Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.289
      1 /*	$NetBSD: if_bge.c,v 1.289 2015/05/17 14:23:15 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.289 2015/05/17 14:23:15 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rndsource.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 #ifdef __HAVE_PCI_MSI_MSIX
    187 static int bge_can_use_msi(struct bge_softc *);
    188 #endif
    189 static int bge_probe(device_t, cfdata_t, void *);
    190 static void bge_attach(device_t, device_t, void *);
    191 static int bge_detach(device_t, int);
    192 static void bge_release_resources(struct bge_softc *);
    193 
    194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    199 
    200 static void bge_txeof(struct bge_softc *);
    201 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    202 static void bge_rxeof(struct bge_softc *);
    203 
    204 static void bge_asf_driver_up (struct bge_softc *);
    205 static void bge_tick(void *);
    206 static void bge_stats_update(struct bge_softc *);
    207 static void bge_stats_update_regs(struct bge_softc *);
    208 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    209 
    210 static int bge_intr(void *);
    211 static void bge_start(struct ifnet *);
    212 static int bge_ifflags_cb(struct ethercom *);
    213 static int bge_ioctl(struct ifnet *, u_long, void *);
    214 static int bge_init(struct ifnet *);
    215 static void bge_stop(struct ifnet *, int);
    216 static void bge_watchdog(struct ifnet *);
    217 static int bge_ifmedia_upd(struct ifnet *);
    218 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    219 
    220 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    222 
    223 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    224 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    225 static void bge_setmulti(struct bge_softc *);
    226 
    227 static void bge_handle_events(struct bge_softc *);
    228 static int bge_alloc_jumbo_mem(struct bge_softc *);
    229 #if 0 /* XXX */
    230 static void bge_free_jumbo_mem(struct bge_softc *);
    231 #endif
    232 static void *bge_jalloc(struct bge_softc *);
    233 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    234 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    235 			       bus_dmamap_t);
    236 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    237 static int bge_init_rx_ring_std(struct bge_softc *);
    238 static void bge_free_rx_ring_std(struct bge_softc *);
    239 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    240 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    241 static void bge_free_tx_ring(struct bge_softc *);
    242 static int bge_init_tx_ring(struct bge_softc *);
    243 
    244 static int bge_chipinit(struct bge_softc *);
    245 static int bge_blockinit(struct bge_softc *);
    246 static int bge_phy_addr(struct bge_softc *);
    247 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    248 static void bge_writemem_ind(struct bge_softc *, int, int);
    249 static void bge_writembx(struct bge_softc *, int, int);
    250 static void bge_writembx_flush(struct bge_softc *, int, int);
    251 static void bge_writemem_direct(struct bge_softc *, int, int);
    252 static void bge_writereg_ind(struct bge_softc *, int, int);
    253 static void bge_set_max_readrq(struct bge_softc *);
    254 
    255 static int bge_miibus_readreg(device_t, int, int);
    256 static void bge_miibus_writereg(device_t, int, int, int);
    257 static void bge_miibus_statchg(struct ifnet *);
    258 
    259 #define BGE_RESET_SHUTDOWN	0
    260 #define	BGE_RESET_START		1
    261 #define	BGE_RESET_SUSPEND	2
    262 static void bge_sig_post_reset(struct bge_softc *, int);
    263 static void bge_sig_legacy(struct bge_softc *, int);
    264 static void bge_sig_pre_reset(struct bge_softc *, int);
    265 static void bge_wait_for_event_ack(struct bge_softc *);
    266 static void bge_stop_fw(struct bge_softc *);
    267 static int bge_reset(struct bge_softc *);
    268 static void bge_link_upd(struct bge_softc *);
    269 static void bge_sysctl_init(struct bge_softc *);
    270 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    271 
    272 static void bge_ape_lock_init(struct bge_softc *);
    273 static void bge_ape_read_fw_ver(struct bge_softc *);
    274 static int bge_ape_lock(struct bge_softc *, int);
    275 static void bge_ape_unlock(struct bge_softc *, int);
    276 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    277 static void bge_ape_driver_state_change(struct bge_softc *, int);
    278 
    279 #ifdef BGE_DEBUG
    280 #define DPRINTF(x)	if (bgedebug) printf x
    281 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    282 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    283 int	bgedebug = 0;
    284 int	bge_tso_debug = 0;
    285 void		bge_debug_info(struct bge_softc *);
    286 #else
    287 #define DPRINTF(x)
    288 #define DPRINTFN(n,x)
    289 #define BGE_TSO_PRINTF(x)
    290 #endif
    291 
    292 #ifdef BGE_EVENT_COUNTERS
    293 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    294 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    295 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    296 #else
    297 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    298 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    299 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    300 #endif
    301 
    302 static const struct bge_product {
    303 	pci_vendor_id_t		bp_vendor;
    304 	pci_product_id_t	bp_product;
    305 	const char		*bp_name;
    306 } bge_products[] = {
    307 	/*
    308 	 * The BCM5700 documentation seems to indicate that the hardware
    309 	 * still has the Alteon vendor ID burned into it, though it
    310 	 * should always be overridden by the value in the EEPROM.  We'll
    311 	 * check for it anyway.
    312 	 */
    313 	{ PCI_VENDOR_ALTEON,
    314 	  PCI_PRODUCT_ALTEON_BCM5700,
    315 	  "Broadcom BCM5700 Gigabit Ethernet",
    316 	  },
    317 	{ PCI_VENDOR_ALTEON,
    318 	  PCI_PRODUCT_ALTEON_BCM5701,
    319 	  "Broadcom BCM5701 Gigabit Ethernet",
    320 	  },
    321 	{ PCI_VENDOR_ALTIMA,
    322 	  PCI_PRODUCT_ALTIMA_AC1000,
    323 	  "Altima AC1000 Gigabit Ethernet",
    324 	  },
    325 	{ PCI_VENDOR_ALTIMA,
    326 	  PCI_PRODUCT_ALTIMA_AC1001,
    327 	  "Altima AC1001 Gigabit Ethernet",
    328 	   },
    329 	{ PCI_VENDOR_ALTIMA,
    330 	  PCI_PRODUCT_ALTIMA_AC1003,
    331 	  "Altima AC1003 Gigabit Ethernet",
    332 	   },
    333 	{ PCI_VENDOR_ALTIMA,
    334 	  PCI_PRODUCT_ALTIMA_AC9100,
    335 	  "Altima AC9100 Gigabit Ethernet",
    336 	  },
    337 	{ PCI_VENDOR_APPLE,
    338 	  PCI_PRODUCT_APPLE_BCM5701,
    339 	  "APPLE BCM5701 Gigabit Ethernet",
    340 	  },
    341 	{ PCI_VENDOR_BROADCOM,
    342 	  PCI_PRODUCT_BROADCOM_BCM5700,
    343 	  "Broadcom BCM5700 Gigabit Ethernet",
    344 	  },
    345 	{ PCI_VENDOR_BROADCOM,
    346 	  PCI_PRODUCT_BROADCOM_BCM5701,
    347 	  "Broadcom BCM5701 Gigabit Ethernet",
    348 	  },
    349 	{ PCI_VENDOR_BROADCOM,
    350 	  PCI_PRODUCT_BROADCOM_BCM5702,
    351 	  "Broadcom BCM5702 Gigabit Ethernet",
    352 	  },
    353 	{ PCI_VENDOR_BROADCOM,
    354 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    355 	  "Broadcom BCM5702X Gigabit Ethernet" },
    356 	{ PCI_VENDOR_BROADCOM,
    357 	  PCI_PRODUCT_BROADCOM_BCM5703,
    358 	  "Broadcom BCM5703 Gigabit Ethernet",
    359 	  },
    360 	{ PCI_VENDOR_BROADCOM,
    361 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    362 	  "Broadcom BCM5703X Gigabit Ethernet",
    363 	  },
    364 	{ PCI_VENDOR_BROADCOM,
    365 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    366 	  "Broadcom BCM5703 Gigabit Ethernet",
    367 	  },
    368 	{ PCI_VENDOR_BROADCOM,
    369 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    370 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    371 	  },
    372 	{ PCI_VENDOR_BROADCOM,
    373 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    374 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    375 	  },
    376 	{ PCI_VENDOR_BROADCOM,
    377 	  PCI_PRODUCT_BROADCOM_BCM5705,
    378 	  "Broadcom BCM5705 Gigabit Ethernet",
    379 	  },
    380 	{ PCI_VENDOR_BROADCOM,
    381 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    382 	  "Broadcom BCM5705F Gigabit Ethernet",
    383 	  },
    384 	{ PCI_VENDOR_BROADCOM,
    385 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    386 	  "Broadcom BCM5705K Gigabit Ethernet",
    387 	  },
    388 	{ PCI_VENDOR_BROADCOM,
    389 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    390 	  "Broadcom BCM5705M Gigabit Ethernet",
    391 	  },
    392 	{ PCI_VENDOR_BROADCOM,
    393 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    394 	  "Broadcom BCM5705M Gigabit Ethernet",
    395 	  },
    396 	{ PCI_VENDOR_BROADCOM,
    397 	  PCI_PRODUCT_BROADCOM_BCM5714,
    398 	  "Broadcom BCM5714 Gigabit Ethernet",
    399 	  },
    400 	{ PCI_VENDOR_BROADCOM,
    401 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    402 	  "Broadcom BCM5714S Gigabit Ethernet",
    403 	  },
    404 	{ PCI_VENDOR_BROADCOM,
    405 	  PCI_PRODUCT_BROADCOM_BCM5715,
    406 	  "Broadcom BCM5715 Gigabit Ethernet",
    407 	  },
    408 	{ PCI_VENDOR_BROADCOM,
    409 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    410 	  "Broadcom BCM5715S Gigabit Ethernet",
    411 	  },
    412 	{ PCI_VENDOR_BROADCOM,
    413 	  PCI_PRODUCT_BROADCOM_BCM5717,
    414 	  "Broadcom BCM5717 Gigabit Ethernet",
    415 	  },
    416 	{ PCI_VENDOR_BROADCOM,
    417 	  PCI_PRODUCT_BROADCOM_BCM5718,
    418 	  "Broadcom BCM5718 Gigabit Ethernet",
    419 	  },
    420 	{ PCI_VENDOR_BROADCOM,
    421 	  PCI_PRODUCT_BROADCOM_BCM5719,
    422 	  "Broadcom BCM5719 Gigabit Ethernet",
    423 	  },
    424 	{ PCI_VENDOR_BROADCOM,
    425 	  PCI_PRODUCT_BROADCOM_BCM5720,
    426 	  "Broadcom BCM5720 Gigabit Ethernet",
    427 	  },
    428 	{ PCI_VENDOR_BROADCOM,
    429 	  PCI_PRODUCT_BROADCOM_BCM5721,
    430 	  "Broadcom BCM5721 Gigabit Ethernet",
    431 	  },
    432 	{ PCI_VENDOR_BROADCOM,
    433 	  PCI_PRODUCT_BROADCOM_BCM5722,
    434 	  "Broadcom BCM5722 Gigabit Ethernet",
    435 	  },
    436 	{ PCI_VENDOR_BROADCOM,
    437 	  PCI_PRODUCT_BROADCOM_BCM5723,
    438 	  "Broadcom BCM5723 Gigabit Ethernet",
    439 	  },
    440 	{ PCI_VENDOR_BROADCOM,
    441 	  PCI_PRODUCT_BROADCOM_BCM5750,
    442 	  "Broadcom BCM5750 Gigabit Ethernet",
    443 	  },
    444 	{ PCI_VENDOR_BROADCOM,
    445 	  PCI_PRODUCT_BROADCOM_BCM5751,
    446 	  "Broadcom BCM5751 Gigabit Ethernet",
    447 	  },
    448 	{ PCI_VENDOR_BROADCOM,
    449 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    450 	  "Broadcom BCM5751F Gigabit Ethernet",
    451 	  },
    452 	{ PCI_VENDOR_BROADCOM,
    453 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    454 	  "Broadcom BCM5751M Gigabit Ethernet",
    455 	  },
    456 	{ PCI_VENDOR_BROADCOM,
    457 	  PCI_PRODUCT_BROADCOM_BCM5752,
    458 	  "Broadcom BCM5752 Gigabit Ethernet",
    459 	  },
    460 	{ PCI_VENDOR_BROADCOM,
    461 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    462 	  "Broadcom BCM5752M Gigabit Ethernet",
    463 	  },
    464 	{ PCI_VENDOR_BROADCOM,
    465 	  PCI_PRODUCT_BROADCOM_BCM5753,
    466 	  "Broadcom BCM5753 Gigabit Ethernet",
    467 	  },
    468 	{ PCI_VENDOR_BROADCOM,
    469 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    470 	  "Broadcom BCM5753F Gigabit Ethernet",
    471 	  },
    472 	{ PCI_VENDOR_BROADCOM,
    473 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    474 	  "Broadcom BCM5753M Gigabit Ethernet",
    475 	  },
    476 	{ PCI_VENDOR_BROADCOM,
    477 	  PCI_PRODUCT_BROADCOM_BCM5754,
    478 	  "Broadcom BCM5754 Gigabit Ethernet",
    479 	},
    480 	{ PCI_VENDOR_BROADCOM,
    481 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    482 	  "Broadcom BCM5754M Gigabit Ethernet",
    483 	},
    484 	{ PCI_VENDOR_BROADCOM,
    485 	  PCI_PRODUCT_BROADCOM_BCM5755,
    486 	  "Broadcom BCM5755 Gigabit Ethernet",
    487 	},
    488 	{ PCI_VENDOR_BROADCOM,
    489 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    490 	  "Broadcom BCM5755M Gigabit Ethernet",
    491 	},
    492 	{ PCI_VENDOR_BROADCOM,
    493 	  PCI_PRODUCT_BROADCOM_BCM5756,
    494 	  "Broadcom BCM5756 Gigabit Ethernet",
    495 	},
    496 	{ PCI_VENDOR_BROADCOM,
    497 	  PCI_PRODUCT_BROADCOM_BCM5761,
    498 	  "Broadcom BCM5761 Gigabit Ethernet",
    499 	},
    500 	{ PCI_VENDOR_BROADCOM,
    501 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    502 	  "Broadcom BCM5761E Gigabit Ethernet",
    503 	},
    504 	{ PCI_VENDOR_BROADCOM,
    505 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    506 	  "Broadcom BCM5761S Gigabit Ethernet",
    507 	},
    508 	{ PCI_VENDOR_BROADCOM,
    509 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    510 	  "Broadcom BCM5761SE Gigabit Ethernet",
    511 	},
    512 	{ PCI_VENDOR_BROADCOM,
    513 	  PCI_PRODUCT_BROADCOM_BCM5764,
    514 	  "Broadcom BCM5764 Gigabit Ethernet",
    515 	  },
    516 	{ PCI_VENDOR_BROADCOM,
    517 	  PCI_PRODUCT_BROADCOM_BCM5780,
    518 	  "Broadcom BCM5780 Gigabit Ethernet",
    519 	  },
    520 	{ PCI_VENDOR_BROADCOM,
    521 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    522 	  "Broadcom BCM5780S Gigabit Ethernet",
    523 	  },
    524 	{ PCI_VENDOR_BROADCOM,
    525 	  PCI_PRODUCT_BROADCOM_BCM5781,
    526 	  "Broadcom BCM5781 Gigabit Ethernet",
    527 	  },
    528 	{ PCI_VENDOR_BROADCOM,
    529 	  PCI_PRODUCT_BROADCOM_BCM5782,
    530 	  "Broadcom BCM5782 Gigabit Ethernet",
    531 	},
    532 	{ PCI_VENDOR_BROADCOM,
    533 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    534 	  "BCM5784M NetLink 1000baseT Ethernet",
    535 	},
    536 	{ PCI_VENDOR_BROADCOM,
    537 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    538 	  "BCM5785F NetLink 10/100 Ethernet",
    539 	},
    540 	{ PCI_VENDOR_BROADCOM,
    541 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    542 	  "BCM5785G NetLink 1000baseT Ethernet",
    543 	},
    544 	{ PCI_VENDOR_BROADCOM,
    545 	  PCI_PRODUCT_BROADCOM_BCM5786,
    546 	  "Broadcom BCM5786 Gigabit Ethernet",
    547 	},
    548 	{ PCI_VENDOR_BROADCOM,
    549 	  PCI_PRODUCT_BROADCOM_BCM5787,
    550 	  "Broadcom BCM5787 Gigabit Ethernet",
    551 	},
    552 	{ PCI_VENDOR_BROADCOM,
    553 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    554 	  "Broadcom BCM5787F 10/100 Ethernet",
    555 	},
    556 	{ PCI_VENDOR_BROADCOM,
    557 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    558 	  "Broadcom BCM5787M Gigabit Ethernet",
    559 	},
    560 	{ PCI_VENDOR_BROADCOM,
    561 	  PCI_PRODUCT_BROADCOM_BCM5788,
    562 	  "Broadcom BCM5788 Gigabit Ethernet",
    563 	  },
    564 	{ PCI_VENDOR_BROADCOM,
    565 	  PCI_PRODUCT_BROADCOM_BCM5789,
    566 	  "Broadcom BCM5789 Gigabit Ethernet",
    567 	  },
    568 	{ PCI_VENDOR_BROADCOM,
    569 	  PCI_PRODUCT_BROADCOM_BCM5901,
    570 	  "Broadcom BCM5901 Fast Ethernet",
    571 	  },
    572 	{ PCI_VENDOR_BROADCOM,
    573 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    574 	  "Broadcom BCM5901A2 Fast Ethernet",
    575 	  },
    576 	{ PCI_VENDOR_BROADCOM,
    577 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    578 	  "Broadcom BCM5903M Fast Ethernet",
    579 	  },
    580 	{ PCI_VENDOR_BROADCOM,
    581 	  PCI_PRODUCT_BROADCOM_BCM5906,
    582 	  "Broadcom BCM5906 Fast Ethernet",
    583 	  },
    584 	{ PCI_VENDOR_BROADCOM,
    585 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    586 	  "Broadcom BCM5906M Fast Ethernet",
    587 	  },
    588 	{ PCI_VENDOR_BROADCOM,
    589 	  PCI_PRODUCT_BROADCOM_BCM57760,
    590 	  "Broadcom BCM57760 Fast Ethernet",
    591 	  },
    592 	{ PCI_VENDOR_BROADCOM,
    593 	  PCI_PRODUCT_BROADCOM_BCM57761,
    594 	  "Broadcom BCM57761 Fast Ethernet",
    595 	  },
    596 	{ PCI_VENDOR_BROADCOM,
    597 	  PCI_PRODUCT_BROADCOM_BCM57762,
    598 	  "Broadcom BCM57762 Gigabit Ethernet",
    599 	  },
    600 	{ PCI_VENDOR_BROADCOM,
    601 	  PCI_PRODUCT_BROADCOM_BCM57765,
    602 	  "Broadcom BCM57765 Fast Ethernet",
    603 	  },
    604 	{ PCI_VENDOR_BROADCOM,
    605 	  PCI_PRODUCT_BROADCOM_BCM57766,
    606 	  "Broadcom BCM57766 Fast Ethernet",
    607 	  },
    608 	{ PCI_VENDOR_BROADCOM,
    609 	  PCI_PRODUCT_BROADCOM_BCM57780,
    610 	  "Broadcom BCM57780 Fast Ethernet",
    611 	  },
    612 	{ PCI_VENDOR_BROADCOM,
    613 	  PCI_PRODUCT_BROADCOM_BCM57781,
    614 	  "Broadcom BCM57781 Fast Ethernet",
    615 	  },
    616 	{ PCI_VENDOR_BROADCOM,
    617 	  PCI_PRODUCT_BROADCOM_BCM57782,
    618 	  "Broadcom BCM57782 Fast Ethernet",
    619 	  },
    620 	{ PCI_VENDOR_BROADCOM,
    621 	  PCI_PRODUCT_BROADCOM_BCM57785,
    622 	  "Broadcom BCM57785 Fast Ethernet",
    623 	  },
    624 	{ PCI_VENDOR_BROADCOM,
    625 	  PCI_PRODUCT_BROADCOM_BCM57786,
    626 	  "Broadcom BCM57786 Fast Ethernet",
    627 	  },
    628 	{ PCI_VENDOR_BROADCOM,
    629 	  PCI_PRODUCT_BROADCOM_BCM57788,
    630 	  "Broadcom BCM57788 Fast Ethernet",
    631 	  },
    632 	{ PCI_VENDOR_BROADCOM,
    633 	  PCI_PRODUCT_BROADCOM_BCM57790,
    634 	  "Broadcom BCM57790 Fast Ethernet",
    635 	  },
    636 	{ PCI_VENDOR_BROADCOM,
    637 	  PCI_PRODUCT_BROADCOM_BCM57791,
    638 	  "Broadcom BCM57791 Fast Ethernet",
    639 	  },
    640 	{ PCI_VENDOR_BROADCOM,
    641 	  PCI_PRODUCT_BROADCOM_BCM57795,
    642 	  "Broadcom BCM57795 Fast Ethernet",
    643 	  },
    644 	{ PCI_VENDOR_SCHNEIDERKOCH,
    645 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    646 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    647 	  },
    648 	{ PCI_VENDOR_3COM,
    649 	  PCI_PRODUCT_3COM_3C996,
    650 	  "3Com 3c996 Gigabit Ethernet",
    651 	  },
    652 	{ PCI_VENDOR_FUJITSU4,
    653 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    654 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    655 	  },
    656 	{ PCI_VENDOR_FUJITSU4,
    657 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    658 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    659 	  },
    660 	{ PCI_VENDOR_FUJITSU4,
    661 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    662 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    663 	  },
    664 	{ 0,
    665 	  0,
    666 	  NULL },
    667 };
    668 
    669 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    670 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    671 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    672 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    673 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    674 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    675 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    676 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    677 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    678 
    679 static const struct bge_revision {
    680 	uint32_t		br_chipid;
    681 	const char		*br_name;
    682 } bge_revisions[] = {
    683 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    684 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    685 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    686 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    687 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    688 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    689 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    690 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    691 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    692 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    693 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    694 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    695 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    696 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    697 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    698 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    699 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    700 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    701 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    702 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    703 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    704 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    705 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    706 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    707 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    708 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    709 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    710 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    711 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    712 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    713 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    714 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    715 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    716 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    717 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    718 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    719 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    720 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    721 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    722 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    723 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    724 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    725 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    726 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    727 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    728 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    729 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    730 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    731 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    732 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    733 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    734 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    735 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    736 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    737 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    738 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    739 	/* 5754 and 5787 share the same ASIC ID */
    740 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    741 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    742 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    743 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    744 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    745 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    746 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    747 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    748 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    749 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    750 
    751 	{ 0, NULL }
    752 };
    753 
    754 /*
    755  * Some defaults for major revisions, so that newer steppings
    756  * that we don't know about have a shot at working.
    757  */
    758 static const struct bge_revision bge_majorrevs[] = {
    759 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    760 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    761 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    762 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    763 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    764 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    765 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    766 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    767 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    768 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    769 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    770 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    771 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    772 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    773 	/* 5754 and 5787 share the same ASIC ID */
    774 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    775 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    776 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    777 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    778 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    779 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    780 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    781 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    782 
    783 	{ 0, NULL }
    784 };
    785 
    786 static int bge_allow_asf = 1;
    787 
    788 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    789     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    790 
    791 static uint32_t
    792 bge_readmem_ind(struct bge_softc *sc, int off)
    793 {
    794 	pcireg_t val;
    795 
    796 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    797 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    798 		return 0;
    799 
    800 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    801 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    802 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    803 	return val;
    804 }
    805 
    806 static void
    807 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    808 {
    809 
    810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    811 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    812 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    813 }
    814 
    815 /*
    816  * PCI Express only
    817  */
    818 static void
    819 bge_set_max_readrq(struct bge_softc *sc)
    820 {
    821 	pcireg_t val;
    822 
    823 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    824 	    + PCIE_DCSR);
    825 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    826 	switch (sc->bge_expmrq) {
    827 	case 2048:
    828 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    829 		break;
    830 	case 4096:
    831 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    832 		break;
    833 	default:
    834 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    835 		break;
    836 	}
    837 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    838 	    + PCIE_DCSR, val);
    839 }
    840 
    841 #ifdef notdef
    842 static uint32_t
    843 bge_readreg_ind(struct bge_softc *sc, int off)
    844 {
    845 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    846 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    847 }
    848 #endif
    849 
    850 static void
    851 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    852 {
    853 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    854 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    855 }
    856 
    857 static void
    858 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    859 {
    860 	CSR_WRITE_4(sc, off, val);
    861 }
    862 
    863 static void
    864 bge_writembx(struct bge_softc *sc, int off, int val)
    865 {
    866 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    867 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    868 
    869 	CSR_WRITE_4(sc, off, val);
    870 }
    871 
    872 static void
    873 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    874 {
    875 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    876 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    877 
    878 	CSR_WRITE_4_FLUSH(sc, off, val);
    879 }
    880 
    881 /*
    882  * Clear all stale locks and select the lock for this driver instance.
    883  */
    884 void
    885 bge_ape_lock_init(struct bge_softc *sc)
    886 {
    887 	struct pci_attach_args *pa = &(sc->bge_pa);
    888 	uint32_t bit, regbase;
    889 	int i;
    890 
    891 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    892 		regbase = BGE_APE_LOCK_GRANT;
    893 	else
    894 		regbase = BGE_APE_PER_LOCK_GRANT;
    895 
    896 	/* Clear any stale locks. */
    897 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    898 		switch (i) {
    899 		case BGE_APE_LOCK_PHY0:
    900 		case BGE_APE_LOCK_PHY1:
    901 		case BGE_APE_LOCK_PHY2:
    902 		case BGE_APE_LOCK_PHY3:
    903 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    904 			break;
    905 		default:
    906 			if (pa->pa_function == 0)
    907 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    908 			else
    909 				bit = (1 << pa->pa_function);
    910 		}
    911 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    912 	}
    913 
    914 	/* Select the PHY lock based on the device's function number. */
    915 	switch (pa->pa_function) {
    916 	case 0:
    917 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    918 		break;
    919 	case 1:
    920 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    921 		break;
    922 	case 2:
    923 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    924 		break;
    925 	case 3:
    926 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    927 		break;
    928 	default:
    929 		printf("%s: PHY lock not supported on function\n",
    930 		    device_xname(sc->bge_dev));
    931 		break;
    932 	}
    933 }
    934 
    935 /*
    936  * Check for APE firmware, set flags, and print version info.
    937  */
    938 void
    939 bge_ape_read_fw_ver(struct bge_softc *sc)
    940 {
    941 	const char *fwtype;
    942 	uint32_t apedata, features;
    943 
    944 	/* Check for a valid APE signature in shared memory. */
    945 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    946 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    947 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    948 		return;
    949 	}
    950 
    951 	/* Check if APE firmware is running. */
    952 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    953 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    954 		printf("%s: APE signature found but FW status not ready! "
    955 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    956 		return;
    957 	}
    958 
    959 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    960 
    961 	/* Fetch the APE firwmare type and version. */
    962 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    963 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    964 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    965 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    966 		fwtype = "NCSI";
    967 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    968 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    969 		fwtype = "DASH";
    970 	} else
    971 		fwtype = "UNKN";
    972 
    973 	/* Print the APE firmware version. */
    974 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    975 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    976 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    977 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    978 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    979 }
    980 
    981 int
    982 bge_ape_lock(struct bge_softc *sc, int locknum)
    983 {
    984 	struct pci_attach_args *pa = &(sc->bge_pa);
    985 	uint32_t bit, gnt, req, status;
    986 	int i, off;
    987 
    988 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    989 		return (0);
    990 
    991 	/* Lock request/grant registers have different bases. */
    992 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    993 		req = BGE_APE_LOCK_REQ;
    994 		gnt = BGE_APE_LOCK_GRANT;
    995 	} else {
    996 		req = BGE_APE_PER_LOCK_REQ;
    997 		gnt = BGE_APE_PER_LOCK_GRANT;
    998 	}
    999 
   1000 	off = 4 * locknum;
   1001 
   1002 	switch (locknum) {
   1003 	case BGE_APE_LOCK_GPIO:
   1004 		/* Lock required when using GPIO. */
   1005 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1006 			return (0);
   1007 		if (pa->pa_function == 0)
   1008 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1009 		else
   1010 			bit = (1 << pa->pa_function);
   1011 		break;
   1012 	case BGE_APE_LOCK_GRC:
   1013 		/* Lock required to reset the device. */
   1014 		if (pa->pa_function == 0)
   1015 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1016 		else
   1017 			bit = (1 << pa->pa_function);
   1018 		break;
   1019 	case BGE_APE_LOCK_MEM:
   1020 		/* Lock required when accessing certain APE memory. */
   1021 		if (pa->pa_function == 0)
   1022 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1023 		else
   1024 			bit = (1 << pa->pa_function);
   1025 		break;
   1026 	case BGE_APE_LOCK_PHY0:
   1027 	case BGE_APE_LOCK_PHY1:
   1028 	case BGE_APE_LOCK_PHY2:
   1029 	case BGE_APE_LOCK_PHY3:
   1030 		/* Lock required when accessing PHYs. */
   1031 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1032 		break;
   1033 	default:
   1034 		return (EINVAL);
   1035 	}
   1036 
   1037 	/* Request a lock. */
   1038 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1039 
   1040 	/* Wait up to 1 second to acquire lock. */
   1041 	for (i = 0; i < 20000; i++) {
   1042 		status = APE_READ_4(sc, gnt + off);
   1043 		if (status == bit)
   1044 			break;
   1045 		DELAY(50);
   1046 	}
   1047 
   1048 	/* Handle any errors. */
   1049 	if (status != bit) {
   1050 		printf("%s: APE lock %d request failed! "
   1051 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1052 		    device_xname(sc->bge_dev),
   1053 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1054 		    status & 0xFFFF);
   1055 		/* Revoke the lock request. */
   1056 		APE_WRITE_4(sc, gnt + off, bit);
   1057 		return (EBUSY);
   1058 	}
   1059 
   1060 	return (0);
   1061 }
   1062 
   1063 void
   1064 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1065 {
   1066 	struct pci_attach_args *pa = &(sc->bge_pa);
   1067 	uint32_t bit, gnt;
   1068 	int off;
   1069 
   1070 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1071 		return;
   1072 
   1073 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1074 		gnt = BGE_APE_LOCK_GRANT;
   1075 	else
   1076 		gnt = BGE_APE_PER_LOCK_GRANT;
   1077 
   1078 	off = 4 * locknum;
   1079 
   1080 	switch (locknum) {
   1081 	case BGE_APE_LOCK_GPIO:
   1082 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1083 			return;
   1084 		if (pa->pa_function == 0)
   1085 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1086 		else
   1087 			bit = (1 << pa->pa_function);
   1088 		break;
   1089 	case BGE_APE_LOCK_GRC:
   1090 		if (pa->pa_function == 0)
   1091 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1092 		else
   1093 			bit = (1 << pa->pa_function);
   1094 		break;
   1095 	case BGE_APE_LOCK_MEM:
   1096 		if (pa->pa_function == 0)
   1097 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1098 		else
   1099 			bit = (1 << pa->pa_function);
   1100 		break;
   1101 	case BGE_APE_LOCK_PHY0:
   1102 	case BGE_APE_LOCK_PHY1:
   1103 	case BGE_APE_LOCK_PHY2:
   1104 	case BGE_APE_LOCK_PHY3:
   1105 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1106 		break;
   1107 	default:
   1108 		return;
   1109 	}
   1110 
   1111 	/* Write and flush for consecutive bge_ape_lock() */
   1112 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1113 }
   1114 
   1115 /*
   1116  * Send an event to the APE firmware.
   1117  */
   1118 void
   1119 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1120 {
   1121 	uint32_t apedata;
   1122 	int i;
   1123 
   1124 	/* NCSI does not support APE events. */
   1125 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1126 		return;
   1127 
   1128 	/* Wait up to 1ms for APE to service previous event. */
   1129 	for (i = 10; i > 0; i--) {
   1130 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1131 			break;
   1132 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1133 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1134 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1135 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1136 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1137 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1138 			break;
   1139 		}
   1140 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1141 		DELAY(100);
   1142 	}
   1143 	if (i == 0) {
   1144 		printf("%s: APE event 0x%08x send timed out\n",
   1145 		    device_xname(sc->bge_dev), event);
   1146 	}
   1147 }
   1148 
   1149 void
   1150 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1151 {
   1152 	uint32_t apedata, event;
   1153 
   1154 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1155 		return;
   1156 
   1157 	switch (kind) {
   1158 	case BGE_RESET_START:
   1159 		/* If this is the first load, clear the load counter. */
   1160 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1161 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1162 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1163 		else {
   1164 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1165 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1166 		}
   1167 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1168 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1169 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1170 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1171 
   1172 		/* Add some version info if bge(4) supports it. */
   1173 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1174 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1175 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1176 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1177 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1178 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1179 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1180 		    BGE_APE_HOST_DRVR_STATE_START);
   1181 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1182 		break;
   1183 	case BGE_RESET_SHUTDOWN:
   1184 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1185 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1186 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1187 		break;
   1188 	case BGE_RESET_SUSPEND:
   1189 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1190 		break;
   1191 	default:
   1192 		return;
   1193 	}
   1194 
   1195 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1196 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1197 }
   1198 
   1199 static uint8_t
   1200 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1201 {
   1202 	uint32_t access, byte = 0;
   1203 	int i;
   1204 
   1205 	/* Lock. */
   1206 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1207 	for (i = 0; i < 8000; i++) {
   1208 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1209 			break;
   1210 		DELAY(20);
   1211 	}
   1212 	if (i == 8000)
   1213 		return 1;
   1214 
   1215 	/* Enable access. */
   1216 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1217 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1218 
   1219 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1220 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1221 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1222 		DELAY(10);
   1223 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1224 			DELAY(10);
   1225 			break;
   1226 		}
   1227 	}
   1228 
   1229 	if (i == BGE_TIMEOUT * 10) {
   1230 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1231 		return 1;
   1232 	}
   1233 
   1234 	/* Get result. */
   1235 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1236 
   1237 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1238 
   1239 	/* Disable access. */
   1240 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1241 
   1242 	/* Unlock. */
   1243 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1244 
   1245 	return 0;
   1246 }
   1247 
   1248 /*
   1249  * Read a sequence of bytes from NVRAM.
   1250  */
   1251 static int
   1252 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1253 {
   1254 	int error = 0, i;
   1255 	uint8_t byte = 0;
   1256 
   1257 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1258 		return 1;
   1259 
   1260 	for (i = 0; i < cnt; i++) {
   1261 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1262 		if (error)
   1263 			break;
   1264 		*(dest + i) = byte;
   1265 	}
   1266 
   1267 	return (error ? 1 : 0);
   1268 }
   1269 
   1270 /*
   1271  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1272  * BCM570x supports both the traditional bitbang interface and an
   1273  * auto access interface for reading the EEPROM. We use the auto
   1274  * access method.
   1275  */
   1276 static uint8_t
   1277 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1278 {
   1279 	int i;
   1280 	uint32_t byte = 0;
   1281 
   1282 	/*
   1283 	 * Enable use of auto EEPROM access so we can avoid
   1284 	 * having to use the bitbang method.
   1285 	 */
   1286 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1287 
   1288 	/* Reset the EEPROM, load the clock period. */
   1289 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1290 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1291 	DELAY(20);
   1292 
   1293 	/* Issue the read EEPROM command. */
   1294 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1295 
   1296 	/* Wait for completion */
   1297 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1298 		DELAY(10);
   1299 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1300 			break;
   1301 	}
   1302 
   1303 	if (i == BGE_TIMEOUT * 10) {
   1304 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1305 		return 1;
   1306 	}
   1307 
   1308 	/* Get result. */
   1309 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1310 
   1311 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 /*
   1317  * Read a sequence of bytes from the EEPROM.
   1318  */
   1319 static int
   1320 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1321 {
   1322 	int error = 0, i;
   1323 	uint8_t byte = 0;
   1324 	char *dest = destv;
   1325 
   1326 	for (i = 0; i < cnt; i++) {
   1327 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1328 		if (error)
   1329 			break;
   1330 		*(dest + i) = byte;
   1331 	}
   1332 
   1333 	return (error ? 1 : 0);
   1334 }
   1335 
   1336 static int
   1337 bge_miibus_readreg(device_t dev, int phy, int reg)
   1338 {
   1339 	struct bge_softc *sc = device_private(dev);
   1340 	uint32_t val;
   1341 	uint32_t autopoll;
   1342 	int i;
   1343 
   1344 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1345 		return 0;
   1346 
   1347 	/* Reading with autopolling on may trigger PCI errors */
   1348 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1349 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1350 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1351 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1352 		DELAY(80);
   1353 	}
   1354 
   1355 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1356 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1357 
   1358 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1359 		delay(10);
   1360 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1361 		if (!(val & BGE_MICOMM_BUSY)) {
   1362 			DELAY(5);
   1363 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1364 			break;
   1365 		}
   1366 	}
   1367 
   1368 	if (i == BGE_TIMEOUT) {
   1369 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1370 		val = 0;
   1371 		goto done;
   1372 	}
   1373 
   1374 done:
   1375 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1376 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1377 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1378 		DELAY(80);
   1379 	}
   1380 
   1381 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1382 
   1383 	if (val & BGE_MICOMM_READFAIL)
   1384 		return 0;
   1385 
   1386 	return (val & 0xFFFF);
   1387 }
   1388 
   1389 static void
   1390 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1391 {
   1392 	struct bge_softc *sc = device_private(dev);
   1393 	uint32_t autopoll;
   1394 	int i;
   1395 
   1396 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1397 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1398 		return;
   1399 
   1400 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1401 		return;
   1402 
   1403 	/* Reading with autopolling on may trigger PCI errors */
   1404 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1405 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1406 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1407 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1408 		DELAY(80);
   1409 	}
   1410 
   1411 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1412 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1413 
   1414 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1415 		delay(10);
   1416 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1417 			delay(5);
   1418 			CSR_READ_4(sc, BGE_MI_COMM);
   1419 			break;
   1420 		}
   1421 	}
   1422 
   1423 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1424 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1425 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1426 		delay(80);
   1427 	}
   1428 
   1429 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1430 
   1431 	if (i == BGE_TIMEOUT)
   1432 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1433 }
   1434 
   1435 static void
   1436 bge_miibus_statchg(struct ifnet *ifp)
   1437 {
   1438 	struct bge_softc *sc = ifp->if_softc;
   1439 	struct mii_data *mii = &sc->bge_mii;
   1440 	uint32_t mac_mode, rx_mode, tx_mode;
   1441 
   1442 	/*
   1443 	 * Get flow control negotiation result.
   1444 	 */
   1445 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1446 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1447 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1448 
   1449 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1450 	    mii->mii_media_status & IFM_ACTIVE &&
   1451 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1452 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1453 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1454 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1455 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1456 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1457 
   1458 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1459 		return;
   1460 
   1461 	/* Set the port mode (MII/GMII) to match the link speed. */
   1462 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1463 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1464 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1465 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1466 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1467 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1468 		mac_mode |= BGE_PORTMODE_GMII;
   1469 	else
   1470 		mac_mode |= BGE_PORTMODE_MII;
   1471 
   1472 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1473 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1474 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1475 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1476 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1477 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1478 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1479 	} else
   1480 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1481 
   1482 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1483 	DELAY(40);
   1484 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1485 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1486 }
   1487 
   1488 /*
   1489  * Update rx threshold levels to values in a particular slot
   1490  * of the interrupt-mitigation table bge_rx_threshes.
   1491  */
   1492 static void
   1493 bge_set_thresh(struct ifnet *ifp, int lvl)
   1494 {
   1495 	struct bge_softc *sc = ifp->if_softc;
   1496 	int s;
   1497 
   1498 	/* For now, just save the new Rx-intr thresholds and record
   1499 	 * that a threshold update is pending.  Updating the hardware
   1500 	 * registers here (even at splhigh()) is observed to
   1501 	 * occasionaly cause glitches where Rx-interrupts are not
   1502 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1503 	 */
   1504 	s = splnet();
   1505 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1506 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1507 	sc->bge_pending_rxintr_change = 1;
   1508 	splx(s);
   1509 }
   1510 
   1511 
   1512 /*
   1513  * Update Rx thresholds of all bge devices
   1514  */
   1515 static void
   1516 bge_update_all_threshes(int lvl)
   1517 {
   1518 	struct ifnet *ifp;
   1519 	const char * const namebuf = "bge";
   1520 	int namelen;
   1521 
   1522 	if (lvl < 0)
   1523 		lvl = 0;
   1524 	else if (lvl >= NBGE_RX_THRESH)
   1525 		lvl = NBGE_RX_THRESH - 1;
   1526 
   1527 	namelen = strlen(namebuf);
   1528 	/*
   1529 	 * Now search all the interfaces for this name/number
   1530 	 */
   1531 	IFNET_FOREACH(ifp) {
   1532 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1533 		      continue;
   1534 		/* We got a match: update if doing auto-threshold-tuning */
   1535 		if (bge_auto_thresh)
   1536 			bge_set_thresh(ifp, lvl);
   1537 	}
   1538 }
   1539 
   1540 /*
   1541  * Handle events that have triggered interrupts.
   1542  */
   1543 static void
   1544 bge_handle_events(struct bge_softc *sc)
   1545 {
   1546 
   1547 	return;
   1548 }
   1549 
   1550 /*
   1551  * Memory management for jumbo frames.
   1552  */
   1553 
   1554 static int
   1555 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1556 {
   1557 	char *ptr, *kva;
   1558 	bus_dma_segment_t	seg;
   1559 	int		i, rseg, state, error;
   1560 	struct bge_jpool_entry   *entry;
   1561 
   1562 	state = error = 0;
   1563 
   1564 	/* Grab a big chunk o' storage. */
   1565 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1566 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1567 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1568 		return ENOBUFS;
   1569 	}
   1570 
   1571 	state = 1;
   1572 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1573 	    BUS_DMA_NOWAIT)) {
   1574 		aprint_error_dev(sc->bge_dev,
   1575 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1576 		error = ENOBUFS;
   1577 		goto out;
   1578 	}
   1579 
   1580 	state = 2;
   1581 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1582 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1583 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1584 		error = ENOBUFS;
   1585 		goto out;
   1586 	}
   1587 
   1588 	state = 3;
   1589 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1590 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1591 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1592 		error = ENOBUFS;
   1593 		goto out;
   1594 	}
   1595 
   1596 	state = 4;
   1597 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1598 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1599 
   1600 	SLIST_INIT(&sc->bge_jfree_listhead);
   1601 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1602 
   1603 	/*
   1604 	 * Now divide it up into 9K pieces and save the addresses
   1605 	 * in an array.
   1606 	 */
   1607 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1608 	for (i = 0; i < BGE_JSLOTS; i++) {
   1609 		sc->bge_cdata.bge_jslots[i] = ptr;
   1610 		ptr += BGE_JLEN;
   1611 		entry = malloc(sizeof(struct bge_jpool_entry),
   1612 		    M_DEVBUF, M_NOWAIT);
   1613 		if (entry == NULL) {
   1614 			aprint_error_dev(sc->bge_dev,
   1615 			    "no memory for jumbo buffer queue!\n");
   1616 			error = ENOBUFS;
   1617 			goto out;
   1618 		}
   1619 		entry->slot = i;
   1620 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1621 				 entry, jpool_entries);
   1622 	}
   1623 out:
   1624 	if (error != 0) {
   1625 		switch (state) {
   1626 		case 4:
   1627 			bus_dmamap_unload(sc->bge_dmatag,
   1628 			    sc->bge_cdata.bge_rx_jumbo_map);
   1629 		case 3:
   1630 			bus_dmamap_destroy(sc->bge_dmatag,
   1631 			    sc->bge_cdata.bge_rx_jumbo_map);
   1632 		case 2:
   1633 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1634 		case 1:
   1635 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1636 			break;
   1637 		default:
   1638 			break;
   1639 		}
   1640 	}
   1641 
   1642 	return error;
   1643 }
   1644 
   1645 /*
   1646  * Allocate a jumbo buffer.
   1647  */
   1648 static void *
   1649 bge_jalloc(struct bge_softc *sc)
   1650 {
   1651 	struct bge_jpool_entry   *entry;
   1652 
   1653 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1654 
   1655 	if (entry == NULL) {
   1656 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1657 		return NULL;
   1658 	}
   1659 
   1660 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1661 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1662 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1663 }
   1664 
   1665 /*
   1666  * Release a jumbo buffer.
   1667  */
   1668 static void
   1669 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1670 {
   1671 	struct bge_jpool_entry *entry;
   1672 	struct bge_softc *sc;
   1673 	int i, s;
   1674 
   1675 	/* Extract the softc struct pointer. */
   1676 	sc = (struct bge_softc *)arg;
   1677 
   1678 	if (sc == NULL)
   1679 		panic("bge_jfree: can't find softc pointer!");
   1680 
   1681 	/* calculate the slot this buffer belongs to */
   1682 
   1683 	i = ((char *)buf
   1684 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1685 
   1686 	if ((i < 0) || (i >= BGE_JSLOTS))
   1687 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1688 
   1689 	s = splvm();
   1690 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1691 	if (entry == NULL)
   1692 		panic("bge_jfree: buffer not in use!");
   1693 	entry->slot = i;
   1694 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1695 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1696 
   1697 	if (__predict_true(m != NULL))
   1698   		pool_cache_put(mb_cache, m);
   1699 	splx(s);
   1700 }
   1701 
   1702 
   1703 /*
   1704  * Initialize a standard receive ring descriptor.
   1705  */
   1706 static int
   1707 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1708     bus_dmamap_t dmamap)
   1709 {
   1710 	struct mbuf		*m_new = NULL;
   1711 	struct bge_rx_bd	*r;
   1712 	int			error;
   1713 
   1714 	if (dmamap == NULL) {
   1715 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1716 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1717 		if (error != 0)
   1718 			return error;
   1719 	}
   1720 
   1721 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1722 
   1723 	if (m == NULL) {
   1724 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1725 		if (m_new == NULL)
   1726 			return ENOBUFS;
   1727 
   1728 		MCLGET(m_new, M_DONTWAIT);
   1729 		if (!(m_new->m_flags & M_EXT)) {
   1730 			m_freem(m_new);
   1731 			return ENOBUFS;
   1732 		}
   1733 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1734 
   1735 	} else {
   1736 		m_new = m;
   1737 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1738 		m_new->m_data = m_new->m_ext.ext_buf;
   1739 	}
   1740 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1741 	    m_adj(m_new, ETHER_ALIGN);
   1742 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1743 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
   1744 		m_freem(m_new);
   1745 		return ENOBUFS;
   1746 	}
   1747 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1748 	    BUS_DMASYNC_PREREAD);
   1749 
   1750 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1751 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1752 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1753 	r->bge_flags = BGE_RXBDFLAG_END;
   1754 	r->bge_len = m_new->m_len;
   1755 	r->bge_idx = i;
   1756 
   1757 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1758 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1759 		i * sizeof (struct bge_rx_bd),
   1760 	    sizeof (struct bge_rx_bd),
   1761 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1762 
   1763 	return 0;
   1764 }
   1765 
   1766 /*
   1767  * Initialize a jumbo receive ring descriptor. This allocates
   1768  * a jumbo buffer from the pool managed internally by the driver.
   1769  */
   1770 static int
   1771 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1772 {
   1773 	struct mbuf *m_new = NULL;
   1774 	struct bge_rx_bd *r;
   1775 	void *buf = NULL;
   1776 
   1777 	if (m == NULL) {
   1778 
   1779 		/* Allocate the mbuf. */
   1780 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1781 		if (m_new == NULL)
   1782 			return ENOBUFS;
   1783 
   1784 		/* Allocate the jumbo buffer */
   1785 		buf = bge_jalloc(sc);
   1786 		if (buf == NULL) {
   1787 			m_freem(m_new);
   1788 			aprint_error_dev(sc->bge_dev,
   1789 			    "jumbo allocation failed -- packet dropped!\n");
   1790 			return ENOBUFS;
   1791 		}
   1792 
   1793 		/* Attach the buffer to the mbuf. */
   1794 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1795 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1796 		    bge_jfree, sc);
   1797 		m_new->m_flags |= M_EXT_RW;
   1798 	} else {
   1799 		m_new = m;
   1800 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1801 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1802 	}
   1803 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1804 	    m_adj(m_new, ETHER_ALIGN);
   1805 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1806 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1807 	    BUS_DMASYNC_PREREAD);
   1808 	/* Set up the descriptor. */
   1809 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1810 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1811 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1812 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1813 	r->bge_len = m_new->m_len;
   1814 	r->bge_idx = i;
   1815 
   1816 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1817 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1818 		i * sizeof (struct bge_rx_bd),
   1819 	    sizeof (struct bge_rx_bd),
   1820 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1821 
   1822 	return 0;
   1823 }
   1824 
   1825 /*
   1826  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1827  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1828  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1829  * the NIC.
   1830  */
   1831 static int
   1832 bge_init_rx_ring_std(struct bge_softc *sc)
   1833 {
   1834 	int i;
   1835 
   1836 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1837 		return 0;
   1838 
   1839 	for (i = 0; i < BGE_SSLOTS; i++) {
   1840 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1841 			return ENOBUFS;
   1842 	}
   1843 
   1844 	sc->bge_std = i - 1;
   1845 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1846 
   1847 	sc->bge_flags |= BGEF_RXRING_VALID;
   1848 
   1849 	return 0;
   1850 }
   1851 
   1852 static void
   1853 bge_free_rx_ring_std(struct bge_softc *sc)
   1854 {
   1855 	int i;
   1856 
   1857 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1858 		return;
   1859 
   1860 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1861 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1862 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1863 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1864 			bus_dmamap_destroy(sc->bge_dmatag,
   1865 			    sc->bge_cdata.bge_rx_std_map[i]);
   1866 		}
   1867 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1868 		    sizeof(struct bge_rx_bd));
   1869 	}
   1870 
   1871 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1872 }
   1873 
   1874 static int
   1875 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1876 {
   1877 	int i;
   1878 	volatile struct bge_rcb *rcb;
   1879 
   1880 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1881 		return 0;
   1882 
   1883 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1884 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1885 			return ENOBUFS;
   1886 	}
   1887 
   1888 	sc->bge_jumbo = i - 1;
   1889 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1890 
   1891 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1892 	rcb->bge_maxlen_flags = 0;
   1893 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1894 
   1895 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1896 
   1897 	return 0;
   1898 }
   1899 
   1900 static void
   1901 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1902 {
   1903 	int i;
   1904 
   1905 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1906 		return;
   1907 
   1908 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1909 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1910 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1911 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1912 		}
   1913 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1914 		    sizeof(struct bge_rx_bd));
   1915 	}
   1916 
   1917 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1918 }
   1919 
   1920 static void
   1921 bge_free_tx_ring(struct bge_softc *sc)
   1922 {
   1923 	int i;
   1924 	struct txdmamap_pool_entry *dma;
   1925 
   1926 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1927 		return;
   1928 
   1929 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1930 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1931 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1932 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1933 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1934 					    link);
   1935 			sc->txdma[i] = 0;
   1936 		}
   1937 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1938 		    sizeof(struct bge_tx_bd));
   1939 	}
   1940 
   1941 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1942 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1943 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1944 		free(dma, M_DEVBUF);
   1945 	}
   1946 
   1947 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1948 }
   1949 
   1950 static int
   1951 bge_init_tx_ring(struct bge_softc *sc)
   1952 {
   1953 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1954 	int i;
   1955 	bus_dmamap_t dmamap;
   1956 	bus_size_t maxsegsz;
   1957 	struct txdmamap_pool_entry *dma;
   1958 
   1959 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1960 		return 0;
   1961 
   1962 	sc->bge_txcnt = 0;
   1963 	sc->bge_tx_saved_considx = 0;
   1964 
   1965 	/* Initialize transmit producer index for host-memory send ring. */
   1966 	sc->bge_tx_prodidx = 0;
   1967 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1968 	/* 5700 b2 errata */
   1969 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1970 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1971 
   1972 	/* NIC-memory send ring not used; initialize to zero. */
   1973 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1974 	/* 5700 b2 errata */
   1975 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1976 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1977 
   1978 	/* Limit DMA segment size for some chips */
   1979 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1980 	    (ifp->if_mtu <= ETHERMTU))
   1981 		maxsegsz = 2048;
   1982 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1983 		maxsegsz = 4096;
   1984 	else
   1985 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1986 	SLIST_INIT(&sc->txdma_list);
   1987 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1988 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1989 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
   1990 		    &dmamap))
   1991 			return ENOBUFS;
   1992 		if (dmamap == NULL)
   1993 			panic("dmamap NULL in bge_init_tx_ring");
   1994 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1995 		if (dma == NULL) {
   1996 			aprint_error_dev(sc->bge_dev,
   1997 			    "can't alloc txdmamap_pool_entry\n");
   1998 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1999 			return ENOMEM;
   2000 		}
   2001 		dma->dmamap = dmamap;
   2002 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2003 	}
   2004 
   2005 	sc->bge_flags |= BGEF_TXRING_VALID;
   2006 
   2007 	return 0;
   2008 }
   2009 
   2010 static void
   2011 bge_setmulti(struct bge_softc *sc)
   2012 {
   2013 	struct ethercom		*ac = &sc->ethercom;
   2014 	struct ifnet		*ifp = &ac->ec_if;
   2015 	struct ether_multi	*enm;
   2016 	struct ether_multistep  step;
   2017 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2018 	uint32_t		h;
   2019 	int			i;
   2020 
   2021 	if (ifp->if_flags & IFF_PROMISC)
   2022 		goto allmulti;
   2023 
   2024 	/* Now program new ones. */
   2025 	ETHER_FIRST_MULTI(step, ac, enm);
   2026 	while (enm != NULL) {
   2027 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2028 			/*
   2029 			 * We must listen to a range of multicast addresses.
   2030 			 * For now, just accept all multicasts, rather than
   2031 			 * trying to set only those filter bits needed to match
   2032 			 * the range.  (At this time, the only use of address
   2033 			 * ranges is for IP multicast routing, for which the
   2034 			 * range is big enough to require all bits set.)
   2035 			 */
   2036 			goto allmulti;
   2037 		}
   2038 
   2039 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2040 
   2041 		/* Just want the 7 least-significant bits. */
   2042 		h &= 0x7f;
   2043 
   2044 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2045 		ETHER_NEXT_MULTI(step, enm);
   2046 	}
   2047 
   2048 	ifp->if_flags &= ~IFF_ALLMULTI;
   2049 	goto setit;
   2050 
   2051  allmulti:
   2052 	ifp->if_flags |= IFF_ALLMULTI;
   2053 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2054 
   2055  setit:
   2056 	for (i = 0; i < 4; i++)
   2057 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2058 }
   2059 
   2060 static void
   2061 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2062 {
   2063 
   2064 	/*
   2065 	 * Some chips don't like this so only do this if ASF is enabled
   2066 	 */
   2067 	if (sc->bge_asf_mode)
   2068 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2069 
   2070 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2071 		switch (type) {
   2072 		case BGE_RESET_START:
   2073 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2074 			    BGE_FW_DRV_STATE_START);
   2075 			break;
   2076 		case BGE_RESET_SHUTDOWN:
   2077 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2078 			    BGE_FW_DRV_STATE_UNLOAD);
   2079 			break;
   2080 		case BGE_RESET_SUSPEND:
   2081 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2082 			    BGE_FW_DRV_STATE_SUSPEND);
   2083 			break;
   2084 		}
   2085 	}
   2086 
   2087 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2088 		bge_ape_driver_state_change(sc, type);
   2089 }
   2090 
   2091 static void
   2092 bge_sig_post_reset(struct bge_softc *sc, int type)
   2093 {
   2094 
   2095 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2096 		switch (type) {
   2097 		case BGE_RESET_START:
   2098 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2099 			    BGE_FW_DRV_STATE_START_DONE);
   2100 			/* START DONE */
   2101 			break;
   2102 		case BGE_RESET_SHUTDOWN:
   2103 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2104 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2105 			break;
   2106 		}
   2107 	}
   2108 
   2109 	if (type == BGE_RESET_SHUTDOWN)
   2110 		bge_ape_driver_state_change(sc, type);
   2111 }
   2112 
   2113 static void
   2114 bge_sig_legacy(struct bge_softc *sc, int type)
   2115 {
   2116 
   2117 	if (sc->bge_asf_mode) {
   2118 		switch (type) {
   2119 		case BGE_RESET_START:
   2120 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2121 			    BGE_FW_DRV_STATE_START);
   2122 			break;
   2123 		case BGE_RESET_SHUTDOWN:
   2124 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2125 			    BGE_FW_DRV_STATE_UNLOAD);
   2126 			break;
   2127 		}
   2128 	}
   2129 }
   2130 
   2131 static void
   2132 bge_wait_for_event_ack(struct bge_softc *sc)
   2133 {
   2134 	int i;
   2135 
   2136 	/* wait up to 2500usec */
   2137 	for (i = 0; i < 250; i++) {
   2138 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2139 			BGE_RX_CPU_DRV_EVENT))
   2140 			break;
   2141 		DELAY(10);
   2142 	}
   2143 }
   2144 
   2145 static void
   2146 bge_stop_fw(struct bge_softc *sc)
   2147 {
   2148 
   2149 	if (sc->bge_asf_mode) {
   2150 		bge_wait_for_event_ack(sc);
   2151 
   2152 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2153 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2154 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2155 
   2156 		bge_wait_for_event_ack(sc);
   2157 	}
   2158 }
   2159 
   2160 static int
   2161 bge_poll_fw(struct bge_softc *sc)
   2162 {
   2163 	uint32_t val;
   2164 	int i;
   2165 
   2166 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2167 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2168 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2169 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2170 				break;
   2171 			DELAY(100);
   2172 		}
   2173 		if (i >= BGE_TIMEOUT) {
   2174 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2175 			return -1;
   2176 		}
   2177 	} else {
   2178 		/*
   2179 		 * Poll the value location we just wrote until
   2180 		 * we see the 1's complement of the magic number.
   2181 		 * This indicates that the firmware initialization
   2182 		 * is complete.
   2183 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2184 		 */
   2185 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2186 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2187 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2188 				break;
   2189 			DELAY(10);
   2190 		}
   2191 
   2192 		if ((i >= BGE_TIMEOUT)
   2193 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2194 			aprint_error_dev(sc->bge_dev,
   2195 			    "firmware handshake timed out, val = %x\n", val);
   2196 			return -1;
   2197 		}
   2198 	}
   2199 
   2200 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2201 		/* tg3 says we have to wait extra time */
   2202 		delay(10 * 1000);
   2203 	}
   2204 
   2205 	return 0;
   2206 }
   2207 
   2208 int
   2209 bge_phy_addr(struct bge_softc *sc)
   2210 {
   2211 	struct pci_attach_args *pa = &(sc->bge_pa);
   2212 	int phy_addr = 1;
   2213 
   2214 	/*
   2215 	 * PHY address mapping for various devices.
   2216 	 *
   2217 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2218 	 * ---------+-------+-------+-------+-------+
   2219 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2220 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2221 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2222 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2223 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2224 	 *
   2225 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2226 	 * ---------+-------+-------+-------+-------+
   2227 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2228 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2229 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2230 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2231 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2232 	 *
   2233 	 * Other addresses may respond but they are not
   2234 	 * IEEE compliant PHYs and should be ignored.
   2235 	 */
   2236 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2237 	case BGE_ASICREV_BCM5717:
   2238 	case BGE_ASICREV_BCM5719:
   2239 	case BGE_ASICREV_BCM5720:
   2240 		phy_addr = pa->pa_function;
   2241 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2242 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2243 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2244 		} else {
   2245 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2246 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2247 		}
   2248 	}
   2249 
   2250 	return phy_addr;
   2251 }
   2252 
   2253 /*
   2254  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2255  * self-test results.
   2256  */
   2257 static int
   2258 bge_chipinit(struct bge_softc *sc)
   2259 {
   2260 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2261 	int i;
   2262 
   2263 	/* Set endianness before we access any non-PCI registers. */
   2264 	misc_ctl = BGE_INIT;
   2265 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2266 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2267 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2268 	    misc_ctl);
   2269 
   2270 	/*
   2271 	 * Clear the MAC statistics block in the NIC's
   2272 	 * internal memory.
   2273 	 */
   2274 	for (i = BGE_STATS_BLOCK;
   2275 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2276 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2277 
   2278 	for (i = BGE_STATUS_BLOCK;
   2279 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2280 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2281 
   2282 	/* 5717 workaround from tg3 */
   2283 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2284 		/* Save */
   2285 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2286 
   2287 		/* Temporary modify MODE_CTL to control TLP */
   2288 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2289 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2290 
   2291 		/* Control TLP */
   2292 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2293 		    BGE_TLP_PHYCTL1);
   2294 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2295 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2296 
   2297 		/* Restore */
   2298 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2299 	}
   2300 
   2301 	if (BGE_IS_57765_FAMILY(sc)) {
   2302 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2303 			/* Save */
   2304 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2305 
   2306 			/* Temporary modify MODE_CTL to control TLP */
   2307 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2308 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2309 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2310 
   2311 			/* Control TLP */
   2312 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2313 			    BGE_TLP_PHYCTL5);
   2314 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2315 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2316 
   2317 			/* Restore */
   2318 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2319 		}
   2320 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2321 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2322 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2323 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2324 
   2325 			/* Save */
   2326 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2327 
   2328 			/* Temporary modify MODE_CTL to control TLP */
   2329 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2330 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2331 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2332 
   2333 			/* Control TLP */
   2334 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2335 			    BGE_TLP_FTSMAX);
   2336 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2337 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2338 			    reg | BGE_TLP_FTSMAX_VAL);
   2339 
   2340 			/* Restore */
   2341 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2342 		}
   2343 
   2344 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2345 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2346 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2347 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2348 	}
   2349 
   2350 	/* Set up the PCI DMA control register. */
   2351 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2352 	if (sc->bge_flags & BGEF_PCIE) {
   2353 		/* Read watermark not used, 128 bytes for write. */
   2354 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2355 		    device_xname(sc->bge_dev)));
   2356 		if (sc->bge_mps >= 256)
   2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2358 		else
   2359 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2360 	} else if (sc->bge_flags & BGEF_PCIX) {
   2361 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2362 		    device_xname(sc->bge_dev)));
   2363 		/* PCI-X bus */
   2364 		if (BGE_IS_5714_FAMILY(sc)) {
   2365 			/* 256 bytes for read and write. */
   2366 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2367 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2368 
   2369 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2370 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2371 			else
   2372 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2373 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2374 			/*
   2375 			 * In the BCM5703, the DMA read watermark should
   2376 			 * be set to less than or equal to the maximum
   2377 			 * memory read byte count of the PCI-X command
   2378 			 * register.
   2379 			 */
   2380 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2381 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2382 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2383 			/* 1536 bytes for read, 384 bytes for write. */
   2384 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2385 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2386 		} else {
   2387 			/* 384 bytes for read and write. */
   2388 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2389 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2390 			    (0x0F);
   2391 		}
   2392 
   2393 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2394 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2395 			uint32_t tmp;
   2396 
   2397 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2398 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2399 			if (tmp == 6 || tmp == 7)
   2400 				dma_rw_ctl |=
   2401 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2402 
   2403 			/* Set PCI-X DMA write workaround. */
   2404 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2405 		}
   2406 	} else {
   2407 		/* Conventional PCI bus: 256 bytes for read and write. */
   2408 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2409 		    device_xname(sc->bge_dev)));
   2410 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2411 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2412 
   2413 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2414 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2415 			dma_rw_ctl |= 0x0F;
   2416 	}
   2417 
   2418 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2419 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2420 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2421 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2422 
   2423 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2424 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2425 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2426 
   2427 	if (BGE_IS_57765_PLUS(sc)) {
   2428 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2429 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2430 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2431 
   2432 		/*
   2433 		 * Enable HW workaround for controllers that misinterpret
   2434 		 * a status tag update and leave interrupts permanently
   2435 		 * disabled.
   2436 		 */
   2437 		if (!BGE_IS_57765_FAMILY(sc) &&
   2438 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
   2439 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2440 	}
   2441 
   2442 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2443 	    dma_rw_ctl);
   2444 
   2445 	/*
   2446 	 * Set up general mode register.
   2447 	 */
   2448 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2449 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2450 		/* Retain Host-2-BMC settings written by APE firmware. */
   2451 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2452 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2453 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2454 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2455 	}
   2456 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2457 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2458 
   2459 	/*
   2460 	 * BCM5701 B5 have a bug causing data corruption when using
   2461 	 * 64-bit DMA reads, which can be terminated early and then
   2462 	 * completed later as 32-bit accesses, in combination with
   2463 	 * certain bridges.
   2464 	 */
   2465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2466 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2467 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2468 
   2469 	/*
   2470 	 * Tell the firmware the driver is running
   2471 	 */
   2472 	if (sc->bge_asf_mode & ASF_STACKUP)
   2473 		mode_ctl |= BGE_MODECTL_STACKUP;
   2474 
   2475 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2476 
   2477 	/*
   2478 	 * Disable memory write invalidate.  Apparently it is not supported
   2479 	 * properly by these devices.
   2480 	 */
   2481 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2482 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2483 
   2484 #ifdef __brokenalpha__
   2485 	/*
   2486 	 * Must insure that we do not cross an 8K (bytes) boundary
   2487 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2488 	 * restriction on some ALPHA platforms with early revision
   2489 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2490 	 */
   2491 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2492 #endif
   2493 
   2494 	/* Set the timer prescaler (always 66MHz) */
   2495 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2496 
   2497 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2498 		DELAY(40);	/* XXX */
   2499 
   2500 		/* Put PHY into ready state */
   2501 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2502 		DELAY(40);
   2503 	}
   2504 
   2505 	return 0;
   2506 }
   2507 
   2508 static int
   2509 bge_blockinit(struct bge_softc *sc)
   2510 {
   2511 	volatile struct bge_rcb	 *rcb;
   2512 	bus_size_t rcb_addr;
   2513 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2514 	bge_hostaddr taddr;
   2515 	uint32_t	dmactl, mimode, val;
   2516 	int		i, limit;
   2517 
   2518 	/*
   2519 	 * Initialize the memory window pointer register so that
   2520 	 * we can access the first 32K of internal NIC RAM. This will
   2521 	 * allow us to set up the TX send ring RCBs and the RX return
   2522 	 * ring RCBs, plus other things which live in NIC memory.
   2523 	 */
   2524 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2525 
   2526 	if (!BGE_IS_5705_PLUS(sc)) {
   2527 		/* 57XX step 33 */
   2528 		/* Configure mbuf memory pool */
   2529 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2530 		    BGE_BUFFPOOL_1);
   2531 
   2532 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2533 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2534 		else
   2535 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2536 
   2537 		/* 57XX step 34 */
   2538 		/* Configure DMA resource pool */
   2539 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2540 		    BGE_DMA_DESCRIPTORS);
   2541 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2542 	}
   2543 
   2544 	/* 5718 step 11, 57XX step 35 */
   2545 	/*
   2546 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2547 	 * recommend these.
   2548 	 */
   2549 	if (BGE_IS_5717_PLUS(sc)) {
   2550 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2551 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2552 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2553 	} else if (BGE_IS_5705_PLUS(sc)) {
   2554 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2555 
   2556 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2557 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2558 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2559 		} else {
   2560 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2561 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2562 		}
   2563 	} else {
   2564 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2565 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2566 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2567 	}
   2568 
   2569 	/* 57XX step 36 */
   2570 	/* Configure DMA resource watermarks */
   2571 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2572 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2573 
   2574 	/* 5718 step 13, 57XX step 38 */
   2575 	/* Enable buffer manager */
   2576 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2577 	/*
   2578 	 * Change the arbitration algorithm of TXMBUF read request to
   2579 	 * round-robin instead of priority based for BCM5719.  When
   2580 	 * TXFIFO is almost empty, RDMA will hold its request until
   2581 	 * TXFIFO is not almost empty.
   2582 	 */
   2583 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2584 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2585 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2586 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2587 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2588 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2589 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2590 
   2591 	/* 57XX step 39 */
   2592 	/* Poll for buffer manager start indication */
   2593 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2594 		DELAY(10);
   2595 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2596 			break;
   2597 	}
   2598 
   2599 	if (i == BGE_TIMEOUT * 2) {
   2600 		aprint_error_dev(sc->bge_dev,
   2601 		    "buffer manager failed to start\n");
   2602 		return ENXIO;
   2603 	}
   2604 
   2605 	/* 57XX step 40 */
   2606 	/* Enable flow-through queues */
   2607 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2608 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2609 
   2610 	/* Wait until queue initialization is complete */
   2611 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2612 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2613 			break;
   2614 		DELAY(10);
   2615 	}
   2616 
   2617 	if (i == BGE_TIMEOUT * 2) {
   2618 		aprint_error_dev(sc->bge_dev,
   2619 		    "flow-through queue init failed\n");
   2620 		return ENXIO;
   2621 	}
   2622 
   2623 	/*
   2624 	 * Summary of rings supported by the controller:
   2625 	 *
   2626 	 * Standard Receive Producer Ring
   2627 	 * - This ring is used to feed receive buffers for "standard"
   2628 	 *   sized frames (typically 1536 bytes) to the controller.
   2629 	 *
   2630 	 * Jumbo Receive Producer Ring
   2631 	 * - This ring is used to feed receive buffers for jumbo sized
   2632 	 *   frames (i.e. anything bigger than the "standard" frames)
   2633 	 *   to the controller.
   2634 	 *
   2635 	 * Mini Receive Producer Ring
   2636 	 * - This ring is used to feed receive buffers for "mini"
   2637 	 *   sized frames to the controller.
   2638 	 * - This feature required external memory for the controller
   2639 	 *   but was never used in a production system.  Should always
   2640 	 *   be disabled.
   2641 	 *
   2642 	 * Receive Return Ring
   2643 	 * - After the controller has placed an incoming frame into a
   2644 	 *   receive buffer that buffer is moved into a receive return
   2645 	 *   ring.  The driver is then responsible to passing the
   2646 	 *   buffer up to the stack.  Many versions of the controller
   2647 	 *   support multiple RR rings.
   2648 	 *
   2649 	 * Send Ring
   2650 	 * - This ring is used for outgoing frames.  Many versions of
   2651 	 *   the controller support multiple send rings.
   2652 	 */
   2653 
   2654 	/* 5718 step 15, 57XX step 41 */
   2655 	/* Initialize the standard RX ring control block */
   2656 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2657 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2658 	/* 5718 step 16 */
   2659 	if (BGE_IS_57765_PLUS(sc)) {
   2660 		/*
   2661 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2662 		 * Bits 15-2 : Maximum RX frame size
   2663 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2664 		 * Bit 0     : Reserved
   2665 		 */
   2666 		rcb->bge_maxlen_flags =
   2667 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2668 	} else if (BGE_IS_5705_PLUS(sc)) {
   2669 		/*
   2670 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2671 		 * Bits 15-2 : Reserved (should be 0)
   2672 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2673 		 * Bit 0     : Reserved
   2674 		 */
   2675 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2676 	} else {
   2677 		/*
   2678 		 * Ring size is always XXX entries
   2679 		 * Bits 31-16: Maximum RX frame size
   2680 		 * Bits 15-2 : Reserved (should be 0)
   2681 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2682 		 * Bit 0     : Reserved
   2683 		 */
   2684 		rcb->bge_maxlen_flags =
   2685 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2686 	}
   2687 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2688 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2689 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2690 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2691 	else
   2692 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2693 	/* Write the standard receive producer ring control block. */
   2694 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2695 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2696 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2697 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2698 
   2699 	/* Reset the standard receive producer ring producer index. */
   2700 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2701 
   2702 	/* 57XX step 42 */
   2703 	/*
   2704 	 * Initialize the jumbo RX ring control block
   2705 	 * We set the 'ring disabled' bit in the flags
   2706 	 * field until we're actually ready to start
   2707 	 * using this ring (i.e. once we set the MTU
   2708 	 * high enough to require it).
   2709 	 */
   2710 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2711 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2712 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2713 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2714 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2715 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2716 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2717 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2718 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2719 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2720 		else
   2721 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2722 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2723 		    rcb->bge_hostaddr.bge_addr_hi);
   2724 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2725 		    rcb->bge_hostaddr.bge_addr_lo);
   2726 		/* Program the jumbo receive producer ring RCB parameters. */
   2727 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2728 		    rcb->bge_maxlen_flags);
   2729 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2730 		/* Reset the jumbo receive producer ring producer index. */
   2731 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2732 	}
   2733 
   2734 	/* 57XX step 43 */
   2735 	/* Disable the mini receive producer ring RCB. */
   2736 	if (BGE_IS_5700_FAMILY(sc)) {
   2737 		/* Set up dummy disabled mini ring RCB */
   2738 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2739 		rcb->bge_maxlen_flags =
   2740 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2741 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2742 		    rcb->bge_maxlen_flags);
   2743 		/* Reset the mini receive producer ring producer index. */
   2744 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2745 
   2746 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2747 		    offsetof(struct bge_ring_data, bge_info),
   2748 		    sizeof (struct bge_gib),
   2749 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2750 	}
   2751 
   2752 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2753 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2754 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2755 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2756 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2757 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2758 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2759 	}
   2760 	/* 5718 step 14, 57XX step 44 */
   2761 	/*
   2762 	 * The BD ring replenish thresholds control how often the
   2763 	 * hardware fetches new BD's from the producer rings in host
   2764 	 * memory.  Setting the value too low on a busy system can
   2765 	 * starve the hardware and recue the throughpout.
   2766 	 *
   2767 	 * Set the BD ring replenish thresholds. The recommended
   2768 	 * values are 1/8th the number of descriptors allocated to
   2769 	 * each ring, but since we try to avoid filling the entire
   2770 	 * ring we set these to the minimal value of 8.  This needs to
   2771 	 * be done on several of the supported chip revisions anyway,
   2772 	 * to work around HW bugs.
   2773 	 */
   2774 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2775 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2776 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2777 
   2778 	/* 5718 step 18 */
   2779 	if (BGE_IS_5717_PLUS(sc)) {
   2780 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2781 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2782 	}
   2783 
   2784 	/* 57XX step 45 */
   2785 	/*
   2786 	 * Disable all send rings by setting the 'ring disabled' bit
   2787 	 * in the flags field of all the TX send ring control blocks,
   2788 	 * located in NIC memory.
   2789 	 */
   2790 	if (BGE_IS_5700_FAMILY(sc)) {
   2791 		/* 5700 to 5704 had 16 send rings. */
   2792 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2793 	} else if (BGE_IS_5717_PLUS(sc)) {
   2794 		limit = BGE_TX_RINGS_5717_MAX;
   2795 	} else if (BGE_IS_57765_FAMILY(sc)) {
   2796 		limit = BGE_TX_RINGS_57765_MAX;
   2797 	} else
   2798 		limit = 1;
   2799 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2800 	for (i = 0; i < limit; i++) {
   2801 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2802 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2803 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2804 		rcb_addr += sizeof(struct bge_rcb);
   2805 	}
   2806 
   2807 	/* 57XX step 46 and 47 */
   2808 	/* Configure send ring RCB 0 (we use only the first ring) */
   2809 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2810 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2811 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2812 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2813 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2814 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2815 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2816 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2817 	else
   2818 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2819 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2820 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2821 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2822 
   2823 	/* 57XX step 48 */
   2824 	/*
   2825 	 * Disable all receive return rings by setting the
   2826 	 * 'ring diabled' bit in the flags field of all the receive
   2827 	 * return ring control blocks, located in NIC memory.
   2828 	 */
   2829 	if (BGE_IS_5717_PLUS(sc)) {
   2830 		/* Should be 17, use 16 until we get an SRAM map. */
   2831 		limit = 16;
   2832 	} else if (BGE_IS_5700_FAMILY(sc))
   2833 		limit = BGE_RX_RINGS_MAX;
   2834 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2835 	    BGE_IS_57765_FAMILY(sc))
   2836 		limit = 4;
   2837 	else
   2838 		limit = 1;
   2839 	/* Disable all receive return rings */
   2840 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2841 	for (i = 0; i < limit; i++) {
   2842 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2843 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2844 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2845 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2846 			BGE_RCB_FLAG_RING_DISABLED));
   2847 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2848 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2849 		    (i * (sizeof(uint64_t))), 0);
   2850 		rcb_addr += sizeof(struct bge_rcb);
   2851 	}
   2852 
   2853 	/* 57XX step 49 */
   2854 	/*
   2855 	 * Set up receive return ring 0.  Note that the NIC address
   2856 	 * for RX return rings is 0x0.  The return rings live entirely
   2857 	 * within the host, so the nicaddr field in the RCB isn't used.
   2858 	 */
   2859 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2860 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2861 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2862 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2863 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2864 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2865 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2866 
   2867 	/* 5718 step 24, 57XX step 53 */
   2868 	/* Set random backoff seed for TX */
   2869 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2870 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2871 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2872 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2873 	    BGE_TX_BACKOFF_SEED_MASK);
   2874 
   2875 	/* 5718 step 26, 57XX step 55 */
   2876 	/* Set inter-packet gap */
   2877 	val = 0x2620;
   2878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2879 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2880 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2881 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2882 
   2883 	/* 5718 step 27, 57XX step 56 */
   2884 	/*
   2885 	 * Specify which ring to use for packets that don't match
   2886 	 * any RX rules.
   2887 	 */
   2888 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2889 
   2890 	/* 5718 step 28, 57XX step 57 */
   2891 	/*
   2892 	 * Configure number of RX lists. One interrupt distribution
   2893 	 * list, sixteen active lists, one bad frames class.
   2894 	 */
   2895 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2896 
   2897 	/* 5718 step 29, 57XX step 58 */
   2898 	/* Inialize RX list placement stats mask. */
   2899 	if (BGE_IS_575X_PLUS(sc)) {
   2900 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2901 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2902 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2903 	} else
   2904 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2905 
   2906 	/* 5718 step 30, 57XX step 59 */
   2907 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2908 
   2909 	/* 5718 step 33, 57XX step 62 */
   2910 	/* Disable host coalescing until we get it set up */
   2911 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2912 
   2913 	/* 5718 step 34, 57XX step 63 */
   2914 	/* Poll to make sure it's shut down. */
   2915 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2916 		DELAY(10);
   2917 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2918 			break;
   2919 	}
   2920 
   2921 	if (i == BGE_TIMEOUT * 2) {
   2922 		aprint_error_dev(sc->bge_dev,
   2923 		    "host coalescing engine failed to idle\n");
   2924 		return ENXIO;
   2925 	}
   2926 
   2927 	/* 5718 step 35, 36, 37 */
   2928 	/* Set up host coalescing defaults */
   2929 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2930 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2931 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2932 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2933 	if (!(BGE_IS_5705_PLUS(sc))) {
   2934 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2935 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2936 	}
   2937 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2938 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2939 
   2940 	/* Set up address of statistics block */
   2941 	if (BGE_IS_5700_FAMILY(sc)) {
   2942 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2943 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2944 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2945 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2946 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2947 	}
   2948 
   2949 	/* 5718 step 38 */
   2950 	/* Set up address of status block */
   2951 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2952 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2953 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2954 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2955 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2956 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2957 
   2958 	/* Set up status block size. */
   2959 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2960 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2961 		val = BGE_STATBLKSZ_FULL;
   2962 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2963 	} else {
   2964 		val = BGE_STATBLKSZ_32BYTE;
   2965 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2966 	}
   2967 
   2968 	/* 5718 step 39, 57XX step 73 */
   2969 	/* Turn on host coalescing state machine */
   2970 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2971 
   2972 	/* 5718 step 40, 57XX step 74 */
   2973 	/* Turn on RX BD completion state machine and enable attentions */
   2974 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2975 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2976 
   2977 	/* 5718 step 41, 57XX step 75 */
   2978 	/* Turn on RX list placement state machine */
   2979 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2980 
   2981 	/* 57XX step 76 */
   2982 	/* Turn on RX list selector state machine. */
   2983 	if (!(BGE_IS_5705_PLUS(sc)))
   2984 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2985 
   2986 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2987 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2988 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2989 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2990 
   2991 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2992 		val |= BGE_PORTMODE_TBI;
   2993 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2994 		val |= BGE_PORTMODE_GMII;
   2995 	else
   2996 		val |= BGE_PORTMODE_MII;
   2997 
   2998 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2999 	/* Allow APE to send/receive frames. */
   3000 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   3001 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3002 
   3003 	/* Turn on DMA, clear stats */
   3004 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   3005 	/* 5718 step 44 */
   3006 	DELAY(40);
   3007 
   3008 	/* 5718 step 45, 57XX step 79 */
   3009 	/* Set misc. local control, enable interrupts on attentions */
   3010 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   3011 	if (BGE_IS_5717_PLUS(sc)) {
   3012 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   3013 		/* 5718 step 46 */
   3014 		DELAY(100);
   3015 	}
   3016 
   3017 	/* 57XX step 81 */
   3018 	/* Turn on DMA completion state machine */
   3019 	if (!(BGE_IS_5705_PLUS(sc)))
   3020 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3021 
   3022 	/* 5718 step 47, 57XX step 82 */
   3023 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   3024 
   3025 	/* 5718 step 48 */
   3026 	/* Enable host coalescing bug fix. */
   3027 	if (BGE_IS_5755_PLUS(sc))
   3028 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   3029 
   3030 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3031 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   3032 
   3033 	/* Turn on write DMA state machine */
   3034 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   3035 	/* 5718 step 49 */
   3036 	DELAY(40);
   3037 
   3038 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   3039 
   3040 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   3041 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3042 
   3043 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3044 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3045 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3046 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   3047 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   3048 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   3049 
   3050 	if (sc->bge_flags & BGEF_PCIE)
   3051 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   3052 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   3053 		if (ifp->if_mtu <= ETHERMTU)
   3054 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   3055 	}
   3056 	if (sc->bge_flags & BGEF_TSO)
   3057 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   3058 
   3059 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3060 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   3061 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   3062 		/*
   3063 		 * Allow multiple outstanding read requests from
   3064 		 * non-LSO read DMA engine.
   3065 		 */
   3066 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3067 	}
   3068 
   3069 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3070 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3071 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3072 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   3073 	    BGE_IS_57765_PLUS(sc)) {
   3074 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   3075 		/*
   3076 		 * Adjust tx margin to prevent TX data corruption and
   3077 		 * fix internal FIFO overflow.
   3078 		 */
   3079 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   3080 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3081 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3082 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3083 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3084 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3085 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3086 		}
   3087 		/*
   3088 		 * Enable fix for read DMA FIFO overruns.
   3089 		 * The fix is to limit the number of RX BDs
   3090 		 * the hardware would fetch at a fime.
   3091 		 */
   3092 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3093 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3094 	}
   3095 
   3096 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3097 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3098 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3099 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3100 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3101 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3102 		/*
   3103 		 * Allow 4KB burst length reads for non-LSO frames.
   3104 		 * Enable 512B burst length reads for buffer descriptors.
   3105 		 */
   3106 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3107 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3108 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3109 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3110 	}
   3111 
   3112 	/* Turn on read DMA state machine */
   3113 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3114 	/* 5718 step 52 */
   3115 	delay(40);
   3116 
   3117 	/* 5718 step 56, 57XX step 84 */
   3118 	/* Turn on RX data completion state machine */
   3119 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3120 
   3121 	/* Turn on RX data and RX BD initiator state machine */
   3122 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3123 
   3124 	/* 57XX step 85 */
   3125 	/* Turn on Mbuf cluster free state machine */
   3126 	if (!BGE_IS_5705_PLUS(sc))
   3127 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3128 
   3129 	/* 5718 step 57, 57XX step 86 */
   3130 	/* Turn on send data completion state machine */
   3131 	val = BGE_SDCMODE_ENABLE;
   3132 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3133 		val |= BGE_SDCMODE_CDELAY;
   3134 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3135 
   3136 	/* 5718 step 58 */
   3137 	/* Turn on send BD completion state machine */
   3138 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3139 
   3140 	/* 57XX step 88 */
   3141 	/* Turn on RX BD initiator state machine */
   3142 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3143 
   3144 	/* 5718 step 60, 57XX step 90 */
   3145 	/* Turn on send data initiator state machine */
   3146 	if (sc->bge_flags & BGEF_TSO) {
   3147 		/* XXX: magic value from Linux driver */
   3148 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3149 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3150 	} else
   3151 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3152 
   3153 	/* 5718 step 61, 57XX step 91 */
   3154 	/* Turn on send BD initiator state machine */
   3155 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3156 
   3157 	/* 5718 step 62, 57XX step 92 */
   3158 	/* Turn on send BD selector state machine */
   3159 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3160 
   3161 	/* 5718 step 31, 57XX step 60 */
   3162 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3163 	/* 5718 step 32, 57XX step 61 */
   3164 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3165 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3166 
   3167 	/* ack/clear link change events */
   3168 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3169 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3170 	    BGE_MACSTAT_LINK_CHANGED);
   3171 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3172 
   3173 	/*
   3174 	 * Enable attention when the link has changed state for
   3175 	 * devices that use auto polling.
   3176 	 */
   3177 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3178 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3179 	} else {
   3180 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3181 			mimode = BGE_MIMODE_500KHZ_CONST;
   3182 		else
   3183 			mimode = BGE_MIMODE_BASE;
   3184 		/* 5718 step 68. 5718 step 69 (optionally). */
   3185 		if (BGE_IS_5700_FAMILY(sc) ||
   3186 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3187 			mimode |= BGE_MIMODE_AUTOPOLL;
   3188 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3189 		}
   3190 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3191 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3192 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3193 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3194 			    BGE_EVTENB_MI_INTERRUPT);
   3195 	}
   3196 
   3197 	/*
   3198 	 * Clear any pending link state attention.
   3199 	 * Otherwise some link state change events may be lost until attention
   3200 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3201 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3202 	 * state change attentions implies clearing pending attention.
   3203 	 */
   3204 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3205 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3206 	    BGE_MACSTAT_LINK_CHANGED);
   3207 
   3208 	/* Enable link state change attentions. */
   3209 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3210 
   3211 	return 0;
   3212 }
   3213 
   3214 static const struct bge_revision *
   3215 bge_lookup_rev(uint32_t chipid)
   3216 {
   3217 	const struct bge_revision *br;
   3218 
   3219 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3220 		if (br->br_chipid == chipid)
   3221 			return br;
   3222 	}
   3223 
   3224 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3225 		if (br->br_chipid == BGE_ASICREV(chipid))
   3226 			return br;
   3227 	}
   3228 
   3229 	return NULL;
   3230 }
   3231 
   3232 static const struct bge_product *
   3233 bge_lookup(const struct pci_attach_args *pa)
   3234 {
   3235 	const struct bge_product *bp;
   3236 
   3237 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3238 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3239 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3240 			return bp;
   3241 	}
   3242 
   3243 	return NULL;
   3244 }
   3245 
   3246 static uint32_t
   3247 bge_chipid(const struct pci_attach_args *pa)
   3248 {
   3249 	uint32_t id;
   3250 
   3251 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3252 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3253 
   3254 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3255 		switch (PCI_PRODUCT(pa->pa_id)) {
   3256 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3257 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3258 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3259 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3260 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3261 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3262 			break;
   3263 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3264 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3265 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3266 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3267 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3268 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3269 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3270 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3271 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3272 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3273 			break;
   3274 		default:
   3275 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3276 			    BGE_PCI_PRODID_ASICREV);
   3277 			break;
   3278 		}
   3279 	}
   3280 
   3281 	return id;
   3282 }
   3283 
   3284 #ifdef __HAVE_PCI_MSI_MSIX
   3285 /*
   3286  * Return true if MSI can be used with this device.
   3287  */
   3288 static int
   3289 bge_can_use_msi(struct bge_softc *sc)
   3290 {
   3291 	int can_use_msi = 0;
   3292 
   3293 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3294 	case BGE_ASICREV_BCM5714_A0:
   3295 	case BGE_ASICREV_BCM5714:
   3296 		/*
   3297 		 * Apparently, MSI doesn't work when these chips are
   3298 		 * configured in single-port mode.
   3299 		 */
   3300 		break;
   3301 	case BGE_ASICREV_BCM5750:
   3302 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3303 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3304 			can_use_msi = 1;
   3305 		break;
   3306 	default:
   3307 		if (BGE_IS_575X_PLUS(sc))
   3308 			can_use_msi = 1;
   3309 	}
   3310 	return (can_use_msi);
   3311 }
   3312 #endif
   3313 
   3314 /*
   3315  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3316  * against our list and return its name if we find a match. Note
   3317  * that since the Broadcom controller contains VPD support, we
   3318  * can get the device name string from the controller itself instead
   3319  * of the compiled-in string. This is a little slow, but it guarantees
   3320  * we'll always announce the right product name.
   3321  */
   3322 static int
   3323 bge_probe(device_t parent, cfdata_t match, void *aux)
   3324 {
   3325 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3326 
   3327 	if (bge_lookup(pa) != NULL)
   3328 		return 1;
   3329 
   3330 	return 0;
   3331 }
   3332 
   3333 static void
   3334 bge_attach(device_t parent, device_t self, void *aux)
   3335 {
   3336 	struct bge_softc	*sc = device_private(self);
   3337 	struct pci_attach_args	*pa = aux;
   3338 	prop_dictionary_t dict;
   3339 	const struct bge_product *bp;
   3340 	const struct bge_revision *br;
   3341 	pci_chipset_tag_t	pc;
   3342 #ifndef __HAVE_PCI_MSI_MSIX
   3343 	pci_intr_handle_t	ih;
   3344 #endif
   3345 	const char		*intrstr = NULL;
   3346 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3347 	uint32_t		command;
   3348 	struct ifnet		*ifp;
   3349 	uint32_t		misccfg, mimode;
   3350 	void *			kva;
   3351 	u_char			eaddr[ETHER_ADDR_LEN];
   3352 	pcireg_t		memtype, subid, reg;
   3353 	bus_addr_t		memaddr;
   3354 	uint32_t		pm_ctl;
   3355 	bool			no_seeprom;
   3356 	int			capmask;
   3357 	int			mii_flags;
   3358 	int			map_flags;
   3359 #ifdef __HAVE_PCI_MSI_MSIX
   3360 	int			rv;
   3361 #endif
   3362 	char intrbuf[PCI_INTRSTR_LEN];
   3363 
   3364 	bp = bge_lookup(pa);
   3365 	KASSERT(bp != NULL);
   3366 
   3367 	sc->sc_pc = pa->pa_pc;
   3368 	sc->sc_pcitag = pa->pa_tag;
   3369 	sc->bge_dev = self;
   3370 
   3371 	sc->bge_pa = *pa;
   3372 	pc = sc->sc_pc;
   3373 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3374 
   3375 	aprint_naive(": Ethernet controller\n");
   3376 	aprint_normal(": %s\n", bp->bp_name);
   3377 
   3378 	/*
   3379 	 * Map control/status registers.
   3380 	 */
   3381 	DPRINTFN(5, ("Map control/status regs\n"));
   3382 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3383 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3384 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3385 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3386 
   3387 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3388 		aprint_error_dev(sc->bge_dev,
   3389 		    "failed to enable memory mapping!\n");
   3390 		return;
   3391 	}
   3392 
   3393 	DPRINTFN(5, ("pci_mem_find\n"));
   3394 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3395 	switch (memtype) {
   3396 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3397 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3398 #if 0
   3399 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3400 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3401 		    &memaddr, &sc->bge_bsize) == 0)
   3402 			break;
   3403 #else
   3404 		/*
   3405 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3406 		 * system get NMI on boot (PR#48451). This problem might not be
   3407 		 * the driver's bug but our PCI common part's bug. Until we
   3408 		 * find a real reason, we ignore the prefetchable bit.
   3409 		 */
   3410 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3411 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3412 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3413 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3414 			    map_flags, &sc->bge_bhandle) == 0) {
   3415 				sc->bge_btag = pa->pa_memt;
   3416 				break;
   3417 			}
   3418 		}
   3419 #endif
   3420 	default:
   3421 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3422 		return;
   3423 	}
   3424 
   3425 	/* Save various chip information. */
   3426 	sc->bge_chipid = bge_chipid(pa);
   3427 	sc->bge_phy_addr = bge_phy_addr(sc);
   3428 
   3429 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3430 	        &sc->bge_pciecap, NULL) != 0)
   3431 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3432 		/* PCIe */
   3433 		sc->bge_flags |= BGEF_PCIE;
   3434 		/* Extract supported maximum payload size. */
   3435 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3436 		    sc->bge_pciecap + PCIE_DCAP);
   3437 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3438 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3439 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3440 			sc->bge_expmrq = 2048;
   3441 		else
   3442 			sc->bge_expmrq = 4096;
   3443 		bge_set_max_readrq(sc);
   3444 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3445 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3446 		/* PCI-X */
   3447 		sc->bge_flags |= BGEF_PCIX;
   3448 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3449 			&sc->bge_pcixcap, NULL) == 0)
   3450 			aprint_error_dev(sc->bge_dev,
   3451 			    "unable to find PCIX capability\n");
   3452 	}
   3453 
   3454 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3455 		/*
   3456 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3457 		 * can clobber the chip's PCI config-space power control
   3458 		 * registers, leaving the card in D3 powersave state. We do
   3459 		 * not have memory-mapped registers in this state, so force
   3460 		 * device into D0 state before starting initialization.
   3461 		 */
   3462 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3463 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3464 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3465 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3466 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3467 	}
   3468 
   3469 	/* Save chipset family. */
   3470 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3471 	case BGE_ASICREV_BCM5717:
   3472 	case BGE_ASICREV_BCM5719:
   3473 	case BGE_ASICREV_BCM5720:
   3474 		sc->bge_flags |= BGEF_5717_PLUS;
   3475 		/* FALLTHROUGH */
   3476 	case BGE_ASICREV_BCM57765:
   3477 	case BGE_ASICREV_BCM57766:
   3478 		if (!BGE_IS_5717_PLUS(sc))
   3479 			sc->bge_flags |= BGEF_57765_FAMILY;
   3480 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3481 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3482 		/* Jumbo frame on BCM5719 A0 does not work. */
   3483 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3484 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3485 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3486 		break;
   3487 	case BGE_ASICREV_BCM5755:
   3488 	case BGE_ASICREV_BCM5761:
   3489 	case BGE_ASICREV_BCM5784:
   3490 	case BGE_ASICREV_BCM5785:
   3491 	case BGE_ASICREV_BCM5787:
   3492 	case BGE_ASICREV_BCM57780:
   3493 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3494 		break;
   3495 	case BGE_ASICREV_BCM5700:
   3496 	case BGE_ASICREV_BCM5701:
   3497 	case BGE_ASICREV_BCM5703:
   3498 	case BGE_ASICREV_BCM5704:
   3499 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3500 		break;
   3501 	case BGE_ASICREV_BCM5714_A0:
   3502 	case BGE_ASICREV_BCM5780:
   3503 	case BGE_ASICREV_BCM5714:
   3504 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3505 		/* FALLTHROUGH */
   3506 	case BGE_ASICREV_BCM5750:
   3507 	case BGE_ASICREV_BCM5752:
   3508 	case BGE_ASICREV_BCM5906:
   3509 		sc->bge_flags |= BGEF_575X_PLUS;
   3510 		/* FALLTHROUGH */
   3511 	case BGE_ASICREV_BCM5705:
   3512 		sc->bge_flags |= BGEF_5705_PLUS;
   3513 		break;
   3514 	}
   3515 
   3516 	/* Identify chips with APE processor. */
   3517 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3518 	case BGE_ASICREV_BCM5717:
   3519 	case BGE_ASICREV_BCM5719:
   3520 	case BGE_ASICREV_BCM5720:
   3521 	case BGE_ASICREV_BCM5761:
   3522 		sc->bge_flags |= BGEF_APE;
   3523 		break;
   3524 	}
   3525 
   3526 	/*
   3527 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3528 	 * not actually a MAC controller bug but an issue with the embedded
   3529 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3530 	 */
   3531 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3532 		sc->bge_flags |= BGEF_40BIT_BUG;
   3533 
   3534 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3535 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3536 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3537 #if 0
   3538 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3539 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3540 			&sc->bge_apesize)) {
   3541 			aprint_error_dev(sc->bge_dev,
   3542 			    "couldn't map BAR2 memory\n");
   3543 			return;
   3544 		}
   3545 #else
   3546 		/*
   3547 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3548 		 * system get NMI on boot (PR#48451). This problem might not be
   3549 		 * the driver's bug but our PCI common part's bug. Until we
   3550 		 * find a real reason, we ignore the prefetchable bit.
   3551 		 */
   3552 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3553 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3554 			aprint_error_dev(sc->bge_dev,
   3555 			    "couldn't map BAR2 memory\n");
   3556 			return;
   3557 		}
   3558 
   3559 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3560 		if (bus_space_map(pa->pa_memt, memaddr,
   3561 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3562 			aprint_error_dev(sc->bge_dev,
   3563 			    "couldn't map BAR2 memory\n");
   3564 			return;
   3565 		}
   3566 		sc->bge_apetag = pa->pa_memt;
   3567 #endif
   3568 
   3569 		/* Enable APE register/memory access by host driver. */
   3570 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3571 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3572 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3573 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3574 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3575 
   3576 		bge_ape_lock_init(sc);
   3577 		bge_ape_read_fw_ver(sc);
   3578 	}
   3579 
   3580 	/* Identify the chips that use an CPMU. */
   3581 	if (BGE_IS_5717_PLUS(sc) ||
   3582 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3583 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3584 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3585 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3586 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3587 
   3588 	/* Set MI_MODE */
   3589 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3590 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3591 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3592 	else
   3593 		mimode |= BGE_MIMODE_BASE;
   3594 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3595 
   3596 	/*
   3597 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3598 	 * been observed in the first few bytes of some received packets.
   3599 	 * Aligning the packet buffer in memory eliminates the corruption.
   3600 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3601 	 * which do not support unaligned accesses, we will realign the
   3602 	 * payloads by copying the received packets.
   3603 	 */
   3604 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3605 	    sc->bge_flags & BGEF_PCIX)
   3606 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3607 
   3608 	if (BGE_IS_5700_FAMILY(sc))
   3609 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3610 
   3611 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3612 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3613 
   3614 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3615 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3616 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3617 		sc->bge_flags |= BGEF_IS_5788;
   3618 
   3619 	/*
   3620 	 * Some controllers seem to require a special firmware to use
   3621 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3622 	 * claims that the TSO performed by the firmware is slower than
   3623 	 * hardware based TSO. Moreover the firmware based TSO has one
   3624 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3625 	 * header is greater than 80 bytes. The workaround for the TSO
   3626 	 * bug exist but it seems it's too expensive than not using
   3627 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3628 	 * the TSO to the controllers that are not affected TSO issues
   3629 	 * (e.g. 5755 or higher).
   3630 	 */
   3631 	if (BGE_IS_5755_PLUS(sc)) {
   3632 		/*
   3633 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3634 		 * explicit device id check is required.
   3635 		 */
   3636 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3637 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3638 			sc->bge_flags |= BGEF_TSO;
   3639 	}
   3640 
   3641 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3642 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3643 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3644 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3645 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3646 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3647 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3648 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3649 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3650 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3651 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3652 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3653 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3654 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3655 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3657 		/* These chips are 10/100 only. */
   3658 		capmask &= ~BMSR_EXTSTAT;
   3659 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3660 	}
   3661 
   3662 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3663 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3664 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3665 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3666 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3667 
   3668 	/* Set various PHY bug flags. */
   3669 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3670 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3671 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3672 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3673 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3674 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3675 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3676 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3677 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3679 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3680 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3681 	if (BGE_IS_5705_PLUS(sc) &&
   3682 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3683 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3684 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3685 	    !BGE_IS_57765_PLUS(sc)) {
   3686 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3687 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3688 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3689 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3690 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3691 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3692 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3693 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3694 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3695 		} else
   3696 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3697 	}
   3698 
   3699 	/*
   3700 	 * SEEPROM check.
   3701 	 * First check if firmware knows we do not have SEEPROM.
   3702 	 */
   3703 	if (prop_dictionary_get_bool(device_properties(self),
   3704 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3705 	 	sc->bge_flags |= BGEF_NO_EEPROM;
   3706 
   3707 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3708 		sc->bge_flags |= BGEF_NO_EEPROM;
   3709 
   3710 	/* Now check the 'ROM failed' bit on the RX CPU */
   3711 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3712 		sc->bge_flags |= BGEF_NO_EEPROM;
   3713 
   3714 	sc->bge_asf_mode = 0;
   3715 	/* No ASF if APE present. */
   3716 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3717 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3718 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3719 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3720 			    BGE_HWCFG_ASF) {
   3721 				sc->bge_asf_mode |= ASF_ENABLE;
   3722 				sc->bge_asf_mode |= ASF_STACKUP;
   3723 				if (BGE_IS_575X_PLUS(sc))
   3724 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3725 			}
   3726 		}
   3727 	}
   3728 
   3729 #ifdef __HAVE_PCI_MSI_MSIX
   3730 	DPRINTFN(5, ("pci_get_capability\n"));
   3731 	/* Check MSI capability */
   3732 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI,
   3733 		&sc->bge_msicap, NULL) != 0) {
   3734 		if (bge_can_use_msi(sc) != 0)
   3735 			sc->bge_flags |= BGEF_MSI;
   3736 	}
   3737 	rv = -1;
   3738 	if (((sc->bge_flags & BGEF_MSI) != 0) && (pci_msi_count(pa) > 0)) {
   3739 		DPRINTFN(5, ("pci_msi_alloc\n"));
   3740 		rv = pci_msi_alloc_exact(pa, &sc->bge_pihp, 1);
   3741 		if (rv != 0)
   3742 			sc->bge_flags &= ~BGEF_MSI;
   3743 	}
   3744 	if (rv != 0) {
   3745 		DPRINTFN(5, ("pci_intx_alloc\n"));
   3746 		if (pci_intx_alloc(pa, &sc->bge_pihp)) {
   3747 			aprint_error_dev(self, "can't map interrupt\n");
   3748 			return;
   3749 		}
   3750 		sc->bge_flags &= ~BGEF_MSI;
   3751 	}
   3752 #else	/* !__HAVE_PCI_MSI_MSIX */
   3753 	DPRINTFN(5, ("pci_intr_map\n"));
   3754 	if (pci_intr_map(pa, &ih)) {
   3755 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
   3756 		return;
   3757 	}
   3758 #endif
   3759 
   3760 #ifdef __HAVE_PCI_MSI_MSIX
   3761 	DPRINTFN(5, ("pci_intr_string\n"));
   3762 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3763 	    sizeof(intrbuf));
   3764 	DPRINTFN(5, ("pci_intr_establish\n"));
   3765 	sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
   3766 	    bge_intr, sc);
   3767 #else	/* !__HAVE_PCI_MSI_MSIX */
   3768 	DPRINTFN(5, ("pci_intr_string\n"));
   3769 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   3770 
   3771 	DPRINTFN(5, ("pci_intr_establish\n"));
   3772 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   3773 #endif
   3774 
   3775 	if (sc->bge_intrhand == NULL) {
   3776 		aprint_error_dev(sc->bge_dev,
   3777 		    "couldn't establish interrupt%s%s\n",
   3778 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3779 		return;
   3780 	}
   3781 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3782 
   3783 	/*
   3784 	 * All controllers except BCM5700 supports tagged status but
   3785 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3786 	 * MSI on BCM5717 does not work.
   3787 	 */
   3788 	if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3789 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3790 
   3791 	/*
   3792 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3793 	 * lock in bge_reset().
   3794 	 */
   3795 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3796 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3797 	delay(1000);
   3798 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3799 
   3800 	bge_stop_fw(sc);
   3801 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3802 	if (bge_reset(sc))
   3803 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3804 
   3805 	/*
   3806 	 * Read the hardware config word in the first 32k of NIC internal
   3807 	 * memory, or fall back to the config word in the EEPROM.
   3808 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3809 	 */
   3810 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3811 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3812 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3813 		uint32_t tmp;
   3814 
   3815 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3816 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3817 		    BGE_SRAM_DATA_VER_SHIFT;
   3818 		if ((0 < tmp) && (tmp < 0x100))
   3819 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3820 		if (sc->bge_flags & BGEF_PCIE)
   3821 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3822 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3823 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3824 		if (BGE_IS_5717_PLUS(sc))
   3825 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3826 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3827 		bge_read_eeprom(sc, (void *)&hwcfg,
   3828 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3829 		hwcfg = be32toh(hwcfg);
   3830 	}
   3831 	aprint_normal_dev(sc->bge_dev,
   3832 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3833 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3834 
   3835 	bge_sig_legacy(sc, BGE_RESET_START);
   3836 	bge_sig_post_reset(sc, BGE_RESET_START);
   3837 
   3838 	if (bge_chipinit(sc)) {
   3839 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3840 		bge_release_resources(sc);
   3841 		return;
   3842 	}
   3843 
   3844 	/*
   3845 	 * Get station address from the EEPROM.
   3846 	 */
   3847 	if (bge_get_eaddr(sc, eaddr)) {
   3848 		aprint_error_dev(sc->bge_dev,
   3849 		    "failed to read station address\n");
   3850 		bge_release_resources(sc);
   3851 		return;
   3852 	}
   3853 
   3854 	br = bge_lookup_rev(sc->bge_chipid);
   3855 
   3856 	if (br == NULL) {
   3857 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3858 		    sc->bge_chipid);
   3859 	} else {
   3860 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3861 		    br->br_name, sc->bge_chipid);
   3862 	}
   3863 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3864 
   3865 	/* Allocate the general information block and ring buffers. */
   3866 	if (pci_dma64_available(pa))
   3867 		sc->bge_dmatag = pa->pa_dmat64;
   3868 	else
   3869 		sc->bge_dmatag = pa->pa_dmat;
   3870 
   3871 	/* 40bit DMA workaround */
   3872 	if (sizeof(bus_addr_t) > 4) {
   3873 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3874 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3875 
   3876 			if (bus_dmatag_subregion(olddmatag, 0,
   3877 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
   3878 				BUS_DMA_NOWAIT) != 0) {
   3879 				aprint_error_dev(self,
   3880 				    "WARNING: failed to restrict dma range,"
   3881 				    " falling back to parent bus dma range\n");
   3882 				sc->bge_dmatag = olddmatag;
   3883 			}
   3884 		}
   3885 	}
   3886 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3887 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3888 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3889 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3890 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3891 		return;
   3892 	}
   3893 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3894 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3895 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3896 			   BUS_DMA_NOWAIT)) {
   3897 		aprint_error_dev(sc->bge_dev,
   3898 		    "can't map DMA buffers (%zu bytes)\n",
   3899 		    sizeof(struct bge_ring_data));
   3900 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3901 		    sc->bge_ring_rseg);
   3902 		return;
   3903 	}
   3904 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3905 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3906 	    sizeof(struct bge_ring_data), 0,
   3907 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3908 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3909 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3910 				 sizeof(struct bge_ring_data));
   3911 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3912 		    sc->bge_ring_rseg);
   3913 		return;
   3914 	}
   3915 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3916 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3917 			    sizeof(struct bge_ring_data), NULL,
   3918 			    BUS_DMA_NOWAIT)) {
   3919 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3920 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3921 				 sizeof(struct bge_ring_data));
   3922 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3923 		    sc->bge_ring_rseg);
   3924 		return;
   3925 	}
   3926 
   3927 	DPRINTFN(5, ("bzero\n"));
   3928 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3929 
   3930 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3931 
   3932 	/* Try to allocate memory for jumbo buffers. */
   3933 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3934 		if (bge_alloc_jumbo_mem(sc)) {
   3935 			aprint_error_dev(sc->bge_dev,
   3936 			    "jumbo buffer allocation failed\n");
   3937 		} else
   3938 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3939 	}
   3940 
   3941 	/* Set default tuneable values. */
   3942 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3943 	sc->bge_rx_coal_ticks = 150;
   3944 	sc->bge_rx_max_coal_bds = 64;
   3945 	sc->bge_tx_coal_ticks = 300;
   3946 	sc->bge_tx_max_coal_bds = 400;
   3947 	if (BGE_IS_5705_PLUS(sc)) {
   3948 		sc->bge_tx_coal_ticks = (12 * 5);
   3949 		sc->bge_tx_max_coal_bds = (12 * 5);
   3950 			aprint_verbose_dev(sc->bge_dev,
   3951 			    "setting short Tx thresholds\n");
   3952 	}
   3953 
   3954 	if (BGE_IS_5717_PLUS(sc))
   3955 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3956 	else if (BGE_IS_5705_PLUS(sc))
   3957 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3958 	else
   3959 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3960 
   3961 	/* Set up ifnet structure */
   3962 	ifp = &sc->ethercom.ec_if;
   3963 	ifp->if_softc = sc;
   3964 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3965 	ifp->if_ioctl = bge_ioctl;
   3966 	ifp->if_stop = bge_stop;
   3967 	ifp->if_start = bge_start;
   3968 	ifp->if_init = bge_init;
   3969 	ifp->if_watchdog = bge_watchdog;
   3970 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3971 	IFQ_SET_READY(&ifp->if_snd);
   3972 	DPRINTFN(5, ("strcpy if_xname\n"));
   3973 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3974 
   3975 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3976 		sc->ethercom.ec_if.if_capabilities |=
   3977 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3978 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3979 		sc->ethercom.ec_if.if_capabilities |=
   3980 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3981 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3982 #endif
   3983 	sc->ethercom.ec_capabilities |=
   3984 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3985 
   3986 	if (sc->bge_flags & BGEF_TSO)
   3987 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3988 
   3989 	/*
   3990 	 * Do MII setup.
   3991 	 */
   3992 	DPRINTFN(5, ("mii setup\n"));
   3993 	sc->bge_mii.mii_ifp = ifp;
   3994 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3995 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3996 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3997 
   3998 	/*
   3999 	 * Figure out what sort of media we have by checking the hardware
   4000 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   4001 	 * unset. If that's the case, we have to rely on identifying the NIC
   4002 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   4003 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   4004 	 */
   4005 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   4006 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   4007 		if (BGE_IS_5705_PLUS(sc)) {
   4008 			sc->bge_flags |= BGEF_FIBER_MII;
   4009 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   4010 		} else
   4011 			sc->bge_flags |= BGEF_FIBER_TBI;
   4012 	}
   4013 
   4014 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   4015 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4016 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   4017 
   4018 	/* set phyflags and chipid before mii_attach() */
   4019 	dict = device_properties(self);
   4020 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   4021 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   4022 
   4023 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4024 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   4025 		    bge_ifmedia_sts);
   4026 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   4027 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   4028 			    0, NULL);
   4029 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   4030 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   4031 		/* Pretend the user requested this setting */
   4032 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   4033 	} else {
   4034 		/*
   4035 		 * Do transceiver setup and tell the firmware the
   4036 		 * driver is down so we can try to get access the
   4037 		 * probe if ASF is running.  Retry a couple of times
   4038 		 * if we get a conflict with the ASF firmware accessing
   4039 		 * the PHY.
   4040 		 */
   4041 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4042 		bge_asf_driver_up(sc);
   4043 
   4044 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   4045 			     bge_ifmedia_sts);
   4046 		mii_flags = MIIF_DOPAUSE;
   4047 		if (sc->bge_flags & BGEF_FIBER_MII)
   4048 			mii_flags |= MIIF_HAVEFIBER;
   4049 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
   4050 		    MII_OFFSET_ANY, mii_flags);
   4051 
   4052 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   4053 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4054 			ifmedia_add(&sc->bge_mii.mii_media,
   4055 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   4056 			ifmedia_set(&sc->bge_mii.mii_media,
   4057 				    IFM_ETHER|IFM_MANUAL);
   4058 		} else
   4059 			ifmedia_set(&sc->bge_mii.mii_media,
   4060 				    IFM_ETHER|IFM_AUTO);
   4061 
   4062 		/*
   4063 		 * Now tell the firmware we are going up after probing the PHY
   4064 		 */
   4065 		if (sc->bge_asf_mode & ASF_STACKUP)
   4066 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4067 	}
   4068 
   4069 	/*
   4070 	 * Call MI attach routine.
   4071 	 */
   4072 	DPRINTFN(5, ("if_attach\n"));
   4073 	if_attach(ifp);
   4074 	DPRINTFN(5, ("ether_ifattach\n"));
   4075 	ether_ifattach(ifp, eaddr);
   4076 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4077 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4078 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4079 #ifdef BGE_EVENT_COUNTERS
   4080 	/*
   4081 	 * Attach event counters.
   4082 	 */
   4083 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4084 	    NULL, device_xname(sc->bge_dev), "intr");
   4085 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4086 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4087 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4088 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4089 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4090 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4091 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4092 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4093 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4094 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4095 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4096 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4097 #endif /* BGE_EVENT_COUNTERS */
   4098 	DPRINTFN(5, ("callout_init\n"));
   4099 	callout_init(&sc->bge_timeout, 0);
   4100 
   4101 	if (pmf_device_register(self, NULL, NULL))
   4102 		pmf_class_network_register(self, ifp);
   4103 	else
   4104 		aprint_error_dev(self, "couldn't establish power handler\n");
   4105 
   4106 	bge_sysctl_init(sc);
   4107 
   4108 #ifdef BGE_DEBUG
   4109 	bge_debug_info(sc);
   4110 #endif
   4111 }
   4112 
   4113 /*
   4114  * Stop all chip I/O so that the kernel's probe routines don't
   4115  * get confused by errant DMAs when rebooting.
   4116  */
   4117 static int
   4118 bge_detach(device_t self, int flags __unused)
   4119 {
   4120 	struct bge_softc *sc = device_private(self);
   4121 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4122 	int s;
   4123 
   4124 	s = splnet();
   4125 	/* Stop the interface. Callouts are stopped in it. */
   4126 	bge_stop(ifp, 1);
   4127 	splx(s);
   4128 
   4129 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4130 
   4131 	/* Delete all remaining media. */
   4132 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   4133 
   4134 	ether_ifdetach(ifp);
   4135 	if_detach(ifp);
   4136 
   4137 	bge_release_resources(sc);
   4138 
   4139 	return 0;
   4140 }
   4141 
   4142 static void
   4143 bge_release_resources(struct bge_softc *sc)
   4144 {
   4145 
   4146 	/* Disestablish the interrupt handler */
   4147 	if (sc->bge_intrhand != NULL) {
   4148 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4149 		sc->bge_intrhand = NULL;
   4150 	}
   4151 
   4152 	if (sc->bge_dmatag != NULL) {
   4153 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4154 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4155 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4156 		    sizeof(struct bge_ring_data));
   4157 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
   4158 	}
   4159 
   4160 	/* Unmap the device registers */
   4161 	if (sc->bge_bsize != 0) {
   4162 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4163 		sc->bge_bsize = 0;
   4164 	}
   4165 
   4166 	/* Unmap the APE registers */
   4167 	if (sc->bge_apesize != 0) {
   4168 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4169 		    sc->bge_apesize);
   4170 		sc->bge_apesize = 0;
   4171 	}
   4172 }
   4173 
   4174 static int
   4175 bge_reset(struct bge_softc *sc)
   4176 {
   4177 	uint32_t cachesize, command;
   4178 	uint32_t reset, mac_mode, mac_mode_mask;
   4179 	pcireg_t devctl, reg;
   4180 	int i, val;
   4181 	void (*write_op)(struct bge_softc *, int, int);
   4182 
   4183 	/* Make mask for BGE_MAC_MODE register. */
   4184 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4185 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4186 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4187 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4188 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4189 
   4190 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4191 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4192 	    	if (sc->bge_flags & BGEF_PCIE)
   4193 			write_op = bge_writemem_direct;
   4194 		else
   4195 			write_op = bge_writemem_ind;
   4196 	} else
   4197 		write_op = bge_writereg_ind;
   4198 
   4199 	/* 57XX step 4 */
   4200 	/* Acquire the NVM lock */
   4201 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4202 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4203 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4204 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4205 		for (i = 0; i < 8000; i++) {
   4206 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4207 			    BGE_NVRAMSWARB_GNT1)
   4208 				break;
   4209 			DELAY(20);
   4210 		}
   4211 		if (i == 8000) {
   4212 			printf("%s: NVRAM lock timedout!\n",
   4213 			    device_xname(sc->bge_dev));
   4214 		}
   4215 	}
   4216 
   4217 	/* Take APE lock when performing reset. */
   4218 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4219 
   4220 	/* 57XX step 3 */
   4221 	/* Save some important PCI state. */
   4222 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4223 	/* 5718 reset step 3 */
   4224 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4225 
   4226 	/* 5718 reset step 5, 57XX step 5b-5d */
   4227 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4228 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4229 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4230 
   4231 	/* XXX ???: Disable fastboot on controllers that support it. */
   4232 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4233 	    BGE_IS_5755_PLUS(sc))
   4234 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4235 
   4236 	/* 5718 reset step 2, 57XX step 6 */
   4237 	/*
   4238 	 * Write the magic number to SRAM at offset 0xB50.
   4239 	 * When firmware finishes its initialization it will
   4240 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4241 	 */
   4242 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4243 
   4244 	/* 5718 reset step 6, 57XX step 7 */
   4245 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4246 	/*
   4247 	 * XXX: from FreeBSD/Linux; no documentation
   4248 	 */
   4249 	if (sc->bge_flags & BGEF_PCIE) {
   4250 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4251 		    !BGE_IS_57765_PLUS(sc) &&
   4252 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4253 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4254 			/* PCI Express 1.0 system */
   4255 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4256 			    BGE_PHY_PCIE_SCRAM_MODE);
   4257 		}
   4258 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4259 			/*
   4260 			 * Prevent PCI Express link training
   4261 			 * during global reset.
   4262 			 */
   4263 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4264 			reset |= (1 << 29);
   4265 		}
   4266 	}
   4267 
   4268 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4269 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4270 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4271 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4272 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4273 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4274 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4275 	}
   4276 
   4277 	/*
   4278 	 * Set GPHY Power Down Override to leave GPHY
   4279 	 * powered up in D0 uninitialized.
   4280 	 */
   4281 	if (BGE_IS_5705_PLUS(sc) &&
   4282 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4283 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4284 
   4285 	/* Issue global reset */
   4286 	write_op(sc, BGE_MISC_CFG, reset);
   4287 
   4288 	/* 5718 reset step 7, 57XX step 8 */
   4289 	if (sc->bge_flags & BGEF_PCIE)
   4290 		delay(100*1000); /* too big */
   4291 	else
   4292 		delay(1000);
   4293 
   4294 	if (sc->bge_flags & BGEF_PCIE) {
   4295 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4296 			DELAY(500000);
   4297 			/* XXX: Magic Numbers */
   4298 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4299 			    BGE_PCI_UNKNOWN0);
   4300 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4301 			    BGE_PCI_UNKNOWN0,
   4302 			    reg | (1 << 15));
   4303 		}
   4304 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4305 		    sc->bge_pciecap + PCIE_DCSR);
   4306 		/* Clear enable no snoop and disable relaxed ordering. */
   4307 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4308 		    PCIE_DCSR_ENA_NO_SNOOP);
   4309 
   4310 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4311 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4312 			devctl &= ~(0x00e0);
   4313 		/* Clear device status register. Write 1b to clear */
   4314 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4315 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4316 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4317 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4318 		bge_set_max_readrq(sc);
   4319 	}
   4320 
   4321 	/* From Linux: dummy read to flush PCI posted writes */
   4322 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4323 
   4324 	/*
   4325 	 * Reset some of the PCI state that got zapped by reset
   4326 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4327 	 * set, too.
   4328 	 */
   4329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4330 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4331 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4332 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4333 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4334 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4335 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4336 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4337 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4338 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4339 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4340 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4341 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4342 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4343 
   4344 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4345 	if (sc->bge_flags & BGEF_PCIX) {
   4346 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4347 		    + PCIX_CMD);
   4348 		/* Set max memory read byte count to 2K */
   4349 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4350 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4351 			reg |= PCIX_CMD_BCNT_2048;
   4352 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4353 			/*
   4354 			 * For 5704, set max outstanding split transaction
   4355 			 * field to 0 (0 means it supports 1 request)
   4356 			 */
   4357 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4358 			    | PCIX_CMD_BYTECNT_MASK);
   4359 			reg |= PCIX_CMD_BCNT_2048;
   4360 		}
   4361 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4362 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4363 	}
   4364 
   4365 	/* 5718 reset step 10, 57XX step 12 */
   4366 	/* Enable memory arbiter. */
   4367 	if (BGE_IS_5714_FAMILY(sc)) {
   4368 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4369 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4370 	} else
   4371 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4372 
   4373 	/* XXX 5721, 5751 and 5752 */
   4374 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4375 		/* Step 19: */
   4376 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4377 		/* Step 20: */
   4378 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4379 	}
   4380 
   4381 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4382 	/* Fix up byte swapping */
   4383 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4384 
   4385 	/* 5718 reset step 13, 57XX step 17 */
   4386 	/* Poll until the firmware initialization is complete */
   4387 	bge_poll_fw(sc);
   4388 
   4389 	/* 57XX step 21 */
   4390 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4391 		pcireg_t msidata;
   4392 
   4393 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4394 		    BGE_PCI_MSI_DATA);
   4395 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4396 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4397 		    msidata);
   4398 	}
   4399 
   4400 	/* 57XX step 18 */
   4401 	/* Write mac mode. */
   4402 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4403 	/* Restore mac_mode_mask's bits using mac_mode */
   4404 	val = (val & ~mac_mode_mask) | mac_mode;
   4405 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4406 	DELAY(40);
   4407 
   4408 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4409 
   4410 	/*
   4411 	 * The 5704 in TBI mode apparently needs some special
   4412 	 * adjustment to insure the SERDES drive level is set
   4413 	 * to 1.2V.
   4414 	 */
   4415 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4416 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4417 		uint32_t serdescfg;
   4418 
   4419 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4420 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4421 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4422 	}
   4423 
   4424 	if (sc->bge_flags & BGEF_PCIE &&
   4425 	    !BGE_IS_57765_PLUS(sc) &&
   4426 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4427 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4428 		uint32_t v;
   4429 
   4430 		/* Enable PCI Express bug fix */
   4431 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4432 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4433 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4434 	}
   4435 
   4436 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4437 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4438 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4439 
   4440 	return 0;
   4441 }
   4442 
   4443 /*
   4444  * Frame reception handling. This is called if there's a frame
   4445  * on the receive return list.
   4446  *
   4447  * Note: we have to be able to handle two possibilities here:
   4448  * 1) the frame is from the jumbo receive ring
   4449  * 2) the frame is from the standard receive ring
   4450  */
   4451 
   4452 static void
   4453 bge_rxeof(struct bge_softc *sc)
   4454 {
   4455 	struct ifnet *ifp;
   4456 	uint16_t rx_prod, rx_cons;
   4457 	int stdcnt = 0, jumbocnt = 0;
   4458 	bus_dmamap_t dmamap;
   4459 	bus_addr_t offset, toff;
   4460 	bus_size_t tlen;
   4461 	int tosync;
   4462 
   4463 	rx_cons = sc->bge_rx_saved_considx;
   4464 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4465 
   4466 	/* Nothing to do */
   4467 	if (rx_cons == rx_prod)
   4468 		return;
   4469 
   4470 	ifp = &sc->ethercom.ec_if;
   4471 
   4472 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4473 	    offsetof(struct bge_ring_data, bge_status_block),
   4474 	    sizeof (struct bge_status_block),
   4475 	    BUS_DMASYNC_POSTREAD);
   4476 
   4477 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4478 	tosync = rx_prod - rx_cons;
   4479 
   4480 	if (tosync != 0)
   4481 		rnd_add_uint32(&sc->rnd_source, tosync);
   4482 
   4483 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4484 
   4485 	if (tosync < 0) {
   4486 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4487 		    sizeof (struct bge_rx_bd);
   4488 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4489 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4490 		tosync = -tosync;
   4491 	}
   4492 
   4493 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4494 	    offset, tosync * sizeof (struct bge_rx_bd),
   4495 	    BUS_DMASYNC_POSTREAD);
   4496 
   4497 	while (rx_cons != rx_prod) {
   4498 		struct bge_rx_bd	*cur_rx;
   4499 		uint32_t		rxidx;
   4500 		struct mbuf		*m = NULL;
   4501 
   4502 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4503 
   4504 		rxidx = cur_rx->bge_idx;
   4505 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4506 
   4507 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4508 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4509 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4510 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4511 			jumbocnt++;
   4512 			bus_dmamap_sync(sc->bge_dmatag,
   4513 			    sc->bge_cdata.bge_rx_jumbo_map,
   4514 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4515 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4516 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4517 				ifp->if_ierrors++;
   4518 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4519 				continue;
   4520 			}
   4521 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4522 					     NULL)== ENOBUFS) {
   4523 				ifp->if_ierrors++;
   4524 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4525 				continue;
   4526 			}
   4527 		} else {
   4528 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4529 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4530 
   4531 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4532 			stdcnt++;
   4533 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4534 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4535 			if (dmamap == NULL) {
   4536 				ifp->if_ierrors++;
   4537 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4538 				continue;
   4539 			}
   4540 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4541 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4542 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4543 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4544 				ifp->if_ierrors++;
   4545 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4546 				continue;
   4547 			}
   4548 			if (bge_newbuf_std(sc, sc->bge_std,
   4549 			    NULL, dmamap) == ENOBUFS) {
   4550 				ifp->if_ierrors++;
   4551 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4552 				continue;
   4553 			}
   4554 		}
   4555 
   4556 		ifp->if_ipackets++;
   4557 #ifndef __NO_STRICT_ALIGNMENT
   4558 		/*
   4559 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4560 		 * the Rx buffer has the layer-2 header unaligned.
   4561 		 * If our CPU requires alignment, re-align by copying.
   4562 		 */
   4563 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4564 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4565 				cur_rx->bge_len);
   4566 			m->m_data += ETHER_ALIGN;
   4567 		}
   4568 #endif
   4569 
   4570 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4571 		m->m_pkthdr.rcvif = ifp;
   4572 
   4573 		/*
   4574 		 * Handle BPF listeners. Let the BPF user see the packet.
   4575 		 */
   4576 		bpf_mtap(ifp, m);
   4577 
   4578 		bge_rxcsum(sc, cur_rx, m);
   4579 
   4580 		/*
   4581 		 * If we received a packet with a vlan tag, pass it
   4582 		 * to vlan_input() instead of ether_input().
   4583 		 */
   4584 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4585 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4586 		}
   4587 
   4588 		(*ifp->if_input)(ifp, m);
   4589 	}
   4590 
   4591 	sc->bge_rx_saved_considx = rx_cons;
   4592 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4593 	if (stdcnt)
   4594 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4595 	if (jumbocnt)
   4596 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4597 }
   4598 
   4599 static void
   4600 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4601 {
   4602 
   4603 	if (BGE_IS_57765_PLUS(sc)) {
   4604 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4605 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4606 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4607 			if ((cur_rx->bge_error_flag &
   4608 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4609 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4610 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4611 				m->m_pkthdr.csum_data =
   4612 				    cur_rx->bge_tcp_udp_csum;
   4613 				m->m_pkthdr.csum_flags |=
   4614 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4615 					M_CSUM_DATA);
   4616 			}
   4617 		}
   4618 	} else {
   4619 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4620 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4621 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4622 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4623 		/*
   4624 		 * Rx transport checksum-offload may also
   4625 		 * have bugs with packets which, when transmitted,
   4626 		 * were `runts' requiring padding.
   4627 		 */
   4628 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4629 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4630 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4631 			m->m_pkthdr.csum_data =
   4632 			    cur_rx->bge_tcp_udp_csum;
   4633 			m->m_pkthdr.csum_flags |=
   4634 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4635 				M_CSUM_DATA);
   4636 		}
   4637 	}
   4638 }
   4639 
   4640 static void
   4641 bge_txeof(struct bge_softc *sc)
   4642 {
   4643 	struct bge_tx_bd *cur_tx = NULL;
   4644 	struct ifnet *ifp;
   4645 	struct txdmamap_pool_entry *dma;
   4646 	bus_addr_t offset, toff;
   4647 	bus_size_t tlen;
   4648 	int tosync;
   4649 	struct mbuf *m;
   4650 
   4651 	ifp = &sc->ethercom.ec_if;
   4652 
   4653 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4654 	    offsetof(struct bge_ring_data, bge_status_block),
   4655 	    sizeof (struct bge_status_block),
   4656 	    BUS_DMASYNC_POSTREAD);
   4657 
   4658 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4659 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4660 	    sc->bge_tx_saved_considx;
   4661 
   4662 	if (tosync != 0)
   4663 		rnd_add_uint32(&sc->rnd_source, tosync);
   4664 
   4665 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4666 
   4667 	if (tosync < 0) {
   4668 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4669 		    sizeof (struct bge_tx_bd);
   4670 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4671 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4672 		tosync = -tosync;
   4673 	}
   4674 
   4675 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4676 	    offset, tosync * sizeof (struct bge_tx_bd),
   4677 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4678 
   4679 	/*
   4680 	 * Go through our tx ring and free mbufs for those
   4681 	 * frames that have been sent.
   4682 	 */
   4683 	while (sc->bge_tx_saved_considx !=
   4684 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4685 		uint32_t		idx = 0;
   4686 
   4687 		idx = sc->bge_tx_saved_considx;
   4688 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4689 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4690 			ifp->if_opackets++;
   4691 		m = sc->bge_cdata.bge_tx_chain[idx];
   4692 		if (m != NULL) {
   4693 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4694 			dma = sc->txdma[idx];
   4695 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4696 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4697 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4698 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4699 			sc->txdma[idx] = NULL;
   4700 
   4701 			m_freem(m);
   4702 		}
   4703 		sc->bge_txcnt--;
   4704 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4705 		ifp->if_timer = 0;
   4706 	}
   4707 
   4708 	if (cur_tx != NULL)
   4709 		ifp->if_flags &= ~IFF_OACTIVE;
   4710 }
   4711 
   4712 static int
   4713 bge_intr(void *xsc)
   4714 {
   4715 	struct bge_softc *sc;
   4716 	struct ifnet *ifp;
   4717 	uint32_t pcistate, statusword, statustag;
   4718 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4719 
   4720 	sc = xsc;
   4721 	ifp = &sc->ethercom.ec_if;
   4722 
   4723 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4724 	if (BGE_IS_5717_PLUS(sc))
   4725 		intrmask = 0;
   4726 
   4727 	/* It is possible for the interrupt to arrive before
   4728 	 * the status block is updated prior to the interrupt.
   4729 	 * Reading the PCI State register will confirm whether the
   4730 	 * interrupt is ours and will flush the status block.
   4731 	 */
   4732 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4733 
   4734 	/* read status word from status block */
   4735 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4736 	    offsetof(struct bge_ring_data, bge_status_block),
   4737 	    sizeof (struct bge_status_block),
   4738 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4739 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4740 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4741 
   4742 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4743 		if (sc->bge_lasttag == statustag &&
   4744 		    (~pcistate & intrmask)) {
   4745 			printf("[SP]");
   4746 			return (0);
   4747 		}
   4748 		sc->bge_lasttag = statustag;
   4749 	} else {
   4750 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4751 		    !(~pcistate & intrmask)) {
   4752 			return (0);
   4753 		}
   4754 		statustag = 0;
   4755 	}
   4756 	/* Ack interrupt and stop others from occurring. */
   4757 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4758 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4759 
   4760 	/* clear status word */
   4761 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4762 
   4763 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4764 	    offsetof(struct bge_ring_data, bge_status_block),
   4765 	    sizeof (struct bge_status_block),
   4766 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4767 
   4768 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4769 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4770 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4771 		bge_link_upd(sc);
   4772 
   4773 	if (ifp->if_flags & IFF_RUNNING) {
   4774 		/* Check RX return ring producer/consumer */
   4775 		bge_rxeof(sc);
   4776 
   4777 		/* Check TX ring producer/consumer */
   4778 		bge_txeof(sc);
   4779 	}
   4780 
   4781 	if (sc->bge_pending_rxintr_change) {
   4782 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4783 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4784 
   4785 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4786 		DELAY(10);
   4787 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4788 
   4789 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4790 		DELAY(10);
   4791 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4792 
   4793 		sc->bge_pending_rxintr_change = 0;
   4794 	}
   4795 	bge_handle_events(sc);
   4796 
   4797 	/* Re-enable interrupts. */
   4798 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4799 
   4800 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4801 		bge_start(ifp);
   4802 
   4803 	return 1;
   4804 }
   4805 
   4806 static void
   4807 bge_asf_driver_up(struct bge_softc *sc)
   4808 {
   4809 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4810 		/* Send ASF heartbeat aprox. every 2s */
   4811 		if (sc->bge_asf_count)
   4812 			sc->bge_asf_count --;
   4813 		else {
   4814 			sc->bge_asf_count = 2;
   4815 
   4816 			bge_wait_for_event_ack(sc);
   4817 
   4818 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4819 			    BGE_FW_CMD_DRV_ALIVE3);
   4820 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4821 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4822 			    BGE_FW_HB_TIMEOUT_SEC);
   4823 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4824 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4825 			    BGE_RX_CPU_DRV_EVENT);
   4826 		}
   4827 	}
   4828 }
   4829 
   4830 static void
   4831 bge_tick(void *xsc)
   4832 {
   4833 	struct bge_softc *sc = xsc;
   4834 	struct mii_data *mii = &sc->bge_mii;
   4835 	int s;
   4836 
   4837 	s = splnet();
   4838 
   4839 	if (BGE_IS_5705_PLUS(sc))
   4840 		bge_stats_update_regs(sc);
   4841 	else
   4842 		bge_stats_update(sc);
   4843 
   4844 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4845 		/*
   4846 		 * Since in TBI mode auto-polling can't be used we should poll
   4847 		 * link status manually. Here we register pending link event
   4848 		 * and trigger interrupt.
   4849 		 */
   4850 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4851 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4852 	} else {
   4853 		/*
   4854 		 * Do not touch PHY if we have link up. This could break
   4855 		 * IPMI/ASF mode or produce extra input errors.
   4856 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4857 		 */
   4858 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4859 			mii_tick(mii);
   4860 	}
   4861 
   4862 	bge_asf_driver_up(sc);
   4863 
   4864 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4865 
   4866 	splx(s);
   4867 }
   4868 
   4869 static void
   4870 bge_stats_update_regs(struct bge_softc *sc)
   4871 {
   4872 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4873 
   4874 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4875 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4876 
   4877 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4878 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4879 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4880 }
   4881 
   4882 static void
   4883 bge_stats_update(struct bge_softc *sc)
   4884 {
   4885 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4886 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4887 
   4888 #define READ_STAT(sc, stats, stat) \
   4889 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4890 
   4891 	ifp->if_collisions +=
   4892 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4893 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4894 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4895 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4896 	  ifp->if_collisions;
   4897 
   4898 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4899 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4900 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4901 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4902 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4903 		      READ_STAT(sc, stats,
   4904 		      		xoffPauseFramesReceived.bge_addr_lo));
   4905 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4906 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4907 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4908 		      READ_STAT(sc, stats,
   4909 		      		macControlFramesReceived.bge_addr_lo));
   4910 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4911 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4912 
   4913 #undef READ_STAT
   4914 
   4915 #ifdef notdef
   4916 	ifp->if_collisions +=
   4917 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4918 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4919 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4920 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4921 	   ifp->if_collisions;
   4922 #endif
   4923 }
   4924 
   4925 /*
   4926  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4927  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4928  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4929  * the hardware checksum assist gives incorrect results (possibly
   4930  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4931  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4932  */
   4933 static inline int
   4934 bge_cksum_pad(struct mbuf *pkt)
   4935 {
   4936 	struct mbuf *last = NULL;
   4937 	int padlen;
   4938 
   4939 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4940 
   4941 	/* if there's only the packet-header and we can pad there, use it. */
   4942 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4943 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4944 		last = pkt;
   4945 	} else {
   4946 		/*
   4947 		 * Walk packet chain to find last mbuf. We will either
   4948 		 * pad there, or append a new mbuf and pad it
   4949 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4950 		 */
   4951 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4952 	      	       continue; /* do nothing */
   4953 		}
   4954 
   4955 		/* `last' now points to last in chain. */
   4956 		if (M_TRAILINGSPACE(last) < padlen) {
   4957 			/* Allocate new empty mbuf, pad it. Compact later. */
   4958 			struct mbuf *n;
   4959 			MGET(n, M_DONTWAIT, MT_DATA);
   4960 			if (n == NULL)
   4961 				return ENOBUFS;
   4962 			n->m_len = 0;
   4963 			last->m_next = n;
   4964 			last = n;
   4965 		}
   4966 	}
   4967 
   4968 	KDASSERT(!M_READONLY(last));
   4969 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4970 
   4971 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4972 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4973 	last->m_len += padlen;
   4974 	pkt->m_pkthdr.len += padlen;
   4975 	return 0;
   4976 }
   4977 
   4978 /*
   4979  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4980  */
   4981 static inline int
   4982 bge_compact_dma_runt(struct mbuf *pkt)
   4983 {
   4984 	struct mbuf	*m, *prev;
   4985 	int 		totlen;
   4986 
   4987 	prev = NULL;
   4988 	totlen = 0;
   4989 
   4990 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4991 		int mlen = m->m_len;
   4992 		int shortfall = 8 - mlen ;
   4993 
   4994 		totlen += mlen;
   4995 		if (mlen == 0)
   4996 			continue;
   4997 		if (mlen >= 8)
   4998 			continue;
   4999 
   5000 		/* If we get here, mbuf data is too small for DMA engine.
   5001 		 * Try to fix by shuffling data to prev or next in chain.
   5002 		 * If that fails, do a compacting deep-copy of the whole chain.
   5003 		 */
   5004 
   5005 		/* Internal frag. If fits in prev, copy it there. */
   5006 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5007 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5008 			prev->m_len += mlen;
   5009 			m->m_len = 0;
   5010 			/* XXX stitch chain */
   5011 			prev->m_next = m_free(m);
   5012 			m = prev;
   5013 			continue;
   5014 		}
   5015 		else if (m->m_next != NULL &&
   5016 			     M_TRAILINGSPACE(m) >= shortfall &&
   5017 			     m->m_next->m_len >= (8 + shortfall)) {
   5018 		    /* m is writable and have enough data in next, pull up. */
   5019 
   5020 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5021 			    shortfall);
   5022 			m->m_len += shortfall;
   5023 			m->m_next->m_len -= shortfall;
   5024 			m->m_next->m_data += shortfall;
   5025 		}
   5026 		else if (m->m_next == NULL || 1) {
   5027 		  	/* Got a runt at the very end of the packet.
   5028 			 * borrow data from the tail of the preceding mbuf and
   5029 			 * update its length in-place. (The original data is still
   5030 			 * valid, so we can do this even if prev is not writable.)
   5031 			 */
   5032 
   5033 			/* if we'd make prev a runt, just move all of its data. */
   5034 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5035 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5036 
   5037 			if ((prev->m_len - shortfall) < 8)
   5038 				shortfall = prev->m_len;
   5039 
   5040 #ifdef notyet	/* just do the safe slow thing for now */
   5041 			if (!M_READONLY(m)) {
   5042 				if (M_LEADINGSPACE(m) < shorfall) {
   5043 					void *m_dat;
   5044 					m_dat = (m->m_flags & M_PKTHDR) ?
   5045 					  m->m_pktdat : m->dat;
   5046 					memmove(m_dat, mtod(m, void*), m->m_len);
   5047 					m->m_data = m_dat;
   5048 				    }
   5049 			} else
   5050 #endif	/* just do the safe slow thing */
   5051 			{
   5052 				struct mbuf * n = NULL;
   5053 				int newprevlen = prev->m_len - shortfall;
   5054 
   5055 				MGET(n, M_NOWAIT, MT_DATA);
   5056 				if (n == NULL)
   5057 				   return ENOBUFS;
   5058 				KASSERT(m->m_len + shortfall < MLEN
   5059 					/*,
   5060 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5061 
   5062 				/* first copy the data we're stealing from prev */
   5063 				memcpy(n->m_data, prev->m_data + newprevlen,
   5064 				    shortfall);
   5065 
   5066 				/* update prev->m_len accordingly */
   5067 				prev->m_len -= shortfall;
   5068 
   5069 				/* copy data from runt m */
   5070 				memcpy(n->m_data + shortfall, m->m_data,
   5071 				    m->m_len);
   5072 
   5073 				/* n holds what we stole from prev, plus m */
   5074 				n->m_len = shortfall + m->m_len;
   5075 
   5076 				/* stitch n into chain and free m */
   5077 				n->m_next = m->m_next;
   5078 				prev->m_next = n;
   5079 				/* KASSERT(m->m_next == NULL); */
   5080 				m->m_next = NULL;
   5081 				m_free(m);
   5082 				m = n;	/* for continuing loop */
   5083 			}
   5084 		}
   5085 	}
   5086 	return 0;
   5087 }
   5088 
   5089 /*
   5090  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5091  * pointers to descriptors.
   5092  */
   5093 static int
   5094 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5095 {
   5096 	struct bge_tx_bd	*f = NULL;
   5097 	uint32_t		frag, cur;
   5098 	uint16_t		csum_flags = 0;
   5099 	uint16_t		txbd_tso_flags = 0;
   5100 	struct txdmamap_pool_entry *dma;
   5101 	bus_dmamap_t dmamap;
   5102 	int			i = 0;
   5103 	struct m_tag		*mtag;
   5104 	int			use_tso, maxsegsize, error;
   5105 
   5106 	cur = frag = *txidx;
   5107 
   5108 	if (m_head->m_pkthdr.csum_flags) {
   5109 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5110 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5111 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   5112 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5113 	}
   5114 
   5115 	/*
   5116 	 * If we were asked to do an outboard checksum, and the NIC
   5117 	 * has the bug where it sometimes adds in the Ethernet padding,
   5118 	 * explicitly pad with zeros so the cksum will be correct either way.
   5119 	 * (For now, do this for all chip versions, until newer
   5120 	 * are confirmed to not require the workaround.)
   5121 	 */
   5122 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5123 #ifdef notyet
   5124 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5125 #endif
   5126 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5127 		goto check_dma_bug;
   5128 
   5129 	if (bge_cksum_pad(m_head) != 0)
   5130 	    return ENOBUFS;
   5131 
   5132 check_dma_bug:
   5133 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5134 		goto doit;
   5135 
   5136 	/*
   5137 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5138 	 * less than eight bytes.  If we encounter a teeny mbuf
   5139 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5140 	 */
   5141 	if (bge_compact_dma_runt(m_head) != 0)
   5142 		return ENOBUFS;
   5143 
   5144 doit:
   5145 	dma = SLIST_FIRST(&sc->txdma_list);
   5146 	if (dma == NULL)
   5147 		return ENOBUFS;
   5148 	dmamap = dma->dmamap;
   5149 
   5150 	/*
   5151 	 * Set up any necessary TSO state before we start packing...
   5152 	 */
   5153 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5154 	if (!use_tso) {
   5155 		maxsegsize = 0;
   5156 	} else {	/* TSO setup */
   5157 		unsigned  mss;
   5158 		struct ether_header *eh;
   5159 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5160 		struct mbuf * m0 = m_head;
   5161 		struct ip *ip;
   5162 		struct tcphdr *th;
   5163 		int iphl, hlen;
   5164 
   5165 		/*
   5166 		 * XXX It would be nice if the mbuf pkthdr had offset
   5167 		 * fields for the protocol headers.
   5168 		 */
   5169 
   5170 		eh = mtod(m0, struct ether_header *);
   5171 		switch (htons(eh->ether_type)) {
   5172 		case ETHERTYPE_IP:
   5173 			offset = ETHER_HDR_LEN;
   5174 			break;
   5175 
   5176 		case ETHERTYPE_VLAN:
   5177 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5178 			break;
   5179 
   5180 		default:
   5181 			/*
   5182 			 * Don't support this protocol or encapsulation.
   5183 			 */
   5184 			return ENOBUFS;
   5185 		}
   5186 
   5187 		/*
   5188 		 * TCP/IP headers are in the first mbuf; we can do
   5189 		 * this the easy way.
   5190 		 */
   5191 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5192 		hlen = iphl + offset;
   5193 		if (__predict_false(m0->m_len <
   5194 				    (hlen + sizeof(struct tcphdr)))) {
   5195 
   5196 			aprint_debug_dev(sc->bge_dev,
   5197 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5198 			    "not handled yet\n",
   5199 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   5200 #ifdef NOTYET
   5201 			/*
   5202 			 * XXX jonathan (at) NetBSD.org: untested.
   5203 			 * how to force  this branch to be taken?
   5204 			 */
   5205 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5206 
   5207 			m_copydata(m0, offset, sizeof(ip), &ip);
   5208 			m_copydata(m0, hlen, sizeof(th), &th);
   5209 
   5210 			ip.ip_len = 0;
   5211 
   5212 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5213 			    sizeof(ip.ip_len), &ip.ip_len);
   5214 
   5215 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5216 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5217 
   5218 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5219 			    sizeof(th.th_sum), &th.th_sum);
   5220 
   5221 			hlen += th.th_off << 2;
   5222 			iptcp_opt_words	= hlen;
   5223 #else
   5224 			/*
   5225 			 * if_wm "hard" case not yet supported, can we not
   5226 			 * mandate it out of existence?
   5227 			 */
   5228 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5229 
   5230 			return ENOBUFS;
   5231 #endif
   5232 		} else {
   5233 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5234 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5235 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5236 
   5237 			/* Total IP/TCP options, in 32-bit words */
   5238 			iptcp_opt_words = (ip_tcp_hlen
   5239 					   - sizeof(struct tcphdr)
   5240 					   - sizeof(struct ip)) >> 2;
   5241 		}
   5242 		if (BGE_IS_575X_PLUS(sc)) {
   5243 			th->th_sum = 0;
   5244 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   5245 		} else {
   5246 			/*
   5247 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5248 			 * Requires TSO firmware patch for 5701/5703/5704.
   5249 			 */
   5250 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5251 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5252 		}
   5253 
   5254 		mss = m_head->m_pkthdr.segsz;
   5255 		txbd_tso_flags |=
   5256 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5257 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5258 
   5259 		/*
   5260 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5261 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5262 		 * the NIC copies 40 bytes of IP/TCP header from the
   5263 		 * supplied header into the IP/TCP header portion of
   5264 		 * each post-TSO-segment. If the supplied packet has IP or
   5265 		 * TCP options, we need to tell the NIC to copy those extra
   5266 		 * bytes into each  post-TSO header, in addition to the normal
   5267 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5268 		 * Unfortunately, the driver encoding of option length
   5269 		 * varies across different ASIC families.
   5270 		 */
   5271 		tcp_seg_flags = 0;
   5272 		if (iptcp_opt_words) {
   5273 			if (BGE_IS_5705_PLUS(sc)) {
   5274 				tcp_seg_flags =
   5275 					iptcp_opt_words << 11;
   5276 			} else {
   5277 				txbd_tso_flags |=
   5278 					iptcp_opt_words << 12;
   5279 			}
   5280 		}
   5281 		maxsegsize = mss | tcp_seg_flags;
   5282 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5283 
   5284 	}	/* TSO setup */
   5285 
   5286 	/*
   5287 	 * Start packing the mbufs in this chain into
   5288 	 * the fragment pointers. Stop when we run out
   5289 	 * of fragments or hit the end of the mbuf chain.
   5290 	 */
   5291 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   5292 	    BUS_DMA_NOWAIT);
   5293 	if (error)
   5294 		return ENOBUFS;
   5295 	/*
   5296 	 * Sanity check: avoid coming within 16 descriptors
   5297 	 * of the end of the ring.
   5298 	 */
   5299 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5300 		BGE_TSO_PRINTF(("%s: "
   5301 		    " dmamap_load_mbuf too close to ring wrap\n",
   5302 		    device_xname(sc->bge_dev)));
   5303 		goto fail_unload;
   5304 	}
   5305 
   5306 	mtag = sc->ethercom.ec_nvlans ?
   5307 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   5308 
   5309 
   5310 	/* Iterate over dmap-map fragments. */
   5311 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5312 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5313 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5314 			break;
   5315 
   5316 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5317 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5318 
   5319 		/*
   5320 		 * For 5751 and follow-ons, for TSO we must turn
   5321 		 * off checksum-assist flag in the tx-descr, and
   5322 		 * supply the ASIC-revision-specific encoding
   5323 		 * of TSO flags and segsize.
   5324 		 */
   5325 		if (use_tso) {
   5326 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5327 				f->bge_rsvd = maxsegsize;
   5328 				f->bge_flags = csum_flags | txbd_tso_flags;
   5329 			} else {
   5330 				f->bge_rsvd = 0;
   5331 				f->bge_flags =
   5332 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5333 			}
   5334 		} else {
   5335 			f->bge_rsvd = 0;
   5336 			f->bge_flags = csum_flags;
   5337 		}
   5338 
   5339 		if (mtag != NULL) {
   5340 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5341 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5342 		} else {
   5343 			f->bge_vlan_tag = 0;
   5344 		}
   5345 		cur = frag;
   5346 		BGE_INC(frag, BGE_TX_RING_CNT);
   5347 	}
   5348 
   5349 	if (i < dmamap->dm_nsegs) {
   5350 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5351 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5352 		goto fail_unload;
   5353 	}
   5354 
   5355 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5356 	    BUS_DMASYNC_PREWRITE);
   5357 
   5358 	if (frag == sc->bge_tx_saved_considx) {
   5359 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5360 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5361 
   5362 		goto fail_unload;
   5363 	}
   5364 
   5365 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5366 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5367 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5368 	sc->txdma[cur] = dma;
   5369 	sc->bge_txcnt += dmamap->dm_nsegs;
   5370 
   5371 	*txidx = frag;
   5372 
   5373 	return 0;
   5374 
   5375 fail_unload:
   5376 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5377 
   5378 	return ENOBUFS;
   5379 }
   5380 
   5381 /*
   5382  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5383  * to the mbuf data regions directly in the transmit descriptors.
   5384  */
   5385 static void
   5386 bge_start(struct ifnet *ifp)
   5387 {
   5388 	struct bge_softc *sc;
   5389 	struct mbuf *m_head = NULL;
   5390 	uint32_t prodidx;
   5391 	int pkts = 0;
   5392 
   5393 	sc = ifp->if_softc;
   5394 
   5395 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5396 		return;
   5397 
   5398 	prodidx = sc->bge_tx_prodidx;
   5399 
   5400 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5401 		IFQ_POLL(&ifp->if_snd, m_head);
   5402 		if (m_head == NULL)
   5403 			break;
   5404 
   5405 #if 0
   5406 		/*
   5407 		 * XXX
   5408 		 * safety overkill.  If this is a fragmented packet chain
   5409 		 * with delayed TCP/UDP checksums, then only encapsulate
   5410 		 * it if we have enough descriptors to handle the entire
   5411 		 * chain at once.
   5412 		 * (paranoia -- may not actually be needed)
   5413 		 */
   5414 		if (m_head->m_flags & M_FIRSTFRAG &&
   5415 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5416 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5417 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5418 				ifp->if_flags |= IFF_OACTIVE;
   5419 				break;
   5420 			}
   5421 		}
   5422 #endif
   5423 
   5424 		/*
   5425 		 * Pack the data into the transmit ring. If we
   5426 		 * don't have room, set the OACTIVE flag and wait
   5427 		 * for the NIC to drain the ring.
   5428 		 */
   5429 		if (bge_encap(sc, m_head, &prodidx)) {
   5430 			ifp->if_flags |= IFF_OACTIVE;
   5431 			break;
   5432 		}
   5433 
   5434 		/* now we are committed to transmit the packet */
   5435 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5436 		pkts++;
   5437 
   5438 		/*
   5439 		 * If there's a BPF listener, bounce a copy of this frame
   5440 		 * to him.
   5441 		 */
   5442 		bpf_mtap(ifp, m_head);
   5443 	}
   5444 	if (pkts == 0)
   5445 		return;
   5446 
   5447 	/* Transmit */
   5448 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5449 	/* 5700 b2 errata */
   5450 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5451 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5452 
   5453 	sc->bge_tx_prodidx = prodidx;
   5454 
   5455 	/*
   5456 	 * Set a timeout in case the chip goes out to lunch.
   5457 	 */
   5458 	ifp->if_timer = 5;
   5459 }
   5460 
   5461 static int
   5462 bge_init(struct ifnet *ifp)
   5463 {
   5464 	struct bge_softc *sc = ifp->if_softc;
   5465 	const uint16_t *m;
   5466 	uint32_t mode, reg;
   5467 	int s, error = 0;
   5468 
   5469 	s = splnet();
   5470 
   5471 	ifp = &sc->ethercom.ec_if;
   5472 
   5473 	/* Cancel pending I/O and flush buffers. */
   5474 	bge_stop(ifp, 0);
   5475 
   5476 	bge_stop_fw(sc);
   5477 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5478 	bge_reset(sc);
   5479 	bge_sig_legacy(sc, BGE_RESET_START);
   5480 
   5481 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5482 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5483 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5484 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5485 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5486 
   5487 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5488 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5489 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5490 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5491 
   5492 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5493 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5494 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5495 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5496 
   5497 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5498 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5499 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5500 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5501 	}
   5502 
   5503 	bge_sig_post_reset(sc, BGE_RESET_START);
   5504 
   5505 	bge_chipinit(sc);
   5506 
   5507 	/*
   5508 	 * Init the various state machines, ring
   5509 	 * control blocks and firmware.
   5510 	 */
   5511 	error = bge_blockinit(sc);
   5512 	if (error != 0) {
   5513 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5514 		    error);
   5515 		splx(s);
   5516 		return error;
   5517 	}
   5518 
   5519 	ifp = &sc->ethercom.ec_if;
   5520 
   5521 	/* 5718 step 25, 57XX step 54 */
   5522 	/* Specify MTU. */
   5523 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5524 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5525 
   5526 	/* 5718 step 23 */
   5527 	/* Load our MAC address. */
   5528 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5529 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5530 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5531 
   5532 	/* Enable or disable promiscuous mode as needed. */
   5533 	if (ifp->if_flags & IFF_PROMISC)
   5534 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5535 	else
   5536 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5537 
   5538 	/* Program multicast filter. */
   5539 	bge_setmulti(sc);
   5540 
   5541 	/* Init RX ring. */
   5542 	bge_init_rx_ring_std(sc);
   5543 
   5544 	/*
   5545 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5546 	 * memory to insure that the chip has in fact read the first
   5547 	 * entry of the ring.
   5548 	 */
   5549 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5550 		uint32_t		v, i;
   5551 		for (i = 0; i < 10; i++) {
   5552 			DELAY(20);
   5553 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5554 			if (v == (MCLBYTES - ETHER_ALIGN))
   5555 				break;
   5556 		}
   5557 		if (i == 10)
   5558 			aprint_error_dev(sc->bge_dev,
   5559 			    "5705 A0 chip failed to load RX ring\n");
   5560 	}
   5561 
   5562 	/* Init jumbo RX ring. */
   5563 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5564 		bge_init_rx_ring_jumbo(sc);
   5565 
   5566 	/* Init our RX return ring index */
   5567 	sc->bge_rx_saved_considx = 0;
   5568 
   5569 	/* Init TX ring. */
   5570 	bge_init_tx_ring(sc);
   5571 
   5572 	/* 5718 step 63, 57XX step 94 */
   5573 	/* Enable TX MAC state machine lockup fix. */
   5574 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5575 	if (BGE_IS_5755_PLUS(sc) ||
   5576 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5577 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5578 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5579 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5580 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5581 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5582 	}
   5583 
   5584 	/* Turn on transmitter */
   5585 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5586 	/* 5718 step 64 */
   5587 	DELAY(100);
   5588 
   5589 	/* 5718 step 65, 57XX step 95 */
   5590 	/* Turn on receiver */
   5591 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5592 	if (BGE_IS_5755_PLUS(sc))
   5593 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5594 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5595 	/* 5718 step 66 */
   5596 	DELAY(10);
   5597 
   5598 	/* 5718 step 12, 57XX step 37 */
   5599 	/*
   5600 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5601 	 * is 1, but tg3 set 1 only on 57765 series.
   5602 	 */
   5603 	if (BGE_IS_57765_PLUS(sc))
   5604 		reg = 1;
   5605 	else
   5606 		reg = 2;
   5607 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5608 
   5609 	/* Tell firmware we're alive. */
   5610 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5611 
   5612 	/* Enable host interrupts. */
   5613 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5614 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5615 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5616 
   5617 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5618 		goto out;
   5619 
   5620 	ifp->if_flags |= IFF_RUNNING;
   5621 	ifp->if_flags &= ~IFF_OACTIVE;
   5622 
   5623 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5624 
   5625 out:
   5626 	sc->bge_if_flags = ifp->if_flags;
   5627 	splx(s);
   5628 
   5629 	return error;
   5630 }
   5631 
   5632 /*
   5633  * Set media options.
   5634  */
   5635 static int
   5636 bge_ifmedia_upd(struct ifnet *ifp)
   5637 {
   5638 	struct bge_softc *sc = ifp->if_softc;
   5639 	struct mii_data *mii = &sc->bge_mii;
   5640 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5641 	int rc;
   5642 
   5643 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5644 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5645 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5646 			return EINVAL;
   5647 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5648 		case IFM_AUTO:
   5649 			/*
   5650 			 * The BCM5704 ASIC appears to have a special
   5651 			 * mechanism for programming the autoneg
   5652 			 * advertisement registers in TBI mode.
   5653 			 */
   5654 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5655 				uint32_t sgdig;
   5656 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5657 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5658 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5659 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5660 					sgdig |= BGE_SGDIGCFG_AUTO |
   5661 					    BGE_SGDIGCFG_PAUSE_CAP |
   5662 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5663 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5664 					    sgdig | BGE_SGDIGCFG_SEND);
   5665 					DELAY(5);
   5666 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5667 					    sgdig);
   5668 				}
   5669 			}
   5670 			break;
   5671 		case IFM_1000_SX:
   5672 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5673 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5674 				    BGE_MACMODE_HALF_DUPLEX);
   5675 			} else {
   5676 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5677 				    BGE_MACMODE_HALF_DUPLEX);
   5678 			}
   5679 			DELAY(40);
   5680 			break;
   5681 		default:
   5682 			return EINVAL;
   5683 		}
   5684 		/* XXX 802.3x flow control for 1000BASE-SX */
   5685 		return 0;
   5686 	}
   5687 
   5688 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5689 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5690 		uint32_t reg;
   5691 
   5692 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5693 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5694 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5695 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5696 		}
   5697 	}
   5698 
   5699 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5700 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5701 		return 0;
   5702 
   5703 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5704 		uint32_t reg;
   5705 
   5706 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5707 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5708 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5709 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5710 			delay(40);
   5711 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5712 		}
   5713 	}
   5714 
   5715 	/*
   5716 	 * Force an interrupt so that we will call bge_link_upd
   5717 	 * if needed and clear any pending link state attention.
   5718 	 * Without this we are not getting any further interrupts
   5719 	 * for link state changes and thus will not UP the link and
   5720 	 * not be able to send in bge_start. The only way to get
   5721 	 * things working was to receive a packet and get a RX intr.
   5722 	 */
   5723 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5724 	    sc->bge_flags & BGEF_IS_5788)
   5725 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5726 	else
   5727 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5728 
   5729 	return rc;
   5730 }
   5731 
   5732 /*
   5733  * Report current media status.
   5734  */
   5735 static void
   5736 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5737 {
   5738 	struct bge_softc *sc = ifp->if_softc;
   5739 	struct mii_data *mii = &sc->bge_mii;
   5740 
   5741 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5742 		ifmr->ifm_status = IFM_AVALID;
   5743 		ifmr->ifm_active = IFM_ETHER;
   5744 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5745 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5746 			ifmr->ifm_status |= IFM_ACTIVE;
   5747 		ifmr->ifm_active |= IFM_1000_SX;
   5748 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5749 			ifmr->ifm_active |= IFM_HDX;
   5750 		else
   5751 			ifmr->ifm_active |= IFM_FDX;
   5752 		return;
   5753 	}
   5754 
   5755 	mii_pollstat(mii);
   5756 	ifmr->ifm_status = mii->mii_media_status;
   5757 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5758 	    sc->bge_flowflags;
   5759 }
   5760 
   5761 static int
   5762 bge_ifflags_cb(struct ethercom *ec)
   5763 {
   5764 	struct ifnet *ifp = &ec->ec_if;
   5765 	struct bge_softc *sc = ifp->if_softc;
   5766 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5767 
   5768 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5769 		return ENETRESET;
   5770 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5771 		return 0;
   5772 
   5773 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5774 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5775 	else
   5776 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5777 
   5778 	bge_setmulti(sc);
   5779 
   5780 	sc->bge_if_flags = ifp->if_flags;
   5781 	return 0;
   5782 }
   5783 
   5784 static int
   5785 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5786 {
   5787 	struct bge_softc *sc = ifp->if_softc;
   5788 	struct ifreq *ifr = (struct ifreq *) data;
   5789 	int s, error = 0;
   5790 	struct mii_data *mii;
   5791 
   5792 	s = splnet();
   5793 
   5794 	switch (command) {
   5795 	case SIOCSIFMEDIA:
   5796 		/* XXX Flow control is not supported for 1000BASE-SX */
   5797 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5798 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5799 			sc->bge_flowflags = 0;
   5800 		}
   5801 
   5802 		/* Flow control requires full-duplex mode. */
   5803 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5804 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5805 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5806 		}
   5807 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5808 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5809 				/* We can do both TXPAUSE and RXPAUSE. */
   5810 				ifr->ifr_media |=
   5811 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5812 			}
   5813 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5814 		}
   5815 		/* FALLTHROUGH */
   5816 	case SIOCGIFMEDIA:
   5817 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5818 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5819 			    command);
   5820 		} else {
   5821 			mii = &sc->bge_mii;
   5822 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5823 			    command);
   5824 		}
   5825 		break;
   5826 	default:
   5827 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5828 			break;
   5829 
   5830 		error = 0;
   5831 
   5832 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5833 			;
   5834 		else if (ifp->if_flags & IFF_RUNNING)
   5835 			bge_setmulti(sc);
   5836 		break;
   5837 	}
   5838 
   5839 	splx(s);
   5840 
   5841 	return error;
   5842 }
   5843 
   5844 static void
   5845 bge_watchdog(struct ifnet *ifp)
   5846 {
   5847 	struct bge_softc *sc;
   5848 
   5849 	sc = ifp->if_softc;
   5850 
   5851 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5852 
   5853 	ifp->if_flags &= ~IFF_RUNNING;
   5854 	bge_init(ifp);
   5855 
   5856 	ifp->if_oerrors++;
   5857 }
   5858 
   5859 static void
   5860 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5861 {
   5862 	int i;
   5863 
   5864 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5865 
   5866 	for (i = 0; i < 1000; i++) {
   5867 		delay(100);
   5868 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5869 			return;
   5870 	}
   5871 
   5872 	/*
   5873 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5874 	 * on some environment (and once after boot?)
   5875 	 */
   5876 	if (reg != BGE_SRS_MODE)
   5877 		aprint_error_dev(sc->bge_dev,
   5878 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5879 		    (u_long)reg, bit);
   5880 }
   5881 
   5882 /*
   5883  * Stop the adapter and free any mbufs allocated to the
   5884  * RX and TX lists.
   5885  */
   5886 static void
   5887 bge_stop(struct ifnet *ifp, int disable)
   5888 {
   5889 	struct bge_softc *sc = ifp->if_softc;
   5890 
   5891 	if (disable)
   5892 		callout_halt(&sc->bge_timeout, NULL);
   5893 	else
   5894 		callout_stop(&sc->bge_timeout);
   5895 
   5896 	/* Disable host interrupts. */
   5897 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5898 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5899 
   5900 	/*
   5901 	 * Tell firmware we're shutting down.
   5902 	 */
   5903 	bge_stop_fw(sc);
   5904 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5905 
   5906 	/*
   5907 	 * Disable all of the receiver blocks.
   5908 	 */
   5909 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5910 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5911 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5912 	if (BGE_IS_5700_FAMILY(sc))
   5913 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5914 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5915 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5916 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5917 
   5918 	/*
   5919 	 * Disable all of the transmit blocks.
   5920 	 */
   5921 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5922 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5923 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5924 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5925 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5926 	if (BGE_IS_5700_FAMILY(sc))
   5927 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5928 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5929 
   5930 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5931 	delay(40);
   5932 
   5933 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5934 
   5935 	/*
   5936 	 * Shut down all of the memory managers and related
   5937 	 * state machines.
   5938 	 */
   5939 	/* 5718 step 5a,5b */
   5940 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5941 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5942 	if (BGE_IS_5700_FAMILY(sc))
   5943 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5944 
   5945 	/* 5718 step 5c,5d */
   5946 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5947 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5948 
   5949 	if (BGE_IS_5700_FAMILY(sc)) {
   5950 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5951 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5952 	}
   5953 
   5954 	bge_reset(sc);
   5955 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5956 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5957 
   5958 	/*
   5959 	 * Keep the ASF firmware running if up.
   5960 	 */
   5961 	if (sc->bge_asf_mode & ASF_STACKUP)
   5962 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5963 	else
   5964 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5965 
   5966 	/* Free the RX lists. */
   5967 	bge_free_rx_ring_std(sc);
   5968 
   5969 	/* Free jumbo RX list. */
   5970 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5971 		bge_free_rx_ring_jumbo(sc);
   5972 
   5973 	/* Free TX buffers. */
   5974 	bge_free_tx_ring(sc);
   5975 
   5976 	/*
   5977 	 * Isolate/power down the PHY.
   5978 	 */
   5979 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   5980 		mii_down(&sc->bge_mii);
   5981 
   5982 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5983 
   5984 	/* Clear MAC's link state (PHY may still have link UP). */
   5985 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5986 
   5987 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5988 }
   5989 
   5990 static void
   5991 bge_link_upd(struct bge_softc *sc)
   5992 {
   5993 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5994 	struct mii_data *mii = &sc->bge_mii;
   5995 	uint32_t status;
   5996 	int link;
   5997 
   5998 	/* Clear 'pending link event' flag */
   5999 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6000 
   6001 	/*
   6002 	 * Process link state changes.
   6003 	 * Grrr. The link status word in the status block does
   6004 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6005 	 * according to all available information. Hence, we have
   6006 	 * to enable MII interrupts in order to properly obtain
   6007 	 * async link changes. Unfortunately, this also means that
   6008 	 * we have to read the MAC status register to detect link
   6009 	 * changes, thereby adding an additional register access to
   6010 	 * the interrupt handler.
   6011 	 */
   6012 
   6013 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6014 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6015 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6016 			mii_pollstat(mii);
   6017 
   6018 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6019 			    mii->mii_media_status & IFM_ACTIVE &&
   6020 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6021 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6022 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6023 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6024 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6025 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6026 
   6027 			/* Clear the interrupt */
   6028 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6029 			    BGE_EVTENB_MI_INTERRUPT);
   6030 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6031 			    BRGPHY_MII_ISR);
   6032 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6033 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6034 		}
   6035 		return;
   6036 	}
   6037 
   6038 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6039 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6040 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6041 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6042 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6043 				if (BGE_ASICREV(sc->bge_chipid)
   6044 				    == BGE_ASICREV_BCM5704) {
   6045 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   6046 					    BGE_MACMODE_TBI_SEND_CFGS);
   6047 					DELAY(40);
   6048 				}
   6049 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6050 				if_link_state_change(ifp, LINK_STATE_UP);
   6051 			}
   6052 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6053 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6054 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6055 		}
   6056 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6057 		/*
   6058 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6059 		 * bit in status word always set. Workaround this bug by
   6060 		 * reading PHY link status directly.
   6061 		 */
   6062 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6063 		    BGE_STS_LINK : 0;
   6064 
   6065 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6066 			mii_pollstat(mii);
   6067 
   6068 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6069 			    mii->mii_media_status & IFM_ACTIVE &&
   6070 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6071 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6072 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6073 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6074 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6075 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6076 		}
   6077 	} else {
   6078 		/*
   6079 		 * For controllers that call mii_tick, we have to poll
   6080 		 * link status.
   6081 		 */
   6082 		mii_pollstat(mii);
   6083 	}
   6084 
   6085 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6086 		uint32_t reg, scale;
   6087 
   6088 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6089 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6090 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6091 			scale = 65;
   6092 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6093 			scale = 6;
   6094 		else
   6095 			scale = 12;
   6096 
   6097 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6098 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6099 		reg |= scale << 1;
   6100 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6101 	}
   6102 	/* Clear the attention */
   6103 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   6104 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   6105 	    BGE_MACSTAT_LINK_CHANGED);
   6106 }
   6107 
   6108 static int
   6109 bge_sysctl_verify(SYSCTLFN_ARGS)
   6110 {
   6111 	int error, t;
   6112 	struct sysctlnode node;
   6113 
   6114 	node = *rnode;
   6115 	t = *(int*)rnode->sysctl_data;
   6116 	node.sysctl_data = &t;
   6117 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6118 	if (error || newp == NULL)
   6119 		return error;
   6120 
   6121 #if 0
   6122 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6123 	    node.sysctl_num, rnode->sysctl_num));
   6124 #endif
   6125 
   6126 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6127 		if (t < 0 || t >= NBGE_RX_THRESH)
   6128 			return EINVAL;
   6129 		bge_update_all_threshes(t);
   6130 	} else
   6131 		return EINVAL;
   6132 
   6133 	*(int*)rnode->sysctl_data = t;
   6134 
   6135 	return 0;
   6136 }
   6137 
   6138 /*
   6139  * Set up sysctl(3) MIB, hw.bge.*.
   6140  */
   6141 static void
   6142 bge_sysctl_init(struct bge_softc *sc)
   6143 {
   6144 	int rc, bge_root_num;
   6145 	const struct sysctlnode *node;
   6146 
   6147 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6148 	    0, CTLTYPE_NODE, "bge",
   6149 	    SYSCTL_DESCR("BGE interface controls"),
   6150 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6151 		goto out;
   6152 	}
   6153 
   6154 	bge_root_num = node->sysctl_num;
   6155 
   6156 	/* BGE Rx interrupt mitigation level */
   6157 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6158 	    CTLFLAG_READWRITE,
   6159 	    CTLTYPE_INT, "rx_lvl",
   6160 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6161 	    bge_sysctl_verify, 0,
   6162 	    &bge_rx_thresh_lvl,
   6163 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6164 	    CTL_EOL)) != 0) {
   6165 		goto out;
   6166 	}
   6167 
   6168 	bge_rxthresh_nodenum = node->sysctl_num;
   6169 
   6170 	return;
   6171 
   6172 out:
   6173 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6174 }
   6175 
   6176 #ifdef BGE_DEBUG
   6177 void
   6178 bge_debug_info(struct bge_softc *sc)
   6179 {
   6180 
   6181 	printf("Hardware Flags:\n");
   6182 	if (BGE_IS_57765_PLUS(sc))
   6183 		printf(" - 57765 Plus\n");
   6184 	if (BGE_IS_5717_PLUS(sc))
   6185 		printf(" - 5717 Plus\n");
   6186 	if (BGE_IS_5755_PLUS(sc))
   6187 		printf(" - 5755 Plus\n");
   6188 	if (BGE_IS_575X_PLUS(sc))
   6189 		printf(" - 575X Plus\n");
   6190 	if (BGE_IS_5705_PLUS(sc))
   6191 		printf(" - 5705 Plus\n");
   6192 	if (BGE_IS_5714_FAMILY(sc))
   6193 		printf(" - 5714 Family\n");
   6194 	if (BGE_IS_5700_FAMILY(sc))
   6195 		printf(" - 5700 Family\n");
   6196 	if (sc->bge_flags & BGEF_IS_5788)
   6197 		printf(" - 5788\n");
   6198 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6199 		printf(" - Supports Jumbo Frames\n");
   6200 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6201 		printf(" - No EEPROM\n");
   6202 	if (sc->bge_flags & BGEF_PCIX)
   6203 		printf(" - PCI-X Bus\n");
   6204 	if (sc->bge_flags & BGEF_PCIE)
   6205 		printf(" - PCI Express Bus\n");
   6206 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6207 		printf(" - RX Alignment Bug\n");
   6208 	if (sc->bge_flags & BGEF_APE)
   6209 		printf(" - APE\n");
   6210 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6211 		printf(" - CPMU\n");
   6212 	if (sc->bge_flags & BGEF_TSO)
   6213 		printf(" - TSO\n");
   6214 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6215 		printf(" - TAGGED_STATUS\n");
   6216 
   6217 	/* PHY related */
   6218 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6219 		printf(" - No 3 LEDs\n");
   6220 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6221 		printf(" - CRC bug\n");
   6222 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6223 		printf(" - ADC bug\n");
   6224 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6225 		printf(" - 5704 A0 bug\n");
   6226 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6227 		printf(" - jitter bug\n");
   6228 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6229 		printf(" - BER bug\n");
   6230 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6231 		printf(" - adjust trim\n");
   6232 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6233 		printf(" - no wirespeed\n");
   6234 
   6235 	/* ASF related */
   6236 	if (sc->bge_asf_mode & ASF_ENABLE)
   6237 		printf(" - ASF enable\n");
   6238 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6239 		printf(" - ASF new handshake\n");
   6240 	if (sc->bge_asf_mode & ASF_STACKUP)
   6241 		printf(" - ASF stackup\n");
   6242 }
   6243 #endif /* BGE_DEBUG */
   6244 
   6245 static int
   6246 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6247 {
   6248 	prop_dictionary_t dict;
   6249 	prop_data_t ea;
   6250 
   6251 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6252 		return 1;
   6253 
   6254 	dict = device_properties(sc->bge_dev);
   6255 	ea = prop_dictionary_get(dict, "mac-address");
   6256 	if (ea != NULL) {
   6257 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6258 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6259 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   6260 		return 0;
   6261 	}
   6262 
   6263 	return 1;
   6264 }
   6265 
   6266 static int
   6267 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6268 {
   6269 	uint32_t mac_addr;
   6270 
   6271 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6272 	if ((mac_addr >> 16) == 0x484b) {
   6273 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6274 		ether_addr[1] = (uint8_t)mac_addr;
   6275 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6276 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6277 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6278 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6279 		ether_addr[5] = (uint8_t)mac_addr;
   6280 		return 0;
   6281 	}
   6282 	return 1;
   6283 }
   6284 
   6285 static int
   6286 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6287 {
   6288 	int mac_offset = BGE_EE_MAC_OFFSET;
   6289 
   6290 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6291 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6292 
   6293 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6294 	    ETHER_ADDR_LEN));
   6295 }
   6296 
   6297 static int
   6298 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6299 {
   6300 
   6301 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6302 		return 1;
   6303 
   6304 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6305 	   ETHER_ADDR_LEN));
   6306 }
   6307 
   6308 static int
   6309 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6310 {
   6311 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6312 		/* NOTE: Order is critical */
   6313 		bge_get_eaddr_fw,
   6314 		bge_get_eaddr_mem,
   6315 		bge_get_eaddr_nvram,
   6316 		bge_get_eaddr_eeprom,
   6317 		NULL
   6318 	};
   6319 	const bge_eaddr_fcn_t *func;
   6320 
   6321 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6322 		if ((*func)(sc, eaddr) == 0)
   6323 			break;
   6324 	}
   6325 	return (*func == NULL ? ENXIO : 0);
   6326 }
   6327