if_bge.c revision 1.294 1 /* $NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Fast Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Fast Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
747 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
748
749 { 0, NULL }
750 };
751
752 /*
753 * Some defaults for major revisions, so that newer steppings
754 * that we don't know about have a shot at working.
755 */
756 static const struct bge_revision bge_majorrevs[] = {
757 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
758 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
759 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
760 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
761 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
762 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
763 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
764 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
766 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
767 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
768 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
769 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
770 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
771 /* 5754 and 5787 share the same ASIC ID */
772 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
773 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
774 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
775 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
776 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
777 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
778 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
779 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
780
781 { 0, NULL }
782 };
783
784 static int bge_allow_asf = 1;
785
786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
787 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
788
789 static uint32_t
790 bge_readmem_ind(struct bge_softc *sc, int off)
791 {
792 pcireg_t val;
793
794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
795 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
796 return 0;
797
798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
799 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
801 return val;
802 }
803
804 static void
805 bge_writemem_ind(struct bge_softc *sc, int off, int val)
806 {
807
808 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
811 }
812
813 /*
814 * PCI Express only
815 */
816 static void
817 bge_set_max_readrq(struct bge_softc *sc)
818 {
819 pcireg_t val;
820
821 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
822 + PCIE_DCSR);
823 val &= ~PCIE_DCSR_MAX_READ_REQ;
824 switch (sc->bge_expmrq) {
825 case 2048:
826 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
827 break;
828 case 4096:
829 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
830 break;
831 default:
832 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
833 break;
834 }
835 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
836 + PCIE_DCSR, val);
837 }
838
839 #ifdef notdef
840 static uint32_t
841 bge_readreg_ind(struct bge_softc *sc, int off)
842 {
843 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
844 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
845 }
846 #endif
847
848 static void
849 bge_writereg_ind(struct bge_softc *sc, int off, int val)
850 {
851 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
853 }
854
855 static void
856 bge_writemem_direct(struct bge_softc *sc, int off, int val)
857 {
858 CSR_WRITE_4(sc, off, val);
859 }
860
861 static void
862 bge_writembx(struct bge_softc *sc, int off, int val)
863 {
864 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
865 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
866
867 CSR_WRITE_4(sc, off, val);
868 }
869
870 static void
871 bge_writembx_flush(struct bge_softc *sc, int off, int val)
872 {
873 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
874 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
875
876 CSR_WRITE_4_FLUSH(sc, off, val);
877 }
878
879 /*
880 * Clear all stale locks and select the lock for this driver instance.
881 */
882 void
883 bge_ape_lock_init(struct bge_softc *sc)
884 {
885 struct pci_attach_args *pa = &(sc->bge_pa);
886 uint32_t bit, regbase;
887 int i;
888
889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
890 regbase = BGE_APE_LOCK_GRANT;
891 else
892 regbase = BGE_APE_PER_LOCK_GRANT;
893
894 /* Clear any stale locks. */
895 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
896 switch (i) {
897 case BGE_APE_LOCK_PHY0:
898 case BGE_APE_LOCK_PHY1:
899 case BGE_APE_LOCK_PHY2:
900 case BGE_APE_LOCK_PHY3:
901 bit = BGE_APE_LOCK_GRANT_DRIVER0;
902 break;
903 default:
904 if (pa->pa_function == 0)
905 bit = BGE_APE_LOCK_GRANT_DRIVER0;
906 else
907 bit = (1 << pa->pa_function);
908 }
909 APE_WRITE_4(sc, regbase + 4 * i, bit);
910 }
911
912 /* Select the PHY lock based on the device's function number. */
913 switch (pa->pa_function) {
914 case 0:
915 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
916 break;
917 case 1:
918 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
919 break;
920 case 2:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
922 break;
923 case 3:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
925 break;
926 default:
927 printf("%s: PHY lock not supported on function\n",
928 device_xname(sc->bge_dev));
929 break;
930 }
931 }
932
933 /*
934 * Check for APE firmware, set flags, and print version info.
935 */
936 void
937 bge_ape_read_fw_ver(struct bge_softc *sc)
938 {
939 const char *fwtype;
940 uint32_t apedata, features;
941
942 /* Check for a valid APE signature in shared memory. */
943 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
944 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
945 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
946 return;
947 }
948
949 /* Check if APE firmware is running. */
950 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
951 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
952 printf("%s: APE signature found but FW status not ready! "
953 "0x%08x\n", device_xname(sc->bge_dev), apedata);
954 return;
955 }
956
957 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
958
959 /* Fetch the APE firwmare type and version. */
960 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
961 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
962 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
963 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
964 fwtype = "NCSI";
965 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
966 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
967 fwtype = "DASH";
968 } else
969 fwtype = "UNKN";
970
971 /* Print the APE firmware version. */
972 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
973 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
974 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
975 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
976 (apedata & BGE_APE_FW_VERSION_BLDMSK));
977 }
978
979 int
980 bge_ape_lock(struct bge_softc *sc, int locknum)
981 {
982 struct pci_attach_args *pa = &(sc->bge_pa);
983 uint32_t bit, gnt, req, status;
984 int i, off;
985
986 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
987 return (0);
988
989 /* Lock request/grant registers have different bases. */
990 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
991 req = BGE_APE_LOCK_REQ;
992 gnt = BGE_APE_LOCK_GRANT;
993 } else {
994 req = BGE_APE_PER_LOCK_REQ;
995 gnt = BGE_APE_PER_LOCK_GRANT;
996 }
997
998 off = 4 * locknum;
999
1000 switch (locknum) {
1001 case BGE_APE_LOCK_GPIO:
1002 /* Lock required when using GPIO. */
1003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1004 return (0);
1005 if (pa->pa_function == 0)
1006 bit = BGE_APE_LOCK_REQ_DRIVER0;
1007 else
1008 bit = (1 << pa->pa_function);
1009 break;
1010 case BGE_APE_LOCK_GRC:
1011 /* Lock required to reset the device. */
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_MEM:
1018 /* Lock required when accessing certain APE memory. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_PHY0:
1025 case BGE_APE_LOCK_PHY1:
1026 case BGE_APE_LOCK_PHY2:
1027 case BGE_APE_LOCK_PHY3:
1028 /* Lock required when accessing PHYs. */
1029 bit = BGE_APE_LOCK_REQ_DRIVER0;
1030 break;
1031 default:
1032 return (EINVAL);
1033 }
1034
1035 /* Request a lock. */
1036 APE_WRITE_4_FLUSH(sc, req + off, bit);
1037
1038 /* Wait up to 1 second to acquire lock. */
1039 for (i = 0; i < 20000; i++) {
1040 status = APE_READ_4(sc, gnt + off);
1041 if (status == bit)
1042 break;
1043 DELAY(50);
1044 }
1045
1046 /* Handle any errors. */
1047 if (status != bit) {
1048 printf("%s: APE lock %d request failed! "
1049 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1050 device_xname(sc->bge_dev),
1051 locknum, req + off, bit & 0xFFFF, gnt + off,
1052 status & 0xFFFF);
1053 /* Revoke the lock request. */
1054 APE_WRITE_4(sc, gnt + off, bit);
1055 return (EBUSY);
1056 }
1057
1058 return (0);
1059 }
1060
1061 void
1062 bge_ape_unlock(struct bge_softc *sc, int locknum)
1063 {
1064 struct pci_attach_args *pa = &(sc->bge_pa);
1065 uint32_t bit, gnt;
1066 int off;
1067
1068 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1069 return;
1070
1071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1072 gnt = BGE_APE_LOCK_GRANT;
1073 else
1074 gnt = BGE_APE_PER_LOCK_GRANT;
1075
1076 off = 4 * locknum;
1077
1078 switch (locknum) {
1079 case BGE_APE_LOCK_GPIO:
1080 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1081 return;
1082 if (pa->pa_function == 0)
1083 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1084 else
1085 bit = (1 << pa->pa_function);
1086 break;
1087 case BGE_APE_LOCK_GRC:
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_MEM:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_PHY0:
1100 case BGE_APE_LOCK_PHY1:
1101 case BGE_APE_LOCK_PHY2:
1102 case BGE_APE_LOCK_PHY3:
1103 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1104 break;
1105 default:
1106 return;
1107 }
1108
1109 /* Write and flush for consecutive bge_ape_lock() */
1110 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1111 }
1112
1113 /*
1114 * Send an event to the APE firmware.
1115 */
1116 void
1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1118 {
1119 uint32_t apedata;
1120 int i;
1121
1122 /* NCSI does not support APE events. */
1123 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1124 return;
1125
1126 /* Wait up to 1ms for APE to service previous event. */
1127 for (i = 10; i > 0; i--) {
1128 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1129 break;
1130 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1131 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1132 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1133 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1134 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1135 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1136 break;
1137 }
1138 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1139 DELAY(100);
1140 }
1141 if (i == 0) {
1142 printf("%s: APE event 0x%08x send timed out\n",
1143 device_xname(sc->bge_dev), event);
1144 }
1145 }
1146
1147 void
1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1149 {
1150 uint32_t apedata, event;
1151
1152 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1153 return;
1154
1155 switch (kind) {
1156 case BGE_RESET_START:
1157 /* If this is the first load, clear the load counter. */
1158 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1159 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1160 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1161 else {
1162 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1163 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1164 }
1165 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1166 BGE_APE_HOST_SEG_SIG_MAGIC);
1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1168 BGE_APE_HOST_SEG_LEN_MAGIC);
1169
1170 /* Add some version info if bge(4) supports it. */
1171 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1172 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1173 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1174 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1175 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1176 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1178 BGE_APE_HOST_DRVR_STATE_START);
1179 event = BGE_APE_EVENT_STATUS_STATE_START;
1180 break;
1181 case BGE_RESET_SHUTDOWN:
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1184 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1185 break;
1186 case BGE_RESET_SUSPEND:
1187 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1188 break;
1189 default:
1190 return;
1191 }
1192
1193 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1194 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1195 }
1196
1197 static uint8_t
1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1199 {
1200 uint32_t access, byte = 0;
1201 int i;
1202
1203 /* Lock. */
1204 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1205 for (i = 0; i < 8000; i++) {
1206 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1207 break;
1208 DELAY(20);
1209 }
1210 if (i == 8000)
1211 return 1;
1212
1213 /* Enable access. */
1214 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1215 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1216
1217 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1218 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1219 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1220 DELAY(10);
1221 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1222 DELAY(10);
1223 break;
1224 }
1225 }
1226
1227 if (i == BGE_TIMEOUT * 10) {
1228 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1229 return 1;
1230 }
1231
1232 /* Get result. */
1233 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1234
1235 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1236
1237 /* Disable access. */
1238 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1239
1240 /* Unlock. */
1241 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * Read a sequence of bytes from NVRAM.
1248 */
1249 static int
1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1251 {
1252 int error = 0, i;
1253 uint8_t byte = 0;
1254
1255 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1256 return 1;
1257
1258 for (i = 0; i < cnt; i++) {
1259 error = bge_nvram_getbyte(sc, off + i, &byte);
1260 if (error)
1261 break;
1262 *(dest + i) = byte;
1263 }
1264
1265 return (error ? 1 : 0);
1266 }
1267
1268 /*
1269 * Read a byte of data stored in the EEPROM at address 'addr.' The
1270 * BCM570x supports both the traditional bitbang interface and an
1271 * auto access interface for reading the EEPROM. We use the auto
1272 * access method.
1273 */
1274 static uint8_t
1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1276 {
1277 int i;
1278 uint32_t byte = 0;
1279
1280 /*
1281 * Enable use of auto EEPROM access so we can avoid
1282 * having to use the bitbang method.
1283 */
1284 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1285
1286 /* Reset the EEPROM, load the clock period. */
1287 CSR_WRITE_4(sc, BGE_EE_ADDR,
1288 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1289 DELAY(20);
1290
1291 /* Issue the read EEPROM command. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1293
1294 /* Wait for completion */
1295 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1296 DELAY(10);
1297 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1298 break;
1299 }
1300
1301 if (i == BGE_TIMEOUT * 10) {
1302 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1303 return 1;
1304 }
1305
1306 /* Get result. */
1307 byte = CSR_READ_4(sc, BGE_EE_DATA);
1308
1309 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Read a sequence of bytes from the EEPROM.
1316 */
1317 static int
1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1319 {
1320 int error = 0, i;
1321 uint8_t byte = 0;
1322 char *dest = destv;
1323
1324 for (i = 0; i < cnt; i++) {
1325 error = bge_eeprom_getbyte(sc, off + i, &byte);
1326 if (error)
1327 break;
1328 *(dest + i) = byte;
1329 }
1330
1331 return (error ? 1 : 0);
1332 }
1333
1334 static int
1335 bge_miibus_readreg(device_t dev, int phy, int reg)
1336 {
1337 struct bge_softc *sc = device_private(dev);
1338 uint32_t val;
1339 uint32_t autopoll;
1340 int i;
1341
1342 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1343 return 0;
1344
1345 /* Reading with autopolling on may trigger PCI errors */
1346 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1347 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1348 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1349 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1350 DELAY(80);
1351 }
1352
1353 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1354 BGE_MIPHY(phy) | BGE_MIREG(reg));
1355
1356 for (i = 0; i < BGE_TIMEOUT; i++) {
1357 delay(10);
1358 val = CSR_READ_4(sc, BGE_MI_COMM);
1359 if (!(val & BGE_MICOMM_BUSY)) {
1360 DELAY(5);
1361 val = CSR_READ_4(sc, BGE_MI_COMM);
1362 break;
1363 }
1364 }
1365
1366 if (i == BGE_TIMEOUT) {
1367 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1368 val = 0;
1369 goto done;
1370 }
1371
1372 done:
1373 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1374 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1375 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1376 DELAY(80);
1377 }
1378
1379 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1380
1381 if (val & BGE_MICOMM_READFAIL)
1382 return 0;
1383
1384 return (val & 0xFFFF);
1385 }
1386
1387 static void
1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1389 {
1390 struct bge_softc *sc = device_private(dev);
1391 uint32_t autopoll;
1392 int i;
1393
1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1396 return;
1397
1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 return;
1400
1401 /* Reading with autopolling on may trigger PCI errors */
1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 DELAY(80);
1407 }
1408
1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411
1412 for (i = 0; i < BGE_TIMEOUT; i++) {
1413 delay(10);
1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 delay(5);
1416 CSR_READ_4(sc, BGE_MI_COMM);
1417 break;
1418 }
1419 }
1420
1421 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 delay(80);
1425 }
1426
1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428
1429 if (i == BGE_TIMEOUT)
1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 }
1432
1433 static void
1434 bge_miibus_statchg(struct ifnet *ifp)
1435 {
1436 struct bge_softc *sc = ifp->if_softc;
1437 struct mii_data *mii = &sc->bge_mii;
1438 uint32_t mac_mode, rx_mode, tx_mode;
1439
1440 /*
1441 * Get flow control negotiation result.
1442 */
1443 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1444 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1445 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1446
1447 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1448 mii->mii_media_status & IFM_ACTIVE &&
1449 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1450 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1451 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 (!(mii->mii_media_status & IFM_ACTIVE) ||
1453 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1454 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1455
1456 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1457 return;
1458
1459 /* Set the port mode (MII/GMII) to match the link speed. */
1460 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1461 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1462 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1463 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1464 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1465 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1466 mac_mode |= BGE_PORTMODE_GMII;
1467 else
1468 mac_mode |= BGE_PORTMODE_MII;
1469
1470 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1471 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1472 if ((mii->mii_media_active & IFM_FDX) != 0) {
1473 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1474 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1475 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1476 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1477 } else
1478 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1479
1480 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1481 DELAY(40);
1482 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1483 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1484 }
1485
1486 /*
1487 * Update rx threshold levels to values in a particular slot
1488 * of the interrupt-mitigation table bge_rx_threshes.
1489 */
1490 static void
1491 bge_set_thresh(struct ifnet *ifp, int lvl)
1492 {
1493 struct bge_softc *sc = ifp->if_softc;
1494 int s;
1495
1496 /* For now, just save the new Rx-intr thresholds and record
1497 * that a threshold update is pending. Updating the hardware
1498 * registers here (even at splhigh()) is observed to
1499 * occasionaly cause glitches where Rx-interrupts are not
1500 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1501 */
1502 s = splnet();
1503 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1504 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1505 sc->bge_pending_rxintr_change = 1;
1506 splx(s);
1507 }
1508
1509
1510 /*
1511 * Update Rx thresholds of all bge devices
1512 */
1513 static void
1514 bge_update_all_threshes(int lvl)
1515 {
1516 struct ifnet *ifp;
1517 const char * const namebuf = "bge";
1518 int namelen;
1519
1520 if (lvl < 0)
1521 lvl = 0;
1522 else if (lvl >= NBGE_RX_THRESH)
1523 lvl = NBGE_RX_THRESH - 1;
1524
1525 namelen = strlen(namebuf);
1526 /*
1527 * Now search all the interfaces for this name/number
1528 */
1529 IFNET_FOREACH(ifp) {
1530 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1531 continue;
1532 /* We got a match: update if doing auto-threshold-tuning */
1533 if (bge_auto_thresh)
1534 bge_set_thresh(ifp, lvl);
1535 }
1536 }
1537
1538 /*
1539 * Handle events that have triggered interrupts.
1540 */
1541 static void
1542 bge_handle_events(struct bge_softc *sc)
1543 {
1544
1545 return;
1546 }
1547
1548 /*
1549 * Memory management for jumbo frames.
1550 */
1551
1552 static int
1553 bge_alloc_jumbo_mem(struct bge_softc *sc)
1554 {
1555 char *ptr, *kva;
1556 bus_dma_segment_t seg;
1557 int i, rseg, state, error;
1558 struct bge_jpool_entry *entry;
1559
1560 state = error = 0;
1561
1562 /* Grab a big chunk o' storage. */
1563 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1564 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1565 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1566 return ENOBUFS;
1567 }
1568
1569 state = 1;
1570 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1571 BUS_DMA_NOWAIT)) {
1572 aprint_error_dev(sc->bge_dev,
1573 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1574 error = ENOBUFS;
1575 goto out;
1576 }
1577
1578 state = 2;
1579 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1580 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1581 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1582 error = ENOBUFS;
1583 goto out;
1584 }
1585
1586 state = 3;
1587 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1588 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1589 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1590 error = ENOBUFS;
1591 goto out;
1592 }
1593
1594 state = 4;
1595 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1596 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1597
1598 SLIST_INIT(&sc->bge_jfree_listhead);
1599 SLIST_INIT(&sc->bge_jinuse_listhead);
1600
1601 /*
1602 * Now divide it up into 9K pieces and save the addresses
1603 * in an array.
1604 */
1605 ptr = sc->bge_cdata.bge_jumbo_buf;
1606 for (i = 0; i < BGE_JSLOTS; i++) {
1607 sc->bge_cdata.bge_jslots[i] = ptr;
1608 ptr += BGE_JLEN;
1609 entry = malloc(sizeof(struct bge_jpool_entry),
1610 M_DEVBUF, M_NOWAIT);
1611 if (entry == NULL) {
1612 aprint_error_dev(sc->bge_dev,
1613 "no memory for jumbo buffer queue!\n");
1614 error = ENOBUFS;
1615 goto out;
1616 }
1617 entry->slot = i;
1618 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1619 entry, jpool_entries);
1620 }
1621 out:
1622 if (error != 0) {
1623 switch (state) {
1624 case 4:
1625 bus_dmamap_unload(sc->bge_dmatag,
1626 sc->bge_cdata.bge_rx_jumbo_map);
1627 case 3:
1628 bus_dmamap_destroy(sc->bge_dmatag,
1629 sc->bge_cdata.bge_rx_jumbo_map);
1630 case 2:
1631 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1632 case 1:
1633 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1634 break;
1635 default:
1636 break;
1637 }
1638 }
1639
1640 return error;
1641 }
1642
1643 /*
1644 * Allocate a jumbo buffer.
1645 */
1646 static void *
1647 bge_jalloc(struct bge_softc *sc)
1648 {
1649 struct bge_jpool_entry *entry;
1650
1651 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1652
1653 if (entry == NULL) {
1654 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1655 return NULL;
1656 }
1657
1658 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1659 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1660 return (sc->bge_cdata.bge_jslots[entry->slot]);
1661 }
1662
1663 /*
1664 * Release a jumbo buffer.
1665 */
1666 static void
1667 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1668 {
1669 struct bge_jpool_entry *entry;
1670 struct bge_softc *sc;
1671 int i, s;
1672
1673 /* Extract the softc struct pointer. */
1674 sc = (struct bge_softc *)arg;
1675
1676 if (sc == NULL)
1677 panic("bge_jfree: can't find softc pointer!");
1678
1679 /* calculate the slot this buffer belongs to */
1680
1681 i = ((char *)buf
1682 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1683
1684 if ((i < 0) || (i >= BGE_JSLOTS))
1685 panic("bge_jfree: asked to free buffer that we don't manage!");
1686
1687 s = splvm();
1688 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1689 if (entry == NULL)
1690 panic("bge_jfree: buffer not in use!");
1691 entry->slot = i;
1692 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1693 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1694
1695 if (__predict_true(m != NULL))
1696 pool_cache_put(mb_cache, m);
1697 splx(s);
1698 }
1699
1700
1701 /*
1702 * Initialize a standard receive ring descriptor.
1703 */
1704 static int
1705 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1706 bus_dmamap_t dmamap)
1707 {
1708 struct mbuf *m_new = NULL;
1709 struct bge_rx_bd *r;
1710 int error;
1711
1712 if (dmamap == NULL) {
1713 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1714 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1715 if (error != 0)
1716 return error;
1717 }
1718
1719 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1720
1721 if (m == NULL) {
1722 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1723 if (m_new == NULL)
1724 return ENOBUFS;
1725
1726 MCLGET(m_new, M_DONTWAIT);
1727 if (!(m_new->m_flags & M_EXT)) {
1728 m_freem(m_new);
1729 return ENOBUFS;
1730 }
1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732
1733 } else {
1734 m_new = m;
1735 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1736 m_new->m_data = m_new->m_ext.ext_buf;
1737 }
1738 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1739 m_adj(m_new, ETHER_ALIGN);
1740 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1741 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1742 m_freem(m_new);
1743 return ENOBUFS;
1744 }
1745 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1746 BUS_DMASYNC_PREREAD);
1747
1748 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1749 r = &sc->bge_rdata->bge_rx_std_ring[i];
1750 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1751 r->bge_flags = BGE_RXBDFLAG_END;
1752 r->bge_len = m_new->m_len;
1753 r->bge_idx = i;
1754
1755 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1756 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1757 i * sizeof (struct bge_rx_bd),
1758 sizeof (struct bge_rx_bd),
1759 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1760
1761 return 0;
1762 }
1763
1764 /*
1765 * Initialize a jumbo receive ring descriptor. This allocates
1766 * a jumbo buffer from the pool managed internally by the driver.
1767 */
1768 static int
1769 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1770 {
1771 struct mbuf *m_new = NULL;
1772 struct bge_rx_bd *r;
1773 void *buf = NULL;
1774
1775 if (m == NULL) {
1776
1777 /* Allocate the mbuf. */
1778 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1779 if (m_new == NULL)
1780 return ENOBUFS;
1781
1782 /* Allocate the jumbo buffer */
1783 buf = bge_jalloc(sc);
1784 if (buf == NULL) {
1785 m_freem(m_new);
1786 aprint_error_dev(sc->bge_dev,
1787 "jumbo allocation failed -- packet dropped!\n");
1788 return ENOBUFS;
1789 }
1790
1791 /* Attach the buffer to the mbuf. */
1792 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1793 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1794 bge_jfree, sc);
1795 m_new->m_flags |= M_EXT_RW;
1796 } else {
1797 m_new = m;
1798 buf = m_new->m_data = m_new->m_ext.ext_buf;
1799 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1800 }
1801 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1802 m_adj(m_new, ETHER_ALIGN);
1803 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1804 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1805 BUS_DMASYNC_PREREAD);
1806 /* Set up the descriptor. */
1807 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1808 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1809 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1810 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1811 r->bge_len = m_new->m_len;
1812 r->bge_idx = i;
1813
1814 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1815 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1816 i * sizeof (struct bge_rx_bd),
1817 sizeof (struct bge_rx_bd),
1818 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1819
1820 return 0;
1821 }
1822
1823 /*
1824 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1825 * that's 1MB or memory, which is a lot. For now, we fill only the first
1826 * 256 ring entries and hope that our CPU is fast enough to keep up with
1827 * the NIC.
1828 */
1829 static int
1830 bge_init_rx_ring_std(struct bge_softc *sc)
1831 {
1832 int i;
1833
1834 if (sc->bge_flags & BGEF_RXRING_VALID)
1835 return 0;
1836
1837 for (i = 0; i < BGE_SSLOTS; i++) {
1838 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1839 return ENOBUFS;
1840 }
1841
1842 sc->bge_std = i - 1;
1843 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1844
1845 sc->bge_flags |= BGEF_RXRING_VALID;
1846
1847 return 0;
1848 }
1849
1850 static void
1851 bge_free_rx_ring_std(struct bge_softc *sc)
1852 {
1853 int i;
1854
1855 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1856 return;
1857
1858 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1859 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1860 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1861 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1862 bus_dmamap_destroy(sc->bge_dmatag,
1863 sc->bge_cdata.bge_rx_std_map[i]);
1864 }
1865 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1866 sizeof(struct bge_rx_bd));
1867 }
1868
1869 sc->bge_flags &= ~BGEF_RXRING_VALID;
1870 }
1871
1872 static int
1873 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1874 {
1875 int i;
1876 volatile struct bge_rcb *rcb;
1877
1878 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1879 return 0;
1880
1881 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1882 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1883 return ENOBUFS;
1884 }
1885
1886 sc->bge_jumbo = i - 1;
1887 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1888
1889 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1890 rcb->bge_maxlen_flags = 0;
1891 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1892
1893 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1894
1895 return 0;
1896 }
1897
1898 static void
1899 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1900 {
1901 int i;
1902
1903 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1904 return;
1905
1906 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1907 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1908 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1909 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1910 }
1911 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1912 sizeof(struct bge_rx_bd));
1913 }
1914
1915 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1916 }
1917
1918 static void
1919 bge_free_tx_ring(struct bge_softc *sc)
1920 {
1921 int i;
1922 struct txdmamap_pool_entry *dma;
1923
1924 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1925 return;
1926
1927 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1928 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1929 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1930 sc->bge_cdata.bge_tx_chain[i] = NULL;
1931 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1932 link);
1933 sc->txdma[i] = 0;
1934 }
1935 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1936 sizeof(struct bge_tx_bd));
1937 }
1938
1939 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1940 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1941 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1942 free(dma, M_DEVBUF);
1943 }
1944
1945 sc->bge_flags &= ~BGEF_TXRING_VALID;
1946 }
1947
1948 static int
1949 bge_init_tx_ring(struct bge_softc *sc)
1950 {
1951 struct ifnet *ifp = &sc->ethercom.ec_if;
1952 int i;
1953 bus_dmamap_t dmamap;
1954 bus_size_t maxsegsz;
1955 struct txdmamap_pool_entry *dma;
1956
1957 if (sc->bge_flags & BGEF_TXRING_VALID)
1958 return 0;
1959
1960 sc->bge_txcnt = 0;
1961 sc->bge_tx_saved_considx = 0;
1962
1963 /* Initialize transmit producer index for host-memory send ring. */
1964 sc->bge_tx_prodidx = 0;
1965 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1966 /* 5700 b2 errata */
1967 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1968 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1969
1970 /* NIC-memory send ring not used; initialize to zero. */
1971 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1972 /* 5700 b2 errata */
1973 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1974 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1975
1976 /* Limit DMA segment size for some chips */
1977 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1978 (ifp->if_mtu <= ETHERMTU))
1979 maxsegsz = 2048;
1980 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1981 maxsegsz = 4096;
1982 else
1983 maxsegsz = ETHER_MAX_LEN_JUMBO;
1984 SLIST_INIT(&sc->txdma_list);
1985 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1986 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1987 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1988 &dmamap))
1989 return ENOBUFS;
1990 if (dmamap == NULL)
1991 panic("dmamap NULL in bge_init_tx_ring");
1992 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1993 if (dma == NULL) {
1994 aprint_error_dev(sc->bge_dev,
1995 "can't alloc txdmamap_pool_entry\n");
1996 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1997 return ENOMEM;
1998 }
1999 dma->dmamap = dmamap;
2000 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2001 }
2002
2003 sc->bge_flags |= BGEF_TXRING_VALID;
2004
2005 return 0;
2006 }
2007
2008 static void
2009 bge_setmulti(struct bge_softc *sc)
2010 {
2011 struct ethercom *ac = &sc->ethercom;
2012 struct ifnet *ifp = &ac->ec_if;
2013 struct ether_multi *enm;
2014 struct ether_multistep step;
2015 uint32_t hashes[4] = { 0, 0, 0, 0 };
2016 uint32_t h;
2017 int i;
2018
2019 if (ifp->if_flags & IFF_PROMISC)
2020 goto allmulti;
2021
2022 /* Now program new ones. */
2023 ETHER_FIRST_MULTI(step, ac, enm);
2024 while (enm != NULL) {
2025 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2026 /*
2027 * We must listen to a range of multicast addresses.
2028 * For now, just accept all multicasts, rather than
2029 * trying to set only those filter bits needed to match
2030 * the range. (At this time, the only use of address
2031 * ranges is for IP multicast routing, for which the
2032 * range is big enough to require all bits set.)
2033 */
2034 goto allmulti;
2035 }
2036
2037 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2038
2039 /* Just want the 7 least-significant bits. */
2040 h &= 0x7f;
2041
2042 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2043 ETHER_NEXT_MULTI(step, enm);
2044 }
2045
2046 ifp->if_flags &= ~IFF_ALLMULTI;
2047 goto setit;
2048
2049 allmulti:
2050 ifp->if_flags |= IFF_ALLMULTI;
2051 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2052
2053 setit:
2054 for (i = 0; i < 4; i++)
2055 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2056 }
2057
2058 static void
2059 bge_sig_pre_reset(struct bge_softc *sc, int type)
2060 {
2061
2062 /*
2063 * Some chips don't like this so only do this if ASF is enabled
2064 */
2065 if (sc->bge_asf_mode)
2066 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2067
2068 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2069 switch (type) {
2070 case BGE_RESET_START:
2071 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2072 BGE_FW_DRV_STATE_START);
2073 break;
2074 case BGE_RESET_SHUTDOWN:
2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 BGE_FW_DRV_STATE_UNLOAD);
2077 break;
2078 case BGE_RESET_SUSPEND:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_SUSPEND);
2081 break;
2082 }
2083 }
2084
2085 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2086 bge_ape_driver_state_change(sc, type);
2087 }
2088
2089 static void
2090 bge_sig_post_reset(struct bge_softc *sc, int type)
2091 {
2092
2093 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2094 switch (type) {
2095 case BGE_RESET_START:
2096 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2097 BGE_FW_DRV_STATE_START_DONE);
2098 /* START DONE */
2099 break;
2100 case BGE_RESET_SHUTDOWN:
2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 BGE_FW_DRV_STATE_UNLOAD_DONE);
2103 break;
2104 }
2105 }
2106
2107 if (type == BGE_RESET_SHUTDOWN)
2108 bge_ape_driver_state_change(sc, type);
2109 }
2110
2111 static void
2112 bge_sig_legacy(struct bge_softc *sc, int type)
2113 {
2114
2115 if (sc->bge_asf_mode) {
2116 switch (type) {
2117 case BGE_RESET_START:
2118 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2119 BGE_FW_DRV_STATE_START);
2120 break;
2121 case BGE_RESET_SHUTDOWN:
2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 BGE_FW_DRV_STATE_UNLOAD);
2124 break;
2125 }
2126 }
2127 }
2128
2129 static void
2130 bge_wait_for_event_ack(struct bge_softc *sc)
2131 {
2132 int i;
2133
2134 /* wait up to 2500usec */
2135 for (i = 0; i < 250; i++) {
2136 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2137 BGE_RX_CPU_DRV_EVENT))
2138 break;
2139 DELAY(10);
2140 }
2141 }
2142
2143 static void
2144 bge_stop_fw(struct bge_softc *sc)
2145 {
2146
2147 if (sc->bge_asf_mode) {
2148 bge_wait_for_event_ack(sc);
2149
2150 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2151 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2152 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2153
2154 bge_wait_for_event_ack(sc);
2155 }
2156 }
2157
2158 static int
2159 bge_poll_fw(struct bge_softc *sc)
2160 {
2161 uint32_t val;
2162 int i;
2163
2164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2165 for (i = 0; i < BGE_TIMEOUT; i++) {
2166 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2167 if (val & BGE_VCPU_STATUS_INIT_DONE)
2168 break;
2169 DELAY(100);
2170 }
2171 if (i >= BGE_TIMEOUT) {
2172 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2173 return -1;
2174 }
2175 } else {
2176 /*
2177 * Poll the value location we just wrote until
2178 * we see the 1's complement of the magic number.
2179 * This indicates that the firmware initialization
2180 * is complete.
2181 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2182 */
2183 for (i = 0; i < BGE_TIMEOUT; i++) {
2184 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2185 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2186 break;
2187 DELAY(10);
2188 }
2189
2190 if ((i >= BGE_TIMEOUT)
2191 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2192 aprint_error_dev(sc->bge_dev,
2193 "firmware handshake timed out, val = %x\n", val);
2194 return -1;
2195 }
2196 }
2197
2198 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2199 /* tg3 says we have to wait extra time */
2200 delay(10 * 1000);
2201 }
2202
2203 return 0;
2204 }
2205
2206 int
2207 bge_phy_addr(struct bge_softc *sc)
2208 {
2209 struct pci_attach_args *pa = &(sc->bge_pa);
2210 int phy_addr = 1;
2211
2212 /*
2213 * PHY address mapping for various devices.
2214 *
2215 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2216 * ---------+-------+-------+-------+-------+
2217 * BCM57XX | 1 | X | X | X |
2218 * BCM5704 | 1 | X | 1 | X |
2219 * BCM5717 | 1 | 8 | 2 | 9 |
2220 * BCM5719 | 1 | 8 | 2 | 9 |
2221 * BCM5720 | 1 | 8 | 2 | 9 |
2222 *
2223 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2224 * ---------+-------+-------+-------+-------+
2225 * BCM57XX | X | X | X | X |
2226 * BCM5704 | X | X | X | X |
2227 * BCM5717 | X | X | X | X |
2228 * BCM5719 | 3 | 10 | 4 | 11 |
2229 * BCM5720 | X | X | X | X |
2230 *
2231 * Other addresses may respond but they are not
2232 * IEEE compliant PHYs and should be ignored.
2233 */
2234 switch (BGE_ASICREV(sc->bge_chipid)) {
2235 case BGE_ASICREV_BCM5717:
2236 case BGE_ASICREV_BCM5719:
2237 case BGE_ASICREV_BCM5720:
2238 phy_addr = pa->pa_function;
2239 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2240 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2241 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2242 } else {
2243 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2244 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2245 }
2246 }
2247
2248 return phy_addr;
2249 }
2250
2251 /*
2252 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2253 * self-test results.
2254 */
2255 static int
2256 bge_chipinit(struct bge_softc *sc)
2257 {
2258 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2259 int i;
2260
2261 /* Set endianness before we access any non-PCI registers. */
2262 misc_ctl = BGE_INIT;
2263 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2264 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2265 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 misc_ctl);
2267
2268 /*
2269 * Clear the MAC statistics block in the NIC's
2270 * internal memory.
2271 */
2272 for (i = BGE_STATS_BLOCK;
2273 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275
2276 for (i = BGE_STATUS_BLOCK;
2277 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279
2280 /* 5717 workaround from tg3 */
2281 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 /* Save */
2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284
2285 /* Temporary modify MODE_CTL to control TLP */
2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288
2289 /* Control TLP */
2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 BGE_TLP_PHYCTL1);
2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294
2295 /* Restore */
2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 }
2298
2299 if (BGE_IS_57765_FAMILY(sc)) {
2300 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 /* Save */
2302 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303
2304 /* Temporary modify MODE_CTL to control TLP */
2305 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 reg | BGE_MODECTL_PCIE_TLPADDR1);
2308
2309 /* Control TLP */
2310 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 BGE_TLP_PHYCTL5);
2312 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314
2315 /* Restore */
2316 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 }
2318 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322
2323 /* Save */
2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325
2326 /* Temporary modify MODE_CTL to control TLP */
2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 reg | BGE_MODECTL_PCIE_TLPADDR0);
2330
2331 /* Control TLP */
2332 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 BGE_TLP_FTSMAX);
2334 reg &= ~BGE_TLP_FTSMAX_MSK;
2335 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 reg | BGE_TLP_FTSMAX_VAL);
2337
2338 /* Restore */
2339 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 }
2341
2342 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 }
2347
2348 /* Set up the PCI DMA control register. */
2349 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 if (sc->bge_flags & BGEF_PCIE) {
2351 /* Read watermark not used, 128 bytes for write. */
2352 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 device_xname(sc->bge_dev)));
2354 if (sc->bge_mps >= 256)
2355 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 else
2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 } else if (sc->bge_flags & BGEF_PCIX) {
2359 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 device_xname(sc->bge_dev)));
2361 /* PCI-X bus */
2362 if (BGE_IS_5714_FAMILY(sc)) {
2363 /* 256 bytes for read and write. */
2364 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366
2367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 else
2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2372 /*
2373 * In the BCM5703, the DMA read watermark should
2374 * be set to less than or equal to the maximum
2375 * memory read byte count of the PCI-X command
2376 * register.
2377 */
2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2380 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2381 /* 1536 bytes for read, 384 bytes for write. */
2382 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2383 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2384 } else {
2385 /* 384 bytes for read and write. */
2386 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2387 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2388 (0x0F);
2389 }
2390
2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2393 uint32_t tmp;
2394
2395 /* Set ONEDMA_ATONCE for hardware workaround. */
2396 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2397 if (tmp == 6 || tmp == 7)
2398 dma_rw_ctl |=
2399 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2400
2401 /* Set PCI-X DMA write workaround. */
2402 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2403 }
2404 } else {
2405 /* Conventional PCI bus: 256 bytes for read and write. */
2406 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2407 device_xname(sc->bge_dev)));
2408 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2409 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2410
2411 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2412 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2413 dma_rw_ctl |= 0x0F;
2414 }
2415
2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2417 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2418 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2419 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2420
2421 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2422 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2423 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2424
2425 if (BGE_IS_57765_PLUS(sc)) {
2426 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2427 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2428 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2429
2430 /*
2431 * Enable HW workaround for controllers that misinterpret
2432 * a status tag update and leave interrupts permanently
2433 * disabled.
2434 */
2435 if (!BGE_IS_57765_FAMILY(sc) &&
2436 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2437 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2438 }
2439
2440 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2441 dma_rw_ctl);
2442
2443 /*
2444 * Set up general mode register.
2445 */
2446 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2447 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2448 /* Retain Host-2-BMC settings written by APE firmware. */
2449 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2450 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2451 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2452 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2453 }
2454 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2455 BGE_MODECTL_TX_NO_PHDR_CSUM;
2456
2457 /*
2458 * BCM5701 B5 have a bug causing data corruption when using
2459 * 64-bit DMA reads, which can be terminated early and then
2460 * completed later as 32-bit accesses, in combination with
2461 * certain bridges.
2462 */
2463 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2464 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2465 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2466
2467 /*
2468 * Tell the firmware the driver is running
2469 */
2470 if (sc->bge_asf_mode & ASF_STACKUP)
2471 mode_ctl |= BGE_MODECTL_STACKUP;
2472
2473 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2474
2475 /*
2476 * Disable memory write invalidate. Apparently it is not supported
2477 * properly by these devices.
2478 */
2479 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2480 PCI_COMMAND_INVALIDATE_ENABLE);
2481
2482 #ifdef __brokenalpha__
2483 /*
2484 * Must insure that we do not cross an 8K (bytes) boundary
2485 * for DMA reads. Our highest limit is 1K bytes. This is a
2486 * restriction on some ALPHA platforms with early revision
2487 * 21174 PCI chipsets, such as the AlphaPC 164lx
2488 */
2489 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2490 #endif
2491
2492 /* Set the timer prescaler (always 66MHz) */
2493 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2494
2495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2496 DELAY(40); /* XXX */
2497
2498 /* Put PHY into ready state */
2499 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2500 DELAY(40);
2501 }
2502
2503 return 0;
2504 }
2505
2506 static int
2507 bge_blockinit(struct bge_softc *sc)
2508 {
2509 volatile struct bge_rcb *rcb;
2510 bus_size_t rcb_addr;
2511 struct ifnet *ifp = &sc->ethercom.ec_if;
2512 bge_hostaddr taddr;
2513 uint32_t dmactl, mimode, val;
2514 int i, limit;
2515
2516 /*
2517 * Initialize the memory window pointer register so that
2518 * we can access the first 32K of internal NIC RAM. This will
2519 * allow us to set up the TX send ring RCBs and the RX return
2520 * ring RCBs, plus other things which live in NIC memory.
2521 */
2522 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2523
2524 if (!BGE_IS_5705_PLUS(sc)) {
2525 /* 57XX step 33 */
2526 /* Configure mbuf memory pool */
2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2528 BGE_BUFFPOOL_1);
2529
2530 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2532 else
2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2534
2535 /* 57XX step 34 */
2536 /* Configure DMA resource pool */
2537 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2538 BGE_DMA_DESCRIPTORS);
2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2540 }
2541
2542 /* 5718 step 11, 57XX step 35 */
2543 /*
2544 * Configure mbuf pool watermarks. New broadcom docs strongly
2545 * recommend these.
2546 */
2547 if (BGE_IS_5717_PLUS(sc)) {
2548 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2551 } else if (BGE_IS_5705_PLUS(sc)) {
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2553
2554 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2557 } else {
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2560 }
2561 } else {
2562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2563 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2565 }
2566
2567 /* 57XX step 36 */
2568 /* Configure DMA resource watermarks */
2569 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2570 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2571
2572 /* 5718 step 13, 57XX step 38 */
2573 /* Enable buffer manager */
2574 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2575 /*
2576 * Change the arbitration algorithm of TXMBUF read request to
2577 * round-robin instead of priority based for BCM5719. When
2578 * TXFIFO is almost empty, RDMA will hold its request until
2579 * TXFIFO is not almost empty.
2580 */
2581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2582 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2584 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2585 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2586 val |= BGE_BMANMODE_LOMBUF_ATTN;
2587 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2588
2589 /* 57XX step 39 */
2590 /* Poll for buffer manager start indication */
2591 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2592 DELAY(10);
2593 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2594 break;
2595 }
2596
2597 if (i == BGE_TIMEOUT * 2) {
2598 aprint_error_dev(sc->bge_dev,
2599 "buffer manager failed to start\n");
2600 return ENXIO;
2601 }
2602
2603 /* 57XX step 40 */
2604 /* Enable flow-through queues */
2605 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2606 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2607
2608 /* Wait until queue initialization is complete */
2609 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2610 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2611 break;
2612 DELAY(10);
2613 }
2614
2615 if (i == BGE_TIMEOUT * 2) {
2616 aprint_error_dev(sc->bge_dev,
2617 "flow-through queue init failed\n");
2618 return ENXIO;
2619 }
2620
2621 /*
2622 * Summary of rings supported by the controller:
2623 *
2624 * Standard Receive Producer Ring
2625 * - This ring is used to feed receive buffers for "standard"
2626 * sized frames (typically 1536 bytes) to the controller.
2627 *
2628 * Jumbo Receive Producer Ring
2629 * - This ring is used to feed receive buffers for jumbo sized
2630 * frames (i.e. anything bigger than the "standard" frames)
2631 * to the controller.
2632 *
2633 * Mini Receive Producer Ring
2634 * - This ring is used to feed receive buffers for "mini"
2635 * sized frames to the controller.
2636 * - This feature required external memory for the controller
2637 * but was never used in a production system. Should always
2638 * be disabled.
2639 *
2640 * Receive Return Ring
2641 * - After the controller has placed an incoming frame into a
2642 * receive buffer that buffer is moved into a receive return
2643 * ring. The driver is then responsible to passing the
2644 * buffer up to the stack. Many versions of the controller
2645 * support multiple RR rings.
2646 *
2647 * Send Ring
2648 * - This ring is used for outgoing frames. Many versions of
2649 * the controller support multiple send rings.
2650 */
2651
2652 /* 5718 step 15, 57XX step 41 */
2653 /* Initialize the standard RX ring control block */
2654 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2655 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2656 /* 5718 step 16 */
2657 if (BGE_IS_57765_PLUS(sc)) {
2658 /*
2659 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2660 * Bits 15-2 : Maximum RX frame size
2661 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2662 * Bit 0 : Reserved
2663 */
2664 rcb->bge_maxlen_flags =
2665 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2666 } else if (BGE_IS_5705_PLUS(sc)) {
2667 /*
2668 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2669 * Bits 15-2 : Reserved (should be 0)
2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2671 * Bit 0 : Reserved
2672 */
2673 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2674 } else {
2675 /*
2676 * Ring size is always XXX entries
2677 * Bits 31-16: Maximum RX frame size
2678 * Bits 15-2 : Reserved (should be 0)
2679 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2680 * Bit 0 : Reserved
2681 */
2682 rcb->bge_maxlen_flags =
2683 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2684 }
2685 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2686 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2687 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2688 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2689 else
2690 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2691 /* Write the standard receive producer ring control block. */
2692 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2693 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2694 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2696
2697 /* Reset the standard receive producer ring producer index. */
2698 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2699
2700 /* 57XX step 42 */
2701 /*
2702 * Initialize the jumbo RX ring control block
2703 * We set the 'ring disabled' bit in the flags
2704 * field until we're actually ready to start
2705 * using this ring (i.e. once we set the MTU
2706 * high enough to require it).
2707 */
2708 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2709 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2710 BGE_HOSTADDR(rcb->bge_hostaddr,
2711 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2712 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2713 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2715 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2716 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2717 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2718 else
2719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2720 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2721 rcb->bge_hostaddr.bge_addr_hi);
2722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2723 rcb->bge_hostaddr.bge_addr_lo);
2724 /* Program the jumbo receive producer ring RCB parameters. */
2725 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2726 rcb->bge_maxlen_flags);
2727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2728 /* Reset the jumbo receive producer ring producer index. */
2729 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2730 }
2731
2732 /* 57XX step 43 */
2733 /* Disable the mini receive producer ring RCB. */
2734 if (BGE_IS_5700_FAMILY(sc)) {
2735 /* Set up dummy disabled mini ring RCB */
2736 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2737 rcb->bge_maxlen_flags =
2738 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2739 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2740 rcb->bge_maxlen_flags);
2741 /* Reset the mini receive producer ring producer index. */
2742 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2743
2744 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2745 offsetof(struct bge_ring_data, bge_info),
2746 sizeof (struct bge_gib),
2747 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2748 }
2749
2750 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2752 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2753 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2754 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2755 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2756 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2757 }
2758 /* 5718 step 14, 57XX step 44 */
2759 /*
2760 * The BD ring replenish thresholds control how often the
2761 * hardware fetches new BD's from the producer rings in host
2762 * memory. Setting the value too low on a busy system can
2763 * starve the hardware and recue the throughpout.
2764 *
2765 * Set the BD ring replenish thresholds. The recommended
2766 * values are 1/8th the number of descriptors allocated to
2767 * each ring, but since we try to avoid filling the entire
2768 * ring we set these to the minimal value of 8. This needs to
2769 * be done on several of the supported chip revisions anyway,
2770 * to work around HW bugs.
2771 */
2772 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2773 if (BGE_IS_JUMBO_CAPABLE(sc))
2774 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2775
2776 /* 5718 step 18 */
2777 if (BGE_IS_5717_PLUS(sc)) {
2778 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2779 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2780 }
2781
2782 /* 57XX step 45 */
2783 /*
2784 * Disable all send rings by setting the 'ring disabled' bit
2785 * in the flags field of all the TX send ring control blocks,
2786 * located in NIC memory.
2787 */
2788 if (BGE_IS_5700_FAMILY(sc)) {
2789 /* 5700 to 5704 had 16 send rings. */
2790 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2791 } else if (BGE_IS_5717_PLUS(sc)) {
2792 limit = BGE_TX_RINGS_5717_MAX;
2793 } else if (BGE_IS_57765_FAMILY(sc)) {
2794 limit = BGE_TX_RINGS_57765_MAX;
2795 } else
2796 limit = 1;
2797 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2798 for (i = 0; i < limit; i++) {
2799 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2800 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2801 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2802 rcb_addr += sizeof(struct bge_rcb);
2803 }
2804
2805 /* 57XX step 46 and 47 */
2806 /* Configure send ring RCB 0 (we use only the first ring) */
2807 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2808 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2809 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2810 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2812 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2813 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2814 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2815 else
2816 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2817 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2818 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2819 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2820
2821 /* 57XX step 48 */
2822 /*
2823 * Disable all receive return rings by setting the
2824 * 'ring diabled' bit in the flags field of all the receive
2825 * return ring control blocks, located in NIC memory.
2826 */
2827 if (BGE_IS_5717_PLUS(sc)) {
2828 /* Should be 17, use 16 until we get an SRAM map. */
2829 limit = 16;
2830 } else if (BGE_IS_5700_FAMILY(sc))
2831 limit = BGE_RX_RINGS_MAX;
2832 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2833 BGE_IS_57765_FAMILY(sc))
2834 limit = 4;
2835 else
2836 limit = 1;
2837 /* Disable all receive return rings */
2838 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2839 for (i = 0; i < limit; i++) {
2840 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2841 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2842 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2843 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2844 BGE_RCB_FLAG_RING_DISABLED));
2845 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2846 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2847 (i * (sizeof(uint64_t))), 0);
2848 rcb_addr += sizeof(struct bge_rcb);
2849 }
2850
2851 /* 57XX step 49 */
2852 /*
2853 * Set up receive return ring 0. Note that the NIC address
2854 * for RX return rings is 0x0. The return rings live entirely
2855 * within the host, so the nicaddr field in the RCB isn't used.
2856 */
2857 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2858 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2859 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2860 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2861 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2862 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2863 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2864
2865 /* 5718 step 24, 57XX step 53 */
2866 /* Set random backoff seed for TX */
2867 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2868 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2869 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2870 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2871 BGE_TX_BACKOFF_SEED_MASK);
2872
2873 /* 5718 step 26, 57XX step 55 */
2874 /* Set inter-packet gap */
2875 val = 0x2620;
2876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2877 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2878 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2879 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2880
2881 /* 5718 step 27, 57XX step 56 */
2882 /*
2883 * Specify which ring to use for packets that don't match
2884 * any RX rules.
2885 */
2886 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2887
2888 /* 5718 step 28, 57XX step 57 */
2889 /*
2890 * Configure number of RX lists. One interrupt distribution
2891 * list, sixteen active lists, one bad frames class.
2892 */
2893 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2894
2895 /* 5718 step 29, 57XX step 58 */
2896 /* Inialize RX list placement stats mask. */
2897 if (BGE_IS_575X_PLUS(sc)) {
2898 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2899 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2900 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2901 } else
2902 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2903
2904 /* 5718 step 30, 57XX step 59 */
2905 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2906
2907 /* 5718 step 33, 57XX step 62 */
2908 /* Disable host coalescing until we get it set up */
2909 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2910
2911 /* 5718 step 34, 57XX step 63 */
2912 /* Poll to make sure it's shut down. */
2913 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2914 DELAY(10);
2915 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2916 break;
2917 }
2918
2919 if (i == BGE_TIMEOUT * 2) {
2920 aprint_error_dev(sc->bge_dev,
2921 "host coalescing engine failed to idle\n");
2922 return ENXIO;
2923 }
2924
2925 /* 5718 step 35, 36, 37 */
2926 /* Set up host coalescing defaults */
2927 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2928 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2929 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2930 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2931 if (!(BGE_IS_5705_PLUS(sc))) {
2932 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2933 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2934 }
2935 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2936 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2937
2938 /* Set up address of statistics block */
2939 if (BGE_IS_5700_FAMILY(sc)) {
2940 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2941 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2942 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2943 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2944 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2945 }
2946
2947 /* 5718 step 38 */
2948 /* Set up address of status block */
2949 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2950 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2951 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2952 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2953 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2954 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2955
2956 /* Set up status block size. */
2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2958 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2959 val = BGE_STATBLKSZ_FULL;
2960 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2961 } else {
2962 val = BGE_STATBLKSZ_32BYTE;
2963 bzero(&sc->bge_rdata->bge_status_block, 32);
2964 }
2965
2966 /* 5718 step 39, 57XX step 73 */
2967 /* Turn on host coalescing state machine */
2968 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2969
2970 /* 5718 step 40, 57XX step 74 */
2971 /* Turn on RX BD completion state machine and enable attentions */
2972 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2973 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2974
2975 /* 5718 step 41, 57XX step 75 */
2976 /* Turn on RX list placement state machine */
2977 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2978
2979 /* 57XX step 76 */
2980 /* Turn on RX list selector state machine. */
2981 if (!(BGE_IS_5705_PLUS(sc)))
2982 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2983
2984 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2985 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2986 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2987 BGE_MACMODE_FRMHDR_DMA_ENB;
2988
2989 if (sc->bge_flags & BGEF_FIBER_TBI)
2990 val |= BGE_PORTMODE_TBI;
2991 else if (sc->bge_flags & BGEF_FIBER_MII)
2992 val |= BGE_PORTMODE_GMII;
2993 else
2994 val |= BGE_PORTMODE_MII;
2995
2996 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2997 /* Allow APE to send/receive frames. */
2998 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2999 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3000
3001 /* Turn on DMA, clear stats */
3002 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3003 /* 5718 step 44 */
3004 DELAY(40);
3005
3006 /* 5718 step 45, 57XX step 79 */
3007 /* Set misc. local control, enable interrupts on attentions */
3008 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3009 if (BGE_IS_5717_PLUS(sc)) {
3010 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3011 /* 5718 step 46 */
3012 DELAY(100);
3013 }
3014
3015 /* 57XX step 81 */
3016 /* Turn on DMA completion state machine */
3017 if (!(BGE_IS_5705_PLUS(sc)))
3018 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3019
3020 /* 5718 step 47, 57XX step 82 */
3021 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3022
3023 /* 5718 step 48 */
3024 /* Enable host coalescing bug fix. */
3025 if (BGE_IS_5755_PLUS(sc))
3026 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3027
3028 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3029 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3030
3031 /* Turn on write DMA state machine */
3032 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3033 /* 5718 step 49 */
3034 DELAY(40);
3035
3036 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3037
3038 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3039 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3040
3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3042 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3044 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3045 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3046 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3047
3048 if (sc->bge_flags & BGEF_PCIE)
3049 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3050 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3051 if (ifp->if_mtu <= ETHERMTU)
3052 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3053 }
3054 if (sc->bge_flags & BGEF_TSO)
3055 val |= BGE_RDMAMODE_TSO4_ENABLE;
3056
3057 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3058 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3059 BGE_RDMAMODE_H2BNC_VLAN_DET;
3060 /*
3061 * Allow multiple outstanding read requests from
3062 * non-LSO read DMA engine.
3063 */
3064 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3065 }
3066
3067 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3068 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3069 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3070 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3071 BGE_IS_57765_PLUS(sc)) {
3072 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3073 /*
3074 * Adjust tx margin to prevent TX data corruption and
3075 * fix internal FIFO overflow.
3076 */
3077 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3078 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3079 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3080 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3081 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3082 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3083 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3084 }
3085 /*
3086 * Enable fix for read DMA FIFO overruns.
3087 * The fix is to limit the number of RX BDs
3088 * the hardware would fetch at a fime.
3089 */
3090 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3091 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3092 }
3093
3094 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3095 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3098 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3100 /*
3101 * Allow 4KB burst length reads for non-LSO frames.
3102 * Enable 512B burst length reads for buffer descriptors.
3103 */
3104 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3105 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3106 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3107 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3108 }
3109
3110 /* Turn on read DMA state machine */
3111 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3112 /* 5718 step 52 */
3113 delay(40);
3114
3115 /* 5718 step 56, 57XX step 84 */
3116 /* Turn on RX data completion state machine */
3117 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3118
3119 /* Turn on RX data and RX BD initiator state machine */
3120 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3121
3122 /* 57XX step 85 */
3123 /* Turn on Mbuf cluster free state machine */
3124 if (!BGE_IS_5705_PLUS(sc))
3125 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3126
3127 /* 5718 step 57, 57XX step 86 */
3128 /* Turn on send data completion state machine */
3129 val = BGE_SDCMODE_ENABLE;
3130 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3131 val |= BGE_SDCMODE_CDELAY;
3132 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3133
3134 /* 5718 step 58 */
3135 /* Turn on send BD completion state machine */
3136 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3137
3138 /* 57XX step 88 */
3139 /* Turn on RX BD initiator state machine */
3140 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3141
3142 /* 5718 step 60, 57XX step 90 */
3143 /* Turn on send data initiator state machine */
3144 if (sc->bge_flags & BGEF_TSO) {
3145 /* XXX: magic value from Linux driver */
3146 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3147 BGE_SDIMODE_HW_LSO_PRE_DMA);
3148 } else
3149 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3150
3151 /* 5718 step 61, 57XX step 91 */
3152 /* Turn on send BD initiator state machine */
3153 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3154
3155 /* 5718 step 62, 57XX step 92 */
3156 /* Turn on send BD selector state machine */
3157 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3158
3159 /* 5718 step 31, 57XX step 60 */
3160 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3161 /* 5718 step 32, 57XX step 61 */
3162 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3163 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3164
3165 /* ack/clear link change events */
3166 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3167 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3168 BGE_MACSTAT_LINK_CHANGED);
3169 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3170
3171 /*
3172 * Enable attention when the link has changed state for
3173 * devices that use auto polling.
3174 */
3175 if (sc->bge_flags & BGEF_FIBER_TBI) {
3176 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3177 } else {
3178 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3179 mimode = BGE_MIMODE_500KHZ_CONST;
3180 else
3181 mimode = BGE_MIMODE_BASE;
3182 /* 5718 step 68. 5718 step 69 (optionally). */
3183 if (BGE_IS_5700_FAMILY(sc) ||
3184 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3185 mimode |= BGE_MIMODE_AUTOPOLL;
3186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3187 }
3188 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3189 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3190 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3191 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3192 BGE_EVTENB_MI_INTERRUPT);
3193 }
3194
3195 /*
3196 * Clear any pending link state attention.
3197 * Otherwise some link state change events may be lost until attention
3198 * is cleared by bge_intr() -> bge_link_upd() sequence.
3199 * It's not necessary on newer BCM chips - perhaps enabling link
3200 * state change attentions implies clearing pending attention.
3201 */
3202 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3203 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3204 BGE_MACSTAT_LINK_CHANGED);
3205
3206 /* Enable link state change attentions. */
3207 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3208
3209 return 0;
3210 }
3211
3212 static const struct bge_revision *
3213 bge_lookup_rev(uint32_t chipid)
3214 {
3215 const struct bge_revision *br;
3216
3217 for (br = bge_revisions; br->br_name != NULL; br++) {
3218 if (br->br_chipid == chipid)
3219 return br;
3220 }
3221
3222 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3223 if (br->br_chipid == BGE_ASICREV(chipid))
3224 return br;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 static const struct bge_product *
3231 bge_lookup(const struct pci_attach_args *pa)
3232 {
3233 const struct bge_product *bp;
3234
3235 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3236 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3237 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3238 return bp;
3239 }
3240
3241 return NULL;
3242 }
3243
3244 static uint32_t
3245 bge_chipid(const struct pci_attach_args *pa)
3246 {
3247 uint32_t id;
3248
3249 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3250 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3251
3252 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3253 switch (PCI_PRODUCT(pa->pa_id)) {
3254 case PCI_PRODUCT_BROADCOM_BCM5717:
3255 case PCI_PRODUCT_BROADCOM_BCM5718:
3256 case PCI_PRODUCT_BROADCOM_BCM5719:
3257 case PCI_PRODUCT_BROADCOM_BCM5720:
3258 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3259 BGE_PCI_GEN2_PRODID_ASICREV);
3260 break;
3261 case PCI_PRODUCT_BROADCOM_BCM57761:
3262 case PCI_PRODUCT_BROADCOM_BCM57762:
3263 case PCI_PRODUCT_BROADCOM_BCM57765:
3264 case PCI_PRODUCT_BROADCOM_BCM57766:
3265 case PCI_PRODUCT_BROADCOM_BCM57781:
3266 case PCI_PRODUCT_BROADCOM_BCM57785:
3267 case PCI_PRODUCT_BROADCOM_BCM57791:
3268 case PCI_PRODUCT_BROADCOM_BCM57795:
3269 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3270 BGE_PCI_GEN15_PRODID_ASICREV);
3271 break;
3272 default:
3273 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3274 BGE_PCI_PRODID_ASICREV);
3275 break;
3276 }
3277 }
3278
3279 return id;
3280 }
3281
3282 /*
3283 * Return true if MSI can be used with this device.
3284 */
3285 static int
3286 bge_can_use_msi(struct bge_softc *sc)
3287 {
3288 int can_use_msi = 0;
3289
3290 switch (BGE_ASICREV(sc->bge_chipid)) {
3291 case BGE_ASICREV_BCM5714_A0:
3292 case BGE_ASICREV_BCM5714:
3293 /*
3294 * Apparently, MSI doesn't work when these chips are
3295 * configured in single-port mode.
3296 */
3297 break;
3298 case BGE_ASICREV_BCM5750:
3299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3300 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3301 can_use_msi = 1;
3302 break;
3303 default:
3304 if (BGE_IS_575X_PLUS(sc))
3305 can_use_msi = 1;
3306 }
3307 return (can_use_msi);
3308 }
3309
3310 /*
3311 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3312 * against our list and return its name if we find a match. Note
3313 * that since the Broadcom controller contains VPD support, we
3314 * can get the device name string from the controller itself instead
3315 * of the compiled-in string. This is a little slow, but it guarantees
3316 * we'll always announce the right product name.
3317 */
3318 static int
3319 bge_probe(device_t parent, cfdata_t match, void *aux)
3320 {
3321 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3322
3323 if (bge_lookup(pa) != NULL)
3324 return 1;
3325
3326 return 0;
3327 }
3328
3329 static void
3330 bge_attach(device_t parent, device_t self, void *aux)
3331 {
3332 struct bge_softc *sc = device_private(self);
3333 struct pci_attach_args *pa = aux;
3334 prop_dictionary_t dict;
3335 const struct bge_product *bp;
3336 const struct bge_revision *br;
3337 pci_chipset_tag_t pc;
3338 int counts[PCI_INTR_TYPE_SIZE];
3339 pci_intr_type_t intr_type, max_type;
3340 const char *intrstr = NULL;
3341 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3342 uint32_t command;
3343 struct ifnet *ifp;
3344 uint32_t misccfg, mimode;
3345 void * kva;
3346 u_char eaddr[ETHER_ADDR_LEN];
3347 pcireg_t memtype, subid, reg;
3348 bus_addr_t memaddr;
3349 uint32_t pm_ctl;
3350 bool no_seeprom;
3351 int capmask;
3352 int mii_flags;
3353 int map_flags;
3354 char intrbuf[PCI_INTRSTR_LEN];
3355
3356 bp = bge_lookup(pa);
3357 KASSERT(bp != NULL);
3358
3359 sc->sc_pc = pa->pa_pc;
3360 sc->sc_pcitag = pa->pa_tag;
3361 sc->bge_dev = self;
3362
3363 sc->bge_pa = *pa;
3364 pc = sc->sc_pc;
3365 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3366
3367 aprint_naive(": Ethernet controller\n");
3368 aprint_normal(": %s\n", bp->bp_name);
3369
3370 /*
3371 * Map control/status registers.
3372 */
3373 DPRINTFN(5, ("Map control/status regs\n"));
3374 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3375 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3376 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3377 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3378
3379 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3380 aprint_error_dev(sc->bge_dev,
3381 "failed to enable memory mapping!\n");
3382 return;
3383 }
3384
3385 DPRINTFN(5, ("pci_mem_find\n"));
3386 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3387 switch (memtype) {
3388 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3389 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3390 #if 0
3391 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3392 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3393 &memaddr, &sc->bge_bsize) == 0)
3394 break;
3395 #else
3396 /*
3397 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3398 * system get NMI on boot (PR#48451). This problem might not be
3399 * the driver's bug but our PCI common part's bug. Until we
3400 * find a real reason, we ignore the prefetchable bit.
3401 */
3402 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3403 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3404 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3405 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3406 map_flags, &sc->bge_bhandle) == 0) {
3407 sc->bge_btag = pa->pa_memt;
3408 break;
3409 }
3410 }
3411 #endif
3412 default:
3413 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3414 return;
3415 }
3416
3417 /* Save various chip information. */
3418 sc->bge_chipid = bge_chipid(pa);
3419 sc->bge_phy_addr = bge_phy_addr(sc);
3420
3421 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3422 &sc->bge_pciecap, NULL) != 0)
3423 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3424 /* PCIe */
3425 sc->bge_flags |= BGEF_PCIE;
3426 /* Extract supported maximum payload size. */
3427 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3428 sc->bge_pciecap + PCIE_DCAP);
3429 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3430 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3431 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3432 sc->bge_expmrq = 2048;
3433 else
3434 sc->bge_expmrq = 4096;
3435 bge_set_max_readrq(sc);
3436 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3437 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3438 /* PCI-X */
3439 sc->bge_flags |= BGEF_PCIX;
3440 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3441 &sc->bge_pcixcap, NULL) == 0)
3442 aprint_error_dev(sc->bge_dev,
3443 "unable to find PCIX capability\n");
3444 }
3445
3446 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3447 /*
3448 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3449 * can clobber the chip's PCI config-space power control
3450 * registers, leaving the card in D3 powersave state. We do
3451 * not have memory-mapped registers in this state, so force
3452 * device into D0 state before starting initialization.
3453 */
3454 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3455 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3456 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3457 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3458 DELAY(1000); /* 27 usec is allegedly sufficent */
3459 }
3460
3461 /* Save chipset family. */
3462 switch (BGE_ASICREV(sc->bge_chipid)) {
3463 case BGE_ASICREV_BCM5717:
3464 case BGE_ASICREV_BCM5719:
3465 case BGE_ASICREV_BCM5720:
3466 sc->bge_flags |= BGEF_5717_PLUS;
3467 /* FALLTHROUGH */
3468 case BGE_ASICREV_BCM57765:
3469 case BGE_ASICREV_BCM57766:
3470 if (!BGE_IS_5717_PLUS(sc))
3471 sc->bge_flags |= BGEF_57765_FAMILY;
3472 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3473 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3474 /* Jumbo frame on BCM5719 A0 does not work. */
3475 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3476 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3477 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3478 break;
3479 case BGE_ASICREV_BCM5755:
3480 case BGE_ASICREV_BCM5761:
3481 case BGE_ASICREV_BCM5784:
3482 case BGE_ASICREV_BCM5785:
3483 case BGE_ASICREV_BCM5787:
3484 case BGE_ASICREV_BCM57780:
3485 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3486 break;
3487 case BGE_ASICREV_BCM5700:
3488 case BGE_ASICREV_BCM5701:
3489 case BGE_ASICREV_BCM5703:
3490 case BGE_ASICREV_BCM5704:
3491 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3492 break;
3493 case BGE_ASICREV_BCM5714_A0:
3494 case BGE_ASICREV_BCM5780:
3495 case BGE_ASICREV_BCM5714:
3496 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3497 /* FALLTHROUGH */
3498 case BGE_ASICREV_BCM5750:
3499 case BGE_ASICREV_BCM5752:
3500 case BGE_ASICREV_BCM5906:
3501 sc->bge_flags |= BGEF_575X_PLUS;
3502 /* FALLTHROUGH */
3503 case BGE_ASICREV_BCM5705:
3504 sc->bge_flags |= BGEF_5705_PLUS;
3505 break;
3506 }
3507
3508 /* Identify chips with APE processor. */
3509 switch (BGE_ASICREV(sc->bge_chipid)) {
3510 case BGE_ASICREV_BCM5717:
3511 case BGE_ASICREV_BCM5719:
3512 case BGE_ASICREV_BCM5720:
3513 case BGE_ASICREV_BCM5761:
3514 sc->bge_flags |= BGEF_APE;
3515 break;
3516 }
3517
3518 /*
3519 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3520 * not actually a MAC controller bug but an issue with the embedded
3521 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3522 */
3523 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3524 sc->bge_flags |= BGEF_40BIT_BUG;
3525
3526 /* Chips with APE need BAR2 access for APE registers/memory. */
3527 if ((sc->bge_flags & BGEF_APE) != 0) {
3528 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3529 #if 0
3530 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3531 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3532 &sc->bge_apesize)) {
3533 aprint_error_dev(sc->bge_dev,
3534 "couldn't map BAR2 memory\n");
3535 return;
3536 }
3537 #else
3538 /*
3539 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3540 * system get NMI on boot (PR#48451). This problem might not be
3541 * the driver's bug but our PCI common part's bug. Until we
3542 * find a real reason, we ignore the prefetchable bit.
3543 */
3544 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3545 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3546 aprint_error_dev(sc->bge_dev,
3547 "couldn't map BAR2 memory\n");
3548 return;
3549 }
3550
3551 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3552 if (bus_space_map(pa->pa_memt, memaddr,
3553 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3554 aprint_error_dev(sc->bge_dev,
3555 "couldn't map BAR2 memory\n");
3556 return;
3557 }
3558 sc->bge_apetag = pa->pa_memt;
3559 #endif
3560
3561 /* Enable APE register/memory access by host driver. */
3562 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3563 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3564 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3565 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3566 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3567
3568 bge_ape_lock_init(sc);
3569 bge_ape_read_fw_ver(sc);
3570 }
3571
3572 /* Identify the chips that use an CPMU. */
3573 if (BGE_IS_5717_PLUS(sc) ||
3574 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3576 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3577 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3578 sc->bge_flags |= BGEF_CPMU_PRESENT;
3579
3580 /* Set MI_MODE */
3581 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3582 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3583 mimode |= BGE_MIMODE_500KHZ_CONST;
3584 else
3585 mimode |= BGE_MIMODE_BASE;
3586 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3587
3588 /*
3589 * When using the BCM5701 in PCI-X mode, data corruption has
3590 * been observed in the first few bytes of some received packets.
3591 * Aligning the packet buffer in memory eliminates the corruption.
3592 * Unfortunately, this misaligns the packet payloads. On platforms
3593 * which do not support unaligned accesses, we will realign the
3594 * payloads by copying the received packets.
3595 */
3596 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3597 sc->bge_flags & BGEF_PCIX)
3598 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3599
3600 if (BGE_IS_5700_FAMILY(sc))
3601 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3602
3603 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3604 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3605
3606 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3607 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3608 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3609 sc->bge_flags |= BGEF_IS_5788;
3610
3611 /*
3612 * Some controllers seem to require a special firmware to use
3613 * TSO. But the firmware is not available to FreeBSD and Linux
3614 * claims that the TSO performed by the firmware is slower than
3615 * hardware based TSO. Moreover the firmware based TSO has one
3616 * known bug which can't handle TSO if ethernet header + IP/TCP
3617 * header is greater than 80 bytes. The workaround for the TSO
3618 * bug exist but it seems it's too expensive than not using
3619 * TSO at all. Some hardwares also have the TSO bug so limit
3620 * the TSO to the controllers that are not affected TSO issues
3621 * (e.g. 5755 or higher).
3622 */
3623 if (BGE_IS_5755_PLUS(sc)) {
3624 /*
3625 * BCM5754 and BCM5787 shares the same ASIC id so
3626 * explicit device id check is required.
3627 */
3628 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3629 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3630 sc->bge_flags |= BGEF_TSO;
3631 }
3632
3633 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3634 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3635 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3636 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3637 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3638 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3639 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3640 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3641 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3642 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3643 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3644 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3645 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3646 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3647 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3649 /* These chips are 10/100 only. */
3650 capmask &= ~BMSR_EXTSTAT;
3651 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3652 }
3653
3654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3655 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3656 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3657 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3658 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3659
3660 /* Set various PHY bug flags. */
3661 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3662 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3663 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3664 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3665 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3666 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3667 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3668 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3669 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3670 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3671 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3672 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3673 if (BGE_IS_5705_PLUS(sc) &&
3674 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3675 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3676 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3677 !BGE_IS_57765_PLUS(sc)) {
3678 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3680 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3681 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3682 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3683 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3684 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3685 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3686 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3687 } else
3688 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3689 }
3690
3691 /*
3692 * SEEPROM check.
3693 * First check if firmware knows we do not have SEEPROM.
3694 */
3695 if (prop_dictionary_get_bool(device_properties(self),
3696 "without-seeprom", &no_seeprom) && no_seeprom)
3697 sc->bge_flags |= BGEF_NO_EEPROM;
3698
3699 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3700 sc->bge_flags |= BGEF_NO_EEPROM;
3701
3702 /* Now check the 'ROM failed' bit on the RX CPU */
3703 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3704 sc->bge_flags |= BGEF_NO_EEPROM;
3705
3706 sc->bge_asf_mode = 0;
3707 /* No ASF if APE present. */
3708 if ((sc->bge_flags & BGEF_APE) == 0) {
3709 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3710 BGE_SRAM_DATA_SIG_MAGIC)) {
3711 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3712 BGE_HWCFG_ASF) {
3713 sc->bge_asf_mode |= ASF_ENABLE;
3714 sc->bge_asf_mode |= ASF_STACKUP;
3715 if (BGE_IS_575X_PLUS(sc))
3716 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3717 }
3718 }
3719 }
3720
3721 /* MSI-X will be used in future */
3722 counts[PCI_INTR_TYPE_MSI] = 1;
3723 counts[PCI_INTR_TYPE_INTX] = 1;
3724 /* Check MSI capability */
3725 if (bge_can_use_msi(sc) != 0) {
3726 max_type = PCI_INTR_TYPE_MSI;
3727 sc->bge_flags |= BGEF_MSI;
3728 } else
3729 max_type = PCI_INTR_TYPE_INTX;
3730
3731 alloc_retry:
3732 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3733 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3734 return;
3735 }
3736
3737 DPRINTFN(5, ("pci_intr_string\n"));
3738 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3739 sizeof(intrbuf));
3740 DPRINTFN(5, ("pci_intr_establish\n"));
3741 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3742 bge_intr, sc);
3743 if (sc->bge_intrhand == NULL) {
3744 intr_type = pci_intr_type(sc->bge_pihp[0]);
3745 aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
3746 (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
3747 pci_intr_release(pc, sc->bge_pihp, 1);
3748 switch (intr_type) {
3749 case PCI_INTR_TYPE_MSI:
3750 /* The next try is for INTx: Disable MSI */
3751 max_type = PCI_INTR_TYPE_INTX;
3752 counts[PCI_INTR_TYPE_INTX] = 1;
3753 sc->bge_flags &= ~BGEF_MSI;
3754 goto alloc_retry;
3755 case PCI_INTR_TYPE_INTX:
3756 default:
3757 /* See below */
3758 break;
3759 }
3760 }
3761
3762 if (sc->bge_intrhand == NULL) {
3763 aprint_error_dev(sc->bge_dev,
3764 "couldn't establish interrupt%s%s\n",
3765 intrstr ? " at " : "", intrstr ? intrstr : "");
3766 return;
3767 }
3768 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3769
3770 /*
3771 * All controllers except BCM5700 supports tagged status but
3772 * we use tagged status only for MSI case on BCM5717. Otherwise
3773 * MSI on BCM5717 does not work.
3774 */
3775 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3776 sc->bge_flags |= BGEF_TAGGED_STATUS;
3777
3778 /*
3779 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3780 * lock in bge_reset().
3781 */
3782 CSR_WRITE_4(sc, BGE_EE_ADDR,
3783 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3784 delay(1000);
3785 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3786
3787 bge_stop_fw(sc);
3788 bge_sig_pre_reset(sc, BGE_RESET_START);
3789 if (bge_reset(sc))
3790 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3791
3792 /*
3793 * Read the hardware config word in the first 32k of NIC internal
3794 * memory, or fall back to the config word in the EEPROM.
3795 * Note: on some BCM5700 cards, this value appears to be unset.
3796 */
3797 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3798 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3799 BGE_SRAM_DATA_SIG_MAGIC) {
3800 uint32_t tmp;
3801
3802 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3803 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3804 BGE_SRAM_DATA_VER_SHIFT;
3805 if ((0 < tmp) && (tmp < 0x100))
3806 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3807 if (sc->bge_flags & BGEF_PCIE)
3808 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3809 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3810 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3811 if (BGE_IS_5717_PLUS(sc))
3812 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3813 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3814 bge_read_eeprom(sc, (void *)&hwcfg,
3815 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3816 hwcfg = be32toh(hwcfg);
3817 }
3818 aprint_normal_dev(sc->bge_dev,
3819 "HW config %08x, %08x, %08x, %08x %08x\n",
3820 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3821
3822 bge_sig_legacy(sc, BGE_RESET_START);
3823 bge_sig_post_reset(sc, BGE_RESET_START);
3824
3825 if (bge_chipinit(sc)) {
3826 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3827 bge_release_resources(sc);
3828 return;
3829 }
3830
3831 /*
3832 * Get station address from the EEPROM.
3833 */
3834 if (bge_get_eaddr(sc, eaddr)) {
3835 aprint_error_dev(sc->bge_dev,
3836 "failed to read station address\n");
3837 bge_release_resources(sc);
3838 return;
3839 }
3840
3841 br = bge_lookup_rev(sc->bge_chipid);
3842
3843 if (br == NULL) {
3844 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3845 sc->bge_chipid);
3846 } else {
3847 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3848 br->br_name, sc->bge_chipid);
3849 }
3850 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3851
3852 /* Allocate the general information block and ring buffers. */
3853 if (pci_dma64_available(pa))
3854 sc->bge_dmatag = pa->pa_dmat64;
3855 else
3856 sc->bge_dmatag = pa->pa_dmat;
3857
3858 /* 40bit DMA workaround */
3859 if (sizeof(bus_addr_t) > 4) {
3860 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3861 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3862
3863 if (bus_dmatag_subregion(olddmatag, 0,
3864 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3865 BUS_DMA_NOWAIT) != 0) {
3866 aprint_error_dev(self,
3867 "WARNING: failed to restrict dma range,"
3868 " falling back to parent bus dma range\n");
3869 sc->bge_dmatag = olddmatag;
3870 }
3871 }
3872 }
3873 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3874 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3875 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3876 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3877 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3878 return;
3879 }
3880 DPRINTFN(5, ("bus_dmamem_map\n"));
3881 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3882 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3883 BUS_DMA_NOWAIT)) {
3884 aprint_error_dev(sc->bge_dev,
3885 "can't map DMA buffers (%zu bytes)\n",
3886 sizeof(struct bge_ring_data));
3887 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3888 sc->bge_ring_rseg);
3889 return;
3890 }
3891 DPRINTFN(5, ("bus_dmamem_create\n"));
3892 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3893 sizeof(struct bge_ring_data), 0,
3894 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3895 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3896 bus_dmamem_unmap(sc->bge_dmatag, kva,
3897 sizeof(struct bge_ring_data));
3898 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3899 sc->bge_ring_rseg);
3900 return;
3901 }
3902 DPRINTFN(5, ("bus_dmamem_load\n"));
3903 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3904 sizeof(struct bge_ring_data), NULL,
3905 BUS_DMA_NOWAIT)) {
3906 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3907 bus_dmamem_unmap(sc->bge_dmatag, kva,
3908 sizeof(struct bge_ring_data));
3909 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3910 sc->bge_ring_rseg);
3911 return;
3912 }
3913
3914 DPRINTFN(5, ("bzero\n"));
3915 sc->bge_rdata = (struct bge_ring_data *)kva;
3916
3917 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3918
3919 /* Try to allocate memory for jumbo buffers. */
3920 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3921 if (bge_alloc_jumbo_mem(sc)) {
3922 aprint_error_dev(sc->bge_dev,
3923 "jumbo buffer allocation failed\n");
3924 } else
3925 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3926 }
3927
3928 /* Set default tuneable values. */
3929 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3930 sc->bge_rx_coal_ticks = 150;
3931 sc->bge_rx_max_coal_bds = 64;
3932 sc->bge_tx_coal_ticks = 300;
3933 sc->bge_tx_max_coal_bds = 400;
3934 if (BGE_IS_5705_PLUS(sc)) {
3935 sc->bge_tx_coal_ticks = (12 * 5);
3936 sc->bge_tx_max_coal_bds = (12 * 5);
3937 aprint_verbose_dev(sc->bge_dev,
3938 "setting short Tx thresholds\n");
3939 }
3940
3941 if (BGE_IS_5717_PLUS(sc))
3942 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3943 else if (BGE_IS_5705_PLUS(sc))
3944 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3945 else
3946 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3947
3948 /* Set up ifnet structure */
3949 ifp = &sc->ethercom.ec_if;
3950 ifp->if_softc = sc;
3951 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3952 ifp->if_ioctl = bge_ioctl;
3953 ifp->if_stop = bge_stop;
3954 ifp->if_start = bge_start;
3955 ifp->if_init = bge_init;
3956 ifp->if_watchdog = bge_watchdog;
3957 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3958 IFQ_SET_READY(&ifp->if_snd);
3959 DPRINTFN(5, ("strcpy if_xname\n"));
3960 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3961
3962 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3963 sc->ethercom.ec_if.if_capabilities |=
3964 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3965 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3966 sc->ethercom.ec_if.if_capabilities |=
3967 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3968 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3969 #endif
3970 sc->ethercom.ec_capabilities |=
3971 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3972
3973 if (sc->bge_flags & BGEF_TSO)
3974 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3975
3976 /*
3977 * Do MII setup.
3978 */
3979 DPRINTFN(5, ("mii setup\n"));
3980 sc->bge_mii.mii_ifp = ifp;
3981 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3982 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3983 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3984
3985 /*
3986 * Figure out what sort of media we have by checking the hardware
3987 * config word. Note: on some BCM5700 cards, this value appears to be
3988 * unset. If that's the case, we have to rely on identifying the NIC
3989 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3990 * The SysKonnect SK-9D41 is a 1000baseSX card.
3991 */
3992 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3993 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3994 if (BGE_IS_5705_PLUS(sc)) {
3995 sc->bge_flags |= BGEF_FIBER_MII;
3996 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3997 } else
3998 sc->bge_flags |= BGEF_FIBER_TBI;
3999 }
4000
4001 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4002 if (BGE_IS_JUMBO_CAPABLE(sc))
4003 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4004
4005 /* set phyflags and chipid before mii_attach() */
4006 dict = device_properties(self);
4007 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4008 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4009
4010 if (sc->bge_flags & BGEF_FIBER_TBI) {
4011 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4012 bge_ifmedia_sts);
4013 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4014 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4015 0, NULL);
4016 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4017 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4018 /* Pretend the user requested this setting */
4019 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4020 } else {
4021 /*
4022 * Do transceiver setup and tell the firmware the
4023 * driver is down so we can try to get access the
4024 * probe if ASF is running. Retry a couple of times
4025 * if we get a conflict with the ASF firmware accessing
4026 * the PHY.
4027 */
4028 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4029 bge_asf_driver_up(sc);
4030
4031 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4032 bge_ifmedia_sts);
4033 mii_flags = MIIF_DOPAUSE;
4034 if (sc->bge_flags & BGEF_FIBER_MII)
4035 mii_flags |= MIIF_HAVEFIBER;
4036 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4037 MII_OFFSET_ANY, mii_flags);
4038
4039 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4040 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4041 ifmedia_add(&sc->bge_mii.mii_media,
4042 IFM_ETHER|IFM_MANUAL, 0, NULL);
4043 ifmedia_set(&sc->bge_mii.mii_media,
4044 IFM_ETHER|IFM_MANUAL);
4045 } else
4046 ifmedia_set(&sc->bge_mii.mii_media,
4047 IFM_ETHER|IFM_AUTO);
4048
4049 /*
4050 * Now tell the firmware we are going up after probing the PHY
4051 */
4052 if (sc->bge_asf_mode & ASF_STACKUP)
4053 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4054 }
4055
4056 /*
4057 * Call MI attach routine.
4058 */
4059 DPRINTFN(5, ("if_attach\n"));
4060 if_attach(ifp);
4061 DPRINTFN(5, ("ether_ifattach\n"));
4062 ether_ifattach(ifp, eaddr);
4063 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4064 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4065 RND_TYPE_NET, RND_FLAG_DEFAULT);
4066 #ifdef BGE_EVENT_COUNTERS
4067 /*
4068 * Attach event counters.
4069 */
4070 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4071 NULL, device_xname(sc->bge_dev), "intr");
4072 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4073 NULL, device_xname(sc->bge_dev), "tx_xoff");
4074 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4075 NULL, device_xname(sc->bge_dev), "tx_xon");
4076 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4077 NULL, device_xname(sc->bge_dev), "rx_xoff");
4078 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4079 NULL, device_xname(sc->bge_dev), "rx_xon");
4080 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4081 NULL, device_xname(sc->bge_dev), "rx_macctl");
4082 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4083 NULL, device_xname(sc->bge_dev), "xoffentered");
4084 #endif /* BGE_EVENT_COUNTERS */
4085 DPRINTFN(5, ("callout_init\n"));
4086 callout_init(&sc->bge_timeout, 0);
4087
4088 if (pmf_device_register(self, NULL, NULL))
4089 pmf_class_network_register(self, ifp);
4090 else
4091 aprint_error_dev(self, "couldn't establish power handler\n");
4092
4093 bge_sysctl_init(sc);
4094
4095 #ifdef BGE_DEBUG
4096 bge_debug_info(sc);
4097 #endif
4098 }
4099
4100 /*
4101 * Stop all chip I/O so that the kernel's probe routines don't
4102 * get confused by errant DMAs when rebooting.
4103 */
4104 static int
4105 bge_detach(device_t self, int flags __unused)
4106 {
4107 struct bge_softc *sc = device_private(self);
4108 struct ifnet *ifp = &sc->ethercom.ec_if;
4109 int s;
4110
4111 s = splnet();
4112 /* Stop the interface. Callouts are stopped in it. */
4113 bge_stop(ifp, 1);
4114 splx(s);
4115
4116 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4117
4118 /* Delete all remaining media. */
4119 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4120
4121 ether_ifdetach(ifp);
4122 if_detach(ifp);
4123
4124 bge_release_resources(sc);
4125
4126 return 0;
4127 }
4128
4129 static void
4130 bge_release_resources(struct bge_softc *sc)
4131 {
4132
4133 /* Disestablish the interrupt handler */
4134 if (sc->bge_intrhand != NULL) {
4135 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4136 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4137 sc->bge_intrhand = NULL;
4138 }
4139
4140 if (sc->bge_dmatag != NULL) {
4141 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4142 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4143 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4144 sizeof(struct bge_ring_data));
4145 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4146 sc->bge_ring_rseg);
4147 }
4148
4149 /* Unmap the device registers */
4150 if (sc->bge_bsize != 0) {
4151 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4152 sc->bge_bsize = 0;
4153 }
4154
4155 /* Unmap the APE registers */
4156 if (sc->bge_apesize != 0) {
4157 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4158 sc->bge_apesize);
4159 sc->bge_apesize = 0;
4160 }
4161 }
4162
4163 static int
4164 bge_reset(struct bge_softc *sc)
4165 {
4166 uint32_t cachesize, command;
4167 uint32_t reset, mac_mode, mac_mode_mask;
4168 pcireg_t devctl, reg;
4169 int i, val;
4170 void (*write_op)(struct bge_softc *, int, int);
4171
4172 /* Make mask for BGE_MAC_MODE register. */
4173 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4174 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4175 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4176 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4177 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4178
4179 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4180 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4181 if (sc->bge_flags & BGEF_PCIE)
4182 write_op = bge_writemem_direct;
4183 else
4184 write_op = bge_writemem_ind;
4185 } else
4186 write_op = bge_writereg_ind;
4187
4188 /* 57XX step 4 */
4189 /* Acquire the NVM lock */
4190 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4191 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4192 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4193 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4194 for (i = 0; i < 8000; i++) {
4195 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4196 BGE_NVRAMSWARB_GNT1)
4197 break;
4198 DELAY(20);
4199 }
4200 if (i == 8000) {
4201 printf("%s: NVRAM lock timedout!\n",
4202 device_xname(sc->bge_dev));
4203 }
4204 }
4205
4206 /* Take APE lock when performing reset. */
4207 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4208
4209 /* 57XX step 3 */
4210 /* Save some important PCI state. */
4211 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4212 /* 5718 reset step 3 */
4213 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4214
4215 /* 5718 reset step 5, 57XX step 5b-5d */
4216 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4217 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4218 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4219
4220 /* XXX ???: Disable fastboot on controllers that support it. */
4221 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4222 BGE_IS_5755_PLUS(sc))
4223 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4224
4225 /* 5718 reset step 2, 57XX step 6 */
4226 /*
4227 * Write the magic number to SRAM at offset 0xB50.
4228 * When firmware finishes its initialization it will
4229 * write ~BGE_MAGIC_NUMBER to the same location.
4230 */
4231 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4232
4233 /* 5718 reset step 6, 57XX step 7 */
4234 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4235 /*
4236 * XXX: from FreeBSD/Linux; no documentation
4237 */
4238 if (sc->bge_flags & BGEF_PCIE) {
4239 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4240 !BGE_IS_57765_PLUS(sc) &&
4241 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4242 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4243 /* PCI Express 1.0 system */
4244 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4245 BGE_PHY_PCIE_SCRAM_MODE);
4246 }
4247 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4248 /*
4249 * Prevent PCI Express link training
4250 * during global reset.
4251 */
4252 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4253 reset |= (1 << 29);
4254 }
4255 }
4256
4257 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4258 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4259 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4260 i | BGE_VCPU_STATUS_DRV_RESET);
4261 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4262 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4263 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4264 }
4265
4266 /*
4267 * Set GPHY Power Down Override to leave GPHY
4268 * powered up in D0 uninitialized.
4269 */
4270 if (BGE_IS_5705_PLUS(sc) &&
4271 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4272 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4273
4274 /* Issue global reset */
4275 write_op(sc, BGE_MISC_CFG, reset);
4276
4277 /* 5718 reset step 7, 57XX step 8 */
4278 if (sc->bge_flags & BGEF_PCIE)
4279 delay(100*1000); /* too big */
4280 else
4281 delay(1000);
4282
4283 if (sc->bge_flags & BGEF_PCIE) {
4284 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4285 DELAY(500000);
4286 /* XXX: Magic Numbers */
4287 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4288 BGE_PCI_UNKNOWN0);
4289 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4290 BGE_PCI_UNKNOWN0,
4291 reg | (1 << 15));
4292 }
4293 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4294 sc->bge_pciecap + PCIE_DCSR);
4295 /* Clear enable no snoop and disable relaxed ordering. */
4296 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4297 PCIE_DCSR_ENA_NO_SNOOP);
4298
4299 /* Set PCIE max payload size to 128 for older PCIe devices */
4300 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4301 devctl &= ~(0x00e0);
4302 /* Clear device status register. Write 1b to clear */
4303 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4304 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4305 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4306 sc->bge_pciecap + PCIE_DCSR, devctl);
4307 bge_set_max_readrq(sc);
4308 }
4309
4310 /* From Linux: dummy read to flush PCI posted writes */
4311 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4312
4313 /*
4314 * Reset some of the PCI state that got zapped by reset
4315 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4316 * set, too.
4317 */
4318 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4319 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4320 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4321 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4322 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4323 (sc->bge_flags & BGEF_PCIX) != 0)
4324 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4325 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4326 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4327 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4328 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4330 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4331 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4332
4333 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4334 if (sc->bge_flags & BGEF_PCIX) {
4335 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4336 + PCIX_CMD);
4337 /* Set max memory read byte count to 2K */
4338 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4339 reg &= ~PCIX_CMD_BYTECNT_MASK;
4340 reg |= PCIX_CMD_BCNT_2048;
4341 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4342 /*
4343 * For 5704, set max outstanding split transaction
4344 * field to 0 (0 means it supports 1 request)
4345 */
4346 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4347 | PCIX_CMD_BYTECNT_MASK);
4348 reg |= PCIX_CMD_BCNT_2048;
4349 }
4350 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4351 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4352 }
4353
4354 /* 5718 reset step 10, 57XX step 12 */
4355 /* Enable memory arbiter. */
4356 if (BGE_IS_5714_FAMILY(sc)) {
4357 val = CSR_READ_4(sc, BGE_MARB_MODE);
4358 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4359 } else
4360 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4361
4362 /* XXX 5721, 5751 and 5752 */
4363 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4364 /* Step 19: */
4365 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4366 /* Step 20: */
4367 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4368 }
4369
4370 /* 5718 reset step 12, 57XX step 15 and 16 */
4371 /* Fix up byte swapping */
4372 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4373
4374 /* 5718 reset step 13, 57XX step 17 */
4375 /* Poll until the firmware initialization is complete */
4376 bge_poll_fw(sc);
4377
4378 /* 57XX step 21 */
4379 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4380 pcireg_t msidata;
4381
4382 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4383 BGE_PCI_MSI_DATA);
4384 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4385 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4386 msidata);
4387 }
4388
4389 /* 57XX step 18 */
4390 /* Write mac mode. */
4391 val = CSR_READ_4(sc, BGE_MAC_MODE);
4392 /* Restore mac_mode_mask's bits using mac_mode */
4393 val = (val & ~mac_mode_mask) | mac_mode;
4394 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4395 DELAY(40);
4396
4397 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4398
4399 /*
4400 * The 5704 in TBI mode apparently needs some special
4401 * adjustment to insure the SERDES drive level is set
4402 * to 1.2V.
4403 */
4404 if (sc->bge_flags & BGEF_FIBER_TBI &&
4405 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4406 uint32_t serdescfg;
4407
4408 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4409 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4410 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4411 }
4412
4413 if (sc->bge_flags & BGEF_PCIE &&
4414 !BGE_IS_57765_PLUS(sc) &&
4415 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4416 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4417 uint32_t v;
4418
4419 /* Enable PCI Express bug fix */
4420 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4421 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4422 v | BGE_TLP_DATA_FIFO_PROTECT);
4423 }
4424
4425 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4426 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4427 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4428
4429 return 0;
4430 }
4431
4432 /*
4433 * Frame reception handling. This is called if there's a frame
4434 * on the receive return list.
4435 *
4436 * Note: we have to be able to handle two possibilities here:
4437 * 1) the frame is from the jumbo receive ring
4438 * 2) the frame is from the standard receive ring
4439 */
4440
4441 static void
4442 bge_rxeof(struct bge_softc *sc)
4443 {
4444 struct ifnet *ifp;
4445 uint16_t rx_prod, rx_cons;
4446 int stdcnt = 0, jumbocnt = 0;
4447 bus_dmamap_t dmamap;
4448 bus_addr_t offset, toff;
4449 bus_size_t tlen;
4450 int tosync;
4451
4452 rx_cons = sc->bge_rx_saved_considx;
4453 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4454
4455 /* Nothing to do */
4456 if (rx_cons == rx_prod)
4457 return;
4458
4459 ifp = &sc->ethercom.ec_if;
4460
4461 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4462 offsetof(struct bge_ring_data, bge_status_block),
4463 sizeof (struct bge_status_block),
4464 BUS_DMASYNC_POSTREAD);
4465
4466 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4467 tosync = rx_prod - rx_cons;
4468
4469 if (tosync != 0)
4470 rnd_add_uint32(&sc->rnd_source, tosync);
4471
4472 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4473
4474 if (tosync < 0) {
4475 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4476 sizeof (struct bge_rx_bd);
4477 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4478 toff, tlen, BUS_DMASYNC_POSTREAD);
4479 tosync = -tosync;
4480 }
4481
4482 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4483 offset, tosync * sizeof (struct bge_rx_bd),
4484 BUS_DMASYNC_POSTREAD);
4485
4486 while (rx_cons != rx_prod) {
4487 struct bge_rx_bd *cur_rx;
4488 uint32_t rxidx;
4489 struct mbuf *m = NULL;
4490
4491 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4492
4493 rxidx = cur_rx->bge_idx;
4494 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4495
4496 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4497 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4498 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4499 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4500 jumbocnt++;
4501 bus_dmamap_sync(sc->bge_dmatag,
4502 sc->bge_cdata.bge_rx_jumbo_map,
4503 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4504 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4505 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4506 ifp->if_ierrors++;
4507 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4508 continue;
4509 }
4510 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4511 NULL)== ENOBUFS) {
4512 ifp->if_ierrors++;
4513 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4514 continue;
4515 }
4516 } else {
4517 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4518 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4519
4520 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4521 stdcnt++;
4522 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4523 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4524 if (dmamap == NULL) {
4525 ifp->if_ierrors++;
4526 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4527 continue;
4528 }
4529 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4530 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4531 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4532 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4533 ifp->if_ierrors++;
4534 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4535 continue;
4536 }
4537 if (bge_newbuf_std(sc, sc->bge_std,
4538 NULL, dmamap) == ENOBUFS) {
4539 ifp->if_ierrors++;
4540 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4541 continue;
4542 }
4543 }
4544
4545 ifp->if_ipackets++;
4546 #ifndef __NO_STRICT_ALIGNMENT
4547 /*
4548 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4549 * the Rx buffer has the layer-2 header unaligned.
4550 * If our CPU requires alignment, re-align by copying.
4551 */
4552 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4553 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4554 cur_rx->bge_len);
4555 m->m_data += ETHER_ALIGN;
4556 }
4557 #endif
4558
4559 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4560 m->m_pkthdr.rcvif = ifp;
4561
4562 /*
4563 * Handle BPF listeners. Let the BPF user see the packet.
4564 */
4565 bpf_mtap(ifp, m);
4566
4567 bge_rxcsum(sc, cur_rx, m);
4568
4569 /*
4570 * If we received a packet with a vlan tag, pass it
4571 * to vlan_input() instead of ether_input().
4572 */
4573 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4574 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4575 }
4576
4577 (*ifp->if_input)(ifp, m);
4578 }
4579
4580 sc->bge_rx_saved_considx = rx_cons;
4581 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4582 if (stdcnt)
4583 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4584 if (jumbocnt)
4585 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4586 }
4587
4588 static void
4589 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4590 {
4591
4592 if (BGE_IS_57765_PLUS(sc)) {
4593 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4594 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4595 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4596 if ((cur_rx->bge_error_flag &
4597 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4598 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4599 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4600 m->m_pkthdr.csum_data =
4601 cur_rx->bge_tcp_udp_csum;
4602 m->m_pkthdr.csum_flags |=
4603 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4604 M_CSUM_DATA);
4605 }
4606 }
4607 } else {
4608 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4609 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4610 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4611 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4612 /*
4613 * Rx transport checksum-offload may also
4614 * have bugs with packets which, when transmitted,
4615 * were `runts' requiring padding.
4616 */
4617 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4618 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4619 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4620 m->m_pkthdr.csum_data =
4621 cur_rx->bge_tcp_udp_csum;
4622 m->m_pkthdr.csum_flags |=
4623 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4624 M_CSUM_DATA);
4625 }
4626 }
4627 }
4628
4629 static void
4630 bge_txeof(struct bge_softc *sc)
4631 {
4632 struct bge_tx_bd *cur_tx = NULL;
4633 struct ifnet *ifp;
4634 struct txdmamap_pool_entry *dma;
4635 bus_addr_t offset, toff;
4636 bus_size_t tlen;
4637 int tosync;
4638 struct mbuf *m;
4639
4640 ifp = &sc->ethercom.ec_if;
4641
4642 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4643 offsetof(struct bge_ring_data, bge_status_block),
4644 sizeof (struct bge_status_block),
4645 BUS_DMASYNC_POSTREAD);
4646
4647 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4648 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4649 sc->bge_tx_saved_considx;
4650
4651 if (tosync != 0)
4652 rnd_add_uint32(&sc->rnd_source, tosync);
4653
4654 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4655
4656 if (tosync < 0) {
4657 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4658 sizeof (struct bge_tx_bd);
4659 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4660 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4661 tosync = -tosync;
4662 }
4663
4664 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4665 offset, tosync * sizeof (struct bge_tx_bd),
4666 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4667
4668 /*
4669 * Go through our tx ring and free mbufs for those
4670 * frames that have been sent.
4671 */
4672 while (sc->bge_tx_saved_considx !=
4673 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4674 uint32_t idx = 0;
4675
4676 idx = sc->bge_tx_saved_considx;
4677 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4678 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4679 ifp->if_opackets++;
4680 m = sc->bge_cdata.bge_tx_chain[idx];
4681 if (m != NULL) {
4682 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4683 dma = sc->txdma[idx];
4684 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4685 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4686 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4687 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4688 sc->txdma[idx] = NULL;
4689
4690 m_freem(m);
4691 }
4692 sc->bge_txcnt--;
4693 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4694 ifp->if_timer = 0;
4695 }
4696
4697 if (cur_tx != NULL)
4698 ifp->if_flags &= ~IFF_OACTIVE;
4699 }
4700
4701 static int
4702 bge_intr(void *xsc)
4703 {
4704 struct bge_softc *sc;
4705 struct ifnet *ifp;
4706 uint32_t pcistate, statusword, statustag;
4707 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4708
4709 sc = xsc;
4710 ifp = &sc->ethercom.ec_if;
4711
4712 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4713 if (BGE_IS_5717_PLUS(sc))
4714 intrmask = 0;
4715
4716 /* It is possible for the interrupt to arrive before
4717 * the status block is updated prior to the interrupt.
4718 * Reading the PCI State register will confirm whether the
4719 * interrupt is ours and will flush the status block.
4720 */
4721 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4722
4723 /* read status word from status block */
4724 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4725 offsetof(struct bge_ring_data, bge_status_block),
4726 sizeof (struct bge_status_block),
4727 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4728 statusword = sc->bge_rdata->bge_status_block.bge_status;
4729 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4730
4731 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4732 if (sc->bge_lasttag == statustag &&
4733 (~pcistate & intrmask)) {
4734 return (0);
4735 }
4736 sc->bge_lasttag = statustag;
4737 } else {
4738 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4739 !(~pcistate & intrmask)) {
4740 return (0);
4741 }
4742 statustag = 0;
4743 }
4744 /* Ack interrupt and stop others from occurring. */
4745 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4746 BGE_EVCNT_INCR(sc->bge_ev_intr);
4747
4748 /* clear status word */
4749 sc->bge_rdata->bge_status_block.bge_status = 0;
4750
4751 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4752 offsetof(struct bge_ring_data, bge_status_block),
4753 sizeof (struct bge_status_block),
4754 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4755
4756 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4757 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4758 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4759 bge_link_upd(sc);
4760
4761 if (ifp->if_flags & IFF_RUNNING) {
4762 /* Check RX return ring producer/consumer */
4763 bge_rxeof(sc);
4764
4765 /* Check TX ring producer/consumer */
4766 bge_txeof(sc);
4767 }
4768
4769 if (sc->bge_pending_rxintr_change) {
4770 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4771 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4772
4773 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4774 DELAY(10);
4775 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4776
4777 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4778 DELAY(10);
4779 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4780
4781 sc->bge_pending_rxintr_change = 0;
4782 }
4783 bge_handle_events(sc);
4784
4785 /* Re-enable interrupts. */
4786 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4787
4788 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4789 bge_start(ifp);
4790
4791 return 1;
4792 }
4793
4794 static void
4795 bge_asf_driver_up(struct bge_softc *sc)
4796 {
4797 if (sc->bge_asf_mode & ASF_STACKUP) {
4798 /* Send ASF heartbeat aprox. every 2s */
4799 if (sc->bge_asf_count)
4800 sc->bge_asf_count --;
4801 else {
4802 sc->bge_asf_count = 2;
4803
4804 bge_wait_for_event_ack(sc);
4805
4806 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4807 BGE_FW_CMD_DRV_ALIVE3);
4808 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4809 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4810 BGE_FW_HB_TIMEOUT_SEC);
4811 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4812 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4813 BGE_RX_CPU_DRV_EVENT);
4814 }
4815 }
4816 }
4817
4818 static void
4819 bge_tick(void *xsc)
4820 {
4821 struct bge_softc *sc = xsc;
4822 struct mii_data *mii = &sc->bge_mii;
4823 int s;
4824
4825 s = splnet();
4826
4827 if (BGE_IS_5705_PLUS(sc))
4828 bge_stats_update_regs(sc);
4829 else
4830 bge_stats_update(sc);
4831
4832 if (sc->bge_flags & BGEF_FIBER_TBI) {
4833 /*
4834 * Since in TBI mode auto-polling can't be used we should poll
4835 * link status manually. Here we register pending link event
4836 * and trigger interrupt.
4837 */
4838 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4839 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4840 } else {
4841 /*
4842 * Do not touch PHY if we have link up. This could break
4843 * IPMI/ASF mode or produce extra input errors.
4844 * (extra input errors was reported for bcm5701 & bcm5704).
4845 */
4846 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4847 mii_tick(mii);
4848 }
4849
4850 bge_asf_driver_up(sc);
4851
4852 if (!sc->bge_detaching)
4853 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4854
4855 splx(s);
4856 }
4857
4858 static void
4859 bge_stats_update_regs(struct bge_softc *sc)
4860 {
4861 struct ifnet *ifp = &sc->ethercom.ec_if;
4862
4863 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4864 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4865
4866 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4867 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4868 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4869 }
4870
4871 static void
4872 bge_stats_update(struct bge_softc *sc)
4873 {
4874 struct ifnet *ifp = &sc->ethercom.ec_if;
4875 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4876
4877 #define READ_STAT(sc, stats, stat) \
4878 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4879
4880 ifp->if_collisions +=
4881 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4882 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4883 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4884 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4885 ifp->if_collisions;
4886
4887 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4888 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4889 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4890 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4891 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4892 READ_STAT(sc, stats,
4893 xoffPauseFramesReceived.bge_addr_lo));
4894 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4895 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4896 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4897 READ_STAT(sc, stats,
4898 macControlFramesReceived.bge_addr_lo));
4899 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4900 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4901
4902 #undef READ_STAT
4903
4904 #ifdef notdef
4905 ifp->if_collisions +=
4906 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4907 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4908 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4909 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4910 ifp->if_collisions;
4911 #endif
4912 }
4913
4914 /*
4915 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4916 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4917 * but when such padded frames employ the bge IP/TCP checksum offload,
4918 * the hardware checksum assist gives incorrect results (possibly
4919 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4920 * If we pad such runts with zeros, the onboard checksum comes out correct.
4921 */
4922 static inline int
4923 bge_cksum_pad(struct mbuf *pkt)
4924 {
4925 struct mbuf *last = NULL;
4926 int padlen;
4927
4928 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4929
4930 /* if there's only the packet-header and we can pad there, use it. */
4931 if (pkt->m_pkthdr.len == pkt->m_len &&
4932 M_TRAILINGSPACE(pkt) >= padlen) {
4933 last = pkt;
4934 } else {
4935 /*
4936 * Walk packet chain to find last mbuf. We will either
4937 * pad there, or append a new mbuf and pad it
4938 * (thus perhaps avoiding the bcm5700 dma-min bug).
4939 */
4940 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4941 continue; /* do nothing */
4942 }
4943
4944 /* `last' now points to last in chain. */
4945 if (M_TRAILINGSPACE(last) < padlen) {
4946 /* Allocate new empty mbuf, pad it. Compact later. */
4947 struct mbuf *n;
4948 MGET(n, M_DONTWAIT, MT_DATA);
4949 if (n == NULL)
4950 return ENOBUFS;
4951 n->m_len = 0;
4952 last->m_next = n;
4953 last = n;
4954 }
4955 }
4956
4957 KDASSERT(!M_READONLY(last));
4958 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4959
4960 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4961 memset(mtod(last, char *) + last->m_len, 0, padlen);
4962 last->m_len += padlen;
4963 pkt->m_pkthdr.len += padlen;
4964 return 0;
4965 }
4966
4967 /*
4968 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4969 */
4970 static inline int
4971 bge_compact_dma_runt(struct mbuf *pkt)
4972 {
4973 struct mbuf *m, *prev;
4974 int totlen;
4975
4976 prev = NULL;
4977 totlen = 0;
4978
4979 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4980 int mlen = m->m_len;
4981 int shortfall = 8 - mlen ;
4982
4983 totlen += mlen;
4984 if (mlen == 0)
4985 continue;
4986 if (mlen >= 8)
4987 continue;
4988
4989 /* If we get here, mbuf data is too small for DMA engine.
4990 * Try to fix by shuffling data to prev or next in chain.
4991 * If that fails, do a compacting deep-copy of the whole chain.
4992 */
4993
4994 /* Internal frag. If fits in prev, copy it there. */
4995 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4996 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4997 prev->m_len += mlen;
4998 m->m_len = 0;
4999 /* XXX stitch chain */
5000 prev->m_next = m_free(m);
5001 m = prev;
5002 continue;
5003 }
5004 else if (m->m_next != NULL &&
5005 M_TRAILINGSPACE(m) >= shortfall &&
5006 m->m_next->m_len >= (8 + shortfall)) {
5007 /* m is writable and have enough data in next, pull up. */
5008
5009 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5010 shortfall);
5011 m->m_len += shortfall;
5012 m->m_next->m_len -= shortfall;
5013 m->m_next->m_data += shortfall;
5014 }
5015 else if (m->m_next == NULL || 1) {
5016 /* Got a runt at the very end of the packet.
5017 * borrow data from the tail of the preceding mbuf and
5018 * update its length in-place. (The original data is still
5019 * valid, so we can do this even if prev is not writable.)
5020 */
5021
5022 /* if we'd make prev a runt, just move all of its data. */
5023 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5024 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5025
5026 if ((prev->m_len - shortfall) < 8)
5027 shortfall = prev->m_len;
5028
5029 #ifdef notyet /* just do the safe slow thing for now */
5030 if (!M_READONLY(m)) {
5031 if (M_LEADINGSPACE(m) < shorfall) {
5032 void *m_dat;
5033 m_dat = (m->m_flags & M_PKTHDR) ?
5034 m->m_pktdat : m->dat;
5035 memmove(m_dat, mtod(m, void*), m->m_len);
5036 m->m_data = m_dat;
5037 }
5038 } else
5039 #endif /* just do the safe slow thing */
5040 {
5041 struct mbuf * n = NULL;
5042 int newprevlen = prev->m_len - shortfall;
5043
5044 MGET(n, M_NOWAIT, MT_DATA);
5045 if (n == NULL)
5046 return ENOBUFS;
5047 KASSERT(m->m_len + shortfall < MLEN
5048 /*,
5049 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5050
5051 /* first copy the data we're stealing from prev */
5052 memcpy(n->m_data, prev->m_data + newprevlen,
5053 shortfall);
5054
5055 /* update prev->m_len accordingly */
5056 prev->m_len -= shortfall;
5057
5058 /* copy data from runt m */
5059 memcpy(n->m_data + shortfall, m->m_data,
5060 m->m_len);
5061
5062 /* n holds what we stole from prev, plus m */
5063 n->m_len = shortfall + m->m_len;
5064
5065 /* stitch n into chain and free m */
5066 n->m_next = m->m_next;
5067 prev->m_next = n;
5068 /* KASSERT(m->m_next == NULL); */
5069 m->m_next = NULL;
5070 m_free(m);
5071 m = n; /* for continuing loop */
5072 }
5073 }
5074 }
5075 return 0;
5076 }
5077
5078 /*
5079 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5080 * pointers to descriptors.
5081 */
5082 static int
5083 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5084 {
5085 struct bge_tx_bd *f = NULL;
5086 uint32_t frag, cur;
5087 uint16_t csum_flags = 0;
5088 uint16_t txbd_tso_flags = 0;
5089 struct txdmamap_pool_entry *dma;
5090 bus_dmamap_t dmamap;
5091 int i = 0;
5092 struct m_tag *mtag;
5093 int use_tso, maxsegsize, error;
5094
5095 cur = frag = *txidx;
5096
5097 if (m_head->m_pkthdr.csum_flags) {
5098 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5099 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5100 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5101 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5102 }
5103
5104 /*
5105 * If we were asked to do an outboard checksum, and the NIC
5106 * has the bug where it sometimes adds in the Ethernet padding,
5107 * explicitly pad with zeros so the cksum will be correct either way.
5108 * (For now, do this for all chip versions, until newer
5109 * are confirmed to not require the workaround.)
5110 */
5111 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5112 #ifdef notyet
5113 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5114 #endif
5115 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5116 goto check_dma_bug;
5117
5118 if (bge_cksum_pad(m_head) != 0)
5119 return ENOBUFS;
5120
5121 check_dma_bug:
5122 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5123 goto doit;
5124
5125 /*
5126 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5127 * less than eight bytes. If we encounter a teeny mbuf
5128 * at the end of a chain, we can pad. Otherwise, copy.
5129 */
5130 if (bge_compact_dma_runt(m_head) != 0)
5131 return ENOBUFS;
5132
5133 doit:
5134 dma = SLIST_FIRST(&sc->txdma_list);
5135 if (dma == NULL)
5136 return ENOBUFS;
5137 dmamap = dma->dmamap;
5138
5139 /*
5140 * Set up any necessary TSO state before we start packing...
5141 */
5142 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5143 if (!use_tso) {
5144 maxsegsize = 0;
5145 } else { /* TSO setup */
5146 unsigned mss;
5147 struct ether_header *eh;
5148 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5149 struct mbuf * m0 = m_head;
5150 struct ip *ip;
5151 struct tcphdr *th;
5152 int iphl, hlen;
5153
5154 /*
5155 * XXX It would be nice if the mbuf pkthdr had offset
5156 * fields for the protocol headers.
5157 */
5158
5159 eh = mtod(m0, struct ether_header *);
5160 switch (htons(eh->ether_type)) {
5161 case ETHERTYPE_IP:
5162 offset = ETHER_HDR_LEN;
5163 break;
5164
5165 case ETHERTYPE_VLAN:
5166 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5167 break;
5168
5169 default:
5170 /*
5171 * Don't support this protocol or encapsulation.
5172 */
5173 return ENOBUFS;
5174 }
5175
5176 /*
5177 * TCP/IP headers are in the first mbuf; we can do
5178 * this the easy way.
5179 */
5180 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5181 hlen = iphl + offset;
5182 if (__predict_false(m0->m_len <
5183 (hlen + sizeof(struct tcphdr)))) {
5184
5185 aprint_debug_dev(sc->bge_dev,
5186 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5187 "not handled yet\n",
5188 m0->m_len, hlen+ sizeof(struct tcphdr));
5189 #ifdef NOTYET
5190 /*
5191 * XXX jonathan (at) NetBSD.org: untested.
5192 * how to force this branch to be taken?
5193 */
5194 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5195
5196 m_copydata(m0, offset, sizeof(ip), &ip);
5197 m_copydata(m0, hlen, sizeof(th), &th);
5198
5199 ip.ip_len = 0;
5200
5201 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5202 sizeof(ip.ip_len), &ip.ip_len);
5203
5204 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5205 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5206
5207 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5208 sizeof(th.th_sum), &th.th_sum);
5209
5210 hlen += th.th_off << 2;
5211 iptcp_opt_words = hlen;
5212 #else
5213 /*
5214 * if_wm "hard" case not yet supported, can we not
5215 * mandate it out of existence?
5216 */
5217 (void) ip; (void)th; (void) ip_tcp_hlen;
5218
5219 return ENOBUFS;
5220 #endif
5221 } else {
5222 ip = (struct ip *) (mtod(m0, char *) + offset);
5223 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5224 ip_tcp_hlen = iphl + (th->th_off << 2);
5225
5226 /* Total IP/TCP options, in 32-bit words */
5227 iptcp_opt_words = (ip_tcp_hlen
5228 - sizeof(struct tcphdr)
5229 - sizeof(struct ip)) >> 2;
5230 }
5231 if (BGE_IS_575X_PLUS(sc)) {
5232 th->th_sum = 0;
5233 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5234 } else {
5235 /*
5236 * XXX jonathan (at) NetBSD.org: 5705 untested.
5237 * Requires TSO firmware patch for 5701/5703/5704.
5238 */
5239 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5240 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5241 }
5242
5243 mss = m_head->m_pkthdr.segsz;
5244 txbd_tso_flags |=
5245 BGE_TXBDFLAG_CPU_PRE_DMA |
5246 BGE_TXBDFLAG_CPU_POST_DMA;
5247
5248 /*
5249 * Our NIC TSO-assist assumes TSO has standard, optionless
5250 * IPv4 and TCP headers, which total 40 bytes. By default,
5251 * the NIC copies 40 bytes of IP/TCP header from the
5252 * supplied header into the IP/TCP header portion of
5253 * each post-TSO-segment. If the supplied packet has IP or
5254 * TCP options, we need to tell the NIC to copy those extra
5255 * bytes into each post-TSO header, in addition to the normal
5256 * 40-byte IP/TCP header (and to leave space accordingly).
5257 * Unfortunately, the driver encoding of option length
5258 * varies across different ASIC families.
5259 */
5260 tcp_seg_flags = 0;
5261 if (iptcp_opt_words) {
5262 if (BGE_IS_5705_PLUS(sc)) {
5263 tcp_seg_flags =
5264 iptcp_opt_words << 11;
5265 } else {
5266 txbd_tso_flags |=
5267 iptcp_opt_words << 12;
5268 }
5269 }
5270 maxsegsize = mss | tcp_seg_flags;
5271 ip->ip_len = htons(mss + ip_tcp_hlen);
5272
5273 } /* TSO setup */
5274
5275 /*
5276 * Start packing the mbufs in this chain into
5277 * the fragment pointers. Stop when we run out
5278 * of fragments or hit the end of the mbuf chain.
5279 */
5280 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5281 BUS_DMA_NOWAIT);
5282 if (error)
5283 return ENOBUFS;
5284 /*
5285 * Sanity check: avoid coming within 16 descriptors
5286 * of the end of the ring.
5287 */
5288 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5289 BGE_TSO_PRINTF(("%s: "
5290 " dmamap_load_mbuf too close to ring wrap\n",
5291 device_xname(sc->bge_dev)));
5292 goto fail_unload;
5293 }
5294
5295 mtag = sc->ethercom.ec_nvlans ?
5296 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5297
5298
5299 /* Iterate over dmap-map fragments. */
5300 for (i = 0; i < dmamap->dm_nsegs; i++) {
5301 f = &sc->bge_rdata->bge_tx_ring[frag];
5302 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5303 break;
5304
5305 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5306 f->bge_len = dmamap->dm_segs[i].ds_len;
5307
5308 /*
5309 * For 5751 and follow-ons, for TSO we must turn
5310 * off checksum-assist flag in the tx-descr, and
5311 * supply the ASIC-revision-specific encoding
5312 * of TSO flags and segsize.
5313 */
5314 if (use_tso) {
5315 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5316 f->bge_rsvd = maxsegsize;
5317 f->bge_flags = csum_flags | txbd_tso_flags;
5318 } else {
5319 f->bge_rsvd = 0;
5320 f->bge_flags =
5321 (csum_flags | txbd_tso_flags) & 0x0fff;
5322 }
5323 } else {
5324 f->bge_rsvd = 0;
5325 f->bge_flags = csum_flags;
5326 }
5327
5328 if (mtag != NULL) {
5329 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5330 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5331 } else {
5332 f->bge_vlan_tag = 0;
5333 }
5334 cur = frag;
5335 BGE_INC(frag, BGE_TX_RING_CNT);
5336 }
5337
5338 if (i < dmamap->dm_nsegs) {
5339 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5340 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5341 goto fail_unload;
5342 }
5343
5344 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5345 BUS_DMASYNC_PREWRITE);
5346
5347 if (frag == sc->bge_tx_saved_considx) {
5348 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5349 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5350
5351 goto fail_unload;
5352 }
5353
5354 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5355 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5356 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5357 sc->txdma[cur] = dma;
5358 sc->bge_txcnt += dmamap->dm_nsegs;
5359
5360 *txidx = frag;
5361
5362 return 0;
5363
5364 fail_unload:
5365 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5366
5367 return ENOBUFS;
5368 }
5369
5370 /*
5371 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5372 * to the mbuf data regions directly in the transmit descriptors.
5373 */
5374 static void
5375 bge_start(struct ifnet *ifp)
5376 {
5377 struct bge_softc *sc;
5378 struct mbuf *m_head = NULL;
5379 uint32_t prodidx;
5380 int pkts = 0;
5381
5382 sc = ifp->if_softc;
5383
5384 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5385 return;
5386
5387 prodidx = sc->bge_tx_prodidx;
5388
5389 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5390 IFQ_POLL(&ifp->if_snd, m_head);
5391 if (m_head == NULL)
5392 break;
5393
5394 #if 0
5395 /*
5396 * XXX
5397 * safety overkill. If this is a fragmented packet chain
5398 * with delayed TCP/UDP checksums, then only encapsulate
5399 * it if we have enough descriptors to handle the entire
5400 * chain at once.
5401 * (paranoia -- may not actually be needed)
5402 */
5403 if (m_head->m_flags & M_FIRSTFRAG &&
5404 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5405 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5406 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5407 ifp->if_flags |= IFF_OACTIVE;
5408 break;
5409 }
5410 }
5411 #endif
5412
5413 /*
5414 * Pack the data into the transmit ring. If we
5415 * don't have room, set the OACTIVE flag and wait
5416 * for the NIC to drain the ring.
5417 */
5418 if (bge_encap(sc, m_head, &prodidx)) {
5419 ifp->if_flags |= IFF_OACTIVE;
5420 break;
5421 }
5422
5423 /* now we are committed to transmit the packet */
5424 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5425 pkts++;
5426
5427 /*
5428 * If there's a BPF listener, bounce a copy of this frame
5429 * to him.
5430 */
5431 bpf_mtap(ifp, m_head);
5432 }
5433 if (pkts == 0)
5434 return;
5435
5436 /* Transmit */
5437 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5438 /* 5700 b2 errata */
5439 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5440 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5441
5442 sc->bge_tx_prodidx = prodidx;
5443
5444 /*
5445 * Set a timeout in case the chip goes out to lunch.
5446 */
5447 ifp->if_timer = 5;
5448 }
5449
5450 static int
5451 bge_init(struct ifnet *ifp)
5452 {
5453 struct bge_softc *sc = ifp->if_softc;
5454 const uint16_t *m;
5455 uint32_t mode, reg;
5456 int s, error = 0;
5457
5458 s = splnet();
5459
5460 ifp = &sc->ethercom.ec_if;
5461
5462 /* Cancel pending I/O and flush buffers. */
5463 bge_stop(ifp, 0);
5464
5465 bge_stop_fw(sc);
5466 bge_sig_pre_reset(sc, BGE_RESET_START);
5467 bge_reset(sc);
5468 bge_sig_legacy(sc, BGE_RESET_START);
5469
5470 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5471 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5472 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5473 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5474 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5475
5476 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5477 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5478 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5479 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5480
5481 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5482 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5483 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5484 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5485
5486 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5487 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5488 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5489 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5490 }
5491
5492 bge_sig_post_reset(sc, BGE_RESET_START);
5493
5494 bge_chipinit(sc);
5495
5496 /*
5497 * Init the various state machines, ring
5498 * control blocks and firmware.
5499 */
5500 error = bge_blockinit(sc);
5501 if (error != 0) {
5502 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5503 error);
5504 splx(s);
5505 return error;
5506 }
5507
5508 ifp = &sc->ethercom.ec_if;
5509
5510 /* 5718 step 25, 57XX step 54 */
5511 /* Specify MTU. */
5512 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5513 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5514
5515 /* 5718 step 23 */
5516 /* Load our MAC address. */
5517 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5518 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5519 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5520
5521 /* Enable or disable promiscuous mode as needed. */
5522 if (ifp->if_flags & IFF_PROMISC)
5523 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5524 else
5525 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5526
5527 /* Program multicast filter. */
5528 bge_setmulti(sc);
5529
5530 /* Init RX ring. */
5531 bge_init_rx_ring_std(sc);
5532
5533 /*
5534 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5535 * memory to insure that the chip has in fact read the first
5536 * entry of the ring.
5537 */
5538 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5539 uint32_t v, i;
5540 for (i = 0; i < 10; i++) {
5541 DELAY(20);
5542 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5543 if (v == (MCLBYTES - ETHER_ALIGN))
5544 break;
5545 }
5546 if (i == 10)
5547 aprint_error_dev(sc->bge_dev,
5548 "5705 A0 chip failed to load RX ring\n");
5549 }
5550
5551 /* Init jumbo RX ring. */
5552 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5553 bge_init_rx_ring_jumbo(sc);
5554
5555 /* Init our RX return ring index */
5556 sc->bge_rx_saved_considx = 0;
5557
5558 /* Init TX ring. */
5559 bge_init_tx_ring(sc);
5560
5561 /* 5718 step 63, 57XX step 94 */
5562 /* Enable TX MAC state machine lockup fix. */
5563 mode = CSR_READ_4(sc, BGE_TX_MODE);
5564 if (BGE_IS_5755_PLUS(sc) ||
5565 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5566 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5567 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5568 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5569 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5570 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5571 }
5572
5573 /* Turn on transmitter */
5574 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5575 /* 5718 step 64 */
5576 DELAY(100);
5577
5578 /* 5718 step 65, 57XX step 95 */
5579 /* Turn on receiver */
5580 mode = CSR_READ_4(sc, BGE_RX_MODE);
5581 if (BGE_IS_5755_PLUS(sc))
5582 mode |= BGE_RXMODE_IPV6_ENABLE;
5583 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5584 /* 5718 step 66 */
5585 DELAY(10);
5586
5587 /* 5718 step 12, 57XX step 37 */
5588 /*
5589 * XXX Doucments of 5718 series and 577xx say the recommended value
5590 * is 1, but tg3 set 1 only on 57765 series.
5591 */
5592 if (BGE_IS_57765_PLUS(sc))
5593 reg = 1;
5594 else
5595 reg = 2;
5596 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5597
5598 /* Tell firmware we're alive. */
5599 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5600
5601 /* Enable host interrupts. */
5602 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5603 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5604 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5605
5606 if ((error = bge_ifmedia_upd(ifp)) != 0)
5607 goto out;
5608
5609 ifp->if_flags |= IFF_RUNNING;
5610 ifp->if_flags &= ~IFF_OACTIVE;
5611
5612 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5613
5614 out:
5615 sc->bge_if_flags = ifp->if_flags;
5616 splx(s);
5617
5618 return error;
5619 }
5620
5621 /*
5622 * Set media options.
5623 */
5624 static int
5625 bge_ifmedia_upd(struct ifnet *ifp)
5626 {
5627 struct bge_softc *sc = ifp->if_softc;
5628 struct mii_data *mii = &sc->bge_mii;
5629 struct ifmedia *ifm = &sc->bge_ifmedia;
5630 int rc;
5631
5632 /* If this is a 1000baseX NIC, enable the TBI port. */
5633 if (sc->bge_flags & BGEF_FIBER_TBI) {
5634 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635 return EINVAL;
5636 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5637 case IFM_AUTO:
5638 /*
5639 * The BCM5704 ASIC appears to have a special
5640 * mechanism for programming the autoneg
5641 * advertisement registers in TBI mode.
5642 */
5643 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5644 uint32_t sgdig;
5645 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646 if (sgdig & BGE_SGDIGSTS_DONE) {
5647 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649 sgdig |= BGE_SGDIGCFG_AUTO |
5650 BGE_SGDIGCFG_PAUSE_CAP |
5651 BGE_SGDIGCFG_ASYM_PAUSE;
5652 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5653 sgdig | BGE_SGDIGCFG_SEND);
5654 DELAY(5);
5655 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5656 sgdig);
5657 }
5658 }
5659 break;
5660 case IFM_1000_SX:
5661 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5662 BGE_CLRBIT(sc, BGE_MAC_MODE,
5663 BGE_MACMODE_HALF_DUPLEX);
5664 } else {
5665 BGE_SETBIT(sc, BGE_MAC_MODE,
5666 BGE_MACMODE_HALF_DUPLEX);
5667 }
5668 DELAY(40);
5669 break;
5670 default:
5671 return EINVAL;
5672 }
5673 /* XXX 802.3x flow control for 1000BASE-SX */
5674 return 0;
5675 }
5676
5677 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5678 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5679 uint32_t reg;
5680
5681 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5682 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5683 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5684 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5685 }
5686 }
5687
5688 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5689 if ((rc = mii_mediachg(mii)) == ENXIO)
5690 return 0;
5691
5692 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5693 uint32_t reg;
5694
5695 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5696 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5697 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5698 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5699 delay(40);
5700 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5701 }
5702 }
5703
5704 /*
5705 * Force an interrupt so that we will call bge_link_upd
5706 * if needed and clear any pending link state attention.
5707 * Without this we are not getting any further interrupts
5708 * for link state changes and thus will not UP the link and
5709 * not be able to send in bge_start. The only way to get
5710 * things working was to receive a packet and get a RX intr.
5711 */
5712 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5713 sc->bge_flags & BGEF_IS_5788)
5714 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5715 else
5716 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5717
5718 return rc;
5719 }
5720
5721 /*
5722 * Report current media status.
5723 */
5724 static void
5725 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5726 {
5727 struct bge_softc *sc = ifp->if_softc;
5728 struct mii_data *mii = &sc->bge_mii;
5729
5730 if (sc->bge_flags & BGEF_FIBER_TBI) {
5731 ifmr->ifm_status = IFM_AVALID;
5732 ifmr->ifm_active = IFM_ETHER;
5733 if (CSR_READ_4(sc, BGE_MAC_STS) &
5734 BGE_MACSTAT_TBI_PCS_SYNCHED)
5735 ifmr->ifm_status |= IFM_ACTIVE;
5736 ifmr->ifm_active |= IFM_1000_SX;
5737 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5738 ifmr->ifm_active |= IFM_HDX;
5739 else
5740 ifmr->ifm_active |= IFM_FDX;
5741 return;
5742 }
5743
5744 mii_pollstat(mii);
5745 ifmr->ifm_status = mii->mii_media_status;
5746 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5747 sc->bge_flowflags;
5748 }
5749
5750 static int
5751 bge_ifflags_cb(struct ethercom *ec)
5752 {
5753 struct ifnet *ifp = &ec->ec_if;
5754 struct bge_softc *sc = ifp->if_softc;
5755 int change = ifp->if_flags ^ sc->bge_if_flags;
5756
5757 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5758 return ENETRESET;
5759 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5760 return 0;
5761
5762 if ((ifp->if_flags & IFF_PROMISC) == 0)
5763 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5764 else
5765 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5766
5767 bge_setmulti(sc);
5768
5769 sc->bge_if_flags = ifp->if_flags;
5770 return 0;
5771 }
5772
5773 static int
5774 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5775 {
5776 struct bge_softc *sc = ifp->if_softc;
5777 struct ifreq *ifr = (struct ifreq *) data;
5778 int s, error = 0;
5779 struct mii_data *mii;
5780
5781 s = splnet();
5782
5783 switch (command) {
5784 case SIOCSIFMEDIA:
5785 /* XXX Flow control is not supported for 1000BASE-SX */
5786 if (sc->bge_flags & BGEF_FIBER_TBI) {
5787 ifr->ifr_media &= ~IFM_ETH_FMASK;
5788 sc->bge_flowflags = 0;
5789 }
5790
5791 /* Flow control requires full-duplex mode. */
5792 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5793 (ifr->ifr_media & IFM_FDX) == 0) {
5794 ifr->ifr_media &= ~IFM_ETH_FMASK;
5795 }
5796 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5797 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5798 /* We can do both TXPAUSE and RXPAUSE. */
5799 ifr->ifr_media |=
5800 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5801 }
5802 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5803 }
5804 /* FALLTHROUGH */
5805 case SIOCGIFMEDIA:
5806 if (sc->bge_flags & BGEF_FIBER_TBI) {
5807 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5808 command);
5809 } else {
5810 mii = &sc->bge_mii;
5811 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5812 command);
5813 }
5814 break;
5815 default:
5816 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5817 break;
5818
5819 error = 0;
5820
5821 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5822 ;
5823 else if (ifp->if_flags & IFF_RUNNING)
5824 bge_setmulti(sc);
5825 break;
5826 }
5827
5828 splx(s);
5829
5830 return error;
5831 }
5832
5833 static void
5834 bge_watchdog(struct ifnet *ifp)
5835 {
5836 struct bge_softc *sc;
5837
5838 sc = ifp->if_softc;
5839
5840 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5841
5842 ifp->if_flags &= ~IFF_RUNNING;
5843 bge_init(ifp);
5844
5845 ifp->if_oerrors++;
5846 }
5847
5848 static void
5849 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5850 {
5851 int i;
5852
5853 BGE_CLRBIT_FLUSH(sc, reg, bit);
5854
5855 for (i = 0; i < 1000; i++) {
5856 delay(100);
5857 if ((CSR_READ_4(sc, reg) & bit) == 0)
5858 return;
5859 }
5860
5861 /*
5862 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5863 * on some environment (and once after boot?)
5864 */
5865 if (reg != BGE_SRS_MODE)
5866 aprint_error_dev(sc->bge_dev,
5867 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5868 (u_long)reg, bit);
5869 }
5870
5871 /*
5872 * Stop the adapter and free any mbufs allocated to the
5873 * RX and TX lists.
5874 */
5875 static void
5876 bge_stop(struct ifnet *ifp, int disable)
5877 {
5878 struct bge_softc *sc = ifp->if_softc;
5879
5880 if (disable) {
5881 sc->bge_detaching = 1;
5882 callout_halt(&sc->bge_timeout, NULL);
5883 } else
5884 callout_stop(&sc->bge_timeout);
5885
5886 /* Disable host interrupts. */
5887 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5888 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5889
5890 /*
5891 * Tell firmware we're shutting down.
5892 */
5893 bge_stop_fw(sc);
5894 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5895
5896 /*
5897 * Disable all of the receiver blocks.
5898 */
5899 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5900 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5901 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5902 if (BGE_IS_5700_FAMILY(sc))
5903 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5904 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5905 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5906 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5907
5908 /*
5909 * Disable all of the transmit blocks.
5910 */
5911 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5912 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5913 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5914 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5915 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5916 if (BGE_IS_5700_FAMILY(sc))
5917 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5918 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5919
5920 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5921 delay(40);
5922
5923 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5924
5925 /*
5926 * Shut down all of the memory managers and related
5927 * state machines.
5928 */
5929 /* 5718 step 5a,5b */
5930 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5931 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5932 if (BGE_IS_5700_FAMILY(sc))
5933 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5934
5935 /* 5718 step 5c,5d */
5936 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5937 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5938
5939 if (BGE_IS_5700_FAMILY(sc)) {
5940 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5941 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5942 }
5943
5944 bge_reset(sc);
5945 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5946 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5947
5948 /*
5949 * Keep the ASF firmware running if up.
5950 */
5951 if (sc->bge_asf_mode & ASF_STACKUP)
5952 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5953 else
5954 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5955
5956 /* Free the RX lists. */
5957 bge_free_rx_ring_std(sc);
5958
5959 /* Free jumbo RX list. */
5960 if (BGE_IS_JUMBO_CAPABLE(sc))
5961 bge_free_rx_ring_jumbo(sc);
5962
5963 /* Free TX buffers. */
5964 bge_free_tx_ring(sc);
5965
5966 /*
5967 * Isolate/power down the PHY.
5968 */
5969 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5970 mii_down(&sc->bge_mii);
5971
5972 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5973
5974 /* Clear MAC's link state (PHY may still have link UP). */
5975 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5976
5977 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5978 }
5979
5980 static void
5981 bge_link_upd(struct bge_softc *sc)
5982 {
5983 struct ifnet *ifp = &sc->ethercom.ec_if;
5984 struct mii_data *mii = &sc->bge_mii;
5985 uint32_t status;
5986 int link;
5987
5988 /* Clear 'pending link event' flag */
5989 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5990
5991 /*
5992 * Process link state changes.
5993 * Grrr. The link status word in the status block does
5994 * not work correctly on the BCM5700 rev AX and BX chips,
5995 * according to all available information. Hence, we have
5996 * to enable MII interrupts in order to properly obtain
5997 * async link changes. Unfortunately, this also means that
5998 * we have to read the MAC status register to detect link
5999 * changes, thereby adding an additional register access to
6000 * the interrupt handler.
6001 */
6002
6003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6004 status = CSR_READ_4(sc, BGE_MAC_STS);
6005 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6006 mii_pollstat(mii);
6007
6008 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6009 mii->mii_media_status & IFM_ACTIVE &&
6010 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6011 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6012 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6013 (!(mii->mii_media_status & IFM_ACTIVE) ||
6014 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6015 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6016
6017 /* Clear the interrupt */
6018 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6019 BGE_EVTENB_MI_INTERRUPT);
6020 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6021 BRGPHY_MII_ISR);
6022 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6023 BRGPHY_MII_IMR, BRGPHY_INTRS);
6024 }
6025 return;
6026 }
6027
6028 if (sc->bge_flags & BGEF_FIBER_TBI) {
6029 status = CSR_READ_4(sc, BGE_MAC_STS);
6030 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6031 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6032 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6033 if (BGE_ASICREV(sc->bge_chipid)
6034 == BGE_ASICREV_BCM5704) {
6035 BGE_CLRBIT(sc, BGE_MAC_MODE,
6036 BGE_MACMODE_TBI_SEND_CFGS);
6037 DELAY(40);
6038 }
6039 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6040 if_link_state_change(ifp, LINK_STATE_UP);
6041 }
6042 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6043 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6044 if_link_state_change(ifp, LINK_STATE_DOWN);
6045 }
6046 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6047 /*
6048 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6049 * bit in status word always set. Workaround this bug by
6050 * reading PHY link status directly.
6051 */
6052 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6053 BGE_STS_LINK : 0;
6054
6055 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6056 mii_pollstat(mii);
6057
6058 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6059 mii->mii_media_status & IFM_ACTIVE &&
6060 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6061 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6062 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6063 (!(mii->mii_media_status & IFM_ACTIVE) ||
6064 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6065 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6066 }
6067 } else {
6068 /*
6069 * For controllers that call mii_tick, we have to poll
6070 * link status.
6071 */
6072 mii_pollstat(mii);
6073 }
6074
6075 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6076 uint32_t reg, scale;
6077
6078 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6079 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6080 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6081 scale = 65;
6082 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6083 scale = 6;
6084 else
6085 scale = 12;
6086
6087 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6088 ~BGE_MISCCFG_TIMER_PRESCALER;
6089 reg |= scale << 1;
6090 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6091 }
6092 /* Clear the attention */
6093 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6094 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6095 BGE_MACSTAT_LINK_CHANGED);
6096 }
6097
6098 static int
6099 bge_sysctl_verify(SYSCTLFN_ARGS)
6100 {
6101 int error, t;
6102 struct sysctlnode node;
6103
6104 node = *rnode;
6105 t = *(int*)rnode->sysctl_data;
6106 node.sysctl_data = &t;
6107 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6108 if (error || newp == NULL)
6109 return error;
6110
6111 #if 0
6112 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6113 node.sysctl_num, rnode->sysctl_num));
6114 #endif
6115
6116 if (node.sysctl_num == bge_rxthresh_nodenum) {
6117 if (t < 0 || t >= NBGE_RX_THRESH)
6118 return EINVAL;
6119 bge_update_all_threshes(t);
6120 } else
6121 return EINVAL;
6122
6123 *(int*)rnode->sysctl_data = t;
6124
6125 return 0;
6126 }
6127
6128 /*
6129 * Set up sysctl(3) MIB, hw.bge.*.
6130 */
6131 static void
6132 bge_sysctl_init(struct bge_softc *sc)
6133 {
6134 int rc, bge_root_num;
6135 const struct sysctlnode *node;
6136
6137 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6138 0, CTLTYPE_NODE, "bge",
6139 SYSCTL_DESCR("BGE interface controls"),
6140 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6141 goto out;
6142 }
6143
6144 bge_root_num = node->sysctl_num;
6145
6146 /* BGE Rx interrupt mitigation level */
6147 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6148 CTLFLAG_READWRITE,
6149 CTLTYPE_INT, "rx_lvl",
6150 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6151 bge_sysctl_verify, 0,
6152 &bge_rx_thresh_lvl,
6153 0, CTL_HW, bge_root_num, CTL_CREATE,
6154 CTL_EOL)) != 0) {
6155 goto out;
6156 }
6157
6158 bge_rxthresh_nodenum = node->sysctl_num;
6159
6160 return;
6161
6162 out:
6163 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6164 }
6165
6166 #ifdef BGE_DEBUG
6167 void
6168 bge_debug_info(struct bge_softc *sc)
6169 {
6170
6171 printf("Hardware Flags:\n");
6172 if (BGE_IS_57765_PLUS(sc))
6173 printf(" - 57765 Plus\n");
6174 if (BGE_IS_5717_PLUS(sc))
6175 printf(" - 5717 Plus\n");
6176 if (BGE_IS_5755_PLUS(sc))
6177 printf(" - 5755 Plus\n");
6178 if (BGE_IS_575X_PLUS(sc))
6179 printf(" - 575X Plus\n");
6180 if (BGE_IS_5705_PLUS(sc))
6181 printf(" - 5705 Plus\n");
6182 if (BGE_IS_5714_FAMILY(sc))
6183 printf(" - 5714 Family\n");
6184 if (BGE_IS_5700_FAMILY(sc))
6185 printf(" - 5700 Family\n");
6186 if (sc->bge_flags & BGEF_IS_5788)
6187 printf(" - 5788\n");
6188 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6189 printf(" - Supports Jumbo Frames\n");
6190 if (sc->bge_flags & BGEF_NO_EEPROM)
6191 printf(" - No EEPROM\n");
6192 if (sc->bge_flags & BGEF_PCIX)
6193 printf(" - PCI-X Bus\n");
6194 if (sc->bge_flags & BGEF_PCIE)
6195 printf(" - PCI Express Bus\n");
6196 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6197 printf(" - RX Alignment Bug\n");
6198 if (sc->bge_flags & BGEF_APE)
6199 printf(" - APE\n");
6200 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6201 printf(" - CPMU\n");
6202 if (sc->bge_flags & BGEF_TSO)
6203 printf(" - TSO\n");
6204 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6205 printf(" - TAGGED_STATUS\n");
6206
6207 /* PHY related */
6208 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6209 printf(" - No 3 LEDs\n");
6210 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6211 printf(" - CRC bug\n");
6212 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6213 printf(" - ADC bug\n");
6214 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6215 printf(" - 5704 A0 bug\n");
6216 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6217 printf(" - jitter bug\n");
6218 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6219 printf(" - BER bug\n");
6220 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6221 printf(" - adjust trim\n");
6222 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6223 printf(" - no wirespeed\n");
6224
6225 /* ASF related */
6226 if (sc->bge_asf_mode & ASF_ENABLE)
6227 printf(" - ASF enable\n");
6228 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6229 printf(" - ASF new handshake\n");
6230 if (sc->bge_asf_mode & ASF_STACKUP)
6231 printf(" - ASF stackup\n");
6232 }
6233 #endif /* BGE_DEBUG */
6234
6235 static int
6236 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6237 {
6238 prop_dictionary_t dict;
6239 prop_data_t ea;
6240
6241 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6242 return 1;
6243
6244 dict = device_properties(sc->bge_dev);
6245 ea = prop_dictionary_get(dict, "mac-address");
6246 if (ea != NULL) {
6247 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6248 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6249 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6250 return 0;
6251 }
6252
6253 return 1;
6254 }
6255
6256 static int
6257 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6258 {
6259 uint32_t mac_addr;
6260
6261 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6262 if ((mac_addr >> 16) == 0x484b) {
6263 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6264 ether_addr[1] = (uint8_t)mac_addr;
6265 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6266 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6267 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6268 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6269 ether_addr[5] = (uint8_t)mac_addr;
6270 return 0;
6271 }
6272 return 1;
6273 }
6274
6275 static int
6276 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6277 {
6278 int mac_offset = BGE_EE_MAC_OFFSET;
6279
6280 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6281 mac_offset = BGE_EE_MAC_OFFSET_5906;
6282
6283 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6284 ETHER_ADDR_LEN));
6285 }
6286
6287 static int
6288 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6289 {
6290
6291 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6292 return 1;
6293
6294 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6295 ETHER_ADDR_LEN));
6296 }
6297
6298 static int
6299 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6300 {
6301 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6302 /* NOTE: Order is critical */
6303 bge_get_eaddr_fw,
6304 bge_get_eaddr_mem,
6305 bge_get_eaddr_nvram,
6306 bge_get_eaddr_eeprom,
6307 NULL
6308 };
6309 const bge_eaddr_fcn_t *func;
6310
6311 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6312 if ((*func)(sc, eaddr) == 0)
6313 break;
6314 }
6315 return (*func == NULL ? ENXIO : 0);
6316 }
6317