if_bge.c revision 1.288 1 /* $NetBSD: if_bge.c,v 1.288 2015/05/17 12:06:26 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.288 2015/05/17 12:06:26 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Fast Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Fast Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
747 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
748
749 { 0, NULL }
750 };
751
752 /*
753 * Some defaults for major revisions, so that newer steppings
754 * that we don't know about have a shot at working.
755 */
756 static const struct bge_revision bge_majorrevs[] = {
757 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
758 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
759 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
760 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
761 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
762 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
763 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
764 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
766 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
767 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
768 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
769 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
770 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
771 /* 5754 and 5787 share the same ASIC ID */
772 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
773 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
774 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
775 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
776 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
777 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
778 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
779 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
780
781 { 0, NULL }
782 };
783
784 static int bge_allow_asf = 1;
785
786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
787 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
788
789 static uint32_t
790 bge_readmem_ind(struct bge_softc *sc, int off)
791 {
792 pcireg_t val;
793
794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
795 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
796 return 0;
797
798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
799 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
801 return val;
802 }
803
804 static void
805 bge_writemem_ind(struct bge_softc *sc, int off, int val)
806 {
807
808 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
811 }
812
813 /*
814 * PCI Express only
815 */
816 static void
817 bge_set_max_readrq(struct bge_softc *sc)
818 {
819 pcireg_t val;
820
821 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
822 + PCIE_DCSR);
823 val &= ~PCIE_DCSR_MAX_READ_REQ;
824 switch (sc->bge_expmrq) {
825 case 2048:
826 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
827 break;
828 case 4096:
829 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
830 break;
831 default:
832 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
833 break;
834 }
835 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
836 + PCIE_DCSR, val);
837 }
838
839 #ifdef notdef
840 static uint32_t
841 bge_readreg_ind(struct bge_softc *sc, int off)
842 {
843 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
844 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
845 }
846 #endif
847
848 static void
849 bge_writereg_ind(struct bge_softc *sc, int off, int val)
850 {
851 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
853 }
854
855 static void
856 bge_writemem_direct(struct bge_softc *sc, int off, int val)
857 {
858 CSR_WRITE_4(sc, off, val);
859 }
860
861 static void
862 bge_writembx(struct bge_softc *sc, int off, int val)
863 {
864 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
865 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
866
867 CSR_WRITE_4(sc, off, val);
868 }
869
870 static void
871 bge_writembx_flush(struct bge_softc *sc, int off, int val)
872 {
873 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
874 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
875
876 CSR_WRITE_4_FLUSH(sc, off, val);
877 }
878
879 /*
880 * Clear all stale locks and select the lock for this driver instance.
881 */
882 void
883 bge_ape_lock_init(struct bge_softc *sc)
884 {
885 struct pci_attach_args *pa = &(sc->bge_pa);
886 uint32_t bit, regbase;
887 int i;
888
889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
890 regbase = BGE_APE_LOCK_GRANT;
891 else
892 regbase = BGE_APE_PER_LOCK_GRANT;
893
894 /* Clear any stale locks. */
895 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
896 switch (i) {
897 case BGE_APE_LOCK_PHY0:
898 case BGE_APE_LOCK_PHY1:
899 case BGE_APE_LOCK_PHY2:
900 case BGE_APE_LOCK_PHY3:
901 bit = BGE_APE_LOCK_GRANT_DRIVER0;
902 break;
903 default:
904 if (pa->pa_function == 0)
905 bit = BGE_APE_LOCK_GRANT_DRIVER0;
906 else
907 bit = (1 << pa->pa_function);
908 }
909 APE_WRITE_4(sc, regbase + 4 * i, bit);
910 }
911
912 /* Select the PHY lock based on the device's function number. */
913 switch (pa->pa_function) {
914 case 0:
915 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
916 break;
917 case 1:
918 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
919 break;
920 case 2:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
922 break;
923 case 3:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
925 break;
926 default:
927 printf("%s: PHY lock not supported on function\n",
928 device_xname(sc->bge_dev));
929 break;
930 }
931 }
932
933 /*
934 * Check for APE firmware, set flags, and print version info.
935 */
936 void
937 bge_ape_read_fw_ver(struct bge_softc *sc)
938 {
939 const char *fwtype;
940 uint32_t apedata, features;
941
942 /* Check for a valid APE signature in shared memory. */
943 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
944 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
945 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
946 return;
947 }
948
949 /* Check if APE firmware is running. */
950 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
951 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
952 printf("%s: APE signature found but FW status not ready! "
953 "0x%08x\n", device_xname(sc->bge_dev), apedata);
954 return;
955 }
956
957 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
958
959 /* Fetch the APE firwmare type and version. */
960 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
961 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
962 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
963 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
964 fwtype = "NCSI";
965 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
966 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
967 fwtype = "DASH";
968 } else
969 fwtype = "UNKN";
970
971 /* Print the APE firmware version. */
972 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
973 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
974 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
975 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
976 (apedata & BGE_APE_FW_VERSION_BLDMSK));
977 }
978
979 int
980 bge_ape_lock(struct bge_softc *sc, int locknum)
981 {
982 struct pci_attach_args *pa = &(sc->bge_pa);
983 uint32_t bit, gnt, req, status;
984 int i, off;
985
986 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
987 return (0);
988
989 /* Lock request/grant registers have different bases. */
990 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
991 req = BGE_APE_LOCK_REQ;
992 gnt = BGE_APE_LOCK_GRANT;
993 } else {
994 req = BGE_APE_PER_LOCK_REQ;
995 gnt = BGE_APE_PER_LOCK_GRANT;
996 }
997
998 off = 4 * locknum;
999
1000 switch (locknum) {
1001 case BGE_APE_LOCK_GPIO:
1002 /* Lock required when using GPIO. */
1003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1004 return (0);
1005 if (pa->pa_function == 0)
1006 bit = BGE_APE_LOCK_REQ_DRIVER0;
1007 else
1008 bit = (1 << pa->pa_function);
1009 break;
1010 case BGE_APE_LOCK_GRC:
1011 /* Lock required to reset the device. */
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_MEM:
1018 /* Lock required when accessing certain APE memory. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_PHY0:
1025 case BGE_APE_LOCK_PHY1:
1026 case BGE_APE_LOCK_PHY2:
1027 case BGE_APE_LOCK_PHY3:
1028 /* Lock required when accessing PHYs. */
1029 bit = BGE_APE_LOCK_REQ_DRIVER0;
1030 break;
1031 default:
1032 return (EINVAL);
1033 }
1034
1035 /* Request a lock. */
1036 APE_WRITE_4_FLUSH(sc, req + off, bit);
1037
1038 /* Wait up to 1 second to acquire lock. */
1039 for (i = 0; i < 20000; i++) {
1040 status = APE_READ_4(sc, gnt + off);
1041 if (status == bit)
1042 break;
1043 DELAY(50);
1044 }
1045
1046 /* Handle any errors. */
1047 if (status != bit) {
1048 printf("%s: APE lock %d request failed! "
1049 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1050 device_xname(sc->bge_dev),
1051 locknum, req + off, bit & 0xFFFF, gnt + off,
1052 status & 0xFFFF);
1053 /* Revoke the lock request. */
1054 APE_WRITE_4(sc, gnt + off, bit);
1055 return (EBUSY);
1056 }
1057
1058 return (0);
1059 }
1060
1061 void
1062 bge_ape_unlock(struct bge_softc *sc, int locknum)
1063 {
1064 struct pci_attach_args *pa = &(sc->bge_pa);
1065 uint32_t bit, gnt;
1066 int off;
1067
1068 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1069 return;
1070
1071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1072 gnt = BGE_APE_LOCK_GRANT;
1073 else
1074 gnt = BGE_APE_PER_LOCK_GRANT;
1075
1076 off = 4 * locknum;
1077
1078 switch (locknum) {
1079 case BGE_APE_LOCK_GPIO:
1080 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1081 return;
1082 if (pa->pa_function == 0)
1083 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1084 else
1085 bit = (1 << pa->pa_function);
1086 break;
1087 case BGE_APE_LOCK_GRC:
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_MEM:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_PHY0:
1100 case BGE_APE_LOCK_PHY1:
1101 case BGE_APE_LOCK_PHY2:
1102 case BGE_APE_LOCK_PHY3:
1103 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1104 break;
1105 default:
1106 return;
1107 }
1108
1109 /* Write and flush for consecutive bge_ape_lock() */
1110 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1111 }
1112
1113 /*
1114 * Send an event to the APE firmware.
1115 */
1116 void
1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1118 {
1119 uint32_t apedata;
1120 int i;
1121
1122 /* NCSI does not support APE events. */
1123 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1124 return;
1125
1126 /* Wait up to 1ms for APE to service previous event. */
1127 for (i = 10; i > 0; i--) {
1128 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1129 break;
1130 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1131 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1132 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1133 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1134 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1135 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1136 break;
1137 }
1138 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1139 DELAY(100);
1140 }
1141 if (i == 0) {
1142 printf("%s: APE event 0x%08x send timed out\n",
1143 device_xname(sc->bge_dev), event);
1144 }
1145 }
1146
1147 void
1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1149 {
1150 uint32_t apedata, event;
1151
1152 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1153 return;
1154
1155 switch (kind) {
1156 case BGE_RESET_START:
1157 /* If this is the first load, clear the load counter. */
1158 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1159 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1160 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1161 else {
1162 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1163 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1164 }
1165 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1166 BGE_APE_HOST_SEG_SIG_MAGIC);
1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1168 BGE_APE_HOST_SEG_LEN_MAGIC);
1169
1170 /* Add some version info if bge(4) supports it. */
1171 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1172 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1173 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1174 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1175 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1176 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1178 BGE_APE_HOST_DRVR_STATE_START);
1179 event = BGE_APE_EVENT_STATUS_STATE_START;
1180 break;
1181 case BGE_RESET_SHUTDOWN:
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1184 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1185 break;
1186 case BGE_RESET_SUSPEND:
1187 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1188 break;
1189 default:
1190 return;
1191 }
1192
1193 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1194 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1195 }
1196
1197 static uint8_t
1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1199 {
1200 uint32_t access, byte = 0;
1201 int i;
1202
1203 /* Lock. */
1204 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1205 for (i = 0; i < 8000; i++) {
1206 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1207 break;
1208 DELAY(20);
1209 }
1210 if (i == 8000)
1211 return 1;
1212
1213 /* Enable access. */
1214 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1215 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1216
1217 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1218 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1219 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1220 DELAY(10);
1221 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1222 DELAY(10);
1223 break;
1224 }
1225 }
1226
1227 if (i == BGE_TIMEOUT * 10) {
1228 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1229 return 1;
1230 }
1231
1232 /* Get result. */
1233 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1234
1235 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1236
1237 /* Disable access. */
1238 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1239
1240 /* Unlock. */
1241 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * Read a sequence of bytes from NVRAM.
1248 */
1249 static int
1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1251 {
1252 int error = 0, i;
1253 uint8_t byte = 0;
1254
1255 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1256 return 1;
1257
1258 for (i = 0; i < cnt; i++) {
1259 error = bge_nvram_getbyte(sc, off + i, &byte);
1260 if (error)
1261 break;
1262 *(dest + i) = byte;
1263 }
1264
1265 return (error ? 1 : 0);
1266 }
1267
1268 /*
1269 * Read a byte of data stored in the EEPROM at address 'addr.' The
1270 * BCM570x supports both the traditional bitbang interface and an
1271 * auto access interface for reading the EEPROM. We use the auto
1272 * access method.
1273 */
1274 static uint8_t
1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1276 {
1277 int i;
1278 uint32_t byte = 0;
1279
1280 /*
1281 * Enable use of auto EEPROM access so we can avoid
1282 * having to use the bitbang method.
1283 */
1284 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1285
1286 /* Reset the EEPROM, load the clock period. */
1287 CSR_WRITE_4(sc, BGE_EE_ADDR,
1288 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1289 DELAY(20);
1290
1291 /* Issue the read EEPROM command. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1293
1294 /* Wait for completion */
1295 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1296 DELAY(10);
1297 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1298 break;
1299 }
1300
1301 if (i == BGE_TIMEOUT * 10) {
1302 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1303 return 1;
1304 }
1305
1306 /* Get result. */
1307 byte = CSR_READ_4(sc, BGE_EE_DATA);
1308
1309 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Read a sequence of bytes from the EEPROM.
1316 */
1317 static int
1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1319 {
1320 int error = 0, i;
1321 uint8_t byte = 0;
1322 char *dest = destv;
1323
1324 for (i = 0; i < cnt; i++) {
1325 error = bge_eeprom_getbyte(sc, off + i, &byte);
1326 if (error)
1327 break;
1328 *(dest + i) = byte;
1329 }
1330
1331 return (error ? 1 : 0);
1332 }
1333
1334 static int
1335 bge_miibus_readreg(device_t dev, int phy, int reg)
1336 {
1337 struct bge_softc *sc = device_private(dev);
1338 uint32_t val;
1339 uint32_t autopoll;
1340 int i;
1341
1342 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1343 return 0;
1344
1345 /* Reading with autopolling on may trigger PCI errors */
1346 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1347 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1348 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1349 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1350 DELAY(80);
1351 }
1352
1353 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1354 BGE_MIPHY(phy) | BGE_MIREG(reg));
1355
1356 for (i = 0; i < BGE_TIMEOUT; i++) {
1357 delay(10);
1358 val = CSR_READ_4(sc, BGE_MI_COMM);
1359 if (!(val & BGE_MICOMM_BUSY)) {
1360 DELAY(5);
1361 val = CSR_READ_4(sc, BGE_MI_COMM);
1362 break;
1363 }
1364 }
1365
1366 if (i == BGE_TIMEOUT) {
1367 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1368 val = 0;
1369 goto done;
1370 }
1371
1372 done:
1373 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1374 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1375 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1376 DELAY(80);
1377 }
1378
1379 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1380
1381 if (val & BGE_MICOMM_READFAIL)
1382 return 0;
1383
1384 return (val & 0xFFFF);
1385 }
1386
1387 static void
1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1389 {
1390 struct bge_softc *sc = device_private(dev);
1391 uint32_t autopoll;
1392 int i;
1393
1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1396 return;
1397
1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 return;
1400
1401 /* Reading with autopolling on may trigger PCI errors */
1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 DELAY(80);
1407 }
1408
1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411
1412 for (i = 0; i < BGE_TIMEOUT; i++) {
1413 delay(10);
1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 delay(5);
1416 CSR_READ_4(sc, BGE_MI_COMM);
1417 break;
1418 }
1419 }
1420
1421 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 delay(80);
1425 }
1426
1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428
1429 if (i == BGE_TIMEOUT)
1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 }
1432
1433 static void
1434 bge_miibus_statchg(struct ifnet *ifp)
1435 {
1436 struct bge_softc *sc = ifp->if_softc;
1437 struct mii_data *mii = &sc->bge_mii;
1438 uint32_t mac_mode, rx_mode, tx_mode;
1439
1440 /*
1441 * Get flow control negotiation result.
1442 */
1443 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1444 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1445 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1446
1447 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1448 mii->mii_media_status & IFM_ACTIVE &&
1449 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1450 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1451 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 (!(mii->mii_media_status & IFM_ACTIVE) ||
1453 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1454 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1455
1456 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1457 return;
1458
1459 /* Set the port mode (MII/GMII) to match the link speed. */
1460 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1461 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1462 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1463 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1464 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1465 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1466 mac_mode |= BGE_PORTMODE_GMII;
1467 else
1468 mac_mode |= BGE_PORTMODE_MII;
1469
1470 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1471 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1472 if ((mii->mii_media_active & IFM_FDX) != 0) {
1473 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1474 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1475 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1476 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1477 } else
1478 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1479
1480 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1481 DELAY(40);
1482 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1483 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1484 }
1485
1486 /*
1487 * Update rx threshold levels to values in a particular slot
1488 * of the interrupt-mitigation table bge_rx_threshes.
1489 */
1490 static void
1491 bge_set_thresh(struct ifnet *ifp, int lvl)
1492 {
1493 struct bge_softc *sc = ifp->if_softc;
1494 int s;
1495
1496 /* For now, just save the new Rx-intr thresholds and record
1497 * that a threshold update is pending. Updating the hardware
1498 * registers here (even at splhigh()) is observed to
1499 * occasionaly cause glitches where Rx-interrupts are not
1500 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1501 */
1502 s = splnet();
1503 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1504 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1505 sc->bge_pending_rxintr_change = 1;
1506 splx(s);
1507 }
1508
1509
1510 /*
1511 * Update Rx thresholds of all bge devices
1512 */
1513 static void
1514 bge_update_all_threshes(int lvl)
1515 {
1516 struct ifnet *ifp;
1517 const char * const namebuf = "bge";
1518 int namelen;
1519
1520 if (lvl < 0)
1521 lvl = 0;
1522 else if (lvl >= NBGE_RX_THRESH)
1523 lvl = NBGE_RX_THRESH - 1;
1524
1525 namelen = strlen(namebuf);
1526 /*
1527 * Now search all the interfaces for this name/number
1528 */
1529 IFNET_FOREACH(ifp) {
1530 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1531 continue;
1532 /* We got a match: update if doing auto-threshold-tuning */
1533 if (bge_auto_thresh)
1534 bge_set_thresh(ifp, lvl);
1535 }
1536 }
1537
1538 /*
1539 * Handle events that have triggered interrupts.
1540 */
1541 static void
1542 bge_handle_events(struct bge_softc *sc)
1543 {
1544
1545 return;
1546 }
1547
1548 /*
1549 * Memory management for jumbo frames.
1550 */
1551
1552 static int
1553 bge_alloc_jumbo_mem(struct bge_softc *sc)
1554 {
1555 char *ptr, *kva;
1556 bus_dma_segment_t seg;
1557 int i, rseg, state, error;
1558 struct bge_jpool_entry *entry;
1559
1560 state = error = 0;
1561
1562 /* Grab a big chunk o' storage. */
1563 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1564 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1565 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1566 return ENOBUFS;
1567 }
1568
1569 state = 1;
1570 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1571 BUS_DMA_NOWAIT)) {
1572 aprint_error_dev(sc->bge_dev,
1573 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1574 error = ENOBUFS;
1575 goto out;
1576 }
1577
1578 state = 2;
1579 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1580 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1581 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1582 error = ENOBUFS;
1583 goto out;
1584 }
1585
1586 state = 3;
1587 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1588 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1589 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1590 error = ENOBUFS;
1591 goto out;
1592 }
1593
1594 state = 4;
1595 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1596 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1597
1598 SLIST_INIT(&sc->bge_jfree_listhead);
1599 SLIST_INIT(&sc->bge_jinuse_listhead);
1600
1601 /*
1602 * Now divide it up into 9K pieces and save the addresses
1603 * in an array.
1604 */
1605 ptr = sc->bge_cdata.bge_jumbo_buf;
1606 for (i = 0; i < BGE_JSLOTS; i++) {
1607 sc->bge_cdata.bge_jslots[i] = ptr;
1608 ptr += BGE_JLEN;
1609 entry = malloc(sizeof(struct bge_jpool_entry),
1610 M_DEVBUF, M_NOWAIT);
1611 if (entry == NULL) {
1612 aprint_error_dev(sc->bge_dev,
1613 "no memory for jumbo buffer queue!\n");
1614 error = ENOBUFS;
1615 goto out;
1616 }
1617 entry->slot = i;
1618 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1619 entry, jpool_entries);
1620 }
1621 out:
1622 if (error != 0) {
1623 switch (state) {
1624 case 4:
1625 bus_dmamap_unload(sc->bge_dmatag,
1626 sc->bge_cdata.bge_rx_jumbo_map);
1627 case 3:
1628 bus_dmamap_destroy(sc->bge_dmatag,
1629 sc->bge_cdata.bge_rx_jumbo_map);
1630 case 2:
1631 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1632 case 1:
1633 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1634 break;
1635 default:
1636 break;
1637 }
1638 }
1639
1640 return error;
1641 }
1642
1643 /*
1644 * Allocate a jumbo buffer.
1645 */
1646 static void *
1647 bge_jalloc(struct bge_softc *sc)
1648 {
1649 struct bge_jpool_entry *entry;
1650
1651 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1652
1653 if (entry == NULL) {
1654 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1655 return NULL;
1656 }
1657
1658 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1659 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1660 return (sc->bge_cdata.bge_jslots[entry->slot]);
1661 }
1662
1663 /*
1664 * Release a jumbo buffer.
1665 */
1666 static void
1667 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1668 {
1669 struct bge_jpool_entry *entry;
1670 struct bge_softc *sc;
1671 int i, s;
1672
1673 /* Extract the softc struct pointer. */
1674 sc = (struct bge_softc *)arg;
1675
1676 if (sc == NULL)
1677 panic("bge_jfree: can't find softc pointer!");
1678
1679 /* calculate the slot this buffer belongs to */
1680
1681 i = ((char *)buf
1682 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1683
1684 if ((i < 0) || (i >= BGE_JSLOTS))
1685 panic("bge_jfree: asked to free buffer that we don't manage!");
1686
1687 s = splvm();
1688 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1689 if (entry == NULL)
1690 panic("bge_jfree: buffer not in use!");
1691 entry->slot = i;
1692 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1693 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1694
1695 if (__predict_true(m != NULL))
1696 pool_cache_put(mb_cache, m);
1697 splx(s);
1698 }
1699
1700
1701 /*
1702 * Initialize a standard receive ring descriptor.
1703 */
1704 static int
1705 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1706 bus_dmamap_t dmamap)
1707 {
1708 struct mbuf *m_new = NULL;
1709 struct bge_rx_bd *r;
1710 int error;
1711
1712 if (dmamap == NULL) {
1713 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1714 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1715 if (error != 0)
1716 return error;
1717 }
1718
1719 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1720
1721 if (m == NULL) {
1722 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1723 if (m_new == NULL)
1724 return ENOBUFS;
1725
1726 MCLGET(m_new, M_DONTWAIT);
1727 if (!(m_new->m_flags & M_EXT)) {
1728 m_freem(m_new);
1729 return ENOBUFS;
1730 }
1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732
1733 } else {
1734 m_new = m;
1735 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1736 m_new->m_data = m_new->m_ext.ext_buf;
1737 }
1738 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1739 m_adj(m_new, ETHER_ALIGN);
1740 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1741 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1742 m_freem(m_new);
1743 return ENOBUFS;
1744 }
1745 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1746 BUS_DMASYNC_PREREAD);
1747
1748 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1749 r = &sc->bge_rdata->bge_rx_std_ring[i];
1750 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1751 r->bge_flags = BGE_RXBDFLAG_END;
1752 r->bge_len = m_new->m_len;
1753 r->bge_idx = i;
1754
1755 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1756 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1757 i * sizeof (struct bge_rx_bd),
1758 sizeof (struct bge_rx_bd),
1759 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1760
1761 return 0;
1762 }
1763
1764 /*
1765 * Initialize a jumbo receive ring descriptor. This allocates
1766 * a jumbo buffer from the pool managed internally by the driver.
1767 */
1768 static int
1769 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1770 {
1771 struct mbuf *m_new = NULL;
1772 struct bge_rx_bd *r;
1773 void *buf = NULL;
1774
1775 if (m == NULL) {
1776
1777 /* Allocate the mbuf. */
1778 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1779 if (m_new == NULL)
1780 return ENOBUFS;
1781
1782 /* Allocate the jumbo buffer */
1783 buf = bge_jalloc(sc);
1784 if (buf == NULL) {
1785 m_freem(m_new);
1786 aprint_error_dev(sc->bge_dev,
1787 "jumbo allocation failed -- packet dropped!\n");
1788 return ENOBUFS;
1789 }
1790
1791 /* Attach the buffer to the mbuf. */
1792 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1793 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1794 bge_jfree, sc);
1795 m_new->m_flags |= M_EXT_RW;
1796 } else {
1797 m_new = m;
1798 buf = m_new->m_data = m_new->m_ext.ext_buf;
1799 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1800 }
1801 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1802 m_adj(m_new, ETHER_ALIGN);
1803 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1804 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1805 BUS_DMASYNC_PREREAD);
1806 /* Set up the descriptor. */
1807 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1808 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1809 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1810 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1811 r->bge_len = m_new->m_len;
1812 r->bge_idx = i;
1813
1814 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1815 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1816 i * sizeof (struct bge_rx_bd),
1817 sizeof (struct bge_rx_bd),
1818 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1819
1820 return 0;
1821 }
1822
1823 /*
1824 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1825 * that's 1MB or memory, which is a lot. For now, we fill only the first
1826 * 256 ring entries and hope that our CPU is fast enough to keep up with
1827 * the NIC.
1828 */
1829 static int
1830 bge_init_rx_ring_std(struct bge_softc *sc)
1831 {
1832 int i;
1833
1834 if (sc->bge_flags & BGEF_RXRING_VALID)
1835 return 0;
1836
1837 for (i = 0; i < BGE_SSLOTS; i++) {
1838 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1839 return ENOBUFS;
1840 }
1841
1842 sc->bge_std = i - 1;
1843 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1844
1845 sc->bge_flags |= BGEF_RXRING_VALID;
1846
1847 return 0;
1848 }
1849
1850 static void
1851 bge_free_rx_ring_std(struct bge_softc *sc)
1852 {
1853 int i;
1854
1855 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1856 return;
1857
1858 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1859 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1860 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1861 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1862 bus_dmamap_destroy(sc->bge_dmatag,
1863 sc->bge_cdata.bge_rx_std_map[i]);
1864 }
1865 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1866 sizeof(struct bge_rx_bd));
1867 }
1868
1869 sc->bge_flags &= ~BGEF_RXRING_VALID;
1870 }
1871
1872 static int
1873 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1874 {
1875 int i;
1876 volatile struct bge_rcb *rcb;
1877
1878 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1879 return 0;
1880
1881 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1882 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1883 return ENOBUFS;
1884 }
1885
1886 sc->bge_jumbo = i - 1;
1887 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1888
1889 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1890 rcb->bge_maxlen_flags = 0;
1891 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1892
1893 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1894
1895 return 0;
1896 }
1897
1898 static void
1899 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1900 {
1901 int i;
1902
1903 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1904 return;
1905
1906 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1907 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1908 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1909 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1910 }
1911 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1912 sizeof(struct bge_rx_bd));
1913 }
1914
1915 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1916 }
1917
1918 static void
1919 bge_free_tx_ring(struct bge_softc *sc)
1920 {
1921 int i;
1922 struct txdmamap_pool_entry *dma;
1923
1924 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1925 return;
1926
1927 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1928 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1929 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1930 sc->bge_cdata.bge_tx_chain[i] = NULL;
1931 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1932 link);
1933 sc->txdma[i] = 0;
1934 }
1935 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1936 sizeof(struct bge_tx_bd));
1937 }
1938
1939 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1940 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1941 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1942 free(dma, M_DEVBUF);
1943 }
1944
1945 sc->bge_flags &= ~BGEF_TXRING_VALID;
1946 }
1947
1948 static int
1949 bge_init_tx_ring(struct bge_softc *sc)
1950 {
1951 struct ifnet *ifp = &sc->ethercom.ec_if;
1952 int i;
1953 bus_dmamap_t dmamap;
1954 bus_size_t maxsegsz;
1955 struct txdmamap_pool_entry *dma;
1956
1957 if (sc->bge_flags & BGEF_TXRING_VALID)
1958 return 0;
1959
1960 sc->bge_txcnt = 0;
1961 sc->bge_tx_saved_considx = 0;
1962
1963 /* Initialize transmit producer index for host-memory send ring. */
1964 sc->bge_tx_prodidx = 0;
1965 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1966 /* 5700 b2 errata */
1967 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1968 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1969
1970 /* NIC-memory send ring not used; initialize to zero. */
1971 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1972 /* 5700 b2 errata */
1973 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1974 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1975
1976 /* Limit DMA segment size for some chips */
1977 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1978 (ifp->if_mtu <= ETHERMTU))
1979 maxsegsz = 2048;
1980 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1981 maxsegsz = 4096;
1982 else
1983 maxsegsz = ETHER_MAX_LEN_JUMBO;
1984 SLIST_INIT(&sc->txdma_list);
1985 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1986 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1987 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1988 &dmamap))
1989 return ENOBUFS;
1990 if (dmamap == NULL)
1991 panic("dmamap NULL in bge_init_tx_ring");
1992 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1993 if (dma == NULL) {
1994 aprint_error_dev(sc->bge_dev,
1995 "can't alloc txdmamap_pool_entry\n");
1996 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1997 return ENOMEM;
1998 }
1999 dma->dmamap = dmamap;
2000 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2001 }
2002
2003 sc->bge_flags |= BGEF_TXRING_VALID;
2004
2005 return 0;
2006 }
2007
2008 static void
2009 bge_setmulti(struct bge_softc *sc)
2010 {
2011 struct ethercom *ac = &sc->ethercom;
2012 struct ifnet *ifp = &ac->ec_if;
2013 struct ether_multi *enm;
2014 struct ether_multistep step;
2015 uint32_t hashes[4] = { 0, 0, 0, 0 };
2016 uint32_t h;
2017 int i;
2018
2019 if (ifp->if_flags & IFF_PROMISC)
2020 goto allmulti;
2021
2022 /* Now program new ones. */
2023 ETHER_FIRST_MULTI(step, ac, enm);
2024 while (enm != NULL) {
2025 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2026 /*
2027 * We must listen to a range of multicast addresses.
2028 * For now, just accept all multicasts, rather than
2029 * trying to set only those filter bits needed to match
2030 * the range. (At this time, the only use of address
2031 * ranges is for IP multicast routing, for which the
2032 * range is big enough to require all bits set.)
2033 */
2034 goto allmulti;
2035 }
2036
2037 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2038
2039 /* Just want the 7 least-significant bits. */
2040 h &= 0x7f;
2041
2042 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2043 ETHER_NEXT_MULTI(step, enm);
2044 }
2045
2046 ifp->if_flags &= ~IFF_ALLMULTI;
2047 goto setit;
2048
2049 allmulti:
2050 ifp->if_flags |= IFF_ALLMULTI;
2051 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2052
2053 setit:
2054 for (i = 0; i < 4; i++)
2055 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2056 }
2057
2058 static void
2059 bge_sig_pre_reset(struct bge_softc *sc, int type)
2060 {
2061
2062 /*
2063 * Some chips don't like this so only do this if ASF is enabled
2064 */
2065 if (sc->bge_asf_mode)
2066 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2067
2068 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2069 switch (type) {
2070 case BGE_RESET_START:
2071 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2072 BGE_FW_DRV_STATE_START);
2073 break;
2074 case BGE_RESET_SHUTDOWN:
2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 BGE_FW_DRV_STATE_UNLOAD);
2077 break;
2078 case BGE_RESET_SUSPEND:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_SUSPEND);
2081 break;
2082 }
2083 }
2084
2085 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2086 bge_ape_driver_state_change(sc, type);
2087 }
2088
2089 static void
2090 bge_sig_post_reset(struct bge_softc *sc, int type)
2091 {
2092
2093 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2094 switch (type) {
2095 case BGE_RESET_START:
2096 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2097 BGE_FW_DRV_STATE_START_DONE);
2098 /* START DONE */
2099 break;
2100 case BGE_RESET_SHUTDOWN:
2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 BGE_FW_DRV_STATE_UNLOAD_DONE);
2103 break;
2104 }
2105 }
2106
2107 if (type == BGE_RESET_SHUTDOWN)
2108 bge_ape_driver_state_change(sc, type);
2109 }
2110
2111 static void
2112 bge_sig_legacy(struct bge_softc *sc, int type)
2113 {
2114
2115 if (sc->bge_asf_mode) {
2116 switch (type) {
2117 case BGE_RESET_START:
2118 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2119 BGE_FW_DRV_STATE_START);
2120 break;
2121 case BGE_RESET_SHUTDOWN:
2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 BGE_FW_DRV_STATE_UNLOAD);
2124 break;
2125 }
2126 }
2127 }
2128
2129 static void
2130 bge_wait_for_event_ack(struct bge_softc *sc)
2131 {
2132 int i;
2133
2134 /* wait up to 2500usec */
2135 for (i = 0; i < 250; i++) {
2136 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2137 BGE_RX_CPU_DRV_EVENT))
2138 break;
2139 DELAY(10);
2140 }
2141 }
2142
2143 static void
2144 bge_stop_fw(struct bge_softc *sc)
2145 {
2146
2147 if (sc->bge_asf_mode) {
2148 bge_wait_for_event_ack(sc);
2149
2150 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2151 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2152 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2153
2154 bge_wait_for_event_ack(sc);
2155 }
2156 }
2157
2158 static int
2159 bge_poll_fw(struct bge_softc *sc)
2160 {
2161 uint32_t val;
2162 int i;
2163
2164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2165 for (i = 0; i < BGE_TIMEOUT; i++) {
2166 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2167 if (val & BGE_VCPU_STATUS_INIT_DONE)
2168 break;
2169 DELAY(100);
2170 }
2171 if (i >= BGE_TIMEOUT) {
2172 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2173 return -1;
2174 }
2175 } else {
2176 /*
2177 * Poll the value location we just wrote until
2178 * we see the 1's complement of the magic number.
2179 * This indicates that the firmware initialization
2180 * is complete.
2181 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2182 */
2183 for (i = 0; i < BGE_TIMEOUT; i++) {
2184 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2185 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2186 break;
2187 DELAY(10);
2188 }
2189
2190 if ((i >= BGE_TIMEOUT)
2191 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2192 aprint_error_dev(sc->bge_dev,
2193 "firmware handshake timed out, val = %x\n", val);
2194 return -1;
2195 }
2196 }
2197
2198 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2199 /* tg3 says we have to wait extra time */
2200 delay(10 * 1000);
2201 }
2202
2203 return 0;
2204 }
2205
2206 int
2207 bge_phy_addr(struct bge_softc *sc)
2208 {
2209 struct pci_attach_args *pa = &(sc->bge_pa);
2210 int phy_addr = 1;
2211
2212 /*
2213 * PHY address mapping for various devices.
2214 *
2215 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2216 * ---------+-------+-------+-------+-------+
2217 * BCM57XX | 1 | X | X | X |
2218 * BCM5704 | 1 | X | 1 | X |
2219 * BCM5717 | 1 | 8 | 2 | 9 |
2220 * BCM5719 | 1 | 8 | 2 | 9 |
2221 * BCM5720 | 1 | 8 | 2 | 9 |
2222 *
2223 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2224 * ---------+-------+-------+-------+-------+
2225 * BCM57XX | X | X | X | X |
2226 * BCM5704 | X | X | X | X |
2227 * BCM5717 | X | X | X | X |
2228 * BCM5719 | 3 | 10 | 4 | 11 |
2229 * BCM5720 | X | X | X | X |
2230 *
2231 * Other addresses may respond but they are not
2232 * IEEE compliant PHYs and should be ignored.
2233 */
2234 switch (BGE_ASICREV(sc->bge_chipid)) {
2235 case BGE_ASICREV_BCM5717:
2236 case BGE_ASICREV_BCM5719:
2237 case BGE_ASICREV_BCM5720:
2238 phy_addr = pa->pa_function;
2239 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2240 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2241 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2242 } else {
2243 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2244 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2245 }
2246 }
2247
2248 return phy_addr;
2249 }
2250
2251 /*
2252 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2253 * self-test results.
2254 */
2255 static int
2256 bge_chipinit(struct bge_softc *sc)
2257 {
2258 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2259 int i;
2260
2261 /* Set endianness before we access any non-PCI registers. */
2262 misc_ctl = BGE_INIT;
2263 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2264 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2265 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 misc_ctl);
2267
2268 /*
2269 * Clear the MAC statistics block in the NIC's
2270 * internal memory.
2271 */
2272 for (i = BGE_STATS_BLOCK;
2273 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275
2276 for (i = BGE_STATUS_BLOCK;
2277 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279
2280 /* 5717 workaround from tg3 */
2281 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL1);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298
2299 if (BGE_IS_57765_FAMILY(sc)) {
2300 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 /* Save */
2302 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303
2304 /* Temporary modify MODE_CTL to control TLP */
2305 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 reg | BGE_MODECTL_PCIE_TLPADDR1);
2308
2309 /* Control TLP */
2310 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 BGE_TLP_PHYCTL5);
2312 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314
2315 /* Restore */
2316 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 }
2318 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322
2323 /* Save */
2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325
2326 /* Temporary modify MODE_CTL to control TLP */
2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 reg | BGE_MODECTL_PCIE_TLPADDR0);
2330
2331 /* Control TLP */
2332 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 BGE_TLP_FTSMAX);
2334 reg &= ~BGE_TLP_FTSMAX_MSK;
2335 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 reg | BGE_TLP_FTSMAX_VAL);
2337
2338 /* Restore */
2339 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 }
2341
2342 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 }
2347
2348 /* Set up the PCI DMA control register. */
2349 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 if (sc->bge_flags & BGEF_PCIE) {
2351 /* Read watermark not used, 128 bytes for write. */
2352 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 device_xname(sc->bge_dev)));
2354 if (sc->bge_mps >= 256)
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 else
2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 } else if (sc->bge_flags & BGEF_PCIX) {
2359 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 device_xname(sc->bge_dev)));
2361 /* PCI-X bus */
2362 if (BGE_IS_5714_FAMILY(sc)) {
2363 /* 256 bytes for read and write. */
2364 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366
2367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 else
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2372 /*
2373 * In the BCM5703, the DMA read watermark should
2374 * be set to less than or equal to the maximum
2375 * memory read byte count of the PCI-X command
2376 * register.
2377 */
2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2380 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2381 /* 1536 bytes for read, 384 bytes for write. */
2382 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2383 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2384 } else {
2385 /* 384 bytes for read and write. */
2386 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2387 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2388 (0x0F);
2389 }
2390
2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2393 uint32_t tmp;
2394
2395 /* Set ONEDMA_ATONCE for hardware workaround. */
2396 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2397 if (tmp == 6 || tmp == 7)
2398 dma_rw_ctl |=
2399 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2400
2401 /* Set PCI-X DMA write workaround. */
2402 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2403 }
2404 } else {
2405 /* Conventional PCI bus: 256 bytes for read and write. */
2406 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2407 device_xname(sc->bge_dev)));
2408 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2409 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2410
2411 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2412 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2413 dma_rw_ctl |= 0x0F;
2414 }
2415
2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2417 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2418 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2419 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2420
2421 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2422 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2423 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2424
2425 if (BGE_IS_57765_PLUS(sc)) {
2426 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2427 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2428 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2429
2430 /*
2431 * Enable HW workaround for controllers that misinterpret
2432 * a status tag update and leave interrupts permanently
2433 * disabled.
2434 */
2435 if (!BGE_IS_57765_FAMILY(sc) &&
2436 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2437 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2438 }
2439
2440 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2441 dma_rw_ctl);
2442
2443 /*
2444 * Set up general mode register.
2445 */
2446 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2447 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2448 /* Retain Host-2-BMC settings written by APE firmware. */
2449 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2450 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2451 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2452 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2453 }
2454 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2455 BGE_MODECTL_TX_NO_PHDR_CSUM;
2456
2457 /*
2458 * BCM5701 B5 have a bug causing data corruption when using
2459 * 64-bit DMA reads, which can be terminated early and then
2460 * completed later as 32-bit accesses, in combination with
2461 * certain bridges.
2462 */
2463 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2464 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2465 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2466
2467 /*
2468 * Tell the firmware the driver is running
2469 */
2470 if (sc->bge_asf_mode & ASF_STACKUP)
2471 mode_ctl |= BGE_MODECTL_STACKUP;
2472
2473 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2474
2475 /*
2476 * Disable memory write invalidate. Apparently it is not supported
2477 * properly by these devices.
2478 */
2479 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2480 PCI_COMMAND_INVALIDATE_ENABLE);
2481
2482 #ifdef __brokenalpha__
2483 /*
2484 * Must insure that we do not cross an 8K (bytes) boundary
2485 * for DMA reads. Our highest limit is 1K bytes. This is a
2486 * restriction on some ALPHA platforms with early revision
2487 * 21174 PCI chipsets, such as the AlphaPC 164lx
2488 */
2489 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2490 #endif
2491
2492 /* Set the timer prescaler (always 66MHz) */
2493 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2494
2495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2496 DELAY(40); /* XXX */
2497
2498 /* Put PHY into ready state */
2499 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2500 DELAY(40);
2501 }
2502
2503 return 0;
2504 }
2505
2506 static int
2507 bge_blockinit(struct bge_softc *sc)
2508 {
2509 volatile struct bge_rcb *rcb;
2510 bus_size_t rcb_addr;
2511 struct ifnet *ifp = &sc->ethercom.ec_if;
2512 bge_hostaddr taddr;
2513 uint32_t dmactl, mimode, val;
2514 int i, limit;
2515
2516 /*
2517 * Initialize the memory window pointer register so that
2518 * we can access the first 32K of internal NIC RAM. This will
2519 * allow us to set up the TX send ring RCBs and the RX return
2520 * ring RCBs, plus other things which live in NIC memory.
2521 */
2522 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2523
2524 if (!BGE_IS_5705_PLUS(sc)) {
2525 /* 57XX step 33 */
2526 /* Configure mbuf memory pool */
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2528 BGE_BUFFPOOL_1);
2529
2530 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2532 else
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2534
2535 /* 57XX step 34 */
2536 /* Configure DMA resource pool */
2537 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2538 BGE_DMA_DESCRIPTORS);
2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2540 }
2541
2542 /* 5718 step 11, 57XX step 35 */
2543 /*
2544 * Configure mbuf pool watermarks. New broadcom docs strongly
2545 * recommend these.
2546 */
2547 if (BGE_IS_5717_PLUS(sc)) {
2548 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2551 } else if (BGE_IS_5705_PLUS(sc)) {
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2553
2554 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2557 } else {
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2560 }
2561 } else {
2562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2563 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2565 }
2566
2567 /* 57XX step 36 */
2568 /* Configure DMA resource watermarks */
2569 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2570 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2571
2572 /* 5718 step 13, 57XX step 38 */
2573 /* Enable buffer manager */
2574 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2575 /*
2576 * Change the arbitration algorithm of TXMBUF read request to
2577 * round-robin instead of priority based for BCM5719. When
2578 * TXFIFO is almost empty, RDMA will hold its request until
2579 * TXFIFO is not almost empty.
2580 */
2581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2582 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2584 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2585 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2586 val |= BGE_BMANMODE_LOMBUF_ATTN;
2587 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2588
2589 /* 57XX step 39 */
2590 /* Poll for buffer manager start indication */
2591 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2592 DELAY(10);
2593 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2594 break;
2595 }
2596
2597 if (i == BGE_TIMEOUT * 2) {
2598 aprint_error_dev(sc->bge_dev,
2599 "buffer manager failed to start\n");
2600 return ENXIO;
2601 }
2602
2603 /* 57XX step 40 */
2604 /* Enable flow-through queues */
2605 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2606 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2607
2608 /* Wait until queue initialization is complete */
2609 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2610 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2611 break;
2612 DELAY(10);
2613 }
2614
2615 if (i == BGE_TIMEOUT * 2) {
2616 aprint_error_dev(sc->bge_dev,
2617 "flow-through queue init failed\n");
2618 return ENXIO;
2619 }
2620
2621 /*
2622 * Summary of rings supported by the controller:
2623 *
2624 * Standard Receive Producer Ring
2625 * - This ring is used to feed receive buffers for "standard"
2626 * sized frames (typically 1536 bytes) to the controller.
2627 *
2628 * Jumbo Receive Producer Ring
2629 * - This ring is used to feed receive buffers for jumbo sized
2630 * frames (i.e. anything bigger than the "standard" frames)
2631 * to the controller.
2632 *
2633 * Mini Receive Producer Ring
2634 * - This ring is used to feed receive buffers for "mini"
2635 * sized frames to the controller.
2636 * - This feature required external memory for the controller
2637 * but was never used in a production system. Should always
2638 * be disabled.
2639 *
2640 * Receive Return Ring
2641 * - After the controller has placed an incoming frame into a
2642 * receive buffer that buffer is moved into a receive return
2643 * ring. The driver is then responsible to passing the
2644 * buffer up to the stack. Many versions of the controller
2645 * support multiple RR rings.
2646 *
2647 * Send Ring
2648 * - This ring is used for outgoing frames. Many versions of
2649 * the controller support multiple send rings.
2650 */
2651
2652 /* 5718 step 15, 57XX step 41 */
2653 /* Initialize the standard RX ring control block */
2654 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2655 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2656 /* 5718 step 16 */
2657 if (BGE_IS_57765_PLUS(sc)) {
2658 /*
2659 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2660 * Bits 15-2 : Maximum RX frame size
2661 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2662 * Bit 0 : Reserved
2663 */
2664 rcb->bge_maxlen_flags =
2665 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2666 } else if (BGE_IS_5705_PLUS(sc)) {
2667 /*
2668 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2669 * Bits 15-2 : Reserved (should be 0)
2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2671 * Bit 0 : Reserved
2672 */
2673 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2674 } else {
2675 /*
2676 * Ring size is always XXX entries
2677 * Bits 31-16: Maximum RX frame size
2678 * Bits 15-2 : Reserved (should be 0)
2679 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2680 * Bit 0 : Reserved
2681 */
2682 rcb->bge_maxlen_flags =
2683 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2684 }
2685 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2686 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2687 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2688 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2689 else
2690 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2691 /* Write the standard receive producer ring control block. */
2692 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2693 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2694 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2696
2697 /* Reset the standard receive producer ring producer index. */
2698 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2699
2700 /* 57XX step 42 */
2701 /*
2702 * Initialize the jumbo RX ring control block
2703 * We set the 'ring disabled' bit in the flags
2704 * field until we're actually ready to start
2705 * using this ring (i.e. once we set the MTU
2706 * high enough to require it).
2707 */
2708 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2709 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2710 BGE_HOSTADDR(rcb->bge_hostaddr,
2711 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2712 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2713 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2715 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2716 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2717 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2718 else
2719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2720 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2721 rcb->bge_hostaddr.bge_addr_hi);
2722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2723 rcb->bge_hostaddr.bge_addr_lo);
2724 /* Program the jumbo receive producer ring RCB parameters. */
2725 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2726 rcb->bge_maxlen_flags);
2727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2728 /* Reset the jumbo receive producer ring producer index. */
2729 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2730 }
2731
2732 /* 57XX step 43 */
2733 /* Disable the mini receive producer ring RCB. */
2734 if (BGE_IS_5700_FAMILY(sc)) {
2735 /* Set up dummy disabled mini ring RCB */
2736 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2737 rcb->bge_maxlen_flags =
2738 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2739 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2740 rcb->bge_maxlen_flags);
2741 /* Reset the mini receive producer ring producer index. */
2742 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2743
2744 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2745 offsetof(struct bge_ring_data, bge_info),
2746 sizeof (struct bge_gib),
2747 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2748 }
2749
2750 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2752 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2753 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2754 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2755 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2756 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2757 }
2758 /* 5718 step 14, 57XX step 44 */
2759 /*
2760 * The BD ring replenish thresholds control how often the
2761 * hardware fetches new BD's from the producer rings in host
2762 * memory. Setting the value too low on a busy system can
2763 * starve the hardware and recue the throughpout.
2764 *
2765 * Set the BD ring replenish thresholds. The recommended
2766 * values are 1/8th the number of descriptors allocated to
2767 * each ring, but since we try to avoid filling the entire
2768 * ring we set these to the minimal value of 8. This needs to
2769 * be done on several of the supported chip revisions anyway,
2770 * to work around HW bugs.
2771 */
2772 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2773 if (BGE_IS_JUMBO_CAPABLE(sc))
2774 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2775
2776 /* 5718 step 18 */
2777 if (BGE_IS_5717_PLUS(sc)) {
2778 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2779 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2780 }
2781
2782 /* 57XX step 45 */
2783 /*
2784 * Disable all send rings by setting the 'ring disabled' bit
2785 * in the flags field of all the TX send ring control blocks,
2786 * located in NIC memory.
2787 */
2788 if (BGE_IS_5700_FAMILY(sc)) {
2789 /* 5700 to 5704 had 16 send rings. */
2790 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2791 } else if (BGE_IS_5717_PLUS(sc)) {
2792 limit = BGE_TX_RINGS_5717_MAX;
2793 } else if (BGE_IS_57765_FAMILY(sc)) {
2794 limit = BGE_TX_RINGS_57765_MAX;
2795 } else
2796 limit = 1;
2797 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2798 for (i = 0; i < limit; i++) {
2799 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2800 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2801 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2802 rcb_addr += sizeof(struct bge_rcb);
2803 }
2804
2805 /* 57XX step 46 and 47 */
2806 /* Configure send ring RCB 0 (we use only the first ring) */
2807 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2808 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2809 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2810 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2812 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2813 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2814 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2815 else
2816 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2817 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2818 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2819 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2820
2821 /* 57XX step 48 */
2822 /*
2823 * Disable all receive return rings by setting the
2824 * 'ring diabled' bit in the flags field of all the receive
2825 * return ring control blocks, located in NIC memory.
2826 */
2827 if (BGE_IS_5717_PLUS(sc)) {
2828 /* Should be 17, use 16 until we get an SRAM map. */
2829 limit = 16;
2830 } else if (BGE_IS_5700_FAMILY(sc))
2831 limit = BGE_RX_RINGS_MAX;
2832 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2833 BGE_IS_57765_FAMILY(sc))
2834 limit = 4;
2835 else
2836 limit = 1;
2837 /* Disable all receive return rings */
2838 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2839 for (i = 0; i < limit; i++) {
2840 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2841 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2842 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2843 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2844 BGE_RCB_FLAG_RING_DISABLED));
2845 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2846 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2847 (i * (sizeof(uint64_t))), 0);
2848 rcb_addr += sizeof(struct bge_rcb);
2849 }
2850
2851 /* 57XX step 49 */
2852 /*
2853 * Set up receive return ring 0. Note that the NIC address
2854 * for RX return rings is 0x0. The return rings live entirely
2855 * within the host, so the nicaddr field in the RCB isn't used.
2856 */
2857 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2858 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2859 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2860 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2861 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2862 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2863 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2864
2865 /* 5718 step 24, 57XX step 53 */
2866 /* Set random backoff seed for TX */
2867 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2868 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2869 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2870 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2871 BGE_TX_BACKOFF_SEED_MASK);
2872
2873 /* 5718 step 26, 57XX step 55 */
2874 /* Set inter-packet gap */
2875 val = 0x2620;
2876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2877 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2878 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2879 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2880
2881 /* 5718 step 27, 57XX step 56 */
2882 /*
2883 * Specify which ring to use for packets that don't match
2884 * any RX rules.
2885 */
2886 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2887
2888 /* 5718 step 28, 57XX step 57 */
2889 /*
2890 * Configure number of RX lists. One interrupt distribution
2891 * list, sixteen active lists, one bad frames class.
2892 */
2893 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2894
2895 /* 5718 step 29, 57XX step 58 */
2896 /* Inialize RX list placement stats mask. */
2897 if (BGE_IS_575X_PLUS(sc)) {
2898 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2899 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2900 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2901 } else
2902 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2903
2904 /* 5718 step 30, 57XX step 59 */
2905 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2906
2907 /* 5718 step 33, 57XX step 62 */
2908 /* Disable host coalescing until we get it set up */
2909 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2910
2911 /* 5718 step 34, 57XX step 63 */
2912 /* Poll to make sure it's shut down. */
2913 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2914 DELAY(10);
2915 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2916 break;
2917 }
2918
2919 if (i == BGE_TIMEOUT * 2) {
2920 aprint_error_dev(sc->bge_dev,
2921 "host coalescing engine failed to idle\n");
2922 return ENXIO;
2923 }
2924
2925 /* 5718 step 35, 36, 37 */
2926 /* Set up host coalescing defaults */
2927 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2928 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2929 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2930 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2931 if (!(BGE_IS_5705_PLUS(sc))) {
2932 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2933 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2934 }
2935 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2936 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2937
2938 /* Set up address of statistics block */
2939 if (BGE_IS_5700_FAMILY(sc)) {
2940 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2941 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2942 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2943 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2944 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2945 }
2946
2947 /* 5718 step 38 */
2948 /* Set up address of status block */
2949 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2950 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2951 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2952 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2953 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2954 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2955
2956 /* Set up status block size. */
2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2958 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2959 val = BGE_STATBLKSZ_FULL;
2960 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2961 } else {
2962 val = BGE_STATBLKSZ_32BYTE;
2963 bzero(&sc->bge_rdata->bge_status_block, 32);
2964 }
2965
2966 /* 5718 step 39, 57XX step 73 */
2967 /* Turn on host coalescing state machine */
2968 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2969
2970 /* 5718 step 40, 57XX step 74 */
2971 /* Turn on RX BD completion state machine and enable attentions */
2972 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2973 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2974
2975 /* 5718 step 41, 57XX step 75 */
2976 /* Turn on RX list placement state machine */
2977 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2978
2979 /* 57XX step 76 */
2980 /* Turn on RX list selector state machine. */
2981 if (!(BGE_IS_5705_PLUS(sc)))
2982 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2983
2984 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2985 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2986 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2987 BGE_MACMODE_FRMHDR_DMA_ENB;
2988
2989 if (sc->bge_flags & BGEF_FIBER_TBI)
2990 val |= BGE_PORTMODE_TBI;
2991 else if (sc->bge_flags & BGEF_FIBER_MII)
2992 val |= BGE_PORTMODE_GMII;
2993 else
2994 val |= BGE_PORTMODE_MII;
2995
2996 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2997 /* Allow APE to send/receive frames. */
2998 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2999 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3000
3001 /* Turn on DMA, clear stats */
3002 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3003 /* 5718 step 44 */
3004 DELAY(40);
3005
3006 /* 5718 step 45, 57XX step 79 */
3007 /* Set misc. local control, enable interrupts on attentions */
3008 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3009 if (BGE_IS_5717_PLUS(sc)) {
3010 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3011 /* 5718 step 46 */
3012 DELAY(100);
3013 }
3014
3015 /* 57XX step 81 */
3016 /* Turn on DMA completion state machine */
3017 if (!(BGE_IS_5705_PLUS(sc)))
3018 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3019
3020 /* 5718 step 47, 57XX step 82 */
3021 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3022
3023 /* 5718 step 48 */
3024 /* Enable host coalescing bug fix. */
3025 if (BGE_IS_5755_PLUS(sc))
3026 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3027
3028 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3029 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3030
3031 /* Turn on write DMA state machine */
3032 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3033 /* 5718 step 49 */
3034 DELAY(40);
3035
3036 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3037
3038 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3039 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3040
3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3042 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3044 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3045 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3046 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3047
3048 if (sc->bge_flags & BGEF_PCIE)
3049 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3050 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3051 if (ifp->if_mtu <= ETHERMTU)
3052 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3053 }
3054 if (sc->bge_flags & BGEF_TSO)
3055 val |= BGE_RDMAMODE_TSO4_ENABLE;
3056
3057 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3058 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3059 BGE_RDMAMODE_H2BNC_VLAN_DET;
3060 /*
3061 * Allow multiple outstanding read requests from
3062 * non-LSO read DMA engine.
3063 */
3064 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3065 }
3066
3067 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3068 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3069 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3070 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3071 BGE_IS_57765_PLUS(sc)) {
3072 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3073 /*
3074 * Adjust tx margin to prevent TX data corruption and
3075 * fix internal FIFO overflow.
3076 */
3077 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3078 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3079 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3080 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3081 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3082 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3083 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3084 }
3085 /*
3086 * Enable fix for read DMA FIFO overruns.
3087 * The fix is to limit the number of RX BDs
3088 * the hardware would fetch at a fime.
3089 */
3090 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3091 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3092 }
3093
3094 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3095 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3098 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3100 /*
3101 * Allow 4KB burst length reads for non-LSO frames.
3102 * Enable 512B burst length reads for buffer descriptors.
3103 */
3104 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3105 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3106 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3107 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3108 }
3109
3110 /* Turn on read DMA state machine */
3111 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3112 /* 5718 step 52 */
3113 delay(40);
3114
3115 /* 5718 step 56, 57XX step 84 */
3116 /* Turn on RX data completion state machine */
3117 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3118
3119 /* Turn on RX data and RX BD initiator state machine */
3120 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3121
3122 /* 57XX step 85 */
3123 /* Turn on Mbuf cluster free state machine */
3124 if (!BGE_IS_5705_PLUS(sc))
3125 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3126
3127 /* 5718 step 57, 57XX step 86 */
3128 /* Turn on send data completion state machine */
3129 val = BGE_SDCMODE_ENABLE;
3130 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3131 val |= BGE_SDCMODE_CDELAY;
3132 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3133
3134 /* 5718 step 58 */
3135 /* Turn on send BD completion state machine */
3136 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3137
3138 /* 57XX step 88 */
3139 /* Turn on RX BD initiator state machine */
3140 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3141
3142 /* 5718 step 60, 57XX step 90 */
3143 /* Turn on send data initiator state machine */
3144 if (sc->bge_flags & BGEF_TSO) {
3145 /* XXX: magic value from Linux driver */
3146 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3147 BGE_SDIMODE_HW_LSO_PRE_DMA);
3148 } else
3149 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3150
3151 /* 5718 step 61, 57XX step 91 */
3152 /* Turn on send BD initiator state machine */
3153 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3154
3155 /* 5718 step 62, 57XX step 92 */
3156 /* Turn on send BD selector state machine */
3157 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3158
3159 /* 5718 step 31, 57XX step 60 */
3160 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3161 /* 5718 step 32, 57XX step 61 */
3162 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3163 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3164
3165 /* ack/clear link change events */
3166 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3167 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3168 BGE_MACSTAT_LINK_CHANGED);
3169 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3170
3171 /*
3172 * Enable attention when the link has changed state for
3173 * devices that use auto polling.
3174 */
3175 if (sc->bge_flags & BGEF_FIBER_TBI) {
3176 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3177 } else {
3178 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3179 mimode = BGE_MIMODE_500KHZ_CONST;
3180 else
3181 mimode = BGE_MIMODE_BASE;
3182 /* 5718 step 68. 5718 step 69 (optionally). */
3183 if (BGE_IS_5700_FAMILY(sc) ||
3184 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3185 mimode |= BGE_MIMODE_AUTOPOLL;
3186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3187 }
3188 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3189 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3190 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3191 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3192 BGE_EVTENB_MI_INTERRUPT);
3193 }
3194
3195 /*
3196 * Clear any pending link state attention.
3197 * Otherwise some link state change events may be lost until attention
3198 * is cleared by bge_intr() -> bge_link_upd() sequence.
3199 * It's not necessary on newer BCM chips - perhaps enabling link
3200 * state change attentions implies clearing pending attention.
3201 */
3202 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3203 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3204 BGE_MACSTAT_LINK_CHANGED);
3205
3206 /* Enable link state change attentions. */
3207 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3208
3209 return 0;
3210 }
3211
3212 static const struct bge_revision *
3213 bge_lookup_rev(uint32_t chipid)
3214 {
3215 const struct bge_revision *br;
3216
3217 for (br = bge_revisions; br->br_name != NULL; br++) {
3218 if (br->br_chipid == chipid)
3219 return br;
3220 }
3221
3222 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3223 if (br->br_chipid == BGE_ASICREV(chipid))
3224 return br;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 static const struct bge_product *
3231 bge_lookup(const struct pci_attach_args *pa)
3232 {
3233 const struct bge_product *bp;
3234
3235 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3236 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3237 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3238 return bp;
3239 }
3240
3241 return NULL;
3242 }
3243
3244 static uint32_t
3245 bge_chipid(const struct pci_attach_args *pa)
3246 {
3247 uint32_t id;
3248
3249 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3250 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3251
3252 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3253 switch (PCI_PRODUCT(pa->pa_id)) {
3254 case PCI_PRODUCT_BROADCOM_BCM5717:
3255 case PCI_PRODUCT_BROADCOM_BCM5718:
3256 case PCI_PRODUCT_BROADCOM_BCM5719:
3257 case PCI_PRODUCT_BROADCOM_BCM5720:
3258 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3259 BGE_PCI_GEN2_PRODID_ASICREV);
3260 break;
3261 case PCI_PRODUCT_BROADCOM_BCM57761:
3262 case PCI_PRODUCT_BROADCOM_BCM57762:
3263 case PCI_PRODUCT_BROADCOM_BCM57765:
3264 case PCI_PRODUCT_BROADCOM_BCM57766:
3265 case PCI_PRODUCT_BROADCOM_BCM57781:
3266 case PCI_PRODUCT_BROADCOM_BCM57785:
3267 case PCI_PRODUCT_BROADCOM_BCM57791:
3268 case PCI_PRODUCT_BROADCOM_BCM57795:
3269 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3270 BGE_PCI_GEN15_PRODID_ASICREV);
3271 break;
3272 default:
3273 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3274 BGE_PCI_PRODID_ASICREV);
3275 break;
3276 }
3277 }
3278
3279 return id;
3280 }
3281
3282 /*
3283 * Return true if MSI can be used with this device.
3284 */
3285 static int
3286 bge_can_use_msi(struct bge_softc *sc)
3287 {
3288 int can_use_msi = 0;
3289
3290 switch (BGE_ASICREV(sc->bge_chipid)) {
3291 case BGE_ASICREV_BCM5714_A0:
3292 case BGE_ASICREV_BCM5714:
3293 /*
3294 * Apparently, MSI doesn't work when these chips are
3295 * configured in single-port mode.
3296 */
3297 break;
3298 case BGE_ASICREV_BCM5750:
3299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3300 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3301 can_use_msi = 1;
3302 break;
3303 default:
3304 if (BGE_IS_575X_PLUS(sc))
3305 can_use_msi = 1;
3306 }
3307 return (can_use_msi);
3308 }
3309
3310 /*
3311 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3312 * against our list and return its name if we find a match. Note
3313 * that since the Broadcom controller contains VPD support, we
3314 * can get the device name string from the controller itself instead
3315 * of the compiled-in string. This is a little slow, but it guarantees
3316 * we'll always announce the right product name.
3317 */
3318 static int
3319 bge_probe(device_t parent, cfdata_t match, void *aux)
3320 {
3321 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3322
3323 if (bge_lookup(pa) != NULL)
3324 return 1;
3325
3326 return 0;
3327 }
3328
3329 static void
3330 bge_attach(device_t parent, device_t self, void *aux)
3331 {
3332 struct bge_softc *sc = device_private(self);
3333 struct pci_attach_args *pa = aux;
3334 prop_dictionary_t dict;
3335 const struct bge_product *bp;
3336 const struct bge_revision *br;
3337 pci_chipset_tag_t pc;
3338 #ifndef __HAVE_PCI_MSI_MSIX
3339 pci_intr_handle_t ih;
3340 #endif
3341 const char *intrstr = NULL;
3342 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3343 uint32_t command;
3344 struct ifnet *ifp;
3345 uint32_t misccfg, mimode;
3346 void * kva;
3347 u_char eaddr[ETHER_ADDR_LEN];
3348 pcireg_t memtype, subid, reg;
3349 bus_addr_t memaddr;
3350 uint32_t pm_ctl;
3351 bool no_seeprom;
3352 int capmask;
3353 int mii_flags;
3354 int map_flags;
3355 int rv;
3356 char intrbuf[PCI_INTRSTR_LEN];
3357
3358 bp = bge_lookup(pa);
3359 KASSERT(bp != NULL);
3360
3361 sc->sc_pc = pa->pa_pc;
3362 sc->sc_pcitag = pa->pa_tag;
3363 sc->bge_dev = self;
3364
3365 sc->bge_pa = *pa;
3366 pc = sc->sc_pc;
3367 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3368
3369 aprint_naive(": Ethernet controller\n");
3370 aprint_normal(": %s\n", bp->bp_name);
3371
3372 /*
3373 * Map control/status registers.
3374 */
3375 DPRINTFN(5, ("Map control/status regs\n"));
3376 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3377 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3378 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3379 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3380
3381 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3382 aprint_error_dev(sc->bge_dev,
3383 "failed to enable memory mapping!\n");
3384 return;
3385 }
3386
3387 DPRINTFN(5, ("pci_mem_find\n"));
3388 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3389 switch (memtype) {
3390 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3391 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3392 #if 0
3393 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3394 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3395 &memaddr, &sc->bge_bsize) == 0)
3396 break;
3397 #else
3398 /*
3399 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3400 * system get NMI on boot (PR#48451). This problem might not be
3401 * the driver's bug but our PCI common part's bug. Until we
3402 * find a real reason, we ignore the prefetchable bit.
3403 */
3404 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3405 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3406 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3407 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3408 map_flags, &sc->bge_bhandle) == 0) {
3409 sc->bge_btag = pa->pa_memt;
3410 break;
3411 }
3412 }
3413 #endif
3414 default:
3415 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3416 return;
3417 }
3418
3419 /* Save various chip information. */
3420 sc->bge_chipid = bge_chipid(pa);
3421 sc->bge_phy_addr = bge_phy_addr(sc);
3422
3423 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3424 &sc->bge_pciecap, NULL) != 0)
3425 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3426 /* PCIe */
3427 sc->bge_flags |= BGEF_PCIE;
3428 /* Extract supported maximum payload size. */
3429 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3430 sc->bge_pciecap + PCIE_DCAP);
3431 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3433 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3434 sc->bge_expmrq = 2048;
3435 else
3436 sc->bge_expmrq = 4096;
3437 bge_set_max_readrq(sc);
3438 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3439 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3440 /* PCI-X */
3441 sc->bge_flags |= BGEF_PCIX;
3442 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3443 &sc->bge_pcixcap, NULL) == 0)
3444 aprint_error_dev(sc->bge_dev,
3445 "unable to find PCIX capability\n");
3446 }
3447
3448 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3449 /*
3450 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3451 * can clobber the chip's PCI config-space power control
3452 * registers, leaving the card in D3 powersave state. We do
3453 * not have memory-mapped registers in this state, so force
3454 * device into D0 state before starting initialization.
3455 */
3456 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3457 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3458 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3459 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3460 DELAY(1000); /* 27 usec is allegedly sufficent */
3461 }
3462
3463 /* Save chipset family. */
3464 switch (BGE_ASICREV(sc->bge_chipid)) {
3465 case BGE_ASICREV_BCM5717:
3466 case BGE_ASICREV_BCM5719:
3467 case BGE_ASICREV_BCM5720:
3468 sc->bge_flags |= BGEF_5717_PLUS;
3469 /* FALLTHROUGH */
3470 case BGE_ASICREV_BCM57765:
3471 case BGE_ASICREV_BCM57766:
3472 if (!BGE_IS_5717_PLUS(sc))
3473 sc->bge_flags |= BGEF_57765_FAMILY;
3474 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3475 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3476 /* Jumbo frame on BCM5719 A0 does not work. */
3477 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3478 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3479 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3480 break;
3481 case BGE_ASICREV_BCM5755:
3482 case BGE_ASICREV_BCM5761:
3483 case BGE_ASICREV_BCM5784:
3484 case BGE_ASICREV_BCM5785:
3485 case BGE_ASICREV_BCM5787:
3486 case BGE_ASICREV_BCM57780:
3487 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3488 break;
3489 case BGE_ASICREV_BCM5700:
3490 case BGE_ASICREV_BCM5701:
3491 case BGE_ASICREV_BCM5703:
3492 case BGE_ASICREV_BCM5704:
3493 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3494 break;
3495 case BGE_ASICREV_BCM5714_A0:
3496 case BGE_ASICREV_BCM5780:
3497 case BGE_ASICREV_BCM5714:
3498 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3499 /* FALLTHROUGH */
3500 case BGE_ASICREV_BCM5750:
3501 case BGE_ASICREV_BCM5752:
3502 case BGE_ASICREV_BCM5906:
3503 sc->bge_flags |= BGEF_575X_PLUS;
3504 /* FALLTHROUGH */
3505 case BGE_ASICREV_BCM5705:
3506 sc->bge_flags |= BGEF_5705_PLUS;
3507 break;
3508 }
3509
3510 /* Identify chips with APE processor. */
3511 switch (BGE_ASICREV(sc->bge_chipid)) {
3512 case BGE_ASICREV_BCM5717:
3513 case BGE_ASICREV_BCM5719:
3514 case BGE_ASICREV_BCM5720:
3515 case BGE_ASICREV_BCM5761:
3516 sc->bge_flags |= BGEF_APE;
3517 break;
3518 }
3519
3520 /*
3521 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3522 * not actually a MAC controller bug but an issue with the embedded
3523 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3524 */
3525 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3526 sc->bge_flags |= BGEF_40BIT_BUG;
3527
3528 /* Chips with APE need BAR2 access for APE registers/memory. */
3529 if ((sc->bge_flags & BGEF_APE) != 0) {
3530 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3531 #if 0
3532 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3533 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3534 &sc->bge_apesize)) {
3535 aprint_error_dev(sc->bge_dev,
3536 "couldn't map BAR2 memory\n");
3537 return;
3538 }
3539 #else
3540 /*
3541 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3542 * system get NMI on boot (PR#48451). This problem might not be
3543 * the driver's bug but our PCI common part's bug. Until we
3544 * find a real reason, we ignore the prefetchable bit.
3545 */
3546 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3547 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3548 aprint_error_dev(sc->bge_dev,
3549 "couldn't map BAR2 memory\n");
3550 return;
3551 }
3552
3553 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3554 if (bus_space_map(pa->pa_memt, memaddr,
3555 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3556 aprint_error_dev(sc->bge_dev,
3557 "couldn't map BAR2 memory\n");
3558 return;
3559 }
3560 sc->bge_apetag = pa->pa_memt;
3561 #endif
3562
3563 /* Enable APE register/memory access by host driver. */
3564 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3565 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3566 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3567 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3568 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3569
3570 bge_ape_lock_init(sc);
3571 bge_ape_read_fw_ver(sc);
3572 }
3573
3574 /* Identify the chips that use an CPMU. */
3575 if (BGE_IS_5717_PLUS(sc) ||
3576 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3577 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3578 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3579 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3580 sc->bge_flags |= BGEF_CPMU_PRESENT;
3581
3582 /* Set MI_MODE */
3583 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3584 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3585 mimode |= BGE_MIMODE_500KHZ_CONST;
3586 else
3587 mimode |= BGE_MIMODE_BASE;
3588 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3589
3590 /*
3591 * When using the BCM5701 in PCI-X mode, data corruption has
3592 * been observed in the first few bytes of some received packets.
3593 * Aligning the packet buffer in memory eliminates the corruption.
3594 * Unfortunately, this misaligns the packet payloads. On platforms
3595 * which do not support unaligned accesses, we will realign the
3596 * payloads by copying the received packets.
3597 */
3598 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3599 sc->bge_flags & BGEF_PCIX)
3600 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3601
3602 if (BGE_IS_5700_FAMILY(sc))
3603 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3604
3605 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3606 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3607
3608 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3609 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3610 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3611 sc->bge_flags |= BGEF_IS_5788;
3612
3613 /*
3614 * Some controllers seem to require a special firmware to use
3615 * TSO. But the firmware is not available to FreeBSD and Linux
3616 * claims that the TSO performed by the firmware is slower than
3617 * hardware based TSO. Moreover the firmware based TSO has one
3618 * known bug which can't handle TSO if ethernet header + IP/TCP
3619 * header is greater than 80 bytes. The workaround for the TSO
3620 * bug exist but it seems it's too expensive than not using
3621 * TSO at all. Some hardwares also have the TSO bug so limit
3622 * the TSO to the controllers that are not affected TSO issues
3623 * (e.g. 5755 or higher).
3624 */
3625 if (BGE_IS_5755_PLUS(sc)) {
3626 /*
3627 * BCM5754 and BCM5787 shares the same ASIC id so
3628 * explicit device id check is required.
3629 */
3630 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3631 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3632 sc->bge_flags |= BGEF_TSO;
3633 }
3634
3635 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3636 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3637 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3638 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3639 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3640 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3641 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3642 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3643 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3644 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3645 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3646 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3647 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3648 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3649 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3650 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3651 /* These chips are 10/100 only. */
3652 capmask &= ~BMSR_EXTSTAT;
3653 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3654 }
3655
3656 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3657 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3658 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3659 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3660 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3661
3662 /* Set various PHY bug flags. */
3663 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3664 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3665 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3666 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3667 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3668 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3669 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3670 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3671 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3672 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3673 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3674 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3675 if (BGE_IS_5705_PLUS(sc) &&
3676 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3677 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3678 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3679 !BGE_IS_57765_PLUS(sc)) {
3680 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3681 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3682 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3683 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3684 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3685 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3686 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3687 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3688 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3689 } else
3690 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3691 }
3692
3693 /*
3694 * SEEPROM check.
3695 * First check if firmware knows we do not have SEEPROM.
3696 */
3697 if (prop_dictionary_get_bool(device_properties(self),
3698 "without-seeprom", &no_seeprom) && no_seeprom)
3699 sc->bge_flags |= BGEF_NO_EEPROM;
3700
3701 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3702 sc->bge_flags |= BGEF_NO_EEPROM;
3703
3704 /* Now check the 'ROM failed' bit on the RX CPU */
3705 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3706 sc->bge_flags |= BGEF_NO_EEPROM;
3707
3708 sc->bge_asf_mode = 0;
3709 /* No ASF if APE present. */
3710 if ((sc->bge_flags & BGEF_APE) == 0) {
3711 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3712 BGE_SRAM_DATA_SIG_MAGIC)) {
3713 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3714 BGE_HWCFG_ASF) {
3715 sc->bge_asf_mode |= ASF_ENABLE;
3716 sc->bge_asf_mode |= ASF_STACKUP;
3717 if (BGE_IS_575X_PLUS(sc))
3718 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3719 }
3720 }
3721 }
3722
3723 #ifdef __HAVE_PCI_MSI_MSIX
3724 DPRINTFN(5, ("pci_get_capability\n"));
3725 /* Check MSI capability */
3726 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI,
3727 &sc->bge_msicap, NULL) != 0) {
3728 if (bge_can_use_msi(sc) != 0)
3729 sc->bge_flags |= BGEF_MSI;
3730 }
3731 rv = -1;
3732 if (((sc->bge_flags & BGEF_MSI) != 0) && (pci_msi_count(pa) > 0)) {
3733 DPRINTFN(5, ("pci_msi_alloc\n"));
3734 rv = pci_msi_alloc_exact(pa, &sc->bge_pihp, 1);
3735 if (rv != 0)
3736 sc->bge_flags &= ~BGEF_MSI;
3737 }
3738 if (rv != 0) {
3739 DPRINTFN(5, ("pci_intx_alloc\n"));
3740 if (pci_intx_alloc(pa, &sc->bge_pihp)) {
3741 aprint_error_dev(self, "can't map interrupt\n");
3742 return;
3743 }
3744 sc->bge_flags &= ~BGEF_MSI;
3745 }
3746 #else /* !__HAVE_PCI_MSI_MSIX */
3747 DPRINTFN(5, ("pci_intr_map\n"));
3748 if (pci_intr_map(pa, &ih)) {
3749 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3750 return;
3751 }
3752 #endif
3753
3754 #ifdef __HAVE_PCI_MSI_MSIX
3755 DPRINTFN(5, ("pci_intr_string\n"));
3756 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3757 sizeof(intrbuf));
3758 DPRINTFN(5, ("pci_intr_establish\n"));
3759 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3760 bge_intr, sc);
3761 #else /* !__HAVE_PCI_MSI_MSIX */
3762 DPRINTFN(5, ("pci_intr_string\n"));
3763 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
3764
3765 DPRINTFN(5, ("pci_intr_establish\n"));
3766 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3767 #endif
3768
3769 if (sc->bge_intrhand == NULL) {
3770 aprint_error_dev(sc->bge_dev,
3771 "couldn't establish interrupt%s%s\n",
3772 intrstr ? " at " : "", intrstr ? intrstr : "");
3773 return;
3774 }
3775 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3776
3777 /*
3778 * All controllers except BCM5700 supports tagged status but
3779 * we use tagged status only for MSI case on BCM5717. Otherwise
3780 * MSI on BCM5717 does not work.
3781 */
3782 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3783 sc->bge_flags |= BGEF_TAGGED_STATUS;
3784
3785 /*
3786 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3787 * lock in bge_reset().
3788 */
3789 CSR_WRITE_4(sc, BGE_EE_ADDR,
3790 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3791 delay(1000);
3792 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3793
3794 bge_stop_fw(sc);
3795 bge_sig_pre_reset(sc, BGE_RESET_START);
3796 if (bge_reset(sc))
3797 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3798
3799 /*
3800 * Read the hardware config word in the first 32k of NIC internal
3801 * memory, or fall back to the config word in the EEPROM.
3802 * Note: on some BCM5700 cards, this value appears to be unset.
3803 */
3804 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3805 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3806 BGE_SRAM_DATA_SIG_MAGIC) {
3807 uint32_t tmp;
3808
3809 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3810 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3811 BGE_SRAM_DATA_VER_SHIFT;
3812 if ((0 < tmp) && (tmp < 0x100))
3813 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3814 if (sc->bge_flags & BGEF_PCIE)
3815 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3816 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3817 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3818 if (BGE_IS_5717_PLUS(sc))
3819 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3820 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3821 bge_read_eeprom(sc, (void *)&hwcfg,
3822 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3823 hwcfg = be32toh(hwcfg);
3824 }
3825 aprint_normal_dev(sc->bge_dev,
3826 "HW config %08x, %08x, %08x, %08x %08x\n",
3827 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3828
3829 bge_sig_legacy(sc, BGE_RESET_START);
3830 bge_sig_post_reset(sc, BGE_RESET_START);
3831
3832 if (bge_chipinit(sc)) {
3833 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3834 bge_release_resources(sc);
3835 return;
3836 }
3837
3838 /*
3839 * Get station address from the EEPROM.
3840 */
3841 if (bge_get_eaddr(sc, eaddr)) {
3842 aprint_error_dev(sc->bge_dev,
3843 "failed to read station address\n");
3844 bge_release_resources(sc);
3845 return;
3846 }
3847
3848 br = bge_lookup_rev(sc->bge_chipid);
3849
3850 if (br == NULL) {
3851 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3852 sc->bge_chipid);
3853 } else {
3854 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3855 br->br_name, sc->bge_chipid);
3856 }
3857 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3858
3859 /* Allocate the general information block and ring buffers. */
3860 if (pci_dma64_available(pa))
3861 sc->bge_dmatag = pa->pa_dmat64;
3862 else
3863 sc->bge_dmatag = pa->pa_dmat;
3864
3865 /* 40bit DMA workaround */
3866 if (sizeof(bus_addr_t) > 4) {
3867 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3868 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3869
3870 if (bus_dmatag_subregion(olddmatag, 0,
3871 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3872 BUS_DMA_NOWAIT) != 0) {
3873 aprint_error_dev(self,
3874 "WARNING: failed to restrict dma range,"
3875 " falling back to parent bus dma range\n");
3876 sc->bge_dmatag = olddmatag;
3877 }
3878 }
3879 }
3880 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3881 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3882 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3883 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3884 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3885 return;
3886 }
3887 DPRINTFN(5, ("bus_dmamem_map\n"));
3888 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3889 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3890 BUS_DMA_NOWAIT)) {
3891 aprint_error_dev(sc->bge_dev,
3892 "can't map DMA buffers (%zu bytes)\n",
3893 sizeof(struct bge_ring_data));
3894 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3895 sc->bge_ring_rseg);
3896 return;
3897 }
3898 DPRINTFN(5, ("bus_dmamem_create\n"));
3899 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3900 sizeof(struct bge_ring_data), 0,
3901 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3902 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3903 bus_dmamem_unmap(sc->bge_dmatag, kva,
3904 sizeof(struct bge_ring_data));
3905 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3906 sc->bge_ring_rseg);
3907 return;
3908 }
3909 DPRINTFN(5, ("bus_dmamem_load\n"));
3910 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3911 sizeof(struct bge_ring_data), NULL,
3912 BUS_DMA_NOWAIT)) {
3913 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3914 bus_dmamem_unmap(sc->bge_dmatag, kva,
3915 sizeof(struct bge_ring_data));
3916 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3917 sc->bge_ring_rseg);
3918 return;
3919 }
3920
3921 DPRINTFN(5, ("bzero\n"));
3922 sc->bge_rdata = (struct bge_ring_data *)kva;
3923
3924 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3925
3926 /* Try to allocate memory for jumbo buffers. */
3927 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3928 if (bge_alloc_jumbo_mem(sc)) {
3929 aprint_error_dev(sc->bge_dev,
3930 "jumbo buffer allocation failed\n");
3931 } else
3932 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3933 }
3934
3935 /* Set default tuneable values. */
3936 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3937 sc->bge_rx_coal_ticks = 150;
3938 sc->bge_rx_max_coal_bds = 64;
3939 sc->bge_tx_coal_ticks = 300;
3940 sc->bge_tx_max_coal_bds = 400;
3941 if (BGE_IS_5705_PLUS(sc)) {
3942 sc->bge_tx_coal_ticks = (12 * 5);
3943 sc->bge_tx_max_coal_bds = (12 * 5);
3944 aprint_verbose_dev(sc->bge_dev,
3945 "setting short Tx thresholds\n");
3946 }
3947
3948 if (BGE_IS_5717_PLUS(sc))
3949 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3950 else if (BGE_IS_5705_PLUS(sc))
3951 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3952 else
3953 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3954
3955 /* Set up ifnet structure */
3956 ifp = &sc->ethercom.ec_if;
3957 ifp->if_softc = sc;
3958 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3959 ifp->if_ioctl = bge_ioctl;
3960 ifp->if_stop = bge_stop;
3961 ifp->if_start = bge_start;
3962 ifp->if_init = bge_init;
3963 ifp->if_watchdog = bge_watchdog;
3964 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3965 IFQ_SET_READY(&ifp->if_snd);
3966 DPRINTFN(5, ("strcpy if_xname\n"));
3967 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3968
3969 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3970 sc->ethercom.ec_if.if_capabilities |=
3971 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3972 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3973 sc->ethercom.ec_if.if_capabilities |=
3974 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3975 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3976 #endif
3977 sc->ethercom.ec_capabilities |=
3978 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3979
3980 if (sc->bge_flags & BGEF_TSO)
3981 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3982
3983 /*
3984 * Do MII setup.
3985 */
3986 DPRINTFN(5, ("mii setup\n"));
3987 sc->bge_mii.mii_ifp = ifp;
3988 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3989 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3990 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3991
3992 /*
3993 * Figure out what sort of media we have by checking the hardware
3994 * config word. Note: on some BCM5700 cards, this value appears to be
3995 * unset. If that's the case, we have to rely on identifying the NIC
3996 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3997 * The SysKonnect SK-9D41 is a 1000baseSX card.
3998 */
3999 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4000 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4001 if (BGE_IS_5705_PLUS(sc)) {
4002 sc->bge_flags |= BGEF_FIBER_MII;
4003 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4004 } else
4005 sc->bge_flags |= BGEF_FIBER_TBI;
4006 }
4007
4008 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4009 if (BGE_IS_JUMBO_CAPABLE(sc))
4010 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4011
4012 /* set phyflags and chipid before mii_attach() */
4013 dict = device_properties(self);
4014 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4015 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4016
4017 if (sc->bge_flags & BGEF_FIBER_TBI) {
4018 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4019 bge_ifmedia_sts);
4020 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4021 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4022 0, NULL);
4023 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4024 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4025 /* Pretend the user requested this setting */
4026 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4027 } else {
4028 /*
4029 * Do transceiver setup and tell the firmware the
4030 * driver is down so we can try to get access the
4031 * probe if ASF is running. Retry a couple of times
4032 * if we get a conflict with the ASF firmware accessing
4033 * the PHY.
4034 */
4035 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4036 bge_asf_driver_up(sc);
4037
4038 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4039 bge_ifmedia_sts);
4040 mii_flags = MIIF_DOPAUSE;
4041 if (sc->bge_flags & BGEF_FIBER_MII)
4042 mii_flags |= MIIF_HAVEFIBER;
4043 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4044 MII_OFFSET_ANY, mii_flags);
4045
4046 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4047 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4048 ifmedia_add(&sc->bge_mii.mii_media,
4049 IFM_ETHER|IFM_MANUAL, 0, NULL);
4050 ifmedia_set(&sc->bge_mii.mii_media,
4051 IFM_ETHER|IFM_MANUAL);
4052 } else
4053 ifmedia_set(&sc->bge_mii.mii_media,
4054 IFM_ETHER|IFM_AUTO);
4055
4056 /*
4057 * Now tell the firmware we are going up after probing the PHY
4058 */
4059 if (sc->bge_asf_mode & ASF_STACKUP)
4060 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4061 }
4062
4063 /*
4064 * Call MI attach routine.
4065 */
4066 DPRINTFN(5, ("if_attach\n"));
4067 if_attach(ifp);
4068 DPRINTFN(5, ("ether_ifattach\n"));
4069 ether_ifattach(ifp, eaddr);
4070 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4071 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4072 RND_TYPE_NET, RND_FLAG_DEFAULT);
4073 #ifdef BGE_EVENT_COUNTERS
4074 /*
4075 * Attach event counters.
4076 */
4077 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4078 NULL, device_xname(sc->bge_dev), "intr");
4079 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4080 NULL, device_xname(sc->bge_dev), "tx_xoff");
4081 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4082 NULL, device_xname(sc->bge_dev), "tx_xon");
4083 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4084 NULL, device_xname(sc->bge_dev), "rx_xoff");
4085 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4086 NULL, device_xname(sc->bge_dev), "rx_xon");
4087 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4088 NULL, device_xname(sc->bge_dev), "rx_macctl");
4089 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4090 NULL, device_xname(sc->bge_dev), "xoffentered");
4091 #endif /* BGE_EVENT_COUNTERS */
4092 DPRINTFN(5, ("callout_init\n"));
4093 callout_init(&sc->bge_timeout, 0);
4094
4095 if (pmf_device_register(self, NULL, NULL))
4096 pmf_class_network_register(self, ifp);
4097 else
4098 aprint_error_dev(self, "couldn't establish power handler\n");
4099
4100 bge_sysctl_init(sc);
4101
4102 #ifdef BGE_DEBUG
4103 bge_debug_info(sc);
4104 #endif
4105 }
4106
4107 /*
4108 * Stop all chip I/O so that the kernel's probe routines don't
4109 * get confused by errant DMAs when rebooting.
4110 */
4111 static int
4112 bge_detach(device_t self, int flags __unused)
4113 {
4114 struct bge_softc *sc = device_private(self);
4115 struct ifnet *ifp = &sc->ethercom.ec_if;
4116 int s;
4117
4118 s = splnet();
4119 /* Stop the interface. Callouts are stopped in it. */
4120 bge_stop(ifp, 1);
4121 splx(s);
4122
4123 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4124
4125 /* Delete all remaining media. */
4126 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4127
4128 ether_ifdetach(ifp);
4129 if_detach(ifp);
4130
4131 bge_release_resources(sc);
4132
4133 return 0;
4134 }
4135
4136 static void
4137 bge_release_resources(struct bge_softc *sc)
4138 {
4139
4140 /* Disestablish the interrupt handler */
4141 if (sc->bge_intrhand != NULL) {
4142 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4143 sc->bge_intrhand = NULL;
4144 }
4145
4146 if (sc->bge_dmatag != NULL) {
4147 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4148 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4149 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4150 sizeof(struct bge_ring_data));
4151 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
4152 }
4153
4154 /* Unmap the device registers */
4155 if (sc->bge_bsize != 0) {
4156 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4157 sc->bge_bsize = 0;
4158 }
4159
4160 /* Unmap the APE registers */
4161 if (sc->bge_apesize != 0) {
4162 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4163 sc->bge_apesize);
4164 sc->bge_apesize = 0;
4165 }
4166 }
4167
4168 static int
4169 bge_reset(struct bge_softc *sc)
4170 {
4171 uint32_t cachesize, command;
4172 uint32_t reset, mac_mode, mac_mode_mask;
4173 pcireg_t devctl, reg;
4174 int i, val;
4175 void (*write_op)(struct bge_softc *, int, int);
4176
4177 /* Make mask for BGE_MAC_MODE register. */
4178 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4179 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4180 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4181 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4182 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4183
4184 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4185 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4186 if (sc->bge_flags & BGEF_PCIE)
4187 write_op = bge_writemem_direct;
4188 else
4189 write_op = bge_writemem_ind;
4190 } else
4191 write_op = bge_writereg_ind;
4192
4193 /* 57XX step 4 */
4194 /* Acquire the NVM lock */
4195 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4196 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4197 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4198 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4199 for (i = 0; i < 8000; i++) {
4200 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4201 BGE_NVRAMSWARB_GNT1)
4202 break;
4203 DELAY(20);
4204 }
4205 if (i == 8000) {
4206 printf("%s: NVRAM lock timedout!\n",
4207 device_xname(sc->bge_dev));
4208 }
4209 }
4210
4211 /* Take APE lock when performing reset. */
4212 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4213
4214 /* 57XX step 3 */
4215 /* Save some important PCI state. */
4216 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4217 /* 5718 reset step 3 */
4218 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4219
4220 /* 5718 reset step 5, 57XX step 5b-5d */
4221 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4222 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4223 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4224
4225 /* XXX ???: Disable fastboot on controllers that support it. */
4226 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4227 BGE_IS_5755_PLUS(sc))
4228 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4229
4230 /* 5718 reset step 2, 57XX step 6 */
4231 /*
4232 * Write the magic number to SRAM at offset 0xB50.
4233 * When firmware finishes its initialization it will
4234 * write ~BGE_MAGIC_NUMBER to the same location.
4235 */
4236 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4237
4238 /* 5718 reset step 6, 57XX step 7 */
4239 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4240 /*
4241 * XXX: from FreeBSD/Linux; no documentation
4242 */
4243 if (sc->bge_flags & BGEF_PCIE) {
4244 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4245 !BGE_IS_57765_PLUS(sc) &&
4246 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4247 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4248 /* PCI Express 1.0 system */
4249 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4250 BGE_PHY_PCIE_SCRAM_MODE);
4251 }
4252 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4253 /*
4254 * Prevent PCI Express link training
4255 * during global reset.
4256 */
4257 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4258 reset |= (1 << 29);
4259 }
4260 }
4261
4262 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4263 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4264 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4265 i | BGE_VCPU_STATUS_DRV_RESET);
4266 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4267 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4268 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4269 }
4270
4271 /*
4272 * Set GPHY Power Down Override to leave GPHY
4273 * powered up in D0 uninitialized.
4274 */
4275 if (BGE_IS_5705_PLUS(sc) &&
4276 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4277 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4278
4279 /* Issue global reset */
4280 write_op(sc, BGE_MISC_CFG, reset);
4281
4282 /* 5718 reset step 7, 57XX step 8 */
4283 if (sc->bge_flags & BGEF_PCIE)
4284 delay(100*1000); /* too big */
4285 else
4286 delay(1000);
4287
4288 if (sc->bge_flags & BGEF_PCIE) {
4289 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4290 DELAY(500000);
4291 /* XXX: Magic Numbers */
4292 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4293 BGE_PCI_UNKNOWN0);
4294 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4295 BGE_PCI_UNKNOWN0,
4296 reg | (1 << 15));
4297 }
4298 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4299 sc->bge_pciecap + PCIE_DCSR);
4300 /* Clear enable no snoop and disable relaxed ordering. */
4301 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4302 PCIE_DCSR_ENA_NO_SNOOP);
4303
4304 /* Set PCIE max payload size to 128 for older PCIe devices */
4305 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4306 devctl &= ~(0x00e0);
4307 /* Clear device status register. Write 1b to clear */
4308 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4309 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4310 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4311 sc->bge_pciecap + PCIE_DCSR, devctl);
4312 bge_set_max_readrq(sc);
4313 }
4314
4315 /* From Linux: dummy read to flush PCI posted writes */
4316 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4317
4318 /*
4319 * Reset some of the PCI state that got zapped by reset
4320 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4321 * set, too.
4322 */
4323 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4324 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4325 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4326 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4327 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4328 (sc->bge_flags & BGEF_PCIX) != 0)
4329 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4330 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4331 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4332 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4333 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4334 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4335 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4336 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4337
4338 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4339 if (sc->bge_flags & BGEF_PCIX) {
4340 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4341 + PCIX_CMD);
4342 /* Set max memory read byte count to 2K */
4343 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4344 reg &= ~PCIX_CMD_BYTECNT_MASK;
4345 reg |= PCIX_CMD_BCNT_2048;
4346 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4347 /*
4348 * For 5704, set max outstanding split transaction
4349 * field to 0 (0 means it supports 1 request)
4350 */
4351 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4352 | PCIX_CMD_BYTECNT_MASK);
4353 reg |= PCIX_CMD_BCNT_2048;
4354 }
4355 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4356 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4357 }
4358
4359 /* 5718 reset step 10, 57XX step 12 */
4360 /* Enable memory arbiter. */
4361 if (BGE_IS_5714_FAMILY(sc)) {
4362 val = CSR_READ_4(sc, BGE_MARB_MODE);
4363 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4364 } else
4365 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4366
4367 /* XXX 5721, 5751 and 5752 */
4368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4369 /* Step 19: */
4370 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4371 /* Step 20: */
4372 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4373 }
4374
4375 /* 5718 reset step 12, 57XX step 15 and 16 */
4376 /* Fix up byte swapping */
4377 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4378
4379 /* 5718 reset step 13, 57XX step 17 */
4380 /* Poll until the firmware initialization is complete */
4381 bge_poll_fw(sc);
4382
4383 /* 57XX step 21 */
4384 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4385 pcireg_t msidata;
4386
4387 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4388 BGE_PCI_MSI_DATA);
4389 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4390 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4391 msidata);
4392 }
4393
4394 /* 57XX step 18 */
4395 /* Write mac mode. */
4396 val = CSR_READ_4(sc, BGE_MAC_MODE);
4397 /* Restore mac_mode_mask's bits using mac_mode */
4398 val = (val & ~mac_mode_mask) | mac_mode;
4399 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4400 DELAY(40);
4401
4402 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4403
4404 /*
4405 * The 5704 in TBI mode apparently needs some special
4406 * adjustment to insure the SERDES drive level is set
4407 * to 1.2V.
4408 */
4409 if (sc->bge_flags & BGEF_FIBER_TBI &&
4410 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4411 uint32_t serdescfg;
4412
4413 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4414 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4415 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4416 }
4417
4418 if (sc->bge_flags & BGEF_PCIE &&
4419 !BGE_IS_57765_PLUS(sc) &&
4420 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4421 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4422 uint32_t v;
4423
4424 /* Enable PCI Express bug fix */
4425 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4426 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4427 v | BGE_TLP_DATA_FIFO_PROTECT);
4428 }
4429
4430 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4431 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4432 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4433
4434 return 0;
4435 }
4436
4437 /*
4438 * Frame reception handling. This is called if there's a frame
4439 * on the receive return list.
4440 *
4441 * Note: we have to be able to handle two possibilities here:
4442 * 1) the frame is from the jumbo receive ring
4443 * 2) the frame is from the standard receive ring
4444 */
4445
4446 static void
4447 bge_rxeof(struct bge_softc *sc)
4448 {
4449 struct ifnet *ifp;
4450 uint16_t rx_prod, rx_cons;
4451 int stdcnt = 0, jumbocnt = 0;
4452 bus_dmamap_t dmamap;
4453 bus_addr_t offset, toff;
4454 bus_size_t tlen;
4455 int tosync;
4456
4457 rx_cons = sc->bge_rx_saved_considx;
4458 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4459
4460 /* Nothing to do */
4461 if (rx_cons == rx_prod)
4462 return;
4463
4464 ifp = &sc->ethercom.ec_if;
4465
4466 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4467 offsetof(struct bge_ring_data, bge_status_block),
4468 sizeof (struct bge_status_block),
4469 BUS_DMASYNC_POSTREAD);
4470
4471 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4472 tosync = rx_prod - rx_cons;
4473
4474 if (tosync != 0)
4475 rnd_add_uint32(&sc->rnd_source, tosync);
4476
4477 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4478
4479 if (tosync < 0) {
4480 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4481 sizeof (struct bge_rx_bd);
4482 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4483 toff, tlen, BUS_DMASYNC_POSTREAD);
4484 tosync = -tosync;
4485 }
4486
4487 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4488 offset, tosync * sizeof (struct bge_rx_bd),
4489 BUS_DMASYNC_POSTREAD);
4490
4491 while (rx_cons != rx_prod) {
4492 struct bge_rx_bd *cur_rx;
4493 uint32_t rxidx;
4494 struct mbuf *m = NULL;
4495
4496 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4497
4498 rxidx = cur_rx->bge_idx;
4499 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4500
4501 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4502 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4503 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4504 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4505 jumbocnt++;
4506 bus_dmamap_sync(sc->bge_dmatag,
4507 sc->bge_cdata.bge_rx_jumbo_map,
4508 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4509 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4510 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4511 ifp->if_ierrors++;
4512 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4513 continue;
4514 }
4515 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4516 NULL)== ENOBUFS) {
4517 ifp->if_ierrors++;
4518 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4519 continue;
4520 }
4521 } else {
4522 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4523 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4524
4525 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4526 stdcnt++;
4527 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4528 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4529 if (dmamap == NULL) {
4530 ifp->if_ierrors++;
4531 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4532 continue;
4533 }
4534 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4535 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4536 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4537 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4538 ifp->if_ierrors++;
4539 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4540 continue;
4541 }
4542 if (bge_newbuf_std(sc, sc->bge_std,
4543 NULL, dmamap) == ENOBUFS) {
4544 ifp->if_ierrors++;
4545 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4546 continue;
4547 }
4548 }
4549
4550 ifp->if_ipackets++;
4551 #ifndef __NO_STRICT_ALIGNMENT
4552 /*
4553 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4554 * the Rx buffer has the layer-2 header unaligned.
4555 * If our CPU requires alignment, re-align by copying.
4556 */
4557 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4558 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4559 cur_rx->bge_len);
4560 m->m_data += ETHER_ALIGN;
4561 }
4562 #endif
4563
4564 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4565 m->m_pkthdr.rcvif = ifp;
4566
4567 /*
4568 * Handle BPF listeners. Let the BPF user see the packet.
4569 */
4570 bpf_mtap(ifp, m);
4571
4572 bge_rxcsum(sc, cur_rx, m);
4573
4574 /*
4575 * If we received a packet with a vlan tag, pass it
4576 * to vlan_input() instead of ether_input().
4577 */
4578 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4579 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4580 }
4581
4582 (*ifp->if_input)(ifp, m);
4583 }
4584
4585 sc->bge_rx_saved_considx = rx_cons;
4586 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4587 if (stdcnt)
4588 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4589 if (jumbocnt)
4590 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4591 }
4592
4593 static void
4594 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4595 {
4596
4597 if (BGE_IS_57765_PLUS(sc)) {
4598 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4599 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4600 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4601 if ((cur_rx->bge_error_flag &
4602 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4603 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4604 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4605 m->m_pkthdr.csum_data =
4606 cur_rx->bge_tcp_udp_csum;
4607 m->m_pkthdr.csum_flags |=
4608 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4609 M_CSUM_DATA);
4610 }
4611 }
4612 } else {
4613 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4614 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4615 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4616 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4617 /*
4618 * Rx transport checksum-offload may also
4619 * have bugs with packets which, when transmitted,
4620 * were `runts' requiring padding.
4621 */
4622 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4623 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4624 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4625 m->m_pkthdr.csum_data =
4626 cur_rx->bge_tcp_udp_csum;
4627 m->m_pkthdr.csum_flags |=
4628 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4629 M_CSUM_DATA);
4630 }
4631 }
4632 }
4633
4634 static void
4635 bge_txeof(struct bge_softc *sc)
4636 {
4637 struct bge_tx_bd *cur_tx = NULL;
4638 struct ifnet *ifp;
4639 struct txdmamap_pool_entry *dma;
4640 bus_addr_t offset, toff;
4641 bus_size_t tlen;
4642 int tosync;
4643 struct mbuf *m;
4644
4645 ifp = &sc->ethercom.ec_if;
4646
4647 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4648 offsetof(struct bge_ring_data, bge_status_block),
4649 sizeof (struct bge_status_block),
4650 BUS_DMASYNC_POSTREAD);
4651
4652 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4653 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4654 sc->bge_tx_saved_considx;
4655
4656 if (tosync != 0)
4657 rnd_add_uint32(&sc->rnd_source, tosync);
4658
4659 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4660
4661 if (tosync < 0) {
4662 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4663 sizeof (struct bge_tx_bd);
4664 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4665 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4666 tosync = -tosync;
4667 }
4668
4669 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4670 offset, tosync * sizeof (struct bge_tx_bd),
4671 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4672
4673 /*
4674 * Go through our tx ring and free mbufs for those
4675 * frames that have been sent.
4676 */
4677 while (sc->bge_tx_saved_considx !=
4678 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4679 uint32_t idx = 0;
4680
4681 idx = sc->bge_tx_saved_considx;
4682 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4683 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4684 ifp->if_opackets++;
4685 m = sc->bge_cdata.bge_tx_chain[idx];
4686 if (m != NULL) {
4687 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4688 dma = sc->txdma[idx];
4689 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4690 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4691 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4692 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4693 sc->txdma[idx] = NULL;
4694
4695 m_freem(m);
4696 }
4697 sc->bge_txcnt--;
4698 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4699 ifp->if_timer = 0;
4700 }
4701
4702 if (cur_tx != NULL)
4703 ifp->if_flags &= ~IFF_OACTIVE;
4704 }
4705
4706 static int
4707 bge_intr(void *xsc)
4708 {
4709 struct bge_softc *sc;
4710 struct ifnet *ifp;
4711 uint32_t pcistate, statusword, statustag;
4712 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4713
4714 sc = xsc;
4715 ifp = &sc->ethercom.ec_if;
4716
4717 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4718 if (BGE_IS_5717_PLUS(sc))
4719 intrmask = 0;
4720
4721 /* It is possible for the interrupt to arrive before
4722 * the status block is updated prior to the interrupt.
4723 * Reading the PCI State register will confirm whether the
4724 * interrupt is ours and will flush the status block.
4725 */
4726 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4727
4728 /* read status word from status block */
4729 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4730 offsetof(struct bge_ring_data, bge_status_block),
4731 sizeof (struct bge_status_block),
4732 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4733 statusword = sc->bge_rdata->bge_status_block.bge_status;
4734 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4735
4736 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4737 if (sc->bge_lasttag == statustag &&
4738 (~pcistate & intrmask)) {
4739 printf("[SP]");
4740 return (0);
4741 }
4742 sc->bge_lasttag = statustag;
4743 } else {
4744 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4745 !(~pcistate & intrmask)) {
4746 return (0);
4747 }
4748 statustag = 0;
4749 }
4750 /* Ack interrupt and stop others from occurring. */
4751 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4752 BGE_EVCNT_INCR(sc->bge_ev_intr);
4753
4754 /* clear status word */
4755 sc->bge_rdata->bge_status_block.bge_status = 0;
4756
4757 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4758 offsetof(struct bge_ring_data, bge_status_block),
4759 sizeof (struct bge_status_block),
4760 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4761
4762 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4763 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4764 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4765 bge_link_upd(sc);
4766
4767 if (ifp->if_flags & IFF_RUNNING) {
4768 /* Check RX return ring producer/consumer */
4769 bge_rxeof(sc);
4770
4771 /* Check TX ring producer/consumer */
4772 bge_txeof(sc);
4773 }
4774
4775 if (sc->bge_pending_rxintr_change) {
4776 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4777 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4778
4779 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4780 DELAY(10);
4781 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4782
4783 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4784 DELAY(10);
4785 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4786
4787 sc->bge_pending_rxintr_change = 0;
4788 }
4789 bge_handle_events(sc);
4790
4791 /* Re-enable interrupts. */
4792 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4793
4794 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4795 bge_start(ifp);
4796
4797 return 1;
4798 }
4799
4800 static void
4801 bge_asf_driver_up(struct bge_softc *sc)
4802 {
4803 if (sc->bge_asf_mode & ASF_STACKUP) {
4804 /* Send ASF heartbeat aprox. every 2s */
4805 if (sc->bge_asf_count)
4806 sc->bge_asf_count --;
4807 else {
4808 sc->bge_asf_count = 2;
4809
4810 bge_wait_for_event_ack(sc);
4811
4812 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4813 BGE_FW_CMD_DRV_ALIVE3);
4814 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4815 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4816 BGE_FW_HB_TIMEOUT_SEC);
4817 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4818 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4819 BGE_RX_CPU_DRV_EVENT);
4820 }
4821 }
4822 }
4823
4824 static void
4825 bge_tick(void *xsc)
4826 {
4827 struct bge_softc *sc = xsc;
4828 struct mii_data *mii = &sc->bge_mii;
4829 int s;
4830
4831 s = splnet();
4832
4833 if (BGE_IS_5705_PLUS(sc))
4834 bge_stats_update_regs(sc);
4835 else
4836 bge_stats_update(sc);
4837
4838 if (sc->bge_flags & BGEF_FIBER_TBI) {
4839 /*
4840 * Since in TBI mode auto-polling can't be used we should poll
4841 * link status manually. Here we register pending link event
4842 * and trigger interrupt.
4843 */
4844 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4845 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4846 } else {
4847 /*
4848 * Do not touch PHY if we have link up. This could break
4849 * IPMI/ASF mode or produce extra input errors.
4850 * (extra input errors was reported for bcm5701 & bcm5704).
4851 */
4852 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4853 mii_tick(mii);
4854 }
4855
4856 bge_asf_driver_up(sc);
4857
4858 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4859
4860 splx(s);
4861 }
4862
4863 static void
4864 bge_stats_update_regs(struct bge_softc *sc)
4865 {
4866 struct ifnet *ifp = &sc->ethercom.ec_if;
4867
4868 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4869 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4870
4871 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4872 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4873 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4874 }
4875
4876 static void
4877 bge_stats_update(struct bge_softc *sc)
4878 {
4879 struct ifnet *ifp = &sc->ethercom.ec_if;
4880 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4881
4882 #define READ_STAT(sc, stats, stat) \
4883 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4884
4885 ifp->if_collisions +=
4886 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4887 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4888 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4889 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4890 ifp->if_collisions;
4891
4892 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4893 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4894 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4895 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4896 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4897 READ_STAT(sc, stats,
4898 xoffPauseFramesReceived.bge_addr_lo));
4899 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4900 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4901 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4902 READ_STAT(sc, stats,
4903 macControlFramesReceived.bge_addr_lo));
4904 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4905 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4906
4907 #undef READ_STAT
4908
4909 #ifdef notdef
4910 ifp->if_collisions +=
4911 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4912 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4913 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4914 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4915 ifp->if_collisions;
4916 #endif
4917 }
4918
4919 /*
4920 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4921 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4922 * but when such padded frames employ the bge IP/TCP checksum offload,
4923 * the hardware checksum assist gives incorrect results (possibly
4924 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4925 * If we pad such runts with zeros, the onboard checksum comes out correct.
4926 */
4927 static inline int
4928 bge_cksum_pad(struct mbuf *pkt)
4929 {
4930 struct mbuf *last = NULL;
4931 int padlen;
4932
4933 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4934
4935 /* if there's only the packet-header and we can pad there, use it. */
4936 if (pkt->m_pkthdr.len == pkt->m_len &&
4937 M_TRAILINGSPACE(pkt) >= padlen) {
4938 last = pkt;
4939 } else {
4940 /*
4941 * Walk packet chain to find last mbuf. We will either
4942 * pad there, or append a new mbuf and pad it
4943 * (thus perhaps avoiding the bcm5700 dma-min bug).
4944 */
4945 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4946 continue; /* do nothing */
4947 }
4948
4949 /* `last' now points to last in chain. */
4950 if (M_TRAILINGSPACE(last) < padlen) {
4951 /* Allocate new empty mbuf, pad it. Compact later. */
4952 struct mbuf *n;
4953 MGET(n, M_DONTWAIT, MT_DATA);
4954 if (n == NULL)
4955 return ENOBUFS;
4956 n->m_len = 0;
4957 last->m_next = n;
4958 last = n;
4959 }
4960 }
4961
4962 KDASSERT(!M_READONLY(last));
4963 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4964
4965 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4966 memset(mtod(last, char *) + last->m_len, 0, padlen);
4967 last->m_len += padlen;
4968 pkt->m_pkthdr.len += padlen;
4969 return 0;
4970 }
4971
4972 /*
4973 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4974 */
4975 static inline int
4976 bge_compact_dma_runt(struct mbuf *pkt)
4977 {
4978 struct mbuf *m, *prev;
4979 int totlen;
4980
4981 prev = NULL;
4982 totlen = 0;
4983
4984 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4985 int mlen = m->m_len;
4986 int shortfall = 8 - mlen ;
4987
4988 totlen += mlen;
4989 if (mlen == 0)
4990 continue;
4991 if (mlen >= 8)
4992 continue;
4993
4994 /* If we get here, mbuf data is too small for DMA engine.
4995 * Try to fix by shuffling data to prev or next in chain.
4996 * If that fails, do a compacting deep-copy of the whole chain.
4997 */
4998
4999 /* Internal frag. If fits in prev, copy it there. */
5000 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5001 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5002 prev->m_len += mlen;
5003 m->m_len = 0;
5004 /* XXX stitch chain */
5005 prev->m_next = m_free(m);
5006 m = prev;
5007 continue;
5008 }
5009 else if (m->m_next != NULL &&
5010 M_TRAILINGSPACE(m) >= shortfall &&
5011 m->m_next->m_len >= (8 + shortfall)) {
5012 /* m is writable and have enough data in next, pull up. */
5013
5014 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5015 shortfall);
5016 m->m_len += shortfall;
5017 m->m_next->m_len -= shortfall;
5018 m->m_next->m_data += shortfall;
5019 }
5020 else if (m->m_next == NULL || 1) {
5021 /* Got a runt at the very end of the packet.
5022 * borrow data from the tail of the preceding mbuf and
5023 * update its length in-place. (The original data is still
5024 * valid, so we can do this even if prev is not writable.)
5025 */
5026
5027 /* if we'd make prev a runt, just move all of its data. */
5028 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5029 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5030
5031 if ((prev->m_len - shortfall) < 8)
5032 shortfall = prev->m_len;
5033
5034 #ifdef notyet /* just do the safe slow thing for now */
5035 if (!M_READONLY(m)) {
5036 if (M_LEADINGSPACE(m) < shorfall) {
5037 void *m_dat;
5038 m_dat = (m->m_flags & M_PKTHDR) ?
5039 m->m_pktdat : m->dat;
5040 memmove(m_dat, mtod(m, void*), m->m_len);
5041 m->m_data = m_dat;
5042 }
5043 } else
5044 #endif /* just do the safe slow thing */
5045 {
5046 struct mbuf * n = NULL;
5047 int newprevlen = prev->m_len - shortfall;
5048
5049 MGET(n, M_NOWAIT, MT_DATA);
5050 if (n == NULL)
5051 return ENOBUFS;
5052 KASSERT(m->m_len + shortfall < MLEN
5053 /*,
5054 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5055
5056 /* first copy the data we're stealing from prev */
5057 memcpy(n->m_data, prev->m_data + newprevlen,
5058 shortfall);
5059
5060 /* update prev->m_len accordingly */
5061 prev->m_len -= shortfall;
5062
5063 /* copy data from runt m */
5064 memcpy(n->m_data + shortfall, m->m_data,
5065 m->m_len);
5066
5067 /* n holds what we stole from prev, plus m */
5068 n->m_len = shortfall + m->m_len;
5069
5070 /* stitch n into chain and free m */
5071 n->m_next = m->m_next;
5072 prev->m_next = n;
5073 /* KASSERT(m->m_next == NULL); */
5074 m->m_next = NULL;
5075 m_free(m);
5076 m = n; /* for continuing loop */
5077 }
5078 }
5079 }
5080 return 0;
5081 }
5082
5083 /*
5084 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5085 * pointers to descriptors.
5086 */
5087 static int
5088 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5089 {
5090 struct bge_tx_bd *f = NULL;
5091 uint32_t frag, cur;
5092 uint16_t csum_flags = 0;
5093 uint16_t txbd_tso_flags = 0;
5094 struct txdmamap_pool_entry *dma;
5095 bus_dmamap_t dmamap;
5096 int i = 0;
5097 struct m_tag *mtag;
5098 int use_tso, maxsegsize, error;
5099
5100 cur = frag = *txidx;
5101
5102 if (m_head->m_pkthdr.csum_flags) {
5103 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5104 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5105 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5106 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5107 }
5108
5109 /*
5110 * If we were asked to do an outboard checksum, and the NIC
5111 * has the bug where it sometimes adds in the Ethernet padding,
5112 * explicitly pad with zeros so the cksum will be correct either way.
5113 * (For now, do this for all chip versions, until newer
5114 * are confirmed to not require the workaround.)
5115 */
5116 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5117 #ifdef notyet
5118 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5119 #endif
5120 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5121 goto check_dma_bug;
5122
5123 if (bge_cksum_pad(m_head) != 0)
5124 return ENOBUFS;
5125
5126 check_dma_bug:
5127 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5128 goto doit;
5129
5130 /*
5131 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5132 * less than eight bytes. If we encounter a teeny mbuf
5133 * at the end of a chain, we can pad. Otherwise, copy.
5134 */
5135 if (bge_compact_dma_runt(m_head) != 0)
5136 return ENOBUFS;
5137
5138 doit:
5139 dma = SLIST_FIRST(&sc->txdma_list);
5140 if (dma == NULL)
5141 return ENOBUFS;
5142 dmamap = dma->dmamap;
5143
5144 /*
5145 * Set up any necessary TSO state before we start packing...
5146 */
5147 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5148 if (!use_tso) {
5149 maxsegsize = 0;
5150 } else { /* TSO setup */
5151 unsigned mss;
5152 struct ether_header *eh;
5153 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5154 struct mbuf * m0 = m_head;
5155 struct ip *ip;
5156 struct tcphdr *th;
5157 int iphl, hlen;
5158
5159 /*
5160 * XXX It would be nice if the mbuf pkthdr had offset
5161 * fields for the protocol headers.
5162 */
5163
5164 eh = mtod(m0, struct ether_header *);
5165 switch (htons(eh->ether_type)) {
5166 case ETHERTYPE_IP:
5167 offset = ETHER_HDR_LEN;
5168 break;
5169
5170 case ETHERTYPE_VLAN:
5171 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5172 break;
5173
5174 default:
5175 /*
5176 * Don't support this protocol or encapsulation.
5177 */
5178 return ENOBUFS;
5179 }
5180
5181 /*
5182 * TCP/IP headers are in the first mbuf; we can do
5183 * this the easy way.
5184 */
5185 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5186 hlen = iphl + offset;
5187 if (__predict_false(m0->m_len <
5188 (hlen + sizeof(struct tcphdr)))) {
5189
5190 aprint_debug_dev(sc->bge_dev,
5191 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5192 "not handled yet\n",
5193 m0->m_len, hlen+ sizeof(struct tcphdr));
5194 #ifdef NOTYET
5195 /*
5196 * XXX jonathan (at) NetBSD.org: untested.
5197 * how to force this branch to be taken?
5198 */
5199 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5200
5201 m_copydata(m0, offset, sizeof(ip), &ip);
5202 m_copydata(m0, hlen, sizeof(th), &th);
5203
5204 ip.ip_len = 0;
5205
5206 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5207 sizeof(ip.ip_len), &ip.ip_len);
5208
5209 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5210 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5211
5212 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5213 sizeof(th.th_sum), &th.th_sum);
5214
5215 hlen += th.th_off << 2;
5216 iptcp_opt_words = hlen;
5217 #else
5218 /*
5219 * if_wm "hard" case not yet supported, can we not
5220 * mandate it out of existence?
5221 */
5222 (void) ip; (void)th; (void) ip_tcp_hlen;
5223
5224 return ENOBUFS;
5225 #endif
5226 } else {
5227 ip = (struct ip *) (mtod(m0, char *) + offset);
5228 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5229 ip_tcp_hlen = iphl + (th->th_off << 2);
5230
5231 /* Total IP/TCP options, in 32-bit words */
5232 iptcp_opt_words = (ip_tcp_hlen
5233 - sizeof(struct tcphdr)
5234 - sizeof(struct ip)) >> 2;
5235 }
5236 if (BGE_IS_575X_PLUS(sc)) {
5237 th->th_sum = 0;
5238 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5239 } else {
5240 /*
5241 * XXX jonathan (at) NetBSD.org: 5705 untested.
5242 * Requires TSO firmware patch for 5701/5703/5704.
5243 */
5244 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5245 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5246 }
5247
5248 mss = m_head->m_pkthdr.segsz;
5249 txbd_tso_flags |=
5250 BGE_TXBDFLAG_CPU_PRE_DMA |
5251 BGE_TXBDFLAG_CPU_POST_DMA;
5252
5253 /*
5254 * Our NIC TSO-assist assumes TSO has standard, optionless
5255 * IPv4 and TCP headers, which total 40 bytes. By default,
5256 * the NIC copies 40 bytes of IP/TCP header from the
5257 * supplied header into the IP/TCP header portion of
5258 * each post-TSO-segment. If the supplied packet has IP or
5259 * TCP options, we need to tell the NIC to copy those extra
5260 * bytes into each post-TSO header, in addition to the normal
5261 * 40-byte IP/TCP header (and to leave space accordingly).
5262 * Unfortunately, the driver encoding of option length
5263 * varies across different ASIC families.
5264 */
5265 tcp_seg_flags = 0;
5266 if (iptcp_opt_words) {
5267 if (BGE_IS_5705_PLUS(sc)) {
5268 tcp_seg_flags =
5269 iptcp_opt_words << 11;
5270 } else {
5271 txbd_tso_flags |=
5272 iptcp_opt_words << 12;
5273 }
5274 }
5275 maxsegsize = mss | tcp_seg_flags;
5276 ip->ip_len = htons(mss + ip_tcp_hlen);
5277
5278 } /* TSO setup */
5279
5280 /*
5281 * Start packing the mbufs in this chain into
5282 * the fragment pointers. Stop when we run out
5283 * of fragments or hit the end of the mbuf chain.
5284 */
5285 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5286 BUS_DMA_NOWAIT);
5287 if (error)
5288 return ENOBUFS;
5289 /*
5290 * Sanity check: avoid coming within 16 descriptors
5291 * of the end of the ring.
5292 */
5293 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5294 BGE_TSO_PRINTF(("%s: "
5295 " dmamap_load_mbuf too close to ring wrap\n",
5296 device_xname(sc->bge_dev)));
5297 goto fail_unload;
5298 }
5299
5300 mtag = sc->ethercom.ec_nvlans ?
5301 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5302
5303
5304 /* Iterate over dmap-map fragments. */
5305 for (i = 0; i < dmamap->dm_nsegs; i++) {
5306 f = &sc->bge_rdata->bge_tx_ring[frag];
5307 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5308 break;
5309
5310 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5311 f->bge_len = dmamap->dm_segs[i].ds_len;
5312
5313 /*
5314 * For 5751 and follow-ons, for TSO we must turn
5315 * off checksum-assist flag in the tx-descr, and
5316 * supply the ASIC-revision-specific encoding
5317 * of TSO flags and segsize.
5318 */
5319 if (use_tso) {
5320 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5321 f->bge_rsvd = maxsegsize;
5322 f->bge_flags = csum_flags | txbd_tso_flags;
5323 } else {
5324 f->bge_rsvd = 0;
5325 f->bge_flags =
5326 (csum_flags | txbd_tso_flags) & 0x0fff;
5327 }
5328 } else {
5329 f->bge_rsvd = 0;
5330 f->bge_flags = csum_flags;
5331 }
5332
5333 if (mtag != NULL) {
5334 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5335 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5336 } else {
5337 f->bge_vlan_tag = 0;
5338 }
5339 cur = frag;
5340 BGE_INC(frag, BGE_TX_RING_CNT);
5341 }
5342
5343 if (i < dmamap->dm_nsegs) {
5344 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5345 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5346 goto fail_unload;
5347 }
5348
5349 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5350 BUS_DMASYNC_PREWRITE);
5351
5352 if (frag == sc->bge_tx_saved_considx) {
5353 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5354 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5355
5356 goto fail_unload;
5357 }
5358
5359 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5360 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5361 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5362 sc->txdma[cur] = dma;
5363 sc->bge_txcnt += dmamap->dm_nsegs;
5364
5365 *txidx = frag;
5366
5367 return 0;
5368
5369 fail_unload:
5370 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5371
5372 return ENOBUFS;
5373 }
5374
5375 /*
5376 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5377 * to the mbuf data regions directly in the transmit descriptors.
5378 */
5379 static void
5380 bge_start(struct ifnet *ifp)
5381 {
5382 struct bge_softc *sc;
5383 struct mbuf *m_head = NULL;
5384 uint32_t prodidx;
5385 int pkts = 0;
5386
5387 sc = ifp->if_softc;
5388
5389 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5390 return;
5391
5392 prodidx = sc->bge_tx_prodidx;
5393
5394 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5395 IFQ_POLL(&ifp->if_snd, m_head);
5396 if (m_head == NULL)
5397 break;
5398
5399 #if 0
5400 /*
5401 * XXX
5402 * safety overkill. If this is a fragmented packet chain
5403 * with delayed TCP/UDP checksums, then only encapsulate
5404 * it if we have enough descriptors to handle the entire
5405 * chain at once.
5406 * (paranoia -- may not actually be needed)
5407 */
5408 if (m_head->m_flags & M_FIRSTFRAG &&
5409 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5410 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5411 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5412 ifp->if_flags |= IFF_OACTIVE;
5413 break;
5414 }
5415 }
5416 #endif
5417
5418 /*
5419 * Pack the data into the transmit ring. If we
5420 * don't have room, set the OACTIVE flag and wait
5421 * for the NIC to drain the ring.
5422 */
5423 if (bge_encap(sc, m_head, &prodidx)) {
5424 ifp->if_flags |= IFF_OACTIVE;
5425 break;
5426 }
5427
5428 /* now we are committed to transmit the packet */
5429 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5430 pkts++;
5431
5432 /*
5433 * If there's a BPF listener, bounce a copy of this frame
5434 * to him.
5435 */
5436 bpf_mtap(ifp, m_head);
5437 }
5438 if (pkts == 0)
5439 return;
5440
5441 /* Transmit */
5442 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5443 /* 5700 b2 errata */
5444 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5445 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5446
5447 sc->bge_tx_prodidx = prodidx;
5448
5449 /*
5450 * Set a timeout in case the chip goes out to lunch.
5451 */
5452 ifp->if_timer = 5;
5453 }
5454
5455 static int
5456 bge_init(struct ifnet *ifp)
5457 {
5458 struct bge_softc *sc = ifp->if_softc;
5459 const uint16_t *m;
5460 uint32_t mode, reg;
5461 int s, error = 0;
5462
5463 s = splnet();
5464
5465 ifp = &sc->ethercom.ec_if;
5466
5467 /* Cancel pending I/O and flush buffers. */
5468 bge_stop(ifp, 0);
5469
5470 bge_stop_fw(sc);
5471 bge_sig_pre_reset(sc, BGE_RESET_START);
5472 bge_reset(sc);
5473 bge_sig_legacy(sc, BGE_RESET_START);
5474
5475 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5476 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5477 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5478 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5479 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5480
5481 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5482 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5483 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5484 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5485
5486 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5487 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5488 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5489 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5490
5491 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5492 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5493 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5494 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5495 }
5496
5497 bge_sig_post_reset(sc, BGE_RESET_START);
5498
5499 bge_chipinit(sc);
5500
5501 /*
5502 * Init the various state machines, ring
5503 * control blocks and firmware.
5504 */
5505 error = bge_blockinit(sc);
5506 if (error != 0) {
5507 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5508 error);
5509 splx(s);
5510 return error;
5511 }
5512
5513 ifp = &sc->ethercom.ec_if;
5514
5515 /* 5718 step 25, 57XX step 54 */
5516 /* Specify MTU. */
5517 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5518 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5519
5520 /* 5718 step 23 */
5521 /* Load our MAC address. */
5522 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5523 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5524 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5525
5526 /* Enable or disable promiscuous mode as needed. */
5527 if (ifp->if_flags & IFF_PROMISC)
5528 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5529 else
5530 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5531
5532 /* Program multicast filter. */
5533 bge_setmulti(sc);
5534
5535 /* Init RX ring. */
5536 bge_init_rx_ring_std(sc);
5537
5538 /*
5539 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5540 * memory to insure that the chip has in fact read the first
5541 * entry of the ring.
5542 */
5543 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5544 uint32_t v, i;
5545 for (i = 0; i < 10; i++) {
5546 DELAY(20);
5547 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5548 if (v == (MCLBYTES - ETHER_ALIGN))
5549 break;
5550 }
5551 if (i == 10)
5552 aprint_error_dev(sc->bge_dev,
5553 "5705 A0 chip failed to load RX ring\n");
5554 }
5555
5556 /* Init jumbo RX ring. */
5557 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5558 bge_init_rx_ring_jumbo(sc);
5559
5560 /* Init our RX return ring index */
5561 sc->bge_rx_saved_considx = 0;
5562
5563 /* Init TX ring. */
5564 bge_init_tx_ring(sc);
5565
5566 /* 5718 step 63, 57XX step 94 */
5567 /* Enable TX MAC state machine lockup fix. */
5568 mode = CSR_READ_4(sc, BGE_TX_MODE);
5569 if (BGE_IS_5755_PLUS(sc) ||
5570 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5571 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5572 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5573 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5574 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5575 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5576 }
5577
5578 /* Turn on transmitter */
5579 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5580 /* 5718 step 64 */
5581 DELAY(100);
5582
5583 /* 5718 step 65, 57XX step 95 */
5584 /* Turn on receiver */
5585 mode = CSR_READ_4(sc, BGE_RX_MODE);
5586 if (BGE_IS_5755_PLUS(sc))
5587 mode |= BGE_RXMODE_IPV6_ENABLE;
5588 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5589 /* 5718 step 66 */
5590 DELAY(10);
5591
5592 /* 5718 step 12, 57XX step 37 */
5593 /*
5594 * XXX Doucments of 5718 series and 577xx say the recommended value
5595 * is 1, but tg3 set 1 only on 57765 series.
5596 */
5597 if (BGE_IS_57765_PLUS(sc))
5598 reg = 1;
5599 else
5600 reg = 2;
5601 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5602
5603 /* Tell firmware we're alive. */
5604 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5605
5606 /* Enable host interrupts. */
5607 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5608 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5609 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5610
5611 if ((error = bge_ifmedia_upd(ifp)) != 0)
5612 goto out;
5613
5614 ifp->if_flags |= IFF_RUNNING;
5615 ifp->if_flags &= ~IFF_OACTIVE;
5616
5617 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5618
5619 out:
5620 sc->bge_if_flags = ifp->if_flags;
5621 splx(s);
5622
5623 return error;
5624 }
5625
5626 /*
5627 * Set media options.
5628 */
5629 static int
5630 bge_ifmedia_upd(struct ifnet *ifp)
5631 {
5632 struct bge_softc *sc = ifp->if_softc;
5633 struct mii_data *mii = &sc->bge_mii;
5634 struct ifmedia *ifm = &sc->bge_ifmedia;
5635 int rc;
5636
5637 /* If this is a 1000baseX NIC, enable the TBI port. */
5638 if (sc->bge_flags & BGEF_FIBER_TBI) {
5639 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5640 return EINVAL;
5641 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5642 case IFM_AUTO:
5643 /*
5644 * The BCM5704 ASIC appears to have a special
5645 * mechanism for programming the autoneg
5646 * advertisement registers in TBI mode.
5647 */
5648 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5649 uint32_t sgdig;
5650 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5651 if (sgdig & BGE_SGDIGSTS_DONE) {
5652 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5653 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5654 sgdig |= BGE_SGDIGCFG_AUTO |
5655 BGE_SGDIGCFG_PAUSE_CAP |
5656 BGE_SGDIGCFG_ASYM_PAUSE;
5657 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5658 sgdig | BGE_SGDIGCFG_SEND);
5659 DELAY(5);
5660 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5661 sgdig);
5662 }
5663 }
5664 break;
5665 case IFM_1000_SX:
5666 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5667 BGE_CLRBIT(sc, BGE_MAC_MODE,
5668 BGE_MACMODE_HALF_DUPLEX);
5669 } else {
5670 BGE_SETBIT(sc, BGE_MAC_MODE,
5671 BGE_MACMODE_HALF_DUPLEX);
5672 }
5673 DELAY(40);
5674 break;
5675 default:
5676 return EINVAL;
5677 }
5678 /* XXX 802.3x flow control for 1000BASE-SX */
5679 return 0;
5680 }
5681
5682 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5683 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5684 uint32_t reg;
5685
5686 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5687 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5688 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5689 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5690 }
5691 }
5692
5693 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5694 if ((rc = mii_mediachg(mii)) == ENXIO)
5695 return 0;
5696
5697 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5698 uint32_t reg;
5699
5700 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5701 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5702 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5703 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5704 delay(40);
5705 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5706 }
5707 }
5708
5709 /*
5710 * Force an interrupt so that we will call bge_link_upd
5711 * if needed and clear any pending link state attention.
5712 * Without this we are not getting any further interrupts
5713 * for link state changes and thus will not UP the link and
5714 * not be able to send in bge_start. The only way to get
5715 * things working was to receive a packet and get a RX intr.
5716 */
5717 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5718 sc->bge_flags & BGEF_IS_5788)
5719 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5720 else
5721 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5722
5723 return rc;
5724 }
5725
5726 /*
5727 * Report current media status.
5728 */
5729 static void
5730 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5731 {
5732 struct bge_softc *sc = ifp->if_softc;
5733 struct mii_data *mii = &sc->bge_mii;
5734
5735 if (sc->bge_flags & BGEF_FIBER_TBI) {
5736 ifmr->ifm_status = IFM_AVALID;
5737 ifmr->ifm_active = IFM_ETHER;
5738 if (CSR_READ_4(sc, BGE_MAC_STS) &
5739 BGE_MACSTAT_TBI_PCS_SYNCHED)
5740 ifmr->ifm_status |= IFM_ACTIVE;
5741 ifmr->ifm_active |= IFM_1000_SX;
5742 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5743 ifmr->ifm_active |= IFM_HDX;
5744 else
5745 ifmr->ifm_active |= IFM_FDX;
5746 return;
5747 }
5748
5749 mii_pollstat(mii);
5750 ifmr->ifm_status = mii->mii_media_status;
5751 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5752 sc->bge_flowflags;
5753 }
5754
5755 static int
5756 bge_ifflags_cb(struct ethercom *ec)
5757 {
5758 struct ifnet *ifp = &ec->ec_if;
5759 struct bge_softc *sc = ifp->if_softc;
5760 int change = ifp->if_flags ^ sc->bge_if_flags;
5761
5762 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5763 return ENETRESET;
5764 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5765 return 0;
5766
5767 if ((ifp->if_flags & IFF_PROMISC) == 0)
5768 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5769 else
5770 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5771
5772 bge_setmulti(sc);
5773
5774 sc->bge_if_flags = ifp->if_flags;
5775 return 0;
5776 }
5777
5778 static int
5779 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5780 {
5781 struct bge_softc *sc = ifp->if_softc;
5782 struct ifreq *ifr = (struct ifreq *) data;
5783 int s, error = 0;
5784 struct mii_data *mii;
5785
5786 s = splnet();
5787
5788 switch (command) {
5789 case SIOCSIFMEDIA:
5790 /* XXX Flow control is not supported for 1000BASE-SX */
5791 if (sc->bge_flags & BGEF_FIBER_TBI) {
5792 ifr->ifr_media &= ~IFM_ETH_FMASK;
5793 sc->bge_flowflags = 0;
5794 }
5795
5796 /* Flow control requires full-duplex mode. */
5797 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5798 (ifr->ifr_media & IFM_FDX) == 0) {
5799 ifr->ifr_media &= ~IFM_ETH_FMASK;
5800 }
5801 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5802 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5803 /* We can do both TXPAUSE and RXPAUSE. */
5804 ifr->ifr_media |=
5805 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5806 }
5807 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5808 }
5809 /* FALLTHROUGH */
5810 case SIOCGIFMEDIA:
5811 if (sc->bge_flags & BGEF_FIBER_TBI) {
5812 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5813 command);
5814 } else {
5815 mii = &sc->bge_mii;
5816 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5817 command);
5818 }
5819 break;
5820 default:
5821 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5822 break;
5823
5824 error = 0;
5825
5826 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5827 ;
5828 else if (ifp->if_flags & IFF_RUNNING)
5829 bge_setmulti(sc);
5830 break;
5831 }
5832
5833 splx(s);
5834
5835 return error;
5836 }
5837
5838 static void
5839 bge_watchdog(struct ifnet *ifp)
5840 {
5841 struct bge_softc *sc;
5842
5843 sc = ifp->if_softc;
5844
5845 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5846
5847 ifp->if_flags &= ~IFF_RUNNING;
5848 bge_init(ifp);
5849
5850 ifp->if_oerrors++;
5851 }
5852
5853 static void
5854 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5855 {
5856 int i;
5857
5858 BGE_CLRBIT_FLUSH(sc, reg, bit);
5859
5860 for (i = 0; i < 1000; i++) {
5861 delay(100);
5862 if ((CSR_READ_4(sc, reg) & bit) == 0)
5863 return;
5864 }
5865
5866 /*
5867 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5868 * on some environment (and once after boot?)
5869 */
5870 if (reg != BGE_SRS_MODE)
5871 aprint_error_dev(sc->bge_dev,
5872 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5873 (u_long)reg, bit);
5874 }
5875
5876 /*
5877 * Stop the adapter and free any mbufs allocated to the
5878 * RX and TX lists.
5879 */
5880 static void
5881 bge_stop(struct ifnet *ifp, int disable)
5882 {
5883 struct bge_softc *sc = ifp->if_softc;
5884
5885 if (disable)
5886 callout_halt(&sc->bge_timeout, NULL);
5887 else
5888 callout_stop(&sc->bge_timeout);
5889
5890 /* Disable host interrupts. */
5891 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5892 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5893
5894 /*
5895 * Tell firmware we're shutting down.
5896 */
5897 bge_stop_fw(sc);
5898 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5899
5900 /*
5901 * Disable all of the receiver blocks.
5902 */
5903 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5904 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5905 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5906 if (BGE_IS_5700_FAMILY(sc))
5907 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5908 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5909 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5910 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5911
5912 /*
5913 * Disable all of the transmit blocks.
5914 */
5915 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5916 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5917 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5918 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5919 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5920 if (BGE_IS_5700_FAMILY(sc))
5921 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5922 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5923
5924 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5925 delay(40);
5926
5927 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5928
5929 /*
5930 * Shut down all of the memory managers and related
5931 * state machines.
5932 */
5933 /* 5718 step 5a,5b */
5934 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5935 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5936 if (BGE_IS_5700_FAMILY(sc))
5937 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5938
5939 /* 5718 step 5c,5d */
5940 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5941 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5942
5943 if (BGE_IS_5700_FAMILY(sc)) {
5944 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5945 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5946 }
5947
5948 bge_reset(sc);
5949 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5950 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5951
5952 /*
5953 * Keep the ASF firmware running if up.
5954 */
5955 if (sc->bge_asf_mode & ASF_STACKUP)
5956 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5957 else
5958 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5959
5960 /* Free the RX lists. */
5961 bge_free_rx_ring_std(sc);
5962
5963 /* Free jumbo RX list. */
5964 if (BGE_IS_JUMBO_CAPABLE(sc))
5965 bge_free_rx_ring_jumbo(sc);
5966
5967 /* Free TX buffers. */
5968 bge_free_tx_ring(sc);
5969
5970 /*
5971 * Isolate/power down the PHY.
5972 */
5973 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5974 mii_down(&sc->bge_mii);
5975
5976 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5977
5978 /* Clear MAC's link state (PHY may still have link UP). */
5979 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5980
5981 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5982 }
5983
5984 static void
5985 bge_link_upd(struct bge_softc *sc)
5986 {
5987 struct ifnet *ifp = &sc->ethercom.ec_if;
5988 struct mii_data *mii = &sc->bge_mii;
5989 uint32_t status;
5990 int link;
5991
5992 /* Clear 'pending link event' flag */
5993 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5994
5995 /*
5996 * Process link state changes.
5997 * Grrr. The link status word in the status block does
5998 * not work correctly on the BCM5700 rev AX and BX chips,
5999 * according to all available information. Hence, we have
6000 * to enable MII interrupts in order to properly obtain
6001 * async link changes. Unfortunately, this also means that
6002 * we have to read the MAC status register to detect link
6003 * changes, thereby adding an additional register access to
6004 * the interrupt handler.
6005 */
6006
6007 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6008 status = CSR_READ_4(sc, BGE_MAC_STS);
6009 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6010 mii_pollstat(mii);
6011
6012 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6013 mii->mii_media_status & IFM_ACTIVE &&
6014 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6015 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6016 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6017 (!(mii->mii_media_status & IFM_ACTIVE) ||
6018 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6019 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6020
6021 /* Clear the interrupt */
6022 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6023 BGE_EVTENB_MI_INTERRUPT);
6024 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6025 BRGPHY_MII_ISR);
6026 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6027 BRGPHY_MII_IMR, BRGPHY_INTRS);
6028 }
6029 return;
6030 }
6031
6032 if (sc->bge_flags & BGEF_FIBER_TBI) {
6033 status = CSR_READ_4(sc, BGE_MAC_STS);
6034 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6035 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6036 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6037 if (BGE_ASICREV(sc->bge_chipid)
6038 == BGE_ASICREV_BCM5704) {
6039 BGE_CLRBIT(sc, BGE_MAC_MODE,
6040 BGE_MACMODE_TBI_SEND_CFGS);
6041 DELAY(40);
6042 }
6043 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6044 if_link_state_change(ifp, LINK_STATE_UP);
6045 }
6046 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6047 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6048 if_link_state_change(ifp, LINK_STATE_DOWN);
6049 }
6050 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6051 /*
6052 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6053 * bit in status word always set. Workaround this bug by
6054 * reading PHY link status directly.
6055 */
6056 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6057 BGE_STS_LINK : 0;
6058
6059 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6060 mii_pollstat(mii);
6061
6062 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6063 mii->mii_media_status & IFM_ACTIVE &&
6064 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6065 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6066 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6067 (!(mii->mii_media_status & IFM_ACTIVE) ||
6068 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6069 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6070 }
6071 } else {
6072 /*
6073 * For controllers that call mii_tick, we have to poll
6074 * link status.
6075 */
6076 mii_pollstat(mii);
6077 }
6078
6079 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6080 uint32_t reg, scale;
6081
6082 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6083 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6084 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6085 scale = 65;
6086 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6087 scale = 6;
6088 else
6089 scale = 12;
6090
6091 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6092 ~BGE_MISCCFG_TIMER_PRESCALER;
6093 reg |= scale << 1;
6094 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6095 }
6096 /* Clear the attention */
6097 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6098 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6099 BGE_MACSTAT_LINK_CHANGED);
6100 }
6101
6102 static int
6103 bge_sysctl_verify(SYSCTLFN_ARGS)
6104 {
6105 int error, t;
6106 struct sysctlnode node;
6107
6108 node = *rnode;
6109 t = *(int*)rnode->sysctl_data;
6110 node.sysctl_data = &t;
6111 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6112 if (error || newp == NULL)
6113 return error;
6114
6115 #if 0
6116 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6117 node.sysctl_num, rnode->sysctl_num));
6118 #endif
6119
6120 if (node.sysctl_num == bge_rxthresh_nodenum) {
6121 if (t < 0 || t >= NBGE_RX_THRESH)
6122 return EINVAL;
6123 bge_update_all_threshes(t);
6124 } else
6125 return EINVAL;
6126
6127 *(int*)rnode->sysctl_data = t;
6128
6129 return 0;
6130 }
6131
6132 /*
6133 * Set up sysctl(3) MIB, hw.bge.*.
6134 */
6135 static void
6136 bge_sysctl_init(struct bge_softc *sc)
6137 {
6138 int rc, bge_root_num;
6139 const struct sysctlnode *node;
6140
6141 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6142 0, CTLTYPE_NODE, "bge",
6143 SYSCTL_DESCR("BGE interface controls"),
6144 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6145 goto out;
6146 }
6147
6148 bge_root_num = node->sysctl_num;
6149
6150 /* BGE Rx interrupt mitigation level */
6151 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6152 CTLFLAG_READWRITE,
6153 CTLTYPE_INT, "rx_lvl",
6154 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6155 bge_sysctl_verify, 0,
6156 &bge_rx_thresh_lvl,
6157 0, CTL_HW, bge_root_num, CTL_CREATE,
6158 CTL_EOL)) != 0) {
6159 goto out;
6160 }
6161
6162 bge_rxthresh_nodenum = node->sysctl_num;
6163
6164 return;
6165
6166 out:
6167 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6168 }
6169
6170 #ifdef BGE_DEBUG
6171 void
6172 bge_debug_info(struct bge_softc *sc)
6173 {
6174
6175 printf("Hardware Flags:\n");
6176 if (BGE_IS_57765_PLUS(sc))
6177 printf(" - 57765 Plus\n");
6178 if (BGE_IS_5717_PLUS(sc))
6179 printf(" - 5717 Plus\n");
6180 if (BGE_IS_5755_PLUS(sc))
6181 printf(" - 5755 Plus\n");
6182 if (BGE_IS_575X_PLUS(sc))
6183 printf(" - 575X Plus\n");
6184 if (BGE_IS_5705_PLUS(sc))
6185 printf(" - 5705 Plus\n");
6186 if (BGE_IS_5714_FAMILY(sc))
6187 printf(" - 5714 Family\n");
6188 if (BGE_IS_5700_FAMILY(sc))
6189 printf(" - 5700 Family\n");
6190 if (sc->bge_flags & BGEF_IS_5788)
6191 printf(" - 5788\n");
6192 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6193 printf(" - Supports Jumbo Frames\n");
6194 if (sc->bge_flags & BGEF_NO_EEPROM)
6195 printf(" - No EEPROM\n");
6196 if (sc->bge_flags & BGEF_PCIX)
6197 printf(" - PCI-X Bus\n");
6198 if (sc->bge_flags & BGEF_PCIE)
6199 printf(" - PCI Express Bus\n");
6200 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6201 printf(" - RX Alignment Bug\n");
6202 if (sc->bge_flags & BGEF_APE)
6203 printf(" - APE\n");
6204 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6205 printf(" - CPMU\n");
6206 if (sc->bge_flags & BGEF_TSO)
6207 printf(" - TSO\n");
6208 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6209 printf(" - TAGGED_STATUS\n");
6210
6211 /* PHY related */
6212 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6213 printf(" - No 3 LEDs\n");
6214 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6215 printf(" - CRC bug\n");
6216 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6217 printf(" - ADC bug\n");
6218 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6219 printf(" - 5704 A0 bug\n");
6220 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6221 printf(" - jitter bug\n");
6222 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6223 printf(" - BER bug\n");
6224 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6225 printf(" - adjust trim\n");
6226 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6227 printf(" - no wirespeed\n");
6228
6229 /* ASF related */
6230 if (sc->bge_asf_mode & ASF_ENABLE)
6231 printf(" - ASF enable\n");
6232 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6233 printf(" - ASF new handshake\n");
6234 if (sc->bge_asf_mode & ASF_STACKUP)
6235 printf(" - ASF stackup\n");
6236 }
6237 #endif /* BGE_DEBUG */
6238
6239 static int
6240 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6241 {
6242 prop_dictionary_t dict;
6243 prop_data_t ea;
6244
6245 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6246 return 1;
6247
6248 dict = device_properties(sc->bge_dev);
6249 ea = prop_dictionary_get(dict, "mac-address");
6250 if (ea != NULL) {
6251 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6252 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6253 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6254 return 0;
6255 }
6256
6257 return 1;
6258 }
6259
6260 static int
6261 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6262 {
6263 uint32_t mac_addr;
6264
6265 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6266 if ((mac_addr >> 16) == 0x484b) {
6267 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6268 ether_addr[1] = (uint8_t)mac_addr;
6269 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6270 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6271 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6272 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6273 ether_addr[5] = (uint8_t)mac_addr;
6274 return 0;
6275 }
6276 return 1;
6277 }
6278
6279 static int
6280 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6281 {
6282 int mac_offset = BGE_EE_MAC_OFFSET;
6283
6284 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6285 mac_offset = BGE_EE_MAC_OFFSET_5906;
6286
6287 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6288 ETHER_ADDR_LEN));
6289 }
6290
6291 static int
6292 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6293 {
6294
6295 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6296 return 1;
6297
6298 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6299 ETHER_ADDR_LEN));
6300 }
6301
6302 static int
6303 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6304 {
6305 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6306 /* NOTE: Order is critical */
6307 bge_get_eaddr_fw,
6308 bge_get_eaddr_mem,
6309 bge_get_eaddr_nvram,
6310 bge_get_eaddr_eeprom,
6311 NULL
6312 };
6313 const bge_eaddr_fcn_t *func;
6314
6315 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6316 if ((*func)(sc, eaddr) == 0)
6317 break;
6318 }
6319 return (*func == NULL ? ENXIO : 0);
6320 }
6321