if_bge.c revision 1.289 1 /* $NetBSD: if_bge.c,v 1.289 2015/05/17 14:23:15 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.289 2015/05/17 14:23:15 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 #ifdef __HAVE_PCI_MSI_MSIX
187 static int bge_can_use_msi(struct bge_softc *);
188 #endif
189 static int bge_probe(device_t, cfdata_t, void *);
190 static void bge_attach(device_t, device_t, void *);
191 static int bge_detach(device_t, int);
192 static void bge_release_resources(struct bge_softc *);
193
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
202 static void bge_rxeof(struct bge_softc *);
203
204 static void bge_asf_driver_up (struct bge_softc *);
205 static void bge_tick(void *);
206 static void bge_stats_update(struct bge_softc *);
207 static void bge_stats_update_regs(struct bge_softc *);
208 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
209
210 static int bge_intr(void *);
211 static void bge_start(struct ifnet *);
212 static int bge_ifflags_cb(struct ethercom *);
213 static int bge_ioctl(struct ifnet *, u_long, void *);
214 static int bge_init(struct ifnet *);
215 static void bge_stop(struct ifnet *, int);
216 static void bge_watchdog(struct ifnet *);
217 static int bge_ifmedia_upd(struct ifnet *);
218 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
219
220 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
222
223 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
224 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
225 static void bge_setmulti(struct bge_softc *);
226
227 static void bge_handle_events(struct bge_softc *);
228 static int bge_alloc_jumbo_mem(struct bge_softc *);
229 #if 0 /* XXX */
230 static void bge_free_jumbo_mem(struct bge_softc *);
231 #endif
232 static void *bge_jalloc(struct bge_softc *);
233 static void bge_jfree(struct mbuf *, void *, size_t, void *);
234 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
235 bus_dmamap_t);
236 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
237 static int bge_init_rx_ring_std(struct bge_softc *);
238 static void bge_free_rx_ring_std(struct bge_softc *);
239 static int bge_init_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_rx_ring_jumbo(struct bge_softc *);
241 static void bge_free_tx_ring(struct bge_softc *);
242 static int bge_init_tx_ring(struct bge_softc *);
243
244 static int bge_chipinit(struct bge_softc *);
245 static int bge_blockinit(struct bge_softc *);
246 static int bge_phy_addr(struct bge_softc *);
247 static uint32_t bge_readmem_ind(struct bge_softc *, int);
248 static void bge_writemem_ind(struct bge_softc *, int, int);
249 static void bge_writembx(struct bge_softc *, int, int);
250 static void bge_writembx_flush(struct bge_softc *, int, int);
251 static void bge_writemem_direct(struct bge_softc *, int, int);
252 static void bge_writereg_ind(struct bge_softc *, int, int);
253 static void bge_set_max_readrq(struct bge_softc *);
254
255 static int bge_miibus_readreg(device_t, int, int);
256 static void bge_miibus_writereg(device_t, int, int, int);
257 static void bge_miibus_statchg(struct ifnet *);
258
259 #define BGE_RESET_SHUTDOWN 0
260 #define BGE_RESET_START 1
261 #define BGE_RESET_SUSPEND 2
262 static void bge_sig_post_reset(struct bge_softc *, int);
263 static void bge_sig_legacy(struct bge_softc *, int);
264 static void bge_sig_pre_reset(struct bge_softc *, int);
265 static void bge_wait_for_event_ack(struct bge_softc *);
266 static void bge_stop_fw(struct bge_softc *);
267 static int bge_reset(struct bge_softc *);
268 static void bge_link_upd(struct bge_softc *);
269 static void bge_sysctl_init(struct bge_softc *);
270 static int bge_sysctl_verify(SYSCTLFN_PROTO);
271
272 static void bge_ape_lock_init(struct bge_softc *);
273 static void bge_ape_read_fw_ver(struct bge_softc *);
274 static int bge_ape_lock(struct bge_softc *, int);
275 static void bge_ape_unlock(struct bge_softc *, int);
276 static void bge_ape_send_event(struct bge_softc *, uint32_t);
277 static void bge_ape_driver_state_change(struct bge_softc *, int);
278
279 #ifdef BGE_DEBUG
280 #define DPRINTF(x) if (bgedebug) printf x
281 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
282 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
283 int bgedebug = 0;
284 int bge_tso_debug = 0;
285 void bge_debug_info(struct bge_softc *);
286 #else
287 #define DPRINTF(x)
288 #define DPRINTFN(n,x)
289 #define BGE_TSO_PRINTF(x)
290 #endif
291
292 #ifdef BGE_EVENT_COUNTERS
293 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
294 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
295 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
296 #else
297 #define BGE_EVCNT_INCR(ev) /* nothing */
298 #define BGE_EVCNT_ADD(ev, val) /* nothing */
299 #define BGE_EVCNT_UPD(ev, val) /* nothing */
300 #endif
301
302 static const struct bge_product {
303 pci_vendor_id_t bp_vendor;
304 pci_product_id_t bp_product;
305 const char *bp_name;
306 } bge_products[] = {
307 /*
308 * The BCM5700 documentation seems to indicate that the hardware
309 * still has the Alteon vendor ID burned into it, though it
310 * should always be overridden by the value in the EEPROM. We'll
311 * check for it anyway.
312 */
313 { PCI_VENDOR_ALTEON,
314 PCI_PRODUCT_ALTEON_BCM5700,
315 "Broadcom BCM5700 Gigabit Ethernet",
316 },
317 { PCI_VENDOR_ALTEON,
318 PCI_PRODUCT_ALTEON_BCM5701,
319 "Broadcom BCM5701 Gigabit Ethernet",
320 },
321 { PCI_VENDOR_ALTIMA,
322 PCI_PRODUCT_ALTIMA_AC1000,
323 "Altima AC1000 Gigabit Ethernet",
324 },
325 { PCI_VENDOR_ALTIMA,
326 PCI_PRODUCT_ALTIMA_AC1001,
327 "Altima AC1001 Gigabit Ethernet",
328 },
329 { PCI_VENDOR_ALTIMA,
330 PCI_PRODUCT_ALTIMA_AC1003,
331 "Altima AC1003 Gigabit Ethernet",
332 },
333 { PCI_VENDOR_ALTIMA,
334 PCI_PRODUCT_ALTIMA_AC9100,
335 "Altima AC9100 Gigabit Ethernet",
336 },
337 { PCI_VENDOR_APPLE,
338 PCI_PRODUCT_APPLE_BCM5701,
339 "APPLE BCM5701 Gigabit Ethernet",
340 },
341 { PCI_VENDOR_BROADCOM,
342 PCI_PRODUCT_BROADCOM_BCM5700,
343 "Broadcom BCM5700 Gigabit Ethernet",
344 },
345 { PCI_VENDOR_BROADCOM,
346 PCI_PRODUCT_BROADCOM_BCM5701,
347 "Broadcom BCM5701 Gigabit Ethernet",
348 },
349 { PCI_VENDOR_BROADCOM,
350 PCI_PRODUCT_BROADCOM_BCM5702,
351 "Broadcom BCM5702 Gigabit Ethernet",
352 },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5702X,
355 "Broadcom BCM5702X Gigabit Ethernet" },
356 { PCI_VENDOR_BROADCOM,
357 PCI_PRODUCT_BROADCOM_BCM5703,
358 "Broadcom BCM5703 Gigabit Ethernet",
359 },
360 { PCI_VENDOR_BROADCOM,
361 PCI_PRODUCT_BROADCOM_BCM5703X,
362 "Broadcom BCM5703X Gigabit Ethernet",
363 },
364 { PCI_VENDOR_BROADCOM,
365 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
366 "Broadcom BCM5703 Gigabit Ethernet",
367 },
368 { PCI_VENDOR_BROADCOM,
369 PCI_PRODUCT_BROADCOM_BCM5704C,
370 "Broadcom BCM5704C Dual Gigabit Ethernet",
371 },
372 { PCI_VENDOR_BROADCOM,
373 PCI_PRODUCT_BROADCOM_BCM5704S,
374 "Broadcom BCM5704S Dual Gigabit Ethernet",
375 },
376 { PCI_VENDOR_BROADCOM,
377 PCI_PRODUCT_BROADCOM_BCM5705,
378 "Broadcom BCM5705 Gigabit Ethernet",
379 },
380 { PCI_VENDOR_BROADCOM,
381 PCI_PRODUCT_BROADCOM_BCM5705F,
382 "Broadcom BCM5705F Gigabit Ethernet",
383 },
384 { PCI_VENDOR_BROADCOM,
385 PCI_PRODUCT_BROADCOM_BCM5705K,
386 "Broadcom BCM5705K Gigabit Ethernet",
387 },
388 { PCI_VENDOR_BROADCOM,
389 PCI_PRODUCT_BROADCOM_BCM5705M,
390 "Broadcom BCM5705M Gigabit Ethernet",
391 },
392 { PCI_VENDOR_BROADCOM,
393 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
394 "Broadcom BCM5705M Gigabit Ethernet",
395 },
396 { PCI_VENDOR_BROADCOM,
397 PCI_PRODUCT_BROADCOM_BCM5714,
398 "Broadcom BCM5714 Gigabit Ethernet",
399 },
400 { PCI_VENDOR_BROADCOM,
401 PCI_PRODUCT_BROADCOM_BCM5714S,
402 "Broadcom BCM5714S Gigabit Ethernet",
403 },
404 { PCI_VENDOR_BROADCOM,
405 PCI_PRODUCT_BROADCOM_BCM5715,
406 "Broadcom BCM5715 Gigabit Ethernet",
407 },
408 { PCI_VENDOR_BROADCOM,
409 PCI_PRODUCT_BROADCOM_BCM5715S,
410 "Broadcom BCM5715S Gigabit Ethernet",
411 },
412 { PCI_VENDOR_BROADCOM,
413 PCI_PRODUCT_BROADCOM_BCM5717,
414 "Broadcom BCM5717 Gigabit Ethernet",
415 },
416 { PCI_VENDOR_BROADCOM,
417 PCI_PRODUCT_BROADCOM_BCM5718,
418 "Broadcom BCM5718 Gigabit Ethernet",
419 },
420 { PCI_VENDOR_BROADCOM,
421 PCI_PRODUCT_BROADCOM_BCM5719,
422 "Broadcom BCM5719 Gigabit Ethernet",
423 },
424 { PCI_VENDOR_BROADCOM,
425 PCI_PRODUCT_BROADCOM_BCM5720,
426 "Broadcom BCM5720 Gigabit Ethernet",
427 },
428 { PCI_VENDOR_BROADCOM,
429 PCI_PRODUCT_BROADCOM_BCM5721,
430 "Broadcom BCM5721 Gigabit Ethernet",
431 },
432 { PCI_VENDOR_BROADCOM,
433 PCI_PRODUCT_BROADCOM_BCM5722,
434 "Broadcom BCM5722 Gigabit Ethernet",
435 },
436 { PCI_VENDOR_BROADCOM,
437 PCI_PRODUCT_BROADCOM_BCM5723,
438 "Broadcom BCM5723 Gigabit Ethernet",
439 },
440 { PCI_VENDOR_BROADCOM,
441 PCI_PRODUCT_BROADCOM_BCM5750,
442 "Broadcom BCM5750 Gigabit Ethernet",
443 },
444 { PCI_VENDOR_BROADCOM,
445 PCI_PRODUCT_BROADCOM_BCM5751,
446 "Broadcom BCM5751 Gigabit Ethernet",
447 },
448 { PCI_VENDOR_BROADCOM,
449 PCI_PRODUCT_BROADCOM_BCM5751F,
450 "Broadcom BCM5751F Gigabit Ethernet",
451 },
452 { PCI_VENDOR_BROADCOM,
453 PCI_PRODUCT_BROADCOM_BCM5751M,
454 "Broadcom BCM5751M Gigabit Ethernet",
455 },
456 { PCI_VENDOR_BROADCOM,
457 PCI_PRODUCT_BROADCOM_BCM5752,
458 "Broadcom BCM5752 Gigabit Ethernet",
459 },
460 { PCI_VENDOR_BROADCOM,
461 PCI_PRODUCT_BROADCOM_BCM5752M,
462 "Broadcom BCM5752M Gigabit Ethernet",
463 },
464 { PCI_VENDOR_BROADCOM,
465 PCI_PRODUCT_BROADCOM_BCM5753,
466 "Broadcom BCM5753 Gigabit Ethernet",
467 },
468 { PCI_VENDOR_BROADCOM,
469 PCI_PRODUCT_BROADCOM_BCM5753F,
470 "Broadcom BCM5753F Gigabit Ethernet",
471 },
472 { PCI_VENDOR_BROADCOM,
473 PCI_PRODUCT_BROADCOM_BCM5753M,
474 "Broadcom BCM5753M Gigabit Ethernet",
475 },
476 { PCI_VENDOR_BROADCOM,
477 PCI_PRODUCT_BROADCOM_BCM5754,
478 "Broadcom BCM5754 Gigabit Ethernet",
479 },
480 { PCI_VENDOR_BROADCOM,
481 PCI_PRODUCT_BROADCOM_BCM5754M,
482 "Broadcom BCM5754M Gigabit Ethernet",
483 },
484 { PCI_VENDOR_BROADCOM,
485 PCI_PRODUCT_BROADCOM_BCM5755,
486 "Broadcom BCM5755 Gigabit Ethernet",
487 },
488 { PCI_VENDOR_BROADCOM,
489 PCI_PRODUCT_BROADCOM_BCM5755M,
490 "Broadcom BCM5755M Gigabit Ethernet",
491 },
492 { PCI_VENDOR_BROADCOM,
493 PCI_PRODUCT_BROADCOM_BCM5756,
494 "Broadcom BCM5756 Gigabit Ethernet",
495 },
496 { PCI_VENDOR_BROADCOM,
497 PCI_PRODUCT_BROADCOM_BCM5761,
498 "Broadcom BCM5761 Gigabit Ethernet",
499 },
500 { PCI_VENDOR_BROADCOM,
501 PCI_PRODUCT_BROADCOM_BCM5761E,
502 "Broadcom BCM5761E Gigabit Ethernet",
503 },
504 { PCI_VENDOR_BROADCOM,
505 PCI_PRODUCT_BROADCOM_BCM5761S,
506 "Broadcom BCM5761S Gigabit Ethernet",
507 },
508 { PCI_VENDOR_BROADCOM,
509 PCI_PRODUCT_BROADCOM_BCM5761SE,
510 "Broadcom BCM5761SE Gigabit Ethernet",
511 },
512 { PCI_VENDOR_BROADCOM,
513 PCI_PRODUCT_BROADCOM_BCM5764,
514 "Broadcom BCM5764 Gigabit Ethernet",
515 },
516 { PCI_VENDOR_BROADCOM,
517 PCI_PRODUCT_BROADCOM_BCM5780,
518 "Broadcom BCM5780 Gigabit Ethernet",
519 },
520 { PCI_VENDOR_BROADCOM,
521 PCI_PRODUCT_BROADCOM_BCM5780S,
522 "Broadcom BCM5780S Gigabit Ethernet",
523 },
524 { PCI_VENDOR_BROADCOM,
525 PCI_PRODUCT_BROADCOM_BCM5781,
526 "Broadcom BCM5781 Gigabit Ethernet",
527 },
528 { PCI_VENDOR_BROADCOM,
529 PCI_PRODUCT_BROADCOM_BCM5782,
530 "Broadcom BCM5782 Gigabit Ethernet",
531 },
532 { PCI_VENDOR_BROADCOM,
533 PCI_PRODUCT_BROADCOM_BCM5784M,
534 "BCM5784M NetLink 1000baseT Ethernet",
535 },
536 { PCI_VENDOR_BROADCOM,
537 PCI_PRODUCT_BROADCOM_BCM5785F,
538 "BCM5785F NetLink 10/100 Ethernet",
539 },
540 { PCI_VENDOR_BROADCOM,
541 PCI_PRODUCT_BROADCOM_BCM5785G,
542 "BCM5785G NetLink 1000baseT Ethernet",
543 },
544 { PCI_VENDOR_BROADCOM,
545 PCI_PRODUCT_BROADCOM_BCM5786,
546 "Broadcom BCM5786 Gigabit Ethernet",
547 },
548 { PCI_VENDOR_BROADCOM,
549 PCI_PRODUCT_BROADCOM_BCM5787,
550 "Broadcom BCM5787 Gigabit Ethernet",
551 },
552 { PCI_VENDOR_BROADCOM,
553 PCI_PRODUCT_BROADCOM_BCM5787F,
554 "Broadcom BCM5787F 10/100 Ethernet",
555 },
556 { PCI_VENDOR_BROADCOM,
557 PCI_PRODUCT_BROADCOM_BCM5787M,
558 "Broadcom BCM5787M Gigabit Ethernet",
559 },
560 { PCI_VENDOR_BROADCOM,
561 PCI_PRODUCT_BROADCOM_BCM5788,
562 "Broadcom BCM5788 Gigabit Ethernet",
563 },
564 { PCI_VENDOR_BROADCOM,
565 PCI_PRODUCT_BROADCOM_BCM5789,
566 "Broadcom BCM5789 Gigabit Ethernet",
567 },
568 { PCI_VENDOR_BROADCOM,
569 PCI_PRODUCT_BROADCOM_BCM5901,
570 "Broadcom BCM5901 Fast Ethernet",
571 },
572 { PCI_VENDOR_BROADCOM,
573 PCI_PRODUCT_BROADCOM_BCM5901A2,
574 "Broadcom BCM5901A2 Fast Ethernet",
575 },
576 { PCI_VENDOR_BROADCOM,
577 PCI_PRODUCT_BROADCOM_BCM5903M,
578 "Broadcom BCM5903M Fast Ethernet",
579 },
580 { PCI_VENDOR_BROADCOM,
581 PCI_PRODUCT_BROADCOM_BCM5906,
582 "Broadcom BCM5906 Fast Ethernet",
583 },
584 { PCI_VENDOR_BROADCOM,
585 PCI_PRODUCT_BROADCOM_BCM5906M,
586 "Broadcom BCM5906M Fast Ethernet",
587 },
588 { PCI_VENDOR_BROADCOM,
589 PCI_PRODUCT_BROADCOM_BCM57760,
590 "Broadcom BCM57760 Fast Ethernet",
591 },
592 { PCI_VENDOR_BROADCOM,
593 PCI_PRODUCT_BROADCOM_BCM57761,
594 "Broadcom BCM57761 Fast Ethernet",
595 },
596 { PCI_VENDOR_BROADCOM,
597 PCI_PRODUCT_BROADCOM_BCM57762,
598 "Broadcom BCM57762 Gigabit Ethernet",
599 },
600 { PCI_VENDOR_BROADCOM,
601 PCI_PRODUCT_BROADCOM_BCM57765,
602 "Broadcom BCM57765 Fast Ethernet",
603 },
604 { PCI_VENDOR_BROADCOM,
605 PCI_PRODUCT_BROADCOM_BCM57766,
606 "Broadcom BCM57766 Fast Ethernet",
607 },
608 { PCI_VENDOR_BROADCOM,
609 PCI_PRODUCT_BROADCOM_BCM57780,
610 "Broadcom BCM57780 Fast Ethernet",
611 },
612 { PCI_VENDOR_BROADCOM,
613 PCI_PRODUCT_BROADCOM_BCM57781,
614 "Broadcom BCM57781 Fast Ethernet",
615 },
616 { PCI_VENDOR_BROADCOM,
617 PCI_PRODUCT_BROADCOM_BCM57782,
618 "Broadcom BCM57782 Fast Ethernet",
619 },
620 { PCI_VENDOR_BROADCOM,
621 PCI_PRODUCT_BROADCOM_BCM57785,
622 "Broadcom BCM57785 Fast Ethernet",
623 },
624 { PCI_VENDOR_BROADCOM,
625 PCI_PRODUCT_BROADCOM_BCM57786,
626 "Broadcom BCM57786 Fast Ethernet",
627 },
628 { PCI_VENDOR_BROADCOM,
629 PCI_PRODUCT_BROADCOM_BCM57788,
630 "Broadcom BCM57788 Fast Ethernet",
631 },
632 { PCI_VENDOR_BROADCOM,
633 PCI_PRODUCT_BROADCOM_BCM57790,
634 "Broadcom BCM57790 Fast Ethernet",
635 },
636 { PCI_VENDOR_BROADCOM,
637 PCI_PRODUCT_BROADCOM_BCM57791,
638 "Broadcom BCM57791 Fast Ethernet",
639 },
640 { PCI_VENDOR_BROADCOM,
641 PCI_PRODUCT_BROADCOM_BCM57795,
642 "Broadcom BCM57795 Fast Ethernet",
643 },
644 { PCI_VENDOR_SCHNEIDERKOCH,
645 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
646 "SysKonnect SK-9Dx1 Gigabit Ethernet",
647 },
648 { PCI_VENDOR_3COM,
649 PCI_PRODUCT_3COM_3C996,
650 "3Com 3c996 Gigabit Ethernet",
651 },
652 { PCI_VENDOR_FUJITSU4,
653 PCI_PRODUCT_FUJITSU4_PW008GE4,
654 "Fujitsu PW008GE4 Gigabit Ethernet",
655 },
656 { PCI_VENDOR_FUJITSU4,
657 PCI_PRODUCT_FUJITSU4_PW008GE5,
658 "Fujitsu PW008GE5 Gigabit Ethernet",
659 },
660 { PCI_VENDOR_FUJITSU4,
661 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
662 "Fujitsu Primepower 250/450 Gigabit Ethernet",
663 },
664 { 0,
665 0,
666 NULL },
667 };
668
669 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
670 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
671 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
672 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
673 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
674 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
675 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
676 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
677 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
678
679 static const struct bge_revision {
680 uint32_t br_chipid;
681 const char *br_name;
682 } bge_revisions[] = {
683 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
684 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
685 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
686 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
687 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
688 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
689 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
690 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
691 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
692 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
693 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
694 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
695 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
696 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
697 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
698 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
699 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
700 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
701 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
702 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
703 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
704 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
705 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
706 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
707 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
708 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
709 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
710 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
711 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
712 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
713 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
714 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
715 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
716 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
717 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
718 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
719 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
720 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
721 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
722 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
723 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
724 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
725 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
726 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
727 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
728 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
729 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
730 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
731 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
732 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
733 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
734 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
735 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
736 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
737 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
738 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
739 /* 5754 and 5787 share the same ASIC ID */
740 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
741 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
742 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
743 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
744 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
745 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
746 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
747 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
748 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
749 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
750
751 { 0, NULL }
752 };
753
754 /*
755 * Some defaults for major revisions, so that newer steppings
756 * that we don't know about have a shot at working.
757 */
758 static const struct bge_revision bge_majorrevs[] = {
759 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
760 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
761 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
762 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
763 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
764 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
765 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
767 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
768 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
769 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
770 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
771 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
772 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
773 /* 5754 and 5787 share the same ASIC ID */
774 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
775 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
776 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
777 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
778 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
779 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
780 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
781 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
782
783 { 0, NULL }
784 };
785
786 static int bge_allow_asf = 1;
787
788 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
789 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
790
791 static uint32_t
792 bge_readmem_ind(struct bge_softc *sc, int off)
793 {
794 pcireg_t val;
795
796 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
797 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
798 return 0;
799
800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
801 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
802 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
803 return val;
804 }
805
806 static void
807 bge_writemem_ind(struct bge_softc *sc, int off, int val)
808 {
809
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
812 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
813 }
814
815 /*
816 * PCI Express only
817 */
818 static void
819 bge_set_max_readrq(struct bge_softc *sc)
820 {
821 pcireg_t val;
822
823 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
824 + PCIE_DCSR);
825 val &= ~PCIE_DCSR_MAX_READ_REQ;
826 switch (sc->bge_expmrq) {
827 case 2048:
828 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
829 break;
830 case 4096:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
832 break;
833 default:
834 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
835 break;
836 }
837 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
838 + PCIE_DCSR, val);
839 }
840
841 #ifdef notdef
842 static uint32_t
843 bge_readreg_ind(struct bge_softc *sc, int off)
844 {
845 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
846 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
847 }
848 #endif
849
850 static void
851 bge_writereg_ind(struct bge_softc *sc, int off, int val)
852 {
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
854 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
855 }
856
857 static void
858 bge_writemem_direct(struct bge_softc *sc, int off, int val)
859 {
860 CSR_WRITE_4(sc, off, val);
861 }
862
863 static void
864 bge_writembx(struct bge_softc *sc, int off, int val)
865 {
866 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
867 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
868
869 CSR_WRITE_4(sc, off, val);
870 }
871
872 static void
873 bge_writembx_flush(struct bge_softc *sc, int off, int val)
874 {
875 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
876 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
877
878 CSR_WRITE_4_FLUSH(sc, off, val);
879 }
880
881 /*
882 * Clear all stale locks and select the lock for this driver instance.
883 */
884 void
885 bge_ape_lock_init(struct bge_softc *sc)
886 {
887 struct pci_attach_args *pa = &(sc->bge_pa);
888 uint32_t bit, regbase;
889 int i;
890
891 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
892 regbase = BGE_APE_LOCK_GRANT;
893 else
894 regbase = BGE_APE_PER_LOCK_GRANT;
895
896 /* Clear any stale locks. */
897 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
898 switch (i) {
899 case BGE_APE_LOCK_PHY0:
900 case BGE_APE_LOCK_PHY1:
901 case BGE_APE_LOCK_PHY2:
902 case BGE_APE_LOCK_PHY3:
903 bit = BGE_APE_LOCK_GRANT_DRIVER0;
904 break;
905 default:
906 if (pa->pa_function == 0)
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 else
909 bit = (1 << pa->pa_function);
910 }
911 APE_WRITE_4(sc, regbase + 4 * i, bit);
912 }
913
914 /* Select the PHY lock based on the device's function number. */
915 switch (pa->pa_function) {
916 case 0:
917 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
918 break;
919 case 1:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
921 break;
922 case 2:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
924 break;
925 case 3:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
927 break;
928 default:
929 printf("%s: PHY lock not supported on function\n",
930 device_xname(sc->bge_dev));
931 break;
932 }
933 }
934
935 /*
936 * Check for APE firmware, set flags, and print version info.
937 */
938 void
939 bge_ape_read_fw_ver(struct bge_softc *sc)
940 {
941 const char *fwtype;
942 uint32_t apedata, features;
943
944 /* Check for a valid APE signature in shared memory. */
945 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
946 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
947 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
948 return;
949 }
950
951 /* Check if APE firmware is running. */
952 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
953 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
954 printf("%s: APE signature found but FW status not ready! "
955 "0x%08x\n", device_xname(sc->bge_dev), apedata);
956 return;
957 }
958
959 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
960
961 /* Fetch the APE firwmare type and version. */
962 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
963 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
964 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
965 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
966 fwtype = "NCSI";
967 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
969 fwtype = "DASH";
970 } else
971 fwtype = "UNKN";
972
973 /* Print the APE firmware version. */
974 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
975 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
976 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
977 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
978 (apedata & BGE_APE_FW_VERSION_BLDMSK));
979 }
980
981 int
982 bge_ape_lock(struct bge_softc *sc, int locknum)
983 {
984 struct pci_attach_args *pa = &(sc->bge_pa);
985 uint32_t bit, gnt, req, status;
986 int i, off;
987
988 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
989 return (0);
990
991 /* Lock request/grant registers have different bases. */
992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
993 req = BGE_APE_LOCK_REQ;
994 gnt = BGE_APE_LOCK_GRANT;
995 } else {
996 req = BGE_APE_PER_LOCK_REQ;
997 gnt = BGE_APE_PER_LOCK_GRANT;
998 }
999
1000 off = 4 * locknum;
1001
1002 switch (locknum) {
1003 case BGE_APE_LOCK_GPIO:
1004 /* Lock required when using GPIO. */
1005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1006 return (0);
1007 if (pa->pa_function == 0)
1008 bit = BGE_APE_LOCK_REQ_DRIVER0;
1009 else
1010 bit = (1 << pa->pa_function);
1011 break;
1012 case BGE_APE_LOCK_GRC:
1013 /* Lock required to reset the device. */
1014 if (pa->pa_function == 0)
1015 bit = BGE_APE_LOCK_REQ_DRIVER0;
1016 else
1017 bit = (1 << pa->pa_function);
1018 break;
1019 case BGE_APE_LOCK_MEM:
1020 /* Lock required when accessing certain APE memory. */
1021 if (pa->pa_function == 0)
1022 bit = BGE_APE_LOCK_REQ_DRIVER0;
1023 else
1024 bit = (1 << pa->pa_function);
1025 break;
1026 case BGE_APE_LOCK_PHY0:
1027 case BGE_APE_LOCK_PHY1:
1028 case BGE_APE_LOCK_PHY2:
1029 case BGE_APE_LOCK_PHY3:
1030 /* Lock required when accessing PHYs. */
1031 bit = BGE_APE_LOCK_REQ_DRIVER0;
1032 break;
1033 default:
1034 return (EINVAL);
1035 }
1036
1037 /* Request a lock. */
1038 APE_WRITE_4_FLUSH(sc, req + off, bit);
1039
1040 /* Wait up to 1 second to acquire lock. */
1041 for (i = 0; i < 20000; i++) {
1042 status = APE_READ_4(sc, gnt + off);
1043 if (status == bit)
1044 break;
1045 DELAY(50);
1046 }
1047
1048 /* Handle any errors. */
1049 if (status != bit) {
1050 printf("%s: APE lock %d request failed! "
1051 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1052 device_xname(sc->bge_dev),
1053 locknum, req + off, bit & 0xFFFF, gnt + off,
1054 status & 0xFFFF);
1055 /* Revoke the lock request. */
1056 APE_WRITE_4(sc, gnt + off, bit);
1057 return (EBUSY);
1058 }
1059
1060 return (0);
1061 }
1062
1063 void
1064 bge_ape_unlock(struct bge_softc *sc, int locknum)
1065 {
1066 struct pci_attach_args *pa = &(sc->bge_pa);
1067 uint32_t bit, gnt;
1068 int off;
1069
1070 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1071 return;
1072
1073 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1074 gnt = BGE_APE_LOCK_GRANT;
1075 else
1076 gnt = BGE_APE_PER_LOCK_GRANT;
1077
1078 off = 4 * locknum;
1079
1080 switch (locknum) {
1081 case BGE_APE_LOCK_GPIO:
1082 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1083 return;
1084 if (pa->pa_function == 0)
1085 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1086 else
1087 bit = (1 << pa->pa_function);
1088 break;
1089 case BGE_APE_LOCK_GRC:
1090 if (pa->pa_function == 0)
1091 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1092 else
1093 bit = (1 << pa->pa_function);
1094 break;
1095 case BGE_APE_LOCK_MEM:
1096 if (pa->pa_function == 0)
1097 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1098 else
1099 bit = (1 << pa->pa_function);
1100 break;
1101 case BGE_APE_LOCK_PHY0:
1102 case BGE_APE_LOCK_PHY1:
1103 case BGE_APE_LOCK_PHY2:
1104 case BGE_APE_LOCK_PHY3:
1105 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1106 break;
1107 default:
1108 return;
1109 }
1110
1111 /* Write and flush for consecutive bge_ape_lock() */
1112 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1113 }
1114
1115 /*
1116 * Send an event to the APE firmware.
1117 */
1118 void
1119 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1120 {
1121 uint32_t apedata;
1122 int i;
1123
1124 /* NCSI does not support APE events. */
1125 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1126 return;
1127
1128 /* Wait up to 1ms for APE to service previous event. */
1129 for (i = 10; i > 0; i--) {
1130 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1131 break;
1132 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1133 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1134 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1135 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1136 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1137 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1138 break;
1139 }
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 DELAY(100);
1142 }
1143 if (i == 0) {
1144 printf("%s: APE event 0x%08x send timed out\n",
1145 device_xname(sc->bge_dev), event);
1146 }
1147 }
1148
1149 void
1150 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1151 {
1152 uint32_t apedata, event;
1153
1154 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1155 return;
1156
1157 switch (kind) {
1158 case BGE_RESET_START:
1159 /* If this is the first load, clear the load counter. */
1160 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1161 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1162 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1163 else {
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1166 }
1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1168 BGE_APE_HOST_SEG_SIG_MAGIC);
1169 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1170 BGE_APE_HOST_SEG_LEN_MAGIC);
1171
1172 /* Add some version info if bge(4) supports it. */
1173 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1174 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1175 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1176 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1177 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1178 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1179 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1180 BGE_APE_HOST_DRVR_STATE_START);
1181 event = BGE_APE_EVENT_STATUS_STATE_START;
1182 break;
1183 case BGE_RESET_SHUTDOWN:
1184 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1185 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1186 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1187 break;
1188 case BGE_RESET_SUSPEND:
1189 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1190 break;
1191 default:
1192 return;
1193 }
1194
1195 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1196 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1197 }
1198
1199 static uint8_t
1200 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1201 {
1202 uint32_t access, byte = 0;
1203 int i;
1204
1205 /* Lock. */
1206 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1207 for (i = 0; i < 8000; i++) {
1208 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1209 break;
1210 DELAY(20);
1211 }
1212 if (i == 8000)
1213 return 1;
1214
1215 /* Enable access. */
1216 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1217 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1218
1219 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1220 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1221 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1222 DELAY(10);
1223 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1224 DELAY(10);
1225 break;
1226 }
1227 }
1228
1229 if (i == BGE_TIMEOUT * 10) {
1230 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1231 return 1;
1232 }
1233
1234 /* Get result. */
1235 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1236
1237 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1238
1239 /* Disable access. */
1240 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1241
1242 /* Unlock. */
1243 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Read a sequence of bytes from NVRAM.
1250 */
1251 static int
1252 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1253 {
1254 int error = 0, i;
1255 uint8_t byte = 0;
1256
1257 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1258 return 1;
1259
1260 for (i = 0; i < cnt; i++) {
1261 error = bge_nvram_getbyte(sc, off + i, &byte);
1262 if (error)
1263 break;
1264 *(dest + i) = byte;
1265 }
1266
1267 return (error ? 1 : 0);
1268 }
1269
1270 /*
1271 * Read a byte of data stored in the EEPROM at address 'addr.' The
1272 * BCM570x supports both the traditional bitbang interface and an
1273 * auto access interface for reading the EEPROM. We use the auto
1274 * access method.
1275 */
1276 static uint8_t
1277 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1278 {
1279 int i;
1280 uint32_t byte = 0;
1281
1282 /*
1283 * Enable use of auto EEPROM access so we can avoid
1284 * having to use the bitbang method.
1285 */
1286 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1287
1288 /* Reset the EEPROM, load the clock period. */
1289 CSR_WRITE_4(sc, BGE_EE_ADDR,
1290 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1291 DELAY(20);
1292
1293 /* Issue the read EEPROM command. */
1294 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1295
1296 /* Wait for completion */
1297 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1298 DELAY(10);
1299 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1300 break;
1301 }
1302
1303 if (i == BGE_TIMEOUT * 10) {
1304 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1305 return 1;
1306 }
1307
1308 /* Get result. */
1309 byte = CSR_READ_4(sc, BGE_EE_DATA);
1310
1311 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Read a sequence of bytes from the EEPROM.
1318 */
1319 static int
1320 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1321 {
1322 int error = 0, i;
1323 uint8_t byte = 0;
1324 char *dest = destv;
1325
1326 for (i = 0; i < cnt; i++) {
1327 error = bge_eeprom_getbyte(sc, off + i, &byte);
1328 if (error)
1329 break;
1330 *(dest + i) = byte;
1331 }
1332
1333 return (error ? 1 : 0);
1334 }
1335
1336 static int
1337 bge_miibus_readreg(device_t dev, int phy, int reg)
1338 {
1339 struct bge_softc *sc = device_private(dev);
1340 uint32_t val;
1341 uint32_t autopoll;
1342 int i;
1343
1344 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1345 return 0;
1346
1347 /* Reading with autopolling on may trigger PCI errors */
1348 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1349 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1350 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1351 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1352 DELAY(80);
1353 }
1354
1355 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1356 BGE_MIPHY(phy) | BGE_MIREG(reg));
1357
1358 for (i = 0; i < BGE_TIMEOUT; i++) {
1359 delay(10);
1360 val = CSR_READ_4(sc, BGE_MI_COMM);
1361 if (!(val & BGE_MICOMM_BUSY)) {
1362 DELAY(5);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 break;
1365 }
1366 }
1367
1368 if (i == BGE_TIMEOUT) {
1369 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1370 val = 0;
1371 goto done;
1372 }
1373
1374 done:
1375 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1376 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1377 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1378 DELAY(80);
1379 }
1380
1381 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1382
1383 if (val & BGE_MICOMM_READFAIL)
1384 return 0;
1385
1386 return (val & 0xFFFF);
1387 }
1388
1389 static void
1390 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1391 {
1392 struct bge_softc *sc = device_private(dev);
1393 uint32_t autopoll;
1394 int i;
1395
1396 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1397 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1398 return;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 /* Reading with autopolling on may trigger PCI errors */
1404 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1405 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1406 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1407 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1408 DELAY(80);
1409 }
1410
1411 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1412 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1413
1414 for (i = 0; i < BGE_TIMEOUT; i++) {
1415 delay(10);
1416 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1417 delay(5);
1418 CSR_READ_4(sc, BGE_MI_COMM);
1419 break;
1420 }
1421 }
1422
1423 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1424 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1425 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1426 delay(80);
1427 }
1428
1429 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1430
1431 if (i == BGE_TIMEOUT)
1432 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1433 }
1434
1435 static void
1436 bge_miibus_statchg(struct ifnet *ifp)
1437 {
1438 struct bge_softc *sc = ifp->if_softc;
1439 struct mii_data *mii = &sc->bge_mii;
1440 uint32_t mac_mode, rx_mode, tx_mode;
1441
1442 /*
1443 * Get flow control negotiation result.
1444 */
1445 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1446 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1447 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1448
1449 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1450 mii->mii_media_status & IFM_ACTIVE &&
1451 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1452 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1453 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1454 (!(mii->mii_media_status & IFM_ACTIVE) ||
1455 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1456 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1457
1458 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1459 return;
1460
1461 /* Set the port mode (MII/GMII) to match the link speed. */
1462 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1463 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1464 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1465 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1466 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1467 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1468 mac_mode |= BGE_PORTMODE_GMII;
1469 else
1470 mac_mode |= BGE_PORTMODE_MII;
1471
1472 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1473 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1474 if ((mii->mii_media_active & IFM_FDX) != 0) {
1475 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1476 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1477 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1478 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1479 } else
1480 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1481
1482 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1483 DELAY(40);
1484 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1485 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1486 }
1487
1488 /*
1489 * Update rx threshold levels to values in a particular slot
1490 * of the interrupt-mitigation table bge_rx_threshes.
1491 */
1492 static void
1493 bge_set_thresh(struct ifnet *ifp, int lvl)
1494 {
1495 struct bge_softc *sc = ifp->if_softc;
1496 int s;
1497
1498 /* For now, just save the new Rx-intr thresholds and record
1499 * that a threshold update is pending. Updating the hardware
1500 * registers here (even at splhigh()) is observed to
1501 * occasionaly cause glitches where Rx-interrupts are not
1502 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1503 */
1504 s = splnet();
1505 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1506 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1507 sc->bge_pending_rxintr_change = 1;
1508 splx(s);
1509 }
1510
1511
1512 /*
1513 * Update Rx thresholds of all bge devices
1514 */
1515 static void
1516 bge_update_all_threshes(int lvl)
1517 {
1518 struct ifnet *ifp;
1519 const char * const namebuf = "bge";
1520 int namelen;
1521
1522 if (lvl < 0)
1523 lvl = 0;
1524 else if (lvl >= NBGE_RX_THRESH)
1525 lvl = NBGE_RX_THRESH - 1;
1526
1527 namelen = strlen(namebuf);
1528 /*
1529 * Now search all the interfaces for this name/number
1530 */
1531 IFNET_FOREACH(ifp) {
1532 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1533 continue;
1534 /* We got a match: update if doing auto-threshold-tuning */
1535 if (bge_auto_thresh)
1536 bge_set_thresh(ifp, lvl);
1537 }
1538 }
1539
1540 /*
1541 * Handle events that have triggered interrupts.
1542 */
1543 static void
1544 bge_handle_events(struct bge_softc *sc)
1545 {
1546
1547 return;
1548 }
1549
1550 /*
1551 * Memory management for jumbo frames.
1552 */
1553
1554 static int
1555 bge_alloc_jumbo_mem(struct bge_softc *sc)
1556 {
1557 char *ptr, *kva;
1558 bus_dma_segment_t seg;
1559 int i, rseg, state, error;
1560 struct bge_jpool_entry *entry;
1561
1562 state = error = 0;
1563
1564 /* Grab a big chunk o' storage. */
1565 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1566 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1567 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1568 return ENOBUFS;
1569 }
1570
1571 state = 1;
1572 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1573 BUS_DMA_NOWAIT)) {
1574 aprint_error_dev(sc->bge_dev,
1575 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1576 error = ENOBUFS;
1577 goto out;
1578 }
1579
1580 state = 2;
1581 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1582 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1583 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1584 error = ENOBUFS;
1585 goto out;
1586 }
1587
1588 state = 3;
1589 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1590 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1591 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1592 error = ENOBUFS;
1593 goto out;
1594 }
1595
1596 state = 4;
1597 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1598 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1599
1600 SLIST_INIT(&sc->bge_jfree_listhead);
1601 SLIST_INIT(&sc->bge_jinuse_listhead);
1602
1603 /*
1604 * Now divide it up into 9K pieces and save the addresses
1605 * in an array.
1606 */
1607 ptr = sc->bge_cdata.bge_jumbo_buf;
1608 for (i = 0; i < BGE_JSLOTS; i++) {
1609 sc->bge_cdata.bge_jslots[i] = ptr;
1610 ptr += BGE_JLEN;
1611 entry = malloc(sizeof(struct bge_jpool_entry),
1612 M_DEVBUF, M_NOWAIT);
1613 if (entry == NULL) {
1614 aprint_error_dev(sc->bge_dev,
1615 "no memory for jumbo buffer queue!\n");
1616 error = ENOBUFS;
1617 goto out;
1618 }
1619 entry->slot = i;
1620 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1621 entry, jpool_entries);
1622 }
1623 out:
1624 if (error != 0) {
1625 switch (state) {
1626 case 4:
1627 bus_dmamap_unload(sc->bge_dmatag,
1628 sc->bge_cdata.bge_rx_jumbo_map);
1629 case 3:
1630 bus_dmamap_destroy(sc->bge_dmatag,
1631 sc->bge_cdata.bge_rx_jumbo_map);
1632 case 2:
1633 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1634 case 1:
1635 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1636 break;
1637 default:
1638 break;
1639 }
1640 }
1641
1642 return error;
1643 }
1644
1645 /*
1646 * Allocate a jumbo buffer.
1647 */
1648 static void *
1649 bge_jalloc(struct bge_softc *sc)
1650 {
1651 struct bge_jpool_entry *entry;
1652
1653 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1654
1655 if (entry == NULL) {
1656 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1657 return NULL;
1658 }
1659
1660 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1661 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1662 return (sc->bge_cdata.bge_jslots[entry->slot]);
1663 }
1664
1665 /*
1666 * Release a jumbo buffer.
1667 */
1668 static void
1669 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1670 {
1671 struct bge_jpool_entry *entry;
1672 struct bge_softc *sc;
1673 int i, s;
1674
1675 /* Extract the softc struct pointer. */
1676 sc = (struct bge_softc *)arg;
1677
1678 if (sc == NULL)
1679 panic("bge_jfree: can't find softc pointer!");
1680
1681 /* calculate the slot this buffer belongs to */
1682
1683 i = ((char *)buf
1684 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1685
1686 if ((i < 0) || (i >= BGE_JSLOTS))
1687 panic("bge_jfree: asked to free buffer that we don't manage!");
1688
1689 s = splvm();
1690 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1691 if (entry == NULL)
1692 panic("bge_jfree: buffer not in use!");
1693 entry->slot = i;
1694 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1695 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1696
1697 if (__predict_true(m != NULL))
1698 pool_cache_put(mb_cache, m);
1699 splx(s);
1700 }
1701
1702
1703 /*
1704 * Initialize a standard receive ring descriptor.
1705 */
1706 static int
1707 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1708 bus_dmamap_t dmamap)
1709 {
1710 struct mbuf *m_new = NULL;
1711 struct bge_rx_bd *r;
1712 int error;
1713
1714 if (dmamap == NULL) {
1715 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1716 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1717 if (error != 0)
1718 return error;
1719 }
1720
1721 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1722
1723 if (m == NULL) {
1724 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1725 if (m_new == NULL)
1726 return ENOBUFS;
1727
1728 MCLGET(m_new, M_DONTWAIT);
1729 if (!(m_new->m_flags & M_EXT)) {
1730 m_freem(m_new);
1731 return ENOBUFS;
1732 }
1733 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1734
1735 } else {
1736 m_new = m;
1737 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1738 m_new->m_data = m_new->m_ext.ext_buf;
1739 }
1740 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1741 m_adj(m_new, ETHER_ALIGN);
1742 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1743 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1744 m_freem(m_new);
1745 return ENOBUFS;
1746 }
1747 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1748 BUS_DMASYNC_PREREAD);
1749
1750 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1751 r = &sc->bge_rdata->bge_rx_std_ring[i];
1752 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1753 r->bge_flags = BGE_RXBDFLAG_END;
1754 r->bge_len = m_new->m_len;
1755 r->bge_idx = i;
1756
1757 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1758 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1759 i * sizeof (struct bge_rx_bd),
1760 sizeof (struct bge_rx_bd),
1761 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * Initialize a jumbo receive ring descriptor. This allocates
1768 * a jumbo buffer from the pool managed internally by the driver.
1769 */
1770 static int
1771 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1772 {
1773 struct mbuf *m_new = NULL;
1774 struct bge_rx_bd *r;
1775 void *buf = NULL;
1776
1777 if (m == NULL) {
1778
1779 /* Allocate the mbuf. */
1780 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1781 if (m_new == NULL)
1782 return ENOBUFS;
1783
1784 /* Allocate the jumbo buffer */
1785 buf = bge_jalloc(sc);
1786 if (buf == NULL) {
1787 m_freem(m_new);
1788 aprint_error_dev(sc->bge_dev,
1789 "jumbo allocation failed -- packet dropped!\n");
1790 return ENOBUFS;
1791 }
1792
1793 /* Attach the buffer to the mbuf. */
1794 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1795 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1796 bge_jfree, sc);
1797 m_new->m_flags |= M_EXT_RW;
1798 } else {
1799 m_new = m;
1800 buf = m_new->m_data = m_new->m_ext.ext_buf;
1801 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1802 }
1803 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1804 m_adj(m_new, ETHER_ALIGN);
1805 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1806 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1807 BUS_DMASYNC_PREREAD);
1808 /* Set up the descriptor. */
1809 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1810 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1811 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1812 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1813 r->bge_len = m_new->m_len;
1814 r->bge_idx = i;
1815
1816 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1817 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1818 i * sizeof (struct bge_rx_bd),
1819 sizeof (struct bge_rx_bd),
1820 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1821
1822 return 0;
1823 }
1824
1825 /*
1826 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1827 * that's 1MB or memory, which is a lot. For now, we fill only the first
1828 * 256 ring entries and hope that our CPU is fast enough to keep up with
1829 * the NIC.
1830 */
1831 static int
1832 bge_init_rx_ring_std(struct bge_softc *sc)
1833 {
1834 int i;
1835
1836 if (sc->bge_flags & BGEF_RXRING_VALID)
1837 return 0;
1838
1839 for (i = 0; i < BGE_SSLOTS; i++) {
1840 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1841 return ENOBUFS;
1842 }
1843
1844 sc->bge_std = i - 1;
1845 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1846
1847 sc->bge_flags |= BGEF_RXRING_VALID;
1848
1849 return 0;
1850 }
1851
1852 static void
1853 bge_free_rx_ring_std(struct bge_softc *sc)
1854 {
1855 int i;
1856
1857 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1858 return;
1859
1860 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1861 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1862 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1863 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1864 bus_dmamap_destroy(sc->bge_dmatag,
1865 sc->bge_cdata.bge_rx_std_map[i]);
1866 }
1867 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1868 sizeof(struct bge_rx_bd));
1869 }
1870
1871 sc->bge_flags &= ~BGEF_RXRING_VALID;
1872 }
1873
1874 static int
1875 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1876 {
1877 int i;
1878 volatile struct bge_rcb *rcb;
1879
1880 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1881 return 0;
1882
1883 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1884 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1885 return ENOBUFS;
1886 }
1887
1888 sc->bge_jumbo = i - 1;
1889 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1890
1891 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1892 rcb->bge_maxlen_flags = 0;
1893 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1894
1895 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1896
1897 return 0;
1898 }
1899
1900 static void
1901 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1902 {
1903 int i;
1904
1905 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1906 return;
1907
1908 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1909 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1910 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1911 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1912 }
1913 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1914 sizeof(struct bge_rx_bd));
1915 }
1916
1917 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1918 }
1919
1920 static void
1921 bge_free_tx_ring(struct bge_softc *sc)
1922 {
1923 int i;
1924 struct txdmamap_pool_entry *dma;
1925
1926 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1927 return;
1928
1929 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1930 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1931 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1932 sc->bge_cdata.bge_tx_chain[i] = NULL;
1933 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1934 link);
1935 sc->txdma[i] = 0;
1936 }
1937 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1938 sizeof(struct bge_tx_bd));
1939 }
1940
1941 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1942 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1943 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1944 free(dma, M_DEVBUF);
1945 }
1946
1947 sc->bge_flags &= ~BGEF_TXRING_VALID;
1948 }
1949
1950 static int
1951 bge_init_tx_ring(struct bge_softc *sc)
1952 {
1953 struct ifnet *ifp = &sc->ethercom.ec_if;
1954 int i;
1955 bus_dmamap_t dmamap;
1956 bus_size_t maxsegsz;
1957 struct txdmamap_pool_entry *dma;
1958
1959 if (sc->bge_flags & BGEF_TXRING_VALID)
1960 return 0;
1961
1962 sc->bge_txcnt = 0;
1963 sc->bge_tx_saved_considx = 0;
1964
1965 /* Initialize transmit producer index for host-memory send ring. */
1966 sc->bge_tx_prodidx = 0;
1967 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1968 /* 5700 b2 errata */
1969 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1970 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1971
1972 /* NIC-memory send ring not used; initialize to zero. */
1973 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1974 /* 5700 b2 errata */
1975 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1976 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1977
1978 /* Limit DMA segment size for some chips */
1979 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1980 (ifp->if_mtu <= ETHERMTU))
1981 maxsegsz = 2048;
1982 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1983 maxsegsz = 4096;
1984 else
1985 maxsegsz = ETHER_MAX_LEN_JUMBO;
1986 SLIST_INIT(&sc->txdma_list);
1987 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1988 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1989 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1990 &dmamap))
1991 return ENOBUFS;
1992 if (dmamap == NULL)
1993 panic("dmamap NULL in bge_init_tx_ring");
1994 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1995 if (dma == NULL) {
1996 aprint_error_dev(sc->bge_dev,
1997 "can't alloc txdmamap_pool_entry\n");
1998 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1999 return ENOMEM;
2000 }
2001 dma->dmamap = dmamap;
2002 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2003 }
2004
2005 sc->bge_flags |= BGEF_TXRING_VALID;
2006
2007 return 0;
2008 }
2009
2010 static void
2011 bge_setmulti(struct bge_softc *sc)
2012 {
2013 struct ethercom *ac = &sc->ethercom;
2014 struct ifnet *ifp = &ac->ec_if;
2015 struct ether_multi *enm;
2016 struct ether_multistep step;
2017 uint32_t hashes[4] = { 0, 0, 0, 0 };
2018 uint32_t h;
2019 int i;
2020
2021 if (ifp->if_flags & IFF_PROMISC)
2022 goto allmulti;
2023
2024 /* Now program new ones. */
2025 ETHER_FIRST_MULTI(step, ac, enm);
2026 while (enm != NULL) {
2027 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2028 /*
2029 * We must listen to a range of multicast addresses.
2030 * For now, just accept all multicasts, rather than
2031 * trying to set only those filter bits needed to match
2032 * the range. (At this time, the only use of address
2033 * ranges is for IP multicast routing, for which the
2034 * range is big enough to require all bits set.)
2035 */
2036 goto allmulti;
2037 }
2038
2039 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2040
2041 /* Just want the 7 least-significant bits. */
2042 h &= 0x7f;
2043
2044 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2045 ETHER_NEXT_MULTI(step, enm);
2046 }
2047
2048 ifp->if_flags &= ~IFF_ALLMULTI;
2049 goto setit;
2050
2051 allmulti:
2052 ifp->if_flags |= IFF_ALLMULTI;
2053 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2054
2055 setit:
2056 for (i = 0; i < 4; i++)
2057 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2058 }
2059
2060 static void
2061 bge_sig_pre_reset(struct bge_softc *sc, int type)
2062 {
2063
2064 /*
2065 * Some chips don't like this so only do this if ASF is enabled
2066 */
2067 if (sc->bge_asf_mode)
2068 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2069
2070 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2071 switch (type) {
2072 case BGE_RESET_START:
2073 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2074 BGE_FW_DRV_STATE_START);
2075 break;
2076 case BGE_RESET_SHUTDOWN:
2077 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2078 BGE_FW_DRV_STATE_UNLOAD);
2079 break;
2080 case BGE_RESET_SUSPEND:
2081 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2082 BGE_FW_DRV_STATE_SUSPEND);
2083 break;
2084 }
2085 }
2086
2087 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2088 bge_ape_driver_state_change(sc, type);
2089 }
2090
2091 static void
2092 bge_sig_post_reset(struct bge_softc *sc, int type)
2093 {
2094
2095 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2096 switch (type) {
2097 case BGE_RESET_START:
2098 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2099 BGE_FW_DRV_STATE_START_DONE);
2100 /* START DONE */
2101 break;
2102 case BGE_RESET_SHUTDOWN:
2103 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2104 BGE_FW_DRV_STATE_UNLOAD_DONE);
2105 break;
2106 }
2107 }
2108
2109 if (type == BGE_RESET_SHUTDOWN)
2110 bge_ape_driver_state_change(sc, type);
2111 }
2112
2113 static void
2114 bge_sig_legacy(struct bge_softc *sc, int type)
2115 {
2116
2117 if (sc->bge_asf_mode) {
2118 switch (type) {
2119 case BGE_RESET_START:
2120 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2121 BGE_FW_DRV_STATE_START);
2122 break;
2123 case BGE_RESET_SHUTDOWN:
2124 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2125 BGE_FW_DRV_STATE_UNLOAD);
2126 break;
2127 }
2128 }
2129 }
2130
2131 static void
2132 bge_wait_for_event_ack(struct bge_softc *sc)
2133 {
2134 int i;
2135
2136 /* wait up to 2500usec */
2137 for (i = 0; i < 250; i++) {
2138 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2139 BGE_RX_CPU_DRV_EVENT))
2140 break;
2141 DELAY(10);
2142 }
2143 }
2144
2145 static void
2146 bge_stop_fw(struct bge_softc *sc)
2147 {
2148
2149 if (sc->bge_asf_mode) {
2150 bge_wait_for_event_ack(sc);
2151
2152 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2153 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2154 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2155
2156 bge_wait_for_event_ack(sc);
2157 }
2158 }
2159
2160 static int
2161 bge_poll_fw(struct bge_softc *sc)
2162 {
2163 uint32_t val;
2164 int i;
2165
2166 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2167 for (i = 0; i < BGE_TIMEOUT; i++) {
2168 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2169 if (val & BGE_VCPU_STATUS_INIT_DONE)
2170 break;
2171 DELAY(100);
2172 }
2173 if (i >= BGE_TIMEOUT) {
2174 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2175 return -1;
2176 }
2177 } else {
2178 /*
2179 * Poll the value location we just wrote until
2180 * we see the 1's complement of the magic number.
2181 * This indicates that the firmware initialization
2182 * is complete.
2183 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2184 */
2185 for (i = 0; i < BGE_TIMEOUT; i++) {
2186 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2187 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2188 break;
2189 DELAY(10);
2190 }
2191
2192 if ((i >= BGE_TIMEOUT)
2193 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2194 aprint_error_dev(sc->bge_dev,
2195 "firmware handshake timed out, val = %x\n", val);
2196 return -1;
2197 }
2198 }
2199
2200 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2201 /* tg3 says we have to wait extra time */
2202 delay(10 * 1000);
2203 }
2204
2205 return 0;
2206 }
2207
2208 int
2209 bge_phy_addr(struct bge_softc *sc)
2210 {
2211 struct pci_attach_args *pa = &(sc->bge_pa);
2212 int phy_addr = 1;
2213
2214 /*
2215 * PHY address mapping for various devices.
2216 *
2217 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2218 * ---------+-------+-------+-------+-------+
2219 * BCM57XX | 1 | X | X | X |
2220 * BCM5704 | 1 | X | 1 | X |
2221 * BCM5717 | 1 | 8 | 2 | 9 |
2222 * BCM5719 | 1 | 8 | 2 | 9 |
2223 * BCM5720 | 1 | 8 | 2 | 9 |
2224 *
2225 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2226 * ---------+-------+-------+-------+-------+
2227 * BCM57XX | X | X | X | X |
2228 * BCM5704 | X | X | X | X |
2229 * BCM5717 | X | X | X | X |
2230 * BCM5719 | 3 | 10 | 4 | 11 |
2231 * BCM5720 | X | X | X | X |
2232 *
2233 * Other addresses may respond but they are not
2234 * IEEE compliant PHYs and should be ignored.
2235 */
2236 switch (BGE_ASICREV(sc->bge_chipid)) {
2237 case BGE_ASICREV_BCM5717:
2238 case BGE_ASICREV_BCM5719:
2239 case BGE_ASICREV_BCM5720:
2240 phy_addr = pa->pa_function;
2241 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2242 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2243 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2244 } else {
2245 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2246 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2247 }
2248 }
2249
2250 return phy_addr;
2251 }
2252
2253 /*
2254 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2255 * self-test results.
2256 */
2257 static int
2258 bge_chipinit(struct bge_softc *sc)
2259 {
2260 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2261 int i;
2262
2263 /* Set endianness before we access any non-PCI registers. */
2264 misc_ctl = BGE_INIT;
2265 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2266 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2267 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2268 misc_ctl);
2269
2270 /*
2271 * Clear the MAC statistics block in the NIC's
2272 * internal memory.
2273 */
2274 for (i = BGE_STATS_BLOCK;
2275 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2276 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2277
2278 for (i = BGE_STATUS_BLOCK;
2279 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2280 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2281
2282 /* 5717 workaround from tg3 */
2283 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2284 /* Save */
2285 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2286
2287 /* Temporary modify MODE_CTL to control TLP */
2288 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2289 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2290
2291 /* Control TLP */
2292 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2293 BGE_TLP_PHYCTL1);
2294 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2295 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2296
2297 /* Restore */
2298 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2299 }
2300
2301 if (BGE_IS_57765_FAMILY(sc)) {
2302 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2303 /* Save */
2304 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305
2306 /* Temporary modify MODE_CTL to control TLP */
2307 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 reg | BGE_MODECTL_PCIE_TLPADDR1);
2310
2311 /* Control TLP */
2312 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 BGE_TLP_PHYCTL5);
2314 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2315 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2316
2317 /* Restore */
2318 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2319 }
2320 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2321 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2322 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2323 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2324
2325 /* Save */
2326 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2327
2328 /* Temporary modify MODE_CTL to control TLP */
2329 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2330 CSR_WRITE_4(sc, BGE_MODE_CTL,
2331 reg | BGE_MODECTL_PCIE_TLPADDR0);
2332
2333 /* Control TLP */
2334 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2335 BGE_TLP_FTSMAX);
2336 reg &= ~BGE_TLP_FTSMAX_MSK;
2337 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2338 reg | BGE_TLP_FTSMAX_VAL);
2339
2340 /* Restore */
2341 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2342 }
2343
2344 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2345 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2346 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2347 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2348 }
2349
2350 /* Set up the PCI DMA control register. */
2351 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2352 if (sc->bge_flags & BGEF_PCIE) {
2353 /* Read watermark not used, 128 bytes for write. */
2354 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2355 device_xname(sc->bge_dev)));
2356 if (sc->bge_mps >= 256)
2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2358 else
2359 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2360 } else if (sc->bge_flags & BGEF_PCIX) {
2361 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2362 device_xname(sc->bge_dev)));
2363 /* PCI-X bus */
2364 if (BGE_IS_5714_FAMILY(sc)) {
2365 /* 256 bytes for read and write. */
2366 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2367 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2368
2369 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2371 else
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2373 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2374 /*
2375 * In the BCM5703, the DMA read watermark should
2376 * be set to less than or equal to the maximum
2377 * memory read byte count of the PCI-X command
2378 * register.
2379 */
2380 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2381 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2382 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2383 /* 1536 bytes for read, 384 bytes for write. */
2384 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2385 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2386 } else {
2387 /* 384 bytes for read and write. */
2388 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2389 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2390 (0x0F);
2391 }
2392
2393 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2394 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2395 uint32_t tmp;
2396
2397 /* Set ONEDMA_ATONCE for hardware workaround. */
2398 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2399 if (tmp == 6 || tmp == 7)
2400 dma_rw_ctl |=
2401 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2402
2403 /* Set PCI-X DMA write workaround. */
2404 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2405 }
2406 } else {
2407 /* Conventional PCI bus: 256 bytes for read and write. */
2408 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2409 device_xname(sc->bge_dev)));
2410 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2411 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2412
2413 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2414 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2415 dma_rw_ctl |= 0x0F;
2416 }
2417
2418 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2419 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2420 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2421 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2422
2423 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2424 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2425 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2426
2427 if (BGE_IS_57765_PLUS(sc)) {
2428 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2429 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2430 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2431
2432 /*
2433 * Enable HW workaround for controllers that misinterpret
2434 * a status tag update and leave interrupts permanently
2435 * disabled.
2436 */
2437 if (!BGE_IS_57765_FAMILY(sc) &&
2438 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2439 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2440 }
2441
2442 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2443 dma_rw_ctl);
2444
2445 /*
2446 * Set up general mode register.
2447 */
2448 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2449 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2450 /* Retain Host-2-BMC settings written by APE firmware. */
2451 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2452 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2453 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2454 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2455 }
2456 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2457 BGE_MODECTL_TX_NO_PHDR_CSUM;
2458
2459 /*
2460 * BCM5701 B5 have a bug causing data corruption when using
2461 * 64-bit DMA reads, which can be terminated early and then
2462 * completed later as 32-bit accesses, in combination with
2463 * certain bridges.
2464 */
2465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2466 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2467 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2468
2469 /*
2470 * Tell the firmware the driver is running
2471 */
2472 if (sc->bge_asf_mode & ASF_STACKUP)
2473 mode_ctl |= BGE_MODECTL_STACKUP;
2474
2475 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2476
2477 /*
2478 * Disable memory write invalidate. Apparently it is not supported
2479 * properly by these devices.
2480 */
2481 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2482 PCI_COMMAND_INVALIDATE_ENABLE);
2483
2484 #ifdef __brokenalpha__
2485 /*
2486 * Must insure that we do not cross an 8K (bytes) boundary
2487 * for DMA reads. Our highest limit is 1K bytes. This is a
2488 * restriction on some ALPHA platforms with early revision
2489 * 21174 PCI chipsets, such as the AlphaPC 164lx
2490 */
2491 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2492 #endif
2493
2494 /* Set the timer prescaler (always 66MHz) */
2495 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2496
2497 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2498 DELAY(40); /* XXX */
2499
2500 /* Put PHY into ready state */
2501 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2502 DELAY(40);
2503 }
2504
2505 return 0;
2506 }
2507
2508 static int
2509 bge_blockinit(struct bge_softc *sc)
2510 {
2511 volatile struct bge_rcb *rcb;
2512 bus_size_t rcb_addr;
2513 struct ifnet *ifp = &sc->ethercom.ec_if;
2514 bge_hostaddr taddr;
2515 uint32_t dmactl, mimode, val;
2516 int i, limit;
2517
2518 /*
2519 * Initialize the memory window pointer register so that
2520 * we can access the first 32K of internal NIC RAM. This will
2521 * allow us to set up the TX send ring RCBs and the RX return
2522 * ring RCBs, plus other things which live in NIC memory.
2523 */
2524 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2525
2526 if (!BGE_IS_5705_PLUS(sc)) {
2527 /* 57XX step 33 */
2528 /* Configure mbuf memory pool */
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2530 BGE_BUFFPOOL_1);
2531
2532 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2534 else
2535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2536
2537 /* 57XX step 34 */
2538 /* Configure DMA resource pool */
2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2540 BGE_DMA_DESCRIPTORS);
2541 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2542 }
2543
2544 /* 5718 step 11, 57XX step 35 */
2545 /*
2546 * Configure mbuf pool watermarks. New broadcom docs strongly
2547 * recommend these.
2548 */
2549 if (BGE_IS_5717_PLUS(sc)) {
2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2551 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2553 } else if (BGE_IS_5705_PLUS(sc)) {
2554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2555
2556 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2557 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2559 } else {
2560 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2562 }
2563 } else {
2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2567 }
2568
2569 /* 57XX step 36 */
2570 /* Configure DMA resource watermarks */
2571 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2572 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2573
2574 /* 5718 step 13, 57XX step 38 */
2575 /* Enable buffer manager */
2576 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2577 /*
2578 * Change the arbitration algorithm of TXMBUF read request to
2579 * round-robin instead of priority based for BCM5719. When
2580 * TXFIFO is almost empty, RDMA will hold its request until
2581 * TXFIFO is not almost empty.
2582 */
2583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2584 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2585 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2586 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2587 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2588 val |= BGE_BMANMODE_LOMBUF_ATTN;
2589 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2590
2591 /* 57XX step 39 */
2592 /* Poll for buffer manager start indication */
2593 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2594 DELAY(10);
2595 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2596 break;
2597 }
2598
2599 if (i == BGE_TIMEOUT * 2) {
2600 aprint_error_dev(sc->bge_dev,
2601 "buffer manager failed to start\n");
2602 return ENXIO;
2603 }
2604
2605 /* 57XX step 40 */
2606 /* Enable flow-through queues */
2607 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2608 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2609
2610 /* Wait until queue initialization is complete */
2611 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2612 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2613 break;
2614 DELAY(10);
2615 }
2616
2617 if (i == BGE_TIMEOUT * 2) {
2618 aprint_error_dev(sc->bge_dev,
2619 "flow-through queue init failed\n");
2620 return ENXIO;
2621 }
2622
2623 /*
2624 * Summary of rings supported by the controller:
2625 *
2626 * Standard Receive Producer Ring
2627 * - This ring is used to feed receive buffers for "standard"
2628 * sized frames (typically 1536 bytes) to the controller.
2629 *
2630 * Jumbo Receive Producer Ring
2631 * - This ring is used to feed receive buffers for jumbo sized
2632 * frames (i.e. anything bigger than the "standard" frames)
2633 * to the controller.
2634 *
2635 * Mini Receive Producer Ring
2636 * - This ring is used to feed receive buffers for "mini"
2637 * sized frames to the controller.
2638 * - This feature required external memory for the controller
2639 * but was never used in a production system. Should always
2640 * be disabled.
2641 *
2642 * Receive Return Ring
2643 * - After the controller has placed an incoming frame into a
2644 * receive buffer that buffer is moved into a receive return
2645 * ring. The driver is then responsible to passing the
2646 * buffer up to the stack. Many versions of the controller
2647 * support multiple RR rings.
2648 *
2649 * Send Ring
2650 * - This ring is used for outgoing frames. Many versions of
2651 * the controller support multiple send rings.
2652 */
2653
2654 /* 5718 step 15, 57XX step 41 */
2655 /* Initialize the standard RX ring control block */
2656 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2657 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2658 /* 5718 step 16 */
2659 if (BGE_IS_57765_PLUS(sc)) {
2660 /*
2661 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2662 * Bits 15-2 : Maximum RX frame size
2663 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2664 * Bit 0 : Reserved
2665 */
2666 rcb->bge_maxlen_flags =
2667 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2668 } else if (BGE_IS_5705_PLUS(sc)) {
2669 /*
2670 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2671 * Bits 15-2 : Reserved (should be 0)
2672 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2673 * Bit 0 : Reserved
2674 */
2675 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2676 } else {
2677 /*
2678 * Ring size is always XXX entries
2679 * Bits 31-16: Maximum RX frame size
2680 * Bits 15-2 : Reserved (should be 0)
2681 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2682 * Bit 0 : Reserved
2683 */
2684 rcb->bge_maxlen_flags =
2685 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2686 }
2687 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2688 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2690 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2691 else
2692 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2693 /* Write the standard receive producer ring control block. */
2694 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2696 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2697 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2698
2699 /* Reset the standard receive producer ring producer index. */
2700 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2701
2702 /* 57XX step 42 */
2703 /*
2704 * Initialize the jumbo RX ring control block
2705 * We set the 'ring disabled' bit in the flags
2706 * field until we're actually ready to start
2707 * using this ring (i.e. once we set the MTU
2708 * high enough to require it).
2709 */
2710 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2711 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2712 BGE_HOSTADDR(rcb->bge_hostaddr,
2713 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2714 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2715 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2716 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2717 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2720 else
2721 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2723 rcb->bge_hostaddr.bge_addr_hi);
2724 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2725 rcb->bge_hostaddr.bge_addr_lo);
2726 /* Program the jumbo receive producer ring RCB parameters. */
2727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2728 rcb->bge_maxlen_flags);
2729 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2730 /* Reset the jumbo receive producer ring producer index. */
2731 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2732 }
2733
2734 /* 57XX step 43 */
2735 /* Disable the mini receive producer ring RCB. */
2736 if (BGE_IS_5700_FAMILY(sc)) {
2737 /* Set up dummy disabled mini ring RCB */
2738 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2739 rcb->bge_maxlen_flags =
2740 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2741 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2742 rcb->bge_maxlen_flags);
2743 /* Reset the mini receive producer ring producer index. */
2744 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2745
2746 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2747 offsetof(struct bge_ring_data, bge_info),
2748 sizeof (struct bge_gib),
2749 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2750 }
2751
2752 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2753 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2754 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2755 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2756 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2757 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2758 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2759 }
2760 /* 5718 step 14, 57XX step 44 */
2761 /*
2762 * The BD ring replenish thresholds control how often the
2763 * hardware fetches new BD's from the producer rings in host
2764 * memory. Setting the value too low on a busy system can
2765 * starve the hardware and recue the throughpout.
2766 *
2767 * Set the BD ring replenish thresholds. The recommended
2768 * values are 1/8th the number of descriptors allocated to
2769 * each ring, but since we try to avoid filling the entire
2770 * ring we set these to the minimal value of 8. This needs to
2771 * be done on several of the supported chip revisions anyway,
2772 * to work around HW bugs.
2773 */
2774 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2775 if (BGE_IS_JUMBO_CAPABLE(sc))
2776 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2777
2778 /* 5718 step 18 */
2779 if (BGE_IS_5717_PLUS(sc)) {
2780 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2781 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2782 }
2783
2784 /* 57XX step 45 */
2785 /*
2786 * Disable all send rings by setting the 'ring disabled' bit
2787 * in the flags field of all the TX send ring control blocks,
2788 * located in NIC memory.
2789 */
2790 if (BGE_IS_5700_FAMILY(sc)) {
2791 /* 5700 to 5704 had 16 send rings. */
2792 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2793 } else if (BGE_IS_5717_PLUS(sc)) {
2794 limit = BGE_TX_RINGS_5717_MAX;
2795 } else if (BGE_IS_57765_FAMILY(sc)) {
2796 limit = BGE_TX_RINGS_57765_MAX;
2797 } else
2798 limit = 1;
2799 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2800 for (i = 0; i < limit; i++) {
2801 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2802 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2803 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2804 rcb_addr += sizeof(struct bge_rcb);
2805 }
2806
2807 /* 57XX step 46 and 47 */
2808 /* Configure send ring RCB 0 (we use only the first ring) */
2809 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2810 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2811 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2812 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2813 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2814 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2815 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2816 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2817 else
2818 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2819 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2820 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2821 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2822
2823 /* 57XX step 48 */
2824 /*
2825 * Disable all receive return rings by setting the
2826 * 'ring diabled' bit in the flags field of all the receive
2827 * return ring control blocks, located in NIC memory.
2828 */
2829 if (BGE_IS_5717_PLUS(sc)) {
2830 /* Should be 17, use 16 until we get an SRAM map. */
2831 limit = 16;
2832 } else if (BGE_IS_5700_FAMILY(sc))
2833 limit = BGE_RX_RINGS_MAX;
2834 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2835 BGE_IS_57765_FAMILY(sc))
2836 limit = 4;
2837 else
2838 limit = 1;
2839 /* Disable all receive return rings */
2840 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2841 for (i = 0; i < limit; i++) {
2842 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2843 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2844 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2845 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2846 BGE_RCB_FLAG_RING_DISABLED));
2847 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2848 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2849 (i * (sizeof(uint64_t))), 0);
2850 rcb_addr += sizeof(struct bge_rcb);
2851 }
2852
2853 /* 57XX step 49 */
2854 /*
2855 * Set up receive return ring 0. Note that the NIC address
2856 * for RX return rings is 0x0. The return rings live entirely
2857 * within the host, so the nicaddr field in the RCB isn't used.
2858 */
2859 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2860 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2861 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2862 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2863 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2864 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2865 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2866
2867 /* 5718 step 24, 57XX step 53 */
2868 /* Set random backoff seed for TX */
2869 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2870 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2871 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2872 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2873 BGE_TX_BACKOFF_SEED_MASK);
2874
2875 /* 5718 step 26, 57XX step 55 */
2876 /* Set inter-packet gap */
2877 val = 0x2620;
2878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2879 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2880 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2881 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2882
2883 /* 5718 step 27, 57XX step 56 */
2884 /*
2885 * Specify which ring to use for packets that don't match
2886 * any RX rules.
2887 */
2888 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2889
2890 /* 5718 step 28, 57XX step 57 */
2891 /*
2892 * Configure number of RX lists. One interrupt distribution
2893 * list, sixteen active lists, one bad frames class.
2894 */
2895 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2896
2897 /* 5718 step 29, 57XX step 58 */
2898 /* Inialize RX list placement stats mask. */
2899 if (BGE_IS_575X_PLUS(sc)) {
2900 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2901 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2902 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2903 } else
2904 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2905
2906 /* 5718 step 30, 57XX step 59 */
2907 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2908
2909 /* 5718 step 33, 57XX step 62 */
2910 /* Disable host coalescing until we get it set up */
2911 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2912
2913 /* 5718 step 34, 57XX step 63 */
2914 /* Poll to make sure it's shut down. */
2915 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2916 DELAY(10);
2917 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2918 break;
2919 }
2920
2921 if (i == BGE_TIMEOUT * 2) {
2922 aprint_error_dev(sc->bge_dev,
2923 "host coalescing engine failed to idle\n");
2924 return ENXIO;
2925 }
2926
2927 /* 5718 step 35, 36, 37 */
2928 /* Set up host coalescing defaults */
2929 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2930 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2931 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2932 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2933 if (!(BGE_IS_5705_PLUS(sc))) {
2934 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2935 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2936 }
2937 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2938 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2939
2940 /* Set up address of statistics block */
2941 if (BGE_IS_5700_FAMILY(sc)) {
2942 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2943 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2944 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2945 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2946 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2947 }
2948
2949 /* 5718 step 38 */
2950 /* Set up address of status block */
2951 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2952 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2953 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2954 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2955 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2956 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2957
2958 /* Set up status block size. */
2959 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2960 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2961 val = BGE_STATBLKSZ_FULL;
2962 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2963 } else {
2964 val = BGE_STATBLKSZ_32BYTE;
2965 bzero(&sc->bge_rdata->bge_status_block, 32);
2966 }
2967
2968 /* 5718 step 39, 57XX step 73 */
2969 /* Turn on host coalescing state machine */
2970 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2971
2972 /* 5718 step 40, 57XX step 74 */
2973 /* Turn on RX BD completion state machine and enable attentions */
2974 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2975 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2976
2977 /* 5718 step 41, 57XX step 75 */
2978 /* Turn on RX list placement state machine */
2979 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2980
2981 /* 57XX step 76 */
2982 /* Turn on RX list selector state machine. */
2983 if (!(BGE_IS_5705_PLUS(sc)))
2984 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2985
2986 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2987 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2988 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2989 BGE_MACMODE_FRMHDR_DMA_ENB;
2990
2991 if (sc->bge_flags & BGEF_FIBER_TBI)
2992 val |= BGE_PORTMODE_TBI;
2993 else if (sc->bge_flags & BGEF_FIBER_MII)
2994 val |= BGE_PORTMODE_GMII;
2995 else
2996 val |= BGE_PORTMODE_MII;
2997
2998 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2999 /* Allow APE to send/receive frames. */
3000 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3001 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3002
3003 /* Turn on DMA, clear stats */
3004 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3005 /* 5718 step 44 */
3006 DELAY(40);
3007
3008 /* 5718 step 45, 57XX step 79 */
3009 /* Set misc. local control, enable interrupts on attentions */
3010 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3011 if (BGE_IS_5717_PLUS(sc)) {
3012 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3013 /* 5718 step 46 */
3014 DELAY(100);
3015 }
3016
3017 /* 57XX step 81 */
3018 /* Turn on DMA completion state machine */
3019 if (!(BGE_IS_5705_PLUS(sc)))
3020 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3021
3022 /* 5718 step 47, 57XX step 82 */
3023 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3024
3025 /* 5718 step 48 */
3026 /* Enable host coalescing bug fix. */
3027 if (BGE_IS_5755_PLUS(sc))
3028 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3029
3030 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3031 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3032
3033 /* Turn on write DMA state machine */
3034 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3035 /* 5718 step 49 */
3036 DELAY(40);
3037
3038 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3039
3040 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3041 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3042
3043 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3044 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3045 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3046 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3047 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3048 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3049
3050 if (sc->bge_flags & BGEF_PCIE)
3051 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3052 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3053 if (ifp->if_mtu <= ETHERMTU)
3054 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3055 }
3056 if (sc->bge_flags & BGEF_TSO)
3057 val |= BGE_RDMAMODE_TSO4_ENABLE;
3058
3059 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3060 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3061 BGE_RDMAMODE_H2BNC_VLAN_DET;
3062 /*
3063 * Allow multiple outstanding read requests from
3064 * non-LSO read DMA engine.
3065 */
3066 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3067 }
3068
3069 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3070 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3071 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3073 BGE_IS_57765_PLUS(sc)) {
3074 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3075 /*
3076 * Adjust tx margin to prevent TX data corruption and
3077 * fix internal FIFO overflow.
3078 */
3079 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3080 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3081 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3082 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3083 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3084 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3085 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3086 }
3087 /*
3088 * Enable fix for read DMA FIFO overruns.
3089 * The fix is to limit the number of RX BDs
3090 * the hardware would fetch at a fime.
3091 */
3092 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3093 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3094 }
3095
3096 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3097 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3098 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3099 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3100 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3101 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3102 /*
3103 * Allow 4KB burst length reads for non-LSO frames.
3104 * Enable 512B burst length reads for buffer descriptors.
3105 */
3106 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3107 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3108 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3109 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3110 }
3111
3112 /* Turn on read DMA state machine */
3113 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3114 /* 5718 step 52 */
3115 delay(40);
3116
3117 /* 5718 step 56, 57XX step 84 */
3118 /* Turn on RX data completion state machine */
3119 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3120
3121 /* Turn on RX data and RX BD initiator state machine */
3122 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3123
3124 /* 57XX step 85 */
3125 /* Turn on Mbuf cluster free state machine */
3126 if (!BGE_IS_5705_PLUS(sc))
3127 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3128
3129 /* 5718 step 57, 57XX step 86 */
3130 /* Turn on send data completion state machine */
3131 val = BGE_SDCMODE_ENABLE;
3132 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3133 val |= BGE_SDCMODE_CDELAY;
3134 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3135
3136 /* 5718 step 58 */
3137 /* Turn on send BD completion state machine */
3138 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3139
3140 /* 57XX step 88 */
3141 /* Turn on RX BD initiator state machine */
3142 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3143
3144 /* 5718 step 60, 57XX step 90 */
3145 /* Turn on send data initiator state machine */
3146 if (sc->bge_flags & BGEF_TSO) {
3147 /* XXX: magic value from Linux driver */
3148 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3149 BGE_SDIMODE_HW_LSO_PRE_DMA);
3150 } else
3151 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3152
3153 /* 5718 step 61, 57XX step 91 */
3154 /* Turn on send BD initiator state machine */
3155 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3156
3157 /* 5718 step 62, 57XX step 92 */
3158 /* Turn on send BD selector state machine */
3159 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3160
3161 /* 5718 step 31, 57XX step 60 */
3162 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3163 /* 5718 step 32, 57XX step 61 */
3164 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3165 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3166
3167 /* ack/clear link change events */
3168 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3169 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3170 BGE_MACSTAT_LINK_CHANGED);
3171 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3172
3173 /*
3174 * Enable attention when the link has changed state for
3175 * devices that use auto polling.
3176 */
3177 if (sc->bge_flags & BGEF_FIBER_TBI) {
3178 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3179 } else {
3180 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3181 mimode = BGE_MIMODE_500KHZ_CONST;
3182 else
3183 mimode = BGE_MIMODE_BASE;
3184 /* 5718 step 68. 5718 step 69 (optionally). */
3185 if (BGE_IS_5700_FAMILY(sc) ||
3186 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3187 mimode |= BGE_MIMODE_AUTOPOLL;
3188 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3189 }
3190 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3191 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3192 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3193 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3194 BGE_EVTENB_MI_INTERRUPT);
3195 }
3196
3197 /*
3198 * Clear any pending link state attention.
3199 * Otherwise some link state change events may be lost until attention
3200 * is cleared by bge_intr() -> bge_link_upd() sequence.
3201 * It's not necessary on newer BCM chips - perhaps enabling link
3202 * state change attentions implies clearing pending attention.
3203 */
3204 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3205 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3206 BGE_MACSTAT_LINK_CHANGED);
3207
3208 /* Enable link state change attentions. */
3209 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3210
3211 return 0;
3212 }
3213
3214 static const struct bge_revision *
3215 bge_lookup_rev(uint32_t chipid)
3216 {
3217 const struct bge_revision *br;
3218
3219 for (br = bge_revisions; br->br_name != NULL; br++) {
3220 if (br->br_chipid == chipid)
3221 return br;
3222 }
3223
3224 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3225 if (br->br_chipid == BGE_ASICREV(chipid))
3226 return br;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 static const struct bge_product *
3233 bge_lookup(const struct pci_attach_args *pa)
3234 {
3235 const struct bge_product *bp;
3236
3237 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3238 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3239 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3240 return bp;
3241 }
3242
3243 return NULL;
3244 }
3245
3246 static uint32_t
3247 bge_chipid(const struct pci_attach_args *pa)
3248 {
3249 uint32_t id;
3250
3251 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3252 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3253
3254 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3255 switch (PCI_PRODUCT(pa->pa_id)) {
3256 case PCI_PRODUCT_BROADCOM_BCM5717:
3257 case PCI_PRODUCT_BROADCOM_BCM5718:
3258 case PCI_PRODUCT_BROADCOM_BCM5719:
3259 case PCI_PRODUCT_BROADCOM_BCM5720:
3260 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3261 BGE_PCI_GEN2_PRODID_ASICREV);
3262 break;
3263 case PCI_PRODUCT_BROADCOM_BCM57761:
3264 case PCI_PRODUCT_BROADCOM_BCM57762:
3265 case PCI_PRODUCT_BROADCOM_BCM57765:
3266 case PCI_PRODUCT_BROADCOM_BCM57766:
3267 case PCI_PRODUCT_BROADCOM_BCM57781:
3268 case PCI_PRODUCT_BROADCOM_BCM57785:
3269 case PCI_PRODUCT_BROADCOM_BCM57791:
3270 case PCI_PRODUCT_BROADCOM_BCM57795:
3271 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3272 BGE_PCI_GEN15_PRODID_ASICREV);
3273 break;
3274 default:
3275 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3276 BGE_PCI_PRODID_ASICREV);
3277 break;
3278 }
3279 }
3280
3281 return id;
3282 }
3283
3284 #ifdef __HAVE_PCI_MSI_MSIX
3285 /*
3286 * Return true if MSI can be used with this device.
3287 */
3288 static int
3289 bge_can_use_msi(struct bge_softc *sc)
3290 {
3291 int can_use_msi = 0;
3292
3293 switch (BGE_ASICREV(sc->bge_chipid)) {
3294 case BGE_ASICREV_BCM5714_A0:
3295 case BGE_ASICREV_BCM5714:
3296 /*
3297 * Apparently, MSI doesn't work when these chips are
3298 * configured in single-port mode.
3299 */
3300 break;
3301 case BGE_ASICREV_BCM5750:
3302 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3303 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3304 can_use_msi = 1;
3305 break;
3306 default:
3307 if (BGE_IS_575X_PLUS(sc))
3308 can_use_msi = 1;
3309 }
3310 return (can_use_msi);
3311 }
3312 #endif
3313
3314 /*
3315 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3316 * against our list and return its name if we find a match. Note
3317 * that since the Broadcom controller contains VPD support, we
3318 * can get the device name string from the controller itself instead
3319 * of the compiled-in string. This is a little slow, but it guarantees
3320 * we'll always announce the right product name.
3321 */
3322 static int
3323 bge_probe(device_t parent, cfdata_t match, void *aux)
3324 {
3325 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3326
3327 if (bge_lookup(pa) != NULL)
3328 return 1;
3329
3330 return 0;
3331 }
3332
3333 static void
3334 bge_attach(device_t parent, device_t self, void *aux)
3335 {
3336 struct bge_softc *sc = device_private(self);
3337 struct pci_attach_args *pa = aux;
3338 prop_dictionary_t dict;
3339 const struct bge_product *bp;
3340 const struct bge_revision *br;
3341 pci_chipset_tag_t pc;
3342 #ifndef __HAVE_PCI_MSI_MSIX
3343 pci_intr_handle_t ih;
3344 #endif
3345 const char *intrstr = NULL;
3346 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3347 uint32_t command;
3348 struct ifnet *ifp;
3349 uint32_t misccfg, mimode;
3350 void * kva;
3351 u_char eaddr[ETHER_ADDR_LEN];
3352 pcireg_t memtype, subid, reg;
3353 bus_addr_t memaddr;
3354 uint32_t pm_ctl;
3355 bool no_seeprom;
3356 int capmask;
3357 int mii_flags;
3358 int map_flags;
3359 #ifdef __HAVE_PCI_MSI_MSIX
3360 int rv;
3361 #endif
3362 char intrbuf[PCI_INTRSTR_LEN];
3363
3364 bp = bge_lookup(pa);
3365 KASSERT(bp != NULL);
3366
3367 sc->sc_pc = pa->pa_pc;
3368 sc->sc_pcitag = pa->pa_tag;
3369 sc->bge_dev = self;
3370
3371 sc->bge_pa = *pa;
3372 pc = sc->sc_pc;
3373 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3374
3375 aprint_naive(": Ethernet controller\n");
3376 aprint_normal(": %s\n", bp->bp_name);
3377
3378 /*
3379 * Map control/status registers.
3380 */
3381 DPRINTFN(5, ("Map control/status regs\n"));
3382 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3383 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3384 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3385 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3386
3387 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3388 aprint_error_dev(sc->bge_dev,
3389 "failed to enable memory mapping!\n");
3390 return;
3391 }
3392
3393 DPRINTFN(5, ("pci_mem_find\n"));
3394 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3395 switch (memtype) {
3396 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3397 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3398 #if 0
3399 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3400 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3401 &memaddr, &sc->bge_bsize) == 0)
3402 break;
3403 #else
3404 /*
3405 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3406 * system get NMI on boot (PR#48451). This problem might not be
3407 * the driver's bug but our PCI common part's bug. Until we
3408 * find a real reason, we ignore the prefetchable bit.
3409 */
3410 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3411 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3412 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3413 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3414 map_flags, &sc->bge_bhandle) == 0) {
3415 sc->bge_btag = pa->pa_memt;
3416 break;
3417 }
3418 }
3419 #endif
3420 default:
3421 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3422 return;
3423 }
3424
3425 /* Save various chip information. */
3426 sc->bge_chipid = bge_chipid(pa);
3427 sc->bge_phy_addr = bge_phy_addr(sc);
3428
3429 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3430 &sc->bge_pciecap, NULL) != 0)
3431 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3432 /* PCIe */
3433 sc->bge_flags |= BGEF_PCIE;
3434 /* Extract supported maximum payload size. */
3435 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3436 sc->bge_pciecap + PCIE_DCAP);
3437 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3438 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3439 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3440 sc->bge_expmrq = 2048;
3441 else
3442 sc->bge_expmrq = 4096;
3443 bge_set_max_readrq(sc);
3444 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3445 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3446 /* PCI-X */
3447 sc->bge_flags |= BGEF_PCIX;
3448 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3449 &sc->bge_pcixcap, NULL) == 0)
3450 aprint_error_dev(sc->bge_dev,
3451 "unable to find PCIX capability\n");
3452 }
3453
3454 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3455 /*
3456 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3457 * can clobber the chip's PCI config-space power control
3458 * registers, leaving the card in D3 powersave state. We do
3459 * not have memory-mapped registers in this state, so force
3460 * device into D0 state before starting initialization.
3461 */
3462 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3463 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3464 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3465 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3466 DELAY(1000); /* 27 usec is allegedly sufficent */
3467 }
3468
3469 /* Save chipset family. */
3470 switch (BGE_ASICREV(sc->bge_chipid)) {
3471 case BGE_ASICREV_BCM5717:
3472 case BGE_ASICREV_BCM5719:
3473 case BGE_ASICREV_BCM5720:
3474 sc->bge_flags |= BGEF_5717_PLUS;
3475 /* FALLTHROUGH */
3476 case BGE_ASICREV_BCM57765:
3477 case BGE_ASICREV_BCM57766:
3478 if (!BGE_IS_5717_PLUS(sc))
3479 sc->bge_flags |= BGEF_57765_FAMILY;
3480 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3481 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3482 /* Jumbo frame on BCM5719 A0 does not work. */
3483 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3484 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3485 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3486 break;
3487 case BGE_ASICREV_BCM5755:
3488 case BGE_ASICREV_BCM5761:
3489 case BGE_ASICREV_BCM5784:
3490 case BGE_ASICREV_BCM5785:
3491 case BGE_ASICREV_BCM5787:
3492 case BGE_ASICREV_BCM57780:
3493 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3494 break;
3495 case BGE_ASICREV_BCM5700:
3496 case BGE_ASICREV_BCM5701:
3497 case BGE_ASICREV_BCM5703:
3498 case BGE_ASICREV_BCM5704:
3499 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3500 break;
3501 case BGE_ASICREV_BCM5714_A0:
3502 case BGE_ASICREV_BCM5780:
3503 case BGE_ASICREV_BCM5714:
3504 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3505 /* FALLTHROUGH */
3506 case BGE_ASICREV_BCM5750:
3507 case BGE_ASICREV_BCM5752:
3508 case BGE_ASICREV_BCM5906:
3509 sc->bge_flags |= BGEF_575X_PLUS;
3510 /* FALLTHROUGH */
3511 case BGE_ASICREV_BCM5705:
3512 sc->bge_flags |= BGEF_5705_PLUS;
3513 break;
3514 }
3515
3516 /* Identify chips with APE processor. */
3517 switch (BGE_ASICREV(sc->bge_chipid)) {
3518 case BGE_ASICREV_BCM5717:
3519 case BGE_ASICREV_BCM5719:
3520 case BGE_ASICREV_BCM5720:
3521 case BGE_ASICREV_BCM5761:
3522 sc->bge_flags |= BGEF_APE;
3523 break;
3524 }
3525
3526 /*
3527 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3528 * not actually a MAC controller bug but an issue with the embedded
3529 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3530 */
3531 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3532 sc->bge_flags |= BGEF_40BIT_BUG;
3533
3534 /* Chips with APE need BAR2 access for APE registers/memory. */
3535 if ((sc->bge_flags & BGEF_APE) != 0) {
3536 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3537 #if 0
3538 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3539 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3540 &sc->bge_apesize)) {
3541 aprint_error_dev(sc->bge_dev,
3542 "couldn't map BAR2 memory\n");
3543 return;
3544 }
3545 #else
3546 /*
3547 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3548 * system get NMI on boot (PR#48451). This problem might not be
3549 * the driver's bug but our PCI common part's bug. Until we
3550 * find a real reason, we ignore the prefetchable bit.
3551 */
3552 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3553 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3554 aprint_error_dev(sc->bge_dev,
3555 "couldn't map BAR2 memory\n");
3556 return;
3557 }
3558
3559 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3560 if (bus_space_map(pa->pa_memt, memaddr,
3561 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3562 aprint_error_dev(sc->bge_dev,
3563 "couldn't map BAR2 memory\n");
3564 return;
3565 }
3566 sc->bge_apetag = pa->pa_memt;
3567 #endif
3568
3569 /* Enable APE register/memory access by host driver. */
3570 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3571 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3572 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3573 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3574 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3575
3576 bge_ape_lock_init(sc);
3577 bge_ape_read_fw_ver(sc);
3578 }
3579
3580 /* Identify the chips that use an CPMU. */
3581 if (BGE_IS_5717_PLUS(sc) ||
3582 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3583 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3585 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3586 sc->bge_flags |= BGEF_CPMU_PRESENT;
3587
3588 /* Set MI_MODE */
3589 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3590 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3591 mimode |= BGE_MIMODE_500KHZ_CONST;
3592 else
3593 mimode |= BGE_MIMODE_BASE;
3594 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3595
3596 /*
3597 * When using the BCM5701 in PCI-X mode, data corruption has
3598 * been observed in the first few bytes of some received packets.
3599 * Aligning the packet buffer in memory eliminates the corruption.
3600 * Unfortunately, this misaligns the packet payloads. On platforms
3601 * which do not support unaligned accesses, we will realign the
3602 * payloads by copying the received packets.
3603 */
3604 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3605 sc->bge_flags & BGEF_PCIX)
3606 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3607
3608 if (BGE_IS_5700_FAMILY(sc))
3609 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3610
3611 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3612 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3613
3614 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3615 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3616 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3617 sc->bge_flags |= BGEF_IS_5788;
3618
3619 /*
3620 * Some controllers seem to require a special firmware to use
3621 * TSO. But the firmware is not available to FreeBSD and Linux
3622 * claims that the TSO performed by the firmware is slower than
3623 * hardware based TSO. Moreover the firmware based TSO has one
3624 * known bug which can't handle TSO if ethernet header + IP/TCP
3625 * header is greater than 80 bytes. The workaround for the TSO
3626 * bug exist but it seems it's too expensive than not using
3627 * TSO at all. Some hardwares also have the TSO bug so limit
3628 * the TSO to the controllers that are not affected TSO issues
3629 * (e.g. 5755 or higher).
3630 */
3631 if (BGE_IS_5755_PLUS(sc)) {
3632 /*
3633 * BCM5754 and BCM5787 shares the same ASIC id so
3634 * explicit device id check is required.
3635 */
3636 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3637 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3638 sc->bge_flags |= BGEF_TSO;
3639 }
3640
3641 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3642 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3643 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3644 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3645 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3646 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3647 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3648 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3649 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3650 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3651 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3652 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3653 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3654 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3655 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3656 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3657 /* These chips are 10/100 only. */
3658 capmask &= ~BMSR_EXTSTAT;
3659 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3660 }
3661
3662 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3663 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3664 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3665 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3666 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3667
3668 /* Set various PHY bug flags. */
3669 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3670 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3671 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3672 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3673 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3674 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3675 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3676 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3677 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3679 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3680 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3681 if (BGE_IS_5705_PLUS(sc) &&
3682 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3683 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3684 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3685 !BGE_IS_57765_PLUS(sc)) {
3686 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3687 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3688 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3690 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3691 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3692 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3693 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3694 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3695 } else
3696 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3697 }
3698
3699 /*
3700 * SEEPROM check.
3701 * First check if firmware knows we do not have SEEPROM.
3702 */
3703 if (prop_dictionary_get_bool(device_properties(self),
3704 "without-seeprom", &no_seeprom) && no_seeprom)
3705 sc->bge_flags |= BGEF_NO_EEPROM;
3706
3707 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3708 sc->bge_flags |= BGEF_NO_EEPROM;
3709
3710 /* Now check the 'ROM failed' bit on the RX CPU */
3711 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3712 sc->bge_flags |= BGEF_NO_EEPROM;
3713
3714 sc->bge_asf_mode = 0;
3715 /* No ASF if APE present. */
3716 if ((sc->bge_flags & BGEF_APE) == 0) {
3717 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3718 BGE_SRAM_DATA_SIG_MAGIC)) {
3719 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3720 BGE_HWCFG_ASF) {
3721 sc->bge_asf_mode |= ASF_ENABLE;
3722 sc->bge_asf_mode |= ASF_STACKUP;
3723 if (BGE_IS_575X_PLUS(sc))
3724 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3725 }
3726 }
3727 }
3728
3729 #ifdef __HAVE_PCI_MSI_MSIX
3730 DPRINTFN(5, ("pci_get_capability\n"));
3731 /* Check MSI capability */
3732 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI,
3733 &sc->bge_msicap, NULL) != 0) {
3734 if (bge_can_use_msi(sc) != 0)
3735 sc->bge_flags |= BGEF_MSI;
3736 }
3737 rv = -1;
3738 if (((sc->bge_flags & BGEF_MSI) != 0) && (pci_msi_count(pa) > 0)) {
3739 DPRINTFN(5, ("pci_msi_alloc\n"));
3740 rv = pci_msi_alloc_exact(pa, &sc->bge_pihp, 1);
3741 if (rv != 0)
3742 sc->bge_flags &= ~BGEF_MSI;
3743 }
3744 if (rv != 0) {
3745 DPRINTFN(5, ("pci_intx_alloc\n"));
3746 if (pci_intx_alloc(pa, &sc->bge_pihp)) {
3747 aprint_error_dev(self, "can't map interrupt\n");
3748 return;
3749 }
3750 sc->bge_flags &= ~BGEF_MSI;
3751 }
3752 #else /* !__HAVE_PCI_MSI_MSIX */
3753 DPRINTFN(5, ("pci_intr_map\n"));
3754 if (pci_intr_map(pa, &ih)) {
3755 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3756 return;
3757 }
3758 #endif
3759
3760 #ifdef __HAVE_PCI_MSI_MSIX
3761 DPRINTFN(5, ("pci_intr_string\n"));
3762 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3763 sizeof(intrbuf));
3764 DPRINTFN(5, ("pci_intr_establish\n"));
3765 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3766 bge_intr, sc);
3767 #else /* !__HAVE_PCI_MSI_MSIX */
3768 DPRINTFN(5, ("pci_intr_string\n"));
3769 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
3770
3771 DPRINTFN(5, ("pci_intr_establish\n"));
3772 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3773 #endif
3774
3775 if (sc->bge_intrhand == NULL) {
3776 aprint_error_dev(sc->bge_dev,
3777 "couldn't establish interrupt%s%s\n",
3778 intrstr ? " at " : "", intrstr ? intrstr : "");
3779 return;
3780 }
3781 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3782
3783 /*
3784 * All controllers except BCM5700 supports tagged status but
3785 * we use tagged status only for MSI case on BCM5717. Otherwise
3786 * MSI on BCM5717 does not work.
3787 */
3788 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3789 sc->bge_flags |= BGEF_TAGGED_STATUS;
3790
3791 /*
3792 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3793 * lock in bge_reset().
3794 */
3795 CSR_WRITE_4(sc, BGE_EE_ADDR,
3796 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3797 delay(1000);
3798 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3799
3800 bge_stop_fw(sc);
3801 bge_sig_pre_reset(sc, BGE_RESET_START);
3802 if (bge_reset(sc))
3803 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3804
3805 /*
3806 * Read the hardware config word in the first 32k of NIC internal
3807 * memory, or fall back to the config word in the EEPROM.
3808 * Note: on some BCM5700 cards, this value appears to be unset.
3809 */
3810 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3811 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3812 BGE_SRAM_DATA_SIG_MAGIC) {
3813 uint32_t tmp;
3814
3815 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3816 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3817 BGE_SRAM_DATA_VER_SHIFT;
3818 if ((0 < tmp) && (tmp < 0x100))
3819 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3820 if (sc->bge_flags & BGEF_PCIE)
3821 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3823 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3824 if (BGE_IS_5717_PLUS(sc))
3825 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3826 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3827 bge_read_eeprom(sc, (void *)&hwcfg,
3828 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3829 hwcfg = be32toh(hwcfg);
3830 }
3831 aprint_normal_dev(sc->bge_dev,
3832 "HW config %08x, %08x, %08x, %08x %08x\n",
3833 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3834
3835 bge_sig_legacy(sc, BGE_RESET_START);
3836 bge_sig_post_reset(sc, BGE_RESET_START);
3837
3838 if (bge_chipinit(sc)) {
3839 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3840 bge_release_resources(sc);
3841 return;
3842 }
3843
3844 /*
3845 * Get station address from the EEPROM.
3846 */
3847 if (bge_get_eaddr(sc, eaddr)) {
3848 aprint_error_dev(sc->bge_dev,
3849 "failed to read station address\n");
3850 bge_release_resources(sc);
3851 return;
3852 }
3853
3854 br = bge_lookup_rev(sc->bge_chipid);
3855
3856 if (br == NULL) {
3857 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3858 sc->bge_chipid);
3859 } else {
3860 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3861 br->br_name, sc->bge_chipid);
3862 }
3863 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3864
3865 /* Allocate the general information block and ring buffers. */
3866 if (pci_dma64_available(pa))
3867 sc->bge_dmatag = pa->pa_dmat64;
3868 else
3869 sc->bge_dmatag = pa->pa_dmat;
3870
3871 /* 40bit DMA workaround */
3872 if (sizeof(bus_addr_t) > 4) {
3873 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3874 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3875
3876 if (bus_dmatag_subregion(olddmatag, 0,
3877 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3878 BUS_DMA_NOWAIT) != 0) {
3879 aprint_error_dev(self,
3880 "WARNING: failed to restrict dma range,"
3881 " falling back to parent bus dma range\n");
3882 sc->bge_dmatag = olddmatag;
3883 }
3884 }
3885 }
3886 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3887 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3888 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3889 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3890 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3891 return;
3892 }
3893 DPRINTFN(5, ("bus_dmamem_map\n"));
3894 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3895 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3896 BUS_DMA_NOWAIT)) {
3897 aprint_error_dev(sc->bge_dev,
3898 "can't map DMA buffers (%zu bytes)\n",
3899 sizeof(struct bge_ring_data));
3900 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3901 sc->bge_ring_rseg);
3902 return;
3903 }
3904 DPRINTFN(5, ("bus_dmamem_create\n"));
3905 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3906 sizeof(struct bge_ring_data), 0,
3907 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3908 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3909 bus_dmamem_unmap(sc->bge_dmatag, kva,
3910 sizeof(struct bge_ring_data));
3911 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3912 sc->bge_ring_rseg);
3913 return;
3914 }
3915 DPRINTFN(5, ("bus_dmamem_load\n"));
3916 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3917 sizeof(struct bge_ring_data), NULL,
3918 BUS_DMA_NOWAIT)) {
3919 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3920 bus_dmamem_unmap(sc->bge_dmatag, kva,
3921 sizeof(struct bge_ring_data));
3922 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3923 sc->bge_ring_rseg);
3924 return;
3925 }
3926
3927 DPRINTFN(5, ("bzero\n"));
3928 sc->bge_rdata = (struct bge_ring_data *)kva;
3929
3930 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3931
3932 /* Try to allocate memory for jumbo buffers. */
3933 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3934 if (bge_alloc_jumbo_mem(sc)) {
3935 aprint_error_dev(sc->bge_dev,
3936 "jumbo buffer allocation failed\n");
3937 } else
3938 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3939 }
3940
3941 /* Set default tuneable values. */
3942 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3943 sc->bge_rx_coal_ticks = 150;
3944 sc->bge_rx_max_coal_bds = 64;
3945 sc->bge_tx_coal_ticks = 300;
3946 sc->bge_tx_max_coal_bds = 400;
3947 if (BGE_IS_5705_PLUS(sc)) {
3948 sc->bge_tx_coal_ticks = (12 * 5);
3949 sc->bge_tx_max_coal_bds = (12 * 5);
3950 aprint_verbose_dev(sc->bge_dev,
3951 "setting short Tx thresholds\n");
3952 }
3953
3954 if (BGE_IS_5717_PLUS(sc))
3955 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3956 else if (BGE_IS_5705_PLUS(sc))
3957 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3958 else
3959 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3960
3961 /* Set up ifnet structure */
3962 ifp = &sc->ethercom.ec_if;
3963 ifp->if_softc = sc;
3964 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3965 ifp->if_ioctl = bge_ioctl;
3966 ifp->if_stop = bge_stop;
3967 ifp->if_start = bge_start;
3968 ifp->if_init = bge_init;
3969 ifp->if_watchdog = bge_watchdog;
3970 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3971 IFQ_SET_READY(&ifp->if_snd);
3972 DPRINTFN(5, ("strcpy if_xname\n"));
3973 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3974
3975 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3976 sc->ethercom.ec_if.if_capabilities |=
3977 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3978 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3979 sc->ethercom.ec_if.if_capabilities |=
3980 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3981 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3982 #endif
3983 sc->ethercom.ec_capabilities |=
3984 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3985
3986 if (sc->bge_flags & BGEF_TSO)
3987 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3988
3989 /*
3990 * Do MII setup.
3991 */
3992 DPRINTFN(5, ("mii setup\n"));
3993 sc->bge_mii.mii_ifp = ifp;
3994 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3995 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3996 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3997
3998 /*
3999 * Figure out what sort of media we have by checking the hardware
4000 * config word. Note: on some BCM5700 cards, this value appears to be
4001 * unset. If that's the case, we have to rely on identifying the NIC
4002 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4003 * The SysKonnect SK-9D41 is a 1000baseSX card.
4004 */
4005 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4006 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4007 if (BGE_IS_5705_PLUS(sc)) {
4008 sc->bge_flags |= BGEF_FIBER_MII;
4009 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4010 } else
4011 sc->bge_flags |= BGEF_FIBER_TBI;
4012 }
4013
4014 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4015 if (BGE_IS_JUMBO_CAPABLE(sc))
4016 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4017
4018 /* set phyflags and chipid before mii_attach() */
4019 dict = device_properties(self);
4020 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4021 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4022
4023 if (sc->bge_flags & BGEF_FIBER_TBI) {
4024 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4025 bge_ifmedia_sts);
4026 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4027 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4028 0, NULL);
4029 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4030 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4031 /* Pretend the user requested this setting */
4032 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4033 } else {
4034 /*
4035 * Do transceiver setup and tell the firmware the
4036 * driver is down so we can try to get access the
4037 * probe if ASF is running. Retry a couple of times
4038 * if we get a conflict with the ASF firmware accessing
4039 * the PHY.
4040 */
4041 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4042 bge_asf_driver_up(sc);
4043
4044 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4045 bge_ifmedia_sts);
4046 mii_flags = MIIF_DOPAUSE;
4047 if (sc->bge_flags & BGEF_FIBER_MII)
4048 mii_flags |= MIIF_HAVEFIBER;
4049 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4050 MII_OFFSET_ANY, mii_flags);
4051
4052 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4053 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4054 ifmedia_add(&sc->bge_mii.mii_media,
4055 IFM_ETHER|IFM_MANUAL, 0, NULL);
4056 ifmedia_set(&sc->bge_mii.mii_media,
4057 IFM_ETHER|IFM_MANUAL);
4058 } else
4059 ifmedia_set(&sc->bge_mii.mii_media,
4060 IFM_ETHER|IFM_AUTO);
4061
4062 /*
4063 * Now tell the firmware we are going up after probing the PHY
4064 */
4065 if (sc->bge_asf_mode & ASF_STACKUP)
4066 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4067 }
4068
4069 /*
4070 * Call MI attach routine.
4071 */
4072 DPRINTFN(5, ("if_attach\n"));
4073 if_attach(ifp);
4074 DPRINTFN(5, ("ether_ifattach\n"));
4075 ether_ifattach(ifp, eaddr);
4076 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4077 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4078 RND_TYPE_NET, RND_FLAG_DEFAULT);
4079 #ifdef BGE_EVENT_COUNTERS
4080 /*
4081 * Attach event counters.
4082 */
4083 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4084 NULL, device_xname(sc->bge_dev), "intr");
4085 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4086 NULL, device_xname(sc->bge_dev), "tx_xoff");
4087 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4088 NULL, device_xname(sc->bge_dev), "tx_xon");
4089 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4090 NULL, device_xname(sc->bge_dev), "rx_xoff");
4091 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4092 NULL, device_xname(sc->bge_dev), "rx_xon");
4093 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4094 NULL, device_xname(sc->bge_dev), "rx_macctl");
4095 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4096 NULL, device_xname(sc->bge_dev), "xoffentered");
4097 #endif /* BGE_EVENT_COUNTERS */
4098 DPRINTFN(5, ("callout_init\n"));
4099 callout_init(&sc->bge_timeout, 0);
4100
4101 if (pmf_device_register(self, NULL, NULL))
4102 pmf_class_network_register(self, ifp);
4103 else
4104 aprint_error_dev(self, "couldn't establish power handler\n");
4105
4106 bge_sysctl_init(sc);
4107
4108 #ifdef BGE_DEBUG
4109 bge_debug_info(sc);
4110 #endif
4111 }
4112
4113 /*
4114 * Stop all chip I/O so that the kernel's probe routines don't
4115 * get confused by errant DMAs when rebooting.
4116 */
4117 static int
4118 bge_detach(device_t self, int flags __unused)
4119 {
4120 struct bge_softc *sc = device_private(self);
4121 struct ifnet *ifp = &sc->ethercom.ec_if;
4122 int s;
4123
4124 s = splnet();
4125 /* Stop the interface. Callouts are stopped in it. */
4126 bge_stop(ifp, 1);
4127 splx(s);
4128
4129 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4130
4131 /* Delete all remaining media. */
4132 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4133
4134 ether_ifdetach(ifp);
4135 if_detach(ifp);
4136
4137 bge_release_resources(sc);
4138
4139 return 0;
4140 }
4141
4142 static void
4143 bge_release_resources(struct bge_softc *sc)
4144 {
4145
4146 /* Disestablish the interrupt handler */
4147 if (sc->bge_intrhand != NULL) {
4148 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4149 sc->bge_intrhand = NULL;
4150 }
4151
4152 if (sc->bge_dmatag != NULL) {
4153 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4154 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4155 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4156 sizeof(struct bge_ring_data));
4157 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
4158 }
4159
4160 /* Unmap the device registers */
4161 if (sc->bge_bsize != 0) {
4162 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4163 sc->bge_bsize = 0;
4164 }
4165
4166 /* Unmap the APE registers */
4167 if (sc->bge_apesize != 0) {
4168 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4169 sc->bge_apesize);
4170 sc->bge_apesize = 0;
4171 }
4172 }
4173
4174 static int
4175 bge_reset(struct bge_softc *sc)
4176 {
4177 uint32_t cachesize, command;
4178 uint32_t reset, mac_mode, mac_mode_mask;
4179 pcireg_t devctl, reg;
4180 int i, val;
4181 void (*write_op)(struct bge_softc *, int, int);
4182
4183 /* Make mask for BGE_MAC_MODE register. */
4184 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4185 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4186 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4187 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4188 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4189
4190 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4191 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4192 if (sc->bge_flags & BGEF_PCIE)
4193 write_op = bge_writemem_direct;
4194 else
4195 write_op = bge_writemem_ind;
4196 } else
4197 write_op = bge_writereg_ind;
4198
4199 /* 57XX step 4 */
4200 /* Acquire the NVM lock */
4201 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4202 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4203 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4204 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4205 for (i = 0; i < 8000; i++) {
4206 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4207 BGE_NVRAMSWARB_GNT1)
4208 break;
4209 DELAY(20);
4210 }
4211 if (i == 8000) {
4212 printf("%s: NVRAM lock timedout!\n",
4213 device_xname(sc->bge_dev));
4214 }
4215 }
4216
4217 /* Take APE lock when performing reset. */
4218 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4219
4220 /* 57XX step 3 */
4221 /* Save some important PCI state. */
4222 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4223 /* 5718 reset step 3 */
4224 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4225
4226 /* 5718 reset step 5, 57XX step 5b-5d */
4227 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4228 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4229 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4230
4231 /* XXX ???: Disable fastboot on controllers that support it. */
4232 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4233 BGE_IS_5755_PLUS(sc))
4234 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4235
4236 /* 5718 reset step 2, 57XX step 6 */
4237 /*
4238 * Write the magic number to SRAM at offset 0xB50.
4239 * When firmware finishes its initialization it will
4240 * write ~BGE_MAGIC_NUMBER to the same location.
4241 */
4242 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4243
4244 /* 5718 reset step 6, 57XX step 7 */
4245 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4246 /*
4247 * XXX: from FreeBSD/Linux; no documentation
4248 */
4249 if (sc->bge_flags & BGEF_PCIE) {
4250 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4251 !BGE_IS_57765_PLUS(sc) &&
4252 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4253 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4254 /* PCI Express 1.0 system */
4255 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4256 BGE_PHY_PCIE_SCRAM_MODE);
4257 }
4258 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4259 /*
4260 * Prevent PCI Express link training
4261 * during global reset.
4262 */
4263 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4264 reset |= (1 << 29);
4265 }
4266 }
4267
4268 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4269 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4270 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4271 i | BGE_VCPU_STATUS_DRV_RESET);
4272 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4273 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4274 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4275 }
4276
4277 /*
4278 * Set GPHY Power Down Override to leave GPHY
4279 * powered up in D0 uninitialized.
4280 */
4281 if (BGE_IS_5705_PLUS(sc) &&
4282 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4283 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4284
4285 /* Issue global reset */
4286 write_op(sc, BGE_MISC_CFG, reset);
4287
4288 /* 5718 reset step 7, 57XX step 8 */
4289 if (sc->bge_flags & BGEF_PCIE)
4290 delay(100*1000); /* too big */
4291 else
4292 delay(1000);
4293
4294 if (sc->bge_flags & BGEF_PCIE) {
4295 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4296 DELAY(500000);
4297 /* XXX: Magic Numbers */
4298 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4299 BGE_PCI_UNKNOWN0);
4300 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4301 BGE_PCI_UNKNOWN0,
4302 reg | (1 << 15));
4303 }
4304 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4305 sc->bge_pciecap + PCIE_DCSR);
4306 /* Clear enable no snoop and disable relaxed ordering. */
4307 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4308 PCIE_DCSR_ENA_NO_SNOOP);
4309
4310 /* Set PCIE max payload size to 128 for older PCIe devices */
4311 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4312 devctl &= ~(0x00e0);
4313 /* Clear device status register. Write 1b to clear */
4314 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4315 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4316 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4317 sc->bge_pciecap + PCIE_DCSR, devctl);
4318 bge_set_max_readrq(sc);
4319 }
4320
4321 /* From Linux: dummy read to flush PCI posted writes */
4322 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4323
4324 /*
4325 * Reset some of the PCI state that got zapped by reset
4326 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4327 * set, too.
4328 */
4329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4330 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4331 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4332 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4333 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4334 (sc->bge_flags & BGEF_PCIX) != 0)
4335 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4336 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4337 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4338 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4339 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4340 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4341 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4342 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4343
4344 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4345 if (sc->bge_flags & BGEF_PCIX) {
4346 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4347 + PCIX_CMD);
4348 /* Set max memory read byte count to 2K */
4349 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4350 reg &= ~PCIX_CMD_BYTECNT_MASK;
4351 reg |= PCIX_CMD_BCNT_2048;
4352 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4353 /*
4354 * For 5704, set max outstanding split transaction
4355 * field to 0 (0 means it supports 1 request)
4356 */
4357 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4358 | PCIX_CMD_BYTECNT_MASK);
4359 reg |= PCIX_CMD_BCNT_2048;
4360 }
4361 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4362 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4363 }
4364
4365 /* 5718 reset step 10, 57XX step 12 */
4366 /* Enable memory arbiter. */
4367 if (BGE_IS_5714_FAMILY(sc)) {
4368 val = CSR_READ_4(sc, BGE_MARB_MODE);
4369 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4370 } else
4371 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4372
4373 /* XXX 5721, 5751 and 5752 */
4374 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4375 /* Step 19: */
4376 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4377 /* Step 20: */
4378 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4379 }
4380
4381 /* 5718 reset step 12, 57XX step 15 and 16 */
4382 /* Fix up byte swapping */
4383 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4384
4385 /* 5718 reset step 13, 57XX step 17 */
4386 /* Poll until the firmware initialization is complete */
4387 bge_poll_fw(sc);
4388
4389 /* 57XX step 21 */
4390 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4391 pcireg_t msidata;
4392
4393 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4394 BGE_PCI_MSI_DATA);
4395 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4396 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4397 msidata);
4398 }
4399
4400 /* 57XX step 18 */
4401 /* Write mac mode. */
4402 val = CSR_READ_4(sc, BGE_MAC_MODE);
4403 /* Restore mac_mode_mask's bits using mac_mode */
4404 val = (val & ~mac_mode_mask) | mac_mode;
4405 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4406 DELAY(40);
4407
4408 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4409
4410 /*
4411 * The 5704 in TBI mode apparently needs some special
4412 * adjustment to insure the SERDES drive level is set
4413 * to 1.2V.
4414 */
4415 if (sc->bge_flags & BGEF_FIBER_TBI &&
4416 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4417 uint32_t serdescfg;
4418
4419 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4420 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4421 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4422 }
4423
4424 if (sc->bge_flags & BGEF_PCIE &&
4425 !BGE_IS_57765_PLUS(sc) &&
4426 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4427 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4428 uint32_t v;
4429
4430 /* Enable PCI Express bug fix */
4431 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4432 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4433 v | BGE_TLP_DATA_FIFO_PROTECT);
4434 }
4435
4436 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4437 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4438 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4439
4440 return 0;
4441 }
4442
4443 /*
4444 * Frame reception handling. This is called if there's a frame
4445 * on the receive return list.
4446 *
4447 * Note: we have to be able to handle two possibilities here:
4448 * 1) the frame is from the jumbo receive ring
4449 * 2) the frame is from the standard receive ring
4450 */
4451
4452 static void
4453 bge_rxeof(struct bge_softc *sc)
4454 {
4455 struct ifnet *ifp;
4456 uint16_t rx_prod, rx_cons;
4457 int stdcnt = 0, jumbocnt = 0;
4458 bus_dmamap_t dmamap;
4459 bus_addr_t offset, toff;
4460 bus_size_t tlen;
4461 int tosync;
4462
4463 rx_cons = sc->bge_rx_saved_considx;
4464 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4465
4466 /* Nothing to do */
4467 if (rx_cons == rx_prod)
4468 return;
4469
4470 ifp = &sc->ethercom.ec_if;
4471
4472 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4473 offsetof(struct bge_ring_data, bge_status_block),
4474 sizeof (struct bge_status_block),
4475 BUS_DMASYNC_POSTREAD);
4476
4477 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4478 tosync = rx_prod - rx_cons;
4479
4480 if (tosync != 0)
4481 rnd_add_uint32(&sc->rnd_source, tosync);
4482
4483 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4484
4485 if (tosync < 0) {
4486 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4487 sizeof (struct bge_rx_bd);
4488 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4489 toff, tlen, BUS_DMASYNC_POSTREAD);
4490 tosync = -tosync;
4491 }
4492
4493 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4494 offset, tosync * sizeof (struct bge_rx_bd),
4495 BUS_DMASYNC_POSTREAD);
4496
4497 while (rx_cons != rx_prod) {
4498 struct bge_rx_bd *cur_rx;
4499 uint32_t rxidx;
4500 struct mbuf *m = NULL;
4501
4502 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4503
4504 rxidx = cur_rx->bge_idx;
4505 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4506
4507 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4508 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4509 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4510 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4511 jumbocnt++;
4512 bus_dmamap_sync(sc->bge_dmatag,
4513 sc->bge_cdata.bge_rx_jumbo_map,
4514 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4515 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4516 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4517 ifp->if_ierrors++;
4518 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4519 continue;
4520 }
4521 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4522 NULL)== ENOBUFS) {
4523 ifp->if_ierrors++;
4524 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4525 continue;
4526 }
4527 } else {
4528 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4529 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4530
4531 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4532 stdcnt++;
4533 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4534 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4535 if (dmamap == NULL) {
4536 ifp->if_ierrors++;
4537 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4538 continue;
4539 }
4540 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4541 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4542 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4543 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4544 ifp->if_ierrors++;
4545 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4546 continue;
4547 }
4548 if (bge_newbuf_std(sc, sc->bge_std,
4549 NULL, dmamap) == ENOBUFS) {
4550 ifp->if_ierrors++;
4551 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4552 continue;
4553 }
4554 }
4555
4556 ifp->if_ipackets++;
4557 #ifndef __NO_STRICT_ALIGNMENT
4558 /*
4559 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4560 * the Rx buffer has the layer-2 header unaligned.
4561 * If our CPU requires alignment, re-align by copying.
4562 */
4563 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4564 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4565 cur_rx->bge_len);
4566 m->m_data += ETHER_ALIGN;
4567 }
4568 #endif
4569
4570 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4571 m->m_pkthdr.rcvif = ifp;
4572
4573 /*
4574 * Handle BPF listeners. Let the BPF user see the packet.
4575 */
4576 bpf_mtap(ifp, m);
4577
4578 bge_rxcsum(sc, cur_rx, m);
4579
4580 /*
4581 * If we received a packet with a vlan tag, pass it
4582 * to vlan_input() instead of ether_input().
4583 */
4584 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4585 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4586 }
4587
4588 (*ifp->if_input)(ifp, m);
4589 }
4590
4591 sc->bge_rx_saved_considx = rx_cons;
4592 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4593 if (stdcnt)
4594 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4595 if (jumbocnt)
4596 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4597 }
4598
4599 static void
4600 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4601 {
4602
4603 if (BGE_IS_57765_PLUS(sc)) {
4604 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4605 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4606 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4607 if ((cur_rx->bge_error_flag &
4608 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4609 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4610 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4611 m->m_pkthdr.csum_data =
4612 cur_rx->bge_tcp_udp_csum;
4613 m->m_pkthdr.csum_flags |=
4614 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4615 M_CSUM_DATA);
4616 }
4617 }
4618 } else {
4619 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4620 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4621 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4622 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4623 /*
4624 * Rx transport checksum-offload may also
4625 * have bugs with packets which, when transmitted,
4626 * were `runts' requiring padding.
4627 */
4628 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4629 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4630 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4631 m->m_pkthdr.csum_data =
4632 cur_rx->bge_tcp_udp_csum;
4633 m->m_pkthdr.csum_flags |=
4634 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4635 M_CSUM_DATA);
4636 }
4637 }
4638 }
4639
4640 static void
4641 bge_txeof(struct bge_softc *sc)
4642 {
4643 struct bge_tx_bd *cur_tx = NULL;
4644 struct ifnet *ifp;
4645 struct txdmamap_pool_entry *dma;
4646 bus_addr_t offset, toff;
4647 bus_size_t tlen;
4648 int tosync;
4649 struct mbuf *m;
4650
4651 ifp = &sc->ethercom.ec_if;
4652
4653 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4654 offsetof(struct bge_ring_data, bge_status_block),
4655 sizeof (struct bge_status_block),
4656 BUS_DMASYNC_POSTREAD);
4657
4658 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4659 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4660 sc->bge_tx_saved_considx;
4661
4662 if (tosync != 0)
4663 rnd_add_uint32(&sc->rnd_source, tosync);
4664
4665 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4666
4667 if (tosync < 0) {
4668 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4669 sizeof (struct bge_tx_bd);
4670 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4671 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4672 tosync = -tosync;
4673 }
4674
4675 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4676 offset, tosync * sizeof (struct bge_tx_bd),
4677 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4678
4679 /*
4680 * Go through our tx ring and free mbufs for those
4681 * frames that have been sent.
4682 */
4683 while (sc->bge_tx_saved_considx !=
4684 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4685 uint32_t idx = 0;
4686
4687 idx = sc->bge_tx_saved_considx;
4688 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4689 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4690 ifp->if_opackets++;
4691 m = sc->bge_cdata.bge_tx_chain[idx];
4692 if (m != NULL) {
4693 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4694 dma = sc->txdma[idx];
4695 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4696 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4697 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4698 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4699 sc->txdma[idx] = NULL;
4700
4701 m_freem(m);
4702 }
4703 sc->bge_txcnt--;
4704 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4705 ifp->if_timer = 0;
4706 }
4707
4708 if (cur_tx != NULL)
4709 ifp->if_flags &= ~IFF_OACTIVE;
4710 }
4711
4712 static int
4713 bge_intr(void *xsc)
4714 {
4715 struct bge_softc *sc;
4716 struct ifnet *ifp;
4717 uint32_t pcistate, statusword, statustag;
4718 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4719
4720 sc = xsc;
4721 ifp = &sc->ethercom.ec_if;
4722
4723 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4724 if (BGE_IS_5717_PLUS(sc))
4725 intrmask = 0;
4726
4727 /* It is possible for the interrupt to arrive before
4728 * the status block is updated prior to the interrupt.
4729 * Reading the PCI State register will confirm whether the
4730 * interrupt is ours and will flush the status block.
4731 */
4732 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4733
4734 /* read status word from status block */
4735 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4736 offsetof(struct bge_ring_data, bge_status_block),
4737 sizeof (struct bge_status_block),
4738 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4739 statusword = sc->bge_rdata->bge_status_block.bge_status;
4740 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4741
4742 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4743 if (sc->bge_lasttag == statustag &&
4744 (~pcistate & intrmask)) {
4745 printf("[SP]");
4746 return (0);
4747 }
4748 sc->bge_lasttag = statustag;
4749 } else {
4750 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4751 !(~pcistate & intrmask)) {
4752 return (0);
4753 }
4754 statustag = 0;
4755 }
4756 /* Ack interrupt and stop others from occurring. */
4757 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4758 BGE_EVCNT_INCR(sc->bge_ev_intr);
4759
4760 /* clear status word */
4761 sc->bge_rdata->bge_status_block.bge_status = 0;
4762
4763 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4764 offsetof(struct bge_ring_data, bge_status_block),
4765 sizeof (struct bge_status_block),
4766 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4767
4768 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4769 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4770 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4771 bge_link_upd(sc);
4772
4773 if (ifp->if_flags & IFF_RUNNING) {
4774 /* Check RX return ring producer/consumer */
4775 bge_rxeof(sc);
4776
4777 /* Check TX ring producer/consumer */
4778 bge_txeof(sc);
4779 }
4780
4781 if (sc->bge_pending_rxintr_change) {
4782 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4783 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4784
4785 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4786 DELAY(10);
4787 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4788
4789 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4790 DELAY(10);
4791 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4792
4793 sc->bge_pending_rxintr_change = 0;
4794 }
4795 bge_handle_events(sc);
4796
4797 /* Re-enable interrupts. */
4798 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4799
4800 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4801 bge_start(ifp);
4802
4803 return 1;
4804 }
4805
4806 static void
4807 bge_asf_driver_up(struct bge_softc *sc)
4808 {
4809 if (sc->bge_asf_mode & ASF_STACKUP) {
4810 /* Send ASF heartbeat aprox. every 2s */
4811 if (sc->bge_asf_count)
4812 sc->bge_asf_count --;
4813 else {
4814 sc->bge_asf_count = 2;
4815
4816 bge_wait_for_event_ack(sc);
4817
4818 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4819 BGE_FW_CMD_DRV_ALIVE3);
4820 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4821 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4822 BGE_FW_HB_TIMEOUT_SEC);
4823 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4824 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4825 BGE_RX_CPU_DRV_EVENT);
4826 }
4827 }
4828 }
4829
4830 static void
4831 bge_tick(void *xsc)
4832 {
4833 struct bge_softc *sc = xsc;
4834 struct mii_data *mii = &sc->bge_mii;
4835 int s;
4836
4837 s = splnet();
4838
4839 if (BGE_IS_5705_PLUS(sc))
4840 bge_stats_update_regs(sc);
4841 else
4842 bge_stats_update(sc);
4843
4844 if (sc->bge_flags & BGEF_FIBER_TBI) {
4845 /*
4846 * Since in TBI mode auto-polling can't be used we should poll
4847 * link status manually. Here we register pending link event
4848 * and trigger interrupt.
4849 */
4850 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4851 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4852 } else {
4853 /*
4854 * Do not touch PHY if we have link up. This could break
4855 * IPMI/ASF mode or produce extra input errors.
4856 * (extra input errors was reported for bcm5701 & bcm5704).
4857 */
4858 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4859 mii_tick(mii);
4860 }
4861
4862 bge_asf_driver_up(sc);
4863
4864 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4865
4866 splx(s);
4867 }
4868
4869 static void
4870 bge_stats_update_regs(struct bge_softc *sc)
4871 {
4872 struct ifnet *ifp = &sc->ethercom.ec_if;
4873
4874 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4875 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4876
4877 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4878 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4879 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4880 }
4881
4882 static void
4883 bge_stats_update(struct bge_softc *sc)
4884 {
4885 struct ifnet *ifp = &sc->ethercom.ec_if;
4886 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4887
4888 #define READ_STAT(sc, stats, stat) \
4889 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4890
4891 ifp->if_collisions +=
4892 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4893 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4894 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4895 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4896 ifp->if_collisions;
4897
4898 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4899 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4900 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4901 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4902 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4903 READ_STAT(sc, stats,
4904 xoffPauseFramesReceived.bge_addr_lo));
4905 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4906 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4907 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4908 READ_STAT(sc, stats,
4909 macControlFramesReceived.bge_addr_lo));
4910 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4911 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4912
4913 #undef READ_STAT
4914
4915 #ifdef notdef
4916 ifp->if_collisions +=
4917 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4918 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4919 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4920 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4921 ifp->if_collisions;
4922 #endif
4923 }
4924
4925 /*
4926 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4927 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4928 * but when such padded frames employ the bge IP/TCP checksum offload,
4929 * the hardware checksum assist gives incorrect results (possibly
4930 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4931 * If we pad such runts with zeros, the onboard checksum comes out correct.
4932 */
4933 static inline int
4934 bge_cksum_pad(struct mbuf *pkt)
4935 {
4936 struct mbuf *last = NULL;
4937 int padlen;
4938
4939 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4940
4941 /* if there's only the packet-header and we can pad there, use it. */
4942 if (pkt->m_pkthdr.len == pkt->m_len &&
4943 M_TRAILINGSPACE(pkt) >= padlen) {
4944 last = pkt;
4945 } else {
4946 /*
4947 * Walk packet chain to find last mbuf. We will either
4948 * pad there, or append a new mbuf and pad it
4949 * (thus perhaps avoiding the bcm5700 dma-min bug).
4950 */
4951 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4952 continue; /* do nothing */
4953 }
4954
4955 /* `last' now points to last in chain. */
4956 if (M_TRAILINGSPACE(last) < padlen) {
4957 /* Allocate new empty mbuf, pad it. Compact later. */
4958 struct mbuf *n;
4959 MGET(n, M_DONTWAIT, MT_DATA);
4960 if (n == NULL)
4961 return ENOBUFS;
4962 n->m_len = 0;
4963 last->m_next = n;
4964 last = n;
4965 }
4966 }
4967
4968 KDASSERT(!M_READONLY(last));
4969 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4970
4971 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4972 memset(mtod(last, char *) + last->m_len, 0, padlen);
4973 last->m_len += padlen;
4974 pkt->m_pkthdr.len += padlen;
4975 return 0;
4976 }
4977
4978 /*
4979 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4980 */
4981 static inline int
4982 bge_compact_dma_runt(struct mbuf *pkt)
4983 {
4984 struct mbuf *m, *prev;
4985 int totlen;
4986
4987 prev = NULL;
4988 totlen = 0;
4989
4990 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4991 int mlen = m->m_len;
4992 int shortfall = 8 - mlen ;
4993
4994 totlen += mlen;
4995 if (mlen == 0)
4996 continue;
4997 if (mlen >= 8)
4998 continue;
4999
5000 /* If we get here, mbuf data is too small for DMA engine.
5001 * Try to fix by shuffling data to prev or next in chain.
5002 * If that fails, do a compacting deep-copy of the whole chain.
5003 */
5004
5005 /* Internal frag. If fits in prev, copy it there. */
5006 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5007 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5008 prev->m_len += mlen;
5009 m->m_len = 0;
5010 /* XXX stitch chain */
5011 prev->m_next = m_free(m);
5012 m = prev;
5013 continue;
5014 }
5015 else if (m->m_next != NULL &&
5016 M_TRAILINGSPACE(m) >= shortfall &&
5017 m->m_next->m_len >= (8 + shortfall)) {
5018 /* m is writable and have enough data in next, pull up. */
5019
5020 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5021 shortfall);
5022 m->m_len += shortfall;
5023 m->m_next->m_len -= shortfall;
5024 m->m_next->m_data += shortfall;
5025 }
5026 else if (m->m_next == NULL || 1) {
5027 /* Got a runt at the very end of the packet.
5028 * borrow data from the tail of the preceding mbuf and
5029 * update its length in-place. (The original data is still
5030 * valid, so we can do this even if prev is not writable.)
5031 */
5032
5033 /* if we'd make prev a runt, just move all of its data. */
5034 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5035 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5036
5037 if ((prev->m_len - shortfall) < 8)
5038 shortfall = prev->m_len;
5039
5040 #ifdef notyet /* just do the safe slow thing for now */
5041 if (!M_READONLY(m)) {
5042 if (M_LEADINGSPACE(m) < shorfall) {
5043 void *m_dat;
5044 m_dat = (m->m_flags & M_PKTHDR) ?
5045 m->m_pktdat : m->dat;
5046 memmove(m_dat, mtod(m, void*), m->m_len);
5047 m->m_data = m_dat;
5048 }
5049 } else
5050 #endif /* just do the safe slow thing */
5051 {
5052 struct mbuf * n = NULL;
5053 int newprevlen = prev->m_len - shortfall;
5054
5055 MGET(n, M_NOWAIT, MT_DATA);
5056 if (n == NULL)
5057 return ENOBUFS;
5058 KASSERT(m->m_len + shortfall < MLEN
5059 /*,
5060 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5061
5062 /* first copy the data we're stealing from prev */
5063 memcpy(n->m_data, prev->m_data + newprevlen,
5064 shortfall);
5065
5066 /* update prev->m_len accordingly */
5067 prev->m_len -= shortfall;
5068
5069 /* copy data from runt m */
5070 memcpy(n->m_data + shortfall, m->m_data,
5071 m->m_len);
5072
5073 /* n holds what we stole from prev, plus m */
5074 n->m_len = shortfall + m->m_len;
5075
5076 /* stitch n into chain and free m */
5077 n->m_next = m->m_next;
5078 prev->m_next = n;
5079 /* KASSERT(m->m_next == NULL); */
5080 m->m_next = NULL;
5081 m_free(m);
5082 m = n; /* for continuing loop */
5083 }
5084 }
5085 }
5086 return 0;
5087 }
5088
5089 /*
5090 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5091 * pointers to descriptors.
5092 */
5093 static int
5094 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5095 {
5096 struct bge_tx_bd *f = NULL;
5097 uint32_t frag, cur;
5098 uint16_t csum_flags = 0;
5099 uint16_t txbd_tso_flags = 0;
5100 struct txdmamap_pool_entry *dma;
5101 bus_dmamap_t dmamap;
5102 int i = 0;
5103 struct m_tag *mtag;
5104 int use_tso, maxsegsize, error;
5105
5106 cur = frag = *txidx;
5107
5108 if (m_head->m_pkthdr.csum_flags) {
5109 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5110 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5111 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5112 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5113 }
5114
5115 /*
5116 * If we were asked to do an outboard checksum, and the NIC
5117 * has the bug where it sometimes adds in the Ethernet padding,
5118 * explicitly pad with zeros so the cksum will be correct either way.
5119 * (For now, do this for all chip versions, until newer
5120 * are confirmed to not require the workaround.)
5121 */
5122 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5123 #ifdef notyet
5124 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5125 #endif
5126 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5127 goto check_dma_bug;
5128
5129 if (bge_cksum_pad(m_head) != 0)
5130 return ENOBUFS;
5131
5132 check_dma_bug:
5133 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5134 goto doit;
5135
5136 /*
5137 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5138 * less than eight bytes. If we encounter a teeny mbuf
5139 * at the end of a chain, we can pad. Otherwise, copy.
5140 */
5141 if (bge_compact_dma_runt(m_head) != 0)
5142 return ENOBUFS;
5143
5144 doit:
5145 dma = SLIST_FIRST(&sc->txdma_list);
5146 if (dma == NULL)
5147 return ENOBUFS;
5148 dmamap = dma->dmamap;
5149
5150 /*
5151 * Set up any necessary TSO state before we start packing...
5152 */
5153 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5154 if (!use_tso) {
5155 maxsegsize = 0;
5156 } else { /* TSO setup */
5157 unsigned mss;
5158 struct ether_header *eh;
5159 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5160 struct mbuf * m0 = m_head;
5161 struct ip *ip;
5162 struct tcphdr *th;
5163 int iphl, hlen;
5164
5165 /*
5166 * XXX It would be nice if the mbuf pkthdr had offset
5167 * fields for the protocol headers.
5168 */
5169
5170 eh = mtod(m0, struct ether_header *);
5171 switch (htons(eh->ether_type)) {
5172 case ETHERTYPE_IP:
5173 offset = ETHER_HDR_LEN;
5174 break;
5175
5176 case ETHERTYPE_VLAN:
5177 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5178 break;
5179
5180 default:
5181 /*
5182 * Don't support this protocol or encapsulation.
5183 */
5184 return ENOBUFS;
5185 }
5186
5187 /*
5188 * TCP/IP headers are in the first mbuf; we can do
5189 * this the easy way.
5190 */
5191 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5192 hlen = iphl + offset;
5193 if (__predict_false(m0->m_len <
5194 (hlen + sizeof(struct tcphdr)))) {
5195
5196 aprint_debug_dev(sc->bge_dev,
5197 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5198 "not handled yet\n",
5199 m0->m_len, hlen+ sizeof(struct tcphdr));
5200 #ifdef NOTYET
5201 /*
5202 * XXX jonathan (at) NetBSD.org: untested.
5203 * how to force this branch to be taken?
5204 */
5205 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5206
5207 m_copydata(m0, offset, sizeof(ip), &ip);
5208 m_copydata(m0, hlen, sizeof(th), &th);
5209
5210 ip.ip_len = 0;
5211
5212 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5213 sizeof(ip.ip_len), &ip.ip_len);
5214
5215 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5216 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5217
5218 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5219 sizeof(th.th_sum), &th.th_sum);
5220
5221 hlen += th.th_off << 2;
5222 iptcp_opt_words = hlen;
5223 #else
5224 /*
5225 * if_wm "hard" case not yet supported, can we not
5226 * mandate it out of existence?
5227 */
5228 (void) ip; (void)th; (void) ip_tcp_hlen;
5229
5230 return ENOBUFS;
5231 #endif
5232 } else {
5233 ip = (struct ip *) (mtod(m0, char *) + offset);
5234 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5235 ip_tcp_hlen = iphl + (th->th_off << 2);
5236
5237 /* Total IP/TCP options, in 32-bit words */
5238 iptcp_opt_words = (ip_tcp_hlen
5239 - sizeof(struct tcphdr)
5240 - sizeof(struct ip)) >> 2;
5241 }
5242 if (BGE_IS_575X_PLUS(sc)) {
5243 th->th_sum = 0;
5244 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5245 } else {
5246 /*
5247 * XXX jonathan (at) NetBSD.org: 5705 untested.
5248 * Requires TSO firmware patch for 5701/5703/5704.
5249 */
5250 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5251 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5252 }
5253
5254 mss = m_head->m_pkthdr.segsz;
5255 txbd_tso_flags |=
5256 BGE_TXBDFLAG_CPU_PRE_DMA |
5257 BGE_TXBDFLAG_CPU_POST_DMA;
5258
5259 /*
5260 * Our NIC TSO-assist assumes TSO has standard, optionless
5261 * IPv4 and TCP headers, which total 40 bytes. By default,
5262 * the NIC copies 40 bytes of IP/TCP header from the
5263 * supplied header into the IP/TCP header portion of
5264 * each post-TSO-segment. If the supplied packet has IP or
5265 * TCP options, we need to tell the NIC to copy those extra
5266 * bytes into each post-TSO header, in addition to the normal
5267 * 40-byte IP/TCP header (and to leave space accordingly).
5268 * Unfortunately, the driver encoding of option length
5269 * varies across different ASIC families.
5270 */
5271 tcp_seg_flags = 0;
5272 if (iptcp_opt_words) {
5273 if (BGE_IS_5705_PLUS(sc)) {
5274 tcp_seg_flags =
5275 iptcp_opt_words << 11;
5276 } else {
5277 txbd_tso_flags |=
5278 iptcp_opt_words << 12;
5279 }
5280 }
5281 maxsegsize = mss | tcp_seg_flags;
5282 ip->ip_len = htons(mss + ip_tcp_hlen);
5283
5284 } /* TSO setup */
5285
5286 /*
5287 * Start packing the mbufs in this chain into
5288 * the fragment pointers. Stop when we run out
5289 * of fragments or hit the end of the mbuf chain.
5290 */
5291 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5292 BUS_DMA_NOWAIT);
5293 if (error)
5294 return ENOBUFS;
5295 /*
5296 * Sanity check: avoid coming within 16 descriptors
5297 * of the end of the ring.
5298 */
5299 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5300 BGE_TSO_PRINTF(("%s: "
5301 " dmamap_load_mbuf too close to ring wrap\n",
5302 device_xname(sc->bge_dev)));
5303 goto fail_unload;
5304 }
5305
5306 mtag = sc->ethercom.ec_nvlans ?
5307 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5308
5309
5310 /* Iterate over dmap-map fragments. */
5311 for (i = 0; i < dmamap->dm_nsegs; i++) {
5312 f = &sc->bge_rdata->bge_tx_ring[frag];
5313 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5314 break;
5315
5316 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5317 f->bge_len = dmamap->dm_segs[i].ds_len;
5318
5319 /*
5320 * For 5751 and follow-ons, for TSO we must turn
5321 * off checksum-assist flag in the tx-descr, and
5322 * supply the ASIC-revision-specific encoding
5323 * of TSO flags and segsize.
5324 */
5325 if (use_tso) {
5326 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5327 f->bge_rsvd = maxsegsize;
5328 f->bge_flags = csum_flags | txbd_tso_flags;
5329 } else {
5330 f->bge_rsvd = 0;
5331 f->bge_flags =
5332 (csum_flags | txbd_tso_flags) & 0x0fff;
5333 }
5334 } else {
5335 f->bge_rsvd = 0;
5336 f->bge_flags = csum_flags;
5337 }
5338
5339 if (mtag != NULL) {
5340 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5341 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5342 } else {
5343 f->bge_vlan_tag = 0;
5344 }
5345 cur = frag;
5346 BGE_INC(frag, BGE_TX_RING_CNT);
5347 }
5348
5349 if (i < dmamap->dm_nsegs) {
5350 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5351 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5352 goto fail_unload;
5353 }
5354
5355 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5356 BUS_DMASYNC_PREWRITE);
5357
5358 if (frag == sc->bge_tx_saved_considx) {
5359 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5360 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5361
5362 goto fail_unload;
5363 }
5364
5365 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5366 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5367 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5368 sc->txdma[cur] = dma;
5369 sc->bge_txcnt += dmamap->dm_nsegs;
5370
5371 *txidx = frag;
5372
5373 return 0;
5374
5375 fail_unload:
5376 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5377
5378 return ENOBUFS;
5379 }
5380
5381 /*
5382 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5383 * to the mbuf data regions directly in the transmit descriptors.
5384 */
5385 static void
5386 bge_start(struct ifnet *ifp)
5387 {
5388 struct bge_softc *sc;
5389 struct mbuf *m_head = NULL;
5390 uint32_t prodidx;
5391 int pkts = 0;
5392
5393 sc = ifp->if_softc;
5394
5395 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5396 return;
5397
5398 prodidx = sc->bge_tx_prodidx;
5399
5400 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5401 IFQ_POLL(&ifp->if_snd, m_head);
5402 if (m_head == NULL)
5403 break;
5404
5405 #if 0
5406 /*
5407 * XXX
5408 * safety overkill. If this is a fragmented packet chain
5409 * with delayed TCP/UDP checksums, then only encapsulate
5410 * it if we have enough descriptors to handle the entire
5411 * chain at once.
5412 * (paranoia -- may not actually be needed)
5413 */
5414 if (m_head->m_flags & M_FIRSTFRAG &&
5415 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5416 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5417 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5418 ifp->if_flags |= IFF_OACTIVE;
5419 break;
5420 }
5421 }
5422 #endif
5423
5424 /*
5425 * Pack the data into the transmit ring. If we
5426 * don't have room, set the OACTIVE flag and wait
5427 * for the NIC to drain the ring.
5428 */
5429 if (bge_encap(sc, m_head, &prodidx)) {
5430 ifp->if_flags |= IFF_OACTIVE;
5431 break;
5432 }
5433
5434 /* now we are committed to transmit the packet */
5435 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5436 pkts++;
5437
5438 /*
5439 * If there's a BPF listener, bounce a copy of this frame
5440 * to him.
5441 */
5442 bpf_mtap(ifp, m_head);
5443 }
5444 if (pkts == 0)
5445 return;
5446
5447 /* Transmit */
5448 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5449 /* 5700 b2 errata */
5450 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5451 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5452
5453 sc->bge_tx_prodidx = prodidx;
5454
5455 /*
5456 * Set a timeout in case the chip goes out to lunch.
5457 */
5458 ifp->if_timer = 5;
5459 }
5460
5461 static int
5462 bge_init(struct ifnet *ifp)
5463 {
5464 struct bge_softc *sc = ifp->if_softc;
5465 const uint16_t *m;
5466 uint32_t mode, reg;
5467 int s, error = 0;
5468
5469 s = splnet();
5470
5471 ifp = &sc->ethercom.ec_if;
5472
5473 /* Cancel pending I/O and flush buffers. */
5474 bge_stop(ifp, 0);
5475
5476 bge_stop_fw(sc);
5477 bge_sig_pre_reset(sc, BGE_RESET_START);
5478 bge_reset(sc);
5479 bge_sig_legacy(sc, BGE_RESET_START);
5480
5481 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5482 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5483 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5484 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5485 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5486
5487 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5488 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5489 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5490 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5491
5492 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5493 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5494 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5495 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5496
5497 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5498 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5499 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5500 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5501 }
5502
5503 bge_sig_post_reset(sc, BGE_RESET_START);
5504
5505 bge_chipinit(sc);
5506
5507 /*
5508 * Init the various state machines, ring
5509 * control blocks and firmware.
5510 */
5511 error = bge_blockinit(sc);
5512 if (error != 0) {
5513 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5514 error);
5515 splx(s);
5516 return error;
5517 }
5518
5519 ifp = &sc->ethercom.ec_if;
5520
5521 /* 5718 step 25, 57XX step 54 */
5522 /* Specify MTU. */
5523 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5524 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5525
5526 /* 5718 step 23 */
5527 /* Load our MAC address. */
5528 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5529 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5530 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5531
5532 /* Enable or disable promiscuous mode as needed. */
5533 if (ifp->if_flags & IFF_PROMISC)
5534 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5535 else
5536 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5537
5538 /* Program multicast filter. */
5539 bge_setmulti(sc);
5540
5541 /* Init RX ring. */
5542 bge_init_rx_ring_std(sc);
5543
5544 /*
5545 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5546 * memory to insure that the chip has in fact read the first
5547 * entry of the ring.
5548 */
5549 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5550 uint32_t v, i;
5551 for (i = 0; i < 10; i++) {
5552 DELAY(20);
5553 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5554 if (v == (MCLBYTES - ETHER_ALIGN))
5555 break;
5556 }
5557 if (i == 10)
5558 aprint_error_dev(sc->bge_dev,
5559 "5705 A0 chip failed to load RX ring\n");
5560 }
5561
5562 /* Init jumbo RX ring. */
5563 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5564 bge_init_rx_ring_jumbo(sc);
5565
5566 /* Init our RX return ring index */
5567 sc->bge_rx_saved_considx = 0;
5568
5569 /* Init TX ring. */
5570 bge_init_tx_ring(sc);
5571
5572 /* 5718 step 63, 57XX step 94 */
5573 /* Enable TX MAC state machine lockup fix. */
5574 mode = CSR_READ_4(sc, BGE_TX_MODE);
5575 if (BGE_IS_5755_PLUS(sc) ||
5576 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5577 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5578 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5579 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5580 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5581 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5582 }
5583
5584 /* Turn on transmitter */
5585 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5586 /* 5718 step 64 */
5587 DELAY(100);
5588
5589 /* 5718 step 65, 57XX step 95 */
5590 /* Turn on receiver */
5591 mode = CSR_READ_4(sc, BGE_RX_MODE);
5592 if (BGE_IS_5755_PLUS(sc))
5593 mode |= BGE_RXMODE_IPV6_ENABLE;
5594 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5595 /* 5718 step 66 */
5596 DELAY(10);
5597
5598 /* 5718 step 12, 57XX step 37 */
5599 /*
5600 * XXX Doucments of 5718 series and 577xx say the recommended value
5601 * is 1, but tg3 set 1 only on 57765 series.
5602 */
5603 if (BGE_IS_57765_PLUS(sc))
5604 reg = 1;
5605 else
5606 reg = 2;
5607 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5608
5609 /* Tell firmware we're alive. */
5610 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5611
5612 /* Enable host interrupts. */
5613 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5614 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5615 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5616
5617 if ((error = bge_ifmedia_upd(ifp)) != 0)
5618 goto out;
5619
5620 ifp->if_flags |= IFF_RUNNING;
5621 ifp->if_flags &= ~IFF_OACTIVE;
5622
5623 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5624
5625 out:
5626 sc->bge_if_flags = ifp->if_flags;
5627 splx(s);
5628
5629 return error;
5630 }
5631
5632 /*
5633 * Set media options.
5634 */
5635 static int
5636 bge_ifmedia_upd(struct ifnet *ifp)
5637 {
5638 struct bge_softc *sc = ifp->if_softc;
5639 struct mii_data *mii = &sc->bge_mii;
5640 struct ifmedia *ifm = &sc->bge_ifmedia;
5641 int rc;
5642
5643 /* If this is a 1000baseX NIC, enable the TBI port. */
5644 if (sc->bge_flags & BGEF_FIBER_TBI) {
5645 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5646 return EINVAL;
5647 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5648 case IFM_AUTO:
5649 /*
5650 * The BCM5704 ASIC appears to have a special
5651 * mechanism for programming the autoneg
5652 * advertisement registers in TBI mode.
5653 */
5654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5655 uint32_t sgdig;
5656 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5657 if (sgdig & BGE_SGDIGSTS_DONE) {
5658 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5659 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5660 sgdig |= BGE_SGDIGCFG_AUTO |
5661 BGE_SGDIGCFG_PAUSE_CAP |
5662 BGE_SGDIGCFG_ASYM_PAUSE;
5663 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5664 sgdig | BGE_SGDIGCFG_SEND);
5665 DELAY(5);
5666 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5667 sgdig);
5668 }
5669 }
5670 break;
5671 case IFM_1000_SX:
5672 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5673 BGE_CLRBIT(sc, BGE_MAC_MODE,
5674 BGE_MACMODE_HALF_DUPLEX);
5675 } else {
5676 BGE_SETBIT(sc, BGE_MAC_MODE,
5677 BGE_MACMODE_HALF_DUPLEX);
5678 }
5679 DELAY(40);
5680 break;
5681 default:
5682 return EINVAL;
5683 }
5684 /* XXX 802.3x flow control for 1000BASE-SX */
5685 return 0;
5686 }
5687
5688 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5689 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5690 uint32_t reg;
5691
5692 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5693 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5694 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5695 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5696 }
5697 }
5698
5699 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5700 if ((rc = mii_mediachg(mii)) == ENXIO)
5701 return 0;
5702
5703 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5704 uint32_t reg;
5705
5706 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5707 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5708 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5709 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5710 delay(40);
5711 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5712 }
5713 }
5714
5715 /*
5716 * Force an interrupt so that we will call bge_link_upd
5717 * if needed and clear any pending link state attention.
5718 * Without this we are not getting any further interrupts
5719 * for link state changes and thus will not UP the link and
5720 * not be able to send in bge_start. The only way to get
5721 * things working was to receive a packet and get a RX intr.
5722 */
5723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5724 sc->bge_flags & BGEF_IS_5788)
5725 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5726 else
5727 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5728
5729 return rc;
5730 }
5731
5732 /*
5733 * Report current media status.
5734 */
5735 static void
5736 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5737 {
5738 struct bge_softc *sc = ifp->if_softc;
5739 struct mii_data *mii = &sc->bge_mii;
5740
5741 if (sc->bge_flags & BGEF_FIBER_TBI) {
5742 ifmr->ifm_status = IFM_AVALID;
5743 ifmr->ifm_active = IFM_ETHER;
5744 if (CSR_READ_4(sc, BGE_MAC_STS) &
5745 BGE_MACSTAT_TBI_PCS_SYNCHED)
5746 ifmr->ifm_status |= IFM_ACTIVE;
5747 ifmr->ifm_active |= IFM_1000_SX;
5748 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5749 ifmr->ifm_active |= IFM_HDX;
5750 else
5751 ifmr->ifm_active |= IFM_FDX;
5752 return;
5753 }
5754
5755 mii_pollstat(mii);
5756 ifmr->ifm_status = mii->mii_media_status;
5757 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5758 sc->bge_flowflags;
5759 }
5760
5761 static int
5762 bge_ifflags_cb(struct ethercom *ec)
5763 {
5764 struct ifnet *ifp = &ec->ec_if;
5765 struct bge_softc *sc = ifp->if_softc;
5766 int change = ifp->if_flags ^ sc->bge_if_flags;
5767
5768 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5769 return ENETRESET;
5770 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5771 return 0;
5772
5773 if ((ifp->if_flags & IFF_PROMISC) == 0)
5774 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5775 else
5776 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5777
5778 bge_setmulti(sc);
5779
5780 sc->bge_if_flags = ifp->if_flags;
5781 return 0;
5782 }
5783
5784 static int
5785 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5786 {
5787 struct bge_softc *sc = ifp->if_softc;
5788 struct ifreq *ifr = (struct ifreq *) data;
5789 int s, error = 0;
5790 struct mii_data *mii;
5791
5792 s = splnet();
5793
5794 switch (command) {
5795 case SIOCSIFMEDIA:
5796 /* XXX Flow control is not supported for 1000BASE-SX */
5797 if (sc->bge_flags & BGEF_FIBER_TBI) {
5798 ifr->ifr_media &= ~IFM_ETH_FMASK;
5799 sc->bge_flowflags = 0;
5800 }
5801
5802 /* Flow control requires full-duplex mode. */
5803 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5804 (ifr->ifr_media & IFM_FDX) == 0) {
5805 ifr->ifr_media &= ~IFM_ETH_FMASK;
5806 }
5807 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5808 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5809 /* We can do both TXPAUSE and RXPAUSE. */
5810 ifr->ifr_media |=
5811 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5812 }
5813 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5814 }
5815 /* FALLTHROUGH */
5816 case SIOCGIFMEDIA:
5817 if (sc->bge_flags & BGEF_FIBER_TBI) {
5818 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5819 command);
5820 } else {
5821 mii = &sc->bge_mii;
5822 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5823 command);
5824 }
5825 break;
5826 default:
5827 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5828 break;
5829
5830 error = 0;
5831
5832 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5833 ;
5834 else if (ifp->if_flags & IFF_RUNNING)
5835 bge_setmulti(sc);
5836 break;
5837 }
5838
5839 splx(s);
5840
5841 return error;
5842 }
5843
5844 static void
5845 bge_watchdog(struct ifnet *ifp)
5846 {
5847 struct bge_softc *sc;
5848
5849 sc = ifp->if_softc;
5850
5851 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5852
5853 ifp->if_flags &= ~IFF_RUNNING;
5854 bge_init(ifp);
5855
5856 ifp->if_oerrors++;
5857 }
5858
5859 static void
5860 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5861 {
5862 int i;
5863
5864 BGE_CLRBIT_FLUSH(sc, reg, bit);
5865
5866 for (i = 0; i < 1000; i++) {
5867 delay(100);
5868 if ((CSR_READ_4(sc, reg) & bit) == 0)
5869 return;
5870 }
5871
5872 /*
5873 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5874 * on some environment (and once after boot?)
5875 */
5876 if (reg != BGE_SRS_MODE)
5877 aprint_error_dev(sc->bge_dev,
5878 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5879 (u_long)reg, bit);
5880 }
5881
5882 /*
5883 * Stop the adapter and free any mbufs allocated to the
5884 * RX and TX lists.
5885 */
5886 static void
5887 bge_stop(struct ifnet *ifp, int disable)
5888 {
5889 struct bge_softc *sc = ifp->if_softc;
5890
5891 if (disable)
5892 callout_halt(&sc->bge_timeout, NULL);
5893 else
5894 callout_stop(&sc->bge_timeout);
5895
5896 /* Disable host interrupts. */
5897 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5898 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5899
5900 /*
5901 * Tell firmware we're shutting down.
5902 */
5903 bge_stop_fw(sc);
5904 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5905
5906 /*
5907 * Disable all of the receiver blocks.
5908 */
5909 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5910 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5911 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5912 if (BGE_IS_5700_FAMILY(sc))
5913 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5914 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5915 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5916 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5917
5918 /*
5919 * Disable all of the transmit blocks.
5920 */
5921 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5922 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5923 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5924 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5925 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5926 if (BGE_IS_5700_FAMILY(sc))
5927 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5928 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5929
5930 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5931 delay(40);
5932
5933 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5934
5935 /*
5936 * Shut down all of the memory managers and related
5937 * state machines.
5938 */
5939 /* 5718 step 5a,5b */
5940 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5941 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5942 if (BGE_IS_5700_FAMILY(sc))
5943 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5944
5945 /* 5718 step 5c,5d */
5946 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5947 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5948
5949 if (BGE_IS_5700_FAMILY(sc)) {
5950 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5951 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5952 }
5953
5954 bge_reset(sc);
5955 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5956 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5957
5958 /*
5959 * Keep the ASF firmware running if up.
5960 */
5961 if (sc->bge_asf_mode & ASF_STACKUP)
5962 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5963 else
5964 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5965
5966 /* Free the RX lists. */
5967 bge_free_rx_ring_std(sc);
5968
5969 /* Free jumbo RX list. */
5970 if (BGE_IS_JUMBO_CAPABLE(sc))
5971 bge_free_rx_ring_jumbo(sc);
5972
5973 /* Free TX buffers. */
5974 bge_free_tx_ring(sc);
5975
5976 /*
5977 * Isolate/power down the PHY.
5978 */
5979 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5980 mii_down(&sc->bge_mii);
5981
5982 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5983
5984 /* Clear MAC's link state (PHY may still have link UP). */
5985 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5986
5987 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5988 }
5989
5990 static void
5991 bge_link_upd(struct bge_softc *sc)
5992 {
5993 struct ifnet *ifp = &sc->ethercom.ec_if;
5994 struct mii_data *mii = &sc->bge_mii;
5995 uint32_t status;
5996 int link;
5997
5998 /* Clear 'pending link event' flag */
5999 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6000
6001 /*
6002 * Process link state changes.
6003 * Grrr. The link status word in the status block does
6004 * not work correctly on the BCM5700 rev AX and BX chips,
6005 * according to all available information. Hence, we have
6006 * to enable MII interrupts in order to properly obtain
6007 * async link changes. Unfortunately, this also means that
6008 * we have to read the MAC status register to detect link
6009 * changes, thereby adding an additional register access to
6010 * the interrupt handler.
6011 */
6012
6013 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6014 status = CSR_READ_4(sc, BGE_MAC_STS);
6015 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6016 mii_pollstat(mii);
6017
6018 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6019 mii->mii_media_status & IFM_ACTIVE &&
6020 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6021 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6022 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6023 (!(mii->mii_media_status & IFM_ACTIVE) ||
6024 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6025 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6026
6027 /* Clear the interrupt */
6028 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6029 BGE_EVTENB_MI_INTERRUPT);
6030 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6031 BRGPHY_MII_ISR);
6032 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6033 BRGPHY_MII_IMR, BRGPHY_INTRS);
6034 }
6035 return;
6036 }
6037
6038 if (sc->bge_flags & BGEF_FIBER_TBI) {
6039 status = CSR_READ_4(sc, BGE_MAC_STS);
6040 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6041 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6042 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6043 if (BGE_ASICREV(sc->bge_chipid)
6044 == BGE_ASICREV_BCM5704) {
6045 BGE_CLRBIT(sc, BGE_MAC_MODE,
6046 BGE_MACMODE_TBI_SEND_CFGS);
6047 DELAY(40);
6048 }
6049 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6050 if_link_state_change(ifp, LINK_STATE_UP);
6051 }
6052 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6053 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6054 if_link_state_change(ifp, LINK_STATE_DOWN);
6055 }
6056 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6057 /*
6058 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6059 * bit in status word always set. Workaround this bug by
6060 * reading PHY link status directly.
6061 */
6062 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6063 BGE_STS_LINK : 0;
6064
6065 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6066 mii_pollstat(mii);
6067
6068 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6069 mii->mii_media_status & IFM_ACTIVE &&
6070 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6071 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6072 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6073 (!(mii->mii_media_status & IFM_ACTIVE) ||
6074 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6075 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6076 }
6077 } else {
6078 /*
6079 * For controllers that call mii_tick, we have to poll
6080 * link status.
6081 */
6082 mii_pollstat(mii);
6083 }
6084
6085 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6086 uint32_t reg, scale;
6087
6088 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6089 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6090 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6091 scale = 65;
6092 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6093 scale = 6;
6094 else
6095 scale = 12;
6096
6097 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6098 ~BGE_MISCCFG_TIMER_PRESCALER;
6099 reg |= scale << 1;
6100 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6101 }
6102 /* Clear the attention */
6103 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6104 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6105 BGE_MACSTAT_LINK_CHANGED);
6106 }
6107
6108 static int
6109 bge_sysctl_verify(SYSCTLFN_ARGS)
6110 {
6111 int error, t;
6112 struct sysctlnode node;
6113
6114 node = *rnode;
6115 t = *(int*)rnode->sysctl_data;
6116 node.sysctl_data = &t;
6117 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6118 if (error || newp == NULL)
6119 return error;
6120
6121 #if 0
6122 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6123 node.sysctl_num, rnode->sysctl_num));
6124 #endif
6125
6126 if (node.sysctl_num == bge_rxthresh_nodenum) {
6127 if (t < 0 || t >= NBGE_RX_THRESH)
6128 return EINVAL;
6129 bge_update_all_threshes(t);
6130 } else
6131 return EINVAL;
6132
6133 *(int*)rnode->sysctl_data = t;
6134
6135 return 0;
6136 }
6137
6138 /*
6139 * Set up sysctl(3) MIB, hw.bge.*.
6140 */
6141 static void
6142 bge_sysctl_init(struct bge_softc *sc)
6143 {
6144 int rc, bge_root_num;
6145 const struct sysctlnode *node;
6146
6147 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6148 0, CTLTYPE_NODE, "bge",
6149 SYSCTL_DESCR("BGE interface controls"),
6150 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6151 goto out;
6152 }
6153
6154 bge_root_num = node->sysctl_num;
6155
6156 /* BGE Rx interrupt mitigation level */
6157 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6158 CTLFLAG_READWRITE,
6159 CTLTYPE_INT, "rx_lvl",
6160 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6161 bge_sysctl_verify, 0,
6162 &bge_rx_thresh_lvl,
6163 0, CTL_HW, bge_root_num, CTL_CREATE,
6164 CTL_EOL)) != 0) {
6165 goto out;
6166 }
6167
6168 bge_rxthresh_nodenum = node->sysctl_num;
6169
6170 return;
6171
6172 out:
6173 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6174 }
6175
6176 #ifdef BGE_DEBUG
6177 void
6178 bge_debug_info(struct bge_softc *sc)
6179 {
6180
6181 printf("Hardware Flags:\n");
6182 if (BGE_IS_57765_PLUS(sc))
6183 printf(" - 57765 Plus\n");
6184 if (BGE_IS_5717_PLUS(sc))
6185 printf(" - 5717 Plus\n");
6186 if (BGE_IS_5755_PLUS(sc))
6187 printf(" - 5755 Plus\n");
6188 if (BGE_IS_575X_PLUS(sc))
6189 printf(" - 575X Plus\n");
6190 if (BGE_IS_5705_PLUS(sc))
6191 printf(" - 5705 Plus\n");
6192 if (BGE_IS_5714_FAMILY(sc))
6193 printf(" - 5714 Family\n");
6194 if (BGE_IS_5700_FAMILY(sc))
6195 printf(" - 5700 Family\n");
6196 if (sc->bge_flags & BGEF_IS_5788)
6197 printf(" - 5788\n");
6198 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6199 printf(" - Supports Jumbo Frames\n");
6200 if (sc->bge_flags & BGEF_NO_EEPROM)
6201 printf(" - No EEPROM\n");
6202 if (sc->bge_flags & BGEF_PCIX)
6203 printf(" - PCI-X Bus\n");
6204 if (sc->bge_flags & BGEF_PCIE)
6205 printf(" - PCI Express Bus\n");
6206 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6207 printf(" - RX Alignment Bug\n");
6208 if (sc->bge_flags & BGEF_APE)
6209 printf(" - APE\n");
6210 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6211 printf(" - CPMU\n");
6212 if (sc->bge_flags & BGEF_TSO)
6213 printf(" - TSO\n");
6214 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6215 printf(" - TAGGED_STATUS\n");
6216
6217 /* PHY related */
6218 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6219 printf(" - No 3 LEDs\n");
6220 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6221 printf(" - CRC bug\n");
6222 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6223 printf(" - ADC bug\n");
6224 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6225 printf(" - 5704 A0 bug\n");
6226 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6227 printf(" - jitter bug\n");
6228 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6229 printf(" - BER bug\n");
6230 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6231 printf(" - adjust trim\n");
6232 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6233 printf(" - no wirespeed\n");
6234
6235 /* ASF related */
6236 if (sc->bge_asf_mode & ASF_ENABLE)
6237 printf(" - ASF enable\n");
6238 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6239 printf(" - ASF new handshake\n");
6240 if (sc->bge_asf_mode & ASF_STACKUP)
6241 printf(" - ASF stackup\n");
6242 }
6243 #endif /* BGE_DEBUG */
6244
6245 static int
6246 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6247 {
6248 prop_dictionary_t dict;
6249 prop_data_t ea;
6250
6251 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6252 return 1;
6253
6254 dict = device_properties(sc->bge_dev);
6255 ea = prop_dictionary_get(dict, "mac-address");
6256 if (ea != NULL) {
6257 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6258 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6259 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6260 return 0;
6261 }
6262
6263 return 1;
6264 }
6265
6266 static int
6267 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6268 {
6269 uint32_t mac_addr;
6270
6271 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6272 if ((mac_addr >> 16) == 0x484b) {
6273 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6274 ether_addr[1] = (uint8_t)mac_addr;
6275 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6276 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6277 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6278 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6279 ether_addr[5] = (uint8_t)mac_addr;
6280 return 0;
6281 }
6282 return 1;
6283 }
6284
6285 static int
6286 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6287 {
6288 int mac_offset = BGE_EE_MAC_OFFSET;
6289
6290 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6291 mac_offset = BGE_EE_MAC_OFFSET_5906;
6292
6293 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6294 ETHER_ADDR_LEN));
6295 }
6296
6297 static int
6298 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6299 {
6300
6301 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6302 return 1;
6303
6304 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6305 ETHER_ADDR_LEN));
6306 }
6307
6308 static int
6309 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6310 {
6311 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6312 /* NOTE: Order is critical */
6313 bge_get_eaddr_fw,
6314 bge_get_eaddr_mem,
6315 bge_get_eaddr_nvram,
6316 bge_get_eaddr_eeprom,
6317 NULL
6318 };
6319 const bge_eaddr_fcn_t *func;
6320
6321 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6322 if ((*func)(sc, eaddr) == 0)
6323 break;
6324 }
6325 return (*func == NULL ? ENXIO : 0);
6326 }
6327