Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.294
      1 /*	$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rndsource.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_can_use_msi(struct bge_softc *);
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static int bge_detach(device_t, int);
    190 static void bge_release_resources(struct bge_softc *);
    191 
    192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    197 
    198 static void bge_txeof(struct bge_softc *);
    199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    200 static void bge_rxeof(struct bge_softc *);
    201 
    202 static void bge_asf_driver_up (struct bge_softc *);
    203 static void bge_tick(void *);
    204 static void bge_stats_update(struct bge_softc *);
    205 static void bge_stats_update_regs(struct bge_softc *);
    206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    207 
    208 static int bge_intr(void *);
    209 static void bge_start(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_phy_addr(struct bge_softc *);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writembx_flush(struct bge_softc *, int, int);
    249 static void bge_writemem_direct(struct bge_softc *, int, int);
    250 static void bge_writereg_ind(struct bge_softc *, int, int);
    251 static void bge_set_max_readrq(struct bge_softc *);
    252 
    253 static int bge_miibus_readreg(device_t, int, int);
    254 static void bge_miibus_writereg(device_t, int, int, int);
    255 static void bge_miibus_statchg(struct ifnet *);
    256 
    257 #define BGE_RESET_SHUTDOWN	0
    258 #define	BGE_RESET_START		1
    259 #define	BGE_RESET_SUSPEND	2
    260 static void bge_sig_post_reset(struct bge_softc *, int);
    261 static void bge_sig_legacy(struct bge_softc *, int);
    262 static void bge_sig_pre_reset(struct bge_softc *, int);
    263 static void bge_wait_for_event_ack(struct bge_softc *);
    264 static void bge_stop_fw(struct bge_softc *);
    265 static int bge_reset(struct bge_softc *);
    266 static void bge_link_upd(struct bge_softc *);
    267 static void bge_sysctl_init(struct bge_softc *);
    268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    269 
    270 static void bge_ape_lock_init(struct bge_softc *);
    271 static void bge_ape_read_fw_ver(struct bge_softc *);
    272 static int bge_ape_lock(struct bge_softc *, int);
    273 static void bge_ape_unlock(struct bge_softc *, int);
    274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    275 static void bge_ape_driver_state_change(struct bge_softc *, int);
    276 
    277 #ifdef BGE_DEBUG
    278 #define DPRINTF(x)	if (bgedebug) printf x
    279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    281 int	bgedebug = 0;
    282 int	bge_tso_debug = 0;
    283 void		bge_debug_info(struct bge_softc *);
    284 #else
    285 #define DPRINTF(x)
    286 #define DPRINTFN(n,x)
    287 #define BGE_TSO_PRINTF(x)
    288 #endif
    289 
    290 #ifdef BGE_EVENT_COUNTERS
    291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    294 #else
    295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    298 #endif
    299 
    300 static const struct bge_product {
    301 	pci_vendor_id_t		bp_vendor;
    302 	pci_product_id_t	bp_product;
    303 	const char		*bp_name;
    304 } bge_products[] = {
    305 	/*
    306 	 * The BCM5700 documentation seems to indicate that the hardware
    307 	 * still has the Alteon vendor ID burned into it, though it
    308 	 * should always be overridden by the value in the EEPROM.  We'll
    309 	 * check for it anyway.
    310 	 */
    311 	{ PCI_VENDOR_ALTEON,
    312 	  PCI_PRODUCT_ALTEON_BCM5700,
    313 	  "Broadcom BCM5700 Gigabit Ethernet",
    314 	  },
    315 	{ PCI_VENDOR_ALTEON,
    316 	  PCI_PRODUCT_ALTEON_BCM5701,
    317 	  "Broadcom BCM5701 Gigabit Ethernet",
    318 	  },
    319 	{ PCI_VENDOR_ALTIMA,
    320 	  PCI_PRODUCT_ALTIMA_AC1000,
    321 	  "Altima AC1000 Gigabit Ethernet",
    322 	  },
    323 	{ PCI_VENDOR_ALTIMA,
    324 	  PCI_PRODUCT_ALTIMA_AC1001,
    325 	  "Altima AC1001 Gigabit Ethernet",
    326 	   },
    327 	{ PCI_VENDOR_ALTIMA,
    328 	  PCI_PRODUCT_ALTIMA_AC1003,
    329 	  "Altima AC1003 Gigabit Ethernet",
    330 	   },
    331 	{ PCI_VENDOR_ALTIMA,
    332 	  PCI_PRODUCT_ALTIMA_AC9100,
    333 	  "Altima AC9100 Gigabit Ethernet",
    334 	  },
    335 	{ PCI_VENDOR_APPLE,
    336 	  PCI_PRODUCT_APPLE_BCM5701,
    337 	  "APPLE BCM5701 Gigabit Ethernet",
    338 	  },
    339 	{ PCI_VENDOR_BROADCOM,
    340 	  PCI_PRODUCT_BROADCOM_BCM5700,
    341 	  "Broadcom BCM5700 Gigabit Ethernet",
    342 	  },
    343 	{ PCI_VENDOR_BROADCOM,
    344 	  PCI_PRODUCT_BROADCOM_BCM5701,
    345 	  "Broadcom BCM5701 Gigabit Ethernet",
    346 	  },
    347 	{ PCI_VENDOR_BROADCOM,
    348 	  PCI_PRODUCT_BROADCOM_BCM5702,
    349 	  "Broadcom BCM5702 Gigabit Ethernet",
    350 	  },
    351 	{ PCI_VENDOR_BROADCOM,
    352 	  PCI_PRODUCT_BROADCOM_BCM5702X,
    353 	  "Broadcom BCM5702X Gigabit Ethernet" },
    354 	{ PCI_VENDOR_BROADCOM,
    355 	  PCI_PRODUCT_BROADCOM_BCM5703,
    356 	  "Broadcom BCM5703 Gigabit Ethernet",
    357 	  },
    358 	{ PCI_VENDOR_BROADCOM,
    359 	  PCI_PRODUCT_BROADCOM_BCM5703X,
    360 	  "Broadcom BCM5703X Gigabit Ethernet",
    361 	  },
    362 	{ PCI_VENDOR_BROADCOM,
    363 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
    364 	  "Broadcom BCM5703 Gigabit Ethernet",
    365 	  },
    366 	{ PCI_VENDOR_BROADCOM,
    367 	  PCI_PRODUCT_BROADCOM_BCM5704C,
    368 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
    369 	  },
    370 	{ PCI_VENDOR_BROADCOM,
    371 	  PCI_PRODUCT_BROADCOM_BCM5704S,
    372 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
    373 	  },
    374 	{ PCI_VENDOR_BROADCOM,
    375 	  PCI_PRODUCT_BROADCOM_BCM5705,
    376 	  "Broadcom BCM5705 Gigabit Ethernet",
    377 	  },
    378 	{ PCI_VENDOR_BROADCOM,
    379 	  PCI_PRODUCT_BROADCOM_BCM5705F,
    380 	  "Broadcom BCM5705F Gigabit Ethernet",
    381 	  },
    382 	{ PCI_VENDOR_BROADCOM,
    383 	  PCI_PRODUCT_BROADCOM_BCM5705K,
    384 	  "Broadcom BCM5705K Gigabit Ethernet",
    385 	  },
    386 	{ PCI_VENDOR_BROADCOM,
    387 	  PCI_PRODUCT_BROADCOM_BCM5705M,
    388 	  "Broadcom BCM5705M Gigabit Ethernet",
    389 	  },
    390 	{ PCI_VENDOR_BROADCOM,
    391 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
    392 	  "Broadcom BCM5705M Gigabit Ethernet",
    393 	  },
    394 	{ PCI_VENDOR_BROADCOM,
    395 	  PCI_PRODUCT_BROADCOM_BCM5714,
    396 	  "Broadcom BCM5714 Gigabit Ethernet",
    397 	  },
    398 	{ PCI_VENDOR_BROADCOM,
    399 	  PCI_PRODUCT_BROADCOM_BCM5714S,
    400 	  "Broadcom BCM5714S Gigabit Ethernet",
    401 	  },
    402 	{ PCI_VENDOR_BROADCOM,
    403 	  PCI_PRODUCT_BROADCOM_BCM5715,
    404 	  "Broadcom BCM5715 Gigabit Ethernet",
    405 	  },
    406 	{ PCI_VENDOR_BROADCOM,
    407 	  PCI_PRODUCT_BROADCOM_BCM5715S,
    408 	  "Broadcom BCM5715S Gigabit Ethernet",
    409 	  },
    410 	{ PCI_VENDOR_BROADCOM,
    411 	  PCI_PRODUCT_BROADCOM_BCM5717,
    412 	  "Broadcom BCM5717 Gigabit Ethernet",
    413 	  },
    414 	{ PCI_VENDOR_BROADCOM,
    415 	  PCI_PRODUCT_BROADCOM_BCM5718,
    416 	  "Broadcom BCM5718 Gigabit Ethernet",
    417 	  },
    418 	{ PCI_VENDOR_BROADCOM,
    419 	  PCI_PRODUCT_BROADCOM_BCM5719,
    420 	  "Broadcom BCM5719 Gigabit Ethernet",
    421 	  },
    422 	{ PCI_VENDOR_BROADCOM,
    423 	  PCI_PRODUCT_BROADCOM_BCM5720,
    424 	  "Broadcom BCM5720 Gigabit Ethernet",
    425 	  },
    426 	{ PCI_VENDOR_BROADCOM,
    427 	  PCI_PRODUCT_BROADCOM_BCM5721,
    428 	  "Broadcom BCM5721 Gigabit Ethernet",
    429 	  },
    430 	{ PCI_VENDOR_BROADCOM,
    431 	  PCI_PRODUCT_BROADCOM_BCM5722,
    432 	  "Broadcom BCM5722 Gigabit Ethernet",
    433 	  },
    434 	{ PCI_VENDOR_BROADCOM,
    435 	  PCI_PRODUCT_BROADCOM_BCM5723,
    436 	  "Broadcom BCM5723 Gigabit Ethernet",
    437 	  },
    438 	{ PCI_VENDOR_BROADCOM,
    439 	  PCI_PRODUCT_BROADCOM_BCM5750,
    440 	  "Broadcom BCM5750 Gigabit Ethernet",
    441 	  },
    442 	{ PCI_VENDOR_BROADCOM,
    443 	  PCI_PRODUCT_BROADCOM_BCM5751,
    444 	  "Broadcom BCM5751 Gigabit Ethernet",
    445 	  },
    446 	{ PCI_VENDOR_BROADCOM,
    447 	  PCI_PRODUCT_BROADCOM_BCM5751F,
    448 	  "Broadcom BCM5751F Gigabit Ethernet",
    449 	  },
    450 	{ PCI_VENDOR_BROADCOM,
    451 	  PCI_PRODUCT_BROADCOM_BCM5751M,
    452 	  "Broadcom BCM5751M Gigabit Ethernet",
    453 	  },
    454 	{ PCI_VENDOR_BROADCOM,
    455 	  PCI_PRODUCT_BROADCOM_BCM5752,
    456 	  "Broadcom BCM5752 Gigabit Ethernet",
    457 	  },
    458 	{ PCI_VENDOR_BROADCOM,
    459 	  PCI_PRODUCT_BROADCOM_BCM5752M,
    460 	  "Broadcom BCM5752M Gigabit Ethernet",
    461 	  },
    462 	{ PCI_VENDOR_BROADCOM,
    463 	  PCI_PRODUCT_BROADCOM_BCM5753,
    464 	  "Broadcom BCM5753 Gigabit Ethernet",
    465 	  },
    466 	{ PCI_VENDOR_BROADCOM,
    467 	  PCI_PRODUCT_BROADCOM_BCM5753F,
    468 	  "Broadcom BCM5753F Gigabit Ethernet",
    469 	  },
    470 	{ PCI_VENDOR_BROADCOM,
    471 	  PCI_PRODUCT_BROADCOM_BCM5753M,
    472 	  "Broadcom BCM5753M Gigabit Ethernet",
    473 	  },
    474 	{ PCI_VENDOR_BROADCOM,
    475 	  PCI_PRODUCT_BROADCOM_BCM5754,
    476 	  "Broadcom BCM5754 Gigabit Ethernet",
    477 	},
    478 	{ PCI_VENDOR_BROADCOM,
    479 	  PCI_PRODUCT_BROADCOM_BCM5754M,
    480 	  "Broadcom BCM5754M Gigabit Ethernet",
    481 	},
    482 	{ PCI_VENDOR_BROADCOM,
    483 	  PCI_PRODUCT_BROADCOM_BCM5755,
    484 	  "Broadcom BCM5755 Gigabit Ethernet",
    485 	},
    486 	{ PCI_VENDOR_BROADCOM,
    487 	  PCI_PRODUCT_BROADCOM_BCM5755M,
    488 	  "Broadcom BCM5755M Gigabit Ethernet",
    489 	},
    490 	{ PCI_VENDOR_BROADCOM,
    491 	  PCI_PRODUCT_BROADCOM_BCM5756,
    492 	  "Broadcom BCM5756 Gigabit Ethernet",
    493 	},
    494 	{ PCI_VENDOR_BROADCOM,
    495 	  PCI_PRODUCT_BROADCOM_BCM5761,
    496 	  "Broadcom BCM5761 Gigabit Ethernet",
    497 	},
    498 	{ PCI_VENDOR_BROADCOM,
    499 	  PCI_PRODUCT_BROADCOM_BCM5761E,
    500 	  "Broadcom BCM5761E Gigabit Ethernet",
    501 	},
    502 	{ PCI_VENDOR_BROADCOM,
    503 	  PCI_PRODUCT_BROADCOM_BCM5761S,
    504 	  "Broadcom BCM5761S Gigabit Ethernet",
    505 	},
    506 	{ PCI_VENDOR_BROADCOM,
    507 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
    508 	  "Broadcom BCM5761SE Gigabit Ethernet",
    509 	},
    510 	{ PCI_VENDOR_BROADCOM,
    511 	  PCI_PRODUCT_BROADCOM_BCM5764,
    512 	  "Broadcom BCM5764 Gigabit Ethernet",
    513 	  },
    514 	{ PCI_VENDOR_BROADCOM,
    515 	  PCI_PRODUCT_BROADCOM_BCM5780,
    516 	  "Broadcom BCM5780 Gigabit Ethernet",
    517 	  },
    518 	{ PCI_VENDOR_BROADCOM,
    519 	  PCI_PRODUCT_BROADCOM_BCM5780S,
    520 	  "Broadcom BCM5780S Gigabit Ethernet",
    521 	  },
    522 	{ PCI_VENDOR_BROADCOM,
    523 	  PCI_PRODUCT_BROADCOM_BCM5781,
    524 	  "Broadcom BCM5781 Gigabit Ethernet",
    525 	  },
    526 	{ PCI_VENDOR_BROADCOM,
    527 	  PCI_PRODUCT_BROADCOM_BCM5782,
    528 	  "Broadcom BCM5782 Gigabit Ethernet",
    529 	},
    530 	{ PCI_VENDOR_BROADCOM,
    531 	  PCI_PRODUCT_BROADCOM_BCM5784M,
    532 	  "BCM5784M NetLink 1000baseT Ethernet",
    533 	},
    534 	{ PCI_VENDOR_BROADCOM,
    535 	  PCI_PRODUCT_BROADCOM_BCM5785F,
    536 	  "BCM5785F NetLink 10/100 Ethernet",
    537 	},
    538 	{ PCI_VENDOR_BROADCOM,
    539 	  PCI_PRODUCT_BROADCOM_BCM5785G,
    540 	  "BCM5785G NetLink 1000baseT Ethernet",
    541 	},
    542 	{ PCI_VENDOR_BROADCOM,
    543 	  PCI_PRODUCT_BROADCOM_BCM5786,
    544 	  "Broadcom BCM5786 Gigabit Ethernet",
    545 	},
    546 	{ PCI_VENDOR_BROADCOM,
    547 	  PCI_PRODUCT_BROADCOM_BCM5787,
    548 	  "Broadcom BCM5787 Gigabit Ethernet",
    549 	},
    550 	{ PCI_VENDOR_BROADCOM,
    551 	  PCI_PRODUCT_BROADCOM_BCM5787F,
    552 	  "Broadcom BCM5787F 10/100 Ethernet",
    553 	},
    554 	{ PCI_VENDOR_BROADCOM,
    555 	  PCI_PRODUCT_BROADCOM_BCM5787M,
    556 	  "Broadcom BCM5787M Gigabit Ethernet",
    557 	},
    558 	{ PCI_VENDOR_BROADCOM,
    559 	  PCI_PRODUCT_BROADCOM_BCM5788,
    560 	  "Broadcom BCM5788 Gigabit Ethernet",
    561 	  },
    562 	{ PCI_VENDOR_BROADCOM,
    563 	  PCI_PRODUCT_BROADCOM_BCM5789,
    564 	  "Broadcom BCM5789 Gigabit Ethernet",
    565 	  },
    566 	{ PCI_VENDOR_BROADCOM,
    567 	  PCI_PRODUCT_BROADCOM_BCM5901,
    568 	  "Broadcom BCM5901 Fast Ethernet",
    569 	  },
    570 	{ PCI_VENDOR_BROADCOM,
    571 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
    572 	  "Broadcom BCM5901A2 Fast Ethernet",
    573 	  },
    574 	{ PCI_VENDOR_BROADCOM,
    575 	  PCI_PRODUCT_BROADCOM_BCM5903M,
    576 	  "Broadcom BCM5903M Fast Ethernet",
    577 	  },
    578 	{ PCI_VENDOR_BROADCOM,
    579 	  PCI_PRODUCT_BROADCOM_BCM5906,
    580 	  "Broadcom BCM5906 Fast Ethernet",
    581 	  },
    582 	{ PCI_VENDOR_BROADCOM,
    583 	  PCI_PRODUCT_BROADCOM_BCM5906M,
    584 	  "Broadcom BCM5906M Fast Ethernet",
    585 	  },
    586 	{ PCI_VENDOR_BROADCOM,
    587 	  PCI_PRODUCT_BROADCOM_BCM57760,
    588 	  "Broadcom BCM57760 Fast Ethernet",
    589 	  },
    590 	{ PCI_VENDOR_BROADCOM,
    591 	  PCI_PRODUCT_BROADCOM_BCM57761,
    592 	  "Broadcom BCM57761 Fast Ethernet",
    593 	  },
    594 	{ PCI_VENDOR_BROADCOM,
    595 	  PCI_PRODUCT_BROADCOM_BCM57762,
    596 	  "Broadcom BCM57762 Gigabit Ethernet",
    597 	  },
    598 	{ PCI_VENDOR_BROADCOM,
    599 	  PCI_PRODUCT_BROADCOM_BCM57765,
    600 	  "Broadcom BCM57765 Fast Ethernet",
    601 	  },
    602 	{ PCI_VENDOR_BROADCOM,
    603 	  PCI_PRODUCT_BROADCOM_BCM57766,
    604 	  "Broadcom BCM57766 Fast Ethernet",
    605 	  },
    606 	{ PCI_VENDOR_BROADCOM,
    607 	  PCI_PRODUCT_BROADCOM_BCM57780,
    608 	  "Broadcom BCM57780 Fast Ethernet",
    609 	  },
    610 	{ PCI_VENDOR_BROADCOM,
    611 	  PCI_PRODUCT_BROADCOM_BCM57781,
    612 	  "Broadcom BCM57781 Fast Ethernet",
    613 	  },
    614 	{ PCI_VENDOR_BROADCOM,
    615 	  PCI_PRODUCT_BROADCOM_BCM57782,
    616 	  "Broadcom BCM57782 Fast Ethernet",
    617 	  },
    618 	{ PCI_VENDOR_BROADCOM,
    619 	  PCI_PRODUCT_BROADCOM_BCM57785,
    620 	  "Broadcom BCM57785 Fast Ethernet",
    621 	  },
    622 	{ PCI_VENDOR_BROADCOM,
    623 	  PCI_PRODUCT_BROADCOM_BCM57786,
    624 	  "Broadcom BCM57786 Fast Ethernet",
    625 	  },
    626 	{ PCI_VENDOR_BROADCOM,
    627 	  PCI_PRODUCT_BROADCOM_BCM57788,
    628 	  "Broadcom BCM57788 Fast Ethernet",
    629 	  },
    630 	{ PCI_VENDOR_BROADCOM,
    631 	  PCI_PRODUCT_BROADCOM_BCM57790,
    632 	  "Broadcom BCM57790 Fast Ethernet",
    633 	  },
    634 	{ PCI_VENDOR_BROADCOM,
    635 	  PCI_PRODUCT_BROADCOM_BCM57791,
    636 	  "Broadcom BCM57791 Fast Ethernet",
    637 	  },
    638 	{ PCI_VENDOR_BROADCOM,
    639 	  PCI_PRODUCT_BROADCOM_BCM57795,
    640 	  "Broadcom BCM57795 Fast Ethernet",
    641 	  },
    642 	{ PCI_VENDOR_SCHNEIDERKOCH,
    643 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
    644 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
    645 	  },
    646 	{ PCI_VENDOR_3COM,
    647 	  PCI_PRODUCT_3COM_3C996,
    648 	  "3Com 3c996 Gigabit Ethernet",
    649 	  },
    650 	{ PCI_VENDOR_FUJITSU4,
    651 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
    652 	  "Fujitsu PW008GE4 Gigabit Ethernet",
    653 	  },
    654 	{ PCI_VENDOR_FUJITSU4,
    655 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
    656 	  "Fujitsu PW008GE5 Gigabit Ethernet",
    657 	  },
    658 	{ PCI_VENDOR_FUJITSU4,
    659 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
    660 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
    661 	  },
    662 	{ 0,
    663 	  0,
    664 	  NULL },
    665 };
    666 
    667 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    668 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    669 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    670 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    671 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    672 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    673 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    674 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    675 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    676 
    677 static const struct bge_revision {
    678 	uint32_t		br_chipid;
    679 	const char		*br_name;
    680 } bge_revisions[] = {
    681 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    682 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    683 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    684 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    685 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    686 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    687 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    688 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    689 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    690 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    691 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    692 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    693 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    694 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    695 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    696 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    697 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    698 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    699 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    700 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    701 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    702 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    703 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    704 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    705 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    706 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    707 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    708 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    709 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    710 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    711 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    712 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    713 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    714 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    715 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    716 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    717 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    718 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    719 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    720 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    721 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    722 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    723 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    724 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    725 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    726 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    727 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    728 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    729 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    730 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    731 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    732 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    733 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    734 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    735 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    736 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    737 	/* 5754 and 5787 share the same ASIC ID */
    738 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    739 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    740 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    741 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    742 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    743 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    744 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    745 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    746 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    747 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    748 
    749 	{ 0, NULL }
    750 };
    751 
    752 /*
    753  * Some defaults for major revisions, so that newer steppings
    754  * that we don't know about have a shot at working.
    755  */
    756 static const struct bge_revision bge_majorrevs[] = {
    757 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    758 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    759 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    760 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    761 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    762 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    763 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    764 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    765 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    766 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    767 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    768 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    769 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    770 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    771 	/* 5754 and 5787 share the same ASIC ID */
    772 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    773 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    774 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    775 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    776 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    777 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    778 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    779 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    780 
    781 	{ 0, NULL }
    782 };
    783 
    784 static int bge_allow_asf = 1;
    785 
    786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    787     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    788 
    789 static uint32_t
    790 bge_readmem_ind(struct bge_softc *sc, int off)
    791 {
    792 	pcireg_t val;
    793 
    794 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    795 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    796 		return 0;
    797 
    798 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    799 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    800 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    801 	return val;
    802 }
    803 
    804 static void
    805 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    806 {
    807 
    808 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    809 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    811 }
    812 
    813 /*
    814  * PCI Express only
    815  */
    816 static void
    817 bge_set_max_readrq(struct bge_softc *sc)
    818 {
    819 	pcireg_t val;
    820 
    821 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    822 	    + PCIE_DCSR);
    823 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    824 	switch (sc->bge_expmrq) {
    825 	case 2048:
    826 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    827 		break;
    828 	case 4096:
    829 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    830 		break;
    831 	default:
    832 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    833 		break;
    834 	}
    835 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    836 	    + PCIE_DCSR, val);
    837 }
    838 
    839 #ifdef notdef
    840 static uint32_t
    841 bge_readreg_ind(struct bge_softc *sc, int off)
    842 {
    843 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    844 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    845 }
    846 #endif
    847 
    848 static void
    849 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    850 {
    851 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    852 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    853 }
    854 
    855 static void
    856 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    857 {
    858 	CSR_WRITE_4(sc, off, val);
    859 }
    860 
    861 static void
    862 bge_writembx(struct bge_softc *sc, int off, int val)
    863 {
    864 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    865 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    866 
    867 	CSR_WRITE_4(sc, off, val);
    868 }
    869 
    870 static void
    871 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    872 {
    873 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    874 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    875 
    876 	CSR_WRITE_4_FLUSH(sc, off, val);
    877 }
    878 
    879 /*
    880  * Clear all stale locks and select the lock for this driver instance.
    881  */
    882 void
    883 bge_ape_lock_init(struct bge_softc *sc)
    884 {
    885 	struct pci_attach_args *pa = &(sc->bge_pa);
    886 	uint32_t bit, regbase;
    887 	int i;
    888 
    889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    890 		regbase = BGE_APE_LOCK_GRANT;
    891 	else
    892 		regbase = BGE_APE_PER_LOCK_GRANT;
    893 
    894 	/* Clear any stale locks. */
    895 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    896 		switch (i) {
    897 		case BGE_APE_LOCK_PHY0:
    898 		case BGE_APE_LOCK_PHY1:
    899 		case BGE_APE_LOCK_PHY2:
    900 		case BGE_APE_LOCK_PHY3:
    901 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    902 			break;
    903 		default:
    904 			if (pa->pa_function == 0)
    905 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    906 			else
    907 				bit = (1 << pa->pa_function);
    908 		}
    909 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    910 	}
    911 
    912 	/* Select the PHY lock based on the device's function number. */
    913 	switch (pa->pa_function) {
    914 	case 0:
    915 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    916 		break;
    917 	case 1:
    918 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    919 		break;
    920 	case 2:
    921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    922 		break;
    923 	case 3:
    924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    925 		break;
    926 	default:
    927 		printf("%s: PHY lock not supported on function\n",
    928 		    device_xname(sc->bge_dev));
    929 		break;
    930 	}
    931 }
    932 
    933 /*
    934  * Check for APE firmware, set flags, and print version info.
    935  */
    936 void
    937 bge_ape_read_fw_ver(struct bge_softc *sc)
    938 {
    939 	const char *fwtype;
    940 	uint32_t apedata, features;
    941 
    942 	/* Check for a valid APE signature in shared memory. */
    943 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    944 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    945 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    946 		return;
    947 	}
    948 
    949 	/* Check if APE firmware is running. */
    950 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    951 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    952 		printf("%s: APE signature found but FW status not ready! "
    953 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    954 		return;
    955 	}
    956 
    957 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    958 
    959 	/* Fetch the APE firwmare type and version. */
    960 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    961 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    962 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    963 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    964 		fwtype = "NCSI";
    965 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    966 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    967 		fwtype = "DASH";
    968 	} else
    969 		fwtype = "UNKN";
    970 
    971 	/* Print the APE firmware version. */
    972 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    973 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    974 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    975 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    976 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    977 }
    978 
    979 int
    980 bge_ape_lock(struct bge_softc *sc, int locknum)
    981 {
    982 	struct pci_attach_args *pa = &(sc->bge_pa);
    983 	uint32_t bit, gnt, req, status;
    984 	int i, off;
    985 
    986 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    987 		return (0);
    988 
    989 	/* Lock request/grant registers have different bases. */
    990 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    991 		req = BGE_APE_LOCK_REQ;
    992 		gnt = BGE_APE_LOCK_GRANT;
    993 	} else {
    994 		req = BGE_APE_PER_LOCK_REQ;
    995 		gnt = BGE_APE_PER_LOCK_GRANT;
    996 	}
    997 
    998 	off = 4 * locknum;
    999 
   1000 	switch (locknum) {
   1001 	case BGE_APE_LOCK_GPIO:
   1002 		/* Lock required when using GPIO. */
   1003 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1004 			return (0);
   1005 		if (pa->pa_function == 0)
   1006 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1007 		else
   1008 			bit = (1 << pa->pa_function);
   1009 		break;
   1010 	case BGE_APE_LOCK_GRC:
   1011 		/* Lock required to reset the device. */
   1012 		if (pa->pa_function == 0)
   1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1014 		else
   1015 			bit = (1 << pa->pa_function);
   1016 		break;
   1017 	case BGE_APE_LOCK_MEM:
   1018 		/* Lock required when accessing certain APE memory. */
   1019 		if (pa->pa_function == 0)
   1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
   1021 		else
   1022 			bit = (1 << pa->pa_function);
   1023 		break;
   1024 	case BGE_APE_LOCK_PHY0:
   1025 	case BGE_APE_LOCK_PHY1:
   1026 	case BGE_APE_LOCK_PHY2:
   1027 	case BGE_APE_LOCK_PHY3:
   1028 		/* Lock required when accessing PHYs. */
   1029 		bit = BGE_APE_LOCK_REQ_DRIVER0;
   1030 		break;
   1031 	default:
   1032 		return (EINVAL);
   1033 	}
   1034 
   1035 	/* Request a lock. */
   1036 	APE_WRITE_4_FLUSH(sc, req + off, bit);
   1037 
   1038 	/* Wait up to 1 second to acquire lock. */
   1039 	for (i = 0; i < 20000; i++) {
   1040 		status = APE_READ_4(sc, gnt + off);
   1041 		if (status == bit)
   1042 			break;
   1043 		DELAY(50);
   1044 	}
   1045 
   1046 	/* Handle any errors. */
   1047 	if (status != bit) {
   1048 		printf("%s: APE lock %d request failed! "
   1049 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
   1050 		    device_xname(sc->bge_dev),
   1051 		    locknum, req + off, bit & 0xFFFF, gnt + off,
   1052 		    status & 0xFFFF);
   1053 		/* Revoke the lock request. */
   1054 		APE_WRITE_4(sc, gnt + off, bit);
   1055 		return (EBUSY);
   1056 	}
   1057 
   1058 	return (0);
   1059 }
   1060 
   1061 void
   1062 bge_ape_unlock(struct bge_softc *sc, int locknum)
   1063 {
   1064 	struct pci_attach_args *pa = &(sc->bge_pa);
   1065 	uint32_t bit, gnt;
   1066 	int off;
   1067 
   1068 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1069 		return;
   1070 
   1071 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1072 		gnt = BGE_APE_LOCK_GRANT;
   1073 	else
   1074 		gnt = BGE_APE_PER_LOCK_GRANT;
   1075 
   1076 	off = 4 * locknum;
   1077 
   1078 	switch (locknum) {
   1079 	case BGE_APE_LOCK_GPIO:
   1080 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   1081 			return;
   1082 		if (pa->pa_function == 0)
   1083 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1084 		else
   1085 			bit = (1 << pa->pa_function);
   1086 		break;
   1087 	case BGE_APE_LOCK_GRC:
   1088 		if (pa->pa_function == 0)
   1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1090 		else
   1091 			bit = (1 << pa->pa_function);
   1092 		break;
   1093 	case BGE_APE_LOCK_MEM:
   1094 		if (pa->pa_function == 0)
   1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1096 		else
   1097 			bit = (1 << pa->pa_function);
   1098 		break;
   1099 	case BGE_APE_LOCK_PHY0:
   1100 	case BGE_APE_LOCK_PHY1:
   1101 	case BGE_APE_LOCK_PHY2:
   1102 	case BGE_APE_LOCK_PHY3:
   1103 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
   1104 		break;
   1105 	default:
   1106 		return;
   1107 	}
   1108 
   1109 	/* Write and flush for consecutive bge_ape_lock() */
   1110 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
   1111 }
   1112 
   1113 /*
   1114  * Send an event to the APE firmware.
   1115  */
   1116 void
   1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
   1118 {
   1119 	uint32_t apedata;
   1120 	int i;
   1121 
   1122 	/* NCSI does not support APE events. */
   1123 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1124 		return;
   1125 
   1126 	/* Wait up to 1ms for APE to service previous event. */
   1127 	for (i = 10; i > 0; i--) {
   1128 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
   1129 			break;
   1130 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
   1131 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
   1132 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
   1133 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
   1134 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1135 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
   1136 			break;
   1137 		}
   1138 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
   1139 		DELAY(100);
   1140 	}
   1141 	if (i == 0) {
   1142 		printf("%s: APE event 0x%08x send timed out\n",
   1143 		    device_xname(sc->bge_dev), event);
   1144 	}
   1145 }
   1146 
   1147 void
   1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
   1149 {
   1150 	uint32_t apedata, event;
   1151 
   1152 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
   1153 		return;
   1154 
   1155 	switch (kind) {
   1156 	case BGE_RESET_START:
   1157 		/* If this is the first load, clear the load counter. */
   1158 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
   1159 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
   1160 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
   1161 		else {
   1162 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
   1163 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
   1164 		}
   1165 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
   1166 		    BGE_APE_HOST_SEG_SIG_MAGIC);
   1167 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
   1168 		    BGE_APE_HOST_SEG_LEN_MAGIC);
   1169 
   1170 		/* Add some version info if bge(4) supports it. */
   1171 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
   1172 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
   1173 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
   1174 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
   1175 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
   1176 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
   1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1178 		    BGE_APE_HOST_DRVR_STATE_START);
   1179 		event = BGE_APE_EVENT_STATUS_STATE_START;
   1180 		break;
   1181 	case BGE_RESET_SHUTDOWN:
   1182 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
   1183 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
   1184 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
   1185 		break;
   1186 	case BGE_RESET_SUSPEND:
   1187 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
   1188 		break;
   1189 	default:
   1190 		return;
   1191 	}
   1192 
   1193 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
   1194 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
   1195 }
   1196 
   1197 static uint8_t
   1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1199 {
   1200 	uint32_t access, byte = 0;
   1201 	int i;
   1202 
   1203 	/* Lock. */
   1204 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   1205 	for (i = 0; i < 8000; i++) {
   1206 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
   1207 			break;
   1208 		DELAY(20);
   1209 	}
   1210 	if (i == 8000)
   1211 		return 1;
   1212 
   1213 	/* Enable access. */
   1214 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
   1215 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
   1216 
   1217 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
   1218 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
   1219 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1220 		DELAY(10);
   1221 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
   1222 			DELAY(10);
   1223 			break;
   1224 		}
   1225 	}
   1226 
   1227 	if (i == BGE_TIMEOUT * 10) {
   1228 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
   1229 		return 1;
   1230 	}
   1231 
   1232 	/* Get result. */
   1233 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
   1234 
   1235 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
   1236 
   1237 	/* Disable access. */
   1238 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
   1239 
   1240 	/* Unlock. */
   1241 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1242 
   1243 	return 0;
   1244 }
   1245 
   1246 /*
   1247  * Read a sequence of bytes from NVRAM.
   1248  */
   1249 static int
   1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1251 {
   1252 	int error = 0, i;
   1253 	uint8_t byte = 0;
   1254 
   1255 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1256 		return 1;
   1257 
   1258 	for (i = 0; i < cnt; i++) {
   1259 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1260 		if (error)
   1261 			break;
   1262 		*(dest + i) = byte;
   1263 	}
   1264 
   1265 	return (error ? 1 : 0);
   1266 }
   1267 
   1268 /*
   1269  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1270  * BCM570x supports both the traditional bitbang interface and an
   1271  * auto access interface for reading the EEPROM. We use the auto
   1272  * access method.
   1273  */
   1274 static uint8_t
   1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1276 {
   1277 	int i;
   1278 	uint32_t byte = 0;
   1279 
   1280 	/*
   1281 	 * Enable use of auto EEPROM access so we can avoid
   1282 	 * having to use the bitbang method.
   1283 	 */
   1284 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1285 
   1286 	/* Reset the EEPROM, load the clock period. */
   1287 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1288 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1289 	DELAY(20);
   1290 
   1291 	/* Issue the read EEPROM command. */
   1292 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1293 
   1294 	/* Wait for completion */
   1295 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1296 		DELAY(10);
   1297 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1298 			break;
   1299 	}
   1300 
   1301 	if (i == BGE_TIMEOUT * 10) {
   1302 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1303 		return 1;
   1304 	}
   1305 
   1306 	/* Get result. */
   1307 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1308 
   1309 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1310 
   1311 	return 0;
   1312 }
   1313 
   1314 /*
   1315  * Read a sequence of bytes from the EEPROM.
   1316  */
   1317 static int
   1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1319 {
   1320 	int error = 0, i;
   1321 	uint8_t byte = 0;
   1322 	char *dest = destv;
   1323 
   1324 	for (i = 0; i < cnt; i++) {
   1325 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1326 		if (error)
   1327 			break;
   1328 		*(dest + i) = byte;
   1329 	}
   1330 
   1331 	return (error ? 1 : 0);
   1332 }
   1333 
   1334 static int
   1335 bge_miibus_readreg(device_t dev, int phy, int reg)
   1336 {
   1337 	struct bge_softc *sc = device_private(dev);
   1338 	uint32_t val;
   1339 	uint32_t autopoll;
   1340 	int i;
   1341 
   1342 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1343 		return 0;
   1344 
   1345 	/* Reading with autopolling on may trigger PCI errors */
   1346 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1347 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1348 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1349 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1350 		DELAY(80);
   1351 	}
   1352 
   1353 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1354 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1355 
   1356 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1357 		delay(10);
   1358 		val = CSR_READ_4(sc, BGE_MI_COMM);
   1359 		if (!(val & BGE_MICOMM_BUSY)) {
   1360 			DELAY(5);
   1361 			val = CSR_READ_4(sc, BGE_MI_COMM);
   1362 			break;
   1363 		}
   1364 	}
   1365 
   1366 	if (i == BGE_TIMEOUT) {
   1367 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1368 		val = 0;
   1369 		goto done;
   1370 	}
   1371 
   1372 done:
   1373 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1374 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1375 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1376 		DELAY(80);
   1377 	}
   1378 
   1379 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1380 
   1381 	if (val & BGE_MICOMM_READFAIL)
   1382 		return 0;
   1383 
   1384 	return (val & 0xFFFF);
   1385 }
   1386 
   1387 static void
   1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
   1389 {
   1390 	struct bge_softc *sc = device_private(dev);
   1391 	uint32_t autopoll;
   1392 	int i;
   1393 
   1394 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1395 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
   1396 		return;
   1397 
   1398 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1399 		return;
   1400 
   1401 	/* Reading with autopolling on may trigger PCI errors */
   1402 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1403 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1404 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1405 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1406 		DELAY(80);
   1407 	}
   1408 
   1409 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1410 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1411 
   1412 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1413 		delay(10);
   1414 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1415 			delay(5);
   1416 			CSR_READ_4(sc, BGE_MI_COMM);
   1417 			break;
   1418 		}
   1419 	}
   1420 
   1421 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1422 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1423 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1424 		delay(80);
   1425 	}
   1426 
   1427 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1428 
   1429 	if (i == BGE_TIMEOUT)
   1430 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1431 }
   1432 
   1433 static void
   1434 bge_miibus_statchg(struct ifnet *ifp)
   1435 {
   1436 	struct bge_softc *sc = ifp->if_softc;
   1437 	struct mii_data *mii = &sc->bge_mii;
   1438 	uint32_t mac_mode, rx_mode, tx_mode;
   1439 
   1440 	/*
   1441 	 * Get flow control negotiation result.
   1442 	 */
   1443 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1444 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1445 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1446 
   1447 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1448 	    mii->mii_media_status & IFM_ACTIVE &&
   1449 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1450 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1451 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1452 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1453 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1454 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1455 
   1456 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1457 		return;
   1458 
   1459 	/* Set the port mode (MII/GMII) to match the link speed. */
   1460 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1461 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1462 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1463 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1464 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1465 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1466 		mac_mode |= BGE_PORTMODE_GMII;
   1467 	else
   1468 		mac_mode |= BGE_PORTMODE_MII;
   1469 
   1470 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1471 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1472 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1473 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1474 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1475 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1476 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1477 	} else
   1478 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1479 
   1480 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1481 	DELAY(40);
   1482 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1483 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1484 }
   1485 
   1486 /*
   1487  * Update rx threshold levels to values in a particular slot
   1488  * of the interrupt-mitigation table bge_rx_threshes.
   1489  */
   1490 static void
   1491 bge_set_thresh(struct ifnet *ifp, int lvl)
   1492 {
   1493 	struct bge_softc *sc = ifp->if_softc;
   1494 	int s;
   1495 
   1496 	/* For now, just save the new Rx-intr thresholds and record
   1497 	 * that a threshold update is pending.  Updating the hardware
   1498 	 * registers here (even at splhigh()) is observed to
   1499 	 * occasionaly cause glitches where Rx-interrupts are not
   1500 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1501 	 */
   1502 	s = splnet();
   1503 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1504 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1505 	sc->bge_pending_rxintr_change = 1;
   1506 	splx(s);
   1507 }
   1508 
   1509 
   1510 /*
   1511  * Update Rx thresholds of all bge devices
   1512  */
   1513 static void
   1514 bge_update_all_threshes(int lvl)
   1515 {
   1516 	struct ifnet *ifp;
   1517 	const char * const namebuf = "bge";
   1518 	int namelen;
   1519 
   1520 	if (lvl < 0)
   1521 		lvl = 0;
   1522 	else if (lvl >= NBGE_RX_THRESH)
   1523 		lvl = NBGE_RX_THRESH - 1;
   1524 
   1525 	namelen = strlen(namebuf);
   1526 	/*
   1527 	 * Now search all the interfaces for this name/number
   1528 	 */
   1529 	IFNET_FOREACH(ifp) {
   1530 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1531 		      continue;
   1532 		/* We got a match: update if doing auto-threshold-tuning */
   1533 		if (bge_auto_thresh)
   1534 			bge_set_thresh(ifp, lvl);
   1535 	}
   1536 }
   1537 
   1538 /*
   1539  * Handle events that have triggered interrupts.
   1540  */
   1541 static void
   1542 bge_handle_events(struct bge_softc *sc)
   1543 {
   1544 
   1545 	return;
   1546 }
   1547 
   1548 /*
   1549  * Memory management for jumbo frames.
   1550  */
   1551 
   1552 static int
   1553 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1554 {
   1555 	char *ptr, *kva;
   1556 	bus_dma_segment_t	seg;
   1557 	int		i, rseg, state, error;
   1558 	struct bge_jpool_entry   *entry;
   1559 
   1560 	state = error = 0;
   1561 
   1562 	/* Grab a big chunk o' storage. */
   1563 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1564 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1565 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1566 		return ENOBUFS;
   1567 	}
   1568 
   1569 	state = 1;
   1570 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1571 	    BUS_DMA_NOWAIT)) {
   1572 		aprint_error_dev(sc->bge_dev,
   1573 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1574 		error = ENOBUFS;
   1575 		goto out;
   1576 	}
   1577 
   1578 	state = 2;
   1579 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1580 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1581 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1582 		error = ENOBUFS;
   1583 		goto out;
   1584 	}
   1585 
   1586 	state = 3;
   1587 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1588 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1589 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1590 		error = ENOBUFS;
   1591 		goto out;
   1592 	}
   1593 
   1594 	state = 4;
   1595 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1596 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1597 
   1598 	SLIST_INIT(&sc->bge_jfree_listhead);
   1599 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1600 
   1601 	/*
   1602 	 * Now divide it up into 9K pieces and save the addresses
   1603 	 * in an array.
   1604 	 */
   1605 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1606 	for (i = 0; i < BGE_JSLOTS; i++) {
   1607 		sc->bge_cdata.bge_jslots[i] = ptr;
   1608 		ptr += BGE_JLEN;
   1609 		entry = malloc(sizeof(struct bge_jpool_entry),
   1610 		    M_DEVBUF, M_NOWAIT);
   1611 		if (entry == NULL) {
   1612 			aprint_error_dev(sc->bge_dev,
   1613 			    "no memory for jumbo buffer queue!\n");
   1614 			error = ENOBUFS;
   1615 			goto out;
   1616 		}
   1617 		entry->slot = i;
   1618 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1619 				 entry, jpool_entries);
   1620 	}
   1621 out:
   1622 	if (error != 0) {
   1623 		switch (state) {
   1624 		case 4:
   1625 			bus_dmamap_unload(sc->bge_dmatag,
   1626 			    sc->bge_cdata.bge_rx_jumbo_map);
   1627 		case 3:
   1628 			bus_dmamap_destroy(sc->bge_dmatag,
   1629 			    sc->bge_cdata.bge_rx_jumbo_map);
   1630 		case 2:
   1631 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1632 		case 1:
   1633 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1634 			break;
   1635 		default:
   1636 			break;
   1637 		}
   1638 	}
   1639 
   1640 	return error;
   1641 }
   1642 
   1643 /*
   1644  * Allocate a jumbo buffer.
   1645  */
   1646 static void *
   1647 bge_jalloc(struct bge_softc *sc)
   1648 {
   1649 	struct bge_jpool_entry   *entry;
   1650 
   1651 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1652 
   1653 	if (entry == NULL) {
   1654 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1655 		return NULL;
   1656 	}
   1657 
   1658 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1659 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1660 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1661 }
   1662 
   1663 /*
   1664  * Release a jumbo buffer.
   1665  */
   1666 static void
   1667 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1668 {
   1669 	struct bge_jpool_entry *entry;
   1670 	struct bge_softc *sc;
   1671 	int i, s;
   1672 
   1673 	/* Extract the softc struct pointer. */
   1674 	sc = (struct bge_softc *)arg;
   1675 
   1676 	if (sc == NULL)
   1677 		panic("bge_jfree: can't find softc pointer!");
   1678 
   1679 	/* calculate the slot this buffer belongs to */
   1680 
   1681 	i = ((char *)buf
   1682 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1683 
   1684 	if ((i < 0) || (i >= BGE_JSLOTS))
   1685 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1686 
   1687 	s = splvm();
   1688 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1689 	if (entry == NULL)
   1690 		panic("bge_jfree: buffer not in use!");
   1691 	entry->slot = i;
   1692 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1693 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1694 
   1695 	if (__predict_true(m != NULL))
   1696   		pool_cache_put(mb_cache, m);
   1697 	splx(s);
   1698 }
   1699 
   1700 
   1701 /*
   1702  * Initialize a standard receive ring descriptor.
   1703  */
   1704 static int
   1705 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1706     bus_dmamap_t dmamap)
   1707 {
   1708 	struct mbuf		*m_new = NULL;
   1709 	struct bge_rx_bd	*r;
   1710 	int			error;
   1711 
   1712 	if (dmamap == NULL) {
   1713 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1714 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1715 		if (error != 0)
   1716 			return error;
   1717 	}
   1718 
   1719 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1720 
   1721 	if (m == NULL) {
   1722 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1723 		if (m_new == NULL)
   1724 			return ENOBUFS;
   1725 
   1726 		MCLGET(m_new, M_DONTWAIT);
   1727 		if (!(m_new->m_flags & M_EXT)) {
   1728 			m_freem(m_new);
   1729 			return ENOBUFS;
   1730 		}
   1731 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1732 
   1733 	} else {
   1734 		m_new = m;
   1735 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1736 		m_new->m_data = m_new->m_ext.ext_buf;
   1737 	}
   1738 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1739 	    m_adj(m_new, ETHER_ALIGN);
   1740 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1741 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
   1742 		m_freem(m_new);
   1743 		return ENOBUFS;
   1744 	}
   1745 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1746 	    BUS_DMASYNC_PREREAD);
   1747 
   1748 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1749 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1750 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1751 	r->bge_flags = BGE_RXBDFLAG_END;
   1752 	r->bge_len = m_new->m_len;
   1753 	r->bge_idx = i;
   1754 
   1755 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1756 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1757 		i * sizeof (struct bge_rx_bd),
   1758 	    sizeof (struct bge_rx_bd),
   1759 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1760 
   1761 	return 0;
   1762 }
   1763 
   1764 /*
   1765  * Initialize a jumbo receive ring descriptor. This allocates
   1766  * a jumbo buffer from the pool managed internally by the driver.
   1767  */
   1768 static int
   1769 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1770 {
   1771 	struct mbuf *m_new = NULL;
   1772 	struct bge_rx_bd *r;
   1773 	void *buf = NULL;
   1774 
   1775 	if (m == NULL) {
   1776 
   1777 		/* Allocate the mbuf. */
   1778 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1779 		if (m_new == NULL)
   1780 			return ENOBUFS;
   1781 
   1782 		/* Allocate the jumbo buffer */
   1783 		buf = bge_jalloc(sc);
   1784 		if (buf == NULL) {
   1785 			m_freem(m_new);
   1786 			aprint_error_dev(sc->bge_dev,
   1787 			    "jumbo allocation failed -- packet dropped!\n");
   1788 			return ENOBUFS;
   1789 		}
   1790 
   1791 		/* Attach the buffer to the mbuf. */
   1792 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1793 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1794 		    bge_jfree, sc);
   1795 		m_new->m_flags |= M_EXT_RW;
   1796 	} else {
   1797 		m_new = m;
   1798 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1799 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1800 	}
   1801 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1802 	    m_adj(m_new, ETHER_ALIGN);
   1803 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1804 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1805 	    BUS_DMASYNC_PREREAD);
   1806 	/* Set up the descriptor. */
   1807 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1808 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1809 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1810 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1811 	r->bge_len = m_new->m_len;
   1812 	r->bge_idx = i;
   1813 
   1814 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1815 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1816 		i * sizeof (struct bge_rx_bd),
   1817 	    sizeof (struct bge_rx_bd),
   1818 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1819 
   1820 	return 0;
   1821 }
   1822 
   1823 /*
   1824  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1825  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1826  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1827  * the NIC.
   1828  */
   1829 static int
   1830 bge_init_rx_ring_std(struct bge_softc *sc)
   1831 {
   1832 	int i;
   1833 
   1834 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1835 		return 0;
   1836 
   1837 	for (i = 0; i < BGE_SSLOTS; i++) {
   1838 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1839 			return ENOBUFS;
   1840 	}
   1841 
   1842 	sc->bge_std = i - 1;
   1843 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1844 
   1845 	sc->bge_flags |= BGEF_RXRING_VALID;
   1846 
   1847 	return 0;
   1848 }
   1849 
   1850 static void
   1851 bge_free_rx_ring_std(struct bge_softc *sc)
   1852 {
   1853 	int i;
   1854 
   1855 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1856 		return;
   1857 
   1858 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1859 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1860 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1861 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1862 			bus_dmamap_destroy(sc->bge_dmatag,
   1863 			    sc->bge_cdata.bge_rx_std_map[i]);
   1864 		}
   1865 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1866 		    sizeof(struct bge_rx_bd));
   1867 	}
   1868 
   1869 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1870 }
   1871 
   1872 static int
   1873 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1874 {
   1875 	int i;
   1876 	volatile struct bge_rcb *rcb;
   1877 
   1878 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1879 		return 0;
   1880 
   1881 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1882 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1883 			return ENOBUFS;
   1884 	}
   1885 
   1886 	sc->bge_jumbo = i - 1;
   1887 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1888 
   1889 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1890 	rcb->bge_maxlen_flags = 0;
   1891 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1892 
   1893 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1894 
   1895 	return 0;
   1896 }
   1897 
   1898 static void
   1899 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1900 {
   1901 	int i;
   1902 
   1903 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1904 		return;
   1905 
   1906 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1907 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1908 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1909 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1910 		}
   1911 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1912 		    sizeof(struct bge_rx_bd));
   1913 	}
   1914 
   1915 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1916 }
   1917 
   1918 static void
   1919 bge_free_tx_ring(struct bge_softc *sc)
   1920 {
   1921 	int i;
   1922 	struct txdmamap_pool_entry *dma;
   1923 
   1924 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1925 		return;
   1926 
   1927 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1928 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1929 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1930 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1931 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1932 					    link);
   1933 			sc->txdma[i] = 0;
   1934 		}
   1935 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1936 		    sizeof(struct bge_tx_bd));
   1937 	}
   1938 
   1939 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1940 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1941 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1942 		free(dma, M_DEVBUF);
   1943 	}
   1944 
   1945 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1946 }
   1947 
   1948 static int
   1949 bge_init_tx_ring(struct bge_softc *sc)
   1950 {
   1951 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1952 	int i;
   1953 	bus_dmamap_t dmamap;
   1954 	bus_size_t maxsegsz;
   1955 	struct txdmamap_pool_entry *dma;
   1956 
   1957 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1958 		return 0;
   1959 
   1960 	sc->bge_txcnt = 0;
   1961 	sc->bge_tx_saved_considx = 0;
   1962 
   1963 	/* Initialize transmit producer index for host-memory send ring. */
   1964 	sc->bge_tx_prodidx = 0;
   1965 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1966 	/* 5700 b2 errata */
   1967 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1968 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1969 
   1970 	/* NIC-memory send ring not used; initialize to zero. */
   1971 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1972 	/* 5700 b2 errata */
   1973 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1974 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1975 
   1976 	/* Limit DMA segment size for some chips */
   1977 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1978 	    (ifp->if_mtu <= ETHERMTU))
   1979 		maxsegsz = 2048;
   1980 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1981 		maxsegsz = 4096;
   1982 	else
   1983 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1984 	SLIST_INIT(&sc->txdma_list);
   1985 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1986 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1987 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
   1988 		    &dmamap))
   1989 			return ENOBUFS;
   1990 		if (dmamap == NULL)
   1991 			panic("dmamap NULL in bge_init_tx_ring");
   1992 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1993 		if (dma == NULL) {
   1994 			aprint_error_dev(sc->bge_dev,
   1995 			    "can't alloc txdmamap_pool_entry\n");
   1996 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1997 			return ENOMEM;
   1998 		}
   1999 		dma->dmamap = dmamap;
   2000 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2001 	}
   2002 
   2003 	sc->bge_flags |= BGEF_TXRING_VALID;
   2004 
   2005 	return 0;
   2006 }
   2007 
   2008 static void
   2009 bge_setmulti(struct bge_softc *sc)
   2010 {
   2011 	struct ethercom		*ac = &sc->ethercom;
   2012 	struct ifnet		*ifp = &ac->ec_if;
   2013 	struct ether_multi	*enm;
   2014 	struct ether_multistep  step;
   2015 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   2016 	uint32_t		h;
   2017 	int			i;
   2018 
   2019 	if (ifp->if_flags & IFF_PROMISC)
   2020 		goto allmulti;
   2021 
   2022 	/* Now program new ones. */
   2023 	ETHER_FIRST_MULTI(step, ac, enm);
   2024 	while (enm != NULL) {
   2025 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2026 			/*
   2027 			 * We must listen to a range of multicast addresses.
   2028 			 * For now, just accept all multicasts, rather than
   2029 			 * trying to set only those filter bits needed to match
   2030 			 * the range.  (At this time, the only use of address
   2031 			 * ranges is for IP multicast routing, for which the
   2032 			 * range is big enough to require all bits set.)
   2033 			 */
   2034 			goto allmulti;
   2035 		}
   2036 
   2037 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2038 
   2039 		/* Just want the 7 least-significant bits. */
   2040 		h &= 0x7f;
   2041 
   2042 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   2043 		ETHER_NEXT_MULTI(step, enm);
   2044 	}
   2045 
   2046 	ifp->if_flags &= ~IFF_ALLMULTI;
   2047 	goto setit;
   2048 
   2049  allmulti:
   2050 	ifp->if_flags |= IFF_ALLMULTI;
   2051 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   2052 
   2053  setit:
   2054 	for (i = 0; i < 4; i++)
   2055 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   2056 }
   2057 
   2058 static void
   2059 bge_sig_pre_reset(struct bge_softc *sc, int type)
   2060 {
   2061 
   2062 	/*
   2063 	 * Some chips don't like this so only do this if ASF is enabled
   2064 	 */
   2065 	if (sc->bge_asf_mode)
   2066 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   2067 
   2068 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2069 		switch (type) {
   2070 		case BGE_RESET_START:
   2071 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2072 			    BGE_FW_DRV_STATE_START);
   2073 			break;
   2074 		case BGE_RESET_SHUTDOWN:
   2075 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2076 			    BGE_FW_DRV_STATE_UNLOAD);
   2077 			break;
   2078 		case BGE_RESET_SUSPEND:
   2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2080 			    BGE_FW_DRV_STATE_SUSPEND);
   2081 			break;
   2082 		}
   2083 	}
   2084 
   2085 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   2086 		bge_ape_driver_state_change(sc, type);
   2087 }
   2088 
   2089 static void
   2090 bge_sig_post_reset(struct bge_softc *sc, int type)
   2091 {
   2092 
   2093 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   2094 		switch (type) {
   2095 		case BGE_RESET_START:
   2096 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2097 			    BGE_FW_DRV_STATE_START_DONE);
   2098 			/* START DONE */
   2099 			break;
   2100 		case BGE_RESET_SHUTDOWN:
   2101 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2102 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   2103 			break;
   2104 		}
   2105 	}
   2106 
   2107 	if (type == BGE_RESET_SHUTDOWN)
   2108 		bge_ape_driver_state_change(sc, type);
   2109 }
   2110 
   2111 static void
   2112 bge_sig_legacy(struct bge_softc *sc, int type)
   2113 {
   2114 
   2115 	if (sc->bge_asf_mode) {
   2116 		switch (type) {
   2117 		case BGE_RESET_START:
   2118 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2119 			    BGE_FW_DRV_STATE_START);
   2120 			break;
   2121 		case BGE_RESET_SHUTDOWN:
   2122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   2123 			    BGE_FW_DRV_STATE_UNLOAD);
   2124 			break;
   2125 		}
   2126 	}
   2127 }
   2128 
   2129 static void
   2130 bge_wait_for_event_ack(struct bge_softc *sc)
   2131 {
   2132 	int i;
   2133 
   2134 	/* wait up to 2500usec */
   2135 	for (i = 0; i < 250; i++) {
   2136 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   2137 			BGE_RX_CPU_DRV_EVENT))
   2138 			break;
   2139 		DELAY(10);
   2140 	}
   2141 }
   2142 
   2143 static void
   2144 bge_stop_fw(struct bge_softc *sc)
   2145 {
   2146 
   2147 	if (sc->bge_asf_mode) {
   2148 		bge_wait_for_event_ack(sc);
   2149 
   2150 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   2151 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   2152 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   2153 
   2154 		bge_wait_for_event_ack(sc);
   2155 	}
   2156 }
   2157 
   2158 static int
   2159 bge_poll_fw(struct bge_softc *sc)
   2160 {
   2161 	uint32_t val;
   2162 	int i;
   2163 
   2164 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2165 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2166 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2167 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2168 				break;
   2169 			DELAY(100);
   2170 		}
   2171 		if (i >= BGE_TIMEOUT) {
   2172 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2173 			return -1;
   2174 		}
   2175 	} else {
   2176 		/*
   2177 		 * Poll the value location we just wrote until
   2178 		 * we see the 1's complement of the magic number.
   2179 		 * This indicates that the firmware initialization
   2180 		 * is complete.
   2181 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2182 		 */
   2183 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2184 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2185 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2186 				break;
   2187 			DELAY(10);
   2188 		}
   2189 
   2190 		if ((i >= BGE_TIMEOUT)
   2191 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2192 			aprint_error_dev(sc->bge_dev,
   2193 			    "firmware handshake timed out, val = %x\n", val);
   2194 			return -1;
   2195 		}
   2196 	}
   2197 
   2198 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2199 		/* tg3 says we have to wait extra time */
   2200 		delay(10 * 1000);
   2201 	}
   2202 
   2203 	return 0;
   2204 }
   2205 
   2206 int
   2207 bge_phy_addr(struct bge_softc *sc)
   2208 {
   2209 	struct pci_attach_args *pa = &(sc->bge_pa);
   2210 	int phy_addr = 1;
   2211 
   2212 	/*
   2213 	 * PHY address mapping for various devices.
   2214 	 *
   2215 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2216 	 * ---------+-------+-------+-------+-------+
   2217 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2218 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2219 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2220 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2221 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2222 	 *
   2223 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2224 	 * ---------+-------+-------+-------+-------+
   2225 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2226 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2227 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2228 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2229 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2230 	 *
   2231 	 * Other addresses may respond but they are not
   2232 	 * IEEE compliant PHYs and should be ignored.
   2233 	 */
   2234 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2235 	case BGE_ASICREV_BCM5717:
   2236 	case BGE_ASICREV_BCM5719:
   2237 	case BGE_ASICREV_BCM5720:
   2238 		phy_addr = pa->pa_function;
   2239 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2240 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2241 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2242 		} else {
   2243 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2244 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2245 		}
   2246 	}
   2247 
   2248 	return phy_addr;
   2249 }
   2250 
   2251 /*
   2252  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2253  * self-test results.
   2254  */
   2255 static int
   2256 bge_chipinit(struct bge_softc *sc)
   2257 {
   2258 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2259 	int i;
   2260 
   2261 	/* Set endianness before we access any non-PCI registers. */
   2262 	misc_ctl = BGE_INIT;
   2263 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2264 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2265 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2266 	    misc_ctl);
   2267 
   2268 	/*
   2269 	 * Clear the MAC statistics block in the NIC's
   2270 	 * internal memory.
   2271 	 */
   2272 	for (i = BGE_STATS_BLOCK;
   2273 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2274 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2275 
   2276 	for (i = BGE_STATUS_BLOCK;
   2277 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2279 
   2280 	/* 5717 workaround from tg3 */
   2281 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2282 		/* Save */
   2283 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2284 
   2285 		/* Temporary modify MODE_CTL to control TLP */
   2286 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2287 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2288 
   2289 		/* Control TLP */
   2290 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2291 		    BGE_TLP_PHYCTL1);
   2292 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2293 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2294 
   2295 		/* Restore */
   2296 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2297 	}
   2298 
   2299 	if (BGE_IS_57765_FAMILY(sc)) {
   2300 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2301 			/* Save */
   2302 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2303 
   2304 			/* Temporary modify MODE_CTL to control TLP */
   2305 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2306 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2307 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2308 
   2309 			/* Control TLP */
   2310 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2311 			    BGE_TLP_PHYCTL5);
   2312 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2313 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2314 
   2315 			/* Restore */
   2316 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2317 		}
   2318 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2319 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2320 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2321 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2322 
   2323 			/* Save */
   2324 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2325 
   2326 			/* Temporary modify MODE_CTL to control TLP */
   2327 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2328 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2329 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2330 
   2331 			/* Control TLP */
   2332 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2333 			    BGE_TLP_FTSMAX);
   2334 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2335 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2336 			    reg | BGE_TLP_FTSMAX_VAL);
   2337 
   2338 			/* Restore */
   2339 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2340 		}
   2341 
   2342 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2343 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2344 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2345 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2346 	}
   2347 
   2348 	/* Set up the PCI DMA control register. */
   2349 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2350 	if (sc->bge_flags & BGEF_PCIE) {
   2351 		/* Read watermark not used, 128 bytes for write. */
   2352 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2353 		    device_xname(sc->bge_dev)));
   2354 		if (sc->bge_mps >= 256)
   2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2356 		else
   2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2358 	} else if (sc->bge_flags & BGEF_PCIX) {
   2359 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2360 		    device_xname(sc->bge_dev)));
   2361 		/* PCI-X bus */
   2362 		if (BGE_IS_5714_FAMILY(sc)) {
   2363 			/* 256 bytes for read and write. */
   2364 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2365 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2366 
   2367 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2368 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2369 			else
   2370 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2371 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2372 			/*
   2373 			 * In the BCM5703, the DMA read watermark should
   2374 			 * be set to less than or equal to the maximum
   2375 			 * memory read byte count of the PCI-X command
   2376 			 * register.
   2377 			 */
   2378 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2379 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2380 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2381 			/* 1536 bytes for read, 384 bytes for write. */
   2382 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2383 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2384 		} else {
   2385 			/* 384 bytes for read and write. */
   2386 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2387 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2388 			    (0x0F);
   2389 		}
   2390 
   2391 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2392 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2393 			uint32_t tmp;
   2394 
   2395 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2397 			if (tmp == 6 || tmp == 7)
   2398 				dma_rw_ctl |=
   2399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2400 
   2401 			/* Set PCI-X DMA write workaround. */
   2402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2403 		}
   2404 	} else {
   2405 		/* Conventional PCI bus: 256 bytes for read and write. */
   2406 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2407 		    device_xname(sc->bge_dev)));
   2408 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2409 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2410 
   2411 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2412 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2413 			dma_rw_ctl |= 0x0F;
   2414 	}
   2415 
   2416 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2417 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2418 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2419 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2420 
   2421 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2422 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2423 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2424 
   2425 	if (BGE_IS_57765_PLUS(sc)) {
   2426 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2427 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2428 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2429 
   2430 		/*
   2431 		 * Enable HW workaround for controllers that misinterpret
   2432 		 * a status tag update and leave interrupts permanently
   2433 		 * disabled.
   2434 		 */
   2435 		if (!BGE_IS_57765_FAMILY(sc) &&
   2436 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
   2437 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2438 	}
   2439 
   2440 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2441 	    dma_rw_ctl);
   2442 
   2443 	/*
   2444 	 * Set up general mode register.
   2445 	 */
   2446 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2447 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2448 		/* Retain Host-2-BMC settings written by APE firmware. */
   2449 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2450 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2451 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2452 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2453 	}
   2454 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2455 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2456 
   2457 	/*
   2458 	 * BCM5701 B5 have a bug causing data corruption when using
   2459 	 * 64-bit DMA reads, which can be terminated early and then
   2460 	 * completed later as 32-bit accesses, in combination with
   2461 	 * certain bridges.
   2462 	 */
   2463 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2464 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2465 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2466 
   2467 	/*
   2468 	 * Tell the firmware the driver is running
   2469 	 */
   2470 	if (sc->bge_asf_mode & ASF_STACKUP)
   2471 		mode_ctl |= BGE_MODECTL_STACKUP;
   2472 
   2473 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2474 
   2475 	/*
   2476 	 * Disable memory write invalidate.  Apparently it is not supported
   2477 	 * properly by these devices.
   2478 	 */
   2479 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2480 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2481 
   2482 #ifdef __brokenalpha__
   2483 	/*
   2484 	 * Must insure that we do not cross an 8K (bytes) boundary
   2485 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2486 	 * restriction on some ALPHA platforms with early revision
   2487 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2488 	 */
   2489 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2490 #endif
   2491 
   2492 	/* Set the timer prescaler (always 66MHz) */
   2493 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2494 
   2495 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2496 		DELAY(40);	/* XXX */
   2497 
   2498 		/* Put PHY into ready state */
   2499 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2500 		DELAY(40);
   2501 	}
   2502 
   2503 	return 0;
   2504 }
   2505 
   2506 static int
   2507 bge_blockinit(struct bge_softc *sc)
   2508 {
   2509 	volatile struct bge_rcb	 *rcb;
   2510 	bus_size_t rcb_addr;
   2511 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2512 	bge_hostaddr taddr;
   2513 	uint32_t	dmactl, mimode, val;
   2514 	int		i, limit;
   2515 
   2516 	/*
   2517 	 * Initialize the memory window pointer register so that
   2518 	 * we can access the first 32K of internal NIC RAM. This will
   2519 	 * allow us to set up the TX send ring RCBs and the RX return
   2520 	 * ring RCBs, plus other things which live in NIC memory.
   2521 	 */
   2522 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2523 
   2524 	if (!BGE_IS_5705_PLUS(sc)) {
   2525 		/* 57XX step 33 */
   2526 		/* Configure mbuf memory pool */
   2527 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2528 		    BGE_BUFFPOOL_1);
   2529 
   2530 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2531 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2532 		else
   2533 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2534 
   2535 		/* 57XX step 34 */
   2536 		/* Configure DMA resource pool */
   2537 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2538 		    BGE_DMA_DESCRIPTORS);
   2539 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2540 	}
   2541 
   2542 	/* 5718 step 11, 57XX step 35 */
   2543 	/*
   2544 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2545 	 * recommend these.
   2546 	 */
   2547 	if (BGE_IS_5717_PLUS(sc)) {
   2548 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2549 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2550 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2551 	} else if (BGE_IS_5705_PLUS(sc)) {
   2552 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2553 
   2554 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2555 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2556 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2557 		} else {
   2558 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2559 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2560 		}
   2561 	} else {
   2562 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2563 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2564 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2565 	}
   2566 
   2567 	/* 57XX step 36 */
   2568 	/* Configure DMA resource watermarks */
   2569 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2570 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2571 
   2572 	/* 5718 step 13, 57XX step 38 */
   2573 	/* Enable buffer manager */
   2574 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2575 	/*
   2576 	 * Change the arbitration algorithm of TXMBUF read request to
   2577 	 * round-robin instead of priority based for BCM5719.  When
   2578 	 * TXFIFO is almost empty, RDMA will hold its request until
   2579 	 * TXFIFO is not almost empty.
   2580 	 */
   2581 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2582 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2583 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2584 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2585 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2586 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2587 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2588 
   2589 	/* 57XX step 39 */
   2590 	/* Poll for buffer manager start indication */
   2591 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2592 		DELAY(10);
   2593 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2594 			break;
   2595 	}
   2596 
   2597 	if (i == BGE_TIMEOUT * 2) {
   2598 		aprint_error_dev(sc->bge_dev,
   2599 		    "buffer manager failed to start\n");
   2600 		return ENXIO;
   2601 	}
   2602 
   2603 	/* 57XX step 40 */
   2604 	/* Enable flow-through queues */
   2605 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2606 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2607 
   2608 	/* Wait until queue initialization is complete */
   2609 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2610 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2611 			break;
   2612 		DELAY(10);
   2613 	}
   2614 
   2615 	if (i == BGE_TIMEOUT * 2) {
   2616 		aprint_error_dev(sc->bge_dev,
   2617 		    "flow-through queue init failed\n");
   2618 		return ENXIO;
   2619 	}
   2620 
   2621 	/*
   2622 	 * Summary of rings supported by the controller:
   2623 	 *
   2624 	 * Standard Receive Producer Ring
   2625 	 * - This ring is used to feed receive buffers for "standard"
   2626 	 *   sized frames (typically 1536 bytes) to the controller.
   2627 	 *
   2628 	 * Jumbo Receive Producer Ring
   2629 	 * - This ring is used to feed receive buffers for jumbo sized
   2630 	 *   frames (i.e. anything bigger than the "standard" frames)
   2631 	 *   to the controller.
   2632 	 *
   2633 	 * Mini Receive Producer Ring
   2634 	 * - This ring is used to feed receive buffers for "mini"
   2635 	 *   sized frames to the controller.
   2636 	 * - This feature required external memory for the controller
   2637 	 *   but was never used in a production system.  Should always
   2638 	 *   be disabled.
   2639 	 *
   2640 	 * Receive Return Ring
   2641 	 * - After the controller has placed an incoming frame into a
   2642 	 *   receive buffer that buffer is moved into a receive return
   2643 	 *   ring.  The driver is then responsible to passing the
   2644 	 *   buffer up to the stack.  Many versions of the controller
   2645 	 *   support multiple RR rings.
   2646 	 *
   2647 	 * Send Ring
   2648 	 * - This ring is used for outgoing frames.  Many versions of
   2649 	 *   the controller support multiple send rings.
   2650 	 */
   2651 
   2652 	/* 5718 step 15, 57XX step 41 */
   2653 	/* Initialize the standard RX ring control block */
   2654 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2655 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2656 	/* 5718 step 16 */
   2657 	if (BGE_IS_57765_PLUS(sc)) {
   2658 		/*
   2659 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2660 		 * Bits 15-2 : Maximum RX frame size
   2661 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
   2662 		 * Bit 0     : Reserved
   2663 		 */
   2664 		rcb->bge_maxlen_flags =
   2665 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2666 	} else if (BGE_IS_5705_PLUS(sc)) {
   2667 		/*
   2668 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2669 		 * Bits 15-2 : Reserved (should be 0)
   2670 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2671 		 * Bit 0     : Reserved
   2672 		 */
   2673 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2674 	} else {
   2675 		/*
   2676 		 * Ring size is always XXX entries
   2677 		 * Bits 31-16: Maximum RX frame size
   2678 		 * Bits 15-2 : Reserved (should be 0)
   2679 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2680 		 * Bit 0     : Reserved
   2681 		 */
   2682 		rcb->bge_maxlen_flags =
   2683 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2684 	}
   2685 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2686 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2687 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2688 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2689 	else
   2690 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2691 	/* Write the standard receive producer ring control block. */
   2692 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2693 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2694 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2695 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2696 
   2697 	/* Reset the standard receive producer ring producer index. */
   2698 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2699 
   2700 	/* 57XX step 42 */
   2701 	/*
   2702 	 * Initialize the jumbo RX ring control block
   2703 	 * We set the 'ring disabled' bit in the flags
   2704 	 * field until we're actually ready to start
   2705 	 * using this ring (i.e. once we set the MTU
   2706 	 * high enough to require it).
   2707 	 */
   2708 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2709 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2710 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2711 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2712 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2713 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2714 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2715 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2716 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2717 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2718 		else
   2719 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2720 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2721 		    rcb->bge_hostaddr.bge_addr_hi);
   2722 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2723 		    rcb->bge_hostaddr.bge_addr_lo);
   2724 		/* Program the jumbo receive producer ring RCB parameters. */
   2725 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2726 		    rcb->bge_maxlen_flags);
   2727 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2728 		/* Reset the jumbo receive producer ring producer index. */
   2729 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2730 	}
   2731 
   2732 	/* 57XX step 43 */
   2733 	/* Disable the mini receive producer ring RCB. */
   2734 	if (BGE_IS_5700_FAMILY(sc)) {
   2735 		/* Set up dummy disabled mini ring RCB */
   2736 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2737 		rcb->bge_maxlen_flags =
   2738 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2739 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2740 		    rcb->bge_maxlen_flags);
   2741 		/* Reset the mini receive producer ring producer index. */
   2742 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2743 
   2744 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2745 		    offsetof(struct bge_ring_data, bge_info),
   2746 		    sizeof (struct bge_gib),
   2747 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2748 	}
   2749 
   2750 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2752 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2753 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2754 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2755 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2756 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2757 	}
   2758 	/* 5718 step 14, 57XX step 44 */
   2759 	/*
   2760 	 * The BD ring replenish thresholds control how often the
   2761 	 * hardware fetches new BD's from the producer rings in host
   2762 	 * memory.  Setting the value too low on a busy system can
   2763 	 * starve the hardware and recue the throughpout.
   2764 	 *
   2765 	 * Set the BD ring replenish thresholds. The recommended
   2766 	 * values are 1/8th the number of descriptors allocated to
   2767 	 * each ring, but since we try to avoid filling the entire
   2768 	 * ring we set these to the minimal value of 8.  This needs to
   2769 	 * be done on several of the supported chip revisions anyway,
   2770 	 * to work around HW bugs.
   2771 	 */
   2772 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2773 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2774 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2775 
   2776 	/* 5718 step 18 */
   2777 	if (BGE_IS_5717_PLUS(sc)) {
   2778 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2779 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2780 	}
   2781 
   2782 	/* 57XX step 45 */
   2783 	/*
   2784 	 * Disable all send rings by setting the 'ring disabled' bit
   2785 	 * in the flags field of all the TX send ring control blocks,
   2786 	 * located in NIC memory.
   2787 	 */
   2788 	if (BGE_IS_5700_FAMILY(sc)) {
   2789 		/* 5700 to 5704 had 16 send rings. */
   2790 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2791 	} else if (BGE_IS_5717_PLUS(sc)) {
   2792 		limit = BGE_TX_RINGS_5717_MAX;
   2793 	} else if (BGE_IS_57765_FAMILY(sc)) {
   2794 		limit = BGE_TX_RINGS_57765_MAX;
   2795 	} else
   2796 		limit = 1;
   2797 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2798 	for (i = 0; i < limit; i++) {
   2799 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2800 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2801 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2802 		rcb_addr += sizeof(struct bge_rcb);
   2803 	}
   2804 
   2805 	/* 57XX step 46 and 47 */
   2806 	/* Configure send ring RCB 0 (we use only the first ring) */
   2807 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2808 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2809 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2810 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2811 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2812 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2813 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2814 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2815 	else
   2816 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2817 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2818 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2819 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2820 
   2821 	/* 57XX step 48 */
   2822 	/*
   2823 	 * Disable all receive return rings by setting the
   2824 	 * 'ring diabled' bit in the flags field of all the receive
   2825 	 * return ring control blocks, located in NIC memory.
   2826 	 */
   2827 	if (BGE_IS_5717_PLUS(sc)) {
   2828 		/* Should be 17, use 16 until we get an SRAM map. */
   2829 		limit = 16;
   2830 	} else if (BGE_IS_5700_FAMILY(sc))
   2831 		limit = BGE_RX_RINGS_MAX;
   2832 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2833 	    BGE_IS_57765_FAMILY(sc))
   2834 		limit = 4;
   2835 	else
   2836 		limit = 1;
   2837 	/* Disable all receive return rings */
   2838 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2839 	for (i = 0; i < limit; i++) {
   2840 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2841 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2842 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2843 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2844 			BGE_RCB_FLAG_RING_DISABLED));
   2845 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2846 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2847 		    (i * (sizeof(uint64_t))), 0);
   2848 		rcb_addr += sizeof(struct bge_rcb);
   2849 	}
   2850 
   2851 	/* 57XX step 49 */
   2852 	/*
   2853 	 * Set up receive return ring 0.  Note that the NIC address
   2854 	 * for RX return rings is 0x0.  The return rings live entirely
   2855 	 * within the host, so the nicaddr field in the RCB isn't used.
   2856 	 */
   2857 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2858 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2859 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2860 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2861 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2862 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2863 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2864 
   2865 	/* 5718 step 24, 57XX step 53 */
   2866 	/* Set random backoff seed for TX */
   2867 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2868 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2869 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2870 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2871 	    BGE_TX_BACKOFF_SEED_MASK);
   2872 
   2873 	/* 5718 step 26, 57XX step 55 */
   2874 	/* Set inter-packet gap */
   2875 	val = 0x2620;
   2876 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2877 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2878 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2879 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2880 
   2881 	/* 5718 step 27, 57XX step 56 */
   2882 	/*
   2883 	 * Specify which ring to use for packets that don't match
   2884 	 * any RX rules.
   2885 	 */
   2886 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2887 
   2888 	/* 5718 step 28, 57XX step 57 */
   2889 	/*
   2890 	 * Configure number of RX lists. One interrupt distribution
   2891 	 * list, sixteen active lists, one bad frames class.
   2892 	 */
   2893 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2894 
   2895 	/* 5718 step 29, 57XX step 58 */
   2896 	/* Inialize RX list placement stats mask. */
   2897 	if (BGE_IS_575X_PLUS(sc)) {
   2898 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2899 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2900 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2901 	} else
   2902 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2903 
   2904 	/* 5718 step 30, 57XX step 59 */
   2905 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2906 
   2907 	/* 5718 step 33, 57XX step 62 */
   2908 	/* Disable host coalescing until we get it set up */
   2909 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2910 
   2911 	/* 5718 step 34, 57XX step 63 */
   2912 	/* Poll to make sure it's shut down. */
   2913 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2914 		DELAY(10);
   2915 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2916 			break;
   2917 	}
   2918 
   2919 	if (i == BGE_TIMEOUT * 2) {
   2920 		aprint_error_dev(sc->bge_dev,
   2921 		    "host coalescing engine failed to idle\n");
   2922 		return ENXIO;
   2923 	}
   2924 
   2925 	/* 5718 step 35, 36, 37 */
   2926 	/* Set up host coalescing defaults */
   2927 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2928 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2929 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2930 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2931 	if (!(BGE_IS_5705_PLUS(sc))) {
   2932 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2933 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2934 	}
   2935 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2936 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2937 
   2938 	/* Set up address of statistics block */
   2939 	if (BGE_IS_5700_FAMILY(sc)) {
   2940 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2941 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2942 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2943 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2944 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2945 	}
   2946 
   2947 	/* 5718 step 38 */
   2948 	/* Set up address of status block */
   2949 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2950 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2951 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2952 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2953 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2954 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2955 
   2956 	/* Set up status block size. */
   2957 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2958 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2959 		val = BGE_STATBLKSZ_FULL;
   2960 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2961 	} else {
   2962 		val = BGE_STATBLKSZ_32BYTE;
   2963 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2964 	}
   2965 
   2966 	/* 5718 step 39, 57XX step 73 */
   2967 	/* Turn on host coalescing state machine */
   2968 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2969 
   2970 	/* 5718 step 40, 57XX step 74 */
   2971 	/* Turn on RX BD completion state machine and enable attentions */
   2972 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2973 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2974 
   2975 	/* 5718 step 41, 57XX step 75 */
   2976 	/* Turn on RX list placement state machine */
   2977 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2978 
   2979 	/* 57XX step 76 */
   2980 	/* Turn on RX list selector state machine. */
   2981 	if (!(BGE_IS_5705_PLUS(sc)))
   2982 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2983 
   2984 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2985 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2986 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2987 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2988 
   2989 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2990 		val |= BGE_PORTMODE_TBI;
   2991 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2992 		val |= BGE_PORTMODE_GMII;
   2993 	else
   2994 		val |= BGE_PORTMODE_MII;
   2995 
   2996 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2997 	/* Allow APE to send/receive frames. */
   2998 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2999 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   3000 
   3001 	/* Turn on DMA, clear stats */
   3002 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   3003 	/* 5718 step 44 */
   3004 	DELAY(40);
   3005 
   3006 	/* 5718 step 45, 57XX step 79 */
   3007 	/* Set misc. local control, enable interrupts on attentions */
   3008 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   3009 	if (BGE_IS_5717_PLUS(sc)) {
   3010 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   3011 		/* 5718 step 46 */
   3012 		DELAY(100);
   3013 	}
   3014 
   3015 	/* 57XX step 81 */
   3016 	/* Turn on DMA completion state machine */
   3017 	if (!(BGE_IS_5705_PLUS(sc)))
   3018 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3019 
   3020 	/* 5718 step 47, 57XX step 82 */
   3021 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   3022 
   3023 	/* 5718 step 48 */
   3024 	/* Enable host coalescing bug fix. */
   3025 	if (BGE_IS_5755_PLUS(sc))
   3026 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   3027 
   3028 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3029 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   3030 
   3031 	/* Turn on write DMA state machine */
   3032 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   3033 	/* 5718 step 49 */
   3034 	DELAY(40);
   3035 
   3036 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   3037 
   3038 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   3039 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3040 
   3041 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3042 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3043 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3044 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   3045 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   3046 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   3047 
   3048 	if (sc->bge_flags & BGEF_PCIE)
   3049 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   3050 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   3051 		if (ifp->if_mtu <= ETHERMTU)
   3052 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   3053 	}
   3054 	if (sc->bge_flags & BGEF_TSO)
   3055 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   3056 
   3057 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3058 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   3059 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   3060 		/*
   3061 		 * Allow multiple outstanding read requests from
   3062 		 * non-LSO read DMA engine.
   3063 		 */
   3064 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   3065 	}
   3066 
   3067 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3068 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3069 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3070 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   3071 	    BGE_IS_57765_PLUS(sc)) {
   3072 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   3073 		/*
   3074 		 * Adjust tx margin to prevent TX data corruption and
   3075 		 * fix internal FIFO overflow.
   3076 		 */
   3077 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   3078 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   3079 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   3080 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   3081 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   3082 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   3083 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   3084 		}
   3085 		/*
   3086 		 * Enable fix for read DMA FIFO overruns.
   3087 		 * The fix is to limit the number of RX BDs
   3088 		 * the hardware would fetch at a fime.
   3089 		 */
   3090 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   3091 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   3092 	}
   3093 
   3094 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   3095 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3096 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3097 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   3098 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3099 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3100 		/*
   3101 		 * Allow 4KB burst length reads for non-LSO frames.
   3102 		 * Enable 512B burst length reads for buffer descriptors.
   3103 		 */
   3104 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   3105 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   3106 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   3107 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   3108 	}
   3109 
   3110 	/* Turn on read DMA state machine */
   3111 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   3112 	/* 5718 step 52 */
   3113 	delay(40);
   3114 
   3115 	/* 5718 step 56, 57XX step 84 */
   3116 	/* Turn on RX data completion state machine */
   3117 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3118 
   3119 	/* Turn on RX data and RX BD initiator state machine */
   3120 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3121 
   3122 	/* 57XX step 85 */
   3123 	/* Turn on Mbuf cluster free state machine */
   3124 	if (!BGE_IS_5705_PLUS(sc))
   3125 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3126 
   3127 	/* 5718 step 57, 57XX step 86 */
   3128 	/* Turn on send data completion state machine */
   3129 	val = BGE_SDCMODE_ENABLE;
   3130 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3131 		val |= BGE_SDCMODE_CDELAY;
   3132 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3133 
   3134 	/* 5718 step 58 */
   3135 	/* Turn on send BD completion state machine */
   3136 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3137 
   3138 	/* 57XX step 88 */
   3139 	/* Turn on RX BD initiator state machine */
   3140 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3141 
   3142 	/* 5718 step 60, 57XX step 90 */
   3143 	/* Turn on send data initiator state machine */
   3144 	if (sc->bge_flags & BGEF_TSO) {
   3145 		/* XXX: magic value from Linux driver */
   3146 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3147 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3148 	} else
   3149 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3150 
   3151 	/* 5718 step 61, 57XX step 91 */
   3152 	/* Turn on send BD initiator state machine */
   3153 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3154 
   3155 	/* 5718 step 62, 57XX step 92 */
   3156 	/* Turn on send BD selector state machine */
   3157 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3158 
   3159 	/* 5718 step 31, 57XX step 60 */
   3160 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3161 	/* 5718 step 32, 57XX step 61 */
   3162 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3163 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3164 
   3165 	/* ack/clear link change events */
   3166 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3167 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3168 	    BGE_MACSTAT_LINK_CHANGED);
   3169 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3170 
   3171 	/*
   3172 	 * Enable attention when the link has changed state for
   3173 	 * devices that use auto polling.
   3174 	 */
   3175 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3176 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3177 	} else {
   3178 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3179 			mimode = BGE_MIMODE_500KHZ_CONST;
   3180 		else
   3181 			mimode = BGE_MIMODE_BASE;
   3182 		/* 5718 step 68. 5718 step 69 (optionally). */
   3183 		if (BGE_IS_5700_FAMILY(sc) ||
   3184 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3185 			mimode |= BGE_MIMODE_AUTOPOLL;
   3186 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3187 		}
   3188 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3189 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3190 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3191 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3192 			    BGE_EVTENB_MI_INTERRUPT);
   3193 	}
   3194 
   3195 	/*
   3196 	 * Clear any pending link state attention.
   3197 	 * Otherwise some link state change events may be lost until attention
   3198 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3199 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3200 	 * state change attentions implies clearing pending attention.
   3201 	 */
   3202 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3203 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3204 	    BGE_MACSTAT_LINK_CHANGED);
   3205 
   3206 	/* Enable link state change attentions. */
   3207 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3208 
   3209 	return 0;
   3210 }
   3211 
   3212 static const struct bge_revision *
   3213 bge_lookup_rev(uint32_t chipid)
   3214 {
   3215 	const struct bge_revision *br;
   3216 
   3217 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3218 		if (br->br_chipid == chipid)
   3219 			return br;
   3220 	}
   3221 
   3222 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3223 		if (br->br_chipid == BGE_ASICREV(chipid))
   3224 			return br;
   3225 	}
   3226 
   3227 	return NULL;
   3228 }
   3229 
   3230 static const struct bge_product *
   3231 bge_lookup(const struct pci_attach_args *pa)
   3232 {
   3233 	const struct bge_product *bp;
   3234 
   3235 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3236 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3237 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3238 			return bp;
   3239 	}
   3240 
   3241 	return NULL;
   3242 }
   3243 
   3244 static uint32_t
   3245 bge_chipid(const struct pci_attach_args *pa)
   3246 {
   3247 	uint32_t id;
   3248 
   3249 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3250 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3251 
   3252 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3253 		switch (PCI_PRODUCT(pa->pa_id)) {
   3254 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3255 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3256 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3257 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3258 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3259 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3260 			break;
   3261 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3262 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3263 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3264 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3265 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3266 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3267 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3268 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3269 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3270 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3271 			break;
   3272 		default:
   3273 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3274 			    BGE_PCI_PRODID_ASICREV);
   3275 			break;
   3276 		}
   3277 	}
   3278 
   3279 	return id;
   3280 }
   3281 
   3282 /*
   3283  * Return true if MSI can be used with this device.
   3284  */
   3285 static int
   3286 bge_can_use_msi(struct bge_softc *sc)
   3287 {
   3288 	int can_use_msi = 0;
   3289 
   3290 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3291 	case BGE_ASICREV_BCM5714_A0:
   3292 	case BGE_ASICREV_BCM5714:
   3293 		/*
   3294 		 * Apparently, MSI doesn't work when these chips are
   3295 		 * configured in single-port mode.
   3296 		 */
   3297 		break;
   3298 	case BGE_ASICREV_BCM5750:
   3299 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3300 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3301 			can_use_msi = 1;
   3302 		break;
   3303 	default:
   3304 		if (BGE_IS_575X_PLUS(sc))
   3305 			can_use_msi = 1;
   3306 	}
   3307 	return (can_use_msi);
   3308 }
   3309 
   3310 /*
   3311  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3312  * against our list and return its name if we find a match. Note
   3313  * that since the Broadcom controller contains VPD support, we
   3314  * can get the device name string from the controller itself instead
   3315  * of the compiled-in string. This is a little slow, but it guarantees
   3316  * we'll always announce the right product name.
   3317  */
   3318 static int
   3319 bge_probe(device_t parent, cfdata_t match, void *aux)
   3320 {
   3321 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3322 
   3323 	if (bge_lookup(pa) != NULL)
   3324 		return 1;
   3325 
   3326 	return 0;
   3327 }
   3328 
   3329 static void
   3330 bge_attach(device_t parent, device_t self, void *aux)
   3331 {
   3332 	struct bge_softc	*sc = device_private(self);
   3333 	struct pci_attach_args	*pa = aux;
   3334 	prop_dictionary_t dict;
   3335 	const struct bge_product *bp;
   3336 	const struct bge_revision *br;
   3337 	pci_chipset_tag_t	pc;
   3338 	int counts[PCI_INTR_TYPE_SIZE];
   3339 	pci_intr_type_t intr_type, max_type;
   3340 	const char		*intrstr = NULL;
   3341 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3342 	uint32_t		command;
   3343 	struct ifnet		*ifp;
   3344 	uint32_t		misccfg, mimode;
   3345 	void *			kva;
   3346 	u_char			eaddr[ETHER_ADDR_LEN];
   3347 	pcireg_t		memtype, subid, reg;
   3348 	bus_addr_t		memaddr;
   3349 	uint32_t		pm_ctl;
   3350 	bool			no_seeprom;
   3351 	int			capmask;
   3352 	int			mii_flags;
   3353 	int			map_flags;
   3354 	char intrbuf[PCI_INTRSTR_LEN];
   3355 
   3356 	bp = bge_lookup(pa);
   3357 	KASSERT(bp != NULL);
   3358 
   3359 	sc->sc_pc = pa->pa_pc;
   3360 	sc->sc_pcitag = pa->pa_tag;
   3361 	sc->bge_dev = self;
   3362 
   3363 	sc->bge_pa = *pa;
   3364 	pc = sc->sc_pc;
   3365 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3366 
   3367 	aprint_naive(": Ethernet controller\n");
   3368 	aprint_normal(": %s\n", bp->bp_name);
   3369 
   3370 	/*
   3371 	 * Map control/status registers.
   3372 	 */
   3373 	DPRINTFN(5, ("Map control/status regs\n"));
   3374 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3375 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3376 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3377 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3378 
   3379 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3380 		aprint_error_dev(sc->bge_dev,
   3381 		    "failed to enable memory mapping!\n");
   3382 		return;
   3383 	}
   3384 
   3385 	DPRINTFN(5, ("pci_mem_find\n"));
   3386 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3387 	switch (memtype) {
   3388 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3389 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3390 #if 0
   3391 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3392 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3393 		    &memaddr, &sc->bge_bsize) == 0)
   3394 			break;
   3395 #else
   3396 		/*
   3397 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3398 		 * system get NMI on boot (PR#48451). This problem might not be
   3399 		 * the driver's bug but our PCI common part's bug. Until we
   3400 		 * find a real reason, we ignore the prefetchable bit.
   3401 		 */
   3402 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3403 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3404 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3405 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3406 			    map_flags, &sc->bge_bhandle) == 0) {
   3407 				sc->bge_btag = pa->pa_memt;
   3408 				break;
   3409 			}
   3410 		}
   3411 #endif
   3412 	default:
   3413 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3414 		return;
   3415 	}
   3416 
   3417 	/* Save various chip information. */
   3418 	sc->bge_chipid = bge_chipid(pa);
   3419 	sc->bge_phy_addr = bge_phy_addr(sc);
   3420 
   3421 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3422 	        &sc->bge_pciecap, NULL) != 0)
   3423 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
   3424 		/* PCIe */
   3425 		sc->bge_flags |= BGEF_PCIE;
   3426 		/* Extract supported maximum payload size. */
   3427 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3428 		    sc->bge_pciecap + PCIE_DCAP);
   3429 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3430 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3431 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3432 			sc->bge_expmrq = 2048;
   3433 		else
   3434 			sc->bge_expmrq = 4096;
   3435 		bge_set_max_readrq(sc);
   3436 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3437 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3438 		/* PCI-X */
   3439 		sc->bge_flags |= BGEF_PCIX;
   3440 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3441 			&sc->bge_pcixcap, NULL) == 0)
   3442 			aprint_error_dev(sc->bge_dev,
   3443 			    "unable to find PCIX capability\n");
   3444 	}
   3445 
   3446 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3447 		/*
   3448 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3449 		 * can clobber the chip's PCI config-space power control
   3450 		 * registers, leaving the card in D3 powersave state. We do
   3451 		 * not have memory-mapped registers in this state, so force
   3452 		 * device into D0 state before starting initialization.
   3453 		 */
   3454 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3455 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3456 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3457 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3458 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3459 	}
   3460 
   3461 	/* Save chipset family. */
   3462 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3463 	case BGE_ASICREV_BCM5717:
   3464 	case BGE_ASICREV_BCM5719:
   3465 	case BGE_ASICREV_BCM5720:
   3466 		sc->bge_flags |= BGEF_5717_PLUS;
   3467 		/* FALLTHROUGH */
   3468 	case BGE_ASICREV_BCM57765:
   3469 	case BGE_ASICREV_BCM57766:
   3470 		if (!BGE_IS_5717_PLUS(sc))
   3471 			sc->bge_flags |= BGEF_57765_FAMILY;
   3472 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3473 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3474 		/* Jumbo frame on BCM5719 A0 does not work. */
   3475 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3476 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3477 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3478 		break;
   3479 	case BGE_ASICREV_BCM5755:
   3480 	case BGE_ASICREV_BCM5761:
   3481 	case BGE_ASICREV_BCM5784:
   3482 	case BGE_ASICREV_BCM5785:
   3483 	case BGE_ASICREV_BCM5787:
   3484 	case BGE_ASICREV_BCM57780:
   3485 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3486 		break;
   3487 	case BGE_ASICREV_BCM5700:
   3488 	case BGE_ASICREV_BCM5701:
   3489 	case BGE_ASICREV_BCM5703:
   3490 	case BGE_ASICREV_BCM5704:
   3491 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3492 		break;
   3493 	case BGE_ASICREV_BCM5714_A0:
   3494 	case BGE_ASICREV_BCM5780:
   3495 	case BGE_ASICREV_BCM5714:
   3496 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3497 		/* FALLTHROUGH */
   3498 	case BGE_ASICREV_BCM5750:
   3499 	case BGE_ASICREV_BCM5752:
   3500 	case BGE_ASICREV_BCM5906:
   3501 		sc->bge_flags |= BGEF_575X_PLUS;
   3502 		/* FALLTHROUGH */
   3503 	case BGE_ASICREV_BCM5705:
   3504 		sc->bge_flags |= BGEF_5705_PLUS;
   3505 		break;
   3506 	}
   3507 
   3508 	/* Identify chips with APE processor. */
   3509 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3510 	case BGE_ASICREV_BCM5717:
   3511 	case BGE_ASICREV_BCM5719:
   3512 	case BGE_ASICREV_BCM5720:
   3513 	case BGE_ASICREV_BCM5761:
   3514 		sc->bge_flags |= BGEF_APE;
   3515 		break;
   3516 	}
   3517 
   3518 	/*
   3519 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3520 	 * not actually a MAC controller bug but an issue with the embedded
   3521 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3522 	 */
   3523 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3524 		sc->bge_flags |= BGEF_40BIT_BUG;
   3525 
   3526 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3527 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3528 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3529 #if 0
   3530 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3531 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3532 			&sc->bge_apesize)) {
   3533 			aprint_error_dev(sc->bge_dev,
   3534 			    "couldn't map BAR2 memory\n");
   3535 			return;
   3536 		}
   3537 #else
   3538 		/*
   3539 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3540 		 * system get NMI on boot (PR#48451). This problem might not be
   3541 		 * the driver's bug but our PCI common part's bug. Until we
   3542 		 * find a real reason, we ignore the prefetchable bit.
   3543 		 */
   3544 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3545 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3546 			aprint_error_dev(sc->bge_dev,
   3547 			    "couldn't map BAR2 memory\n");
   3548 			return;
   3549 		}
   3550 
   3551 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3552 		if (bus_space_map(pa->pa_memt, memaddr,
   3553 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3554 			aprint_error_dev(sc->bge_dev,
   3555 			    "couldn't map BAR2 memory\n");
   3556 			return;
   3557 		}
   3558 		sc->bge_apetag = pa->pa_memt;
   3559 #endif
   3560 
   3561 		/* Enable APE register/memory access by host driver. */
   3562 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3563 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3564 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3565 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3566 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3567 
   3568 		bge_ape_lock_init(sc);
   3569 		bge_ape_read_fw_ver(sc);
   3570 	}
   3571 
   3572 	/* Identify the chips that use an CPMU. */
   3573 	if (BGE_IS_5717_PLUS(sc) ||
   3574 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3575 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3576 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3577 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3578 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3579 
   3580 	/* Set MI_MODE */
   3581 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3582 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3583 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3584 	else
   3585 		mimode |= BGE_MIMODE_BASE;
   3586 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3587 
   3588 	/*
   3589 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3590 	 * been observed in the first few bytes of some received packets.
   3591 	 * Aligning the packet buffer in memory eliminates the corruption.
   3592 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3593 	 * which do not support unaligned accesses, we will realign the
   3594 	 * payloads by copying the received packets.
   3595 	 */
   3596 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3597 	    sc->bge_flags & BGEF_PCIX)
   3598 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3599 
   3600 	if (BGE_IS_5700_FAMILY(sc))
   3601 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3602 
   3603 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3604 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3605 
   3606 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3607 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3608 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3609 		sc->bge_flags |= BGEF_IS_5788;
   3610 
   3611 	/*
   3612 	 * Some controllers seem to require a special firmware to use
   3613 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3614 	 * claims that the TSO performed by the firmware is slower than
   3615 	 * hardware based TSO. Moreover the firmware based TSO has one
   3616 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3617 	 * header is greater than 80 bytes. The workaround for the TSO
   3618 	 * bug exist but it seems it's too expensive than not using
   3619 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3620 	 * the TSO to the controllers that are not affected TSO issues
   3621 	 * (e.g. 5755 or higher).
   3622 	 */
   3623 	if (BGE_IS_5755_PLUS(sc)) {
   3624 		/*
   3625 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3626 		 * explicit device id check is required.
   3627 		 */
   3628 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3629 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3630 			sc->bge_flags |= BGEF_TSO;
   3631 	}
   3632 
   3633 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3634 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3635 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3636 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3637 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3638 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3639 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3640 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3641 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3642 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3643 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3644 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3645 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3646 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3647 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3649 		/* These chips are 10/100 only. */
   3650 		capmask &= ~BMSR_EXTSTAT;
   3651 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3652 	}
   3653 
   3654 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3655 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3656 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3657 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3658 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3659 
   3660 	/* Set various PHY bug flags. */
   3661 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3662 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3663 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3664 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3665 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3666 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3667 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3668 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3669 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3670 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3671 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3672 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3673 	if (BGE_IS_5705_PLUS(sc) &&
   3674 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3675 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3676 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3677 	    !BGE_IS_57765_PLUS(sc)) {
   3678 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3679 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3680 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3681 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3682 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3683 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3684 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3685 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3686 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3687 		} else
   3688 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3689 	}
   3690 
   3691 	/*
   3692 	 * SEEPROM check.
   3693 	 * First check if firmware knows we do not have SEEPROM.
   3694 	 */
   3695 	if (prop_dictionary_get_bool(device_properties(self),
   3696 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3697 	 	sc->bge_flags |= BGEF_NO_EEPROM;
   3698 
   3699 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3700 		sc->bge_flags |= BGEF_NO_EEPROM;
   3701 
   3702 	/* Now check the 'ROM failed' bit on the RX CPU */
   3703 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3704 		sc->bge_flags |= BGEF_NO_EEPROM;
   3705 
   3706 	sc->bge_asf_mode = 0;
   3707 	/* No ASF if APE present. */
   3708 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3709 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3710 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3711 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3712 			    BGE_HWCFG_ASF) {
   3713 				sc->bge_asf_mode |= ASF_ENABLE;
   3714 				sc->bge_asf_mode |= ASF_STACKUP;
   3715 				if (BGE_IS_575X_PLUS(sc))
   3716 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3717 			}
   3718 		}
   3719 	}
   3720 
   3721 	/* MSI-X will be used in future */
   3722 	counts[PCI_INTR_TYPE_MSI] = 1;
   3723 	counts[PCI_INTR_TYPE_INTX] = 1;
   3724 	/* Check MSI capability */
   3725 	if (bge_can_use_msi(sc) != 0) {
   3726 		max_type = PCI_INTR_TYPE_MSI;
   3727 		sc->bge_flags |= BGEF_MSI;
   3728 	} else
   3729 		max_type = PCI_INTR_TYPE_INTX;
   3730 
   3731 alloc_retry:
   3732 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3733 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3734 		return;
   3735 	}
   3736 
   3737 	DPRINTFN(5, ("pci_intr_string\n"));
   3738 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3739 	    sizeof(intrbuf));
   3740 	DPRINTFN(5, ("pci_intr_establish\n"));
   3741 	sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
   3742 	    bge_intr, sc);
   3743 	if (sc->bge_intrhand == NULL) {
   3744 		intr_type = pci_intr_type(sc->bge_pihp[0]);
   3745 		aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
   3746 		    (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
   3747 		pci_intr_release(pc, sc->bge_pihp, 1);
   3748 		switch (intr_type) {
   3749 		case PCI_INTR_TYPE_MSI:
   3750 			/* The next try is for INTx: Disable MSI */
   3751 			max_type = PCI_INTR_TYPE_INTX;
   3752 			counts[PCI_INTR_TYPE_INTX] = 1;
   3753 			sc->bge_flags &= ~BGEF_MSI;
   3754 			goto alloc_retry;
   3755 		case PCI_INTR_TYPE_INTX:
   3756 		default:
   3757 			/* See below */
   3758 			break;
   3759 		}
   3760 	}
   3761 
   3762 	if (sc->bge_intrhand == NULL) {
   3763 		aprint_error_dev(sc->bge_dev,
   3764 		    "couldn't establish interrupt%s%s\n",
   3765 		    intrstr ? " at " : "", intrstr ? intrstr : "");
   3766 		return;
   3767 	}
   3768 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3769 
   3770 	/*
   3771 	 * All controllers except BCM5700 supports tagged status but
   3772 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3773 	 * MSI on BCM5717 does not work.
   3774 	 */
   3775 	if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3776 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3777 
   3778 	/*
   3779 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3780 	 * lock in bge_reset().
   3781 	 */
   3782 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3783 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3784 	delay(1000);
   3785 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3786 
   3787 	bge_stop_fw(sc);
   3788 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3789 	if (bge_reset(sc))
   3790 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3791 
   3792 	/*
   3793 	 * Read the hardware config word in the first 32k of NIC internal
   3794 	 * memory, or fall back to the config word in the EEPROM.
   3795 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3796 	 */
   3797 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3798 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3799 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3800 		uint32_t tmp;
   3801 
   3802 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3803 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3804 		    BGE_SRAM_DATA_VER_SHIFT;
   3805 		if ((0 < tmp) && (tmp < 0x100))
   3806 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3807 		if (sc->bge_flags & BGEF_PCIE)
   3808 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3809 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3810 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3811 		if (BGE_IS_5717_PLUS(sc))
   3812 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3813 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3814 		bge_read_eeprom(sc, (void *)&hwcfg,
   3815 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3816 		hwcfg = be32toh(hwcfg);
   3817 	}
   3818 	aprint_normal_dev(sc->bge_dev,
   3819 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3820 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3821 
   3822 	bge_sig_legacy(sc, BGE_RESET_START);
   3823 	bge_sig_post_reset(sc, BGE_RESET_START);
   3824 
   3825 	if (bge_chipinit(sc)) {
   3826 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3827 		bge_release_resources(sc);
   3828 		return;
   3829 	}
   3830 
   3831 	/*
   3832 	 * Get station address from the EEPROM.
   3833 	 */
   3834 	if (bge_get_eaddr(sc, eaddr)) {
   3835 		aprint_error_dev(sc->bge_dev,
   3836 		    "failed to read station address\n");
   3837 		bge_release_resources(sc);
   3838 		return;
   3839 	}
   3840 
   3841 	br = bge_lookup_rev(sc->bge_chipid);
   3842 
   3843 	if (br == NULL) {
   3844 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3845 		    sc->bge_chipid);
   3846 	} else {
   3847 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3848 		    br->br_name, sc->bge_chipid);
   3849 	}
   3850 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3851 
   3852 	/* Allocate the general information block and ring buffers. */
   3853 	if (pci_dma64_available(pa))
   3854 		sc->bge_dmatag = pa->pa_dmat64;
   3855 	else
   3856 		sc->bge_dmatag = pa->pa_dmat;
   3857 
   3858 	/* 40bit DMA workaround */
   3859 	if (sizeof(bus_addr_t) > 4) {
   3860 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3861 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3862 
   3863 			if (bus_dmatag_subregion(olddmatag, 0,
   3864 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
   3865 				BUS_DMA_NOWAIT) != 0) {
   3866 				aprint_error_dev(self,
   3867 				    "WARNING: failed to restrict dma range,"
   3868 				    " falling back to parent bus dma range\n");
   3869 				sc->bge_dmatag = olddmatag;
   3870 			}
   3871 		}
   3872 	}
   3873 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3874 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3875 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3876 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3877 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3878 		return;
   3879 	}
   3880 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3881 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3882 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3883 			   BUS_DMA_NOWAIT)) {
   3884 		aprint_error_dev(sc->bge_dev,
   3885 		    "can't map DMA buffers (%zu bytes)\n",
   3886 		    sizeof(struct bge_ring_data));
   3887 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3888 		    sc->bge_ring_rseg);
   3889 		return;
   3890 	}
   3891 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3892 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3893 	    sizeof(struct bge_ring_data), 0,
   3894 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3895 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3896 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3897 				 sizeof(struct bge_ring_data));
   3898 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3899 		    sc->bge_ring_rseg);
   3900 		return;
   3901 	}
   3902 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3903 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3904 			    sizeof(struct bge_ring_data), NULL,
   3905 			    BUS_DMA_NOWAIT)) {
   3906 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3907 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3908 				 sizeof(struct bge_ring_data));
   3909 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3910 		    sc->bge_ring_rseg);
   3911 		return;
   3912 	}
   3913 
   3914 	DPRINTFN(5, ("bzero\n"));
   3915 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3916 
   3917 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3918 
   3919 	/* Try to allocate memory for jumbo buffers. */
   3920 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3921 		if (bge_alloc_jumbo_mem(sc)) {
   3922 			aprint_error_dev(sc->bge_dev,
   3923 			    "jumbo buffer allocation failed\n");
   3924 		} else
   3925 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3926 	}
   3927 
   3928 	/* Set default tuneable values. */
   3929 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3930 	sc->bge_rx_coal_ticks = 150;
   3931 	sc->bge_rx_max_coal_bds = 64;
   3932 	sc->bge_tx_coal_ticks = 300;
   3933 	sc->bge_tx_max_coal_bds = 400;
   3934 	if (BGE_IS_5705_PLUS(sc)) {
   3935 		sc->bge_tx_coal_ticks = (12 * 5);
   3936 		sc->bge_tx_max_coal_bds = (12 * 5);
   3937 			aprint_verbose_dev(sc->bge_dev,
   3938 			    "setting short Tx thresholds\n");
   3939 	}
   3940 
   3941 	if (BGE_IS_5717_PLUS(sc))
   3942 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3943 	else if (BGE_IS_5705_PLUS(sc))
   3944 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3945 	else
   3946 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3947 
   3948 	/* Set up ifnet structure */
   3949 	ifp = &sc->ethercom.ec_if;
   3950 	ifp->if_softc = sc;
   3951 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3952 	ifp->if_ioctl = bge_ioctl;
   3953 	ifp->if_stop = bge_stop;
   3954 	ifp->if_start = bge_start;
   3955 	ifp->if_init = bge_init;
   3956 	ifp->if_watchdog = bge_watchdog;
   3957 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3958 	IFQ_SET_READY(&ifp->if_snd);
   3959 	DPRINTFN(5, ("strcpy if_xname\n"));
   3960 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3961 
   3962 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3963 		sc->ethercom.ec_if.if_capabilities |=
   3964 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3965 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3966 		sc->ethercom.ec_if.if_capabilities |=
   3967 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3968 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3969 #endif
   3970 	sc->ethercom.ec_capabilities |=
   3971 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3972 
   3973 	if (sc->bge_flags & BGEF_TSO)
   3974 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3975 
   3976 	/*
   3977 	 * Do MII setup.
   3978 	 */
   3979 	DPRINTFN(5, ("mii setup\n"));
   3980 	sc->bge_mii.mii_ifp = ifp;
   3981 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3982 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3983 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3984 
   3985 	/*
   3986 	 * Figure out what sort of media we have by checking the hardware
   3987 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3988 	 * unset. If that's the case, we have to rely on identifying the NIC
   3989 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3990 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3991 	 */
   3992 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3993 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3994 		if (BGE_IS_5705_PLUS(sc)) {
   3995 			sc->bge_flags |= BGEF_FIBER_MII;
   3996 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3997 		} else
   3998 			sc->bge_flags |= BGEF_FIBER_TBI;
   3999 	}
   4000 
   4001 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   4002 	if (BGE_IS_JUMBO_CAPABLE(sc))
   4003 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   4004 
   4005 	/* set phyflags and chipid before mii_attach() */
   4006 	dict = device_properties(self);
   4007 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   4008 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   4009 
   4010 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4011 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   4012 		    bge_ifmedia_sts);
   4013 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   4014 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   4015 			    0, NULL);
   4016 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   4017 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   4018 		/* Pretend the user requested this setting */
   4019 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   4020 	} else {
   4021 		/*
   4022 		 * Do transceiver setup and tell the firmware the
   4023 		 * driver is down so we can try to get access the
   4024 		 * probe if ASF is running.  Retry a couple of times
   4025 		 * if we get a conflict with the ASF firmware accessing
   4026 		 * the PHY.
   4027 		 */
   4028 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4029 		bge_asf_driver_up(sc);
   4030 
   4031 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   4032 			     bge_ifmedia_sts);
   4033 		mii_flags = MIIF_DOPAUSE;
   4034 		if (sc->bge_flags & BGEF_FIBER_MII)
   4035 			mii_flags |= MIIF_HAVEFIBER;
   4036 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
   4037 		    MII_OFFSET_ANY, mii_flags);
   4038 
   4039 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   4040 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4041 			ifmedia_add(&sc->bge_mii.mii_media,
   4042 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   4043 			ifmedia_set(&sc->bge_mii.mii_media,
   4044 				    IFM_ETHER|IFM_MANUAL);
   4045 		} else
   4046 			ifmedia_set(&sc->bge_mii.mii_media,
   4047 				    IFM_ETHER|IFM_AUTO);
   4048 
   4049 		/*
   4050 		 * Now tell the firmware we are going up after probing the PHY
   4051 		 */
   4052 		if (sc->bge_asf_mode & ASF_STACKUP)
   4053 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4054 	}
   4055 
   4056 	/*
   4057 	 * Call MI attach routine.
   4058 	 */
   4059 	DPRINTFN(5, ("if_attach\n"));
   4060 	if_attach(ifp);
   4061 	DPRINTFN(5, ("ether_ifattach\n"));
   4062 	ether_ifattach(ifp, eaddr);
   4063 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4064 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4065 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4066 #ifdef BGE_EVENT_COUNTERS
   4067 	/*
   4068 	 * Attach event counters.
   4069 	 */
   4070 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4071 	    NULL, device_xname(sc->bge_dev), "intr");
   4072 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4073 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4074 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4075 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4076 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4077 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4078 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4079 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4080 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4081 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4082 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4083 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4084 #endif /* BGE_EVENT_COUNTERS */
   4085 	DPRINTFN(5, ("callout_init\n"));
   4086 	callout_init(&sc->bge_timeout, 0);
   4087 
   4088 	if (pmf_device_register(self, NULL, NULL))
   4089 		pmf_class_network_register(self, ifp);
   4090 	else
   4091 		aprint_error_dev(self, "couldn't establish power handler\n");
   4092 
   4093 	bge_sysctl_init(sc);
   4094 
   4095 #ifdef BGE_DEBUG
   4096 	bge_debug_info(sc);
   4097 #endif
   4098 }
   4099 
   4100 /*
   4101  * Stop all chip I/O so that the kernel's probe routines don't
   4102  * get confused by errant DMAs when rebooting.
   4103  */
   4104 static int
   4105 bge_detach(device_t self, int flags __unused)
   4106 {
   4107 	struct bge_softc *sc = device_private(self);
   4108 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4109 	int s;
   4110 
   4111 	s = splnet();
   4112 	/* Stop the interface. Callouts are stopped in it. */
   4113 	bge_stop(ifp, 1);
   4114 	splx(s);
   4115 
   4116 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4117 
   4118 	/* Delete all remaining media. */
   4119 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   4120 
   4121 	ether_ifdetach(ifp);
   4122 	if_detach(ifp);
   4123 
   4124 	bge_release_resources(sc);
   4125 
   4126 	return 0;
   4127 }
   4128 
   4129 static void
   4130 bge_release_resources(struct bge_softc *sc)
   4131 {
   4132 
   4133 	/* Disestablish the interrupt handler */
   4134 	if (sc->bge_intrhand != NULL) {
   4135 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4136 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4137 		sc->bge_intrhand = NULL;
   4138 	}
   4139 
   4140 	if (sc->bge_dmatag != NULL) {
   4141 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4142 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4143 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4144 		    sizeof(struct bge_ring_data));
   4145 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4146 		    sc->bge_ring_rseg);
   4147 	}
   4148 
   4149 	/* Unmap the device registers */
   4150 	if (sc->bge_bsize != 0) {
   4151 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4152 		sc->bge_bsize = 0;
   4153 	}
   4154 
   4155 	/* Unmap the APE registers */
   4156 	if (sc->bge_apesize != 0) {
   4157 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4158 		    sc->bge_apesize);
   4159 		sc->bge_apesize = 0;
   4160 	}
   4161 }
   4162 
   4163 static int
   4164 bge_reset(struct bge_softc *sc)
   4165 {
   4166 	uint32_t cachesize, command;
   4167 	uint32_t reset, mac_mode, mac_mode_mask;
   4168 	pcireg_t devctl, reg;
   4169 	int i, val;
   4170 	void (*write_op)(struct bge_softc *, int, int);
   4171 
   4172 	/* Make mask for BGE_MAC_MODE register. */
   4173 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4174 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4175 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4176 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4177 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4178 
   4179 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4180 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4181 	    	if (sc->bge_flags & BGEF_PCIE)
   4182 			write_op = bge_writemem_direct;
   4183 		else
   4184 			write_op = bge_writemem_ind;
   4185 	} else
   4186 		write_op = bge_writereg_ind;
   4187 
   4188 	/* 57XX step 4 */
   4189 	/* Acquire the NVM lock */
   4190 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4191 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4192 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4193 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4194 		for (i = 0; i < 8000; i++) {
   4195 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4196 			    BGE_NVRAMSWARB_GNT1)
   4197 				break;
   4198 			DELAY(20);
   4199 		}
   4200 		if (i == 8000) {
   4201 			printf("%s: NVRAM lock timedout!\n",
   4202 			    device_xname(sc->bge_dev));
   4203 		}
   4204 	}
   4205 
   4206 	/* Take APE lock when performing reset. */
   4207 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4208 
   4209 	/* 57XX step 3 */
   4210 	/* Save some important PCI state. */
   4211 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4212 	/* 5718 reset step 3 */
   4213 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4214 
   4215 	/* 5718 reset step 5, 57XX step 5b-5d */
   4216 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4217 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4218 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4219 
   4220 	/* XXX ???: Disable fastboot on controllers that support it. */
   4221 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4222 	    BGE_IS_5755_PLUS(sc))
   4223 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4224 
   4225 	/* 5718 reset step 2, 57XX step 6 */
   4226 	/*
   4227 	 * Write the magic number to SRAM at offset 0xB50.
   4228 	 * When firmware finishes its initialization it will
   4229 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4230 	 */
   4231 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4232 
   4233 	/* 5718 reset step 6, 57XX step 7 */
   4234 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4235 	/*
   4236 	 * XXX: from FreeBSD/Linux; no documentation
   4237 	 */
   4238 	if (sc->bge_flags & BGEF_PCIE) {
   4239 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4240 		    !BGE_IS_57765_PLUS(sc) &&
   4241 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4242 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4243 			/* PCI Express 1.0 system */
   4244 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4245 			    BGE_PHY_PCIE_SCRAM_MODE);
   4246 		}
   4247 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4248 			/*
   4249 			 * Prevent PCI Express link training
   4250 			 * during global reset.
   4251 			 */
   4252 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4253 			reset |= (1 << 29);
   4254 		}
   4255 	}
   4256 
   4257 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4258 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4259 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4260 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4261 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4262 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4263 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4264 	}
   4265 
   4266 	/*
   4267 	 * Set GPHY Power Down Override to leave GPHY
   4268 	 * powered up in D0 uninitialized.
   4269 	 */
   4270 	if (BGE_IS_5705_PLUS(sc) &&
   4271 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4272 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4273 
   4274 	/* Issue global reset */
   4275 	write_op(sc, BGE_MISC_CFG, reset);
   4276 
   4277 	/* 5718 reset step 7, 57XX step 8 */
   4278 	if (sc->bge_flags & BGEF_PCIE)
   4279 		delay(100*1000); /* too big */
   4280 	else
   4281 		delay(1000);
   4282 
   4283 	if (sc->bge_flags & BGEF_PCIE) {
   4284 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4285 			DELAY(500000);
   4286 			/* XXX: Magic Numbers */
   4287 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4288 			    BGE_PCI_UNKNOWN0);
   4289 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4290 			    BGE_PCI_UNKNOWN0,
   4291 			    reg | (1 << 15));
   4292 		}
   4293 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4294 		    sc->bge_pciecap + PCIE_DCSR);
   4295 		/* Clear enable no snoop and disable relaxed ordering. */
   4296 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4297 		    PCIE_DCSR_ENA_NO_SNOOP);
   4298 
   4299 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4300 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4301 			devctl &= ~(0x00e0);
   4302 		/* Clear device status register. Write 1b to clear */
   4303 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4304 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4305 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4306 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4307 		bge_set_max_readrq(sc);
   4308 	}
   4309 
   4310 	/* From Linux: dummy read to flush PCI posted writes */
   4311 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4312 
   4313 	/*
   4314 	 * Reset some of the PCI state that got zapped by reset
   4315 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4316 	 * set, too.
   4317 	 */
   4318 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4319 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4320 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4321 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4322 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4323 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4324 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4325 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4326 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4327 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4328 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4330 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4331 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4332 
   4333 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4334 	if (sc->bge_flags & BGEF_PCIX) {
   4335 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4336 		    + PCIX_CMD);
   4337 		/* Set max memory read byte count to 2K */
   4338 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4339 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4340 			reg |= PCIX_CMD_BCNT_2048;
   4341 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4342 			/*
   4343 			 * For 5704, set max outstanding split transaction
   4344 			 * field to 0 (0 means it supports 1 request)
   4345 			 */
   4346 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4347 			    | PCIX_CMD_BYTECNT_MASK);
   4348 			reg |= PCIX_CMD_BCNT_2048;
   4349 		}
   4350 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4351 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4352 	}
   4353 
   4354 	/* 5718 reset step 10, 57XX step 12 */
   4355 	/* Enable memory arbiter. */
   4356 	if (BGE_IS_5714_FAMILY(sc)) {
   4357 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4358 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4359 	} else
   4360 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4361 
   4362 	/* XXX 5721, 5751 and 5752 */
   4363 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4364 		/* Step 19: */
   4365 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4366 		/* Step 20: */
   4367 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4368 	}
   4369 
   4370 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4371 	/* Fix up byte swapping */
   4372 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4373 
   4374 	/* 5718 reset step 13, 57XX step 17 */
   4375 	/* Poll until the firmware initialization is complete */
   4376 	bge_poll_fw(sc);
   4377 
   4378 	/* 57XX step 21 */
   4379 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4380 		pcireg_t msidata;
   4381 
   4382 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4383 		    BGE_PCI_MSI_DATA);
   4384 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4385 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4386 		    msidata);
   4387 	}
   4388 
   4389 	/* 57XX step 18 */
   4390 	/* Write mac mode. */
   4391 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4392 	/* Restore mac_mode_mask's bits using mac_mode */
   4393 	val = (val & ~mac_mode_mask) | mac_mode;
   4394 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4395 	DELAY(40);
   4396 
   4397 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4398 
   4399 	/*
   4400 	 * The 5704 in TBI mode apparently needs some special
   4401 	 * adjustment to insure the SERDES drive level is set
   4402 	 * to 1.2V.
   4403 	 */
   4404 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4405 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4406 		uint32_t serdescfg;
   4407 
   4408 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4409 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4410 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4411 	}
   4412 
   4413 	if (sc->bge_flags & BGEF_PCIE &&
   4414 	    !BGE_IS_57765_PLUS(sc) &&
   4415 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4416 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4417 		uint32_t v;
   4418 
   4419 		/* Enable PCI Express bug fix */
   4420 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4421 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4422 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4423 	}
   4424 
   4425 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4426 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4427 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4428 
   4429 	return 0;
   4430 }
   4431 
   4432 /*
   4433  * Frame reception handling. This is called if there's a frame
   4434  * on the receive return list.
   4435  *
   4436  * Note: we have to be able to handle two possibilities here:
   4437  * 1) the frame is from the jumbo receive ring
   4438  * 2) the frame is from the standard receive ring
   4439  */
   4440 
   4441 static void
   4442 bge_rxeof(struct bge_softc *sc)
   4443 {
   4444 	struct ifnet *ifp;
   4445 	uint16_t rx_prod, rx_cons;
   4446 	int stdcnt = 0, jumbocnt = 0;
   4447 	bus_dmamap_t dmamap;
   4448 	bus_addr_t offset, toff;
   4449 	bus_size_t tlen;
   4450 	int tosync;
   4451 
   4452 	rx_cons = sc->bge_rx_saved_considx;
   4453 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4454 
   4455 	/* Nothing to do */
   4456 	if (rx_cons == rx_prod)
   4457 		return;
   4458 
   4459 	ifp = &sc->ethercom.ec_if;
   4460 
   4461 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4462 	    offsetof(struct bge_ring_data, bge_status_block),
   4463 	    sizeof (struct bge_status_block),
   4464 	    BUS_DMASYNC_POSTREAD);
   4465 
   4466 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4467 	tosync = rx_prod - rx_cons;
   4468 
   4469 	if (tosync != 0)
   4470 		rnd_add_uint32(&sc->rnd_source, tosync);
   4471 
   4472 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4473 
   4474 	if (tosync < 0) {
   4475 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4476 		    sizeof (struct bge_rx_bd);
   4477 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4478 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4479 		tosync = -tosync;
   4480 	}
   4481 
   4482 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4483 	    offset, tosync * sizeof (struct bge_rx_bd),
   4484 	    BUS_DMASYNC_POSTREAD);
   4485 
   4486 	while (rx_cons != rx_prod) {
   4487 		struct bge_rx_bd	*cur_rx;
   4488 		uint32_t		rxidx;
   4489 		struct mbuf		*m = NULL;
   4490 
   4491 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4492 
   4493 		rxidx = cur_rx->bge_idx;
   4494 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4495 
   4496 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4497 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4498 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4499 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4500 			jumbocnt++;
   4501 			bus_dmamap_sync(sc->bge_dmatag,
   4502 			    sc->bge_cdata.bge_rx_jumbo_map,
   4503 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4504 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4505 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4506 				ifp->if_ierrors++;
   4507 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4508 				continue;
   4509 			}
   4510 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4511 					     NULL)== ENOBUFS) {
   4512 				ifp->if_ierrors++;
   4513 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4514 				continue;
   4515 			}
   4516 		} else {
   4517 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4518 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4519 
   4520 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4521 			stdcnt++;
   4522 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4523 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   4524 			if (dmamap == NULL) {
   4525 				ifp->if_ierrors++;
   4526 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4527 				continue;
   4528 			}
   4529 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4530 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4531 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4532 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4533 				ifp->if_ierrors++;
   4534 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4535 				continue;
   4536 			}
   4537 			if (bge_newbuf_std(sc, sc->bge_std,
   4538 			    NULL, dmamap) == ENOBUFS) {
   4539 				ifp->if_ierrors++;
   4540 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4541 				continue;
   4542 			}
   4543 		}
   4544 
   4545 		ifp->if_ipackets++;
   4546 #ifndef __NO_STRICT_ALIGNMENT
   4547 		/*
   4548 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4549 		 * the Rx buffer has the layer-2 header unaligned.
   4550 		 * If our CPU requires alignment, re-align by copying.
   4551 		 */
   4552 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4553 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4554 				cur_rx->bge_len);
   4555 			m->m_data += ETHER_ALIGN;
   4556 		}
   4557 #endif
   4558 
   4559 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4560 		m->m_pkthdr.rcvif = ifp;
   4561 
   4562 		/*
   4563 		 * Handle BPF listeners. Let the BPF user see the packet.
   4564 		 */
   4565 		bpf_mtap(ifp, m);
   4566 
   4567 		bge_rxcsum(sc, cur_rx, m);
   4568 
   4569 		/*
   4570 		 * If we received a packet with a vlan tag, pass it
   4571 		 * to vlan_input() instead of ether_input().
   4572 		 */
   4573 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4574 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   4575 		}
   4576 
   4577 		(*ifp->if_input)(ifp, m);
   4578 	}
   4579 
   4580 	sc->bge_rx_saved_considx = rx_cons;
   4581 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4582 	if (stdcnt)
   4583 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4584 	if (jumbocnt)
   4585 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4586 }
   4587 
   4588 static void
   4589 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4590 {
   4591 
   4592 	if (BGE_IS_57765_PLUS(sc)) {
   4593 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4594 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4595 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4596 			if ((cur_rx->bge_error_flag &
   4597 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4598 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4599 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4600 				m->m_pkthdr.csum_data =
   4601 				    cur_rx->bge_tcp_udp_csum;
   4602 				m->m_pkthdr.csum_flags |=
   4603 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4604 					M_CSUM_DATA);
   4605 			}
   4606 		}
   4607 	} else {
   4608 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4609 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4610 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4611 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4612 		/*
   4613 		 * Rx transport checksum-offload may also
   4614 		 * have bugs with packets which, when transmitted,
   4615 		 * were `runts' requiring padding.
   4616 		 */
   4617 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4618 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4619 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4620 			m->m_pkthdr.csum_data =
   4621 			    cur_rx->bge_tcp_udp_csum;
   4622 			m->m_pkthdr.csum_flags |=
   4623 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4624 				M_CSUM_DATA);
   4625 		}
   4626 	}
   4627 }
   4628 
   4629 static void
   4630 bge_txeof(struct bge_softc *sc)
   4631 {
   4632 	struct bge_tx_bd *cur_tx = NULL;
   4633 	struct ifnet *ifp;
   4634 	struct txdmamap_pool_entry *dma;
   4635 	bus_addr_t offset, toff;
   4636 	bus_size_t tlen;
   4637 	int tosync;
   4638 	struct mbuf *m;
   4639 
   4640 	ifp = &sc->ethercom.ec_if;
   4641 
   4642 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4643 	    offsetof(struct bge_ring_data, bge_status_block),
   4644 	    sizeof (struct bge_status_block),
   4645 	    BUS_DMASYNC_POSTREAD);
   4646 
   4647 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4648 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4649 	    sc->bge_tx_saved_considx;
   4650 
   4651 	if (tosync != 0)
   4652 		rnd_add_uint32(&sc->rnd_source, tosync);
   4653 
   4654 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4655 
   4656 	if (tosync < 0) {
   4657 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4658 		    sizeof (struct bge_tx_bd);
   4659 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4660 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4661 		tosync = -tosync;
   4662 	}
   4663 
   4664 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4665 	    offset, tosync * sizeof (struct bge_tx_bd),
   4666 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4667 
   4668 	/*
   4669 	 * Go through our tx ring and free mbufs for those
   4670 	 * frames that have been sent.
   4671 	 */
   4672 	while (sc->bge_tx_saved_considx !=
   4673 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4674 		uint32_t		idx = 0;
   4675 
   4676 		idx = sc->bge_tx_saved_considx;
   4677 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4678 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4679 			ifp->if_opackets++;
   4680 		m = sc->bge_cdata.bge_tx_chain[idx];
   4681 		if (m != NULL) {
   4682 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4683 			dma = sc->txdma[idx];
   4684 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   4685 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4686 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4687 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4688 			sc->txdma[idx] = NULL;
   4689 
   4690 			m_freem(m);
   4691 		}
   4692 		sc->bge_txcnt--;
   4693 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4694 		ifp->if_timer = 0;
   4695 	}
   4696 
   4697 	if (cur_tx != NULL)
   4698 		ifp->if_flags &= ~IFF_OACTIVE;
   4699 }
   4700 
   4701 static int
   4702 bge_intr(void *xsc)
   4703 {
   4704 	struct bge_softc *sc;
   4705 	struct ifnet *ifp;
   4706 	uint32_t pcistate, statusword, statustag;
   4707 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4708 
   4709 	sc = xsc;
   4710 	ifp = &sc->ethercom.ec_if;
   4711 
   4712 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4713 	if (BGE_IS_5717_PLUS(sc))
   4714 		intrmask = 0;
   4715 
   4716 	/* It is possible for the interrupt to arrive before
   4717 	 * the status block is updated prior to the interrupt.
   4718 	 * Reading the PCI State register will confirm whether the
   4719 	 * interrupt is ours and will flush the status block.
   4720 	 */
   4721 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4722 
   4723 	/* read status word from status block */
   4724 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4725 	    offsetof(struct bge_ring_data, bge_status_block),
   4726 	    sizeof (struct bge_status_block),
   4727 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4728 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4729 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4730 
   4731 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4732 		if (sc->bge_lasttag == statustag &&
   4733 		    (~pcistate & intrmask)) {
   4734 			return (0);
   4735 		}
   4736 		sc->bge_lasttag = statustag;
   4737 	} else {
   4738 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4739 		    !(~pcistate & intrmask)) {
   4740 			return (0);
   4741 		}
   4742 		statustag = 0;
   4743 	}
   4744 	/* Ack interrupt and stop others from occurring. */
   4745 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4746 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4747 
   4748 	/* clear status word */
   4749 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4750 
   4751 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4752 	    offsetof(struct bge_ring_data, bge_status_block),
   4753 	    sizeof (struct bge_status_block),
   4754 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4755 
   4756 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4757 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4758 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4759 		bge_link_upd(sc);
   4760 
   4761 	if (ifp->if_flags & IFF_RUNNING) {
   4762 		/* Check RX return ring producer/consumer */
   4763 		bge_rxeof(sc);
   4764 
   4765 		/* Check TX ring producer/consumer */
   4766 		bge_txeof(sc);
   4767 	}
   4768 
   4769 	if (sc->bge_pending_rxintr_change) {
   4770 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4771 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4772 
   4773 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4774 		DELAY(10);
   4775 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4776 
   4777 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4778 		DELAY(10);
   4779 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4780 
   4781 		sc->bge_pending_rxintr_change = 0;
   4782 	}
   4783 	bge_handle_events(sc);
   4784 
   4785 	/* Re-enable interrupts. */
   4786 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4787 
   4788 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4789 		bge_start(ifp);
   4790 
   4791 	return 1;
   4792 }
   4793 
   4794 static void
   4795 bge_asf_driver_up(struct bge_softc *sc)
   4796 {
   4797 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4798 		/* Send ASF heartbeat aprox. every 2s */
   4799 		if (sc->bge_asf_count)
   4800 			sc->bge_asf_count --;
   4801 		else {
   4802 			sc->bge_asf_count = 2;
   4803 
   4804 			bge_wait_for_event_ack(sc);
   4805 
   4806 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4807 			    BGE_FW_CMD_DRV_ALIVE3);
   4808 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4809 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4810 			    BGE_FW_HB_TIMEOUT_SEC);
   4811 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4812 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4813 			    BGE_RX_CPU_DRV_EVENT);
   4814 		}
   4815 	}
   4816 }
   4817 
   4818 static void
   4819 bge_tick(void *xsc)
   4820 {
   4821 	struct bge_softc *sc = xsc;
   4822 	struct mii_data *mii = &sc->bge_mii;
   4823 	int s;
   4824 
   4825 	s = splnet();
   4826 
   4827 	if (BGE_IS_5705_PLUS(sc))
   4828 		bge_stats_update_regs(sc);
   4829 	else
   4830 		bge_stats_update(sc);
   4831 
   4832 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4833 		/*
   4834 		 * Since in TBI mode auto-polling can't be used we should poll
   4835 		 * link status manually. Here we register pending link event
   4836 		 * and trigger interrupt.
   4837 		 */
   4838 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4839 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4840 	} else {
   4841 		/*
   4842 		 * Do not touch PHY if we have link up. This could break
   4843 		 * IPMI/ASF mode or produce extra input errors.
   4844 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4845 		 */
   4846 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4847 			mii_tick(mii);
   4848 	}
   4849 
   4850 	bge_asf_driver_up(sc);
   4851 
   4852 	if (!sc->bge_detaching)
   4853 		callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4854 
   4855 	splx(s);
   4856 }
   4857 
   4858 static void
   4859 bge_stats_update_regs(struct bge_softc *sc)
   4860 {
   4861 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4862 
   4863 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4864 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4865 
   4866 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4867 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4868 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4869 }
   4870 
   4871 static void
   4872 bge_stats_update(struct bge_softc *sc)
   4873 {
   4874 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4875 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4876 
   4877 #define READ_STAT(sc, stats, stat) \
   4878 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4879 
   4880 	ifp->if_collisions +=
   4881 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4882 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4883 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4884 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4885 	  ifp->if_collisions;
   4886 
   4887 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4888 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4889 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4890 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4891 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4892 		      READ_STAT(sc, stats,
   4893 		      		xoffPauseFramesReceived.bge_addr_lo));
   4894 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4895 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4896 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4897 		      READ_STAT(sc, stats,
   4898 		      		macControlFramesReceived.bge_addr_lo));
   4899 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4900 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4901 
   4902 #undef READ_STAT
   4903 
   4904 #ifdef notdef
   4905 	ifp->if_collisions +=
   4906 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4907 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4908 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4909 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4910 	   ifp->if_collisions;
   4911 #endif
   4912 }
   4913 
   4914 /*
   4915  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4916  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4917  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4918  * the hardware checksum assist gives incorrect results (possibly
   4919  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4920  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4921  */
   4922 static inline int
   4923 bge_cksum_pad(struct mbuf *pkt)
   4924 {
   4925 	struct mbuf *last = NULL;
   4926 	int padlen;
   4927 
   4928 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4929 
   4930 	/* if there's only the packet-header and we can pad there, use it. */
   4931 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4932 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4933 		last = pkt;
   4934 	} else {
   4935 		/*
   4936 		 * Walk packet chain to find last mbuf. We will either
   4937 		 * pad there, or append a new mbuf and pad it
   4938 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4939 		 */
   4940 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4941 	      	       continue; /* do nothing */
   4942 		}
   4943 
   4944 		/* `last' now points to last in chain. */
   4945 		if (M_TRAILINGSPACE(last) < padlen) {
   4946 			/* Allocate new empty mbuf, pad it. Compact later. */
   4947 			struct mbuf *n;
   4948 			MGET(n, M_DONTWAIT, MT_DATA);
   4949 			if (n == NULL)
   4950 				return ENOBUFS;
   4951 			n->m_len = 0;
   4952 			last->m_next = n;
   4953 			last = n;
   4954 		}
   4955 	}
   4956 
   4957 	KDASSERT(!M_READONLY(last));
   4958 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4959 
   4960 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4961 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4962 	last->m_len += padlen;
   4963 	pkt->m_pkthdr.len += padlen;
   4964 	return 0;
   4965 }
   4966 
   4967 /*
   4968  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4969  */
   4970 static inline int
   4971 bge_compact_dma_runt(struct mbuf *pkt)
   4972 {
   4973 	struct mbuf	*m, *prev;
   4974 	int 		totlen;
   4975 
   4976 	prev = NULL;
   4977 	totlen = 0;
   4978 
   4979 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4980 		int mlen = m->m_len;
   4981 		int shortfall = 8 - mlen ;
   4982 
   4983 		totlen += mlen;
   4984 		if (mlen == 0)
   4985 			continue;
   4986 		if (mlen >= 8)
   4987 			continue;
   4988 
   4989 		/* If we get here, mbuf data is too small for DMA engine.
   4990 		 * Try to fix by shuffling data to prev or next in chain.
   4991 		 * If that fails, do a compacting deep-copy of the whole chain.
   4992 		 */
   4993 
   4994 		/* Internal frag. If fits in prev, copy it there. */
   4995 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4996 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4997 			prev->m_len += mlen;
   4998 			m->m_len = 0;
   4999 			/* XXX stitch chain */
   5000 			prev->m_next = m_free(m);
   5001 			m = prev;
   5002 			continue;
   5003 		}
   5004 		else if (m->m_next != NULL &&
   5005 			     M_TRAILINGSPACE(m) >= shortfall &&
   5006 			     m->m_next->m_len >= (8 + shortfall)) {
   5007 		    /* m is writable and have enough data in next, pull up. */
   5008 
   5009 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5010 			    shortfall);
   5011 			m->m_len += shortfall;
   5012 			m->m_next->m_len -= shortfall;
   5013 			m->m_next->m_data += shortfall;
   5014 		}
   5015 		else if (m->m_next == NULL || 1) {
   5016 		  	/* Got a runt at the very end of the packet.
   5017 			 * borrow data from the tail of the preceding mbuf and
   5018 			 * update its length in-place. (The original data is still
   5019 			 * valid, so we can do this even if prev is not writable.)
   5020 			 */
   5021 
   5022 			/* if we'd make prev a runt, just move all of its data. */
   5023 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5024 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5025 
   5026 			if ((prev->m_len - shortfall) < 8)
   5027 				shortfall = prev->m_len;
   5028 
   5029 #ifdef notyet	/* just do the safe slow thing for now */
   5030 			if (!M_READONLY(m)) {
   5031 				if (M_LEADINGSPACE(m) < shorfall) {
   5032 					void *m_dat;
   5033 					m_dat = (m->m_flags & M_PKTHDR) ?
   5034 					  m->m_pktdat : m->dat;
   5035 					memmove(m_dat, mtod(m, void*), m->m_len);
   5036 					m->m_data = m_dat;
   5037 				    }
   5038 			} else
   5039 #endif	/* just do the safe slow thing */
   5040 			{
   5041 				struct mbuf * n = NULL;
   5042 				int newprevlen = prev->m_len - shortfall;
   5043 
   5044 				MGET(n, M_NOWAIT, MT_DATA);
   5045 				if (n == NULL)
   5046 				   return ENOBUFS;
   5047 				KASSERT(m->m_len + shortfall < MLEN
   5048 					/*,
   5049 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5050 
   5051 				/* first copy the data we're stealing from prev */
   5052 				memcpy(n->m_data, prev->m_data + newprevlen,
   5053 				    shortfall);
   5054 
   5055 				/* update prev->m_len accordingly */
   5056 				prev->m_len -= shortfall;
   5057 
   5058 				/* copy data from runt m */
   5059 				memcpy(n->m_data + shortfall, m->m_data,
   5060 				    m->m_len);
   5061 
   5062 				/* n holds what we stole from prev, plus m */
   5063 				n->m_len = shortfall + m->m_len;
   5064 
   5065 				/* stitch n into chain and free m */
   5066 				n->m_next = m->m_next;
   5067 				prev->m_next = n;
   5068 				/* KASSERT(m->m_next == NULL); */
   5069 				m->m_next = NULL;
   5070 				m_free(m);
   5071 				m = n;	/* for continuing loop */
   5072 			}
   5073 		}
   5074 	}
   5075 	return 0;
   5076 }
   5077 
   5078 /*
   5079  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5080  * pointers to descriptors.
   5081  */
   5082 static int
   5083 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5084 {
   5085 	struct bge_tx_bd	*f = NULL;
   5086 	uint32_t		frag, cur;
   5087 	uint16_t		csum_flags = 0;
   5088 	uint16_t		txbd_tso_flags = 0;
   5089 	struct txdmamap_pool_entry *dma;
   5090 	bus_dmamap_t dmamap;
   5091 	int			i = 0;
   5092 	struct m_tag		*mtag;
   5093 	int			use_tso, maxsegsize, error;
   5094 
   5095 	cur = frag = *txidx;
   5096 
   5097 	if (m_head->m_pkthdr.csum_flags) {
   5098 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5099 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5100 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   5101 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5102 	}
   5103 
   5104 	/*
   5105 	 * If we were asked to do an outboard checksum, and the NIC
   5106 	 * has the bug where it sometimes adds in the Ethernet padding,
   5107 	 * explicitly pad with zeros so the cksum will be correct either way.
   5108 	 * (For now, do this for all chip versions, until newer
   5109 	 * are confirmed to not require the workaround.)
   5110 	 */
   5111 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5112 #ifdef notyet
   5113 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5114 #endif
   5115 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5116 		goto check_dma_bug;
   5117 
   5118 	if (bge_cksum_pad(m_head) != 0)
   5119 	    return ENOBUFS;
   5120 
   5121 check_dma_bug:
   5122 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5123 		goto doit;
   5124 
   5125 	/*
   5126 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5127 	 * less than eight bytes.  If we encounter a teeny mbuf
   5128 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5129 	 */
   5130 	if (bge_compact_dma_runt(m_head) != 0)
   5131 		return ENOBUFS;
   5132 
   5133 doit:
   5134 	dma = SLIST_FIRST(&sc->txdma_list);
   5135 	if (dma == NULL)
   5136 		return ENOBUFS;
   5137 	dmamap = dma->dmamap;
   5138 
   5139 	/*
   5140 	 * Set up any necessary TSO state before we start packing...
   5141 	 */
   5142 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5143 	if (!use_tso) {
   5144 		maxsegsize = 0;
   5145 	} else {	/* TSO setup */
   5146 		unsigned  mss;
   5147 		struct ether_header *eh;
   5148 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5149 		struct mbuf * m0 = m_head;
   5150 		struct ip *ip;
   5151 		struct tcphdr *th;
   5152 		int iphl, hlen;
   5153 
   5154 		/*
   5155 		 * XXX It would be nice if the mbuf pkthdr had offset
   5156 		 * fields for the protocol headers.
   5157 		 */
   5158 
   5159 		eh = mtod(m0, struct ether_header *);
   5160 		switch (htons(eh->ether_type)) {
   5161 		case ETHERTYPE_IP:
   5162 			offset = ETHER_HDR_LEN;
   5163 			break;
   5164 
   5165 		case ETHERTYPE_VLAN:
   5166 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5167 			break;
   5168 
   5169 		default:
   5170 			/*
   5171 			 * Don't support this protocol or encapsulation.
   5172 			 */
   5173 			return ENOBUFS;
   5174 		}
   5175 
   5176 		/*
   5177 		 * TCP/IP headers are in the first mbuf; we can do
   5178 		 * this the easy way.
   5179 		 */
   5180 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5181 		hlen = iphl + offset;
   5182 		if (__predict_false(m0->m_len <
   5183 				    (hlen + sizeof(struct tcphdr)))) {
   5184 
   5185 			aprint_debug_dev(sc->bge_dev,
   5186 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5187 			    "not handled yet\n",
   5188 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   5189 #ifdef NOTYET
   5190 			/*
   5191 			 * XXX jonathan (at) NetBSD.org: untested.
   5192 			 * how to force  this branch to be taken?
   5193 			 */
   5194 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5195 
   5196 			m_copydata(m0, offset, sizeof(ip), &ip);
   5197 			m_copydata(m0, hlen, sizeof(th), &th);
   5198 
   5199 			ip.ip_len = 0;
   5200 
   5201 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5202 			    sizeof(ip.ip_len), &ip.ip_len);
   5203 
   5204 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5205 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5206 
   5207 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5208 			    sizeof(th.th_sum), &th.th_sum);
   5209 
   5210 			hlen += th.th_off << 2;
   5211 			iptcp_opt_words	= hlen;
   5212 #else
   5213 			/*
   5214 			 * if_wm "hard" case not yet supported, can we not
   5215 			 * mandate it out of existence?
   5216 			 */
   5217 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5218 
   5219 			return ENOBUFS;
   5220 #endif
   5221 		} else {
   5222 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5223 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5224 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5225 
   5226 			/* Total IP/TCP options, in 32-bit words */
   5227 			iptcp_opt_words = (ip_tcp_hlen
   5228 					   - sizeof(struct tcphdr)
   5229 					   - sizeof(struct ip)) >> 2;
   5230 		}
   5231 		if (BGE_IS_575X_PLUS(sc)) {
   5232 			th->th_sum = 0;
   5233 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
   5234 		} else {
   5235 			/*
   5236 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5237 			 * Requires TSO firmware patch for 5701/5703/5704.
   5238 			 */
   5239 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5240 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5241 		}
   5242 
   5243 		mss = m_head->m_pkthdr.segsz;
   5244 		txbd_tso_flags |=
   5245 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5246 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5247 
   5248 		/*
   5249 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5250 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5251 		 * the NIC copies 40 bytes of IP/TCP header from the
   5252 		 * supplied header into the IP/TCP header portion of
   5253 		 * each post-TSO-segment. If the supplied packet has IP or
   5254 		 * TCP options, we need to tell the NIC to copy those extra
   5255 		 * bytes into each  post-TSO header, in addition to the normal
   5256 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5257 		 * Unfortunately, the driver encoding of option length
   5258 		 * varies across different ASIC families.
   5259 		 */
   5260 		tcp_seg_flags = 0;
   5261 		if (iptcp_opt_words) {
   5262 			if (BGE_IS_5705_PLUS(sc)) {
   5263 				tcp_seg_flags =
   5264 					iptcp_opt_words << 11;
   5265 			} else {
   5266 				txbd_tso_flags |=
   5267 					iptcp_opt_words << 12;
   5268 			}
   5269 		}
   5270 		maxsegsize = mss | tcp_seg_flags;
   5271 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5272 
   5273 	}	/* TSO setup */
   5274 
   5275 	/*
   5276 	 * Start packing the mbufs in this chain into
   5277 	 * the fragment pointers. Stop when we run out
   5278 	 * of fragments or hit the end of the mbuf chain.
   5279 	 */
   5280 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   5281 	    BUS_DMA_NOWAIT);
   5282 	if (error)
   5283 		return ENOBUFS;
   5284 	/*
   5285 	 * Sanity check: avoid coming within 16 descriptors
   5286 	 * of the end of the ring.
   5287 	 */
   5288 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5289 		BGE_TSO_PRINTF(("%s: "
   5290 		    " dmamap_load_mbuf too close to ring wrap\n",
   5291 		    device_xname(sc->bge_dev)));
   5292 		goto fail_unload;
   5293 	}
   5294 
   5295 	mtag = sc->ethercom.ec_nvlans ?
   5296 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   5297 
   5298 
   5299 	/* Iterate over dmap-map fragments. */
   5300 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5301 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5302 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5303 			break;
   5304 
   5305 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5306 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5307 
   5308 		/*
   5309 		 * For 5751 and follow-ons, for TSO we must turn
   5310 		 * off checksum-assist flag in the tx-descr, and
   5311 		 * supply the ASIC-revision-specific encoding
   5312 		 * of TSO flags and segsize.
   5313 		 */
   5314 		if (use_tso) {
   5315 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5316 				f->bge_rsvd = maxsegsize;
   5317 				f->bge_flags = csum_flags | txbd_tso_flags;
   5318 			} else {
   5319 				f->bge_rsvd = 0;
   5320 				f->bge_flags =
   5321 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5322 			}
   5323 		} else {
   5324 			f->bge_rsvd = 0;
   5325 			f->bge_flags = csum_flags;
   5326 		}
   5327 
   5328 		if (mtag != NULL) {
   5329 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5330 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   5331 		} else {
   5332 			f->bge_vlan_tag = 0;
   5333 		}
   5334 		cur = frag;
   5335 		BGE_INC(frag, BGE_TX_RING_CNT);
   5336 	}
   5337 
   5338 	if (i < dmamap->dm_nsegs) {
   5339 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5340 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5341 		goto fail_unload;
   5342 	}
   5343 
   5344 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   5345 	    BUS_DMASYNC_PREWRITE);
   5346 
   5347 	if (frag == sc->bge_tx_saved_considx) {
   5348 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5349 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5350 
   5351 		goto fail_unload;
   5352 	}
   5353 
   5354 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5355 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5356 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5357 	sc->txdma[cur] = dma;
   5358 	sc->bge_txcnt += dmamap->dm_nsegs;
   5359 
   5360 	*txidx = frag;
   5361 
   5362 	return 0;
   5363 
   5364 fail_unload:
   5365 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
   5366 
   5367 	return ENOBUFS;
   5368 }
   5369 
   5370 /*
   5371  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5372  * to the mbuf data regions directly in the transmit descriptors.
   5373  */
   5374 static void
   5375 bge_start(struct ifnet *ifp)
   5376 {
   5377 	struct bge_softc *sc;
   5378 	struct mbuf *m_head = NULL;
   5379 	uint32_t prodidx;
   5380 	int pkts = 0;
   5381 
   5382 	sc = ifp->if_softc;
   5383 
   5384 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5385 		return;
   5386 
   5387 	prodidx = sc->bge_tx_prodidx;
   5388 
   5389 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5390 		IFQ_POLL(&ifp->if_snd, m_head);
   5391 		if (m_head == NULL)
   5392 			break;
   5393 
   5394 #if 0
   5395 		/*
   5396 		 * XXX
   5397 		 * safety overkill.  If this is a fragmented packet chain
   5398 		 * with delayed TCP/UDP checksums, then only encapsulate
   5399 		 * it if we have enough descriptors to handle the entire
   5400 		 * chain at once.
   5401 		 * (paranoia -- may not actually be needed)
   5402 		 */
   5403 		if (m_head->m_flags & M_FIRSTFRAG &&
   5404 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5405 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5406 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5407 				ifp->if_flags |= IFF_OACTIVE;
   5408 				break;
   5409 			}
   5410 		}
   5411 #endif
   5412 
   5413 		/*
   5414 		 * Pack the data into the transmit ring. If we
   5415 		 * don't have room, set the OACTIVE flag and wait
   5416 		 * for the NIC to drain the ring.
   5417 		 */
   5418 		if (bge_encap(sc, m_head, &prodidx)) {
   5419 			ifp->if_flags |= IFF_OACTIVE;
   5420 			break;
   5421 		}
   5422 
   5423 		/* now we are committed to transmit the packet */
   5424 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5425 		pkts++;
   5426 
   5427 		/*
   5428 		 * If there's a BPF listener, bounce a copy of this frame
   5429 		 * to him.
   5430 		 */
   5431 		bpf_mtap(ifp, m_head);
   5432 	}
   5433 	if (pkts == 0)
   5434 		return;
   5435 
   5436 	/* Transmit */
   5437 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5438 	/* 5700 b2 errata */
   5439 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5440 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5441 
   5442 	sc->bge_tx_prodidx = prodidx;
   5443 
   5444 	/*
   5445 	 * Set a timeout in case the chip goes out to lunch.
   5446 	 */
   5447 	ifp->if_timer = 5;
   5448 }
   5449 
   5450 static int
   5451 bge_init(struct ifnet *ifp)
   5452 {
   5453 	struct bge_softc *sc = ifp->if_softc;
   5454 	const uint16_t *m;
   5455 	uint32_t mode, reg;
   5456 	int s, error = 0;
   5457 
   5458 	s = splnet();
   5459 
   5460 	ifp = &sc->ethercom.ec_if;
   5461 
   5462 	/* Cancel pending I/O and flush buffers. */
   5463 	bge_stop(ifp, 0);
   5464 
   5465 	bge_stop_fw(sc);
   5466 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5467 	bge_reset(sc);
   5468 	bge_sig_legacy(sc, BGE_RESET_START);
   5469 
   5470 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5471 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5472 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5473 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5474 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5475 
   5476 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5477 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5478 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5479 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5480 
   5481 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5482 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5483 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5484 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5485 
   5486 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5487 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5488 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5489 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5490 	}
   5491 
   5492 	bge_sig_post_reset(sc, BGE_RESET_START);
   5493 
   5494 	bge_chipinit(sc);
   5495 
   5496 	/*
   5497 	 * Init the various state machines, ring
   5498 	 * control blocks and firmware.
   5499 	 */
   5500 	error = bge_blockinit(sc);
   5501 	if (error != 0) {
   5502 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5503 		    error);
   5504 		splx(s);
   5505 		return error;
   5506 	}
   5507 
   5508 	ifp = &sc->ethercom.ec_if;
   5509 
   5510 	/* 5718 step 25, 57XX step 54 */
   5511 	/* Specify MTU. */
   5512 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5513 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5514 
   5515 	/* 5718 step 23 */
   5516 	/* Load our MAC address. */
   5517 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5518 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5519 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5520 
   5521 	/* Enable or disable promiscuous mode as needed. */
   5522 	if (ifp->if_flags & IFF_PROMISC)
   5523 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5524 	else
   5525 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5526 
   5527 	/* Program multicast filter. */
   5528 	bge_setmulti(sc);
   5529 
   5530 	/* Init RX ring. */
   5531 	bge_init_rx_ring_std(sc);
   5532 
   5533 	/*
   5534 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5535 	 * memory to insure that the chip has in fact read the first
   5536 	 * entry of the ring.
   5537 	 */
   5538 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5539 		uint32_t		v, i;
   5540 		for (i = 0; i < 10; i++) {
   5541 			DELAY(20);
   5542 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5543 			if (v == (MCLBYTES - ETHER_ALIGN))
   5544 				break;
   5545 		}
   5546 		if (i == 10)
   5547 			aprint_error_dev(sc->bge_dev,
   5548 			    "5705 A0 chip failed to load RX ring\n");
   5549 	}
   5550 
   5551 	/* Init jumbo RX ring. */
   5552 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5553 		bge_init_rx_ring_jumbo(sc);
   5554 
   5555 	/* Init our RX return ring index */
   5556 	sc->bge_rx_saved_considx = 0;
   5557 
   5558 	/* Init TX ring. */
   5559 	bge_init_tx_ring(sc);
   5560 
   5561 	/* 5718 step 63, 57XX step 94 */
   5562 	/* Enable TX MAC state machine lockup fix. */
   5563 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5564 	if (BGE_IS_5755_PLUS(sc) ||
   5565 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5566 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5567 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5568 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5569 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5570 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5571 	}
   5572 
   5573 	/* Turn on transmitter */
   5574 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5575 	/* 5718 step 64 */
   5576 	DELAY(100);
   5577 
   5578 	/* 5718 step 65, 57XX step 95 */
   5579 	/* Turn on receiver */
   5580 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5581 	if (BGE_IS_5755_PLUS(sc))
   5582 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5583 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5584 	/* 5718 step 66 */
   5585 	DELAY(10);
   5586 
   5587 	/* 5718 step 12, 57XX step 37 */
   5588 	/*
   5589 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5590 	 * is 1, but tg3 set 1 only on 57765 series.
   5591 	 */
   5592 	if (BGE_IS_57765_PLUS(sc))
   5593 		reg = 1;
   5594 	else
   5595 		reg = 2;
   5596 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5597 
   5598 	/* Tell firmware we're alive. */
   5599 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5600 
   5601 	/* Enable host interrupts. */
   5602 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5603 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5604 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5605 
   5606 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5607 		goto out;
   5608 
   5609 	ifp->if_flags |= IFF_RUNNING;
   5610 	ifp->if_flags &= ~IFF_OACTIVE;
   5611 
   5612 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5613 
   5614 out:
   5615 	sc->bge_if_flags = ifp->if_flags;
   5616 	splx(s);
   5617 
   5618 	return error;
   5619 }
   5620 
   5621 /*
   5622  * Set media options.
   5623  */
   5624 static int
   5625 bge_ifmedia_upd(struct ifnet *ifp)
   5626 {
   5627 	struct bge_softc *sc = ifp->if_softc;
   5628 	struct mii_data *mii = &sc->bge_mii;
   5629 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5630 	int rc;
   5631 
   5632 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5633 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5634 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5635 			return EINVAL;
   5636 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5637 		case IFM_AUTO:
   5638 			/*
   5639 			 * The BCM5704 ASIC appears to have a special
   5640 			 * mechanism for programming the autoneg
   5641 			 * advertisement registers in TBI mode.
   5642 			 */
   5643 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5644 				uint32_t sgdig;
   5645 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5646 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5647 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5648 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5649 					sgdig |= BGE_SGDIGCFG_AUTO |
   5650 					    BGE_SGDIGCFG_PAUSE_CAP |
   5651 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5652 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5653 					    sgdig | BGE_SGDIGCFG_SEND);
   5654 					DELAY(5);
   5655 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5656 					    sgdig);
   5657 				}
   5658 			}
   5659 			break;
   5660 		case IFM_1000_SX:
   5661 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5662 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5663 				    BGE_MACMODE_HALF_DUPLEX);
   5664 			} else {
   5665 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5666 				    BGE_MACMODE_HALF_DUPLEX);
   5667 			}
   5668 			DELAY(40);
   5669 			break;
   5670 		default:
   5671 			return EINVAL;
   5672 		}
   5673 		/* XXX 802.3x flow control for 1000BASE-SX */
   5674 		return 0;
   5675 	}
   5676 
   5677 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5678 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5679 		uint32_t reg;
   5680 
   5681 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5682 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5683 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5684 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5685 		}
   5686 	}
   5687 
   5688 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5689 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5690 		return 0;
   5691 
   5692 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5693 		uint32_t reg;
   5694 
   5695 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5696 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5697 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5698 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5699 			delay(40);
   5700 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5701 		}
   5702 	}
   5703 
   5704 	/*
   5705 	 * Force an interrupt so that we will call bge_link_upd
   5706 	 * if needed and clear any pending link state attention.
   5707 	 * Without this we are not getting any further interrupts
   5708 	 * for link state changes and thus will not UP the link and
   5709 	 * not be able to send in bge_start. The only way to get
   5710 	 * things working was to receive a packet and get a RX intr.
   5711 	 */
   5712 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5713 	    sc->bge_flags & BGEF_IS_5788)
   5714 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5715 	else
   5716 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5717 
   5718 	return rc;
   5719 }
   5720 
   5721 /*
   5722  * Report current media status.
   5723  */
   5724 static void
   5725 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5726 {
   5727 	struct bge_softc *sc = ifp->if_softc;
   5728 	struct mii_data *mii = &sc->bge_mii;
   5729 
   5730 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5731 		ifmr->ifm_status = IFM_AVALID;
   5732 		ifmr->ifm_active = IFM_ETHER;
   5733 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5734 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5735 			ifmr->ifm_status |= IFM_ACTIVE;
   5736 		ifmr->ifm_active |= IFM_1000_SX;
   5737 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5738 			ifmr->ifm_active |= IFM_HDX;
   5739 		else
   5740 			ifmr->ifm_active |= IFM_FDX;
   5741 		return;
   5742 	}
   5743 
   5744 	mii_pollstat(mii);
   5745 	ifmr->ifm_status = mii->mii_media_status;
   5746 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5747 	    sc->bge_flowflags;
   5748 }
   5749 
   5750 static int
   5751 bge_ifflags_cb(struct ethercom *ec)
   5752 {
   5753 	struct ifnet *ifp = &ec->ec_if;
   5754 	struct bge_softc *sc = ifp->if_softc;
   5755 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5756 
   5757 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5758 		return ENETRESET;
   5759 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5760 		return 0;
   5761 
   5762 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5763 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5764 	else
   5765 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5766 
   5767 	bge_setmulti(sc);
   5768 
   5769 	sc->bge_if_flags = ifp->if_flags;
   5770 	return 0;
   5771 }
   5772 
   5773 static int
   5774 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5775 {
   5776 	struct bge_softc *sc = ifp->if_softc;
   5777 	struct ifreq *ifr = (struct ifreq *) data;
   5778 	int s, error = 0;
   5779 	struct mii_data *mii;
   5780 
   5781 	s = splnet();
   5782 
   5783 	switch (command) {
   5784 	case SIOCSIFMEDIA:
   5785 		/* XXX Flow control is not supported for 1000BASE-SX */
   5786 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5787 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5788 			sc->bge_flowflags = 0;
   5789 		}
   5790 
   5791 		/* Flow control requires full-duplex mode. */
   5792 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5793 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5794 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5795 		}
   5796 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5797 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5798 				/* We can do both TXPAUSE and RXPAUSE. */
   5799 				ifr->ifr_media |=
   5800 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5801 			}
   5802 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5803 		}
   5804 		/* FALLTHROUGH */
   5805 	case SIOCGIFMEDIA:
   5806 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5807 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5808 			    command);
   5809 		} else {
   5810 			mii = &sc->bge_mii;
   5811 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5812 			    command);
   5813 		}
   5814 		break;
   5815 	default:
   5816 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5817 			break;
   5818 
   5819 		error = 0;
   5820 
   5821 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5822 			;
   5823 		else if (ifp->if_flags & IFF_RUNNING)
   5824 			bge_setmulti(sc);
   5825 		break;
   5826 	}
   5827 
   5828 	splx(s);
   5829 
   5830 	return error;
   5831 }
   5832 
   5833 static void
   5834 bge_watchdog(struct ifnet *ifp)
   5835 {
   5836 	struct bge_softc *sc;
   5837 
   5838 	sc = ifp->if_softc;
   5839 
   5840 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5841 
   5842 	ifp->if_flags &= ~IFF_RUNNING;
   5843 	bge_init(ifp);
   5844 
   5845 	ifp->if_oerrors++;
   5846 }
   5847 
   5848 static void
   5849 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5850 {
   5851 	int i;
   5852 
   5853 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5854 
   5855 	for (i = 0; i < 1000; i++) {
   5856 		delay(100);
   5857 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5858 			return;
   5859 	}
   5860 
   5861 	/*
   5862 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5863 	 * on some environment (and once after boot?)
   5864 	 */
   5865 	if (reg != BGE_SRS_MODE)
   5866 		aprint_error_dev(sc->bge_dev,
   5867 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5868 		    (u_long)reg, bit);
   5869 }
   5870 
   5871 /*
   5872  * Stop the adapter and free any mbufs allocated to the
   5873  * RX and TX lists.
   5874  */
   5875 static void
   5876 bge_stop(struct ifnet *ifp, int disable)
   5877 {
   5878 	struct bge_softc *sc = ifp->if_softc;
   5879 
   5880 	if (disable) {
   5881 		sc->bge_detaching = 1;
   5882 		callout_halt(&sc->bge_timeout, NULL);
   5883 	} else
   5884 		callout_stop(&sc->bge_timeout);
   5885 
   5886 	/* Disable host interrupts. */
   5887 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5888 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5889 
   5890 	/*
   5891 	 * Tell firmware we're shutting down.
   5892 	 */
   5893 	bge_stop_fw(sc);
   5894 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5895 
   5896 	/*
   5897 	 * Disable all of the receiver blocks.
   5898 	 */
   5899 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5900 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5901 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5902 	if (BGE_IS_5700_FAMILY(sc))
   5903 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5904 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5905 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5906 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5907 
   5908 	/*
   5909 	 * Disable all of the transmit blocks.
   5910 	 */
   5911 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5912 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5913 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5914 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5915 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5916 	if (BGE_IS_5700_FAMILY(sc))
   5917 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5918 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5919 
   5920 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5921 	delay(40);
   5922 
   5923 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5924 
   5925 	/*
   5926 	 * Shut down all of the memory managers and related
   5927 	 * state machines.
   5928 	 */
   5929 	/* 5718 step 5a,5b */
   5930 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5931 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5932 	if (BGE_IS_5700_FAMILY(sc))
   5933 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5934 
   5935 	/* 5718 step 5c,5d */
   5936 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5937 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5938 
   5939 	if (BGE_IS_5700_FAMILY(sc)) {
   5940 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5941 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5942 	}
   5943 
   5944 	bge_reset(sc);
   5945 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5946 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5947 
   5948 	/*
   5949 	 * Keep the ASF firmware running if up.
   5950 	 */
   5951 	if (sc->bge_asf_mode & ASF_STACKUP)
   5952 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5953 	else
   5954 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5955 
   5956 	/* Free the RX lists. */
   5957 	bge_free_rx_ring_std(sc);
   5958 
   5959 	/* Free jumbo RX list. */
   5960 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5961 		bge_free_rx_ring_jumbo(sc);
   5962 
   5963 	/* Free TX buffers. */
   5964 	bge_free_tx_ring(sc);
   5965 
   5966 	/*
   5967 	 * Isolate/power down the PHY.
   5968 	 */
   5969 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   5970 		mii_down(&sc->bge_mii);
   5971 
   5972 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5973 
   5974 	/* Clear MAC's link state (PHY may still have link UP). */
   5975 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5976 
   5977 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5978 }
   5979 
   5980 static void
   5981 bge_link_upd(struct bge_softc *sc)
   5982 {
   5983 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5984 	struct mii_data *mii = &sc->bge_mii;
   5985 	uint32_t status;
   5986 	int link;
   5987 
   5988 	/* Clear 'pending link event' flag */
   5989 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5990 
   5991 	/*
   5992 	 * Process link state changes.
   5993 	 * Grrr. The link status word in the status block does
   5994 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5995 	 * according to all available information. Hence, we have
   5996 	 * to enable MII interrupts in order to properly obtain
   5997 	 * async link changes. Unfortunately, this also means that
   5998 	 * we have to read the MAC status register to detect link
   5999 	 * changes, thereby adding an additional register access to
   6000 	 * the interrupt handler.
   6001 	 */
   6002 
   6003 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6004 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6005 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6006 			mii_pollstat(mii);
   6007 
   6008 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6009 			    mii->mii_media_status & IFM_ACTIVE &&
   6010 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6011 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6012 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6013 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6014 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6015 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6016 
   6017 			/* Clear the interrupt */
   6018 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6019 			    BGE_EVTENB_MI_INTERRUPT);
   6020 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6021 			    BRGPHY_MII_ISR);
   6022 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6023 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6024 		}
   6025 		return;
   6026 	}
   6027 
   6028 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6029 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6030 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6031 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6032 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6033 				if (BGE_ASICREV(sc->bge_chipid)
   6034 				    == BGE_ASICREV_BCM5704) {
   6035 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   6036 					    BGE_MACMODE_TBI_SEND_CFGS);
   6037 					DELAY(40);
   6038 				}
   6039 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6040 				if_link_state_change(ifp, LINK_STATE_UP);
   6041 			}
   6042 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6043 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6044 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6045 		}
   6046 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6047 		/*
   6048 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6049 		 * bit in status word always set. Workaround this bug by
   6050 		 * reading PHY link status directly.
   6051 		 */
   6052 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6053 		    BGE_STS_LINK : 0;
   6054 
   6055 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6056 			mii_pollstat(mii);
   6057 
   6058 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6059 			    mii->mii_media_status & IFM_ACTIVE &&
   6060 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6061 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6062 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6063 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6064 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6065 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6066 		}
   6067 	} else {
   6068 		/*
   6069 		 * For controllers that call mii_tick, we have to poll
   6070 		 * link status.
   6071 		 */
   6072 		mii_pollstat(mii);
   6073 	}
   6074 
   6075 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6076 		uint32_t reg, scale;
   6077 
   6078 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6079 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6080 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6081 			scale = 65;
   6082 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6083 			scale = 6;
   6084 		else
   6085 			scale = 12;
   6086 
   6087 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6088 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6089 		reg |= scale << 1;
   6090 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6091 	}
   6092 	/* Clear the attention */
   6093 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   6094 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   6095 	    BGE_MACSTAT_LINK_CHANGED);
   6096 }
   6097 
   6098 static int
   6099 bge_sysctl_verify(SYSCTLFN_ARGS)
   6100 {
   6101 	int error, t;
   6102 	struct sysctlnode node;
   6103 
   6104 	node = *rnode;
   6105 	t = *(int*)rnode->sysctl_data;
   6106 	node.sysctl_data = &t;
   6107 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6108 	if (error || newp == NULL)
   6109 		return error;
   6110 
   6111 #if 0
   6112 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6113 	    node.sysctl_num, rnode->sysctl_num));
   6114 #endif
   6115 
   6116 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6117 		if (t < 0 || t >= NBGE_RX_THRESH)
   6118 			return EINVAL;
   6119 		bge_update_all_threshes(t);
   6120 	} else
   6121 		return EINVAL;
   6122 
   6123 	*(int*)rnode->sysctl_data = t;
   6124 
   6125 	return 0;
   6126 }
   6127 
   6128 /*
   6129  * Set up sysctl(3) MIB, hw.bge.*.
   6130  */
   6131 static void
   6132 bge_sysctl_init(struct bge_softc *sc)
   6133 {
   6134 	int rc, bge_root_num;
   6135 	const struct sysctlnode *node;
   6136 
   6137 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6138 	    0, CTLTYPE_NODE, "bge",
   6139 	    SYSCTL_DESCR("BGE interface controls"),
   6140 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6141 		goto out;
   6142 	}
   6143 
   6144 	bge_root_num = node->sysctl_num;
   6145 
   6146 	/* BGE Rx interrupt mitigation level */
   6147 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6148 	    CTLFLAG_READWRITE,
   6149 	    CTLTYPE_INT, "rx_lvl",
   6150 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6151 	    bge_sysctl_verify, 0,
   6152 	    &bge_rx_thresh_lvl,
   6153 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6154 	    CTL_EOL)) != 0) {
   6155 		goto out;
   6156 	}
   6157 
   6158 	bge_rxthresh_nodenum = node->sysctl_num;
   6159 
   6160 	return;
   6161 
   6162 out:
   6163 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6164 }
   6165 
   6166 #ifdef BGE_DEBUG
   6167 void
   6168 bge_debug_info(struct bge_softc *sc)
   6169 {
   6170 
   6171 	printf("Hardware Flags:\n");
   6172 	if (BGE_IS_57765_PLUS(sc))
   6173 		printf(" - 57765 Plus\n");
   6174 	if (BGE_IS_5717_PLUS(sc))
   6175 		printf(" - 5717 Plus\n");
   6176 	if (BGE_IS_5755_PLUS(sc))
   6177 		printf(" - 5755 Plus\n");
   6178 	if (BGE_IS_575X_PLUS(sc))
   6179 		printf(" - 575X Plus\n");
   6180 	if (BGE_IS_5705_PLUS(sc))
   6181 		printf(" - 5705 Plus\n");
   6182 	if (BGE_IS_5714_FAMILY(sc))
   6183 		printf(" - 5714 Family\n");
   6184 	if (BGE_IS_5700_FAMILY(sc))
   6185 		printf(" - 5700 Family\n");
   6186 	if (sc->bge_flags & BGEF_IS_5788)
   6187 		printf(" - 5788\n");
   6188 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6189 		printf(" - Supports Jumbo Frames\n");
   6190 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6191 		printf(" - No EEPROM\n");
   6192 	if (sc->bge_flags & BGEF_PCIX)
   6193 		printf(" - PCI-X Bus\n");
   6194 	if (sc->bge_flags & BGEF_PCIE)
   6195 		printf(" - PCI Express Bus\n");
   6196 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6197 		printf(" - RX Alignment Bug\n");
   6198 	if (sc->bge_flags & BGEF_APE)
   6199 		printf(" - APE\n");
   6200 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6201 		printf(" - CPMU\n");
   6202 	if (sc->bge_flags & BGEF_TSO)
   6203 		printf(" - TSO\n");
   6204 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6205 		printf(" - TAGGED_STATUS\n");
   6206 
   6207 	/* PHY related */
   6208 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6209 		printf(" - No 3 LEDs\n");
   6210 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6211 		printf(" - CRC bug\n");
   6212 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6213 		printf(" - ADC bug\n");
   6214 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6215 		printf(" - 5704 A0 bug\n");
   6216 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6217 		printf(" - jitter bug\n");
   6218 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6219 		printf(" - BER bug\n");
   6220 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6221 		printf(" - adjust trim\n");
   6222 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6223 		printf(" - no wirespeed\n");
   6224 
   6225 	/* ASF related */
   6226 	if (sc->bge_asf_mode & ASF_ENABLE)
   6227 		printf(" - ASF enable\n");
   6228 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6229 		printf(" - ASF new handshake\n");
   6230 	if (sc->bge_asf_mode & ASF_STACKUP)
   6231 		printf(" - ASF stackup\n");
   6232 }
   6233 #endif /* BGE_DEBUG */
   6234 
   6235 static int
   6236 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6237 {
   6238 	prop_dictionary_t dict;
   6239 	prop_data_t ea;
   6240 
   6241 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6242 		return 1;
   6243 
   6244 	dict = device_properties(sc->bge_dev);
   6245 	ea = prop_dictionary_get(dict, "mac-address");
   6246 	if (ea != NULL) {
   6247 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6248 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6249 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   6250 		return 0;
   6251 	}
   6252 
   6253 	return 1;
   6254 }
   6255 
   6256 static int
   6257 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6258 {
   6259 	uint32_t mac_addr;
   6260 
   6261 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6262 	if ((mac_addr >> 16) == 0x484b) {
   6263 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6264 		ether_addr[1] = (uint8_t)mac_addr;
   6265 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6266 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6267 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6268 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6269 		ether_addr[5] = (uint8_t)mac_addr;
   6270 		return 0;
   6271 	}
   6272 	return 1;
   6273 }
   6274 
   6275 static int
   6276 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6277 {
   6278 	int mac_offset = BGE_EE_MAC_OFFSET;
   6279 
   6280 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6281 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6282 
   6283 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6284 	    ETHER_ADDR_LEN));
   6285 }
   6286 
   6287 static int
   6288 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6289 {
   6290 
   6291 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6292 		return 1;
   6293 
   6294 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6295 	   ETHER_ADDR_LEN));
   6296 }
   6297 
   6298 static int
   6299 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6300 {
   6301 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6302 		/* NOTE: Order is critical */
   6303 		bge_get_eaddr_fw,
   6304 		bge_get_eaddr_mem,
   6305 		bge_get_eaddr_nvram,
   6306 		bge_get_eaddr_eeprom,
   6307 		NULL
   6308 	};
   6309 	const bge_eaddr_fcn_t *func;
   6310 
   6311 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6312 		if ((*func)(sc, eaddr) == 0)
   6313 			break;
   6314 	}
   6315 	return (*func == NULL ? ENXIO : 0);
   6316 }
   6317