodidx)) {
5340 ifp->if_flags |= IFF_OACTIVE;
5341 break;
5342 }
5343
5344 /* now we are committed to transmit the packet */
5345 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5346 pkts++;
5347
5348 /*
5349 * If there's a BPF listener, bounce a copy of this frame
5350 * to him.
5351 */
5352 bpf_mtap(ifp, m_head);
5353 }
5354 if (pkts == 0)
5355 return;
5356
5357 /* Transmit */
5358 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5359 /* 5700 b2 errata */
5360 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5361 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5362
5363 sc->bge_tx_prodidx = prodidx;
5364
5365 /*
5366 * Set a timeout in case the chip goes out to lunch.
5367 */
5368 ifp->if_timer = 5;
5369 }
5370
5371 static int
5372 bge_init(struct ifnet *ifp)
5373 {
5374 struct bge_softc *sc = ifp->if_softc;
5375 const uint16_t *m;
5376 uint32_t mode, reg;
5377 int s, error = 0;
5378
5379 s = splnet();
5380
5381 ifp = &sc->ethercom.ec_if;
5382
5383 /* Cancel pending I/O and flush buffers. */
5384 bge_stop(ifp, 0);
5385
5386 bge_stop_fw(sc);
5387 bge_sig_pre_reset(sc, BGE_RESET_START);
5388 bge_reset(sc);
5389 bge_sig_legacy(sc, BGE_RESET_START);
5390 bge_sig_post_reset(sc, BGE_RESET_START);
5391
5392 bge_chipinit(sc);
5393
5394 /*
5395 * Init the various state machines, ring
5396 * control blocks and firmware.
5397 */
5398 error = bge_blockinit(sc);
5399 if (error != 0) {
5400 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5401 error);
5402 splx(s);
5403 return error;
5404 }
5405
5406 ifp = &sc->ethercom.ec_if;
5407
5408 /* 5718 step 25, 57XX step 54 */
5409 /* Specify MTU. */
5410 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5411 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5412
5413 /* 5718 step 23 */
5414 /* Load our MAC address. */
5415 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5416 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5417 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5418
5419 /* Enable or disable promiscuous mode as needed. */
5420 if (ifp->if_flags & IFF_PROMISC)
5421 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5422 else
5423 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5424
5425 /* Program multicast filter. */
5426 bge_setmulti(sc);
5427
5428 /* Init RX ring. */
5429 bge_init_rx_ring_std(sc);
5430
5431 /*
5432 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5433 * memory to insure that the chip has in fact read the first
5434 * entry of the ring.
5435 */
5436 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5437 uint32_t v, i;
5438 for (i = 0; i < 10; i++) {
5439 DELAY(20);
5440 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5441 if (v == (MCLBYTES - ETHER_ALIGN))
5442 break;
5443 }
5444 if (i == 10)
5445 aprint_error_dev(sc->bge_dev,
5446 "5705 A0 chip failed to load RX ring\n");
5447 }
5448
5449 /* Init jumbo RX ring. */
5450 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5451 bge_init_rx_ring_jumbo(sc);
5452
5453 /* Init our RX return ring index */
5454 sc->bge_rx_saved_considx = 0;
5455
5456 /* Init TX ring. */
5457 bge_init_tx_ring(sc);
5458
5459 /* 5718 step 63, 57XX step 94 */
5460 /* Enable TX MAC state machine lockup fix. */
5461 mode = CSR_READ_4(sc, BGE_TX_MODE);
5462 if (BGE_IS_5755_PLUS(sc) ||
5463 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5464 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5466 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5467 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5468 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5469 }
5470
5471 /* Turn on transmitter */
5472 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5473 /* 5718 step 64 */
5474 DELAY(100);
5475
5476 /* 5718 step 65, 57XX step 95 */
5477 /* Turn on receiver */
5478 mode = CSR_READ_4(sc, BGE_RX_MODE);
5479 if (BGE_IS_5755_PLUS(sc))
5480 mode |= BGE_RXMODE_IPV6_ENABLE;
5481 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5482 /* 5718 step 66 */
5483 DELAY(10);
5484
5485 /* 5718 step 12, 57XX step 37 */
5486 /*
5487 * XXX Doucments of 5718 series and 577xx say the recommended value
5488 * is 1, but tg3 set 1 only on 57765 series.
5489 */
5490 if (BGE_IS_57765_PLUS(sc))
5491 reg = 1;
5492 else
5493 reg = 2;
5494 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5495
5496 /* Tell firmware we're alive. */
5497 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5498
5499 /* Enable host interrupts. */
5500 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5501 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5502 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5503
5504 if ((error = bge_ifmedia_upd(ifp)) != 0)
5505 goto out;
5506
5507 ifp->if_flags |= IFF_RUNNING;
5508 ifp->if_flags &= ~IFF_OACTIVE;
5509
5510 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5511
5512 out:
5513 sc->bge_if_flags = ifp->if_flags;
5514 splx(s);
5515
5516 return error;
5517 }
5518
5519 /*
5520 * Set media options.
5521 */
5522 static int
5523 bge_ifmedia_upd(struct ifnet *ifp)
5524 {
5525 struct bge_softc *sc = ifp->if_softc;
5526 struct mii_data *mii = &sc->bge_mii;
5527 struct ifmedia *ifm = &sc->bge_ifmedia;
5528 int rc;
5529
5530 /* If this is a 1000baseX NIC, enable the TBI port. */
5531 if (sc->bge_flags & BGEF_FIBER_TBI) {
5532 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5533 return EINVAL;
5534 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5535 case IFM_AUTO:
5536 /*
5537 * The BCM5704 ASIC appears to have a special
5538 * mechanism for programming the autoneg
5539 * advertisement registers in TBI mode.
5540 */
5541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5542 uint32_t sgdig;
5543 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5544 if (sgdig & BGE_SGDIGSTS_DONE) {
5545 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5546 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5547 sgdig |= BGE_SGDIGCFG_AUTO |
5548 BGE_SGDIGCFG_PAUSE_CAP |
5549 BGE_SGDIGCFG_ASYM_PAUSE;
5550 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5551 sgdig | BGE_SGDIGCFG_SEND);
5552 DELAY(5);
5553 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5554 sgdig);
5555 }
5556 }
5557 break;
5558 case IFM_1000_SX:
5559 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5560 BGE_CLRBIT(sc, BGE_MAC_MODE,
5561 BGE_MACMODE_HALF_DUPLEX);
5562 } else {
5563 BGE_SETBIT(sc, BGE_MAC_MODE,
5564 BGE_MACMODE_HALF_DUPLEX);
5565 }
5566 DELAY(40);
5567 break;
5568 default:
5569 return EINVAL;
5570 }
5571 /* XXX 802.3x flow control for 1000BASE-SX */
5572 return 0;
5573 }
5574
5575 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5576 if ((rc = mii_mediachg(mii)) == ENXIO)
5577 return 0;
5578
5579 /*
5580 * Force an interrupt so that we will call bge_link_upd
5581 * if needed and clear any pending link state attention.
5582 * Without this we are not getting any further interrupts
5583 * for link state changes and thus will not UP the link and
5584 * not be able to send in bge_start. The only way to get
5585 * things working was to receive a packet and get a RX intr.
5586 */
5587 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5588 sc->bge_flags & BGEF_IS_5788)
5589 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5590 else
5591 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5592
5593 return rc;
5594 }
5595
5596 /*
5597 * Report current media status.
5598 */
5599 static void
5600 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5601 {
5602 struct bge_softc *sc = ifp->if_softc;
5603 struct mii_data *mii = &sc->bge_mii;
5604
5605 if (sc->bge_flags & BGEF_FIBER_TBI) {
5606 ifmr->ifm_status = IFM_AVALID;
5607 ifmr->ifm_active = IFM_ETHER;
5608 if (CSR_READ_4(sc, BGE_MAC_STS) &
5609 BGE_MACSTAT_TBI_PCS_SYNCHED)
5610 ifmr->ifm_status |= IFM_ACTIVE;
5611 ifmr->ifm_active |= IFM_1000_SX;
5612 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5613 ifmr->ifm_active |= IFM_HDX;
5614 else
5615 ifmr->ifm_active |= IFM_FDX;
5616 return;
5617 }
5618
5619 mii_pollstat(mii);
5620 ifmr->ifm_status = mii->mii_media_status;
5621 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5622 sc->bge_flowflags;
5623 }
5624
5625 static int
5626 bge_ifflags_cb(struct ethercom *ec)
5627 {
5628 struct ifnet *ifp = &ec->ec_if;
5629 struct bge_softc *sc = ifp->if_softc;
5630 int change = ifp->if_flags ^ sc->bge_if_flags;
5631
5632 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5633 return ENETRESET;
5634 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5635 return 0;
5636
5637 if ((ifp->if_flags & IFF_PROMISC) == 0)
5638 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5639 else
5640 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5641
5642 bge_setmulti(sc);
5643
5644 sc->bge_if_flags = ifp->if_flags;
5645 return 0;
5646 }
5647
5648 static int
5649 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5650 {
5651 struct bge_softc *sc = ifp->if_softc;
5652 struct ifreq *ifr = (struct ifreq *) data;
5653 int s, error = 0;
5654 struct mii_data *mii;
5655
5656 s = splnet();
5657
5658 switch (command) {
5659 case SIOCSIFMEDIA:
5660 /* XXX Flow control is not supported for 1000BASE-SX */
5661 if (sc->bge_flags & BGEF_FIBER_TBI) {
5662 ifr->ifr_media &= ~IFM_ETH_FMASK;
5663 sc->bge_flowflags = 0;
5664 }
5665
5666 /* Flow control requires full-duplex mode. */
5667 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5668 (ifr->ifr_media & IFM_FDX) == 0) {
5669 ifr->ifr_media &= ~IFM_ETH_FMASK;
5670 }
5671 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5672 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5673 /* We can do both TXPAUSE and RXPAUSE. */
5674 ifr->ifr_media |=
5675 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5676 }
5677 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5678 }
5679 /* FALLTHROUGH */
5680 case SIOCGIFMEDIA:
5681 if (sc->bge_flags & BGEF_FIBER_TBI) {
5682 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5683 command);
5684 } else {
5685 mii = &sc->bge_mii;
5686 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5687 command);
5688 }
5689 break;
5690 default:
5691 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5692 break;
5693
5694 error = 0;
5695
5696 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5697 ;
5698 else if (ifp->if_flags & IFF_RUNNING)
5699 bge_setmulti(sc);
5700 break;
5701 }
5702
5703 splx(s);
5704
5705 return error;
5706 }
5707
5708 static void
5709 bge_watchdog(struct ifnet *ifp)
5710 {
5711 struct bge_softc *sc;
5712
5713 sc = ifp->if_softc;
5714
5715 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5716
5717 ifp->if_flags &= ~IFF_RUNNING;
5718 bge_init(ifp);
5719
5720 ifp->if_oerrors++;
5721 }
5722
5723 static void
5724 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5725 {
5726 int i;
5727
5728 BGE_CLRBIT_FLUSH(sc, reg, bit);
5729
5730 for (i = 0; i < 1000; i++) {
5731 delay(100);
5732 if ((CSR_READ_4(sc, reg) & bit) == 0)
5733 return;
5734 }
5735
5736 /*
5737 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5738 * on some environment (and once after boot?)
5739 */
5740 if (reg != BGE_SRS_MODE)
5741 aprint_error_dev(sc->bge_dev,
5742 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5743 (u_long)reg, bit);
5744 }
5745
5746 /*
5747 * Stop the adapter and free any mbufs allocated to the
5748 * RX and TX lists.
5749 */
5750 static void
5751 bge_stop(struct ifnet *ifp, int disable)
5752 {
5753 struct bge_softc *sc = ifp->if_softc;
5754
5755 if (disable)
5756 callout_halt(&sc->bge_timeout, NULL);
5757 else
5758 callout_stop(&sc->bge_timeout);
5759
5760 /* Disable host interrupts. */
5761 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5762 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5763
5764 /*
5765 * Tell firmware we're shutting down.
5766 */
5767 bge_stop_fw(sc);
5768 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5769
5770 /*
5771 * Disable all of the receiver blocks.
5772 */
5773 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5774 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5775 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5776 if (BGE_IS_5700_FAMILY(sc))
5777 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5778 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5779 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5780 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5781
5782 /*
5783 * Disable all of the transmit blocks.
5784 */
5785 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5786 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5787 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5788 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5789 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5790 if (BGE_IS_5700_FAMILY(sc))
5791 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5792 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5793
5794 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5795 delay(40);
5796
5797 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5798
5799 /*
5800 * Shut down all of the memory managers and related
5801 * state machines.
5802 */
5803 /* 5718 step 5a,5b */
5804 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5805 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5806 if (BGE_IS_5700_FAMILY(sc))
5807 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5808
5809 /* 5718 step 5c,5d */
5810 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5811 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5812
5813 if (BGE_IS_5700_FAMILY(sc)) {
5814 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5815 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5816 }
5817
5818 bge_reset(sc);
5819 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5820 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5821
5822 /*
5823 * Keep the ASF firmware running if up.
5824 */
5825 if (sc->bge_asf_mode & ASF_STACKUP)
5826 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5827 else
5828 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5829
5830 /* Free the RX lists. */
5831 bge_free_rx_ring_std(sc);
5832
5833 /* Free jumbo RX list. */
5834 if (BGE_IS_JUMBO_CAPABLE(sc))
5835 bge_free_rx_ring_jumbo(sc);
5836
5837 /* Free TX buffers. */
5838 bge_free_tx_ring(sc);
5839
5840 /*
5841 * Isolate/power down the PHY.
5842 */
5843 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5844 mii_down(&sc->bge_mii);
5845
5846 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5847
5848 /* Clear MAC's link state (PHY may still have link UP). */
5849 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5850
5851 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5852 }
5853
5854 static void
5855 bge_link_upd(struct bge_softc *sc)
5856 {
5857 struct ifnet *ifp = &sc->ethercom.ec_if;
5858 struct mii_data *mii = &sc->bge_mii;
5859 uint32_t status;
5860 int link;
5861
5862 /* Clear 'pending link event' flag */
5863 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5864
5865 /*
5866 * Process link state changes.
5867 * Grrr. The link status word in the status block does
5868 * not work correctly on the BCM5700 rev AX and BX chips,
5869 * according to all available information. Hence, we have
5870 * to enable MII interrupts in order to properly obtain
5871 * async link changes. Unfortunately, this also means that
5872 * we have to read the MAC status register to detect link
5873 * changes, thereby adding an additional register access to
5874 * the interrupt handler.
5875 */
5876
5877 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5878 status = CSR_READ_4(sc, BGE_MAC_STS);
5879 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5880 mii_pollstat(mii);
5881
5882 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5883 mii->mii_media_status & IFM_ACTIVE &&
5884 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5885 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5886 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5887 (!(mii->mii_media_status & IFM_ACTIVE) ||
5888 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5889 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5890
5891 /* Clear the interrupt */
5892 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5893 BGE_EVTENB_MI_INTERRUPT);
5894 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5895 BRGPHY_MII_ISR);
5896 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5897 BRGPHY_MII_IMR, BRGPHY_INTRS);
5898 }
5899 return;
5900 }
5901
5902 if (sc->bge_flags & BGEF_FIBER_TBI) {
5903 status = CSR_READ_4(sc, BGE_MAC_STS);
5904 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5905 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5906 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5907 if (BGE_ASICREV(sc->bge_chipid)
5908 == BGE_ASICREV_BCM5704) {
5909 BGE_CLRBIT(sc, BGE_MAC_MODE,
5910 BGE_MACMODE_TBI_SEND_CFGS);
5911 DELAY(40);
5912 }
5913 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5914 if_link_state_change(ifp, LINK_STATE_UP);
5915 }
5916 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5917 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5918 if_link_state_change(ifp, LINK_STATE_DOWN);
5919 }
5920 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5921 /*
5922 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5923 * bit in status word always set. Workaround this bug by
5924 * reading PHY link status directly.
5925 */
5926 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5927 BGE_STS_LINK : 0;
5928
5929 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5930 mii_pollstat(mii);
5931
5932 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5933 mii->mii_media_status & IFM_ACTIVE &&
5934 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5935 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5936 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5937 (!(mii->mii_media_status & IFM_ACTIVE) ||
5938 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5939 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5940 }
5941 } else {
5942 /*
5943 * For controllers that call mii_tick, we have to poll
5944 * link status.
5945 */
5946 mii_pollstat(mii);
5947 }
5948
5949 /* Clear the attention */
5950 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5951 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5952 BGE_MACSTAT_LINK_CHANGED);
5953 }
5954
5955 static int
5956 bge_sysctl_verify(SYSCTLFN_ARGS)
5957 {
5958 int error, t;
5959 struct sysctlnode node;
5960
5961 node = *rnode;
5962 t = *(int*)rnode->sysctl_data;
5963 node.sysctl_data = &t;
5964 error = sysctl_lookup(SYSCTLFN_CALL(&node));
5965 if (error || newp == NULL)
5966 return error;
5967
5968 #if 0
5969 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5970 node.sysctl_num, rnode->sysctl_num));
5971 #endif
5972
5973 if (node.sysctl_num == bge_rxthresh_nodenum) {
5974 if (t < 0 || t >= NBGE_RX_THRESH)
5975 return EINVAL;
5976 bge_update_all_threshes(t);
5977 } else
5978 return EINVAL;
5979
5980 *(int*)rnode->sysctl_data = t;
5981
5982 return 0;
5983 }
5984
5985 /*
5986 * Set up sysctl(3) MIB, hw.bge.*.
5987 */
5988 static void
5989 bge_sysctl_init(struct bge_softc *sc)
5990 {
5991 int rc, bge_root_num;
5992 const struct sysctlnode *node;
5993
5994 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5995 0, CTLTYPE_NODE, "bge",
5996 SYSCTL_DESCR("BGE interface controls"),
5997 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5998 goto out;
5999 }
6000
6001 bge_root_num = node->sysctl_num;
6002
6003 /* BGE Rx interrupt mitigation level */
6004 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6005 CTLFLAG_READWRITE,
6006 CTLTYPE_INT, "rx_lvl",
6007 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6008 bge_sysctl_verify, 0,
6009 &bge_rx_thresh_lvl,
6010 0, CTL_HW, bge_root_num, CTL_CREATE,
6011 CTL_EOL)) != 0) {
6012 goto out;
6013 }
6014
6015 bge_rxthresh_nodenum = node->sysctl_num;
6016
6017 return;
6018
6019 out:
6020 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6021 }
6022
6023 #ifdef BGE_DEBUG
6024 void
6025 bge_debug_info(struct bge_softc *sc)
6026 {
6027
6028 printf("Hardware Flags:\n");
6029 if (BGE_IS_57765_PLUS(sc))
6030 printf(" - 57765 Plus\n");
6031 if (BGE_IS_5717_PLUS(sc))
6032 printf(" - 5717 Plus\n");
6033 if (BGE_IS_5755_PLUS(sc))
6034 printf(" - 5755 Plus\n");
6035 if (BGE_IS_575X_PLUS(sc))
6036 printf(" - 575X Plus\n");
6037 if (BGE_IS_5705_PLUS(sc))
6038 printf(" - 5705 Plus\n");
6039 if (BGE_IS_5714_FAMILY(sc))
6040 printf(" - 5714 Family\n");
6041 if (BGE_IS_5700_FAMILY(sc))
6042 printf(" - 5700 Family\n");
6043 if (sc->bge_flags & BGEF_IS_5788)
6044 printf(" - 5788\n");
6045 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6046 printf(" - Supports Jumbo Frames\n");
6047 if (sc->bge_flags & BGEF_NO_EEPROM)
6048 printf(" - No EEPROM\n");
6049 if (sc->bge_flags & BGEF_PCIX)
6050 printf(" - PCI-X Bus\n");
6051 if (sc->bge_flags & BGEF_PCIE)
6052 printf(" - PCI Express Bus\n");
6053 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6054 printf(" - RX Alignment Bug\n");
6055 if (sc->bge_flags & BGEF_APE)
6056 printf(" - APE\n");
6057 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6058 printf(" - CPMU\n");
6059 if (sc->bge_flags & BGEF_TSO)
6060 printf(" - TSO\n");
6061
6062 /* PHY related */
6063 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6064 printf(" - No 3 LEDs\n");
6065 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6066 printf(" - CRC bug\n");
6067 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6068 printf(" - ADC bug\n");
6069 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6070 printf(" - 5704 A0 bug\n");
6071 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6072 printf(" - jitter bug\n");
6073 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6074 printf(" - BER bug\n");
6075 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6076 printf(" - adjust trim\n");
6077 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6078 printf(" - no wirespeed\n");
6079
6080 /* ASF related */
6081 if (sc->bge_asf_mode & ASF_ENABLE)
6082 printf(" - ASF enable\n");
6083 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6084 printf(" - ASF new handshake\n");
6085 if (sc->bge_asf_mode & ASF_STACKUP)
6086 printf(" - ASF stackup\n");
6087 }
6088 #endif /* BGE_DEBUG */
6089
6090 static int
6091 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6092 {
6093 prop_dictionary_t dict;
6094 prop_data_t ea;
6095
6096 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6097 return 1;
6098
6099 dict = device_properties(sc->bge_dev);
6100 ea = prop_dictionary_get(dict, "mac-address");
6101 if (ea != NULL) {
6102 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6103 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6104 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6105 return 0;
6106 }
6107
6108 return 1;
6109 }
6110
6111 static int
6112 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6113 {
6114 uint32_t mac_addr;
6115
6116 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6117 if ((mac_addr >> 16) == 0x484b) {
6118 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6119 ether_addr[1] = (uint8_t)mac_addr;
6120 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6121 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6122 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6123 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6124 ether_addr[5] = (uint8_t)mac_addr;
6125 return 0;
6126 }
6127 return 1;
6128 }
6129
6130 static int
6131 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6132 {
6133 int mac_offset = BGE_EE_MAC_OFFSET;
6134
6135 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6136 mac_offset = BGE_EE_MAC_OFFSET_5906;
6137
6138 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6139 ETHER_ADDR_LEN));
6140 }
6141
6142 static int
6143 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6144 {
6145
6146 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6147 return 1;
6148
6149 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6150 ETHER_ADDR_LEN));
6151 }
6152
6153 static int
6154 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6155 {
6156 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6157 /* NOTE: Order is critical */
6158 bge_get_eaddr_fw,
6159 bge_get_eaddr_mem,
6160 bge_get_eaddr_nvram,
6161 bge_get_eaddr_eeprom,
6162 NULL
6163 };
6164 const bge_eaddr_fcn_t *func;
6165
6166 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6167 if ((*func)(sc, eaddr) == 0)
6168 break;
6169 }
6170 return (*func == NULL ? ENXIO : 0);
6171 }
6172