if_bge.c revision 1.292 1 /* $NetBSD: if_bge.c,v 1.292 2015/06/14 08:46:33 martin Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.292 2015/06/14 08:46:33 martin Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 #ifdef __HAVE_PCI_MSI_MSIX
187 static int bge_can_use_msi(struct bge_softc *);
188 #endif
189 static int bge_probe(device_t, cfdata_t, void *);
190 static void bge_attach(device_t, device_t, void *);
191 static int bge_detach(device_t, int);
192 static void bge_release_resources(struct bge_softc *);
193
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
202 static void bge_rxeof(struct bge_softc *);
203
204 static void bge_asf_driver_up (struct bge_softc *);
205 static void bge_tick(void *);
206 static void bge_stats_update(struct bge_softc *);
207 static void bge_stats_update_regs(struct bge_softc *);
208 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
209
210 static int bge_intr(void *);
211 static void bge_start(struct ifnet *);
212 static int bge_ifflags_cb(struct ethercom *);
213 static int bge_ioctl(struct ifnet *, u_long, void *);
214 static int bge_init(struct ifnet *);
215 static void bge_stop(struct ifnet *, int);
216 static void bge_watchdog(struct ifnet *);
217 static int bge_ifmedia_upd(struct ifnet *);
218 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
219
220 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
222
223 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
224 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
225 static void bge_setmulti(struct bge_softc *);
226
227 static void bge_handle_events(struct bge_softc *);
228 static int bge_alloc_jumbo_mem(struct bge_softc *);
229 #if 0 /* XXX */
230 static void bge_free_jumbo_mem(struct bge_softc *);
231 #endif
232 static void *bge_jalloc(struct bge_softc *);
233 static void bge_jfree(struct mbuf *, void *, size_t, void *);
234 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
235 bus_dmamap_t);
236 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
237 static int bge_init_rx_ring_std(struct bge_softc *);
238 static void bge_free_rx_ring_std(struct bge_softc *);
239 static int bge_init_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_rx_ring_jumbo(struct bge_softc *);
241 static void bge_free_tx_ring(struct bge_softc *);
242 static int bge_init_tx_ring(struct bge_softc *);
243
244 static int bge_chipinit(struct bge_softc *);
245 static int bge_blockinit(struct bge_softc *);
246 static int bge_phy_addr(struct bge_softc *);
247 static uint32_t bge_readmem_ind(struct bge_softc *, int);
248 static void bge_writemem_ind(struct bge_softc *, int, int);
249 static void bge_writembx(struct bge_softc *, int, int);
250 static void bge_writembx_flush(struct bge_softc *, int, int);
251 static void bge_writemem_direct(struct bge_softc *, int, int);
252 static void bge_writereg_ind(struct bge_softc *, int, int);
253 static void bge_set_max_readrq(struct bge_softc *);
254
255 static int bge_miibus_readreg(device_t, int, int);
256 static void bge_miibus_writereg(device_t, int, int, int);
257 static void bge_miibus_statchg(struct ifnet *);
258
259 #define BGE_RESET_SHUTDOWN 0
260 #define BGE_RESET_START 1
261 #define BGE_RESET_SUSPEND 2
262 static void bge_sig_post_reset(struct bge_softc *, int);
263 static void bge_sig_legacy(struct bge_softc *, int);
264 static void bge_sig_pre_reset(struct bge_softc *, int);
265 static void bge_wait_for_event_ack(struct bge_softc *);
266 static void bge_stop_fw(struct bge_softc *);
267 static int bge_reset(struct bge_softc *);
268 static void bge_link_upd(struct bge_softc *);
269 static void bge_sysctl_init(struct bge_softc *);
270 static int bge_sysctl_verify(SYSCTLFN_PROTO);
271
272 static void bge_ape_lock_init(struct bge_softc *);
273 static void bge_ape_read_fw_ver(struct bge_softc *);
274 static int bge_ape_lock(struct bge_softc *, int);
275 static void bge_ape_unlock(struct bge_softc *, int);
276 static void bge_ape_send_event(struct bge_softc *, uint32_t);
277 static void bge_ape_driver_state_change(struct bge_softc *, int);
278
279 #ifdef BGE_DEBUG
280 #define DPRINTF(x) if (bgedebug) printf x
281 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
282 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
283 int bgedebug = 0;
284 int bge_tso_debug = 0;
285 void bge_debug_info(struct bge_softc *);
286 #else
287 #define DPRINTF(x)
288 #define DPRINTFN(n,x)
289 #define BGE_TSO_PRINTF(x)
290 #endif
291
292 #ifdef BGE_EVENT_COUNTERS
293 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
294 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
295 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
296 #else
297 #define BGE_EVCNT_INCR(ev) /* nothing */
298 #define BGE_EVCNT_ADD(ev, val) /* nothing */
299 #define BGE_EVCNT_UPD(ev, val) /* nothing */
300 #endif
301
302 static const struct bge_product {
303 pci_vendor_id_t bp_vendor;
304 pci_product_id_t bp_product;
305 const char *bp_name;
306 } bge_products[] = {
307 /*
308 * The BCM5700 documentation seems to indicate that the hardware
309 * still has the Alteon vendor ID burned into it, though it
310 * should always be overridden by the value in the EEPROM. We'll
311 * check for it anyway.
312 */
313 { PCI_VENDOR_ALTEON,
314 PCI_PRODUCT_ALTEON_BCM5700,
315 "Broadcom BCM5700 Gigabit Ethernet",
316 },
317 { PCI_VENDOR_ALTEON,
318 PCI_PRODUCT_ALTEON_BCM5701,
319 "Broadcom BCM5701 Gigabit Ethernet",
320 },
321 { PCI_VENDOR_ALTIMA,
322 PCI_PRODUCT_ALTIMA_AC1000,
323 "Altima AC1000 Gigabit Ethernet",
324 },
325 { PCI_VENDOR_ALTIMA,
326 PCI_PRODUCT_ALTIMA_AC1001,
327 "Altima AC1001 Gigabit Ethernet",
328 },
329 { PCI_VENDOR_ALTIMA,
330 PCI_PRODUCT_ALTIMA_AC1003,
331 "Altima AC1003 Gigabit Ethernet",
332 },
333 { PCI_VENDOR_ALTIMA,
334 PCI_PRODUCT_ALTIMA_AC9100,
335 "Altima AC9100 Gigabit Ethernet",
336 },
337 { PCI_VENDOR_APPLE,
338 PCI_PRODUCT_APPLE_BCM5701,
339 "APPLE BCM5701 Gigabit Ethernet",
340 },
341 { PCI_VENDOR_BROADCOM,
342 PCI_PRODUCT_BROADCOM_BCM5700,
343 "Broadcom BCM5700 Gigabit Ethernet",
344 },
345 { PCI_VENDOR_BROADCOM,
346 PCI_PRODUCT_BROADCOM_BCM5701,
347 "Broadcom BCM5701 Gigabit Ethernet",
348 },
349 { PCI_VENDOR_BROADCOM,
350 PCI_PRODUCT_BROADCOM_BCM5702,
351 "Broadcom BCM5702 Gigabit Ethernet",
352 },
353 { PCI_VENDOR_BROADCOM,
354 PCI_PRODUCT_BROADCOM_BCM5702X,
355 "Broadcom BCM5702X Gigabit Ethernet" },
356 { PCI_VENDOR_BROADCOM,
357 PCI_PRODUCT_BROADCOM_BCM5703,
358 "Broadcom BCM5703 Gigabit Ethernet",
359 },
360 { PCI_VENDOR_BROADCOM,
361 PCI_PRODUCT_BROADCOM_BCM5703X,
362 "Broadcom BCM5703X Gigabit Ethernet",
363 },
364 { PCI_VENDOR_BROADCOM,
365 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
366 "Broadcom BCM5703 Gigabit Ethernet",
367 },
368 { PCI_VENDOR_BROADCOM,
369 PCI_PRODUCT_BROADCOM_BCM5704C,
370 "Broadcom BCM5704C Dual Gigabit Ethernet",
371 },
372 { PCI_VENDOR_BROADCOM,
373 PCI_PRODUCT_BROADCOM_BCM5704S,
374 "Broadcom BCM5704S Dual Gigabit Ethernet",
375 },
376 { PCI_VENDOR_BROADCOM,
377 PCI_PRODUCT_BROADCOM_BCM5705,
378 "Broadcom BCM5705 Gigabit Ethernet",
379 },
380 { PCI_VENDOR_BROADCOM,
381 PCI_PRODUCT_BROADCOM_BCM5705F,
382 "Broadcom BCM5705F Gigabit Ethernet",
383 },
384 { PCI_VENDOR_BROADCOM,
385 PCI_PRODUCT_BROADCOM_BCM5705K,
386 "Broadcom BCM5705K Gigabit Ethernet",
387 },
388 { PCI_VENDOR_BROADCOM,
389 PCI_PRODUCT_BROADCOM_BCM5705M,
390 "Broadcom BCM5705M Gigabit Ethernet",
391 },
392 { PCI_VENDOR_BROADCOM,
393 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
394 "Broadcom BCM5705M Gigabit Ethernet",
395 },
396 { PCI_VENDOR_BROADCOM,
397 PCI_PRODUCT_BROADCOM_BCM5714,
398 "Broadcom BCM5714 Gigabit Ethernet",
399 },
400 { PCI_VENDOR_BROADCOM,
401 PCI_PRODUCT_BROADCOM_BCM5714S,
402 "Broadcom BCM5714S Gigabit Ethernet",
403 },
404 { PCI_VENDOR_BROADCOM,
405 PCI_PRODUCT_BROADCOM_BCM5715,
406 "Broadcom BCM5715 Gigabit Ethernet",
407 },
408 { PCI_VENDOR_BROADCOM,
409 PCI_PRODUCT_BROADCOM_BCM5715S,
410 "Broadcom BCM5715S Gigabit Ethernet",
411 },
412 { PCI_VENDOR_BROADCOM,
413 PCI_PRODUCT_BROADCOM_BCM5717,
414 "Broadcom BCM5717 Gigabit Ethernet",
415 },
416 { PCI_VENDOR_BROADCOM,
417 PCI_PRODUCT_BROADCOM_BCM5718,
418 "Broadcom BCM5718 Gigabit Ethernet",
419 },
420 { PCI_VENDOR_BROADCOM,
421 PCI_PRODUCT_BROADCOM_BCM5719,
422 "Broadcom BCM5719 Gigabit Ethernet",
423 },
424 { PCI_VENDOR_BROADCOM,
425 PCI_PRODUCT_BROADCOM_BCM5720,
426 "Broadcom BCM5720 Gigabit Ethernet",
427 },
428 { PCI_VENDOR_BROADCOM,
429 PCI_PRODUCT_BROADCOM_BCM5721,
430 "Broadcom BCM5721 Gigabit Ethernet",
431 },
432 { PCI_VENDOR_BROADCOM,
433 PCI_PRODUCT_BROADCOM_BCM5722,
434 "Broadcom BCM5722 Gigabit Ethernet",
435 },
436 { PCI_VENDOR_BROADCOM,
437 PCI_PRODUCT_BROADCOM_BCM5723,
438 "Broadcom BCM5723 Gigabit Ethernet",
439 },
440 { PCI_VENDOR_BROADCOM,
441 PCI_PRODUCT_BROADCOM_BCM5750,
442 "Broadcom BCM5750 Gigabit Ethernet",
443 },
444 { PCI_VENDOR_BROADCOM,
445 PCI_PRODUCT_BROADCOM_BCM5751,
446 "Broadcom BCM5751 Gigabit Ethernet",
447 },
448 { PCI_VENDOR_BROADCOM,
449 PCI_PRODUCT_BROADCOM_BCM5751F,
450 "Broadcom BCM5751F Gigabit Ethernet",
451 },
452 { PCI_VENDOR_BROADCOM,
453 PCI_PRODUCT_BROADCOM_BCM5751M,
454 "Broadcom BCM5751M Gigabit Ethernet",
455 },
456 { PCI_VENDOR_BROADCOM,
457 PCI_PRODUCT_BROADCOM_BCM5752,
458 "Broadcom BCM5752 Gigabit Ethernet",
459 },
460 { PCI_VENDOR_BROADCOM,
461 PCI_PRODUCT_BROADCOM_BCM5752M,
462 "Broadcom BCM5752M Gigabit Ethernet",
463 },
464 { PCI_VENDOR_BROADCOM,
465 PCI_PRODUCT_BROADCOM_BCM5753,
466 "Broadcom BCM5753 Gigabit Ethernet",
467 },
468 { PCI_VENDOR_BROADCOM,
469 PCI_PRODUCT_BROADCOM_BCM5753F,
470 "Broadcom BCM5753F Gigabit Ethernet",
471 },
472 { PCI_VENDOR_BROADCOM,
473 PCI_PRODUCT_BROADCOM_BCM5753M,
474 "Broadcom BCM5753M Gigabit Ethernet",
475 },
476 { PCI_VENDOR_BROADCOM,
477 PCI_PRODUCT_BROADCOM_BCM5754,
478 "Broadcom BCM5754 Gigabit Ethernet",
479 },
480 { PCI_VENDOR_BROADCOM,
481 PCI_PRODUCT_BROADCOM_BCM5754M,
482 "Broadcom BCM5754M Gigabit Ethernet",
483 },
484 { PCI_VENDOR_BROADCOM,
485 PCI_PRODUCT_BROADCOM_BCM5755,
486 "Broadcom BCM5755 Gigabit Ethernet",
487 },
488 { PCI_VENDOR_BROADCOM,
489 PCI_PRODUCT_BROADCOM_BCM5755M,
490 "Broadcom BCM5755M Gigabit Ethernet",
491 },
492 { PCI_VENDOR_BROADCOM,
493 PCI_PRODUCT_BROADCOM_BCM5756,
494 "Broadcom BCM5756 Gigabit Ethernet",
495 },
496 { PCI_VENDOR_BROADCOM,
497 PCI_PRODUCT_BROADCOM_BCM5761,
498 "Broadcom BCM5761 Gigabit Ethernet",
499 },
500 { PCI_VENDOR_BROADCOM,
501 PCI_PRODUCT_BROADCOM_BCM5761E,
502 "Broadcom BCM5761E Gigabit Ethernet",
503 },
504 { PCI_VENDOR_BROADCOM,
505 PCI_PRODUCT_BROADCOM_BCM5761S,
506 "Broadcom BCM5761S Gigabit Ethernet",
507 },
508 { PCI_VENDOR_BROADCOM,
509 PCI_PRODUCT_BROADCOM_BCM5761SE,
510 "Broadcom BCM5761SE Gigabit Ethernet",
511 },
512 { PCI_VENDOR_BROADCOM,
513 PCI_PRODUCT_BROADCOM_BCM5764,
514 "Broadcom BCM5764 Gigabit Ethernet",
515 },
516 { PCI_VENDOR_BROADCOM,
517 PCI_PRODUCT_BROADCOM_BCM5780,
518 "Broadcom BCM5780 Gigabit Ethernet",
519 },
520 { PCI_VENDOR_BROADCOM,
521 PCI_PRODUCT_BROADCOM_BCM5780S,
522 "Broadcom BCM5780S Gigabit Ethernet",
523 },
524 { PCI_VENDOR_BROADCOM,
525 PCI_PRODUCT_BROADCOM_BCM5781,
526 "Broadcom BCM5781 Gigabit Ethernet",
527 },
528 { PCI_VENDOR_BROADCOM,
529 PCI_PRODUCT_BROADCOM_BCM5782,
530 "Broadcom BCM5782 Gigabit Ethernet",
531 },
532 { PCI_VENDOR_BROADCOM,
533 PCI_PRODUCT_BROADCOM_BCM5784M,
534 "BCM5784M NetLink 1000baseT Ethernet",
535 },
536 { PCI_VENDOR_BROADCOM,
537 PCI_PRODUCT_BROADCOM_BCM5785F,
538 "BCM5785F NetLink 10/100 Ethernet",
539 },
540 { PCI_VENDOR_BROADCOM,
541 PCI_PRODUCT_BROADCOM_BCM5785G,
542 "BCM5785G NetLink 1000baseT Ethernet",
543 },
544 { PCI_VENDOR_BROADCOM,
545 PCI_PRODUCT_BROADCOM_BCM5786,
546 "Broadcom BCM5786 Gigabit Ethernet",
547 },
548 { PCI_VENDOR_BROADCOM,
549 PCI_PRODUCT_BROADCOM_BCM5787,
550 "Broadcom BCM5787 Gigabit Ethernet",
551 },
552 { PCI_VENDOR_BROADCOM,
553 PCI_PRODUCT_BROADCOM_BCM5787F,
554 "Broadcom BCM5787F 10/100 Ethernet",
555 },
556 { PCI_VENDOR_BROADCOM,
557 PCI_PRODUCT_BROADCOM_BCM5787M,
558 "Broadcom BCM5787M Gigabit Ethernet",
559 },
560 { PCI_VENDOR_BROADCOM,
561 PCI_PRODUCT_BROADCOM_BCM5788,
562 "Broadcom BCM5788 Gigabit Ethernet",
563 },
564 { PCI_VENDOR_BROADCOM,
565 PCI_PRODUCT_BROADCOM_BCM5789,
566 "Broadcom BCM5789 Gigabit Ethernet",
567 },
568 { PCI_VENDOR_BROADCOM,
569 PCI_PRODUCT_BROADCOM_BCM5901,
570 "Broadcom BCM5901 Fast Ethernet",
571 },
572 { PCI_VENDOR_BROADCOM,
573 PCI_PRODUCT_BROADCOM_BCM5901A2,
574 "Broadcom BCM5901A2 Fast Ethernet",
575 },
576 { PCI_VENDOR_BROADCOM,
577 PCI_PRODUCT_BROADCOM_BCM5903M,
578 "Broadcom BCM5903M Fast Ethernet",
579 },
580 { PCI_VENDOR_BROADCOM,
581 PCI_PRODUCT_BROADCOM_BCM5906,
582 "Broadcom BCM5906 Fast Ethernet",
583 },
584 { PCI_VENDOR_BROADCOM,
585 PCI_PRODUCT_BROADCOM_BCM5906M,
586 "Broadcom BCM5906M Fast Ethernet",
587 },
588 { PCI_VENDOR_BROADCOM,
589 PCI_PRODUCT_BROADCOM_BCM57760,
590 "Broadcom BCM57760 Fast Ethernet",
591 },
592 { PCI_VENDOR_BROADCOM,
593 PCI_PRODUCT_BROADCOM_BCM57761,
594 "Broadcom BCM57761 Fast Ethernet",
595 },
596 { PCI_VENDOR_BROADCOM,
597 PCI_PRODUCT_BROADCOM_BCM57762,
598 "Broadcom BCM57762 Gigabit Ethernet",
599 },
600 { PCI_VENDOR_BROADCOM,
601 PCI_PRODUCT_BROADCOM_BCM57765,
602 "Broadcom BCM57765 Fast Ethernet",
603 },
604 { PCI_VENDOR_BROADCOM,
605 PCI_PRODUCT_BROADCOM_BCM57766,
606 "Broadcom BCM57766 Fast Ethernet",
607 },
608 { PCI_VENDOR_BROADCOM,
609 PCI_PRODUCT_BROADCOM_BCM57780,
610 "Broadcom BCM57780 Fast Ethernet",
611 },
612 { PCI_VENDOR_BROADCOM,
613 PCI_PRODUCT_BROADCOM_BCM57781,
614 "Broadcom BCM57781 Fast Ethernet",
615 },
616 { PCI_VENDOR_BROADCOM,
617 PCI_PRODUCT_BROADCOM_BCM57782,
618 "Broadcom BCM57782 Fast Ethernet",
619 },
620 { PCI_VENDOR_BROADCOM,
621 PCI_PRODUCT_BROADCOM_BCM57785,
622 "Broadcom BCM57785 Fast Ethernet",
623 },
624 { PCI_VENDOR_BROADCOM,
625 PCI_PRODUCT_BROADCOM_BCM57786,
626 "Broadcom BCM57786 Fast Ethernet",
627 },
628 { PCI_VENDOR_BROADCOM,
629 PCI_PRODUCT_BROADCOM_BCM57788,
630 "Broadcom BCM57788 Fast Ethernet",
631 },
632 { PCI_VENDOR_BROADCOM,
633 PCI_PRODUCT_BROADCOM_BCM57790,
634 "Broadcom BCM57790 Fast Ethernet",
635 },
636 { PCI_VENDOR_BROADCOM,
637 PCI_PRODUCT_BROADCOM_BCM57791,
638 "Broadcom BCM57791 Fast Ethernet",
639 },
640 { PCI_VENDOR_BROADCOM,
641 PCI_PRODUCT_BROADCOM_BCM57795,
642 "Broadcom BCM57795 Fast Ethernet",
643 },
644 { PCI_VENDOR_SCHNEIDERKOCH,
645 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
646 "SysKonnect SK-9Dx1 Gigabit Ethernet",
647 },
648 { PCI_VENDOR_3COM,
649 PCI_PRODUCT_3COM_3C996,
650 "3Com 3c996 Gigabit Ethernet",
651 },
652 { PCI_VENDOR_FUJITSU4,
653 PCI_PRODUCT_FUJITSU4_PW008GE4,
654 "Fujitsu PW008GE4 Gigabit Ethernet",
655 },
656 { PCI_VENDOR_FUJITSU4,
657 PCI_PRODUCT_FUJITSU4_PW008GE5,
658 "Fujitsu PW008GE5 Gigabit Ethernet",
659 },
660 { PCI_VENDOR_FUJITSU4,
661 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
662 "Fujitsu Primepower 250/450 Gigabit Ethernet",
663 },
664 { 0,
665 0,
666 NULL },
667 };
668
669 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
670 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
671 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
672 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
673 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
674 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
675 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
676 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
677 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
678
679 static const struct bge_revision {
680 uint32_t br_chipid;
681 const char *br_name;
682 } bge_revisions[] = {
683 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
684 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
685 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
686 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
687 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
688 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
689 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
690 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
691 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
692 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
693 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
694 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
695 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
696 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
697 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
698 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
699 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
700 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
701 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
702 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
703 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
704 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
705 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
706 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
707 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
708 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
709 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
710 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
711 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
712 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
713 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
714 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
715 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
716 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
717 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
718 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
719 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
720 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
721 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
722 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
723 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
724 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
725 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
726 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
727 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
728 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
729 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
730 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
731 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
732 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
733 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
734 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
735 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
736 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
737 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
738 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
739 /* 5754 and 5787 share the same ASIC ID */
740 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
741 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
742 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
743 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
744 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
745 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
746 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
747 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
748 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
749 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
750
751 { 0, NULL }
752 };
753
754 /*
755 * Some defaults for major revisions, so that newer steppings
756 * that we don't know about have a shot at working.
757 */
758 static const struct bge_revision bge_majorrevs[] = {
759 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
760 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
761 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
762 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
763 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
764 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
765 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
767 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
768 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
769 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
770 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
771 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
772 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
773 /* 5754 and 5787 share the same ASIC ID */
774 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
775 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
776 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
777 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
778 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
779 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
780 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
781 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
782
783 { 0, NULL }
784 };
785
786 static int bge_allow_asf = 1;
787
788 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
789 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
790
791 static uint32_t
792 bge_readmem_ind(struct bge_softc *sc, int off)
793 {
794 pcireg_t val;
795
796 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
797 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
798 return 0;
799
800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
801 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
802 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
803 return val;
804 }
805
806 static void
807 bge_writemem_ind(struct bge_softc *sc, int off, int val)
808 {
809
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
812 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
813 }
814
815 /*
816 * PCI Express only
817 */
818 static void
819 bge_set_max_readrq(struct bge_softc *sc)
820 {
821 pcireg_t val;
822
823 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
824 + PCIE_DCSR);
825 val &= ~PCIE_DCSR_MAX_READ_REQ;
826 switch (sc->bge_expmrq) {
827 case 2048:
828 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
829 break;
830 case 4096:
831 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
832 break;
833 default:
834 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
835 break;
836 }
837 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
838 + PCIE_DCSR, val);
839 }
840
841 #ifdef notdef
842 static uint32_t
843 bge_readreg_ind(struct bge_softc *sc, int off)
844 {
845 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
846 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
847 }
848 #endif
849
850 static void
851 bge_writereg_ind(struct bge_softc *sc, int off, int val)
852 {
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
854 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
855 }
856
857 static void
858 bge_writemem_direct(struct bge_softc *sc, int off, int val)
859 {
860 CSR_WRITE_4(sc, off, val);
861 }
862
863 static void
864 bge_writembx(struct bge_softc *sc, int off, int val)
865 {
866 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
867 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
868
869 CSR_WRITE_4(sc, off, val);
870 }
871
872 static void
873 bge_writembx_flush(struct bge_softc *sc, int off, int val)
874 {
875 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
876 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
877
878 CSR_WRITE_4_FLUSH(sc, off, val);
879 }
880
881 /*
882 * Clear all stale locks and select the lock for this driver instance.
883 */
884 void
885 bge_ape_lock_init(struct bge_softc *sc)
886 {
887 struct pci_attach_args *pa = &(sc->bge_pa);
888 uint32_t bit, regbase;
889 int i;
890
891 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
892 regbase = BGE_APE_LOCK_GRANT;
893 else
894 regbase = BGE_APE_PER_LOCK_GRANT;
895
896 /* Clear any stale locks. */
897 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
898 switch (i) {
899 case BGE_APE_LOCK_PHY0:
900 case BGE_APE_LOCK_PHY1:
901 case BGE_APE_LOCK_PHY2:
902 case BGE_APE_LOCK_PHY3:
903 bit = BGE_APE_LOCK_GRANT_DRIVER0;
904 break;
905 default:
906 if (pa->pa_function == 0)
907 bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 else
909 bit = (1 << pa->pa_function);
910 }
911 APE_WRITE_4(sc, regbase + 4 * i, bit);
912 }
913
914 /* Select the PHY lock based on the device's function number. */
915 switch (pa->pa_function) {
916 case 0:
917 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
918 break;
919 case 1:
920 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
921 break;
922 case 2:
923 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
924 break;
925 case 3:
926 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
927 break;
928 default:
929 printf("%s: PHY lock not supported on function\n",
930 device_xname(sc->bge_dev));
931 break;
932 }
933 }
934
935 /*
936 * Check for APE firmware, set flags, and print version info.
937 */
938 void
939 bge_ape_read_fw_ver(struct bge_softc *sc)
940 {
941 const char *fwtype;
942 uint32_t apedata, features;
943
944 /* Check for a valid APE signature in shared memory. */
945 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
946 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
947 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
948 return;
949 }
950
951 /* Check if APE firmware is running. */
952 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
953 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
954 printf("%s: APE signature found but FW status not ready! "
955 "0x%08x\n", device_xname(sc->bge_dev), apedata);
956 return;
957 }
958
959 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
960
961 /* Fetch the APE firwmare type and version. */
962 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
963 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
964 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
965 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
966 fwtype = "NCSI";
967 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
968 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
969 fwtype = "DASH";
970 } else
971 fwtype = "UNKN";
972
973 /* Print the APE firmware version. */
974 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
975 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
976 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
977 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
978 (apedata & BGE_APE_FW_VERSION_BLDMSK));
979 }
980
981 int
982 bge_ape_lock(struct bge_softc *sc, int locknum)
983 {
984 struct pci_attach_args *pa = &(sc->bge_pa);
985 uint32_t bit, gnt, req, status;
986 int i, off;
987
988 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
989 return (0);
990
991 /* Lock request/grant registers have different bases. */
992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
993 req = BGE_APE_LOCK_REQ;
994 gnt = BGE_APE_LOCK_GRANT;
995 } else {
996 req = BGE_APE_PER_LOCK_REQ;
997 gnt = BGE_APE_PER_LOCK_GRANT;
998 }
999
1000 off = 4 * locknum;
1001
1002 switch (locknum) {
1003 case BGE_APE_LOCK_GPIO:
1004 /* Lock required when using GPIO. */
1005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1006 return (0);
1007 if (pa->pa_function == 0)
1008 bit = BGE_APE_LOCK_REQ_DRIVER0;
1009 else
1010 bit = (1 << pa->pa_function);
1011 break;
1012 case BGE_APE_LOCK_GRC:
1013 /* Lock required to reset the device. */
1014 if (pa->pa_function == 0)
1015 bit = BGE_APE_LOCK_REQ_DRIVER0;
1016 else
1017 bit = (1 << pa->pa_function);
1018 break;
1019 case BGE_APE_LOCK_MEM:
1020 /* Lock required when accessing certain APE memory. */
1021 if (pa->pa_function == 0)
1022 bit = BGE_APE_LOCK_REQ_DRIVER0;
1023 else
1024 bit = (1 << pa->pa_function);
1025 break;
1026 case BGE_APE_LOCK_PHY0:
1027 case BGE_APE_LOCK_PHY1:
1028 case BGE_APE_LOCK_PHY2:
1029 case BGE_APE_LOCK_PHY3:
1030 /* Lock required when accessing PHYs. */
1031 bit = BGE_APE_LOCK_REQ_DRIVER0;
1032 break;
1033 default:
1034 return (EINVAL);
1035 }
1036
1037 /* Request a lock. */
1038 APE_WRITE_4_FLUSH(sc, req + off, bit);
1039
1040 /* Wait up to 1 second to acquire lock. */
1041 for (i = 0; i < 20000; i++) {
1042 status = APE_READ_4(sc, gnt + off);
1043 if (status == bit)
1044 break;
1045 DELAY(50);
1046 }
1047
1048 /* Handle any errors. */
1049 if (status != bit) {
1050 printf("%s: APE lock %d request failed! "
1051 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1052 device_xname(sc->bge_dev),
1053 locknum, req + off, bit & 0xFFFF, gnt + off,
1054 status & 0xFFFF);
1055 /* Revoke the lock request. */
1056 APE_WRITE_4(sc, gnt + off, bit);
1057 return (EBUSY);
1058 }
1059
1060 return (0);
1061 }
1062
1063 void
1064 bge_ape_unlock(struct bge_softc *sc, int locknum)
1065 {
1066 struct pci_attach_args *pa = &(sc->bge_pa);
1067 uint32_t bit, gnt;
1068 int off;
1069
1070 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1071 return;
1072
1073 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1074 gnt = BGE_APE_LOCK_GRANT;
1075 else
1076 gnt = BGE_APE_PER_LOCK_GRANT;
1077
1078 off = 4 * locknum;
1079
1080 switch (locknum) {
1081 case BGE_APE_LOCK_GPIO:
1082 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1083 return;
1084 if (pa->pa_function == 0)
1085 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1086 else
1087 bit = (1 << pa->pa_function);
1088 break;
1089 case BGE_APE_LOCK_GRC:
1090 if (pa->pa_function == 0)
1091 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1092 else
1093 bit = (1 << pa->pa_function);
1094 break;
1095 case BGE_APE_LOCK_MEM:
1096 if (pa->pa_function == 0)
1097 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1098 else
1099 bit = (1 << pa->pa_function);
1100 break;
1101 case BGE_APE_LOCK_PHY0:
1102 case BGE_APE_LOCK_PHY1:
1103 case BGE_APE_LOCK_PHY2:
1104 case BGE_APE_LOCK_PHY3:
1105 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1106 break;
1107 default:
1108 return;
1109 }
1110
1111 /* Write and flush for consecutive bge_ape_lock() */
1112 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1113 }
1114
1115 /*
1116 * Send an event to the APE firmware.
1117 */
1118 void
1119 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1120 {
1121 uint32_t apedata;
1122 int i;
1123
1124 /* NCSI does not support APE events. */
1125 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1126 return;
1127
1128 /* Wait up to 1ms for APE to service previous event. */
1129 for (i = 10; i > 0; i--) {
1130 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1131 break;
1132 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1133 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1134 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1135 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1136 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1137 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1138 break;
1139 }
1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 DELAY(100);
1142 }
1143 if (i == 0) {
1144 printf("%s: APE event 0x%08x send timed out\n",
1145 device_xname(sc->bge_dev), event);
1146 }
1147 }
1148
1149 void
1150 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1151 {
1152 uint32_t apedata, event;
1153
1154 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1155 return;
1156
1157 switch (kind) {
1158 case BGE_RESET_START:
1159 /* If this is the first load, clear the load counter. */
1160 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1161 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1162 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1163 else {
1164 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1165 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1166 }
1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1168 BGE_APE_HOST_SEG_SIG_MAGIC);
1169 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1170 BGE_APE_HOST_SEG_LEN_MAGIC);
1171
1172 /* Add some version info if bge(4) supports it. */
1173 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1174 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1175 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1176 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1177 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1178 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1179 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1180 BGE_APE_HOST_DRVR_STATE_START);
1181 event = BGE_APE_EVENT_STATUS_STATE_START;
1182 break;
1183 case BGE_RESET_SHUTDOWN:
1184 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1185 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1186 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1187 break;
1188 case BGE_RESET_SUSPEND:
1189 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1190 break;
1191 default:
1192 return;
1193 }
1194
1195 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1196 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1197 }
1198
1199 static uint8_t
1200 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1201 {
1202 uint32_t access, byte = 0;
1203 int i;
1204
1205 /* Lock. */
1206 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1207 for (i = 0; i < 8000; i++) {
1208 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1209 break;
1210 DELAY(20);
1211 }
1212 if (i == 8000)
1213 return 1;
1214
1215 /* Enable access. */
1216 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1217 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1218
1219 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1220 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1221 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1222 DELAY(10);
1223 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1224 DELAY(10);
1225 break;
1226 }
1227 }
1228
1229 if (i == BGE_TIMEOUT * 10) {
1230 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1231 return 1;
1232 }
1233
1234 /* Get result. */
1235 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1236
1237 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1238
1239 /* Disable access. */
1240 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1241
1242 /* Unlock. */
1243 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Read a sequence of bytes from NVRAM.
1250 */
1251 static int
1252 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1253 {
1254 int error = 0, i;
1255 uint8_t byte = 0;
1256
1257 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1258 return 1;
1259
1260 for (i = 0; i < cnt; i++) {
1261 error = bge_nvram_getbyte(sc, off + i, &byte);
1262 if (error)
1263 break;
1264 *(dest + i) = byte;
1265 }
1266
1267 return (error ? 1 : 0);
1268 }
1269
1270 /*
1271 * Read a byte of data stored in the EEPROM at address 'addr.' The
1272 * BCM570x supports both the traditional bitbang interface and an
1273 * auto access interface for reading the EEPROM. We use the auto
1274 * access method.
1275 */
1276 static uint8_t
1277 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1278 {
1279 int i;
1280 uint32_t byte = 0;
1281
1282 /*
1283 * Enable use of auto EEPROM access so we can avoid
1284 * having to use the bitbang method.
1285 */
1286 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1287
1288 /* Reset the EEPROM, load the clock period. */
1289 CSR_WRITE_4(sc, BGE_EE_ADDR,
1290 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1291 DELAY(20);
1292
1293 /* Issue the read EEPROM command. */
1294 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1295
1296 /* Wait for completion */
1297 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1298 DELAY(10);
1299 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1300 break;
1301 }
1302
1303 if (i == BGE_TIMEOUT * 10) {
1304 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1305 return 1;
1306 }
1307
1308 /* Get result. */
1309 byte = CSR_READ_4(sc, BGE_EE_DATA);
1310
1311 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Read a sequence of bytes from the EEPROM.
1318 */
1319 static int
1320 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1321 {
1322 int error = 0, i;
1323 uint8_t byte = 0;
1324 char *dest = destv;
1325
1326 for (i = 0; i < cnt; i++) {
1327 error = bge_eeprom_getbyte(sc, off + i, &byte);
1328 if (error)
1329 break;
1330 *(dest + i) = byte;
1331 }
1332
1333 return (error ? 1 : 0);
1334 }
1335
1336 static int
1337 bge_miibus_readreg(device_t dev, int phy, int reg)
1338 {
1339 struct bge_softc *sc = device_private(dev);
1340 uint32_t val;
1341 uint32_t autopoll;
1342 int i;
1343
1344 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1345 return 0;
1346
1347 /* Reading with autopolling on may trigger PCI errors */
1348 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1349 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1350 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1351 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1352 DELAY(80);
1353 }
1354
1355 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1356 BGE_MIPHY(phy) | BGE_MIREG(reg));
1357
1358 for (i = 0; i < BGE_TIMEOUT; i++) {
1359 delay(10);
1360 val = CSR_READ_4(sc, BGE_MI_COMM);
1361 if (!(val & BGE_MICOMM_BUSY)) {
1362 DELAY(5);
1363 val = CSR_READ_4(sc, BGE_MI_COMM);
1364 break;
1365 }
1366 }
1367
1368 if (i == BGE_TIMEOUT) {
1369 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1370 val = 0;
1371 goto done;
1372 }
1373
1374 done:
1375 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1376 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1377 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1378 DELAY(80);
1379 }
1380
1381 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1382
1383 if (val & BGE_MICOMM_READFAIL)
1384 return 0;
1385
1386 return (val & 0xFFFF);
1387 }
1388
1389 static void
1390 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1391 {
1392 struct bge_softc *sc = device_private(dev);
1393 uint32_t autopoll;
1394 int i;
1395
1396 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1397 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1398 return;
1399
1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 return;
1402
1403 /* Reading with autopolling on may trigger PCI errors */
1404 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1405 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1406 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1407 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1408 DELAY(80);
1409 }
1410
1411 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1412 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1413
1414 for (i = 0; i < BGE_TIMEOUT; i++) {
1415 delay(10);
1416 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1417 delay(5);
1418 CSR_READ_4(sc, BGE_MI_COMM);
1419 break;
1420 }
1421 }
1422
1423 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1424 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1425 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1426 delay(80);
1427 }
1428
1429 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1430
1431 if (i == BGE_TIMEOUT)
1432 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1433 }
1434
1435 static void
1436 bge_miibus_statchg(struct ifnet *ifp)
1437 {
1438 struct bge_softc *sc = ifp->if_softc;
1439 struct mii_data *mii = &sc->bge_mii;
1440 uint32_t mac_mode, rx_mode, tx_mode;
1441
1442 /*
1443 * Get flow control negotiation result.
1444 */
1445 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1446 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1447 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1448
1449 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1450 mii->mii_media_status & IFM_ACTIVE &&
1451 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1452 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1453 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1454 (!(mii->mii_media_status & IFM_ACTIVE) ||
1455 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1456 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1457
1458 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1459 return;
1460
1461 /* Set the port mode (MII/GMII) to match the link speed. */
1462 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1463 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1464 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1465 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1466 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1467 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1468 mac_mode |= BGE_PORTMODE_GMII;
1469 else
1470 mac_mode |= BGE_PORTMODE_MII;
1471
1472 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1473 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1474 if ((mii->mii_media_active & IFM_FDX) != 0) {
1475 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1476 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1477 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1478 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1479 } else
1480 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1481
1482 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1483 DELAY(40);
1484 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1485 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1486 }
1487
1488 /*
1489 * Update rx threshold levels to values in a particular slot
1490 * of the interrupt-mitigation table bge_rx_threshes.
1491 */
1492 static void
1493 bge_set_thresh(struct ifnet *ifp, int lvl)
1494 {
1495 struct bge_softc *sc = ifp->if_softc;
1496 int s;
1497
1498 /* For now, just save the new Rx-intr thresholds and record
1499 * that a threshold update is pending. Updating the hardware
1500 * registers here (even at splhigh()) is observed to
1501 * occasionaly cause glitches where Rx-interrupts are not
1502 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1503 */
1504 s = splnet();
1505 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1506 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1507 sc->bge_pending_rxintr_change = 1;
1508 splx(s);
1509 }
1510
1511
1512 /*
1513 * Update Rx thresholds of all bge devices
1514 */
1515 static void
1516 bge_update_all_threshes(int lvl)
1517 {
1518 struct ifnet *ifp;
1519 const char * const namebuf = "bge";
1520 int namelen;
1521
1522 if (lvl < 0)
1523 lvl = 0;
1524 else if (lvl >= NBGE_RX_THRESH)
1525 lvl = NBGE_RX_THRESH - 1;
1526
1527 namelen = strlen(namebuf);
1528 /*
1529 * Now search all the interfaces for this name/number
1530 */
1531 IFNET_FOREACH(ifp) {
1532 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1533 continue;
1534 /* We got a match: update if doing auto-threshold-tuning */
1535 if (bge_auto_thresh)
1536 bge_set_thresh(ifp, lvl);
1537 }
1538 }
1539
1540 /*
1541 * Handle events that have triggered interrupts.
1542 */
1543 static void
1544 bge_handle_events(struct bge_softc *sc)
1545 {
1546
1547 return;
1548 }
1549
1550 /*
1551 * Memory management for jumbo frames.
1552 */
1553
1554 static int
1555 bge_alloc_jumbo_mem(struct bge_softc *sc)
1556 {
1557 char *ptr, *kva;
1558 bus_dma_segment_t seg;
1559 int i, rseg, state, error;
1560 struct bge_jpool_entry *entry;
1561
1562 state = error = 0;
1563
1564 /* Grab a big chunk o' storage. */
1565 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1566 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1567 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1568 return ENOBUFS;
1569 }
1570
1571 state = 1;
1572 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1573 BUS_DMA_NOWAIT)) {
1574 aprint_error_dev(sc->bge_dev,
1575 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1576 error = ENOBUFS;
1577 goto out;
1578 }
1579
1580 state = 2;
1581 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1582 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1583 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1584 error = ENOBUFS;
1585 goto out;
1586 }
1587
1588 state = 3;
1589 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1590 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1591 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1592 error = ENOBUFS;
1593 goto out;
1594 }
1595
1596 state = 4;
1597 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1598 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1599
1600 SLIST_INIT(&sc->bge_jfree_listhead);
1601 SLIST_INIT(&sc->bge_jinuse_listhead);
1602
1603 /*
1604 * Now divide it up into 9K pieces and save the addresses
1605 * in an array.
1606 */
1607 ptr = sc->bge_cdata.bge_jumbo_buf;
1608 for (i = 0; i < BGE_JSLOTS; i++) {
1609 sc->bge_cdata.bge_jslots[i] = ptr;
1610 ptr += BGE_JLEN;
1611 entry = malloc(sizeof(struct bge_jpool_entry),
1612 M_DEVBUF, M_NOWAIT);
1613 if (entry == NULL) {
1614 aprint_error_dev(sc->bge_dev,
1615 "no memory for jumbo buffer queue!\n");
1616 error = ENOBUFS;
1617 goto out;
1618 }
1619 entry->slot = i;
1620 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1621 entry, jpool_entries);
1622 }
1623 out:
1624 if (error != 0) {
1625 switch (state) {
1626 case 4:
1627 bus_dmamap_unload(sc->bge_dmatag,
1628 sc->bge_cdata.bge_rx_jumbo_map);
1629 case 3:
1630 bus_dmamap_destroy(sc->bge_dmatag,
1631 sc->bge_cdata.bge_rx_jumbo_map);
1632 case 2:
1633 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1634 case 1:
1635 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1636 break;
1637 default:
1638 break;
1639 }
1640 }
1641
1642 return error;
1643 }
1644
1645 /*
1646 * Allocate a jumbo buffer.
1647 */
1648 static void *
1649 bge_jalloc(struct bge_softc *sc)
1650 {
1651 struct bge_jpool_entry *entry;
1652
1653 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1654
1655 if (entry == NULL) {
1656 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1657 return NULL;
1658 }
1659
1660 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1661 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1662 return (sc->bge_cdata.bge_jslots[entry->slot]);
1663 }
1664
1665 /*
1666 * Release a jumbo buffer.
1667 */
1668 static void
1669 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1670 {
1671 struct bge_jpool_entry *entry;
1672 struct bge_softc *sc;
1673 int i, s;
1674
1675 /* Extract the softc struct pointer. */
1676 sc = (struct bge_softc *)arg;
1677
1678 if (sc == NULL)
1679 panic("bge_jfree: can't find softc pointer!");
1680
1681 /* calculate the slot this buffer belongs to */
1682
1683 i = ((char *)buf
1684 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1685
1686 if ((i < 0) || (i >= BGE_JSLOTS))
1687 panic("bge_jfree: asked to free buffer that we don't manage!");
1688
1689 s = splvm();
1690 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1691 if (entry == NULL)
1692 panic("bge_jfree: buffer not in use!");
1693 entry->slot = i;
1694 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1695 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1696
1697 if (__predict_true(m != NULL))
1698 pool_cache_put(mb_cache, m);
1699 splx(s);
1700 }
1701
1702
1703 /*
1704 * Initialize a standard receive ring descriptor.
1705 */
1706 static int
1707 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1708 bus_dmamap_t dmamap)
1709 {
1710 struct mbuf *m_new = NULL;
1711 struct bge_rx_bd *r;
1712 int error;
1713
1714 if (dmamap == NULL) {
1715 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1716 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1717 if (error != 0)
1718 return error;
1719 }
1720
1721 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1722
1723 if (m == NULL) {
1724 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1725 if (m_new == NULL)
1726 return ENOBUFS;
1727
1728 MCLGET(m_new, M_DONTWAIT);
1729 if (!(m_new->m_flags & M_EXT)) {
1730 m_freem(m_new);
1731 return ENOBUFS;
1732 }
1733 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1734
1735 } else {
1736 m_new = m;
1737 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1738 m_new->m_data = m_new->m_ext.ext_buf;
1739 }
1740 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1741 m_adj(m_new, ETHER_ALIGN);
1742 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1743 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1744 m_freem(m_new);
1745 return ENOBUFS;
1746 }
1747 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1748 BUS_DMASYNC_PREREAD);
1749
1750 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1751 r = &sc->bge_rdata->bge_rx_std_ring[i];
1752 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1753 r->bge_flags = BGE_RXBDFLAG_END;
1754 r->bge_len = m_new->m_len;
1755 r->bge_idx = i;
1756
1757 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1758 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1759 i * sizeof (struct bge_rx_bd),
1760 sizeof (struct bge_rx_bd),
1761 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * Initialize a jumbo receive ring descriptor. This allocates
1768 * a jumbo buffer from the pool managed internally by the driver.
1769 */
1770 static int
1771 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1772 {
1773 struct mbuf *m_new = NULL;
1774 struct bge_rx_bd *r;
1775 void *buf = NULL;
1776
1777 if (m == NULL) {
1778
1779 /* Allocate the mbuf. */
1780 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1781 if (m_new == NULL)
1782 return ENOBUFS;
1783
1784 /* Allocate the jumbo buffer */
1785 buf = bge_jalloc(sc);
1786 if (buf == NULL) {
1787 m_freem(m_new);
1788 aprint_error_dev(sc->bge_dev,
1789 "jumbo allocation failed -- packet dropped!\n");
1790 return ENOBUFS;
1791 }
1792
1793 /* Attach the buffer to the mbuf. */
1794 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1795 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1796 bge_jfree, sc);
1797 m_new->m_flags |= M_EXT_RW;
1798 } else {
1799 m_new = m;
1800 buf = m_new->m_data = m_new->m_ext.ext_buf;
1801 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1802 }
1803 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1804 m_adj(m_new, ETHER_ALIGN);
1805 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1806 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1807 BUS_DMASYNC_PREREAD);
1808 /* Set up the descriptor. */
1809 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1810 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1811 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1812 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1813 r->bge_len = m_new->m_len;
1814 r->bge_idx = i;
1815
1816 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1817 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1818 i * sizeof (struct bge_rx_bd),
1819 sizeof (struct bge_rx_bd),
1820 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1821
1822 return 0;
1823 }
1824
1825 /*
1826 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1827 * that's 1MB or memory, which is a lot. For now, we fill only the first
1828 * 256 ring entries and hope that our CPU is fast enough to keep up with
1829 * the NIC.
1830 */
1831 static int
1832 bge_init_rx_ring_std(struct bge_softc *sc)
1833 {
1834 int i;
1835
1836 if (sc->bge_flags & BGEF_RXRING_VALID)
1837 return 0;
1838
1839 for (i = 0; i < BGE_SSLOTS; i++) {
1840 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1841 return ENOBUFS;
1842 }
1843
1844 sc->bge_std = i - 1;
1845 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1846
1847 sc->bge_flags |= BGEF_RXRING_VALID;
1848
1849 return 0;
1850 }
1851
1852 static void
1853 bge_free_rx_ring_std(struct bge_softc *sc)
1854 {
1855 int i;
1856
1857 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1858 return;
1859
1860 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1861 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1862 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1863 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1864 bus_dmamap_destroy(sc->bge_dmatag,
1865 sc->bge_cdata.bge_rx_std_map[i]);
1866 }
1867 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1868 sizeof(struct bge_rx_bd));
1869 }
1870
1871 sc->bge_flags &= ~BGEF_RXRING_VALID;
1872 }
1873
1874 static int
1875 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1876 {
1877 int i;
1878 volatile struct bge_rcb *rcb;
1879
1880 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1881 return 0;
1882
1883 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1884 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1885 return ENOBUFS;
1886 }
1887
1888 sc->bge_jumbo = i - 1;
1889 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1890
1891 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1892 rcb->bge_maxlen_flags = 0;
1893 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1894
1895 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1896
1897 return 0;
1898 }
1899
1900 static void
1901 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1902 {
1903 int i;
1904
1905 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1906 return;
1907
1908 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1909 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1910 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1911 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1912 }
1913 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1914 sizeof(struct bge_rx_bd));
1915 }
1916
1917 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1918 }
1919
1920 static void
1921 bge_free_tx_ring(struct bge_softc *sc)
1922 {
1923 int i;
1924 struct txdmamap_pool_entry *dma;
1925
1926 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1927 return;
1928
1929 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1930 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1931 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1932 sc->bge_cdata.bge_tx_chain[i] = NULL;
1933 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1934 link);
1935 sc->txdma[i] = 0;
1936 }
1937 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1938 sizeof(struct bge_tx_bd));
1939 }
1940
1941 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1942 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1943 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1944 free(dma, M_DEVBUF);
1945 }
1946
1947 sc->bge_flags &= ~BGEF_TXRING_VALID;
1948 }
1949
1950 static int
1951 bge_init_tx_ring(struct bge_softc *sc)
1952 {
1953 struct ifnet *ifp = &sc->ethercom.ec_if;
1954 int i;
1955 bus_dmamap_t dmamap;
1956 bus_size_t maxsegsz;
1957 struct txdmamap_pool_entry *dma;
1958
1959 if (sc->bge_flags & BGEF_TXRING_VALID)
1960 return 0;
1961
1962 sc->bge_txcnt = 0;
1963 sc->bge_tx_saved_considx = 0;
1964
1965 /* Initialize transmit producer index for host-memory send ring. */
1966 sc->bge_tx_prodidx = 0;
1967 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1968 /* 5700 b2 errata */
1969 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1970 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1971
1972 /* NIC-memory send ring not used; initialize to zero. */
1973 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1974 /* 5700 b2 errata */
1975 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1976 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1977
1978 /* Limit DMA segment size for some chips */
1979 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1980 (ifp->if_mtu <= ETHERMTU))
1981 maxsegsz = 2048;
1982 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1983 maxsegsz = 4096;
1984 else
1985 maxsegsz = ETHER_MAX_LEN_JUMBO;
1986 SLIST_INIT(&sc->txdma_list);
1987 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1988 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1989 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1990 &dmamap))
1991 return ENOBUFS;
1992 if (dmamap == NULL)
1993 panic("dmamap NULL in bge_init_tx_ring");
1994 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1995 if (dma == NULL) {
1996 aprint_error_dev(sc->bge_dev,
1997 "can't alloc txdmamap_pool_entry\n");
1998 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1999 return ENOMEM;
2000 }
2001 dma->dmamap = dmamap;
2002 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2003 }
2004
2005 sc->bge_flags |= BGEF_TXRING_VALID;
2006
2007 return 0;
2008 }
2009
2010 static void
2011 bge_setmulti(struct bge_softc *sc)
2012 {
2013 struct ethercom *ac = &sc->ethercom;
2014 struct ifnet *ifp = &ac->ec_if;
2015 struct ether_multi *enm;
2016 struct ether_multistep step;
2017 uint32_t hashes[4] = { 0, 0, 0, 0 };
2018 uint32_t h;
2019 int i;
2020
2021 if (ifp->if_flags & IFF_PROMISC)
2022 goto allmulti;
2023
2024 /* Now program new ones. */
2025 ETHER_FIRST_MULTI(step, ac, enm);
2026 while (enm != NULL) {
2027 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2028 /*
2029 * We must listen to a range of multicast addresses.
2030 * For now, just accept all multicasts, rather than
2031 * trying to set only those filter bits needed to match
2032 * the range. (At this time, the only use of address
2033 * ranges is for IP multicast routing, for which the
2034 * range is big enough to require all bits set.)
2035 */
2036 goto allmulti;
2037 }
2038
2039 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2040
2041 /* Just want the 7 least-significant bits. */
2042 h &= 0x7f;
2043
2044 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2045 ETHER_NEXT_MULTI(step, enm);
2046 }
2047
2048 ifp->if_flags &= ~IFF_ALLMULTI;
2049 goto setit;
2050
2051 allmulti:
2052 ifp->if_flags |= IFF_ALLMULTI;
2053 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2054
2055 setit:
2056 for (i = 0; i < 4; i++)
2057 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2058 }
2059
2060 static void
2061 bge_sig_pre_reset(struct bge_softc *sc, int type)
2062 {
2063
2064 /*
2065 * Some chips don't like this so only do this if ASF is enabled
2066 */
2067 if (sc->bge_asf_mode)
2068 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2069
2070 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2071 switch (type) {
2072 case BGE_RESET_START:
2073 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2074 BGE_FW_DRV_STATE_START);
2075 break;
2076 case BGE_RESET_SHUTDOWN:
2077 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2078 BGE_FW_DRV_STATE_UNLOAD);
2079 break;
2080 case BGE_RESET_SUSPEND:
2081 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2082 BGE_FW_DRV_STATE_SUSPEND);
2083 break;
2084 }
2085 }
2086
2087 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2088 bge_ape_driver_state_change(sc, type);
2089 }
2090
2091 static void
2092 bge_sig_post_reset(struct bge_softc *sc, int type)
2093 {
2094
2095 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2096 switch (type) {
2097 case BGE_RESET_START:
2098 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2099 BGE_FW_DRV_STATE_START_DONE);
2100 /* START DONE */
2101 break;
2102 case BGE_RESET_SHUTDOWN:
2103 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2104 BGE_FW_DRV_STATE_UNLOAD_DONE);
2105 break;
2106 }
2107 }
2108
2109 if (type == BGE_RESET_SHUTDOWN)
2110 bge_ape_driver_state_change(sc, type);
2111 }
2112
2113 static void
2114 bge_sig_legacy(struct bge_softc *sc, int type)
2115 {
2116
2117 if (sc->bge_asf_mode) {
2118 switch (type) {
2119 case BGE_RESET_START:
2120 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2121 BGE_FW_DRV_STATE_START);
2122 break;
2123 case BGE_RESET_SHUTDOWN:
2124 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2125 BGE_FW_DRV_STATE_UNLOAD);
2126 break;
2127 }
2128 }
2129 }
2130
2131 static void
2132 bge_wait_for_event_ack(struct bge_softc *sc)
2133 {
2134 int i;
2135
2136 /* wait up to 2500usec */
2137 for (i = 0; i < 250; i++) {
2138 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2139 BGE_RX_CPU_DRV_EVENT))
2140 break;
2141 DELAY(10);
2142 }
2143 }
2144
2145 static void
2146 bge_stop_fw(struct bge_softc *sc)
2147 {
2148
2149 if (sc->bge_asf_mode) {
2150 bge_wait_for_event_ack(sc);
2151
2152 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2153 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2154 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2155
2156 bge_wait_for_event_ack(sc);
2157 }
2158 }
2159
2160 static int
2161 bge_poll_fw(struct bge_softc *sc)
2162 {
2163 uint32_t val;
2164 int i;
2165
2166 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2167 for (i = 0; i < BGE_TIMEOUT; i++) {
2168 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2169 if (val & BGE_VCPU_STATUS_INIT_DONE)
2170 break;
2171 DELAY(100);
2172 }
2173 if (i >= BGE_TIMEOUT) {
2174 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2175 return -1;
2176 }
2177 } else {
2178 /*
2179 * Poll the value location we just wrote until
2180 * we see the 1's complement of the magic number.
2181 * This indicates that the firmware initialization
2182 * is complete.
2183 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2184 */
2185 for (i = 0; i < BGE_TIMEOUT; i++) {
2186 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2187 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2188 break;
2189 DELAY(10);
2190 }
2191
2192 if ((i >= BGE_TIMEOUT)
2193 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2194 aprint_error_dev(sc->bge_dev,
2195 "firmware handshake timed out, val = %x\n", val);
2196 return -1;
2197 }
2198 }
2199
2200 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2201 /* tg3 says we have to wait extra time */
2202 delay(10 * 1000);
2203 }
2204
2205 return 0;
2206 }
2207
2208 int
2209 bge_phy_addr(struct bge_softc *sc)
2210 {
2211 struct pci_attach_args *pa = &(sc->bge_pa);
2212 int phy_addr = 1;
2213
2214 /*
2215 * PHY address mapping for various devices.
2216 *
2217 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2218 * ---------+-------+-------+-------+-------+
2219 * BCM57XX | 1 | X | X | X |
2220 * BCM5704 | 1 | X | 1 | X |
2221 * BCM5717 | 1 | 8 | 2 | 9 |
2222 * BCM5719 | 1 | 8 | 2 | 9 |
2223 * BCM5720 | 1 | 8 | 2 | 9 |
2224 *
2225 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2226 * ---------+-------+-------+-------+-------+
2227 * BCM57XX | X | X | X | X |
2228 * BCM5704 | X | X | X | X |
2229 * BCM5717 | X | X | X | X |
2230 * BCM5719 | 3 | 10 | 4 | 11 |
2231 * BCM5720 | X | X | X | X |
2232 *
2233 * Other addresses may respond but they are not
2234 * IEEE compliant PHYs and should be ignored.
2235 */
2236 switch (BGE_ASICREV(sc->bge_chipid)) {
2237 case BGE_ASICREV_BCM5717:
2238 case BGE_ASICREV_BCM5719:
2239 case BGE_ASICREV_BCM5720:
2240 phy_addr = pa->pa_function;
2241 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2242 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2243 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2244 } else {
2245 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2246 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2247 }
2248 }
2249
2250 return phy_addr;
2251 }
2252
2253 /*
2254 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2255 * self-test results.
2256 */
2257 static int
2258 bge_chipinit(struct bge_softc *sc)
2259 {
2260 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2261 int i;
2262
2263 /* Set endianness before we access any non-PCI registers. */
2264 misc_ctl = BGE_INIT;
2265 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2266 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2267 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2268 misc_ctl);
2269
2270 /*
2271 * Clear the MAC statistics block in the NIC's
2272 * internal memory.
2273 */
2274 for (i = BGE_STATS_BLOCK;
2275 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2276 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2277
2278 for (i = BGE_STATUS_BLOCK;
2279 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2280 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2281
2282 /* 5717 workaround from tg3 */
2283 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2284 /* Save */
2285 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2286
2287 /* Temporary modify MODE_CTL to control TLP */
2288 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2289 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2290
2291 /* Control TLP */
2292 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2293 BGE_TLP_PHYCTL1);
2294 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2295 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2296
2297 /* Restore */
2298 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2299 }
2300
2301 if (BGE_IS_57765_FAMILY(sc)) {
2302 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2303 /* Save */
2304 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2305
2306 /* Temporary modify MODE_CTL to control TLP */
2307 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2308 CSR_WRITE_4(sc, BGE_MODE_CTL,
2309 reg | BGE_MODECTL_PCIE_TLPADDR1);
2310
2311 /* Control TLP */
2312 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2313 BGE_TLP_PHYCTL5);
2314 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2315 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2316
2317 /* Restore */
2318 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2319 }
2320 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2321 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2322 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2323 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2324
2325 /* Save */
2326 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2327
2328 /* Temporary modify MODE_CTL to control TLP */
2329 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2330 CSR_WRITE_4(sc, BGE_MODE_CTL,
2331 reg | BGE_MODECTL_PCIE_TLPADDR0);
2332
2333 /* Control TLP */
2334 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2335 BGE_TLP_FTSMAX);
2336 reg &= ~BGE_TLP_FTSMAX_MSK;
2337 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2338 reg | BGE_TLP_FTSMAX_VAL);
2339
2340 /* Restore */
2341 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2342 }
2343
2344 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2345 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2346 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2347 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2348 }
2349
2350 /* Set up the PCI DMA control register. */
2351 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2352 if (sc->bge_flags & BGEF_PCIE) {
2353 /* Read watermark not used, 128 bytes for write. */
2354 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2355 device_xname(sc->bge_dev)));
2356 if (sc->bge_mps >= 256)
2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2358 else
2359 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2360 } else if (sc->bge_flags & BGEF_PCIX) {
2361 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2362 device_xname(sc->bge_dev)));
2363 /* PCI-X bus */
2364 if (BGE_IS_5714_FAMILY(sc)) {
2365 /* 256 bytes for read and write. */
2366 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2367 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2368
2369 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2371 else
2372 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2373 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2374 /*
2375 * In the BCM5703, the DMA read watermark should
2376 * be set to less than or equal to the maximum
2377 * memory read byte count of the PCI-X command
2378 * register.
2379 */
2380 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2381 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2382 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2383 /* 1536 bytes for read, 384 bytes for write. */
2384 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2385 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2386 } else {
2387 /* 384 bytes for read and write. */
2388 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2389 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2390 (0x0F);
2391 }
2392
2393 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2394 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2395 uint32_t tmp;
2396
2397 /* Set ONEDMA_ATONCE for hardware workaround. */
2398 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2399 if (tmp == 6 || tmp == 7)
2400 dma_rw_ctl |=
2401 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2402
2403 /* Set PCI-X DMA write workaround. */
2404 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2405 }
2406 } else {
2407 /* Conventional PCI bus: 256 bytes for read and write. */
2408 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2409 device_xname(sc->bge_dev)));
2410 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2411 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2412
2413 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2414 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2415 dma_rw_ctl |= 0x0F;
2416 }
2417
2418 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2419 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2420 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2421 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2422
2423 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2424 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2425 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2426
2427 if (BGE_IS_57765_PLUS(sc)) {
2428 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2429 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2430 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2431
2432 /*
2433 * Enable HW workaround for controllers that misinterpret
2434 * a status tag update and leave interrupts permanently
2435 * disabled.
2436 */
2437 if (!BGE_IS_57765_FAMILY(sc) &&
2438 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2439 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2440 }
2441
2442 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2443 dma_rw_ctl);
2444
2445 /*
2446 * Set up general mode register.
2447 */
2448 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2449 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2450 /* Retain Host-2-BMC settings written by APE firmware. */
2451 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2452 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2453 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2454 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2455 }
2456 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2457 BGE_MODECTL_TX_NO_PHDR_CSUM;
2458
2459 /*
2460 * BCM5701 B5 have a bug causing data corruption when using
2461 * 64-bit DMA reads, which can be terminated early and then
2462 * completed later as 32-bit accesses, in combination with
2463 * certain bridges.
2464 */
2465 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2466 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2467 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2468
2469 /*
2470 * Tell the firmware the driver is running
2471 */
2472 if (sc->bge_asf_mode & ASF_STACKUP)
2473 mode_ctl |= BGE_MODECTL_STACKUP;
2474
2475 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2476
2477 /*
2478 * Disable memory write invalidate. Apparently it is not supported
2479 * properly by these devices.
2480 */
2481 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2482 PCI_COMMAND_INVALIDATE_ENABLE);
2483
2484 #ifdef __brokenalpha__
2485 /*
2486 * Must insure that we do not cross an 8K (bytes) boundary
2487 * for DMA reads. Our highest limit is 1K bytes. This is a
2488 * restriction on some ALPHA platforms with early revision
2489 * 21174 PCI chipsets, such as the AlphaPC 164lx
2490 */
2491 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2492 #endif
2493
2494 /* Set the timer prescaler (always 66MHz) */
2495 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2496
2497 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2498 DELAY(40); /* XXX */
2499
2500 /* Put PHY into ready state */
2501 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2502 DELAY(40);
2503 }
2504
2505 return 0;
2506 }
2507
2508 static int
2509 bge_blockinit(struct bge_softc *sc)
2510 {
2511 volatile struct bge_rcb *rcb;
2512 bus_size_t rcb_addr;
2513 struct ifnet *ifp = &sc->ethercom.ec_if;
2514 bge_hostaddr taddr;
2515 uint32_t dmactl, mimode, val;
2516 int i, limit;
2517
2518 /*
2519 * Initialize the memory window pointer register so that
2520 * we can access the first 32K of internal NIC RAM. This will
2521 * allow us to set up the TX send ring RCBs and the RX return
2522 * ring RCBs, plus other things which live in NIC memory.
2523 */
2524 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2525
2526 if (!BGE_IS_5705_PLUS(sc)) {
2527 /* 57XX step 33 */
2528 /* Configure mbuf memory pool */
2529 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2530 BGE_BUFFPOOL_1);
2531
2532 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2534 else
2535 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2536
2537 /* 57XX step 34 */
2538 /* Configure DMA resource pool */
2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2540 BGE_DMA_DESCRIPTORS);
2541 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2542 }
2543
2544 /* 5718 step 11, 57XX step 35 */
2545 /*
2546 * Configure mbuf pool watermarks. New broadcom docs strongly
2547 * recommend these.
2548 */
2549 if (BGE_IS_5717_PLUS(sc)) {
2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2551 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2553 } else if (BGE_IS_5705_PLUS(sc)) {
2554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2555
2556 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2557 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2559 } else {
2560 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2562 }
2563 } else {
2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2567 }
2568
2569 /* 57XX step 36 */
2570 /* Configure DMA resource watermarks */
2571 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2572 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2573
2574 /* 5718 step 13, 57XX step 38 */
2575 /* Enable buffer manager */
2576 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2577 /*
2578 * Change the arbitration algorithm of TXMBUF read request to
2579 * round-robin instead of priority based for BCM5719. When
2580 * TXFIFO is almost empty, RDMA will hold its request until
2581 * TXFIFO is not almost empty.
2582 */
2583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2584 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2585 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2586 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2587 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2588 val |= BGE_BMANMODE_LOMBUF_ATTN;
2589 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2590
2591 /* 57XX step 39 */
2592 /* Poll for buffer manager start indication */
2593 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2594 DELAY(10);
2595 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2596 break;
2597 }
2598
2599 if (i == BGE_TIMEOUT * 2) {
2600 aprint_error_dev(sc->bge_dev,
2601 "buffer manager failed to start\n");
2602 return ENXIO;
2603 }
2604
2605 /* 57XX step 40 */
2606 /* Enable flow-through queues */
2607 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2608 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2609
2610 /* Wait until queue initialization is complete */
2611 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2612 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2613 break;
2614 DELAY(10);
2615 }
2616
2617 if (i == BGE_TIMEOUT * 2) {
2618 aprint_error_dev(sc->bge_dev,
2619 "flow-through queue init failed\n");
2620 return ENXIO;
2621 }
2622
2623 /*
2624 * Summary of rings supported by the controller:
2625 *
2626 * Standard Receive Producer Ring
2627 * - This ring is used to feed receive buffers for "standard"
2628 * sized frames (typically 1536 bytes) to the controller.
2629 *
2630 * Jumbo Receive Producer Ring
2631 * - This ring is used to feed receive buffers for jumbo sized
2632 * frames (i.e. anything bigger than the "standard" frames)
2633 * to the controller.
2634 *
2635 * Mini Receive Producer Ring
2636 * - This ring is used to feed receive buffers for "mini"
2637 * sized frames to the controller.
2638 * - This feature required external memory for the controller
2639 * but was never used in a production system. Should always
2640 * be disabled.
2641 *
2642 * Receive Return Ring
2643 * - After the controller has placed an incoming frame into a
2644 * receive buffer that buffer is moved into a receive return
2645 * ring. The driver is then responsible to passing the
2646 * buffer up to the stack. Many versions of the controller
2647 * support multiple RR rings.
2648 *
2649 * Send Ring
2650 * - This ring is used for outgoing frames. Many versions of
2651 * the controller support multiple send rings.
2652 */
2653
2654 /* 5718 step 15, 57XX step 41 */
2655 /* Initialize the standard RX ring control block */
2656 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2657 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2658 /* 5718 step 16 */
2659 if (BGE_IS_57765_PLUS(sc)) {
2660 /*
2661 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2662 * Bits 15-2 : Maximum RX frame size
2663 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2664 * Bit 0 : Reserved
2665 */
2666 rcb->bge_maxlen_flags =
2667 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2668 } else if (BGE_IS_5705_PLUS(sc)) {
2669 /*
2670 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2671 * Bits 15-2 : Reserved (should be 0)
2672 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2673 * Bit 0 : Reserved
2674 */
2675 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2676 } else {
2677 /*
2678 * Ring size is always XXX entries
2679 * Bits 31-16: Maximum RX frame size
2680 * Bits 15-2 : Reserved (should be 0)
2681 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2682 * Bit 0 : Reserved
2683 */
2684 rcb->bge_maxlen_flags =
2685 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2686 }
2687 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2688 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2690 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2691 else
2692 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2693 /* Write the standard receive producer ring control block. */
2694 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2696 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2697 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2698
2699 /* Reset the standard receive producer ring producer index. */
2700 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2701
2702 /* 57XX step 42 */
2703 /*
2704 * Initialize the jumbo RX ring control block
2705 * We set the 'ring disabled' bit in the flags
2706 * field until we're actually ready to start
2707 * using this ring (i.e. once we set the MTU
2708 * high enough to require it).
2709 */
2710 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2711 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2712 BGE_HOSTADDR(rcb->bge_hostaddr,
2713 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2714 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2715 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2716 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2717 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2720 else
2721 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2723 rcb->bge_hostaddr.bge_addr_hi);
2724 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2725 rcb->bge_hostaddr.bge_addr_lo);
2726 /* Program the jumbo receive producer ring RCB parameters. */
2727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2728 rcb->bge_maxlen_flags);
2729 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2730 /* Reset the jumbo receive producer ring producer index. */
2731 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2732 }
2733
2734 /* 57XX step 43 */
2735 /* Disable the mini receive producer ring RCB. */
2736 if (BGE_IS_5700_FAMILY(sc)) {
2737 /* Set up dummy disabled mini ring RCB */
2738 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2739 rcb->bge_maxlen_flags =
2740 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2741 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2742 rcb->bge_maxlen_flags);
2743 /* Reset the mini receive producer ring producer index. */
2744 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2745
2746 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2747 offsetof(struct bge_ring_data, bge_info),
2748 sizeof (struct bge_gib),
2749 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2750 }
2751
2752 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2753 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2754 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2755 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2756 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2757 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2758 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2759 }
2760 /* 5718 step 14, 57XX step 44 */
2761 /*
2762 * The BD ring replenish thresholds control how often the
2763 * hardware fetches new BD's from the producer rings in host
2764 * memory. Setting the value too low on a busy system can
2765 * starve the hardware and recue the throughpout.
2766 *
2767 * Set the BD ring replenish thresholds. The recommended
2768 * values are 1/8th the number of descriptors allocated to
2769 * each ring, but since we try to avoid filling the entire
2770 * ring we set these to the minimal value of 8. This needs to
2771 * be done on several of the supported chip revisions anyway,
2772 * to work around HW bugs.
2773 */
2774 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2775 if (BGE_IS_JUMBO_CAPABLE(sc))
2776 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2777
2778 /* 5718 step 18 */
2779 if (BGE_IS_5717_PLUS(sc)) {
2780 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2781 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2782 }
2783
2784 /* 57XX step 45 */
2785 /*
2786 * Disable all send rings by setting the 'ring disabled' bit
2787 * in the flags field of all the TX send ring control blocks,
2788 * located in NIC memory.
2789 */
2790 if (BGE_IS_5700_FAMILY(sc)) {
2791 /* 5700 to 5704 had 16 send rings. */
2792 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2793 } else if (BGE_IS_5717_PLUS(sc)) {
2794 limit = BGE_TX_RINGS_5717_MAX;
2795 } else if (BGE_IS_57765_FAMILY(sc)) {
2796 limit = BGE_TX_RINGS_57765_MAX;
2797 } else
2798 limit = 1;
2799 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2800 for (i = 0; i < limit; i++) {
2801 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2802 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2803 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2804 rcb_addr += sizeof(struct bge_rcb);
2805 }
2806
2807 /* 57XX step 46 and 47 */
2808 /* Configure send ring RCB 0 (we use only the first ring) */
2809 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2810 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2811 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2812 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2813 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2814 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2815 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2816 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2817 else
2818 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2819 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2820 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2821 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2822
2823 /* 57XX step 48 */
2824 /*
2825 * Disable all receive return rings by setting the
2826 * 'ring diabled' bit in the flags field of all the receive
2827 * return ring control blocks, located in NIC memory.
2828 */
2829 if (BGE_IS_5717_PLUS(sc)) {
2830 /* Should be 17, use 16 until we get an SRAM map. */
2831 limit = 16;
2832 } else if (BGE_IS_5700_FAMILY(sc))
2833 limit = BGE_RX_RINGS_MAX;
2834 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2835 BGE_IS_57765_FAMILY(sc))
2836 limit = 4;
2837 else
2838 limit = 1;
2839 /* Disable all receive return rings */
2840 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2841 for (i = 0; i < limit; i++) {
2842 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2843 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2844 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2845 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2846 BGE_RCB_FLAG_RING_DISABLED));
2847 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2848 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2849 (i * (sizeof(uint64_t))), 0);
2850 rcb_addr += sizeof(struct bge_rcb);
2851 }
2852
2853 /* 57XX step 49 */
2854 /*
2855 * Set up receive return ring 0. Note that the NIC address
2856 * for RX return rings is 0x0. The return rings live entirely
2857 * within the host, so the nicaddr field in the RCB isn't used.
2858 */
2859 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2860 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2861 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2862 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2863 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2864 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2865 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2866
2867 /* 5718 step 24, 57XX step 53 */
2868 /* Set random backoff seed for TX */
2869 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2870 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2871 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2872 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2873 BGE_TX_BACKOFF_SEED_MASK);
2874
2875 /* 5718 step 26, 57XX step 55 */
2876 /* Set inter-packet gap */
2877 val = 0x2620;
2878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2879 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2880 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2881 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2882
2883 /* 5718 step 27, 57XX step 56 */
2884 /*
2885 * Specify which ring to use for packets that don't match
2886 * any RX rules.
2887 */
2888 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2889
2890 /* 5718 step 28, 57XX step 57 */
2891 /*
2892 * Configure number of RX lists. One interrupt distribution
2893 * list, sixteen active lists, one bad frames class.
2894 */
2895 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2896
2897 /* 5718 step 29, 57XX step 58 */
2898 /* Inialize RX list placement stats mask. */
2899 if (BGE_IS_575X_PLUS(sc)) {
2900 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2901 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2902 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2903 } else
2904 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2905
2906 /* 5718 step 30, 57XX step 59 */
2907 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2908
2909 /* 5718 step 33, 57XX step 62 */
2910 /* Disable host coalescing until we get it set up */
2911 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2912
2913 /* 5718 step 34, 57XX step 63 */
2914 /* Poll to make sure it's shut down. */
2915 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2916 DELAY(10);
2917 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2918 break;
2919 }
2920
2921 if (i == BGE_TIMEOUT * 2) {
2922 aprint_error_dev(sc->bge_dev,
2923 "host coalescing engine failed to idle\n");
2924 return ENXIO;
2925 }
2926
2927 /* 5718 step 35, 36, 37 */
2928 /* Set up host coalescing defaults */
2929 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2930 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2931 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2932 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2933 if (!(BGE_IS_5705_PLUS(sc))) {
2934 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2935 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2936 }
2937 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2938 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2939
2940 /* Set up address of statistics block */
2941 if (BGE_IS_5700_FAMILY(sc)) {
2942 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2943 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2944 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2945 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2946 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2947 }
2948
2949 /* 5718 step 38 */
2950 /* Set up address of status block */
2951 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2952 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2953 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2954 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2955 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2956 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2957
2958 /* Set up status block size. */
2959 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2960 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2961 val = BGE_STATBLKSZ_FULL;
2962 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2963 } else {
2964 val = BGE_STATBLKSZ_32BYTE;
2965 bzero(&sc->bge_rdata->bge_status_block, 32);
2966 }
2967
2968 /* 5718 step 39, 57XX step 73 */
2969 /* Turn on host coalescing state machine */
2970 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2971
2972 /* 5718 step 40, 57XX step 74 */
2973 /* Turn on RX BD completion state machine and enable attentions */
2974 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2975 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2976
2977 /* 5718 step 41, 57XX step 75 */
2978 /* Turn on RX list placement state machine */
2979 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2980
2981 /* 57XX step 76 */
2982 /* Turn on RX list selector state machine. */
2983 if (!(BGE_IS_5705_PLUS(sc)))
2984 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2985
2986 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2987 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2988 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2989 BGE_MACMODE_FRMHDR_DMA_ENB;
2990
2991 if (sc->bge_flags & BGEF_FIBER_TBI)
2992 val |= BGE_PORTMODE_TBI;
2993 else if (sc->bge_flags & BGEF_FIBER_MII)
2994 val |= BGE_PORTMODE_GMII;
2995 else
2996 val |= BGE_PORTMODE_MII;
2997
2998 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2999 /* Allow APE to send/receive frames. */
3000 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3001 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3002
3003 /* Turn on DMA, clear stats */
3004 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3005 /* 5718 step 44 */
3006 DELAY(40);
3007
3008 /* 5718 step 45, 57XX step 79 */
3009 /* Set misc. local control, enable interrupts on attentions */
3010 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3011 if (BGE_IS_5717_PLUS(sc)) {
3012 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3013 /* 5718 step 46 */
3014 DELAY(100);
3015 }
3016
3017 /* 57XX step 81 */
3018 /* Turn on DMA completion state machine */
3019 if (!(BGE_IS_5705_PLUS(sc)))
3020 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3021
3022 /* 5718 step 47, 57XX step 82 */
3023 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3024
3025 /* 5718 step 48 */
3026 /* Enable host coalescing bug fix. */
3027 if (BGE_IS_5755_PLUS(sc))
3028 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3029
3030 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3031 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3032
3033 /* Turn on write DMA state machine */
3034 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3035 /* 5718 step 49 */
3036 DELAY(40);
3037
3038 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3039
3040 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3041 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3042
3043 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3044 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3045 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3046 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3047 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3048 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3049
3050 if (sc->bge_flags & BGEF_PCIE)
3051 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3052 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3053 if (ifp->if_mtu <= ETHERMTU)
3054 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3055 }
3056 if (sc->bge_flags & BGEF_TSO)
3057 val |= BGE_RDMAMODE_TSO4_ENABLE;
3058
3059 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3060 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3061 BGE_RDMAMODE_H2BNC_VLAN_DET;
3062 /*
3063 * Allow multiple outstanding read requests from
3064 * non-LSO read DMA engine.
3065 */
3066 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3067 }
3068
3069 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3070 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3071 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3073 BGE_IS_57765_PLUS(sc)) {
3074 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3075 /*
3076 * Adjust tx margin to prevent TX data corruption and
3077 * fix internal FIFO overflow.
3078 */
3079 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3080 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3081 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3082 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3083 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3084 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3085 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3086 }
3087 /*
3088 * Enable fix for read DMA FIFO overruns.
3089 * The fix is to limit the number of RX BDs
3090 * the hardware would fetch at a fime.
3091 */
3092 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3093 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3094 }
3095
3096 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3097 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3098 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3099 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3100 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3101 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3102 /*
3103 * Allow 4KB burst length reads for non-LSO frames.
3104 * Enable 512B burst length reads for buffer descriptors.
3105 */
3106 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3107 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3108 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3109 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3110 }
3111
3112 /* Turn on read DMA state machine */
3113 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3114 /* 5718 step 52 */
3115 delay(40);
3116
3117 /* 5718 step 56, 57XX step 84 */
3118 /* Turn on RX data completion state machine */
3119 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3120
3121 /* Turn on RX data and RX BD initiator state machine */
3122 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3123
3124 /* 57XX step 85 */
3125 /* Turn on Mbuf cluster free state machine */
3126 if (!BGE_IS_5705_PLUS(sc))
3127 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3128
3129 /* 5718 step 57, 57XX step 86 */
3130 /* Turn on send data completion state machine */
3131 val = BGE_SDCMODE_ENABLE;
3132 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3133 val |= BGE_SDCMODE_CDELAY;
3134 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3135
3136 /* 5718 step 58 */
3137 /* Turn on send BD completion state machine */
3138 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3139
3140 /* 57XX step 88 */
3141 /* Turn on RX BD initiator state machine */
3142 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3143
3144 /* 5718 step 60, 57XX step 90 */
3145 /* Turn on send data initiator state machine */
3146 if (sc->bge_flags & BGEF_TSO) {
3147 /* XXX: magic value from Linux driver */
3148 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3149 BGE_SDIMODE_HW_LSO_PRE_DMA);
3150 } else
3151 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3152
3153 /* 5718 step 61, 57XX step 91 */
3154 /* Turn on send BD initiator state machine */
3155 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3156
3157 /* 5718 step 62, 57XX step 92 */
3158 /* Turn on send BD selector state machine */
3159 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3160
3161 /* 5718 step 31, 57XX step 60 */
3162 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3163 /* 5718 step 32, 57XX step 61 */
3164 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3165 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3166
3167 /* ack/clear link change events */
3168 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3169 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3170 BGE_MACSTAT_LINK_CHANGED);
3171 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3172
3173 /*
3174 * Enable attention when the link has changed state for
3175 * devices that use auto polling.
3176 */
3177 if (sc->bge_flags & BGEF_FIBER_TBI) {
3178 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3179 } else {
3180 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3181 mimode = BGE_MIMODE_500KHZ_CONST;
3182 else
3183 mimode = BGE_MIMODE_BASE;
3184 /* 5718 step 68. 5718 step 69 (optionally). */
3185 if (BGE_IS_5700_FAMILY(sc) ||
3186 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3187 mimode |= BGE_MIMODE_AUTOPOLL;
3188 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3189 }
3190 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3191 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3192 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3193 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3194 BGE_EVTENB_MI_INTERRUPT);
3195 }
3196
3197 /*
3198 * Clear any pending link state attention.
3199 * Otherwise some link state change events may be lost until attention
3200 * is cleared by bge_intr() -> bge_link_upd() sequence.
3201 * It's not necessary on newer BCM chips - perhaps enabling link
3202 * state change attentions implies clearing pending attention.
3203 */
3204 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3205 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3206 BGE_MACSTAT_LINK_CHANGED);
3207
3208 /* Enable link state change attentions. */
3209 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3210
3211 return 0;
3212 }
3213
3214 static const struct bge_revision *
3215 bge_lookup_rev(uint32_t chipid)
3216 {
3217 const struct bge_revision *br;
3218
3219 for (br = bge_revisions; br->br_name != NULL; br++) {
3220 if (br->br_chipid == chipid)
3221 return br;
3222 }
3223
3224 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3225 if (br->br_chipid == BGE_ASICREV(chipid))
3226 return br;
3227 }
3228
3229 return NULL;
3230 }
3231
3232 static const struct bge_product *
3233 bge_lookup(const struct pci_attach_args *pa)
3234 {
3235 const struct bge_product *bp;
3236
3237 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3238 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3239 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3240 return bp;
3241 }
3242
3243 return NULL;
3244 }
3245
3246 static uint32_t
3247 bge_chipid(const struct pci_attach_args *pa)
3248 {
3249 uint32_t id;
3250
3251 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3252 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3253
3254 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3255 switch (PCI_PRODUCT(pa->pa_id)) {
3256 case PCI_PRODUCT_BROADCOM_BCM5717:
3257 case PCI_PRODUCT_BROADCOM_BCM5718:
3258 case PCI_PRODUCT_BROADCOM_BCM5719:
3259 case PCI_PRODUCT_BROADCOM_BCM5720:
3260 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3261 BGE_PCI_GEN2_PRODID_ASICREV);
3262 break;
3263 case PCI_PRODUCT_BROADCOM_BCM57761:
3264 case PCI_PRODUCT_BROADCOM_BCM57762:
3265 case PCI_PRODUCT_BROADCOM_BCM57765:
3266 case PCI_PRODUCT_BROADCOM_BCM57766:
3267 case PCI_PRODUCT_BROADCOM_BCM57781:
3268 case PCI_PRODUCT_BROADCOM_BCM57785:
3269 case PCI_PRODUCT_BROADCOM_BCM57791:
3270 case PCI_PRODUCT_BROADCOM_BCM57795:
3271 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3272 BGE_PCI_GEN15_PRODID_ASICREV);
3273 break;
3274 default:
3275 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3276 BGE_PCI_PRODID_ASICREV);
3277 break;
3278 }
3279 }
3280
3281 return id;
3282 }
3283
3284 #ifdef __HAVE_PCI_MSI_MSIX
3285 /*
3286 * Return true if MSI can be used with this device.
3287 */
3288 static int
3289 bge_can_use_msi(struct bge_softc *sc)
3290 {
3291 int can_use_msi = 0;
3292
3293 switch (BGE_ASICREV(sc->bge_chipid)) {
3294 case BGE_ASICREV_BCM5714_A0:
3295 case BGE_ASICREV_BCM5714:
3296 /*
3297 * Apparently, MSI doesn't work when these chips are
3298 * configured in single-port mode.
3299 */
3300 break;
3301 case BGE_ASICREV_BCM5750:
3302 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3303 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3304 can_use_msi = 1;
3305 break;
3306 default:
3307 if (BGE_IS_575X_PLUS(sc))
3308 can_use_msi = 1;
3309 }
3310 return (can_use_msi);
3311 }
3312 #endif
3313
3314 /*
3315 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3316 * against our list and return its name if we find a match. Note
3317 * that since the Broadcom controller contains VPD support, we
3318 * can get the device name string from the controller itself instead
3319 * of the compiled-in string. This is a little slow, but it guarantees
3320 * we'll always announce the right product name.
3321 */
3322 static int
3323 bge_probe(device_t parent, cfdata_t match, void *aux)
3324 {
3325 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3326
3327 if (bge_lookup(pa) != NULL)
3328 return 1;
3329
3330 return 0;
3331 }
3332
3333 static void
3334 bge_attach(device_t parent, device_t self, void *aux)
3335 {
3336 struct bge_softc *sc = device_private(self);
3337 struct pci_attach_args *pa = aux;
3338 prop_dictionary_t dict;
3339 const struct bge_product *bp;
3340 const struct bge_revision *br;
3341 pci_chipset_tag_t pc;
3342 #ifndef __HAVE_PCI_MSI_MSIX
3343 pci_intr_handle_t ih;
3344 #endif
3345 const char *intrstr = NULL;
3346 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3347 uint32_t command;
3348 struct ifnet *ifp;
3349 uint32_t misccfg, mimode;
3350 void * kva;
3351 u_char eaddr[ETHER_ADDR_LEN];
3352 pcireg_t memtype, subid, reg;
3353 bus_addr_t memaddr;
3354 uint32_t pm_ctl;
3355 bool no_seeprom;
3356 int capmask;
3357 int mii_flags;
3358 int map_flags;
3359 #ifdef __HAVE_PCI_MSI_MSIX
3360 int rv;
3361 #endif
3362 char intrbuf[PCI_INTRSTR_LEN];
3363
3364 bp = bge_lookup(pa);
3365 KASSERT(bp != NULL);
3366
3367 sc->sc_pc = pa->pa_pc;
3368 sc->sc_pcitag = pa->pa_tag;
3369 sc->bge_dev = self;
3370
3371 sc->bge_pa = *pa;
3372 pc = sc->sc_pc;
3373 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3374
3375 aprint_naive(": Ethernet controller\n");
3376 aprint_normal(": %s\n", bp->bp_name);
3377
3378 /*
3379 * Map control/status registers.
3380 */
3381 DPRINTFN(5, ("Map control/status regs\n"));
3382 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3383 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3384 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3385 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3386
3387 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3388 aprint_error_dev(sc->bge_dev,
3389 "failed to enable memory mapping!\n");
3390 return;
3391 }
3392
3393 DPRINTFN(5, ("pci_mem_find\n"));
3394 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3395 switch (memtype) {
3396 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3397 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3398 #if 0
3399 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3400 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3401 &memaddr, &sc->bge_bsize) == 0)
3402 break;
3403 #else
3404 /*
3405 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3406 * system get NMI on boot (PR#48451). This problem might not be
3407 * the driver's bug but our PCI common part's bug. Until we
3408 * find a real reason, we ignore the prefetchable bit.
3409 */
3410 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3411 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3412 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3413 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3414 map_flags, &sc->bge_bhandle) == 0) {
3415 sc->bge_btag = pa->pa_memt;
3416 break;
3417 }
3418 }
3419 #endif
3420 default:
3421 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3422 return;
3423 }
3424
3425 /* Save various chip information. */
3426 sc->bge_chipid = bge_chipid(pa);
3427 sc->bge_phy_addr = bge_phy_addr(sc);
3428
3429 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3430 &sc->bge_pciecap, NULL) != 0)
3431 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3432 /* PCIe */
3433 sc->bge_flags |= BGEF_PCIE;
3434 /* Extract supported maximum payload size. */
3435 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3436 sc->bge_pciecap + PCIE_DCAP);
3437 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3438 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3439 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3440 sc->bge_expmrq = 2048;
3441 else
3442 sc->bge_expmrq = 4096;
3443 bge_set_max_readrq(sc);
3444 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3445 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3446 /* PCI-X */
3447 sc->bge_flags |= BGEF_PCIX;
3448 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3449 &sc->bge_pcixcap, NULL) == 0)
3450 aprint_error_dev(sc->bge_dev,
3451 "unable to find PCIX capability\n");
3452 }
3453
3454 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3455 /*
3456 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3457 * can clobber the chip's PCI config-space power control
3458 * registers, leaving the card in D3 powersave state. We do
3459 * not have memory-mapped registers in this state, so force
3460 * device into D0 state before starting initialization.
3461 */
3462 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3463 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3464 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3465 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3466 DELAY(1000); /* 27 usec is allegedly sufficent */
3467 }
3468
3469 /* Save chipset family. */
3470 switch (BGE_ASICREV(sc->bge_chipid)) {
3471 case BGE_ASICREV_BCM5717:
3472 case BGE_ASICREV_BCM5719:
3473 case BGE_ASICREV_BCM5720:
3474 sc->bge_flags |= BGEF_5717_PLUS;
3475 /* FALLTHROUGH */
3476 case BGE_ASICREV_BCM57765:
3477 case BGE_ASICREV_BCM57766:
3478 if (!BGE_IS_5717_PLUS(sc))
3479 sc->bge_flags |= BGEF_57765_FAMILY;
3480 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3481 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3482 /* Jumbo frame on BCM5719 A0 does not work. */
3483 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3484 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3485 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3486 break;
3487 case BGE_ASICREV_BCM5755:
3488 case BGE_ASICREV_BCM5761:
3489 case BGE_ASICREV_BCM5784:
3490 case BGE_ASICREV_BCM5785:
3491 case BGE_ASICREV_BCM5787:
3492 case BGE_ASICREV_BCM57780:
3493 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3494 break;
3495 case BGE_ASICREV_BCM5700:
3496 case BGE_ASICREV_BCM5701:
3497 case BGE_ASICREV_BCM5703:
3498 case BGE_ASICREV_BCM5704:
3499 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3500 break;
3501 case BGE_ASICREV_BCM5714_A0:
3502 case BGE_ASICREV_BCM5780:
3503 case BGE_ASICREV_BCM5714:
3504 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3505 /* FALLTHROUGH */
3506 case BGE_ASICREV_BCM5750:
3507 case BGE_ASICREV_BCM5752:
3508 case BGE_ASICREV_BCM5906:
3509 sc->bge_flags |= BGEF_575X_PLUS;
3510 /* FALLTHROUGH */
3511 case BGE_ASICREV_BCM5705:
3512 sc->bge_flags |= BGEF_5705_PLUS;
3513 break;
3514 }
3515
3516 /* Identify chips with APE processor. */
3517 switch (BGE_ASICREV(sc->bge_chipid)) {
3518 case BGE_ASICREV_BCM5717:
3519 case BGE_ASICREV_BCM5719:
3520 case BGE_ASICREV_BCM5720:
3521 case BGE_ASICREV_BCM5761:
3522 sc->bge_flags |= BGEF_APE;
3523 break;
3524 }
3525
3526 /*
3527 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3528 * not actually a MAC controller bug but an issue with the embedded
3529 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3530 */
3531 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3532 sc->bge_flags |= BGEF_40BIT_BUG;
3533
3534 /* Chips with APE need BAR2 access for APE registers/memory. */
3535 if ((sc->bge_flags & BGEF_APE) != 0) {
3536 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3537 #if 0
3538 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3539 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3540 &sc->bge_apesize)) {
3541 aprint_error_dev(sc->bge_dev,
3542 "couldn't map BAR2 memory\n");
3543 return;
3544 }
3545 #else
3546 /*
3547 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3548 * system get NMI on boot (PR#48451). This problem might not be
3549 * the driver's bug but our PCI common part's bug. Until we
3550 * find a real reason, we ignore the prefetchable bit.
3551 */
3552 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3553 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3554 aprint_error_dev(sc->bge_dev,
3555 "couldn't map BAR2 memory\n");
3556 return;
3557 }
3558
3559 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3560 if (bus_space_map(pa->pa_memt, memaddr,
3561 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3562 aprint_error_dev(sc->bge_dev,
3563 "couldn't map BAR2 memory\n");
3564 return;
3565 }
3566 sc->bge_apetag = pa->pa_memt;
3567 #endif
3568
3569 /* Enable APE register/memory access by host driver. */
3570 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3571 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3572 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3573 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3574 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3575
3576 bge_ape_lock_init(sc);
3577 bge_ape_read_fw_ver(sc);
3578 }
3579
3580 /* Identify the chips that use an CPMU. */
3581 if (BGE_IS_5717_PLUS(sc) ||
3582 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3583 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3585 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3586 sc->bge_flags |= BGEF_CPMU_PRESENT;
3587
3588 /* Set MI_MODE */
3589 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3590 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3591 mimode |= BGE_MIMODE_500KHZ_CONST;
3592 else
3593 mimode |= BGE_MIMODE_BASE;
3594 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3595
3596 /*
3597 * When using the BCM5701 in PCI-X mode, data corruption has
3598 * been observed in the first few bytes of some received packets.
3599 * Aligning the packet buffer in memory eliminates the corruption.
3600 * Unfortunately, this misaligns the packet payloads. On platforms
3601 * which do not support unaligned accesses, we will realign the
3602 * payloads by copying the received packets.
3603 */
3604 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3605 sc->bge_flags & BGEF_PCIX)
3606 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3607
3608 if (BGE_IS_5700_FAMILY(sc))
3609 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3610
3611 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3612 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3613
3614 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3615 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3616 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3617 sc->bge_flags |= BGEF_IS_5788;
3618
3619 /*
3620 * Some controllers seem to require a special firmware to use
3621 * TSO. But the firmware is not available to FreeBSD and Linux
3622 * claims that the TSO performed by the firmware is slower than
3623 * hardware based TSO. Moreover the firmware based TSO has one
3624 * known bug which can't handle TSO if ethernet header + IP/TCP
3625 * header is greater than 80 bytes. The workaround for the TSO
3626 * bug exist but it seems it's too expensive than not using
3627 * TSO at all. Some hardwares also have the TSO bug so limit
3628 * the TSO to the controllers that are not affected TSO issues
3629 * (e.g. 5755 or higher).
3630 */
3631 if (BGE_IS_5755_PLUS(sc)) {
3632 /*
3633 * BCM5754 and BCM5787 shares the same ASIC id so
3634 * explicit device id check is required.
3635 */
3636 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3637 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3638 sc->bge_flags |= BGEF_TSO;
3639 }
3640
3641 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3642 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3643 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3644 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3645 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3646 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3647 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3648 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3649 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3650 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3651 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3652 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3653 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3654 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3655 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3656 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3657 /* These chips are 10/100 only. */
3658 capmask &= ~BMSR_EXTSTAT;
3659 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3660 }
3661
3662 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3663 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3664 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3665 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3666 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3667
3668 /* Set various PHY bug flags. */
3669 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3670 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3671 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3672 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3673 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3674 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3675 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3676 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3677 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3679 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3680 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3681 if (BGE_IS_5705_PLUS(sc) &&
3682 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3683 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3684 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3685 !BGE_IS_57765_PLUS(sc)) {
3686 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3687 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3688 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3690 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3691 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3692 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3693 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3694 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3695 } else
3696 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3697 }
3698
3699 /*
3700 * SEEPROM check.
3701 * First check if firmware knows we do not have SEEPROM.
3702 */
3703 if (prop_dictionary_get_bool(device_properties(self),
3704 "without-seeprom", &no_seeprom) && no_seeprom)
3705 sc->bge_flags |= BGEF_NO_EEPROM;
3706
3707 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3708 sc->bge_flags |= BGEF_NO_EEPROM;
3709
3710 /* Now check the 'ROM failed' bit on the RX CPU */
3711 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3712 sc->bge_flags |= BGEF_NO_EEPROM;
3713
3714 sc->bge_asf_mode = 0;
3715 /* No ASF if APE present. */
3716 if ((sc->bge_flags & BGEF_APE) == 0) {
3717 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3718 BGE_SRAM_DATA_SIG_MAGIC)) {
3719 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3720 BGE_HWCFG_ASF) {
3721 sc->bge_asf_mode |= ASF_ENABLE;
3722 sc->bge_asf_mode |= ASF_STACKUP;
3723 if (BGE_IS_575X_PLUS(sc))
3724 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3725 }
3726 }
3727 }
3728
3729 #ifdef __HAVE_PCI_MSI_MSIX
3730 DPRINTFN(5, ("pci_get_capability\n"));
3731 /* Check MSI capability */
3732 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI,
3733 &sc->bge_msicap, NULL) != 0) {
3734 if (bge_can_use_msi(sc) != 0)
3735 sc->bge_flags |= BGEF_MSI;
3736 }
3737 rv = -1;
3738 if (((sc->bge_flags & BGEF_MSI) != 0) && (pci_msi_count(pa) > 0)) {
3739 DPRINTFN(5, ("pci_msi_alloc\n"));
3740 rv = pci_msi_alloc_exact(pa, &sc->bge_pihp, 1);
3741 if (rv != 0)
3742 sc->bge_flags &= ~BGEF_MSI;
3743 }
3744 if (rv != 0) {
3745 DPRINTFN(5, ("pci_intx_alloc\n"));
3746 if (pci_intx_alloc(pa, &sc->bge_pihp)) {
3747 aprint_error_dev(self, "can't map interrupt\n");
3748 return;
3749 }
3750 sc->bge_flags &= ~BGEF_MSI;
3751 }
3752 #else /* !__HAVE_PCI_MSI_MSIX */
3753 DPRINTFN(5, ("pci_intr_map\n"));
3754 if (pci_intr_map(pa, &ih)) {
3755 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3756 return;
3757 }
3758 #endif
3759
3760 #ifdef __HAVE_PCI_MSI_MSIX
3761 DPRINTFN(5, ("pci_intr_string\n"));
3762 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3763 sizeof(intrbuf));
3764 DPRINTFN(5, ("pci_intr_establish\n"));
3765 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3766 bge_intr, sc);
3767 #else /* !__HAVE_PCI_MSI_MSIX */
3768 DPRINTFN(5, ("pci_intr_string\n"));
3769 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
3770
3771 DPRINTFN(5, ("pci_intr_establish\n"));
3772 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3773 #endif
3774
3775 if (sc->bge_intrhand == NULL) {
3776 aprint_error_dev(sc->bge_dev,
3777 "couldn't establish interrupt%s%s\n",
3778 intrstr ? " at " : "", intrstr ? intrstr : "");
3779 return;
3780 }
3781 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3782
3783 /*
3784 * All controllers except BCM5700 supports tagged status but
3785 * we use tagged status only for MSI case on BCM5717. Otherwise
3786 * MSI on BCM5717 does not work.
3787 */
3788 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3789 sc->bge_flags |= BGEF_TAGGED_STATUS;
3790
3791 /*
3792 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3793 * lock in bge_reset().
3794 */
3795 CSR_WRITE_4(sc, BGE_EE_ADDR,
3796 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3797 delay(1000);
3798 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3799
3800 bge_stop_fw(sc);
3801 bge_sig_pre_reset(sc, BGE_RESET_START);
3802 if (bge_reset(sc))
3803 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3804
3805 /*
3806 * Read the hardware config word in the first 32k of NIC internal
3807 * memory, or fall back to the config word in the EEPROM.
3808 * Note: on some BCM5700 cards, this value appears to be unset.
3809 */
3810 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3811 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3812 BGE_SRAM_DATA_SIG_MAGIC) {
3813 uint32_t tmp;
3814
3815 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3816 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3817 BGE_SRAM_DATA_VER_SHIFT;
3818 if ((0 < tmp) && (tmp < 0x100))
3819 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3820 if (sc->bge_flags & BGEF_PCIE)
3821 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3823 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3824 if (BGE_IS_5717_PLUS(sc))
3825 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3826 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3827 bge_read_eeprom(sc, (void *)&hwcfg,
3828 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3829 hwcfg = be32toh(hwcfg);
3830 }
3831 aprint_normal_dev(sc->bge_dev,
3832 "HW config %08x, %08x, %08x, %08x %08x\n",
3833 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3834
3835 bge_sig_legacy(sc, BGE_RESET_START);
3836 bge_sig_post_reset(sc, BGE_RESET_START);
3837
3838 if (bge_chipinit(sc)) {
3839 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3840 bge_release_resources(sc);
3841 return;
3842 }
3843
3844 /*
3845 * Get station address from the EEPROM.
3846 */
3847 if (bge_get_eaddr(sc, eaddr)) {
3848 aprint_error_dev(sc->bge_dev,
3849 "failed to read station address\n");
3850 bge_release_resources(sc);
3851 return;
3852 }
3853
3854 br = bge_lookup_rev(sc->bge_chipid);
3855
3856 if (br == NULL) {
3857 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3858 sc->bge_chipid);
3859 } else {
3860 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3861 br->br_name, sc->bge_chipid);
3862 }
3863 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3864
3865 /* Allocate the general information block and ring buffers. */
3866 if (pci_dma64_available(pa))
3867 sc->bge_dmatag = pa->pa_dmat64;
3868 else
3869 sc->bge_dmatag = pa->pa_dmat;
3870
3871 /* 40bit DMA workaround */
3872 if (sizeof(bus_addr_t) > 4) {
3873 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3874 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3875
3876 if (bus_dmatag_subregion(olddmatag, 0,
3877 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3878 BUS_DMA_NOWAIT) != 0) {
3879 aprint_error_dev(self,
3880 "WARNING: failed to restrict dma range,"
3881 " falling back to parent bus dma range\n");
3882 sc->bge_dmatag = olddmatag;
3883 }
3884 }
3885 }
3886 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3887 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3888 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3889 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3890 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3891 return;
3892 }
3893 DPRINTFN(5, ("bus_dmamem_map\n"));
3894 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3895 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3896 BUS_DMA_NOWAIT)) {
3897 aprint_error_dev(sc->bge_dev,
3898 "can't map DMA buffers (%zu bytes)\n",
3899 sizeof(struct bge_ring_data));
3900 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3901 sc->bge_ring_rseg);
3902 return;
3903 }
3904 DPRINTFN(5, ("bus_dmamem_create\n"));
3905 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3906 sizeof(struct bge_ring_data), 0,
3907 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3908 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3909 bus_dmamem_unmap(sc->bge_dmatag, kva,
3910 sizeof(struct bge_ring_data));
3911 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3912 sc->bge_ring_rseg);
3913 return;
3914 }
3915 DPRINTFN(5, ("bus_dmamem_load\n"));
3916 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3917 sizeof(struct bge_ring_data), NULL,
3918 BUS_DMA_NOWAIT)) {
3919 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3920 bus_dmamem_unmap(sc->bge_dmatag, kva,
3921 sizeof(struct bge_ring_data));
3922 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3923 sc->bge_ring_rseg);
3924 return;
3925 }
3926
3927 DPRINTFN(5, ("bzero\n"));
3928 sc->bge_rdata = (struct bge_ring_data *)kva;
3929
3930 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3931
3932 /* Try to allocate memory for jumbo buffers. */
3933 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3934 if (bge_alloc_jumbo_mem(sc)) {
3935 aprint_error_dev(sc->bge_dev,
3936 "jumbo buffer allocation failed\n");
3937 } else
3938 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3939 }
3940
3941 /* Set default tuneable values. */
3942 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3943 sc->bge_rx_coal_ticks = 150;
3944 sc->bge_rx_max_coal_bds = 64;
3945 sc->bge_tx_coal_ticks = 300;
3946 sc->bge_tx_max_coal_bds = 400;
3947 if (BGE_IS_5705_PLUS(sc)) {
3948 sc->bge_tx_coal_ticks = (12 * 5);
3949 sc->bge_tx_max_coal_bds = (12 * 5);
3950 aprint_verbose_dev(sc->bge_dev,
3951 "setting short Tx thresholds\n");
3952 }
3953
3954 if (BGE_IS_5717_PLUS(sc))
3955 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3956 else if (BGE_IS_5705_PLUS(sc))
3957 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3958 else
3959 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3960
3961 /* Set up ifnet structure */
3962 ifp = &sc->ethercom.ec_if;
3963 ifp->if_softc = sc;
3964 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3965 ifp->if_ioctl = bge_ioctl;
3966 ifp->if_stop = bge_stop;
3967 ifp->if_start = bge_start;
3968 ifp->if_init = bge_init;
3969 ifp->if_watchdog = bge_watchdog;
3970 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3971 IFQ_SET_READY(&ifp->if_snd);
3972 DPRINTFN(5, ("strcpy if_xname\n"));
3973 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3974
3975 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3976 sc->ethercom.ec_if.if_capabilities |=
3977 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3978 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3979 sc->ethercom.ec_if.if_capabilities |=
3980 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3981 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3982 #endif
3983 sc->ethercom.ec_capabilities |=
3984 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3985
3986 if (sc->bge_flags & BGEF_TSO)
3987 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3988
3989 /*
3990 * Do MII setup.
3991 */
3992 DPRINTFN(5, ("mii setup\n"));
3993 sc->bge_mii.mii_ifp = ifp;
3994 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3995 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3996 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3997
3998 /*
3999 * Figure out what sort of media we have by checking the hardware
4000 * config word. Note: on some BCM5700 cards, this value appears to be
4001 * unset. If that's the case, we have to rely on identifying the NIC
4002 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4003 * The SysKonnect SK-9D41 is a 1000baseSX card.
4004 */
4005 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4006 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4007 if (BGE_IS_5705_PLUS(sc)) {
4008 sc->bge_flags |= BGEF_FIBER_MII;
4009 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4010 } else
4011 sc->bge_flags |= BGEF_FIBER_TBI;
4012 }
4013
4014 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4015 if (BGE_IS_JUMBO_CAPABLE(sc))
4016 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4017
4018 /* set phyflags and chipid before mii_attach() */
4019 dict = device_properties(self);
4020 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4021 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4022
4023 if (sc->bge_flags & BGEF_FIBER_TBI) {
4024 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4025 bge_ifmedia_sts);
4026 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4027 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4028 0, NULL);
4029 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4030 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4031 /* Pretend the user requested this setting */
4032 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4033 } else {
4034 /*
4035 * Do transceiver setup and tell the firmware the
4036 * driver is down so we can try to get access the
4037 * probe if ASF is running. Retry a couple of times
4038 * if we get a conflict with the ASF firmware accessing
4039 * the PHY.
4040 */
4041 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4042 bge_asf_driver_up(sc);
4043
4044 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4045 bge_ifmedia_sts);
4046 mii_flags = MIIF_DOPAUSE;
4047 if (sc->bge_flags & BGEF_FIBER_MII)
4048 mii_flags |= MIIF_HAVEFIBER;
4049 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4050 MII_OFFSET_ANY, mii_flags);
4051
4052 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4053 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4054 ifmedia_add(&sc->bge_mii.mii_media,
4055 IFM_ETHER|IFM_MANUAL, 0, NULL);
4056 ifmedia_set(&sc->bge_mii.mii_media,
4057 IFM_ETHER|IFM_MANUAL);
4058 } else
4059 ifmedia_set(&sc->bge_mii.mii_media,
4060 IFM_ETHER|IFM_AUTO);
4061
4062 /*
4063 * Now tell the firmware we are going up after probing the PHY
4064 */
4065 if (sc->bge_asf_mode & ASF_STACKUP)
4066 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4067 }
4068
4069 /*
4070 * Call MI attach routine.
4071 */
4072 DPRINTFN(5, ("if_attach\n"));
4073 if_attach(ifp);
4074 DPRINTFN(5, ("ether_ifattach\n"));
4075 ether_ifattach(ifp, eaddr);
4076 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4077 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4078 RND_TYPE_NET, RND_FLAG_DEFAULT);
4079 #ifdef BGE_EVENT_COUNTERS
4080 /*
4081 * Attach event counters.
4082 */
4083 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4084 NULL, device_xname(sc->bge_dev), "intr");
4085 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4086 NULL, device_xname(sc->bge_dev), "tx_xoff");
4087 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4088 NULL, device_xname(sc->bge_dev), "tx_xon");
4089 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4090 NULL, device_xname(sc->bge_dev), "rx_xoff");
4091 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4092 NULL, device_xname(sc->bge_dev), "rx_xon");
4093 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4094 NULL, device_xname(sc->bge_dev), "rx_macctl");
4095 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4096 NULL, device_xname(sc->bge_dev), "xoffentered");
4097 #endif /* BGE_EVENT_COUNTERS */
4098 DPRINTFN(5, ("callout_init\n"));
4099 callout_init(&sc->bge_timeout, 0);
4100
4101 if (pmf_device_register(self, NULL, NULL))
4102 pmf_class_network_register(self, ifp);
4103 else
4104 aprint_error_dev(self, "couldn't establish power handler\n");
4105
4106 bge_sysctl_init(sc);
4107
4108 #ifdef BGE_DEBUG
4109 bge_debug_info(sc);
4110 #endif
4111 }
4112
4113 /*
4114 * Stop all chip I/O so that the kernel's probe routines don't
4115 * get confused by errant DMAs when rebooting.
4116 */
4117 static int
4118 bge_detach(device_t self, int flags __unused)
4119 {
4120 struct bge_softc *sc = device_private(self);
4121 struct ifnet *ifp = &sc->ethercom.ec_if;
4122 int s;
4123
4124 s = splnet();
4125 /* Stop the interface. Callouts are stopped in it. */
4126 bge_stop(ifp, 1);
4127 splx(s);
4128
4129 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4130
4131 /* Delete all remaining media. */
4132 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4133
4134 ether_ifdetach(ifp);
4135 if_detach(ifp);
4136
4137 bge_release_resources(sc);
4138
4139 return 0;
4140 }
4141
4142 static void
4143 bge_release_resources(struct bge_softc *sc)
4144 {
4145
4146 /* Disestablish the interrupt handler */
4147 if (sc->bge_intrhand != NULL) {
4148 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4149 #ifdef __HAVE_PCI_MSI_MSIX
4150 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4151 #endif
4152 sc->bge_intrhand = NULL;
4153 }
4154
4155 if (sc->bge_dmatag != NULL) {
4156 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4157 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4158 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4159 sizeof(struct bge_ring_data));
4160 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
4161 }
4162
4163 /* Unmap the device registers */
4164 if (sc->bge_bsize != 0) {
4165 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4166 sc->bge_bsize = 0;
4167 }
4168
4169 /* Unmap the APE registers */
4170 if (sc->bge_apesize != 0) {
4171 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4172 sc->bge_apesize);
4173 sc->bge_apesize = 0;
4174 }
4175 }
4176
4177 static int
4178 bge_reset(struct bge_softc *sc)
4179 {
4180 uint32_t cachesize, command;
4181 uint32_t reset, mac_mode, mac_mode_mask;
4182 pcireg_t devctl, reg;
4183 int i, val;
4184 void (*write_op)(struct bge_softc *, int, int);
4185
4186 /* Make mask for BGE_MAC_MODE register. */
4187 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4188 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4189 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4190 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4191 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4192
4193 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4194 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4195 if (sc->bge_flags & BGEF_PCIE)
4196 write_op = bge_writemem_direct;
4197 else
4198 write_op = bge_writemem_ind;
4199 } else
4200 write_op = bge_writereg_ind;
4201
4202 /* 57XX step 4 */
4203 /* Acquire the NVM lock */
4204 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4205 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4206 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4207 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4208 for (i = 0; i < 8000; i++) {
4209 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4210 BGE_NVRAMSWARB_GNT1)
4211 break;
4212 DELAY(20);
4213 }
4214 if (i == 8000) {
4215 printf("%s: NVRAM lock timedout!\n",
4216 device_xname(sc->bge_dev));
4217 }
4218 }
4219
4220 /* Take APE lock when performing reset. */
4221 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4222
4223 /* 57XX step 3 */
4224 /* Save some important PCI state. */
4225 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4226 /* 5718 reset step 3 */
4227 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4228
4229 /* 5718 reset step 5, 57XX step 5b-5d */
4230 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4231 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4232 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4233
4234 /* XXX ???: Disable fastboot on controllers that support it. */
4235 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4236 BGE_IS_5755_PLUS(sc))
4237 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4238
4239 /* 5718 reset step 2, 57XX step 6 */
4240 /*
4241 * Write the magic number to SRAM at offset 0xB50.
4242 * When firmware finishes its initialization it will
4243 * write ~BGE_MAGIC_NUMBER to the same location.
4244 */
4245 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4246
4247 /* 5718 reset step 6, 57XX step 7 */
4248 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4249 /*
4250 * XXX: from FreeBSD/Linux; no documentation
4251 */
4252 if (sc->bge_flags & BGEF_PCIE) {
4253 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4254 !BGE_IS_57765_PLUS(sc) &&
4255 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4256 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4257 /* PCI Express 1.0 system */
4258 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4259 BGE_PHY_PCIE_SCRAM_MODE);
4260 }
4261 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4262 /*
4263 * Prevent PCI Express link training
4264 * during global reset.
4265 */
4266 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4267 reset |= (1 << 29);
4268 }
4269 }
4270
4271 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4272 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4273 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4274 i | BGE_VCPU_STATUS_DRV_RESET);
4275 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4276 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4277 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4278 }
4279
4280 /*
4281 * Set GPHY Power Down Override to leave GPHY
4282 * powered up in D0 uninitialized.
4283 */
4284 if (BGE_IS_5705_PLUS(sc) &&
4285 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4286 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4287
4288 /* Issue global reset */
4289 write_op(sc, BGE_MISC_CFG, reset);
4290
4291 /* 5718 reset step 7, 57XX step 8 */
4292 if (sc->bge_flags & BGEF_PCIE)
4293 delay(100*1000); /* too big */
4294 else
4295 delay(1000);
4296
4297 if (sc->bge_flags & BGEF_PCIE) {
4298 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4299 DELAY(500000);
4300 /* XXX: Magic Numbers */
4301 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4302 BGE_PCI_UNKNOWN0);
4303 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4304 BGE_PCI_UNKNOWN0,
4305 reg | (1 << 15));
4306 }
4307 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4308 sc->bge_pciecap + PCIE_DCSR);
4309 /* Clear enable no snoop and disable relaxed ordering. */
4310 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4311 PCIE_DCSR_ENA_NO_SNOOP);
4312
4313 /* Set PCIE max payload size to 128 for older PCIe devices */
4314 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4315 devctl &= ~(0x00e0);
4316 /* Clear device status register. Write 1b to clear */
4317 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4318 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4319 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4320 sc->bge_pciecap + PCIE_DCSR, devctl);
4321 bge_set_max_readrq(sc);
4322 }
4323
4324 /* From Linux: dummy read to flush PCI posted writes */
4325 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4326
4327 /*
4328 * Reset some of the PCI state that got zapped by reset
4329 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4330 * set, too.
4331 */
4332 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4333 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4334 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4335 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4336 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4337 (sc->bge_flags & BGEF_PCIX) != 0)
4338 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4339 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4340 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4341 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4342 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4343 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4344 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4345 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4346
4347 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4348 if (sc->bge_flags & BGEF_PCIX) {
4349 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4350 + PCIX_CMD);
4351 /* Set max memory read byte count to 2K */
4352 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4353 reg &= ~PCIX_CMD_BYTECNT_MASK;
4354 reg |= PCIX_CMD_BCNT_2048;
4355 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4356 /*
4357 * For 5704, set max outstanding split transaction
4358 * field to 0 (0 means it supports 1 request)
4359 */
4360 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4361 | PCIX_CMD_BYTECNT_MASK);
4362 reg |= PCIX_CMD_BCNT_2048;
4363 }
4364 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4365 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4366 }
4367
4368 /* 5718 reset step 10, 57XX step 12 */
4369 /* Enable memory arbiter. */
4370 if (BGE_IS_5714_FAMILY(sc)) {
4371 val = CSR_READ_4(sc, BGE_MARB_MODE);
4372 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4373 } else
4374 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4375
4376 /* XXX 5721, 5751 and 5752 */
4377 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4378 /* Step 19: */
4379 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4380 /* Step 20: */
4381 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4382 }
4383
4384 /* 5718 reset step 12, 57XX step 15 and 16 */
4385 /* Fix up byte swapping */
4386 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4387
4388 /* 5718 reset step 13, 57XX step 17 */
4389 /* Poll until the firmware initialization is complete */
4390 bge_poll_fw(sc);
4391
4392 /* 57XX step 21 */
4393 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4394 pcireg_t msidata;
4395
4396 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4397 BGE_PCI_MSI_DATA);
4398 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4399 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4400 msidata);
4401 }
4402
4403 /* 57XX step 18 */
4404 /* Write mac mode. */
4405 val = CSR_READ_4(sc, BGE_MAC_MODE);
4406 /* Restore mac_mode_mask's bits using mac_mode */
4407 val = (val & ~mac_mode_mask) | mac_mode;
4408 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4409 DELAY(40);
4410
4411 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4412
4413 /*
4414 * The 5704 in TBI mode apparently needs some special
4415 * adjustment to insure the SERDES drive level is set
4416 * to 1.2V.
4417 */
4418 if (sc->bge_flags & BGEF_FIBER_TBI &&
4419 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4420 uint32_t serdescfg;
4421
4422 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4423 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4424 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4425 }
4426
4427 if (sc->bge_flags & BGEF_PCIE &&
4428 !BGE_IS_57765_PLUS(sc) &&
4429 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4430 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4431 uint32_t v;
4432
4433 /* Enable PCI Express bug fix */
4434 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4435 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4436 v | BGE_TLP_DATA_FIFO_PROTECT);
4437 }
4438
4439 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4440 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4441 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4442
4443 return 0;
4444 }
4445
4446 /*
4447 * Frame reception handling. This is called if there's a frame
4448 * on the receive return list.
4449 *
4450 * Note: we have to be able to handle two possibilities here:
4451 * 1) the frame is from the jumbo receive ring
4452 * 2) the frame is from the standard receive ring
4453 */
4454
4455 static void
4456 bge_rxeof(struct bge_softc *sc)
4457 {
4458 struct ifnet *ifp;
4459 uint16_t rx_prod, rx_cons;
4460 int stdcnt = 0, jumbocnt = 0;
4461 bus_dmamap_t dmamap;
4462 bus_addr_t offset, toff;
4463 bus_size_t tlen;
4464 int tosync;
4465
4466 rx_cons = sc->bge_rx_saved_considx;
4467 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4468
4469 /* Nothing to do */
4470 if (rx_cons == rx_prod)
4471 return;
4472
4473 ifp = &sc->ethercom.ec_if;
4474
4475 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4476 offsetof(struct bge_ring_data, bge_status_block),
4477 sizeof (struct bge_status_block),
4478 BUS_DMASYNC_POSTREAD);
4479
4480 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4481 tosync = rx_prod - rx_cons;
4482
4483 if (tosync != 0)
4484 rnd_add_uint32(&sc->rnd_source, tosync);
4485
4486 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4487
4488 if (tosync < 0) {
4489 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4490 sizeof (struct bge_rx_bd);
4491 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4492 toff, tlen, BUS_DMASYNC_POSTREAD);
4493 tosync = -tosync;
4494 }
4495
4496 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4497 offset, tosync * sizeof (struct bge_rx_bd),
4498 BUS_DMASYNC_POSTREAD);
4499
4500 while (rx_cons != rx_prod) {
4501 struct bge_rx_bd *cur_rx;
4502 uint32_t rxidx;
4503 struct mbuf *m = NULL;
4504
4505 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4506
4507 rxidx = cur_rx->bge_idx;
4508 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4509
4510 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4511 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4512 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4513 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4514 jumbocnt++;
4515 bus_dmamap_sync(sc->bge_dmatag,
4516 sc->bge_cdata.bge_rx_jumbo_map,
4517 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4518 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4519 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4520 ifp->if_ierrors++;
4521 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4522 continue;
4523 }
4524 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4525 NULL)== ENOBUFS) {
4526 ifp->if_ierrors++;
4527 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4528 continue;
4529 }
4530 } else {
4531 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4532 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4533
4534 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4535 stdcnt++;
4536 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4537 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4538 if (dmamap == NULL) {
4539 ifp->if_ierrors++;
4540 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4541 continue;
4542 }
4543 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4544 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4545 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4546 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4547 ifp->if_ierrors++;
4548 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4549 continue;
4550 }
4551 if (bge_newbuf_std(sc, sc->bge_std,
4552 NULL, dmamap) == ENOBUFS) {
4553 ifp->if_ierrors++;
4554 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4555 continue;
4556 }
4557 }
4558
4559 ifp->if_ipackets++;
4560 #ifndef __NO_STRICT_ALIGNMENT
4561 /*
4562 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4563 * the Rx buffer has the layer-2 header unaligned.
4564 * If our CPU requires alignment, re-align by copying.
4565 */
4566 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4567 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4568 cur_rx->bge_len);
4569 m->m_data += ETHER_ALIGN;
4570 }
4571 #endif
4572
4573 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4574 m->m_pkthdr.rcvif = ifp;
4575
4576 /*
4577 * Handle BPF listeners. Let the BPF user see the packet.
4578 */
4579 bpf_mtap(ifp, m);
4580
4581 bge_rxcsum(sc, cur_rx, m);
4582
4583 /*
4584 * If we received a packet with a vlan tag, pass it
4585 * to vlan_input() instead of ether_input().
4586 */
4587 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4588 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4589 }
4590
4591 (*ifp->if_input)(ifp, m);
4592 }
4593
4594 sc->bge_rx_saved_considx = rx_cons;
4595 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4596 if (stdcnt)
4597 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4598 if (jumbocnt)
4599 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4600 }
4601
4602 static void
4603 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4604 {
4605
4606 if (BGE_IS_57765_PLUS(sc)) {
4607 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4608 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4609 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4610 if ((cur_rx->bge_error_flag &
4611 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4612 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4613 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4614 m->m_pkthdr.csum_data =
4615 cur_rx->bge_tcp_udp_csum;
4616 m->m_pkthdr.csum_flags |=
4617 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4618 M_CSUM_DATA);
4619 }
4620 }
4621 } else {
4622 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4623 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4624 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4625 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4626 /*
4627 * Rx transport checksum-offload may also
4628 * have bugs with packets which, when transmitted,
4629 * were `runts' requiring padding.
4630 */
4631 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4632 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4633 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4634 m->m_pkthdr.csum_data =
4635 cur_rx->bge_tcp_udp_csum;
4636 m->m_pkthdr.csum_flags |=
4637 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4638 M_CSUM_DATA);
4639 }
4640 }
4641 }
4642
4643 static void
4644 bge_txeof(struct bge_softc *sc)
4645 {
4646 struct bge_tx_bd *cur_tx = NULL;
4647 struct ifnet *ifp;
4648 struct txdmamap_pool_entry *dma;
4649 bus_addr_t offset, toff;
4650 bus_size_t tlen;
4651 int tosync;
4652 struct mbuf *m;
4653
4654 ifp = &sc->ethercom.ec_if;
4655
4656 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4657 offsetof(struct bge_ring_data, bge_status_block),
4658 sizeof (struct bge_status_block),
4659 BUS_DMASYNC_POSTREAD);
4660
4661 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4662 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4663 sc->bge_tx_saved_considx;
4664
4665 if (tosync != 0)
4666 rnd_add_uint32(&sc->rnd_source, tosync);
4667
4668 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4669
4670 if (tosync < 0) {
4671 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4672 sizeof (struct bge_tx_bd);
4673 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4674 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4675 tosync = -tosync;
4676 }
4677
4678 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4679 offset, tosync * sizeof (struct bge_tx_bd),
4680 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4681
4682 /*
4683 * Go through our tx ring and free mbufs for those
4684 * frames that have been sent.
4685 */
4686 while (sc->bge_tx_saved_considx !=
4687 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4688 uint32_t idx = 0;
4689
4690 idx = sc->bge_tx_saved_considx;
4691 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4692 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4693 ifp->if_opackets++;
4694 m = sc->bge_cdata.bge_tx_chain[idx];
4695 if (m != NULL) {
4696 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4697 dma = sc->txdma[idx];
4698 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4699 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4700 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4701 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4702 sc->txdma[idx] = NULL;
4703
4704 m_freem(m);
4705 }
4706 sc->bge_txcnt--;
4707 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4708 ifp->if_timer = 0;
4709 }
4710
4711 if (cur_tx != NULL)
4712 ifp->if_flags &= ~IFF_OACTIVE;
4713 }
4714
4715 static int
4716 bge_intr(void *xsc)
4717 {
4718 struct bge_softc *sc;
4719 struct ifnet *ifp;
4720 uint32_t pcistate, statusword, statustag;
4721 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4722
4723 sc = xsc;
4724 ifp = &sc->ethercom.ec_if;
4725
4726 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4727 if (BGE_IS_5717_PLUS(sc))
4728 intrmask = 0;
4729
4730 /* It is possible for the interrupt to arrive before
4731 * the status block is updated prior to the interrupt.
4732 * Reading the PCI State register will confirm whether the
4733 * interrupt is ours and will flush the status block.
4734 */
4735 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4736
4737 /* read status word from status block */
4738 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4739 offsetof(struct bge_ring_data, bge_status_block),
4740 sizeof (struct bge_status_block),
4741 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4742 statusword = sc->bge_rdata->bge_status_block.bge_status;
4743 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4744
4745 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4746 if (sc->bge_lasttag == statustag &&
4747 (~pcistate & intrmask)) {
4748 return (0);
4749 }
4750 sc->bge_lasttag = statustag;
4751 } else {
4752 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4753 !(~pcistate & intrmask)) {
4754 return (0);
4755 }
4756 statustag = 0;
4757 }
4758 /* Ack interrupt and stop others from occurring. */
4759 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4760 BGE_EVCNT_INCR(sc->bge_ev_intr);
4761
4762 /* clear status word */
4763 sc->bge_rdata->bge_status_block.bge_status = 0;
4764
4765 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4766 offsetof(struct bge_ring_data, bge_status_block),
4767 sizeof (struct bge_status_block),
4768 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4769
4770 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4771 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4772 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4773 bge_link_upd(sc);
4774
4775 if (ifp->if_flags & IFF_RUNNING) {
4776 /* Check RX return ring producer/consumer */
4777 bge_rxeof(sc);
4778
4779 /* Check TX ring producer/consumer */
4780 bge_txeof(sc);
4781 }
4782
4783 if (sc->bge_pending_rxintr_change) {
4784 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4785 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4786
4787 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4788 DELAY(10);
4789 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4790
4791 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4792 DELAY(10);
4793 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4794
4795 sc->bge_pending_rxintr_change = 0;
4796 }
4797 bge_handle_events(sc);
4798
4799 /* Re-enable interrupts. */
4800 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4801
4802 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4803 bge_start(ifp);
4804
4805 return 1;
4806 }
4807
4808 static void
4809 bge_asf_driver_up(struct bge_softc *sc)
4810 {
4811 if (sc->bge_asf_mode & ASF_STACKUP) {
4812 /* Send ASF heartbeat aprox. every 2s */
4813 if (sc->bge_asf_count)
4814 sc->bge_asf_count --;
4815 else {
4816 sc->bge_asf_count = 2;
4817
4818 bge_wait_for_event_ack(sc);
4819
4820 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4821 BGE_FW_CMD_DRV_ALIVE3);
4822 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4823 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4824 BGE_FW_HB_TIMEOUT_SEC);
4825 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4826 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4827 BGE_RX_CPU_DRV_EVENT);
4828 }
4829 }
4830 }
4831
4832 static void
4833 bge_tick(void *xsc)
4834 {
4835 struct bge_softc *sc = xsc;
4836 struct mii_data *mii = &sc->bge_mii;
4837 int s;
4838
4839 s = splnet();
4840
4841 if (BGE_IS_5705_PLUS(sc))
4842 bge_stats_update_regs(sc);
4843 else
4844 bge_stats_update(sc);
4845
4846 if (sc->bge_flags & BGEF_FIBER_TBI) {
4847 /*
4848 * Since in TBI mode auto-polling can't be used we should poll
4849 * link status manually. Here we register pending link event
4850 * and trigger interrupt.
4851 */
4852 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4853 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4854 } else {
4855 /*
4856 * Do not touch PHY if we have link up. This could break
4857 * IPMI/ASF mode or produce extra input errors.
4858 * (extra input errors was reported for bcm5701 & bcm5704).
4859 */
4860 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4861 mii_tick(mii);
4862 }
4863
4864 bge_asf_driver_up(sc);
4865
4866 if (!sc->bge_detaching)
4867 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4868
4869 splx(s);
4870 }
4871
4872 static void
4873 bge_stats_update_regs(struct bge_softc *sc)
4874 {
4875 struct ifnet *ifp = &sc->ethercom.ec_if;
4876
4877 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4878 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4879
4880 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4881 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4882 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4883 }
4884
4885 static void
4886 bge_stats_update(struct bge_softc *sc)
4887 {
4888 struct ifnet *ifp = &sc->ethercom.ec_if;
4889 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4890
4891 #define READ_STAT(sc, stats, stat) \
4892 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4893
4894 ifp->if_collisions +=
4895 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4896 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4897 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4898 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4899 ifp->if_collisions;
4900
4901 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4902 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4903 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4904 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4905 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4906 READ_STAT(sc, stats,
4907 xoffPauseFramesReceived.bge_addr_lo));
4908 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4909 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4910 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4911 READ_STAT(sc, stats,
4912 macControlFramesReceived.bge_addr_lo));
4913 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4914 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4915
4916 #undef READ_STAT
4917
4918 #ifdef notdef
4919 ifp->if_collisions +=
4920 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4921 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4922 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4923 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4924 ifp->if_collisions;
4925 #endif
4926 }
4927
4928 /*
4929 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4930 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4931 * but when such padded frames employ the bge IP/TCP checksum offload,
4932 * the hardware checksum assist gives incorrect results (possibly
4933 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4934 * If we pad such runts with zeros, the onboard checksum comes out correct.
4935 */
4936 static inline int
4937 bge_cksum_pad(struct mbuf *pkt)
4938 {
4939 struct mbuf *last = NULL;
4940 int padlen;
4941
4942 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4943
4944 /* if there's only the packet-header and we can pad there, use it. */
4945 if (pkt->m_pkthdr.len == pkt->m_len &&
4946 M_TRAILINGSPACE(pkt) >= padlen) {
4947 last = pkt;
4948 } else {
4949 /*
4950 * Walk packet chain to find last mbuf. We will either
4951 * pad there, or append a new mbuf and pad it
4952 * (thus perhaps avoiding the bcm5700 dma-min bug).
4953 */
4954 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4955 continue; /* do nothing */
4956 }
4957
4958 /* `last' now points to last in chain. */
4959 if (M_TRAILINGSPACE(last) < padlen) {
4960 /* Allocate new empty mbuf, pad it. Compact later. */
4961 struct mbuf *n;
4962 MGET(n, M_DONTWAIT, MT_DATA);
4963 if (n == NULL)
4964 return ENOBUFS;
4965 n->m_len = 0;
4966 last->m_next = n;
4967 last = n;
4968 }
4969 }
4970
4971 KDASSERT(!M_READONLY(last));
4972 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4973
4974 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4975 memset(mtod(last, char *) + last->m_len, 0, padlen);
4976 last->m_len += padlen;
4977 pkt->m_pkthdr.len += padlen;
4978 return 0;
4979 }
4980
4981 /*
4982 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4983 */
4984 static inline int
4985 bge_compact_dma_runt(struct mbuf *pkt)
4986 {
4987 struct mbuf *m, *prev;
4988 int totlen;
4989
4990 prev = NULL;
4991 totlen = 0;
4992
4993 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4994 int mlen = m->m_len;
4995 int shortfall = 8 - mlen ;
4996
4997 totlen += mlen;
4998 if (mlen == 0)
4999 continue;
5000 if (mlen >= 8)
5001 continue;
5002
5003 /* If we get here, mbuf data is too small for DMA engine.
5004 * Try to fix by shuffling data to prev or next in chain.
5005 * If that fails, do a compacting deep-copy of the whole chain.
5006 */
5007
5008 /* Internal frag. If fits in prev, copy it there. */
5009 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5010 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5011 prev->m_len += mlen;
5012 m->m_len = 0;
5013 /* XXX stitch chain */
5014 prev->m_next = m_free(m);
5015 m = prev;
5016 continue;
5017 }
5018 else if (m->m_next != NULL &&
5019 M_TRAILINGSPACE(m) >= shortfall &&
5020 m->m_next->m_len >= (8 + shortfall)) {
5021 /* m is writable and have enough data in next, pull up. */
5022
5023 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5024 shortfall);
5025 m->m_len += shortfall;
5026 m->m_next->m_len -= shortfall;
5027 m->m_next->m_data += shortfall;
5028 }
5029 else if (m->m_next == NULL || 1) {
5030 /* Got a runt at the very end of the packet.
5031 * borrow data from the tail of the preceding mbuf and
5032 * update its length in-place. (The original data is still
5033 * valid, so we can do this even if prev is not writable.)
5034 */
5035
5036 /* if we'd make prev a runt, just move all of its data. */
5037 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5038 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5039
5040 if ((prev->m_len - shortfall) < 8)
5041 shortfall = prev->m_len;
5042
5043 #ifdef notyet /* just do the safe slow thing for now */
5044 if (!M_READONLY(m)) {
5045 if (M_LEADINGSPACE(m) < shorfall) {
5046 void *m_dat;
5047 m_dat = (m->m_flags & M_PKTHDR) ?
5048 m->m_pktdat : m->dat;
5049 memmove(m_dat, mtod(m, void*), m->m_len);
5050 m->m_data = m_dat;
5051 }
5052 } else
5053 #endif /* just do the safe slow thing */
5054 {
5055 struct mbuf * n = NULL;
5056 int newprevlen = prev->m_len - shortfall;
5057
5058 MGET(n, M_NOWAIT, MT_DATA);
5059 if (n == NULL)
5060 return ENOBUFS;
5061 KASSERT(m->m_len + shortfall < MLEN
5062 /*,
5063 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5064
5065 /* first copy the data we're stealing from prev */
5066 memcpy(n->m_data, prev->m_data + newprevlen,
5067 shortfall);
5068
5069 /* update prev->m_len accordingly */
5070 prev->m_len -= shortfall;
5071
5072 /* copy data from runt m */
5073 memcpy(n->m_data + shortfall, m->m_data,
5074 m->m_len);
5075
5076 /* n holds what we stole from prev, plus m */
5077 n->m_len = shortfall + m->m_len;
5078
5079 /* stitch n into chain and free m */
5080 n->m_next = m->m_next;
5081 prev->m_next = n;
5082 /* KASSERT(m->m_next == NULL); */
5083 m->m_next = NULL;
5084 m_free(m);
5085 m = n; /* for continuing loop */
5086 }
5087 }
5088 }
5089 return 0;
5090 }
5091
5092 /*
5093 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5094 * pointers to descriptors.
5095 */
5096 static int
5097 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5098 {
5099 struct bge_tx_bd *f = NULL;
5100 uint32_t frag, cur;
5101 uint16_t csum_flags = 0;
5102 uint16_t txbd_tso_flags = 0;
5103 struct txdmamap_pool_entry *dma;
5104 bus_dmamap_t dmamap;
5105 int i = 0;
5106 struct m_tag *mtag;
5107 int use_tso, maxsegsize, error;
5108
5109 cur = frag = *txidx;
5110
5111 if (m_head->m_pkthdr.csum_flags) {
5112 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5113 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5114 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5115 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5116 }
5117
5118 /*
5119 * If we were asked to do an outboard checksum, and the NIC
5120 * has the bug where it sometimes adds in the Ethernet padding,
5121 * explicitly pad with zeros so the cksum will be correct either way.
5122 * (For now, do this for all chip versions, until newer
5123 * are confirmed to not require the workaround.)
5124 */
5125 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5126 #ifdef notyet
5127 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5128 #endif
5129 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5130 goto check_dma_bug;
5131
5132 if (bge_cksum_pad(m_head) != 0)
5133 return ENOBUFS;
5134
5135 check_dma_bug:
5136 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5137 goto doit;
5138
5139 /*
5140 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5141 * less than eight bytes. If we encounter a teeny mbuf
5142 * at the end of a chain, we can pad. Otherwise, copy.
5143 */
5144 if (bge_compact_dma_runt(m_head) != 0)
5145 return ENOBUFS;
5146
5147 doit:
5148 dma = SLIST_FIRST(&sc->txdma_list);
5149 if (dma == NULL)
5150 return ENOBUFS;
5151 dmamap = dma->dmamap;
5152
5153 /*
5154 * Set up any necessary TSO state before we start packing...
5155 */
5156 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5157 if (!use_tso) {
5158 maxsegsize = 0;
5159 } else { /* TSO setup */
5160 unsigned mss;
5161 struct ether_header *eh;
5162 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5163 struct mbuf * m0 = m_head;
5164 struct ip *ip;
5165 struct tcphdr *th;
5166 int iphl, hlen;
5167
5168 /*
5169 * XXX It would be nice if the mbuf pkthdr had offset
5170 * fields for the protocol headers.
5171 */
5172
5173 eh = mtod(m0, struct ether_header *);
5174 switch (htons(eh->ether_type)) {
5175 case ETHERTYPE_IP:
5176 offset = ETHER_HDR_LEN;
5177 break;
5178
5179 case ETHERTYPE_VLAN:
5180 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5181 break;
5182
5183 default:
5184 /*
5185 * Don't support this protocol or encapsulation.
5186 */
5187 return ENOBUFS;
5188 }
5189
5190 /*
5191 * TCP/IP headers are in the first mbuf; we can do
5192 * this the easy way.
5193 */
5194 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5195 hlen = iphl + offset;
5196 if (__predict_false(m0->m_len <
5197 (hlen + sizeof(struct tcphdr)))) {
5198
5199 aprint_debug_dev(sc->bge_dev,
5200 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5201 "not handled yet\n",
5202 m0->m_len, hlen+ sizeof(struct tcphdr));
5203 #ifdef NOTYET
5204 /*
5205 * XXX jonathan (at) NetBSD.org: untested.
5206 * how to force this branch to be taken?
5207 */
5208 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5209
5210 m_copydata(m0, offset, sizeof(ip), &ip);
5211 m_copydata(m0, hlen, sizeof(th), &th);
5212
5213 ip.ip_len = 0;
5214
5215 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5216 sizeof(ip.ip_len), &ip.ip_len);
5217
5218 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5219 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5220
5221 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5222 sizeof(th.th_sum), &th.th_sum);
5223
5224 hlen += th.th_off << 2;
5225 iptcp_opt_words = hlen;
5226 #else
5227 /*
5228 * if_wm "hard" case not yet supported, can we not
5229 * mandate it out of existence?
5230 */
5231 (void) ip; (void)th; (void) ip_tcp_hlen;
5232
5233 return ENOBUFS;
5234 #endif
5235 } else {
5236 ip = (struct ip *) (mtod(m0, char *) + offset);
5237 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5238 ip_tcp_hlen = iphl + (th->th_off << 2);
5239
5240 /* Total IP/TCP options, in 32-bit words */
5241 iptcp_opt_words = (ip_tcp_hlen
5242 - sizeof(struct tcphdr)
5243 - sizeof(struct ip)) >> 2;
5244 }
5245 if (BGE_IS_575X_PLUS(sc)) {
5246 th->th_sum = 0;
5247 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5248 } else {
5249 /*
5250 * XXX jonathan (at) NetBSD.org: 5705 untested.
5251 * Requires TSO firmware patch for 5701/5703/5704.
5252 */
5253 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5254 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5255 }
5256
5257 mss = m_head->m_pkthdr.segsz;
5258 txbd_tso_flags |=
5259 BGE_TXBDFLAG_CPU_PRE_DMA |
5260 BGE_TXBDFLAG_CPU_POST_DMA;
5261
5262 /*
5263 * Our NIC TSO-assist assumes TSO has standard, optionless
5264 * IPv4 and TCP headers, which total 40 bytes. By default,
5265 * the NIC copies 40 bytes of IP/TCP header from the
5266 * supplied header into the IP/TCP header portion of
5267 * each post-TSO-segment. If the supplied packet has IP or
5268 * TCP options, we need to tell the NIC to copy those extra
5269 * bytes into each post-TSO header, in addition to the normal
5270 * 40-byte IP/TCP header (and to leave space accordingly).
5271 * Unfortunately, the driver encoding of option length
5272 * varies across different ASIC families.
5273 */
5274 tcp_seg_flags = 0;
5275 if (iptcp_opt_words) {
5276 if (BGE_IS_5705_PLUS(sc)) {
5277 tcp_seg_flags =
5278 iptcp_opt_words << 11;
5279 } else {
5280 txbd_tso_flags |=
5281 iptcp_opt_words << 12;
5282 }
5283 }
5284 maxsegsize = mss | tcp_seg_flags;
5285 ip->ip_len = htons(mss + ip_tcp_hlen);
5286
5287 } /* TSO setup */
5288
5289 /*
5290 * Start packing the mbufs in this chain into
5291 * the fragment pointers. Stop when we run out
5292 * of fragments or hit the end of the mbuf chain.
5293 */
5294 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5295 BUS_DMA_NOWAIT);
5296 if (error)
5297 return ENOBUFS;
5298 /*
5299 * Sanity check: avoid coming within 16 descriptors
5300 * of the end of the ring.
5301 */
5302 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5303 BGE_TSO_PRINTF(("%s: "
5304 " dmamap_load_mbuf too close to ring wrap\n",
5305 device_xname(sc->bge_dev)));
5306 goto fail_unload;
5307 }
5308
5309 mtag = sc->ethercom.ec_nvlans ?
5310 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5311
5312
5313 /* Iterate over dmap-map fragments. */
5314 for (i = 0; i < dmamap->dm_nsegs; i++) {
5315 f = &sc->bge_rdata->bge_tx_ring[frag];
5316 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5317 break;
5318
5319 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5320 f->bge_len = dmamap->dm_segs[i].ds_len;
5321
5322 /*
5323 * For 5751 and follow-ons, for TSO we must turn
5324 * off checksum-assist flag in the tx-descr, and
5325 * supply the ASIC-revision-specific encoding
5326 * of TSO flags and segsize.
5327 */
5328 if (use_tso) {
5329 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5330 f->bge_rsvd = maxsegsize;
5331 f->bge_flags = csum_flags | txbd_tso_flags;
5332 } else {
5333 f->bge_rsvd = 0;
5334 f->bge_flags =
5335 (csum_flags | txbd_tso_flags) & 0x0fff;
5336 }
5337 } else {
5338 f->bge_rsvd = 0;
5339 f->bge_flags = csum_flags;
5340 }
5341
5342 if (mtag != NULL) {
5343 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5344 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5345 } else {
5346 f->bge_vlan_tag = 0;
5347 }
5348 cur = frag;
5349 BGE_INC(frag, BGE_TX_RING_CNT);
5350 }
5351
5352 if (i < dmamap->dm_nsegs) {
5353 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5354 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5355 goto fail_unload;
5356 }
5357
5358 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5359 BUS_DMASYNC_PREWRITE);
5360
5361 if (frag == sc->bge_tx_saved_considx) {
5362 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5363 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5364
5365 goto fail_unload;
5366 }
5367
5368 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5369 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5370 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5371 sc->txdma[cur] = dma;
5372 sc->bge_txcnt += dmamap->dm_nsegs;
5373
5374 *txidx = frag;
5375
5376 return 0;
5377
5378 fail_unload:
5379 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5380
5381 return ENOBUFS;
5382 }
5383
5384 /*
5385 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5386 * to the mbuf data regions directly in the transmit descriptors.
5387 */
5388 static void
5389 bge_start(struct ifnet *ifp)
5390 {
5391 struct bge_softc *sc;
5392 struct mbuf *m_head = NULL;
5393 uint32_t prodidx;
5394 int pkts = 0;
5395
5396 sc = ifp->if_softc;
5397
5398 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5399 return;
5400
5401 prodidx = sc->bge_tx_prodidx;
5402
5403 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5404 IFQ_POLL(&ifp->if_snd, m_head);
5405 if (m_head == NULL)
5406 break;
5407
5408 #if 0
5409 /*
5410 * XXX
5411 * safety overkill. If this is a fragmented packet chain
5412 * with delayed TCP/UDP checksums, then only encapsulate
5413 * it if we have enough descriptors to handle the entire
5414 * chain at once.
5415 * (paranoia -- may not actually be needed)
5416 */
5417 if (m_head->m_flags & M_FIRSTFRAG &&
5418 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5419 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5420 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5421 ifp->if_flags |= IFF_OACTIVE;
5422 break;
5423 }
5424 }
5425 #endif
5426
5427 /*
5428 * Pack the data into the transmit ring. If we
5429 * don't have room, set the OACTIVE flag and wait
5430 * for the NIC to drain the ring.
5431 */
5432 if (bge_encap(sc, m_head, &prodidx)) {
5433 ifp->if_flags |= IFF_OACTIVE;
5434 break;
5435 }
5436
5437 /* now we are committed to transmit the packet */
5438 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5439 pkts++;
5440
5441 /*
5442 * If there's a BPF listener, bounce a copy of this frame
5443 * to him.
5444 */
5445 bpf_mtap(ifp, m_head);
5446 }
5447 if (pkts == 0)
5448 return;
5449
5450 /* Transmit */
5451 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5452 /* 5700 b2 errata */
5453 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5454 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5455
5456 sc->bge_tx_prodidx = prodidx;
5457
5458 /*
5459 * Set a timeout in case the chip goes out to lunch.
5460 */
5461 ifp->if_timer = 5;
5462 }
5463
5464 static int
5465 bge_init(struct ifnet *ifp)
5466 {
5467 struct bge_softc *sc = ifp->if_softc;
5468 const uint16_t *m;
5469 uint32_t mode, reg;
5470 int s, error = 0;
5471
5472 s = splnet();
5473
5474 ifp = &sc->ethercom.ec_if;
5475
5476 /* Cancel pending I/O and flush buffers. */
5477 bge_stop(ifp, 0);
5478
5479 bge_stop_fw(sc);
5480 bge_sig_pre_reset(sc, BGE_RESET_START);
5481 bge_reset(sc);
5482 bge_sig_legacy(sc, BGE_RESET_START);
5483
5484 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5485 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5486 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5487 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5488 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5489
5490 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5491 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5492 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5493 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5494
5495 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5496 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5497 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5498 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5499
5500 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5501 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5502 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5503 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5504 }
5505
5506 bge_sig_post_reset(sc, BGE_RESET_START);
5507
5508 bge_chipinit(sc);
5509
5510 /*
5511 * Init the various state machines, ring
5512 * control blocks and firmware.
5513 */
5514 error = bge_blockinit(sc);
5515 if (error != 0) {
5516 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5517 error);
5518 splx(s);
5519 return error;
5520 }
5521
5522 ifp = &sc->ethercom.ec_if;
5523
5524 /* 5718 step 25, 57XX step 54 */
5525 /* Specify MTU. */
5526 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5527 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5528
5529 /* 5718 step 23 */
5530 /* Load our MAC address. */
5531 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5532 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5533 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5534
5535 /* Enable or disable promiscuous mode as needed. */
5536 if (ifp->if_flags & IFF_PROMISC)
5537 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5538 else
5539 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5540
5541 /* Program multicast filter. */
5542 bge_setmulti(sc);
5543
5544 /* Init RX ring. */
5545 bge_init_rx_ring_std(sc);
5546
5547 /*
5548 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5549 * memory to insure that the chip has in fact read the first
5550 * entry of the ring.
5551 */
5552 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5553 uint32_t v, i;
5554 for (i = 0; i < 10; i++) {
5555 DELAY(20);
5556 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5557 if (v == (MCLBYTES - ETHER_ALIGN))
5558 break;
5559 }
5560 if (i == 10)
5561 aprint_error_dev(sc->bge_dev,
5562 "5705 A0 chip failed to load RX ring\n");
5563 }
5564
5565 /* Init jumbo RX ring. */
5566 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5567 bge_init_rx_ring_jumbo(sc);
5568
5569 /* Init our RX return ring index */
5570 sc->bge_rx_saved_considx = 0;
5571
5572 /* Init TX ring. */
5573 bge_init_tx_ring(sc);
5574
5575 /* 5718 step 63, 57XX step 94 */
5576 /* Enable TX MAC state machine lockup fix. */
5577 mode = CSR_READ_4(sc, BGE_TX_MODE);
5578 if (BGE_IS_5755_PLUS(sc) ||
5579 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5580 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5582 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5583 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5584 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5585 }
5586
5587 /* Turn on transmitter */
5588 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5589 /* 5718 step 64 */
5590 DELAY(100);
5591
5592 /* 5718 step 65, 57XX step 95 */
5593 /* Turn on receiver */
5594 mode = CSR_READ_4(sc, BGE_RX_MODE);
5595 if (BGE_IS_5755_PLUS(sc))
5596 mode |= BGE_RXMODE_IPV6_ENABLE;
5597 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5598 /* 5718 step 66 */
5599 DELAY(10);
5600
5601 /* 5718 step 12, 57XX step 37 */
5602 /*
5603 * XXX Doucments of 5718 series and 577xx say the recommended value
5604 * is 1, but tg3 set 1 only on 57765 series.
5605 */
5606 if (BGE_IS_57765_PLUS(sc))
5607 reg = 1;
5608 else
5609 reg = 2;
5610 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5611
5612 /* Tell firmware we're alive. */
5613 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5614
5615 /* Enable host interrupts. */
5616 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5617 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5618 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5619
5620 if ((error = bge_ifmedia_upd(ifp)) != 0)
5621 goto out;
5622
5623 ifp->if_flags |= IFF_RUNNING;
5624 ifp->if_flags &= ~IFF_OACTIVE;
5625
5626 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5627
5628 out:
5629 sc->bge_if_flags = ifp->if_flags;
5630 splx(s);
5631
5632 return error;
5633 }
5634
5635 /*
5636 * Set media options.
5637 */
5638 static int
5639 bge_ifmedia_upd(struct ifnet *ifp)
5640 {
5641 struct bge_softc *sc = ifp->if_softc;
5642 struct mii_data *mii = &sc->bge_mii;
5643 struct ifmedia *ifm = &sc->bge_ifmedia;
5644 int rc;
5645
5646 /* If this is a 1000baseX NIC, enable the TBI port. */
5647 if (sc->bge_flags & BGEF_FIBER_TBI) {
5648 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5649 return EINVAL;
5650 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5651 case IFM_AUTO:
5652 /*
5653 * The BCM5704 ASIC appears to have a special
5654 * mechanism for programming the autoneg
5655 * advertisement registers in TBI mode.
5656 */
5657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5658 uint32_t sgdig;
5659 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5660 if (sgdig & BGE_SGDIGSTS_DONE) {
5661 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5662 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5663 sgdig |= BGE_SGDIGCFG_AUTO |
5664 BGE_SGDIGCFG_PAUSE_CAP |
5665 BGE_SGDIGCFG_ASYM_PAUSE;
5666 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5667 sgdig | BGE_SGDIGCFG_SEND);
5668 DELAY(5);
5669 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5670 sgdig);
5671 }
5672 }
5673 break;
5674 case IFM_1000_SX:
5675 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5676 BGE_CLRBIT(sc, BGE_MAC_MODE,
5677 BGE_MACMODE_HALF_DUPLEX);
5678 } else {
5679 BGE_SETBIT(sc, BGE_MAC_MODE,
5680 BGE_MACMODE_HALF_DUPLEX);
5681 }
5682 DELAY(40);
5683 break;
5684 default:
5685 return EINVAL;
5686 }
5687 /* XXX 802.3x flow control for 1000BASE-SX */
5688 return 0;
5689 }
5690
5691 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5692 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5693 uint32_t reg;
5694
5695 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5696 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5697 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5698 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5699 }
5700 }
5701
5702 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5703 if ((rc = mii_mediachg(mii)) == ENXIO)
5704 return 0;
5705
5706 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5707 uint32_t reg;
5708
5709 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5710 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5711 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5712 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5713 delay(40);
5714 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5715 }
5716 }
5717
5718 /*
5719 * Force an interrupt so that we will call bge_link_upd
5720 * if needed and clear any pending link state attention.
5721 * Without this we are not getting any further interrupts
5722 * for link state changes and thus will not UP the link and
5723 * not be able to send in bge_start. The only way to get
5724 * things working was to receive a packet and get a RX intr.
5725 */
5726 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5727 sc->bge_flags & BGEF_IS_5788)
5728 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5729 else
5730 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5731
5732 return rc;
5733 }
5734
5735 /*
5736 * Report current media status.
5737 */
5738 static void
5739 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5740 {
5741 struct bge_softc *sc = ifp->if_softc;
5742 struct mii_data *mii = &sc->bge_mii;
5743
5744 if (sc->bge_flags & BGEF_FIBER_TBI) {
5745 ifmr->ifm_status = IFM_AVALID;
5746 ifmr->ifm_active = IFM_ETHER;
5747 if (CSR_READ_4(sc, BGE_MAC_STS) &
5748 BGE_MACSTAT_TBI_PCS_SYNCHED)
5749 ifmr->ifm_status |= IFM_ACTIVE;
5750 ifmr->ifm_active |= IFM_1000_SX;
5751 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5752 ifmr->ifm_active |= IFM_HDX;
5753 else
5754 ifmr->ifm_active |= IFM_FDX;
5755 return;
5756 }
5757
5758 mii_pollstat(mii);
5759 ifmr->ifm_status = mii->mii_media_status;
5760 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5761 sc->bge_flowflags;
5762 }
5763
5764 static int
5765 bge_ifflags_cb(struct ethercom *ec)
5766 {
5767 struct ifnet *ifp = &ec->ec_if;
5768 struct bge_softc *sc = ifp->if_softc;
5769 int change = ifp->if_flags ^ sc->bge_if_flags;
5770
5771 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5772 return ENETRESET;
5773 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5774 return 0;
5775
5776 if ((ifp->if_flags & IFF_PROMISC) == 0)
5777 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5778 else
5779 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5780
5781 bge_setmulti(sc);
5782
5783 sc->bge_if_flags = ifp->if_flags;
5784 return 0;
5785 }
5786
5787 static int
5788 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5789 {
5790 struct bge_softc *sc = ifp->if_softc;
5791 struct ifreq *ifr = (struct ifreq *) data;
5792 int s, error = 0;
5793 struct mii_data *mii;
5794
5795 s = splnet();
5796
5797 switch (command) {
5798 case SIOCSIFMEDIA:
5799 /* XXX Flow control is not supported for 1000BASE-SX */
5800 if (sc->bge_flags & BGEF_FIBER_TBI) {
5801 ifr->ifr_media &= ~IFM_ETH_FMASK;
5802 sc->bge_flowflags = 0;
5803 }
5804
5805 /* Flow control requires full-duplex mode. */
5806 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5807 (ifr->ifr_media & IFM_FDX) == 0) {
5808 ifr->ifr_media &= ~IFM_ETH_FMASK;
5809 }
5810 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5811 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5812 /* We can do both TXPAUSE and RXPAUSE. */
5813 ifr->ifr_media |=
5814 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5815 }
5816 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5817 }
5818 /* FALLTHROUGH */
5819 case SIOCGIFMEDIA:
5820 if (sc->bge_flags & BGEF_FIBER_TBI) {
5821 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5822 command);
5823 } else {
5824 mii = &sc->bge_mii;
5825 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5826 command);
5827 }
5828 break;
5829 default:
5830 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5831 break;
5832
5833 error = 0;
5834
5835 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5836 ;
5837 else if (ifp->if_flags & IFF_RUNNING)
5838 bge_setmulti(sc);
5839 break;
5840 }
5841
5842 splx(s);
5843
5844 return error;
5845 }
5846
5847 static void
5848 bge_watchdog(struct ifnet *ifp)
5849 {
5850 struct bge_softc *sc;
5851
5852 sc = ifp->if_softc;
5853
5854 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5855
5856 ifp->if_flags &= ~IFF_RUNNING;
5857 bge_init(ifp);
5858
5859 ifp->if_oerrors++;
5860 }
5861
5862 static void
5863 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5864 {
5865 int i;
5866
5867 BGE_CLRBIT_FLUSH(sc, reg, bit);
5868
5869 for (i = 0; i < 1000; i++) {
5870 delay(100);
5871 if ((CSR_READ_4(sc, reg) & bit) == 0)
5872 return;
5873 }
5874
5875 /*
5876 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5877 * on some environment (and once after boot?)
5878 */
5879 if (reg != BGE_SRS_MODE)
5880 aprint_error_dev(sc->bge_dev,
5881 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5882 (u_long)reg, bit);
5883 }
5884
5885 /*
5886 * Stop the adapter and free any mbufs allocated to the
5887 * RX and TX lists.
5888 */
5889 static void
5890 bge_stop(struct ifnet *ifp, int disable)
5891 {
5892 struct bge_softc *sc = ifp->if_softc;
5893
5894 if (disable) {
5895 sc->bge_detaching = 1;
5896 callout_halt(&sc->bge_timeout, NULL);
5897 } else
5898 callout_stop(&sc->bge_timeout);
5899
5900 /* Disable host interrupts. */
5901 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5902 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5903
5904 /*
5905 * Tell firmware we're shutting down.
5906 */
5907 bge_stop_fw(sc);
5908 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5909
5910 /*
5911 * Disable all of the receiver blocks.
5912 */
5913 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5914 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5915 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5916 if (BGE_IS_5700_FAMILY(sc))
5917 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5918 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5919 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5920 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5921
5922 /*
5923 * Disable all of the transmit blocks.
5924 */
5925 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5926 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5927 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5928 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5929 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5930 if (BGE_IS_5700_FAMILY(sc))
5931 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5932 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5933
5934 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5935 delay(40);
5936
5937 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5938
5939 /*
5940 * Shut down all of the memory managers and related
5941 * state machines.
5942 */
5943 /* 5718 step 5a,5b */
5944 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5945 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5946 if (BGE_IS_5700_FAMILY(sc))
5947 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5948
5949 /* 5718 step 5c,5d */
5950 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5951 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5952
5953 if (BGE_IS_5700_FAMILY(sc)) {
5954 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5955 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5956 }
5957
5958 bge_reset(sc);
5959 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5960 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5961
5962 /*
5963 * Keep the ASF firmware running if up.
5964 */
5965 if (sc->bge_asf_mode & ASF_STACKUP)
5966 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5967 else
5968 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5969
5970 /* Free the RX lists. */
5971 bge_free_rx_ring_std(sc);
5972
5973 /* Free jumbo RX list. */
5974 if (BGE_IS_JUMBO_CAPABLE(sc))
5975 bge_free_rx_ring_jumbo(sc);
5976
5977 /* Free TX buffers. */
5978 bge_free_tx_ring(sc);
5979
5980 /*
5981 * Isolate/power down the PHY.
5982 */
5983 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5984 mii_down(&sc->bge_mii);
5985
5986 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5987
5988 /* Clear MAC's link state (PHY may still have link UP). */
5989 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5990
5991 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5992 }
5993
5994 static void
5995 bge_link_upd(struct bge_softc *sc)
5996 {
5997 struct ifnet *ifp = &sc->ethercom.ec_if;
5998 struct mii_data *mii = &sc->bge_mii;
5999 uint32_t status;
6000 int link;
6001
6002 /* Clear 'pending link event' flag */
6003 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6004
6005 /*
6006 * Process link state changes.
6007 * Grrr. The link status word in the status block does
6008 * not work correctly on the BCM5700 rev AX and BX chips,
6009 * according to all available information. Hence, we have
6010 * to enable MII interrupts in order to properly obtain
6011 * async link changes. Unfortunately, this also means that
6012 * we have to read the MAC status register to detect link
6013 * changes, thereby adding an additional register access to
6014 * the interrupt handler.
6015 */
6016
6017 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6018 status = CSR_READ_4(sc, BGE_MAC_STS);
6019 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6020 mii_pollstat(mii);
6021
6022 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6023 mii->mii_media_status & IFM_ACTIVE &&
6024 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6025 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6026 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6027 (!(mii->mii_media_status & IFM_ACTIVE) ||
6028 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6029 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6030
6031 /* Clear the interrupt */
6032 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6033 BGE_EVTENB_MI_INTERRUPT);
6034 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6035 BRGPHY_MII_ISR);
6036 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6037 BRGPHY_MII_IMR, BRGPHY_INTRS);
6038 }
6039 return;
6040 }
6041
6042 if (sc->bge_flags & BGEF_FIBER_TBI) {
6043 status = CSR_READ_4(sc, BGE_MAC_STS);
6044 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6045 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6046 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6047 if (BGE_ASICREV(sc->bge_chipid)
6048 == BGE_ASICREV_BCM5704) {
6049 BGE_CLRBIT(sc, BGE_MAC_MODE,
6050 BGE_MACMODE_TBI_SEND_CFGS);
6051 DELAY(40);
6052 }
6053 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6054 if_link_state_change(ifp, LINK_STATE_UP);
6055 }
6056 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6057 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6058 if_link_state_change(ifp, LINK_STATE_DOWN);
6059 }
6060 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6061 /*
6062 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6063 * bit in status word always set. Workaround this bug by
6064 * reading PHY link status directly.
6065 */
6066 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6067 BGE_STS_LINK : 0;
6068
6069 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6070 mii_pollstat(mii);
6071
6072 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6073 mii->mii_media_status & IFM_ACTIVE &&
6074 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6075 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6076 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6077 (!(mii->mii_media_status & IFM_ACTIVE) ||
6078 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6079 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6080 }
6081 } else {
6082 /*
6083 * For controllers that call mii_tick, we have to poll
6084 * link status.
6085 */
6086 mii_pollstat(mii);
6087 }
6088
6089 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6090 uint32_t reg, scale;
6091
6092 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6093 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6094 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6095 scale = 65;
6096 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6097 scale = 6;
6098 else
6099 scale = 12;
6100
6101 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6102 ~BGE_MISCCFG_TIMER_PRESCALER;
6103 reg |= scale << 1;
6104 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6105 }
6106 /* Clear the attention */
6107 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6108 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6109 BGE_MACSTAT_LINK_CHANGED);
6110 }
6111
6112 static int
6113 bge_sysctl_verify(SYSCTLFN_ARGS)
6114 {
6115 int error, t;
6116 struct sysctlnode node;
6117
6118 node = *rnode;
6119 t = *(int*)rnode->sysctl_data;
6120 node.sysctl_data = &t;
6121 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6122 if (error || newp == NULL)
6123 return error;
6124
6125 #if 0
6126 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6127 node.sysctl_num, rnode->sysctl_num));
6128 #endif
6129
6130 if (node.sysctl_num == bge_rxthresh_nodenum) {
6131 if (t < 0 || t >= NBGE_RX_THRESH)
6132 return EINVAL;
6133 bge_update_all_threshes(t);
6134 } else
6135 return EINVAL;
6136
6137 *(int*)rnode->sysctl_data = t;
6138
6139 return 0;
6140 }
6141
6142 /*
6143 * Set up sysctl(3) MIB, hw.bge.*.
6144 */
6145 static void
6146 bge_sysctl_init(struct bge_softc *sc)
6147 {
6148 int rc, bge_root_num;
6149 const struct sysctlnode *node;
6150
6151 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6152 0, CTLTYPE_NODE, "bge",
6153 SYSCTL_DESCR("BGE interface controls"),
6154 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6155 goto out;
6156 }
6157
6158 bge_root_num = node->sysctl_num;
6159
6160 /* BGE Rx interrupt mitigation level */
6161 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6162 CTLFLAG_READWRITE,
6163 CTLTYPE_INT, "rx_lvl",
6164 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6165 bge_sysctl_verify, 0,
6166 &bge_rx_thresh_lvl,
6167 0, CTL_HW, bge_root_num, CTL_CREATE,
6168 CTL_EOL)) != 0) {
6169 goto out;
6170 }
6171
6172 bge_rxthresh_nodenum = node->sysctl_num;
6173
6174 return;
6175
6176 out:
6177 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6178 }
6179
6180 #ifdef BGE_DEBUG
6181 void
6182 bge_debug_info(struct bge_softc *sc)
6183 {
6184
6185 printf("Hardware Flags:\n");
6186 if (BGE_IS_57765_PLUS(sc))
6187 printf(" - 57765 Plus\n");
6188 if (BGE_IS_5717_PLUS(sc))
6189 printf(" - 5717 Plus\n");
6190 if (BGE_IS_5755_PLUS(sc))
6191 printf(" - 5755 Plus\n");
6192 if (BGE_IS_575X_PLUS(sc))
6193 printf(" - 575X Plus\n");
6194 if (BGE_IS_5705_PLUS(sc))
6195 printf(" - 5705 Plus\n");
6196 if (BGE_IS_5714_FAMILY(sc))
6197 printf(" - 5714 Family\n");
6198 if (BGE_IS_5700_FAMILY(sc))
6199 printf(" - 5700 Family\n");
6200 if (sc->bge_flags & BGEF_IS_5788)
6201 printf(" - 5788\n");
6202 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6203 printf(" - Supports Jumbo Frames\n");
6204 if (sc->bge_flags & BGEF_NO_EEPROM)
6205 printf(" - No EEPROM\n");
6206 if (sc->bge_flags & BGEF_PCIX)
6207 printf(" - PCI-X Bus\n");
6208 if (sc->bge_flags & BGEF_PCIE)
6209 printf(" - PCI Express Bus\n");
6210 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6211 printf(" - RX Alignment Bug\n");
6212 if (sc->bge_flags & BGEF_APE)
6213 printf(" - APE\n");
6214 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6215 printf(" - CPMU\n");
6216 if (sc->bge_flags & BGEF_TSO)
6217 printf(" - TSO\n");
6218 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6219 printf(" - TAGGED_STATUS\n");
6220
6221 /* PHY related */
6222 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6223 printf(" - No 3 LEDs\n");
6224 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6225 printf(" - CRC bug\n");
6226 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6227 printf(" - ADC bug\n");
6228 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6229 printf(" - 5704 A0 bug\n");
6230 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6231 printf(" - jitter bug\n");
6232 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6233 printf(" - BER bug\n");
6234 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6235 printf(" - adjust trim\n");
6236 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6237 printf(" - no wirespeed\n");
6238
6239 /* ASF related */
6240 if (sc->bge_asf_mode & ASF_ENABLE)
6241 printf(" - ASF enable\n");
6242 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6243 printf(" - ASF new handshake\n");
6244 if (sc->bge_asf_mode & ASF_STACKUP)
6245 printf(" - ASF stackup\n");
6246 }
6247 #endif /* BGE_DEBUG */
6248
6249 static int
6250 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6251 {
6252 prop_dictionary_t dict;
6253 prop_data_t ea;
6254
6255 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6256 return 1;
6257
6258 dict = device_properties(sc->bge_dev);
6259 ea = prop_dictionary_get(dict, "mac-address");
6260 if (ea != NULL) {
6261 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6262 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6263 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6264 return 0;
6265 }
6266
6267 return 1;
6268 }
6269
6270 static int
6271 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6272 {
6273 uint32_t mac_addr;
6274
6275 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6276 if ((mac_addr >> 16) == 0x484b) {
6277 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6278 ether_addr[1] = (uint8_t)mac_addr;
6279 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6280 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6281 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6282 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6283 ether_addr[5] = (uint8_t)mac_addr;
6284 return 0;
6285 }
6286 return 1;
6287 }
6288
6289 static int
6290 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6291 {
6292 int mac_offset = BGE_EE_MAC_OFFSET;
6293
6294 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6295 mac_offset = BGE_EE_MAC_OFFSET_5906;
6296
6297 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6298 ETHER_ADDR_LEN));
6299 }
6300
6301 static int
6302 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6303 {
6304
6305 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6306 return 1;
6307
6308 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6309 ETHER_ADDR_LEN));
6310 }
6311
6312 static int
6313 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6314 {
6315 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6316 /* NOTE: Order is critical */
6317 bge_get_eaddr_fw,
6318 bge_get_eaddr_mem,
6319 bge_get_eaddr_nvram,
6320 bge_get_eaddr_eeprom,
6321 NULL
6322 };
6323 const bge_eaddr_fcn_t *func;
6324
6325 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6326 if ((*func)(sc, eaddr) == 0)
6327 break;
6328 }
6329 return (*func == NULL ? ENXIO : 0);
6330 }
6331