if_bge.c revision 1.303 1 /* $NetBSD: if_bge.c,v 1.303 2017/04/12 06:04:34 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.303 2017/04/12 06:04:34 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Fast Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Fast Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Fast Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Fast Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Fast Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Fast Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Fast Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Fast Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Fast Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Fast Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Fast Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Fast Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Fast Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
747 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
748
749 { 0, NULL }
750 };
751
752 /*
753 * Some defaults for major revisions, so that newer steppings
754 * that we don't know about have a shot at working.
755 */
756 static const struct bge_revision bge_majorrevs[] = {
757 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
758 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
759 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
760 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
761 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
762 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
763 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
764 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
766 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
767 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
768 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
769 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
770 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
771 /* 5754 and 5787 share the same ASIC ID */
772 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
773 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
774 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
775 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
776 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
777 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
778 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
779 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
780
781 { 0, NULL }
782 };
783
784 static int bge_allow_asf = 1;
785
786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
787 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
788
789 static uint32_t
790 bge_readmem_ind(struct bge_softc *sc, int off)
791 {
792 pcireg_t val;
793
794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
795 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
796 return 0;
797
798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
799 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
801 return val;
802 }
803
804 static void
805 bge_writemem_ind(struct bge_softc *sc, int off, int val)
806 {
807
808 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
811 }
812
813 /*
814 * PCI Express only
815 */
816 static void
817 bge_set_max_readrq(struct bge_softc *sc)
818 {
819 pcireg_t val;
820
821 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
822 + PCIE_DCSR);
823 val &= ~PCIE_DCSR_MAX_READ_REQ;
824 switch (sc->bge_expmrq) {
825 case 2048:
826 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
827 break;
828 case 4096:
829 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
830 break;
831 default:
832 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
833 break;
834 }
835 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
836 + PCIE_DCSR, val);
837 }
838
839 #ifdef notdef
840 static uint32_t
841 bge_readreg_ind(struct bge_softc *sc, int off)
842 {
843 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
844 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
845 }
846 #endif
847
848 static void
849 bge_writereg_ind(struct bge_softc *sc, int off, int val)
850 {
851 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
853 }
854
855 static void
856 bge_writemem_direct(struct bge_softc *sc, int off, int val)
857 {
858 CSR_WRITE_4(sc, off, val);
859 }
860
861 static void
862 bge_writembx(struct bge_softc *sc, int off, int val)
863 {
864 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
865 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
866
867 CSR_WRITE_4(sc, off, val);
868 }
869
870 static void
871 bge_writembx_flush(struct bge_softc *sc, int off, int val)
872 {
873 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
874 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
875
876 CSR_WRITE_4_FLUSH(sc, off, val);
877 }
878
879 /*
880 * Clear all stale locks and select the lock for this driver instance.
881 */
882 void
883 bge_ape_lock_init(struct bge_softc *sc)
884 {
885 struct pci_attach_args *pa = &(sc->bge_pa);
886 uint32_t bit, regbase;
887 int i;
888
889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
890 regbase = BGE_APE_LOCK_GRANT;
891 else
892 regbase = BGE_APE_PER_LOCK_GRANT;
893
894 /* Clear any stale locks. */
895 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
896 switch (i) {
897 case BGE_APE_LOCK_PHY0:
898 case BGE_APE_LOCK_PHY1:
899 case BGE_APE_LOCK_PHY2:
900 case BGE_APE_LOCK_PHY3:
901 bit = BGE_APE_LOCK_GRANT_DRIVER0;
902 break;
903 default:
904 if (pa->pa_function == 0)
905 bit = BGE_APE_LOCK_GRANT_DRIVER0;
906 else
907 bit = (1 << pa->pa_function);
908 }
909 APE_WRITE_4(sc, regbase + 4 * i, bit);
910 }
911
912 /* Select the PHY lock based on the device's function number. */
913 switch (pa->pa_function) {
914 case 0:
915 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
916 break;
917 case 1:
918 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
919 break;
920 case 2:
921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
922 break;
923 case 3:
924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
925 break;
926 default:
927 printf("%s: PHY lock not supported on function\n",
928 device_xname(sc->bge_dev));
929 break;
930 }
931 }
932
933 /*
934 * Check for APE firmware, set flags, and print version info.
935 */
936 void
937 bge_ape_read_fw_ver(struct bge_softc *sc)
938 {
939 const char *fwtype;
940 uint32_t apedata, features;
941
942 /* Check for a valid APE signature in shared memory. */
943 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
944 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
945 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
946 return;
947 }
948
949 /* Check if APE firmware is running. */
950 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
951 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
952 printf("%s: APE signature found but FW status not ready! "
953 "0x%08x\n", device_xname(sc->bge_dev), apedata);
954 return;
955 }
956
957 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
958
959 /* Fetch the APE firwmare type and version. */
960 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
961 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
962 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
963 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
964 fwtype = "NCSI";
965 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
966 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
967 fwtype = "DASH";
968 } else
969 fwtype = "UNKN";
970
971 /* Print the APE firmware version. */
972 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
973 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
974 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
975 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
976 (apedata & BGE_APE_FW_VERSION_BLDMSK));
977 }
978
979 int
980 bge_ape_lock(struct bge_softc *sc, int locknum)
981 {
982 struct pci_attach_args *pa = &(sc->bge_pa);
983 uint32_t bit, gnt, req, status;
984 int i, off;
985
986 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
987 return (0);
988
989 /* Lock request/grant registers have different bases. */
990 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
991 req = BGE_APE_LOCK_REQ;
992 gnt = BGE_APE_LOCK_GRANT;
993 } else {
994 req = BGE_APE_PER_LOCK_REQ;
995 gnt = BGE_APE_PER_LOCK_GRANT;
996 }
997
998 off = 4 * locknum;
999
1000 switch (locknum) {
1001 case BGE_APE_LOCK_GPIO:
1002 /* Lock required when using GPIO. */
1003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1004 return (0);
1005 if (pa->pa_function == 0)
1006 bit = BGE_APE_LOCK_REQ_DRIVER0;
1007 else
1008 bit = (1 << pa->pa_function);
1009 break;
1010 case BGE_APE_LOCK_GRC:
1011 /* Lock required to reset the device. */
1012 if (pa->pa_function == 0)
1013 bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 else
1015 bit = (1 << pa->pa_function);
1016 break;
1017 case BGE_APE_LOCK_MEM:
1018 /* Lock required when accessing certain APE memory. */
1019 if (pa->pa_function == 0)
1020 bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 else
1022 bit = (1 << pa->pa_function);
1023 break;
1024 case BGE_APE_LOCK_PHY0:
1025 case BGE_APE_LOCK_PHY1:
1026 case BGE_APE_LOCK_PHY2:
1027 case BGE_APE_LOCK_PHY3:
1028 /* Lock required when accessing PHYs. */
1029 bit = BGE_APE_LOCK_REQ_DRIVER0;
1030 break;
1031 default:
1032 return (EINVAL);
1033 }
1034
1035 /* Request a lock. */
1036 APE_WRITE_4_FLUSH(sc, req + off, bit);
1037
1038 /* Wait up to 1 second to acquire lock. */
1039 for (i = 0; i < 20000; i++) {
1040 status = APE_READ_4(sc, gnt + off);
1041 if (status == bit)
1042 break;
1043 DELAY(50);
1044 }
1045
1046 /* Handle any errors. */
1047 if (status != bit) {
1048 printf("%s: APE lock %d request failed! "
1049 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1050 device_xname(sc->bge_dev),
1051 locknum, req + off, bit & 0xFFFF, gnt + off,
1052 status & 0xFFFF);
1053 /* Revoke the lock request. */
1054 APE_WRITE_4(sc, gnt + off, bit);
1055 return (EBUSY);
1056 }
1057
1058 return (0);
1059 }
1060
1061 void
1062 bge_ape_unlock(struct bge_softc *sc, int locknum)
1063 {
1064 struct pci_attach_args *pa = &(sc->bge_pa);
1065 uint32_t bit, gnt;
1066 int off;
1067
1068 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1069 return;
1070
1071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1072 gnt = BGE_APE_LOCK_GRANT;
1073 else
1074 gnt = BGE_APE_PER_LOCK_GRANT;
1075
1076 off = 4 * locknum;
1077
1078 switch (locknum) {
1079 case BGE_APE_LOCK_GPIO:
1080 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1081 return;
1082 if (pa->pa_function == 0)
1083 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1084 else
1085 bit = (1 << pa->pa_function);
1086 break;
1087 case BGE_APE_LOCK_GRC:
1088 if (pa->pa_function == 0)
1089 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 else
1091 bit = (1 << pa->pa_function);
1092 break;
1093 case BGE_APE_LOCK_MEM:
1094 if (pa->pa_function == 0)
1095 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 else
1097 bit = (1 << pa->pa_function);
1098 break;
1099 case BGE_APE_LOCK_PHY0:
1100 case BGE_APE_LOCK_PHY1:
1101 case BGE_APE_LOCK_PHY2:
1102 case BGE_APE_LOCK_PHY3:
1103 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1104 break;
1105 default:
1106 return;
1107 }
1108
1109 /* Write and flush for consecutive bge_ape_lock() */
1110 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1111 }
1112
1113 /*
1114 * Send an event to the APE firmware.
1115 */
1116 void
1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1118 {
1119 uint32_t apedata;
1120 int i;
1121
1122 /* NCSI does not support APE events. */
1123 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1124 return;
1125
1126 /* Wait up to 1ms for APE to service previous event. */
1127 for (i = 10; i > 0; i--) {
1128 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1129 break;
1130 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1131 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1132 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1133 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1134 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1135 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1136 break;
1137 }
1138 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1139 DELAY(100);
1140 }
1141 if (i == 0) {
1142 printf("%s: APE event 0x%08x send timed out\n",
1143 device_xname(sc->bge_dev), event);
1144 }
1145 }
1146
1147 void
1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1149 {
1150 uint32_t apedata, event;
1151
1152 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1153 return;
1154
1155 switch (kind) {
1156 case BGE_RESET_START:
1157 /* If this is the first load, clear the load counter. */
1158 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1159 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1160 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1161 else {
1162 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1163 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1164 }
1165 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1166 BGE_APE_HOST_SEG_SIG_MAGIC);
1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1168 BGE_APE_HOST_SEG_LEN_MAGIC);
1169
1170 /* Add some version info if bge(4) supports it. */
1171 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1172 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1173 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1174 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1175 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1176 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1177 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1178 BGE_APE_HOST_DRVR_STATE_START);
1179 event = BGE_APE_EVENT_STATUS_STATE_START;
1180 break;
1181 case BGE_RESET_SHUTDOWN:
1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1184 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1185 break;
1186 case BGE_RESET_SUSPEND:
1187 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1188 break;
1189 default:
1190 return;
1191 }
1192
1193 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1194 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1195 }
1196
1197 static uint8_t
1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1199 {
1200 uint32_t access, byte = 0;
1201 int i;
1202
1203 /* Lock. */
1204 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1205 for (i = 0; i < 8000; i++) {
1206 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1207 break;
1208 DELAY(20);
1209 }
1210 if (i == 8000)
1211 return 1;
1212
1213 /* Enable access. */
1214 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1215 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1216
1217 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1218 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1219 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1220 DELAY(10);
1221 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1222 DELAY(10);
1223 break;
1224 }
1225 }
1226
1227 if (i == BGE_TIMEOUT * 10) {
1228 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1229 return 1;
1230 }
1231
1232 /* Get result. */
1233 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1234
1235 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1236
1237 /* Disable access. */
1238 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1239
1240 /* Unlock. */
1241 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * Read a sequence of bytes from NVRAM.
1248 */
1249 static int
1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1251 {
1252 int error = 0, i;
1253 uint8_t byte = 0;
1254
1255 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1256 return 1;
1257
1258 for (i = 0; i < cnt; i++) {
1259 error = bge_nvram_getbyte(sc, off + i, &byte);
1260 if (error)
1261 break;
1262 *(dest + i) = byte;
1263 }
1264
1265 return (error ? 1 : 0);
1266 }
1267
1268 /*
1269 * Read a byte of data stored in the EEPROM at address 'addr.' The
1270 * BCM570x supports both the traditional bitbang interface and an
1271 * auto access interface for reading the EEPROM. We use the auto
1272 * access method.
1273 */
1274 static uint8_t
1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1276 {
1277 int i;
1278 uint32_t byte = 0;
1279
1280 /*
1281 * Enable use of auto EEPROM access so we can avoid
1282 * having to use the bitbang method.
1283 */
1284 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1285
1286 /* Reset the EEPROM, load the clock period. */
1287 CSR_WRITE_4(sc, BGE_EE_ADDR,
1288 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1289 DELAY(20);
1290
1291 /* Issue the read EEPROM command. */
1292 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1293
1294 /* Wait for completion */
1295 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1296 DELAY(10);
1297 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1298 break;
1299 }
1300
1301 if (i == BGE_TIMEOUT * 10) {
1302 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1303 return 1;
1304 }
1305
1306 /* Get result. */
1307 byte = CSR_READ_4(sc, BGE_EE_DATA);
1308
1309 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Read a sequence of bytes from the EEPROM.
1316 */
1317 static int
1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1319 {
1320 int error = 0, i;
1321 uint8_t byte = 0;
1322 char *dest = destv;
1323
1324 for (i = 0; i < cnt; i++) {
1325 error = bge_eeprom_getbyte(sc, off + i, &byte);
1326 if (error)
1327 break;
1328 *(dest + i) = byte;
1329 }
1330
1331 return (error ? 1 : 0);
1332 }
1333
1334 static int
1335 bge_miibus_readreg(device_t dev, int phy, int reg)
1336 {
1337 struct bge_softc *sc = device_private(dev);
1338 uint32_t val;
1339 uint32_t autopoll;
1340 int i;
1341
1342 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1343 return 0;
1344
1345 /* Reading with autopolling on may trigger PCI errors */
1346 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1347 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1348 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1349 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1350 DELAY(80);
1351 }
1352
1353 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1354 BGE_MIPHY(phy) | BGE_MIREG(reg));
1355
1356 for (i = 0; i < BGE_TIMEOUT; i++) {
1357 delay(10);
1358 val = CSR_READ_4(sc, BGE_MI_COMM);
1359 if (!(val & BGE_MICOMM_BUSY)) {
1360 DELAY(5);
1361 val = CSR_READ_4(sc, BGE_MI_COMM);
1362 break;
1363 }
1364 }
1365
1366 if (i == BGE_TIMEOUT) {
1367 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1368 val = 0;
1369 goto done;
1370 }
1371
1372 done:
1373 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1374 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1375 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1376 DELAY(80);
1377 }
1378
1379 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1380
1381 if (val & BGE_MICOMM_READFAIL)
1382 return 0;
1383
1384 return (val & 0xFFFF);
1385 }
1386
1387 static void
1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1389 {
1390 struct bge_softc *sc = device_private(dev);
1391 uint32_t autopoll;
1392 int i;
1393
1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1396 return;
1397
1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 return;
1400
1401 /* Reading with autopolling on may trigger PCI errors */
1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 DELAY(80);
1407 }
1408
1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411
1412 for (i = 0; i < BGE_TIMEOUT; i++) {
1413 delay(10);
1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 delay(5);
1416 CSR_READ_4(sc, BGE_MI_COMM);
1417 break;
1418 }
1419 }
1420
1421 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 delay(80);
1425 }
1426
1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428
1429 if (i == BGE_TIMEOUT)
1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 }
1432
1433 static void
1434 bge_miibus_statchg(struct ifnet *ifp)
1435 {
1436 struct bge_softc *sc = ifp->if_softc;
1437 struct mii_data *mii = &sc->bge_mii;
1438 uint32_t mac_mode, rx_mode, tx_mode;
1439
1440 /*
1441 * Get flow control negotiation result.
1442 */
1443 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1444 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1445 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1446
1447 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1448 mii->mii_media_status & IFM_ACTIVE &&
1449 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1450 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1451 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 (!(mii->mii_media_status & IFM_ACTIVE) ||
1453 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1454 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1455
1456 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1457 return;
1458
1459 /* Set the port mode (MII/GMII) to match the link speed. */
1460 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1461 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1462 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1463 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1464 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1465 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1466 mac_mode |= BGE_PORTMODE_GMII;
1467 else
1468 mac_mode |= BGE_PORTMODE_MII;
1469
1470 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1471 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1472 if ((mii->mii_media_active & IFM_FDX) != 0) {
1473 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1474 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1475 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1476 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1477 } else
1478 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1479
1480 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1481 DELAY(40);
1482 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1483 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1484 }
1485
1486 /*
1487 * Update rx threshold levels to values in a particular slot
1488 * of the interrupt-mitigation table bge_rx_threshes.
1489 */
1490 static void
1491 bge_set_thresh(struct ifnet *ifp, int lvl)
1492 {
1493 struct bge_softc *sc = ifp->if_softc;
1494 int s;
1495
1496 /* For now, just save the new Rx-intr thresholds and record
1497 * that a threshold update is pending. Updating the hardware
1498 * registers here (even at splhigh()) is observed to
1499 * occasionaly cause glitches where Rx-interrupts are not
1500 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1501 */
1502 s = splnet();
1503 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1504 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1505 sc->bge_pending_rxintr_change = 1;
1506 splx(s);
1507 }
1508
1509
1510 /*
1511 * Update Rx thresholds of all bge devices
1512 */
1513 static void
1514 bge_update_all_threshes(int lvl)
1515 {
1516 struct ifnet *ifp;
1517 const char * const namebuf = "bge";
1518 int namelen;
1519 int s;
1520
1521 if (lvl < 0)
1522 lvl = 0;
1523 else if (lvl >= NBGE_RX_THRESH)
1524 lvl = NBGE_RX_THRESH - 1;
1525
1526 namelen = strlen(namebuf);
1527 /*
1528 * Now search all the interfaces for this name/number
1529 */
1530 s = pserialize_read_enter();
1531 IFNET_READER_FOREACH(ifp) {
1532 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1533 continue;
1534 /* We got a match: update if doing auto-threshold-tuning */
1535 if (bge_auto_thresh)
1536 bge_set_thresh(ifp, lvl);
1537 }
1538 pserialize_read_exit(s);
1539 }
1540
1541 /*
1542 * Handle events that have triggered interrupts.
1543 */
1544 static void
1545 bge_handle_events(struct bge_softc *sc)
1546 {
1547
1548 return;
1549 }
1550
1551 /*
1552 * Memory management for jumbo frames.
1553 */
1554
1555 static int
1556 bge_alloc_jumbo_mem(struct bge_softc *sc)
1557 {
1558 char *ptr, *kva;
1559 bus_dma_segment_t seg;
1560 int i, rseg, state, error;
1561 struct bge_jpool_entry *entry;
1562
1563 state = error = 0;
1564
1565 /* Grab a big chunk o' storage. */
1566 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1567 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1568 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1569 return ENOBUFS;
1570 }
1571
1572 state = 1;
1573 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1574 BUS_DMA_NOWAIT)) {
1575 aprint_error_dev(sc->bge_dev,
1576 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1577 error = ENOBUFS;
1578 goto out;
1579 }
1580
1581 state = 2;
1582 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1583 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1584 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1585 error = ENOBUFS;
1586 goto out;
1587 }
1588
1589 state = 3;
1590 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1591 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1592 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1593 error = ENOBUFS;
1594 goto out;
1595 }
1596
1597 state = 4;
1598 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1599 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1600
1601 SLIST_INIT(&sc->bge_jfree_listhead);
1602 SLIST_INIT(&sc->bge_jinuse_listhead);
1603
1604 /*
1605 * Now divide it up into 9K pieces and save the addresses
1606 * in an array.
1607 */
1608 ptr = sc->bge_cdata.bge_jumbo_buf;
1609 for (i = 0; i < BGE_JSLOTS; i++) {
1610 sc->bge_cdata.bge_jslots[i] = ptr;
1611 ptr += BGE_JLEN;
1612 entry = malloc(sizeof(struct bge_jpool_entry),
1613 M_DEVBUF, M_NOWAIT);
1614 if (entry == NULL) {
1615 aprint_error_dev(sc->bge_dev,
1616 "no memory for jumbo buffer queue!\n");
1617 error = ENOBUFS;
1618 goto out;
1619 }
1620 entry->slot = i;
1621 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1622 entry, jpool_entries);
1623 }
1624 out:
1625 if (error != 0) {
1626 switch (state) {
1627 case 4:
1628 bus_dmamap_unload(sc->bge_dmatag,
1629 sc->bge_cdata.bge_rx_jumbo_map);
1630 case 3:
1631 bus_dmamap_destroy(sc->bge_dmatag,
1632 sc->bge_cdata.bge_rx_jumbo_map);
1633 case 2:
1634 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1635 case 1:
1636 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1637 break;
1638 default:
1639 break;
1640 }
1641 }
1642
1643 return error;
1644 }
1645
1646 /*
1647 * Allocate a jumbo buffer.
1648 */
1649 static void *
1650 bge_jalloc(struct bge_softc *sc)
1651 {
1652 struct bge_jpool_entry *entry;
1653
1654 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1655
1656 if (entry == NULL) {
1657 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1658 return NULL;
1659 }
1660
1661 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1662 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1663 return (sc->bge_cdata.bge_jslots[entry->slot]);
1664 }
1665
1666 /*
1667 * Release a jumbo buffer.
1668 */
1669 static void
1670 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1671 {
1672 struct bge_jpool_entry *entry;
1673 struct bge_softc *sc;
1674 int i, s;
1675
1676 /* Extract the softc struct pointer. */
1677 sc = (struct bge_softc *)arg;
1678
1679 if (sc == NULL)
1680 panic("bge_jfree: can't find softc pointer!");
1681
1682 /* calculate the slot this buffer belongs to */
1683
1684 i = ((char *)buf
1685 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1686
1687 if ((i < 0) || (i >= BGE_JSLOTS))
1688 panic("bge_jfree: asked to free buffer that we don't manage!");
1689
1690 s = splvm();
1691 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1692 if (entry == NULL)
1693 panic("bge_jfree: buffer not in use!");
1694 entry->slot = i;
1695 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1696 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1697
1698 if (__predict_true(m != NULL))
1699 pool_cache_put(mb_cache, m);
1700 splx(s);
1701 }
1702
1703
1704 /*
1705 * Initialize a standard receive ring descriptor.
1706 */
1707 static int
1708 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1709 bus_dmamap_t dmamap)
1710 {
1711 struct mbuf *m_new = NULL;
1712 struct bge_rx_bd *r;
1713 int error;
1714
1715 if (dmamap == NULL) {
1716 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1717 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1718 if (error != 0)
1719 return error;
1720 }
1721
1722 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1723
1724 if (m == NULL) {
1725 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1726 if (m_new == NULL)
1727 return ENOBUFS;
1728
1729 MCLGET(m_new, M_DONTWAIT);
1730 if (!(m_new->m_flags & M_EXT)) {
1731 m_freem(m_new);
1732 return ENOBUFS;
1733 }
1734 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1735
1736 } else {
1737 m_new = m;
1738 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1739 m_new->m_data = m_new->m_ext.ext_buf;
1740 }
1741 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1742 m_adj(m_new, ETHER_ALIGN);
1743 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1744 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1745 m_freem(m_new);
1746 return ENOBUFS;
1747 }
1748 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1749 BUS_DMASYNC_PREREAD);
1750
1751 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1752 r = &sc->bge_rdata->bge_rx_std_ring[i];
1753 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1754 r->bge_flags = BGE_RXBDFLAG_END;
1755 r->bge_len = m_new->m_len;
1756 r->bge_idx = i;
1757
1758 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1759 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1760 i * sizeof (struct bge_rx_bd),
1761 sizeof (struct bge_rx_bd),
1762 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1763
1764 return 0;
1765 }
1766
1767 /*
1768 * Initialize a jumbo receive ring descriptor. This allocates
1769 * a jumbo buffer from the pool managed internally by the driver.
1770 */
1771 static int
1772 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1773 {
1774 struct mbuf *m_new = NULL;
1775 struct bge_rx_bd *r;
1776 void *buf = NULL;
1777
1778 if (m == NULL) {
1779
1780 /* Allocate the mbuf. */
1781 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1782 if (m_new == NULL)
1783 return ENOBUFS;
1784
1785 /* Allocate the jumbo buffer */
1786 buf = bge_jalloc(sc);
1787 if (buf == NULL) {
1788 m_freem(m_new);
1789 aprint_error_dev(sc->bge_dev,
1790 "jumbo allocation failed -- packet dropped!\n");
1791 return ENOBUFS;
1792 }
1793
1794 /* Attach the buffer to the mbuf. */
1795 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1796 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1797 bge_jfree, sc);
1798 m_new->m_flags |= M_EXT_RW;
1799 } else {
1800 m_new = m;
1801 buf = m_new->m_data = m_new->m_ext.ext_buf;
1802 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1803 }
1804 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1805 m_adj(m_new, ETHER_ALIGN);
1806 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1807 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1808 BUS_DMASYNC_PREREAD);
1809 /* Set up the descriptor. */
1810 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1811 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1812 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1813 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1814 r->bge_len = m_new->m_len;
1815 r->bge_idx = i;
1816
1817 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1818 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1819 i * sizeof (struct bge_rx_bd),
1820 sizeof (struct bge_rx_bd),
1821 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1822
1823 return 0;
1824 }
1825
1826 /*
1827 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1828 * that's 1MB or memory, which is a lot. For now, we fill only the first
1829 * 256 ring entries and hope that our CPU is fast enough to keep up with
1830 * the NIC.
1831 */
1832 static int
1833 bge_init_rx_ring_std(struct bge_softc *sc)
1834 {
1835 int i;
1836
1837 if (sc->bge_flags & BGEF_RXRING_VALID)
1838 return 0;
1839
1840 for (i = 0; i < BGE_SSLOTS; i++) {
1841 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1842 return ENOBUFS;
1843 }
1844
1845 sc->bge_std = i - 1;
1846 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1847
1848 sc->bge_flags |= BGEF_RXRING_VALID;
1849
1850 return 0;
1851 }
1852
1853 static void
1854 bge_free_rx_ring_std(struct bge_softc *sc)
1855 {
1856 int i;
1857
1858 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1859 return;
1860
1861 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1862 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1863 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1864 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1865 bus_dmamap_destroy(sc->bge_dmatag,
1866 sc->bge_cdata.bge_rx_std_map[i]);
1867 }
1868 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1869 sizeof(struct bge_rx_bd));
1870 }
1871
1872 sc->bge_flags &= ~BGEF_RXRING_VALID;
1873 }
1874
1875 static int
1876 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1877 {
1878 int i;
1879 volatile struct bge_rcb *rcb;
1880
1881 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1882 return 0;
1883
1884 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1885 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1886 return ENOBUFS;
1887 }
1888
1889 sc->bge_jumbo = i - 1;
1890 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1891
1892 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1893 rcb->bge_maxlen_flags = 0;
1894 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1895
1896 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1897
1898 return 0;
1899 }
1900
1901 static void
1902 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1903 {
1904 int i;
1905
1906 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1907 return;
1908
1909 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1910 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1911 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1912 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1913 }
1914 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1915 sizeof(struct bge_rx_bd));
1916 }
1917
1918 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1919 }
1920
1921 static void
1922 bge_free_tx_ring(struct bge_softc *sc)
1923 {
1924 int i;
1925 struct txdmamap_pool_entry *dma;
1926
1927 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1928 return;
1929
1930 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1931 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1932 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1933 sc->bge_cdata.bge_tx_chain[i] = NULL;
1934 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1935 link);
1936 sc->txdma[i] = 0;
1937 }
1938 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1939 sizeof(struct bge_tx_bd));
1940 }
1941
1942 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1943 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1944 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1945 free(dma, M_DEVBUF);
1946 }
1947
1948 sc->bge_flags &= ~BGEF_TXRING_VALID;
1949 }
1950
1951 static int
1952 bge_init_tx_ring(struct bge_softc *sc)
1953 {
1954 struct ifnet *ifp = &sc->ethercom.ec_if;
1955 int i;
1956 bus_dmamap_t dmamap;
1957 bus_size_t maxsegsz;
1958 struct txdmamap_pool_entry *dma;
1959
1960 if (sc->bge_flags & BGEF_TXRING_VALID)
1961 return 0;
1962
1963 sc->bge_txcnt = 0;
1964 sc->bge_tx_saved_considx = 0;
1965
1966 /* Initialize transmit producer index for host-memory send ring. */
1967 sc->bge_tx_prodidx = 0;
1968 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1969 /* 5700 b2 errata */
1970 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1971 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1972
1973 /* NIC-memory send ring not used; initialize to zero. */
1974 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1975 /* 5700 b2 errata */
1976 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1977 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1978
1979 /* Limit DMA segment size for some chips */
1980 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1981 (ifp->if_mtu <= ETHERMTU))
1982 maxsegsz = 2048;
1983 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1984 maxsegsz = 4096;
1985 else
1986 maxsegsz = ETHER_MAX_LEN_JUMBO;
1987 SLIST_INIT(&sc->txdma_list);
1988 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1989 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1990 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1991 &dmamap))
1992 return ENOBUFS;
1993 if (dmamap == NULL)
1994 panic("dmamap NULL in bge_init_tx_ring");
1995 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1996 if (dma == NULL) {
1997 aprint_error_dev(sc->bge_dev,
1998 "can't alloc txdmamap_pool_entry\n");
1999 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2000 return ENOMEM;
2001 }
2002 dma->dmamap = dmamap;
2003 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2004 }
2005
2006 sc->bge_flags |= BGEF_TXRING_VALID;
2007
2008 return 0;
2009 }
2010
2011 static void
2012 bge_setmulti(struct bge_softc *sc)
2013 {
2014 struct ethercom *ac = &sc->ethercom;
2015 struct ifnet *ifp = &ac->ec_if;
2016 struct ether_multi *enm;
2017 struct ether_multistep step;
2018 uint32_t hashes[4] = { 0, 0, 0, 0 };
2019 uint32_t h;
2020 int i;
2021
2022 if (ifp->if_flags & IFF_PROMISC)
2023 goto allmulti;
2024
2025 /* Now program new ones. */
2026 ETHER_FIRST_MULTI(step, ac, enm);
2027 while (enm != NULL) {
2028 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2029 /*
2030 * We must listen to a range of multicast addresses.
2031 * For now, just accept all multicasts, rather than
2032 * trying to set only those filter bits needed to match
2033 * the range. (At this time, the only use of address
2034 * ranges is for IP multicast routing, for which the
2035 * range is big enough to require all bits set.)
2036 */
2037 goto allmulti;
2038 }
2039
2040 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2041
2042 /* Just want the 7 least-significant bits. */
2043 h &= 0x7f;
2044
2045 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2046 ETHER_NEXT_MULTI(step, enm);
2047 }
2048
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 ifp->if_flags |= IFF_ALLMULTI;
2054 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2055
2056 setit:
2057 for (i = 0; i < 4; i++)
2058 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2059 }
2060
2061 static void
2062 bge_sig_pre_reset(struct bge_softc *sc, int type)
2063 {
2064
2065 /*
2066 * Some chips don't like this so only do this if ASF is enabled
2067 */
2068 if (sc->bge_asf_mode)
2069 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2070
2071 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2072 switch (type) {
2073 case BGE_RESET_START:
2074 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2075 BGE_FW_DRV_STATE_START);
2076 break;
2077 case BGE_RESET_SHUTDOWN:
2078 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2079 BGE_FW_DRV_STATE_UNLOAD);
2080 break;
2081 case BGE_RESET_SUSPEND:
2082 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2083 BGE_FW_DRV_STATE_SUSPEND);
2084 break;
2085 }
2086 }
2087
2088 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2089 bge_ape_driver_state_change(sc, type);
2090 }
2091
2092 static void
2093 bge_sig_post_reset(struct bge_softc *sc, int type)
2094 {
2095
2096 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2097 switch (type) {
2098 case BGE_RESET_START:
2099 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2100 BGE_FW_DRV_STATE_START_DONE);
2101 /* START DONE */
2102 break;
2103 case BGE_RESET_SHUTDOWN:
2104 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2105 BGE_FW_DRV_STATE_UNLOAD_DONE);
2106 break;
2107 }
2108 }
2109
2110 if (type == BGE_RESET_SHUTDOWN)
2111 bge_ape_driver_state_change(sc, type);
2112 }
2113
2114 static void
2115 bge_sig_legacy(struct bge_softc *sc, int type)
2116 {
2117
2118 if (sc->bge_asf_mode) {
2119 switch (type) {
2120 case BGE_RESET_START:
2121 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2122 BGE_FW_DRV_STATE_START);
2123 break;
2124 case BGE_RESET_SHUTDOWN:
2125 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2126 BGE_FW_DRV_STATE_UNLOAD);
2127 break;
2128 }
2129 }
2130 }
2131
2132 static void
2133 bge_wait_for_event_ack(struct bge_softc *sc)
2134 {
2135 int i;
2136
2137 /* wait up to 2500usec */
2138 for (i = 0; i < 250; i++) {
2139 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2140 BGE_RX_CPU_DRV_EVENT))
2141 break;
2142 DELAY(10);
2143 }
2144 }
2145
2146 static void
2147 bge_stop_fw(struct bge_softc *sc)
2148 {
2149
2150 if (sc->bge_asf_mode) {
2151 bge_wait_for_event_ack(sc);
2152
2153 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2154 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2155 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2156
2157 bge_wait_for_event_ack(sc);
2158 }
2159 }
2160
2161 static int
2162 bge_poll_fw(struct bge_softc *sc)
2163 {
2164 uint32_t val;
2165 int i;
2166
2167 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2168 for (i = 0; i < BGE_TIMEOUT; i++) {
2169 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2170 if (val & BGE_VCPU_STATUS_INIT_DONE)
2171 break;
2172 DELAY(100);
2173 }
2174 if (i >= BGE_TIMEOUT) {
2175 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2176 return -1;
2177 }
2178 } else {
2179 /*
2180 * Poll the value location we just wrote until
2181 * we see the 1's complement of the magic number.
2182 * This indicates that the firmware initialization
2183 * is complete.
2184 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2185 */
2186 for (i = 0; i < BGE_TIMEOUT; i++) {
2187 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2188 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2189 break;
2190 DELAY(10);
2191 }
2192
2193 if ((i >= BGE_TIMEOUT)
2194 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2195 aprint_error_dev(sc->bge_dev,
2196 "firmware handshake timed out, val = %x\n", val);
2197 return -1;
2198 }
2199 }
2200
2201 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2202 /* tg3 says we have to wait extra time */
2203 delay(10 * 1000);
2204 }
2205
2206 return 0;
2207 }
2208
2209 int
2210 bge_phy_addr(struct bge_softc *sc)
2211 {
2212 struct pci_attach_args *pa = &(sc->bge_pa);
2213 int phy_addr = 1;
2214
2215 /*
2216 * PHY address mapping for various devices.
2217 *
2218 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2219 * ---------+-------+-------+-------+-------+
2220 * BCM57XX | 1 | X | X | X |
2221 * BCM5704 | 1 | X | 1 | X |
2222 * BCM5717 | 1 | 8 | 2 | 9 |
2223 * BCM5719 | 1 | 8 | 2 | 9 |
2224 * BCM5720 | 1 | 8 | 2 | 9 |
2225 *
2226 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2227 * ---------+-------+-------+-------+-------+
2228 * BCM57XX | X | X | X | X |
2229 * BCM5704 | X | X | X | X |
2230 * BCM5717 | X | X | X | X |
2231 * BCM5719 | 3 | 10 | 4 | 11 |
2232 * BCM5720 | X | X | X | X |
2233 *
2234 * Other addresses may respond but they are not
2235 * IEEE compliant PHYs and should be ignored.
2236 */
2237 switch (BGE_ASICREV(sc->bge_chipid)) {
2238 case BGE_ASICREV_BCM5717:
2239 case BGE_ASICREV_BCM5719:
2240 case BGE_ASICREV_BCM5720:
2241 phy_addr = pa->pa_function;
2242 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2243 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2244 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2245 } else {
2246 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2247 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2248 }
2249 }
2250
2251 return phy_addr;
2252 }
2253
2254 /*
2255 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2256 * self-test results.
2257 */
2258 static int
2259 bge_chipinit(struct bge_softc *sc)
2260 {
2261 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2262 int i;
2263
2264 /* Set endianness before we access any non-PCI registers. */
2265 misc_ctl = BGE_INIT;
2266 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2267 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2268 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2269 misc_ctl);
2270
2271 /*
2272 * Clear the MAC statistics block in the NIC's
2273 * internal memory.
2274 */
2275 for (i = BGE_STATS_BLOCK;
2276 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2277 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2278
2279 for (i = BGE_STATUS_BLOCK;
2280 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2281 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2282
2283 /* 5717 workaround from tg3 */
2284 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2285 /* Save */
2286 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2287
2288 /* Temporary modify MODE_CTL to control TLP */
2289 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2290 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2291
2292 /* Control TLP */
2293 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2294 BGE_TLP_PHYCTL1);
2295 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2296 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2297
2298 /* Restore */
2299 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2300 }
2301
2302 if (BGE_IS_57765_FAMILY(sc)) {
2303 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2304 /* Save */
2305 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2306
2307 /* Temporary modify MODE_CTL to control TLP */
2308 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2309 CSR_WRITE_4(sc, BGE_MODE_CTL,
2310 reg | BGE_MODECTL_PCIE_TLPADDR1);
2311
2312 /* Control TLP */
2313 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2314 BGE_TLP_PHYCTL5);
2315 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2316 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2317
2318 /* Restore */
2319 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2320 }
2321 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2322 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2323 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2324 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2325
2326 /* Save */
2327 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2328
2329 /* Temporary modify MODE_CTL to control TLP */
2330 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2331 CSR_WRITE_4(sc, BGE_MODE_CTL,
2332 reg | BGE_MODECTL_PCIE_TLPADDR0);
2333
2334 /* Control TLP */
2335 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2336 BGE_TLP_FTSMAX);
2337 reg &= ~BGE_TLP_FTSMAX_MSK;
2338 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2339 reg | BGE_TLP_FTSMAX_VAL);
2340
2341 /* Restore */
2342 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2343 }
2344
2345 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2346 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2347 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2348 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2349 }
2350
2351 /* Set up the PCI DMA control register. */
2352 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2353 if (sc->bge_flags & BGEF_PCIE) {
2354 /* Read watermark not used, 128 bytes for write. */
2355 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2356 device_xname(sc->bge_dev)));
2357 if (sc->bge_mps >= 256)
2358 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2359 else
2360 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2361 } else if (sc->bge_flags & BGEF_PCIX) {
2362 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2363 device_xname(sc->bge_dev)));
2364 /* PCI-X bus */
2365 if (BGE_IS_5714_FAMILY(sc)) {
2366 /* 256 bytes for read and write. */
2367 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2368 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2369
2370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2371 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2372 else
2373 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2374 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2375 /*
2376 * In the BCM5703, the DMA read watermark should
2377 * be set to less than or equal to the maximum
2378 * memory read byte count of the PCI-X command
2379 * register.
2380 */
2381 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2382 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2383 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2384 /* 1536 bytes for read, 384 bytes for write. */
2385 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2386 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2387 } else {
2388 /* 384 bytes for read and write. */
2389 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2390 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2391 (0x0F);
2392 }
2393
2394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2395 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2396 uint32_t tmp;
2397
2398 /* Set ONEDMA_ATONCE for hardware workaround. */
2399 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2400 if (tmp == 6 || tmp == 7)
2401 dma_rw_ctl |=
2402 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2403
2404 /* Set PCI-X DMA write workaround. */
2405 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2406 }
2407 } else {
2408 /* Conventional PCI bus: 256 bytes for read and write. */
2409 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2410 device_xname(sc->bge_dev)));
2411 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2412 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2413
2414 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2415 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2416 dma_rw_ctl |= 0x0F;
2417 }
2418
2419 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2420 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2421 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2422 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2423
2424 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2425 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2426 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2427
2428 if (BGE_IS_57765_PLUS(sc)) {
2429 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2430 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2431 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2432
2433 /*
2434 * Enable HW workaround for controllers that misinterpret
2435 * a status tag update and leave interrupts permanently
2436 * disabled.
2437 */
2438 if (!BGE_IS_57765_FAMILY(sc) &&
2439 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2440 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2441 }
2442
2443 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2444 dma_rw_ctl);
2445
2446 /*
2447 * Set up general mode register.
2448 */
2449 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2450 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2451 /* Retain Host-2-BMC settings written by APE firmware. */
2452 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2453 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2454 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2455 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2456 }
2457 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2458 BGE_MODECTL_TX_NO_PHDR_CSUM;
2459
2460 /*
2461 * BCM5701 B5 have a bug causing data corruption when using
2462 * 64-bit DMA reads, which can be terminated early and then
2463 * completed later as 32-bit accesses, in combination with
2464 * certain bridges.
2465 */
2466 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2467 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2468 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2469
2470 /*
2471 * Tell the firmware the driver is running
2472 */
2473 if (sc->bge_asf_mode & ASF_STACKUP)
2474 mode_ctl |= BGE_MODECTL_STACKUP;
2475
2476 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2477
2478 /*
2479 * Disable memory write invalidate. Apparently it is not supported
2480 * properly by these devices.
2481 */
2482 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2483 PCI_COMMAND_INVALIDATE_ENABLE);
2484
2485 #ifdef __brokenalpha__
2486 /*
2487 * Must insure that we do not cross an 8K (bytes) boundary
2488 * for DMA reads. Our highest limit is 1K bytes. This is a
2489 * restriction on some ALPHA platforms with early revision
2490 * 21174 PCI chipsets, such as the AlphaPC 164lx
2491 */
2492 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2493 #endif
2494
2495 /* Set the timer prescaler (always 66MHz) */
2496 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2497
2498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2499 DELAY(40); /* XXX */
2500
2501 /* Put PHY into ready state */
2502 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2503 DELAY(40);
2504 }
2505
2506 return 0;
2507 }
2508
2509 static int
2510 bge_blockinit(struct bge_softc *sc)
2511 {
2512 volatile struct bge_rcb *rcb;
2513 bus_size_t rcb_addr;
2514 struct ifnet *ifp = &sc->ethercom.ec_if;
2515 bge_hostaddr taddr;
2516 uint32_t dmactl, mimode, val;
2517 int i, limit;
2518
2519 /*
2520 * Initialize the memory window pointer register so that
2521 * we can access the first 32K of internal NIC RAM. This will
2522 * allow us to set up the TX send ring RCBs and the RX return
2523 * ring RCBs, plus other things which live in NIC memory.
2524 */
2525 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2526
2527 if (!BGE_IS_5705_PLUS(sc)) {
2528 /* 57XX step 33 */
2529 /* Configure mbuf memory pool */
2530 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2531 BGE_BUFFPOOL_1);
2532
2533 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2534 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2535 else
2536 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2537
2538 /* 57XX step 34 */
2539 /* Configure DMA resource pool */
2540 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2541 BGE_DMA_DESCRIPTORS);
2542 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2543 }
2544
2545 /* 5718 step 11, 57XX step 35 */
2546 /*
2547 * Configure mbuf pool watermarks. New broadcom docs strongly
2548 * recommend these.
2549 */
2550 if (BGE_IS_5717_PLUS(sc)) {
2551 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2554 } else if (BGE_IS_5705_PLUS(sc)) {
2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2556
2557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2560 } else {
2561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2563 }
2564 } else {
2565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2567 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2568 }
2569
2570 /* 57XX step 36 */
2571 /* Configure DMA resource watermarks */
2572 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2573 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2574
2575 /* 5718 step 13, 57XX step 38 */
2576 /* Enable buffer manager */
2577 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2578 /*
2579 * Change the arbitration algorithm of TXMBUF read request to
2580 * round-robin instead of priority based for BCM5719. When
2581 * TXFIFO is almost empty, RDMA will hold its request until
2582 * TXFIFO is not almost empty.
2583 */
2584 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2585 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2586 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2587 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2588 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2589 val |= BGE_BMANMODE_LOMBUF_ATTN;
2590 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2591
2592 /* 57XX step 39 */
2593 /* Poll for buffer manager start indication */
2594 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2595 DELAY(10);
2596 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2597 break;
2598 }
2599
2600 if (i == BGE_TIMEOUT * 2) {
2601 aprint_error_dev(sc->bge_dev,
2602 "buffer manager failed to start\n");
2603 return ENXIO;
2604 }
2605
2606 /* 57XX step 40 */
2607 /* Enable flow-through queues */
2608 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2609 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2610
2611 /* Wait until queue initialization is complete */
2612 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2613 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2614 break;
2615 DELAY(10);
2616 }
2617
2618 if (i == BGE_TIMEOUT * 2) {
2619 aprint_error_dev(sc->bge_dev,
2620 "flow-through queue init failed\n");
2621 return ENXIO;
2622 }
2623
2624 /*
2625 * Summary of rings supported by the controller:
2626 *
2627 * Standard Receive Producer Ring
2628 * - This ring is used to feed receive buffers for "standard"
2629 * sized frames (typically 1536 bytes) to the controller.
2630 *
2631 * Jumbo Receive Producer Ring
2632 * - This ring is used to feed receive buffers for jumbo sized
2633 * frames (i.e. anything bigger than the "standard" frames)
2634 * to the controller.
2635 *
2636 * Mini Receive Producer Ring
2637 * - This ring is used to feed receive buffers for "mini"
2638 * sized frames to the controller.
2639 * - This feature required external memory for the controller
2640 * but was never used in a production system. Should always
2641 * be disabled.
2642 *
2643 * Receive Return Ring
2644 * - After the controller has placed an incoming frame into a
2645 * receive buffer that buffer is moved into a receive return
2646 * ring. The driver is then responsible to passing the
2647 * buffer up to the stack. Many versions of the controller
2648 * support multiple RR rings.
2649 *
2650 * Send Ring
2651 * - This ring is used for outgoing frames. Many versions of
2652 * the controller support multiple send rings.
2653 */
2654
2655 /* 5718 step 15, 57XX step 41 */
2656 /* Initialize the standard RX ring control block */
2657 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2658 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2659 /* 5718 step 16 */
2660 if (BGE_IS_57765_PLUS(sc)) {
2661 /*
2662 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2663 * Bits 15-2 : Maximum RX frame size
2664 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2665 * Bit 0 : Reserved
2666 */
2667 rcb->bge_maxlen_flags =
2668 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2669 } else if (BGE_IS_5705_PLUS(sc)) {
2670 /*
2671 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2672 * Bits 15-2 : Reserved (should be 0)
2673 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2674 * Bit 0 : Reserved
2675 */
2676 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2677 } else {
2678 /*
2679 * Ring size is always XXX entries
2680 * Bits 31-16: Maximum RX frame size
2681 * Bits 15-2 : Reserved (should be 0)
2682 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2683 * Bit 0 : Reserved
2684 */
2685 rcb->bge_maxlen_flags =
2686 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2687 }
2688 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2689 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2690 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2691 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2692 else
2693 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2694 /* Write the standard receive producer ring control block. */
2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2696 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2697 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2698 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2699
2700 /* Reset the standard receive producer ring producer index. */
2701 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2702
2703 /* 57XX step 42 */
2704 /*
2705 * Initialize the jumbo RX ring control block
2706 * We set the 'ring disabled' bit in the flags
2707 * field until we're actually ready to start
2708 * using this ring (i.e. once we set the MTU
2709 * high enough to require it).
2710 */
2711 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2712 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2713 BGE_HOSTADDR(rcb->bge_hostaddr,
2714 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2715 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2716 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2717 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2719 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2720 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2721 else
2722 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2723 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2724 rcb->bge_hostaddr.bge_addr_hi);
2725 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2726 rcb->bge_hostaddr.bge_addr_lo);
2727 /* Program the jumbo receive producer ring RCB parameters. */
2728 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2729 rcb->bge_maxlen_flags);
2730 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2731 /* Reset the jumbo receive producer ring producer index. */
2732 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2733 }
2734
2735 /* 57XX step 43 */
2736 /* Disable the mini receive producer ring RCB. */
2737 if (BGE_IS_5700_FAMILY(sc)) {
2738 /* Set up dummy disabled mini ring RCB */
2739 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2740 rcb->bge_maxlen_flags =
2741 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2742 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2743 rcb->bge_maxlen_flags);
2744 /* Reset the mini receive producer ring producer index. */
2745 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2746
2747 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2748 offsetof(struct bge_ring_data, bge_info),
2749 sizeof (struct bge_gib),
2750 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2751 }
2752
2753 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2754 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2755 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2756 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2757 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2758 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2759 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2760 }
2761 /* 5718 step 14, 57XX step 44 */
2762 /*
2763 * The BD ring replenish thresholds control how often the
2764 * hardware fetches new BD's from the producer rings in host
2765 * memory. Setting the value too low on a busy system can
2766 * starve the hardware and recue the throughpout.
2767 *
2768 * Set the BD ring replenish thresholds. The recommended
2769 * values are 1/8th the number of descriptors allocated to
2770 * each ring, but since we try to avoid filling the entire
2771 * ring we set these to the minimal value of 8. This needs to
2772 * be done on several of the supported chip revisions anyway,
2773 * to work around HW bugs.
2774 */
2775 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2776 if (BGE_IS_JUMBO_CAPABLE(sc))
2777 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2778
2779 /* 5718 step 18 */
2780 if (BGE_IS_5717_PLUS(sc)) {
2781 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2782 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2783 }
2784
2785 /* 57XX step 45 */
2786 /*
2787 * Disable all send rings by setting the 'ring disabled' bit
2788 * in the flags field of all the TX send ring control blocks,
2789 * located in NIC memory.
2790 */
2791 if (BGE_IS_5700_FAMILY(sc)) {
2792 /* 5700 to 5704 had 16 send rings. */
2793 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2794 } else if (BGE_IS_5717_PLUS(sc)) {
2795 limit = BGE_TX_RINGS_5717_MAX;
2796 } else if (BGE_IS_57765_FAMILY(sc)) {
2797 limit = BGE_TX_RINGS_57765_MAX;
2798 } else
2799 limit = 1;
2800 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2801 for (i = 0; i < limit; i++) {
2802 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2803 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2804 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2805 rcb_addr += sizeof(struct bge_rcb);
2806 }
2807
2808 /* 57XX step 46 and 47 */
2809 /* Configure send ring RCB 0 (we use only the first ring) */
2810 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2811 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2812 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2813 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2814 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2815 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2816 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2817 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2818 else
2819 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2820 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2821 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2822 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2823
2824 /* 57XX step 48 */
2825 /*
2826 * Disable all receive return rings by setting the
2827 * 'ring diabled' bit in the flags field of all the receive
2828 * return ring control blocks, located in NIC memory.
2829 */
2830 if (BGE_IS_5717_PLUS(sc)) {
2831 /* Should be 17, use 16 until we get an SRAM map. */
2832 limit = 16;
2833 } else if (BGE_IS_5700_FAMILY(sc))
2834 limit = BGE_RX_RINGS_MAX;
2835 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2836 BGE_IS_57765_FAMILY(sc))
2837 limit = 4;
2838 else
2839 limit = 1;
2840 /* Disable all receive return rings */
2841 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2842 for (i = 0; i < limit; i++) {
2843 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2844 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2845 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2846 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2847 BGE_RCB_FLAG_RING_DISABLED));
2848 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2849 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2850 (i * (sizeof(uint64_t))), 0);
2851 rcb_addr += sizeof(struct bge_rcb);
2852 }
2853
2854 /* 57XX step 49 */
2855 /*
2856 * Set up receive return ring 0. Note that the NIC address
2857 * for RX return rings is 0x0. The return rings live entirely
2858 * within the host, so the nicaddr field in the RCB isn't used.
2859 */
2860 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2861 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2862 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2863 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2864 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2865 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2866 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2867
2868 /* 5718 step 24, 57XX step 53 */
2869 /* Set random backoff seed for TX */
2870 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2871 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2872 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2873 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2874 BGE_TX_BACKOFF_SEED_MASK);
2875
2876 /* 5718 step 26, 57XX step 55 */
2877 /* Set inter-packet gap */
2878 val = 0x2620;
2879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2880 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2881 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2882 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2883
2884 /* 5718 step 27, 57XX step 56 */
2885 /*
2886 * Specify which ring to use for packets that don't match
2887 * any RX rules.
2888 */
2889 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2890
2891 /* 5718 step 28, 57XX step 57 */
2892 /*
2893 * Configure number of RX lists. One interrupt distribution
2894 * list, sixteen active lists, one bad frames class.
2895 */
2896 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2897
2898 /* 5718 step 29, 57XX step 58 */
2899 /* Inialize RX list placement stats mask. */
2900 if (BGE_IS_575X_PLUS(sc)) {
2901 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2902 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2903 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2904 } else
2905 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2906
2907 /* 5718 step 30, 57XX step 59 */
2908 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2909
2910 /* 5718 step 33, 57XX step 62 */
2911 /* Disable host coalescing until we get it set up */
2912 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2913
2914 /* 5718 step 34, 57XX step 63 */
2915 /* Poll to make sure it's shut down. */
2916 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2917 DELAY(10);
2918 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2919 break;
2920 }
2921
2922 if (i == BGE_TIMEOUT * 2) {
2923 aprint_error_dev(sc->bge_dev,
2924 "host coalescing engine failed to idle\n");
2925 return ENXIO;
2926 }
2927
2928 /* 5718 step 35, 36, 37 */
2929 /* Set up host coalescing defaults */
2930 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2931 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2932 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2933 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2934 if (!(BGE_IS_5705_PLUS(sc))) {
2935 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2936 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2937 }
2938 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2939 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2940
2941 /* Set up address of statistics block */
2942 if (BGE_IS_5700_FAMILY(sc)) {
2943 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2944 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2945 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2946 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2947 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2948 }
2949
2950 /* 5718 step 38 */
2951 /* Set up address of status block */
2952 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2953 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2954 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2955 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2956 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2957 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2958
2959 /* Set up status block size. */
2960 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2961 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2962 val = BGE_STATBLKSZ_FULL;
2963 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2964 } else {
2965 val = BGE_STATBLKSZ_32BYTE;
2966 bzero(&sc->bge_rdata->bge_status_block, 32);
2967 }
2968
2969 /* 5718 step 39, 57XX step 73 */
2970 /* Turn on host coalescing state machine */
2971 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2972
2973 /* 5718 step 40, 57XX step 74 */
2974 /* Turn on RX BD completion state machine and enable attentions */
2975 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2976 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2977
2978 /* 5718 step 41, 57XX step 75 */
2979 /* Turn on RX list placement state machine */
2980 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2981
2982 /* 57XX step 76 */
2983 /* Turn on RX list selector state machine. */
2984 if (!(BGE_IS_5705_PLUS(sc)))
2985 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2986
2987 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2988 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2989 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2990 BGE_MACMODE_FRMHDR_DMA_ENB;
2991
2992 if (sc->bge_flags & BGEF_FIBER_TBI)
2993 val |= BGE_PORTMODE_TBI;
2994 else if (sc->bge_flags & BGEF_FIBER_MII)
2995 val |= BGE_PORTMODE_GMII;
2996 else
2997 val |= BGE_PORTMODE_MII;
2998
2999 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3000 /* Allow APE to send/receive frames. */
3001 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3002 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3003
3004 /* Turn on DMA, clear stats */
3005 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3006 /* 5718 step 44 */
3007 DELAY(40);
3008
3009 /* 5718 step 45, 57XX step 79 */
3010 /* Set misc. local control, enable interrupts on attentions */
3011 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3012 if (BGE_IS_5717_PLUS(sc)) {
3013 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3014 /* 5718 step 46 */
3015 DELAY(100);
3016 }
3017
3018 /* 57XX step 81 */
3019 /* Turn on DMA completion state machine */
3020 if (!(BGE_IS_5705_PLUS(sc)))
3021 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3022
3023 /* 5718 step 47, 57XX step 82 */
3024 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3025
3026 /* 5718 step 48 */
3027 /* Enable host coalescing bug fix. */
3028 if (BGE_IS_5755_PLUS(sc))
3029 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3030
3031 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3032 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3033
3034 /* Turn on write DMA state machine */
3035 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3036 /* 5718 step 49 */
3037 DELAY(40);
3038
3039 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3040
3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3042 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3043
3044 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3045 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3046 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3047 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3048 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3049 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3050
3051 if (sc->bge_flags & BGEF_PCIE)
3052 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3053 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3054 if (ifp->if_mtu <= ETHERMTU)
3055 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3056 }
3057 if (sc->bge_flags & BGEF_TSO)
3058 val |= BGE_RDMAMODE_TSO4_ENABLE;
3059
3060 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3061 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3062 BGE_RDMAMODE_H2BNC_VLAN_DET;
3063 /*
3064 * Allow multiple outstanding read requests from
3065 * non-LSO read DMA engine.
3066 */
3067 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3068 }
3069
3070 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3071 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3072 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3073 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3074 BGE_IS_57765_PLUS(sc)) {
3075 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3076 /*
3077 * Adjust tx margin to prevent TX data corruption and
3078 * fix internal FIFO overflow.
3079 */
3080 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3081 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3082 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3083 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3084 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3085 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3086 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3087 }
3088 /*
3089 * Enable fix for read DMA FIFO overruns.
3090 * The fix is to limit the number of RX BDs
3091 * the hardware would fetch at a fime.
3092 */
3093 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3094 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3095 }
3096
3097 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3098 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3099 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3100 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3101 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3102 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3103 /*
3104 * Allow 4KB burst length reads for non-LSO frames.
3105 * Enable 512B burst length reads for buffer descriptors.
3106 */
3107 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3108 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3109 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3110 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3111 }
3112
3113 /* Turn on read DMA state machine */
3114 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3115 /* 5718 step 52 */
3116 delay(40);
3117
3118 /* 5718 step 56, 57XX step 84 */
3119 /* Turn on RX data completion state machine */
3120 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3121
3122 /* Turn on RX data and RX BD initiator state machine */
3123 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3124
3125 /* 57XX step 85 */
3126 /* Turn on Mbuf cluster free state machine */
3127 if (!BGE_IS_5705_PLUS(sc))
3128 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3129
3130 /* 5718 step 57, 57XX step 86 */
3131 /* Turn on send data completion state machine */
3132 val = BGE_SDCMODE_ENABLE;
3133 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3134 val |= BGE_SDCMODE_CDELAY;
3135 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3136
3137 /* 5718 step 58 */
3138 /* Turn on send BD completion state machine */
3139 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3140
3141 /* 57XX step 88 */
3142 /* Turn on RX BD initiator state machine */
3143 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3144
3145 /* 5718 step 60, 57XX step 90 */
3146 /* Turn on send data initiator state machine */
3147 if (sc->bge_flags & BGEF_TSO) {
3148 /* XXX: magic value from Linux driver */
3149 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3150 BGE_SDIMODE_HW_LSO_PRE_DMA);
3151 } else
3152 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3153
3154 /* 5718 step 61, 57XX step 91 */
3155 /* Turn on send BD initiator state machine */
3156 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3157
3158 /* 5718 step 62, 57XX step 92 */
3159 /* Turn on send BD selector state machine */
3160 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3161
3162 /* 5718 step 31, 57XX step 60 */
3163 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3164 /* 5718 step 32, 57XX step 61 */
3165 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3166 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3167
3168 /* ack/clear link change events */
3169 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3170 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3171 BGE_MACSTAT_LINK_CHANGED);
3172 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3173
3174 /*
3175 * Enable attention when the link has changed state for
3176 * devices that use auto polling.
3177 */
3178 if (sc->bge_flags & BGEF_FIBER_TBI) {
3179 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3180 } else {
3181 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3182 mimode = BGE_MIMODE_500KHZ_CONST;
3183 else
3184 mimode = BGE_MIMODE_BASE;
3185 /* 5718 step 68. 5718 step 69 (optionally). */
3186 if (BGE_IS_5700_FAMILY(sc) ||
3187 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3188 mimode |= BGE_MIMODE_AUTOPOLL;
3189 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3190 }
3191 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3192 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3193 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3194 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3195 BGE_EVTENB_MI_INTERRUPT);
3196 }
3197
3198 /*
3199 * Clear any pending link state attention.
3200 * Otherwise some link state change events may be lost until attention
3201 * is cleared by bge_intr() -> bge_link_upd() sequence.
3202 * It's not necessary on newer BCM chips - perhaps enabling link
3203 * state change attentions implies clearing pending attention.
3204 */
3205 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3206 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3207 BGE_MACSTAT_LINK_CHANGED);
3208
3209 /* Enable link state change attentions. */
3210 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3211
3212 return 0;
3213 }
3214
3215 static const struct bge_revision *
3216 bge_lookup_rev(uint32_t chipid)
3217 {
3218 const struct bge_revision *br;
3219
3220 for (br = bge_revisions; br->br_name != NULL; br++) {
3221 if (br->br_chipid == chipid)
3222 return br;
3223 }
3224
3225 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3226 if (br->br_chipid == BGE_ASICREV(chipid))
3227 return br;
3228 }
3229
3230 return NULL;
3231 }
3232
3233 static const struct bge_product *
3234 bge_lookup(const struct pci_attach_args *pa)
3235 {
3236 const struct bge_product *bp;
3237
3238 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3239 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3240 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3241 return bp;
3242 }
3243
3244 return NULL;
3245 }
3246
3247 static uint32_t
3248 bge_chipid(const struct pci_attach_args *pa)
3249 {
3250 uint32_t id;
3251
3252 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3253 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3254
3255 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3256 switch (PCI_PRODUCT(pa->pa_id)) {
3257 case PCI_PRODUCT_BROADCOM_BCM5717:
3258 case PCI_PRODUCT_BROADCOM_BCM5718:
3259 case PCI_PRODUCT_BROADCOM_BCM5719:
3260 case PCI_PRODUCT_BROADCOM_BCM5720:
3261 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3262 BGE_PCI_GEN2_PRODID_ASICREV);
3263 break;
3264 case PCI_PRODUCT_BROADCOM_BCM57761:
3265 case PCI_PRODUCT_BROADCOM_BCM57762:
3266 case PCI_PRODUCT_BROADCOM_BCM57765:
3267 case PCI_PRODUCT_BROADCOM_BCM57766:
3268 case PCI_PRODUCT_BROADCOM_BCM57781:
3269 case PCI_PRODUCT_BROADCOM_BCM57785:
3270 case PCI_PRODUCT_BROADCOM_BCM57791:
3271 case PCI_PRODUCT_BROADCOM_BCM57795:
3272 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3273 BGE_PCI_GEN15_PRODID_ASICREV);
3274 break;
3275 default:
3276 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3277 BGE_PCI_PRODID_ASICREV);
3278 break;
3279 }
3280 }
3281
3282 return id;
3283 }
3284
3285 /*
3286 * Return true if MSI can be used with this device.
3287 */
3288 static int
3289 bge_can_use_msi(struct bge_softc *sc)
3290 {
3291 int can_use_msi = 0;
3292
3293 switch (BGE_ASICREV(sc->bge_chipid)) {
3294 case BGE_ASICREV_BCM5714_A0:
3295 case BGE_ASICREV_BCM5714:
3296 /*
3297 * Apparently, MSI doesn't work when these chips are
3298 * configured in single-port mode.
3299 */
3300 break;
3301 case BGE_ASICREV_BCM5750:
3302 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3303 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3304 can_use_msi = 1;
3305 break;
3306 default:
3307 if (BGE_IS_575X_PLUS(sc))
3308 can_use_msi = 1;
3309 }
3310 return (can_use_msi);
3311 }
3312
3313 /*
3314 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3315 * against our list and return its name if we find a match. Note
3316 * that since the Broadcom controller contains VPD support, we
3317 * can get the device name string from the controller itself instead
3318 * of the compiled-in string. This is a little slow, but it guarantees
3319 * we'll always announce the right product name.
3320 */
3321 static int
3322 bge_probe(device_t parent, cfdata_t match, void *aux)
3323 {
3324 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3325
3326 if (bge_lookup(pa) != NULL)
3327 return 1;
3328
3329 return 0;
3330 }
3331
3332 static void
3333 bge_attach(device_t parent, device_t self, void *aux)
3334 {
3335 struct bge_softc *sc = device_private(self);
3336 struct pci_attach_args *pa = aux;
3337 prop_dictionary_t dict;
3338 const struct bge_product *bp;
3339 const struct bge_revision *br;
3340 pci_chipset_tag_t pc;
3341 int counts[PCI_INTR_TYPE_SIZE];
3342 pci_intr_type_t intr_type, max_type;
3343 const char *intrstr = NULL;
3344 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3345 uint32_t command;
3346 struct ifnet *ifp;
3347 uint32_t misccfg, mimode;
3348 void * kva;
3349 u_char eaddr[ETHER_ADDR_LEN];
3350 pcireg_t memtype, subid, reg;
3351 bus_addr_t memaddr;
3352 uint32_t pm_ctl;
3353 bool no_seeprom;
3354 int capmask;
3355 int mii_flags;
3356 int map_flags;
3357 char intrbuf[PCI_INTRSTR_LEN];
3358
3359 bp = bge_lookup(pa);
3360 KASSERT(bp != NULL);
3361
3362 sc->sc_pc = pa->pa_pc;
3363 sc->sc_pcitag = pa->pa_tag;
3364 sc->bge_dev = self;
3365
3366 sc->bge_pa = *pa;
3367 pc = sc->sc_pc;
3368 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3369
3370 aprint_naive(": Ethernet controller\n");
3371 aprint_normal(": %s\n", bp->bp_name);
3372
3373 /*
3374 * Map control/status registers.
3375 */
3376 DPRINTFN(5, ("Map control/status regs\n"));
3377 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3378 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3379 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3380 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3381
3382 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3383 aprint_error_dev(sc->bge_dev,
3384 "failed to enable memory mapping!\n");
3385 return;
3386 }
3387
3388 DPRINTFN(5, ("pci_mem_find\n"));
3389 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3390 switch (memtype) {
3391 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3392 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3393 #if 0
3394 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3395 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3396 &memaddr, &sc->bge_bsize) == 0)
3397 break;
3398 #else
3399 /*
3400 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3401 * system get NMI on boot (PR#48451). This problem might not be
3402 * the driver's bug but our PCI common part's bug. Until we
3403 * find a real reason, we ignore the prefetchable bit.
3404 */
3405 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3406 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3407 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3408 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3409 map_flags, &sc->bge_bhandle) == 0) {
3410 sc->bge_btag = pa->pa_memt;
3411 break;
3412 }
3413 }
3414 #endif
3415 default:
3416 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3417 return;
3418 }
3419
3420 /* Save various chip information. */
3421 sc->bge_chipid = bge_chipid(pa);
3422 sc->bge_phy_addr = bge_phy_addr(sc);
3423
3424 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3425 &sc->bge_pciecap, NULL) != 0) {
3426 /* PCIe */
3427 sc->bge_flags |= BGEF_PCIE;
3428 /* Extract supported maximum payload size. */
3429 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3430 sc->bge_pciecap + PCIE_DCAP);
3431 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3432 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3433 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3434 sc->bge_expmrq = 2048;
3435 else
3436 sc->bge_expmrq = 4096;
3437 bge_set_max_readrq(sc);
3438 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3439 /* PCIe without PCIe cap */
3440 sc->bge_flags |= BGEF_PCIE;
3441 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3442 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3443 /* PCI-X */
3444 sc->bge_flags |= BGEF_PCIX;
3445 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3446 &sc->bge_pcixcap, NULL) == 0)
3447 aprint_error_dev(sc->bge_dev,
3448 "unable to find PCIX capability\n");
3449 }
3450
3451 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3452 /*
3453 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3454 * can clobber the chip's PCI config-space power control
3455 * registers, leaving the card in D3 powersave state. We do
3456 * not have memory-mapped registers in this state, so force
3457 * device into D0 state before starting initialization.
3458 */
3459 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3460 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3461 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3462 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3463 DELAY(1000); /* 27 usec is allegedly sufficent */
3464 }
3465
3466 /* Save chipset family. */
3467 switch (BGE_ASICREV(sc->bge_chipid)) {
3468 case BGE_ASICREV_BCM5717:
3469 case BGE_ASICREV_BCM5719:
3470 case BGE_ASICREV_BCM5720:
3471 sc->bge_flags |= BGEF_5717_PLUS;
3472 /* FALLTHROUGH */
3473 case BGE_ASICREV_BCM57765:
3474 case BGE_ASICREV_BCM57766:
3475 if (!BGE_IS_5717_PLUS(sc))
3476 sc->bge_flags |= BGEF_57765_FAMILY;
3477 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3478 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3479 /* Jumbo frame on BCM5719 A0 does not work. */
3480 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3481 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3482 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3483 break;
3484 case BGE_ASICREV_BCM5755:
3485 case BGE_ASICREV_BCM5761:
3486 case BGE_ASICREV_BCM5784:
3487 case BGE_ASICREV_BCM5785:
3488 case BGE_ASICREV_BCM5787:
3489 case BGE_ASICREV_BCM57780:
3490 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3491 break;
3492 case BGE_ASICREV_BCM5700:
3493 case BGE_ASICREV_BCM5701:
3494 case BGE_ASICREV_BCM5703:
3495 case BGE_ASICREV_BCM5704:
3496 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3497 break;
3498 case BGE_ASICREV_BCM5714_A0:
3499 case BGE_ASICREV_BCM5780:
3500 case BGE_ASICREV_BCM5714:
3501 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3502 /* FALLTHROUGH */
3503 case BGE_ASICREV_BCM5750:
3504 case BGE_ASICREV_BCM5752:
3505 case BGE_ASICREV_BCM5906:
3506 sc->bge_flags |= BGEF_575X_PLUS;
3507 /* FALLTHROUGH */
3508 case BGE_ASICREV_BCM5705:
3509 sc->bge_flags |= BGEF_5705_PLUS;
3510 break;
3511 }
3512
3513 /* Identify chips with APE processor. */
3514 switch (BGE_ASICREV(sc->bge_chipid)) {
3515 case BGE_ASICREV_BCM5717:
3516 case BGE_ASICREV_BCM5719:
3517 case BGE_ASICREV_BCM5720:
3518 case BGE_ASICREV_BCM5761:
3519 sc->bge_flags |= BGEF_APE;
3520 break;
3521 }
3522
3523 /*
3524 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3525 * not actually a MAC controller bug but an issue with the embedded
3526 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3527 */
3528 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3529 sc->bge_flags |= BGEF_40BIT_BUG;
3530
3531 /* Chips with APE need BAR2 access for APE registers/memory. */
3532 if ((sc->bge_flags & BGEF_APE) != 0) {
3533 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3534 #if 0
3535 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3536 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3537 &sc->bge_apesize)) {
3538 aprint_error_dev(sc->bge_dev,
3539 "couldn't map BAR2 memory\n");
3540 return;
3541 }
3542 #else
3543 /*
3544 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3545 * system get NMI on boot (PR#48451). This problem might not be
3546 * the driver's bug but our PCI common part's bug. Until we
3547 * find a real reason, we ignore the prefetchable bit.
3548 */
3549 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3550 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3551 aprint_error_dev(sc->bge_dev,
3552 "couldn't map BAR2 memory\n");
3553 return;
3554 }
3555
3556 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3557 if (bus_space_map(pa->pa_memt, memaddr,
3558 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3559 aprint_error_dev(sc->bge_dev,
3560 "couldn't map BAR2 memory\n");
3561 return;
3562 }
3563 sc->bge_apetag = pa->pa_memt;
3564 #endif
3565
3566 /* Enable APE register/memory access by host driver. */
3567 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3568 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3569 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3570 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3571 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3572
3573 bge_ape_lock_init(sc);
3574 bge_ape_read_fw_ver(sc);
3575 }
3576
3577 /* Identify the chips that use an CPMU. */
3578 if (BGE_IS_5717_PLUS(sc) ||
3579 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3580 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3581 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3582 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3583 sc->bge_flags |= BGEF_CPMU_PRESENT;
3584
3585 /* Set MI_MODE */
3586 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3587 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3588 mimode |= BGE_MIMODE_500KHZ_CONST;
3589 else
3590 mimode |= BGE_MIMODE_BASE;
3591 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3592
3593 /*
3594 * When using the BCM5701 in PCI-X mode, data corruption has
3595 * been observed in the first few bytes of some received packets.
3596 * Aligning the packet buffer in memory eliminates the corruption.
3597 * Unfortunately, this misaligns the packet payloads. On platforms
3598 * which do not support unaligned accesses, we will realign the
3599 * payloads by copying the received packets.
3600 */
3601 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3602 sc->bge_flags & BGEF_PCIX)
3603 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3604
3605 if (BGE_IS_5700_FAMILY(sc))
3606 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3607
3608 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3609 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3610
3611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3612 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3613 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3614 sc->bge_flags |= BGEF_IS_5788;
3615
3616 /*
3617 * Some controllers seem to require a special firmware to use
3618 * TSO. But the firmware is not available to FreeBSD and Linux
3619 * claims that the TSO performed by the firmware is slower than
3620 * hardware based TSO. Moreover the firmware based TSO has one
3621 * known bug which can't handle TSO if ethernet header + IP/TCP
3622 * header is greater than 80 bytes. The workaround for the TSO
3623 * bug exist but it seems it's too expensive than not using
3624 * TSO at all. Some hardwares also have the TSO bug so limit
3625 * the TSO to the controllers that are not affected TSO issues
3626 * (e.g. 5755 or higher).
3627 */
3628 if (BGE_IS_5755_PLUS(sc)) {
3629 /*
3630 * BCM5754 and BCM5787 shares the same ASIC id so
3631 * explicit device id check is required.
3632 */
3633 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3634 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3635 sc->bge_flags |= BGEF_TSO;
3636 }
3637
3638 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3639 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3640 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3641 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3642 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3643 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3644 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3645 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3646 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3647 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3648 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3649 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3650 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3651 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3652 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3653 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3654 /* These chips are 10/100 only. */
3655 capmask &= ~BMSR_EXTSTAT;
3656 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3657 }
3658
3659 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3660 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3661 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3662 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3663 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3664
3665 /* Set various PHY bug flags. */
3666 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3667 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3668 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3669 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3670 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3671 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3672 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3673 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3674 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3676 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3677 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3678 if (BGE_IS_5705_PLUS(sc) &&
3679 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3680 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3681 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3682 !BGE_IS_57765_PLUS(sc)) {
3683 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3684 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3685 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3686 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3687 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3688 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3689 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3690 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3691 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3692 } else
3693 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3694 }
3695
3696 /*
3697 * SEEPROM check.
3698 * First check if firmware knows we do not have SEEPROM.
3699 */
3700 if (prop_dictionary_get_bool(device_properties(self),
3701 "without-seeprom", &no_seeprom) && no_seeprom)
3702 sc->bge_flags |= BGEF_NO_EEPROM;
3703
3704 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3705 sc->bge_flags |= BGEF_NO_EEPROM;
3706
3707 /* Now check the 'ROM failed' bit on the RX CPU */
3708 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3709 sc->bge_flags |= BGEF_NO_EEPROM;
3710
3711 sc->bge_asf_mode = 0;
3712 /* No ASF if APE present. */
3713 if ((sc->bge_flags & BGEF_APE) == 0) {
3714 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3715 BGE_SRAM_DATA_SIG_MAGIC)) {
3716 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3717 BGE_HWCFG_ASF) {
3718 sc->bge_asf_mode |= ASF_ENABLE;
3719 sc->bge_asf_mode |= ASF_STACKUP;
3720 if (BGE_IS_575X_PLUS(sc))
3721 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3722 }
3723 }
3724 }
3725
3726 /* MSI-X will be used in future */
3727 counts[PCI_INTR_TYPE_MSI] = 1;
3728 counts[PCI_INTR_TYPE_INTX] = 1;
3729 /* Check MSI capability */
3730 if (bge_can_use_msi(sc) != 0) {
3731 max_type = PCI_INTR_TYPE_MSI;
3732 sc->bge_flags |= BGEF_MSI;
3733 } else
3734 max_type = PCI_INTR_TYPE_INTX;
3735
3736 alloc_retry:
3737 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3738 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3739 return;
3740 }
3741
3742 DPRINTFN(5, ("pci_intr_string\n"));
3743 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3744 sizeof(intrbuf));
3745 DPRINTFN(5, ("pci_intr_establish\n"));
3746 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3747 bge_intr, sc);
3748 if (sc->bge_intrhand == NULL) {
3749 intr_type = pci_intr_type(pc, sc->bge_pihp[0]);
3750 aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
3751 (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
3752 pci_intr_release(pc, sc->bge_pihp, 1);
3753 switch (intr_type) {
3754 case PCI_INTR_TYPE_MSI:
3755 /* The next try is for INTx: Disable MSI */
3756 max_type = PCI_INTR_TYPE_INTX;
3757 counts[PCI_INTR_TYPE_INTX] = 1;
3758 sc->bge_flags &= ~BGEF_MSI;
3759 goto alloc_retry;
3760 case PCI_INTR_TYPE_INTX:
3761 default:
3762 /* See below */
3763 break;
3764 }
3765 }
3766
3767 if (sc->bge_intrhand == NULL) {
3768 aprint_error_dev(sc->bge_dev,
3769 "couldn't establish interrupt%s%s\n",
3770 intrstr ? " at " : "", intrstr ? intrstr : "");
3771 return;
3772 }
3773 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3774
3775 /*
3776 * All controllers except BCM5700 supports tagged status but
3777 * we use tagged status only for MSI case on BCM5717. Otherwise
3778 * MSI on BCM5717 does not work.
3779 */
3780 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3781 sc->bge_flags |= BGEF_TAGGED_STATUS;
3782
3783 /*
3784 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3785 * lock in bge_reset().
3786 */
3787 CSR_WRITE_4(sc, BGE_EE_ADDR,
3788 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3789 delay(1000);
3790 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3791
3792 bge_stop_fw(sc);
3793 bge_sig_pre_reset(sc, BGE_RESET_START);
3794 if (bge_reset(sc))
3795 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3796
3797 /*
3798 * Read the hardware config word in the first 32k of NIC internal
3799 * memory, or fall back to the config word in the EEPROM.
3800 * Note: on some BCM5700 cards, this value appears to be unset.
3801 */
3802 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3803 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3804 BGE_SRAM_DATA_SIG_MAGIC) {
3805 uint32_t tmp;
3806
3807 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3808 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3809 BGE_SRAM_DATA_VER_SHIFT;
3810 if ((0 < tmp) && (tmp < 0x100))
3811 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3812 if (sc->bge_flags & BGEF_PCIE)
3813 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3814 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3815 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3816 if (BGE_IS_5717_PLUS(sc))
3817 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3818 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3819 bge_read_eeprom(sc, (void *)&hwcfg,
3820 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3821 hwcfg = be32toh(hwcfg);
3822 }
3823 aprint_normal_dev(sc->bge_dev,
3824 "HW config %08x, %08x, %08x, %08x %08x\n",
3825 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3826
3827 bge_sig_legacy(sc, BGE_RESET_START);
3828 bge_sig_post_reset(sc, BGE_RESET_START);
3829
3830 if (bge_chipinit(sc)) {
3831 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3832 bge_release_resources(sc);
3833 return;
3834 }
3835
3836 /*
3837 * Get station address from the EEPROM.
3838 */
3839 if (bge_get_eaddr(sc, eaddr)) {
3840 aprint_error_dev(sc->bge_dev,
3841 "failed to read station address\n");
3842 bge_release_resources(sc);
3843 return;
3844 }
3845
3846 br = bge_lookup_rev(sc->bge_chipid);
3847
3848 if (br == NULL) {
3849 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3850 sc->bge_chipid);
3851 } else {
3852 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3853 br->br_name, sc->bge_chipid);
3854 }
3855 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3856
3857 /* Allocate the general information block and ring buffers. */
3858 if (pci_dma64_available(pa))
3859 sc->bge_dmatag = pa->pa_dmat64;
3860 else
3861 sc->bge_dmatag = pa->pa_dmat;
3862
3863 /* 40bit DMA workaround */
3864 if (sizeof(bus_addr_t) > 4) {
3865 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3866 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3867
3868 if (bus_dmatag_subregion(olddmatag, 0,
3869 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3870 BUS_DMA_NOWAIT) != 0) {
3871 aprint_error_dev(self,
3872 "WARNING: failed to restrict dma range,"
3873 " falling back to parent bus dma range\n");
3874 sc->bge_dmatag = olddmatag;
3875 }
3876 }
3877 }
3878 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3879 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3880 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3881 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3882 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3883 return;
3884 }
3885 DPRINTFN(5, ("bus_dmamem_map\n"));
3886 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3887 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3888 BUS_DMA_NOWAIT)) {
3889 aprint_error_dev(sc->bge_dev,
3890 "can't map DMA buffers (%zu bytes)\n",
3891 sizeof(struct bge_ring_data));
3892 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3893 sc->bge_ring_rseg);
3894 return;
3895 }
3896 DPRINTFN(5, ("bus_dmamem_create\n"));
3897 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3898 sizeof(struct bge_ring_data), 0,
3899 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3900 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3901 bus_dmamem_unmap(sc->bge_dmatag, kva,
3902 sizeof(struct bge_ring_data));
3903 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3904 sc->bge_ring_rseg);
3905 return;
3906 }
3907 DPRINTFN(5, ("bus_dmamem_load\n"));
3908 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3909 sizeof(struct bge_ring_data), NULL,
3910 BUS_DMA_NOWAIT)) {
3911 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3912 bus_dmamem_unmap(sc->bge_dmatag, kva,
3913 sizeof(struct bge_ring_data));
3914 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3915 sc->bge_ring_rseg);
3916 return;
3917 }
3918
3919 DPRINTFN(5, ("bzero\n"));
3920 sc->bge_rdata = (struct bge_ring_data *)kva;
3921
3922 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3923
3924 /* Try to allocate memory for jumbo buffers. */
3925 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3926 if (bge_alloc_jumbo_mem(sc)) {
3927 aprint_error_dev(sc->bge_dev,
3928 "jumbo buffer allocation failed\n");
3929 } else
3930 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3931 }
3932
3933 /* Set default tuneable values. */
3934 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3935 sc->bge_rx_coal_ticks = 150;
3936 sc->bge_rx_max_coal_bds = 64;
3937 sc->bge_tx_coal_ticks = 300;
3938 sc->bge_tx_max_coal_bds = 400;
3939 if (BGE_IS_5705_PLUS(sc)) {
3940 sc->bge_tx_coal_ticks = (12 * 5);
3941 sc->bge_tx_max_coal_bds = (12 * 5);
3942 aprint_verbose_dev(sc->bge_dev,
3943 "setting short Tx thresholds\n");
3944 }
3945
3946 if (BGE_IS_5717_PLUS(sc))
3947 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3948 else if (BGE_IS_5705_PLUS(sc))
3949 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3950 else
3951 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3952
3953 /* Set up ifnet structure */
3954 ifp = &sc->ethercom.ec_if;
3955 ifp->if_softc = sc;
3956 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3957 ifp->if_ioctl = bge_ioctl;
3958 ifp->if_stop = bge_stop;
3959 ifp->if_start = bge_start;
3960 ifp->if_init = bge_init;
3961 ifp->if_watchdog = bge_watchdog;
3962 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3963 IFQ_SET_READY(&ifp->if_snd);
3964 DPRINTFN(5, ("strcpy if_xname\n"));
3965 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3966
3967 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3968 sc->ethercom.ec_if.if_capabilities |=
3969 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3970 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3971 sc->ethercom.ec_if.if_capabilities |=
3972 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3973 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3974 #endif
3975 sc->ethercom.ec_capabilities |=
3976 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3977
3978 if (sc->bge_flags & BGEF_TSO)
3979 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3980
3981 /*
3982 * Do MII setup.
3983 */
3984 DPRINTFN(5, ("mii setup\n"));
3985 sc->bge_mii.mii_ifp = ifp;
3986 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3987 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3988 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3989
3990 /*
3991 * Figure out what sort of media we have by checking the hardware
3992 * config word. Note: on some BCM5700 cards, this value appears to be
3993 * unset. If that's the case, we have to rely on identifying the NIC
3994 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3995 * The SysKonnect SK-9D41 is a 1000baseSX card.
3996 */
3997 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3998 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3999 if (BGE_IS_5705_PLUS(sc)) {
4000 sc->bge_flags |= BGEF_FIBER_MII;
4001 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4002 } else
4003 sc->bge_flags |= BGEF_FIBER_TBI;
4004 }
4005
4006 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4007 if (BGE_IS_JUMBO_CAPABLE(sc))
4008 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4009
4010 /* set phyflags and chipid before mii_attach() */
4011 dict = device_properties(self);
4012 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4013 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4014
4015 if (sc->bge_flags & BGEF_FIBER_TBI) {
4016 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4017 bge_ifmedia_sts);
4018 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4019 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4020 0, NULL);
4021 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4022 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4023 /* Pretend the user requested this setting */
4024 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4025 } else {
4026 /*
4027 * Do transceiver setup and tell the firmware the
4028 * driver is down so we can try to get access the
4029 * probe if ASF is running. Retry a couple of times
4030 * if we get a conflict with the ASF firmware accessing
4031 * the PHY.
4032 */
4033 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4034 bge_asf_driver_up(sc);
4035
4036 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4037 bge_ifmedia_sts);
4038 mii_flags = MIIF_DOPAUSE;
4039 if (sc->bge_flags & BGEF_FIBER_MII)
4040 mii_flags |= MIIF_HAVEFIBER;
4041 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4042 MII_OFFSET_ANY, mii_flags);
4043
4044 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4045 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4046 ifmedia_add(&sc->bge_mii.mii_media,
4047 IFM_ETHER|IFM_MANUAL, 0, NULL);
4048 ifmedia_set(&sc->bge_mii.mii_media,
4049 IFM_ETHER|IFM_MANUAL);
4050 } else
4051 ifmedia_set(&sc->bge_mii.mii_media,
4052 IFM_ETHER|IFM_AUTO);
4053
4054 /*
4055 * Now tell the firmware we are going up after probing the PHY
4056 */
4057 if (sc->bge_asf_mode & ASF_STACKUP)
4058 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4059 }
4060
4061 /*
4062 * Call MI attach routine.
4063 */
4064 DPRINTFN(5, ("if_attach\n"));
4065 if_attach(ifp);
4066 if_deferred_start_init(ifp, NULL);
4067 DPRINTFN(5, ("ether_ifattach\n"));
4068 ether_ifattach(ifp, eaddr);
4069 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4070 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4071 RND_TYPE_NET, RND_FLAG_DEFAULT);
4072 #ifdef BGE_EVENT_COUNTERS
4073 /*
4074 * Attach event counters.
4075 */
4076 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4077 NULL, device_xname(sc->bge_dev), "intr");
4078 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4079 NULL, device_xname(sc->bge_dev), "intr_spurious");
4080 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4081 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4082 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4083 NULL, device_xname(sc->bge_dev), "tx_xoff");
4084 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4085 NULL, device_xname(sc->bge_dev), "tx_xon");
4086 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4087 NULL, device_xname(sc->bge_dev), "rx_xoff");
4088 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4089 NULL, device_xname(sc->bge_dev), "rx_xon");
4090 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4091 NULL, device_xname(sc->bge_dev), "rx_macctl");
4092 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4093 NULL, device_xname(sc->bge_dev), "xoffentered");
4094 #endif /* BGE_EVENT_COUNTERS */
4095 DPRINTFN(5, ("callout_init\n"));
4096 callout_init(&sc->bge_timeout, 0);
4097
4098 if (pmf_device_register(self, NULL, NULL))
4099 pmf_class_network_register(self, ifp);
4100 else
4101 aprint_error_dev(self, "couldn't establish power handler\n");
4102
4103 bge_sysctl_init(sc);
4104
4105 #ifdef BGE_DEBUG
4106 bge_debug_info(sc);
4107 #endif
4108 }
4109
4110 /*
4111 * Stop all chip I/O so that the kernel's probe routines don't
4112 * get confused by errant DMAs when rebooting.
4113 */
4114 static int
4115 bge_detach(device_t self, int flags __unused)
4116 {
4117 struct bge_softc *sc = device_private(self);
4118 struct ifnet *ifp = &sc->ethercom.ec_if;
4119 int s;
4120
4121 s = splnet();
4122 /* Stop the interface. Callouts are stopped in it. */
4123 bge_stop(ifp, 1);
4124 splx(s);
4125
4126 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4127
4128 /* Delete all remaining media. */
4129 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4130
4131 ether_ifdetach(ifp);
4132 if_detach(ifp);
4133
4134 bge_release_resources(sc);
4135
4136 return 0;
4137 }
4138
4139 static void
4140 bge_release_resources(struct bge_softc *sc)
4141 {
4142
4143 /* Detach sysctl */
4144 if (sc->bge_log != NULL)
4145 sysctl_teardown(&sc->bge_log);
4146
4147 #ifdef BGE_EVENT_COUNTERS
4148 /* Detach event counters. */
4149 evcnt_detach(&sc->bge_ev_intr);
4150 evcnt_detach(&sc->bge_ev_intr_spurious);
4151 evcnt_detach(&sc->bge_ev_intr_spurious2);
4152 evcnt_detach(&sc->bge_ev_tx_xoff);
4153 evcnt_detach(&sc->bge_ev_tx_xon);
4154 evcnt_detach(&sc->bge_ev_rx_xoff);
4155 evcnt_detach(&sc->bge_ev_rx_xon);
4156 evcnt_detach(&sc->bge_ev_rx_macctl);
4157 evcnt_detach(&sc->bge_ev_xoffentered);
4158 #endif /* BGE_EVENT_COUNTERS */
4159
4160 /* Disestablish the interrupt handler */
4161 if (sc->bge_intrhand != NULL) {
4162 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4163 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4164 sc->bge_intrhand = NULL;
4165 }
4166
4167 if (sc->bge_dmatag != NULL) {
4168 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4169 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4170 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4171 sizeof(struct bge_ring_data));
4172 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4173 sc->bge_ring_rseg);
4174 }
4175
4176 /* Unmap the device registers */
4177 if (sc->bge_bsize != 0) {
4178 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4179 sc->bge_bsize = 0;
4180 }
4181
4182 /* Unmap the APE registers */
4183 if (sc->bge_apesize != 0) {
4184 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4185 sc->bge_apesize);
4186 sc->bge_apesize = 0;
4187 }
4188 }
4189
4190 static int
4191 bge_reset(struct bge_softc *sc)
4192 {
4193 uint32_t cachesize, command;
4194 uint32_t reset, mac_mode, mac_mode_mask;
4195 pcireg_t devctl, reg;
4196 int i, val;
4197 void (*write_op)(struct bge_softc *, int, int);
4198
4199 /* Make mask for BGE_MAC_MODE register. */
4200 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4201 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4202 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4203 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4204 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4205
4206 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4207 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4208 if (sc->bge_flags & BGEF_PCIE)
4209 write_op = bge_writemem_direct;
4210 else
4211 write_op = bge_writemem_ind;
4212 } else
4213 write_op = bge_writereg_ind;
4214
4215 /* 57XX step 4 */
4216 /* Acquire the NVM lock */
4217 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4218 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4219 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4220 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4221 for (i = 0; i < 8000; i++) {
4222 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4223 BGE_NVRAMSWARB_GNT1)
4224 break;
4225 DELAY(20);
4226 }
4227 if (i == 8000) {
4228 printf("%s: NVRAM lock timedout!\n",
4229 device_xname(sc->bge_dev));
4230 }
4231 }
4232
4233 /* Take APE lock when performing reset. */
4234 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4235
4236 /* 57XX step 3 */
4237 /* Save some important PCI state. */
4238 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4239 /* 5718 reset step 3 */
4240 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4241
4242 /* 5718 reset step 5, 57XX step 5b-5d */
4243 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4244 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4245 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4246
4247 /* XXX ???: Disable fastboot on controllers that support it. */
4248 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4249 BGE_IS_5755_PLUS(sc))
4250 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4251
4252 /* 5718 reset step 2, 57XX step 6 */
4253 /*
4254 * Write the magic number to SRAM at offset 0xB50.
4255 * When firmware finishes its initialization it will
4256 * write ~BGE_MAGIC_NUMBER to the same location.
4257 */
4258 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4259
4260 /* 5718 reset step 6, 57XX step 7 */
4261 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4262 /*
4263 * XXX: from FreeBSD/Linux; no documentation
4264 */
4265 if (sc->bge_flags & BGEF_PCIE) {
4266 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4267 !BGE_IS_57765_PLUS(sc) &&
4268 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4269 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4270 /* PCI Express 1.0 system */
4271 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4272 BGE_PHY_PCIE_SCRAM_MODE);
4273 }
4274 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4275 /*
4276 * Prevent PCI Express link training
4277 * during global reset.
4278 */
4279 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4280 reset |= (1 << 29);
4281 }
4282 }
4283
4284 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4285 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4286 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4287 i | BGE_VCPU_STATUS_DRV_RESET);
4288 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4289 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4290 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4291 }
4292
4293 /*
4294 * Set GPHY Power Down Override to leave GPHY
4295 * powered up in D0 uninitialized.
4296 */
4297 if (BGE_IS_5705_PLUS(sc) &&
4298 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4299 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4300
4301 /* Issue global reset */
4302 write_op(sc, BGE_MISC_CFG, reset);
4303
4304 /* 5718 reset step 7, 57XX step 8 */
4305 if (sc->bge_flags & BGEF_PCIE)
4306 delay(100*1000); /* too big */
4307 else
4308 delay(1000);
4309
4310 if (sc->bge_flags & BGEF_PCIE) {
4311 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4312 DELAY(500000);
4313 /* XXX: Magic Numbers */
4314 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4315 BGE_PCI_UNKNOWN0);
4316 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4317 BGE_PCI_UNKNOWN0,
4318 reg | (1 << 15));
4319 }
4320 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4321 sc->bge_pciecap + PCIE_DCSR);
4322 /* Clear enable no snoop and disable relaxed ordering. */
4323 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4324 PCIE_DCSR_ENA_NO_SNOOP);
4325
4326 /* Set PCIE max payload size to 128 for older PCIe devices */
4327 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4328 devctl &= ~(0x00e0);
4329 /* Clear device status register. Write 1b to clear */
4330 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4331 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4332 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4333 sc->bge_pciecap + PCIE_DCSR, devctl);
4334 bge_set_max_readrq(sc);
4335 }
4336
4337 /* From Linux: dummy read to flush PCI posted writes */
4338 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4339
4340 /*
4341 * Reset some of the PCI state that got zapped by reset
4342 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4343 * set, too.
4344 */
4345 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4346 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4347 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4348 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4349 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4350 (sc->bge_flags & BGEF_PCIX) != 0)
4351 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4352 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4353 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4354 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4355 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4356 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4357 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4358 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4359
4360 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4361 if (sc->bge_flags & BGEF_PCIX) {
4362 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4363 + PCIX_CMD);
4364 /* Set max memory read byte count to 2K */
4365 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4366 reg &= ~PCIX_CMD_BYTECNT_MASK;
4367 reg |= PCIX_CMD_BCNT_2048;
4368 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4369 /*
4370 * For 5704, set max outstanding split transaction
4371 * field to 0 (0 means it supports 1 request)
4372 */
4373 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4374 | PCIX_CMD_BYTECNT_MASK);
4375 reg |= PCIX_CMD_BCNT_2048;
4376 }
4377 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4378 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4379 }
4380
4381 /* 5718 reset step 10, 57XX step 12 */
4382 /* Enable memory arbiter. */
4383 if (BGE_IS_5714_FAMILY(sc)) {
4384 val = CSR_READ_4(sc, BGE_MARB_MODE);
4385 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4386 } else
4387 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4388
4389 /* XXX 5721, 5751 and 5752 */
4390 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4391 /* Step 19: */
4392 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4393 /* Step 20: */
4394 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4395 }
4396
4397 /* 5718 reset step 12, 57XX step 15 and 16 */
4398 /* Fix up byte swapping */
4399 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4400
4401 /* 5718 reset step 13, 57XX step 17 */
4402 /* Poll until the firmware initialization is complete */
4403 bge_poll_fw(sc);
4404
4405 /* 57XX step 21 */
4406 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4407 pcireg_t msidata;
4408
4409 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4410 BGE_PCI_MSI_DATA);
4411 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4412 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4413 msidata);
4414 }
4415
4416 /* 57XX step 18 */
4417 /* Write mac mode. */
4418 val = CSR_READ_4(sc, BGE_MAC_MODE);
4419 /* Restore mac_mode_mask's bits using mac_mode */
4420 val = (val & ~mac_mode_mask) | mac_mode;
4421 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4422 DELAY(40);
4423
4424 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4425
4426 /*
4427 * The 5704 in TBI mode apparently needs some special
4428 * adjustment to insure the SERDES drive level is set
4429 * to 1.2V.
4430 */
4431 if (sc->bge_flags & BGEF_FIBER_TBI &&
4432 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4433 uint32_t serdescfg;
4434
4435 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4436 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4437 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4438 }
4439
4440 if (sc->bge_flags & BGEF_PCIE &&
4441 !BGE_IS_57765_PLUS(sc) &&
4442 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4443 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4444 uint32_t v;
4445
4446 /* Enable PCI Express bug fix */
4447 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4448 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4449 v | BGE_TLP_DATA_FIFO_PROTECT);
4450 }
4451
4452 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4453 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4454 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4455
4456 return 0;
4457 }
4458
4459 /*
4460 * Frame reception handling. This is called if there's a frame
4461 * on the receive return list.
4462 *
4463 * Note: we have to be able to handle two possibilities here:
4464 * 1) the frame is from the jumbo receive ring
4465 * 2) the frame is from the standard receive ring
4466 */
4467
4468 static void
4469 bge_rxeof(struct bge_softc *sc)
4470 {
4471 struct ifnet *ifp;
4472 uint16_t rx_prod, rx_cons;
4473 int stdcnt = 0, jumbocnt = 0;
4474 bus_dmamap_t dmamap;
4475 bus_addr_t offset, toff;
4476 bus_size_t tlen;
4477 int tosync;
4478
4479 rx_cons = sc->bge_rx_saved_considx;
4480 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4481
4482 /* Nothing to do */
4483 if (rx_cons == rx_prod)
4484 return;
4485
4486 ifp = &sc->ethercom.ec_if;
4487
4488 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4489 offsetof(struct bge_ring_data, bge_status_block),
4490 sizeof (struct bge_status_block),
4491 BUS_DMASYNC_POSTREAD);
4492
4493 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4494 tosync = rx_prod - rx_cons;
4495
4496 if (tosync != 0)
4497 rnd_add_uint32(&sc->rnd_source, tosync);
4498
4499 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4500
4501 if (tosync < 0) {
4502 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4503 sizeof (struct bge_rx_bd);
4504 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4505 toff, tlen, BUS_DMASYNC_POSTREAD);
4506 tosync = -tosync;
4507 }
4508
4509 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4510 offset, tosync * sizeof (struct bge_rx_bd),
4511 BUS_DMASYNC_POSTREAD);
4512
4513 while (rx_cons != rx_prod) {
4514 struct bge_rx_bd *cur_rx;
4515 uint32_t rxidx;
4516 struct mbuf *m = NULL;
4517
4518 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4519
4520 rxidx = cur_rx->bge_idx;
4521 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4522
4523 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4524 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4525 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4526 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4527 jumbocnt++;
4528 bus_dmamap_sync(sc->bge_dmatag,
4529 sc->bge_cdata.bge_rx_jumbo_map,
4530 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4531 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4532 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4533 ifp->if_ierrors++;
4534 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4535 continue;
4536 }
4537 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4538 NULL)== ENOBUFS) {
4539 ifp->if_ierrors++;
4540 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4541 continue;
4542 }
4543 } else {
4544 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4545 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4546
4547 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4548 stdcnt++;
4549 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4550 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4551 if (dmamap == NULL) {
4552 ifp->if_ierrors++;
4553 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4554 continue;
4555 }
4556 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4557 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4558 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4559 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4560 ifp->if_ierrors++;
4561 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4562 continue;
4563 }
4564 if (bge_newbuf_std(sc, sc->bge_std,
4565 NULL, dmamap) == ENOBUFS) {
4566 ifp->if_ierrors++;
4567 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4568 continue;
4569 }
4570 }
4571
4572 #ifndef __NO_STRICT_ALIGNMENT
4573 /*
4574 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4575 * the Rx buffer has the layer-2 header unaligned.
4576 * If our CPU requires alignment, re-align by copying.
4577 */
4578 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4579 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4580 cur_rx->bge_len);
4581 m->m_data += ETHER_ALIGN;
4582 }
4583 #endif
4584
4585 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4586 m_set_rcvif(m, ifp);
4587
4588 bge_rxcsum(sc, cur_rx, m);
4589
4590 /*
4591 * If we received a packet with a vlan tag, pass it
4592 * to vlan_input() instead of ether_input().
4593 */
4594 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4595 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4596 }
4597
4598 if_percpuq_enqueue(ifp->if_percpuq, m);
4599 }
4600
4601 sc->bge_rx_saved_considx = rx_cons;
4602 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4603 if (stdcnt)
4604 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4605 if (jumbocnt)
4606 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4607 }
4608
4609 static void
4610 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4611 {
4612
4613 if (BGE_IS_57765_PLUS(sc)) {
4614 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4615 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4616 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4617 if ((cur_rx->bge_error_flag &
4618 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4619 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4620 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4621 m->m_pkthdr.csum_data =
4622 cur_rx->bge_tcp_udp_csum;
4623 m->m_pkthdr.csum_flags |=
4624 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4625 M_CSUM_DATA);
4626 }
4627 }
4628 } else {
4629 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4630 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4631 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4632 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4633 /*
4634 * Rx transport checksum-offload may also
4635 * have bugs with packets which, when transmitted,
4636 * were `runts' requiring padding.
4637 */
4638 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4639 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4640 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4641 m->m_pkthdr.csum_data =
4642 cur_rx->bge_tcp_udp_csum;
4643 m->m_pkthdr.csum_flags |=
4644 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4645 M_CSUM_DATA);
4646 }
4647 }
4648 }
4649
4650 static void
4651 bge_txeof(struct bge_softc *sc)
4652 {
4653 struct bge_tx_bd *cur_tx = NULL;
4654 struct ifnet *ifp;
4655 struct txdmamap_pool_entry *dma;
4656 bus_addr_t offset, toff;
4657 bus_size_t tlen;
4658 int tosync;
4659 struct mbuf *m;
4660
4661 ifp = &sc->ethercom.ec_if;
4662
4663 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4664 offsetof(struct bge_ring_data, bge_status_block),
4665 sizeof (struct bge_status_block),
4666 BUS_DMASYNC_POSTREAD);
4667
4668 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4669 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4670 sc->bge_tx_saved_considx;
4671
4672 if (tosync != 0)
4673 rnd_add_uint32(&sc->rnd_source, tosync);
4674
4675 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4676
4677 if (tosync < 0) {
4678 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4679 sizeof (struct bge_tx_bd);
4680 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4681 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4682 tosync = -tosync;
4683 }
4684
4685 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4686 offset, tosync * sizeof (struct bge_tx_bd),
4687 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4688
4689 /*
4690 * Go through our tx ring and free mbufs for those
4691 * frames that have been sent.
4692 */
4693 while (sc->bge_tx_saved_considx !=
4694 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4695 uint32_t idx = 0;
4696
4697 idx = sc->bge_tx_saved_considx;
4698 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4699 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4700 ifp->if_opackets++;
4701 m = sc->bge_cdata.bge_tx_chain[idx];
4702 if (m != NULL) {
4703 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4704 dma = sc->txdma[idx];
4705 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4706 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4707 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4708 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4709 sc->txdma[idx] = NULL;
4710
4711 m_freem(m);
4712 }
4713 sc->bge_txcnt--;
4714 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4715 ifp->if_timer = 0;
4716 }
4717
4718 if (cur_tx != NULL)
4719 ifp->if_flags &= ~IFF_OACTIVE;
4720 }
4721
4722 static int
4723 bge_intr(void *xsc)
4724 {
4725 struct bge_softc *sc;
4726 struct ifnet *ifp;
4727 uint32_t pcistate, statusword, statustag;
4728 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4729
4730 sc = xsc;
4731 ifp = &sc->ethercom.ec_if;
4732
4733 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4734 if (BGE_IS_5717_PLUS(sc))
4735 intrmask = 0;
4736
4737 /* It is possible for the interrupt to arrive before
4738 * the status block is updated prior to the interrupt.
4739 * Reading the PCI State register will confirm whether the
4740 * interrupt is ours and will flush the status block.
4741 */
4742 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4743
4744 /* read status word from status block */
4745 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4746 offsetof(struct bge_ring_data, bge_status_block),
4747 sizeof (struct bge_status_block),
4748 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4749 statusword = sc->bge_rdata->bge_status_block.bge_status;
4750 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4751
4752 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4753 if (sc->bge_lasttag == statustag &&
4754 (~pcistate & intrmask)) {
4755 return (0);
4756 }
4757 sc->bge_lasttag = statustag;
4758 } else {
4759 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4760 !(~pcistate & intrmask)) {
4761 return (0);
4762 }
4763 statustag = 0;
4764 }
4765 /* Ack interrupt and stop others from occurring. */
4766 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4767 BGE_EVCNT_INCR(sc->bge_ev_intr);
4768
4769 /* clear status word */
4770 sc->bge_rdata->bge_status_block.bge_status = 0;
4771
4772 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4773 offsetof(struct bge_ring_data, bge_status_block),
4774 sizeof (struct bge_status_block),
4775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4776
4777 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4778 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4779 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4780 bge_link_upd(sc);
4781
4782 if (ifp->if_flags & IFF_RUNNING) {
4783 /* Check RX return ring producer/consumer */
4784 bge_rxeof(sc);
4785
4786 /* Check TX ring producer/consumer */
4787 bge_txeof(sc);
4788 }
4789
4790 if (sc->bge_pending_rxintr_change) {
4791 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4792 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4793
4794 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4795 DELAY(10);
4796 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4797
4798 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4799 DELAY(10);
4800 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4801
4802 sc->bge_pending_rxintr_change = 0;
4803 }
4804 bge_handle_events(sc);
4805
4806 /* Re-enable interrupts. */
4807 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4808
4809 if (ifp->if_flags & IFF_RUNNING)
4810 if_schedule_deferred_start(ifp);
4811
4812 return 1;
4813 }
4814
4815 static void
4816 bge_asf_driver_up(struct bge_softc *sc)
4817 {
4818 if (sc->bge_asf_mode & ASF_STACKUP) {
4819 /* Send ASF heartbeat aprox. every 2s */
4820 if (sc->bge_asf_count)
4821 sc->bge_asf_count --;
4822 else {
4823 sc->bge_asf_count = 2;
4824
4825 bge_wait_for_event_ack(sc);
4826
4827 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4828 BGE_FW_CMD_DRV_ALIVE3);
4829 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4830 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4831 BGE_FW_HB_TIMEOUT_SEC);
4832 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4833 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4834 BGE_RX_CPU_DRV_EVENT);
4835 }
4836 }
4837 }
4838
4839 static void
4840 bge_tick(void *xsc)
4841 {
4842 struct bge_softc *sc = xsc;
4843 struct mii_data *mii = &sc->bge_mii;
4844 int s;
4845
4846 s = splnet();
4847
4848 if (BGE_IS_5705_PLUS(sc))
4849 bge_stats_update_regs(sc);
4850 else
4851 bge_stats_update(sc);
4852
4853 if (sc->bge_flags & BGEF_FIBER_TBI) {
4854 /*
4855 * Since in TBI mode auto-polling can't be used we should poll
4856 * link status manually. Here we register pending link event
4857 * and trigger interrupt.
4858 */
4859 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4860 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4861 } else {
4862 /*
4863 * Do not touch PHY if we have link up. This could break
4864 * IPMI/ASF mode or produce extra input errors.
4865 * (extra input errors was reported for bcm5701 & bcm5704).
4866 */
4867 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4868 mii_tick(mii);
4869 }
4870
4871 bge_asf_driver_up(sc);
4872
4873 if (!sc->bge_detaching)
4874 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4875
4876 splx(s);
4877 }
4878
4879 static void
4880 bge_stats_update_regs(struct bge_softc *sc)
4881 {
4882 struct ifnet *ifp = &sc->ethercom.ec_if;
4883
4884 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4885 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4886
4887 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4888 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4889 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4890 }
4891
4892 static void
4893 bge_stats_update(struct bge_softc *sc)
4894 {
4895 struct ifnet *ifp = &sc->ethercom.ec_if;
4896 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4897
4898 #define READ_STAT(sc, stats, stat) \
4899 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4900
4901 ifp->if_collisions +=
4902 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4903 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4904 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4905 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4906 ifp->if_collisions;
4907
4908 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4909 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4910 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4911 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4912 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4913 READ_STAT(sc, stats,
4914 xoffPauseFramesReceived.bge_addr_lo));
4915 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4916 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4917 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4918 READ_STAT(sc, stats,
4919 macControlFramesReceived.bge_addr_lo));
4920 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4921 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4922
4923 #undef READ_STAT
4924
4925 #ifdef notdef
4926 ifp->if_collisions +=
4927 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4928 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4929 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4930 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4931 ifp->if_collisions;
4932 #endif
4933 }
4934
4935 /*
4936 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4937 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4938 * but when such padded frames employ the bge IP/TCP checksum offload,
4939 * the hardware checksum assist gives incorrect results (possibly
4940 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4941 * If we pad such runts with zeros, the onboard checksum comes out correct.
4942 */
4943 static inline int
4944 bge_cksum_pad(struct mbuf *pkt)
4945 {
4946 struct mbuf *last = NULL;
4947 int padlen;
4948
4949 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4950
4951 /* if there's only the packet-header and we can pad there, use it. */
4952 if (pkt->m_pkthdr.len == pkt->m_len &&
4953 M_TRAILINGSPACE(pkt) >= padlen) {
4954 last = pkt;
4955 } else {
4956 /*
4957 * Walk packet chain to find last mbuf. We will either
4958 * pad there, or append a new mbuf and pad it
4959 * (thus perhaps avoiding the bcm5700 dma-min bug).
4960 */
4961 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4962 continue; /* do nothing */
4963 }
4964
4965 /* `last' now points to last in chain. */
4966 if (M_TRAILINGSPACE(last) < padlen) {
4967 /* Allocate new empty mbuf, pad it. Compact later. */
4968 struct mbuf *n;
4969 MGET(n, M_DONTWAIT, MT_DATA);
4970 if (n == NULL)
4971 return ENOBUFS;
4972 n->m_len = 0;
4973 last->m_next = n;
4974 last = n;
4975 }
4976 }
4977
4978 KDASSERT(!M_READONLY(last));
4979 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4980
4981 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4982 memset(mtod(last, char *) + last->m_len, 0, padlen);
4983 last->m_len += padlen;
4984 pkt->m_pkthdr.len += padlen;
4985 return 0;
4986 }
4987
4988 /*
4989 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4990 */
4991 static inline int
4992 bge_compact_dma_runt(struct mbuf *pkt)
4993 {
4994 struct mbuf *m, *prev;
4995 int totlen;
4996
4997 prev = NULL;
4998 totlen = 0;
4999
5000 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5001 int mlen = m->m_len;
5002 int shortfall = 8 - mlen ;
5003
5004 totlen += mlen;
5005 if (mlen == 0)
5006 continue;
5007 if (mlen >= 8)
5008 continue;
5009
5010 /* If we get here, mbuf data is too small for DMA engine.
5011 * Try to fix by shuffling data to prev or next in chain.
5012 * If that fails, do a compacting deep-copy of the whole chain.
5013 */
5014
5015 /* Internal frag. If fits in prev, copy it there. */
5016 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5017 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5018 prev->m_len += mlen;
5019 m->m_len = 0;
5020 /* XXX stitch chain */
5021 prev->m_next = m_free(m);
5022 m = prev;
5023 continue;
5024 }
5025 else if (m->m_next != NULL &&
5026 M_TRAILINGSPACE(m) >= shortfall &&
5027 m->m_next->m_len >= (8 + shortfall)) {
5028 /* m is writable and have enough data in next, pull up. */
5029
5030 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5031 shortfall);
5032 m->m_len += shortfall;
5033 m->m_next->m_len -= shortfall;
5034 m->m_next->m_data += shortfall;
5035 }
5036 else if (m->m_next == NULL || 1) {
5037 /* Got a runt at the very end of the packet.
5038 * borrow data from the tail of the preceding mbuf and
5039 * update its length in-place. (The original data is still
5040 * valid, so we can do this even if prev is not writable.)
5041 */
5042
5043 /* if we'd make prev a runt, just move all of its data. */
5044 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5045 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5046
5047 if ((prev->m_len - shortfall) < 8)
5048 shortfall = prev->m_len;
5049
5050 #ifdef notyet /* just do the safe slow thing for now */
5051 if (!M_READONLY(m)) {
5052 if (M_LEADINGSPACE(m) < shorfall) {
5053 void *m_dat;
5054 m_dat = (m->m_flags & M_PKTHDR) ?
5055 m->m_pktdat : m->dat;
5056 memmove(m_dat, mtod(m, void*), m->m_len);
5057 m->m_data = m_dat;
5058 }
5059 } else
5060 #endif /* just do the safe slow thing */
5061 {
5062 struct mbuf * n = NULL;
5063 int newprevlen = prev->m_len - shortfall;
5064
5065 MGET(n, M_NOWAIT, MT_DATA);
5066 if (n == NULL)
5067 return ENOBUFS;
5068 KASSERT(m->m_len + shortfall < MLEN
5069 /*,
5070 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5071
5072 /* first copy the data we're stealing from prev */
5073 memcpy(n->m_data, prev->m_data + newprevlen,
5074 shortfall);
5075
5076 /* update prev->m_len accordingly */
5077 prev->m_len -= shortfall;
5078
5079 /* copy data from runt m */
5080 memcpy(n->m_data + shortfall, m->m_data,
5081 m->m_len);
5082
5083 /* n holds what we stole from prev, plus m */
5084 n->m_len = shortfall + m->m_len;
5085
5086 /* stitch n into chain and free m */
5087 n->m_next = m->m_next;
5088 prev->m_next = n;
5089 /* KASSERT(m->m_next == NULL); */
5090 m->m_next = NULL;
5091 m_free(m);
5092 m = n; /* for continuing loop */
5093 }
5094 }
5095 }
5096 return 0;
5097 }
5098
5099 /*
5100 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5101 * pointers to descriptors.
5102 */
5103 static int
5104 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5105 {
5106 struct bge_tx_bd *f = NULL;
5107 uint32_t frag, cur;
5108 uint16_t csum_flags = 0;
5109 uint16_t txbd_tso_flags = 0;
5110 struct txdmamap_pool_entry *dma;
5111 bus_dmamap_t dmamap;
5112 int i = 0;
5113 struct m_tag *mtag;
5114 int use_tso, maxsegsize, error;
5115
5116 cur = frag = *txidx;
5117
5118 if (m_head->m_pkthdr.csum_flags) {
5119 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5120 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5121 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5122 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5123 }
5124
5125 /*
5126 * If we were asked to do an outboard checksum, and the NIC
5127 * has the bug where it sometimes adds in the Ethernet padding,
5128 * explicitly pad with zeros so the cksum will be correct either way.
5129 * (For now, do this for all chip versions, until newer
5130 * are confirmed to not require the workaround.)
5131 */
5132 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5133 #ifdef notyet
5134 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5135 #endif
5136 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5137 goto check_dma_bug;
5138
5139 if (bge_cksum_pad(m_head) != 0)
5140 return ENOBUFS;
5141
5142 check_dma_bug:
5143 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5144 goto doit;
5145
5146 /*
5147 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5148 * less than eight bytes. If we encounter a teeny mbuf
5149 * at the end of a chain, we can pad. Otherwise, copy.
5150 */
5151 if (bge_compact_dma_runt(m_head) != 0)
5152 return ENOBUFS;
5153
5154 doit:
5155 dma = SLIST_FIRST(&sc->txdma_list);
5156 if (dma == NULL)
5157 return ENOBUFS;
5158 dmamap = dma->dmamap;
5159
5160 /*
5161 * Set up any necessary TSO state before we start packing...
5162 */
5163 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5164 if (!use_tso) {
5165 maxsegsize = 0;
5166 } else { /* TSO setup */
5167 unsigned mss;
5168 struct ether_header *eh;
5169 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5170 struct mbuf * m0 = m_head;
5171 struct ip *ip;
5172 struct tcphdr *th;
5173 int iphl, hlen;
5174
5175 /*
5176 * XXX It would be nice if the mbuf pkthdr had offset
5177 * fields for the protocol headers.
5178 */
5179
5180 eh = mtod(m0, struct ether_header *);
5181 switch (htons(eh->ether_type)) {
5182 case ETHERTYPE_IP:
5183 offset = ETHER_HDR_LEN;
5184 break;
5185
5186 case ETHERTYPE_VLAN:
5187 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5188 break;
5189
5190 default:
5191 /*
5192 * Don't support this protocol or encapsulation.
5193 */
5194 return ENOBUFS;
5195 }
5196
5197 /*
5198 * TCP/IP headers are in the first mbuf; we can do
5199 * this the easy way.
5200 */
5201 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5202 hlen = iphl + offset;
5203 if (__predict_false(m0->m_len <
5204 (hlen + sizeof(struct tcphdr)))) {
5205
5206 aprint_debug_dev(sc->bge_dev,
5207 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5208 "not handled yet\n",
5209 m0->m_len, hlen+ sizeof(struct tcphdr));
5210 #ifdef NOTYET
5211 /*
5212 * XXX jonathan (at) NetBSD.org: untested.
5213 * how to force this branch to be taken?
5214 */
5215 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5216
5217 m_copydata(m0, offset, sizeof(ip), &ip);
5218 m_copydata(m0, hlen, sizeof(th), &th);
5219
5220 ip.ip_len = 0;
5221
5222 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5223 sizeof(ip.ip_len), &ip.ip_len);
5224
5225 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5226 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5227
5228 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5229 sizeof(th.th_sum), &th.th_sum);
5230
5231 hlen += th.th_off << 2;
5232 iptcp_opt_words = hlen;
5233 #else
5234 /*
5235 * if_wm "hard" case not yet supported, can we not
5236 * mandate it out of existence?
5237 */
5238 (void) ip; (void)th; (void) ip_tcp_hlen;
5239
5240 return ENOBUFS;
5241 #endif
5242 } else {
5243 ip = (struct ip *) (mtod(m0, char *) + offset);
5244 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5245 ip_tcp_hlen = iphl + (th->th_off << 2);
5246
5247 /* Total IP/TCP options, in 32-bit words */
5248 iptcp_opt_words = (ip_tcp_hlen
5249 - sizeof(struct tcphdr)
5250 - sizeof(struct ip)) >> 2;
5251 }
5252 if (BGE_IS_575X_PLUS(sc)) {
5253 th->th_sum = 0;
5254 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5255 } else {
5256 /*
5257 * XXX jonathan (at) NetBSD.org: 5705 untested.
5258 * Requires TSO firmware patch for 5701/5703/5704.
5259 */
5260 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5261 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5262 }
5263
5264 mss = m_head->m_pkthdr.segsz;
5265 txbd_tso_flags |=
5266 BGE_TXBDFLAG_CPU_PRE_DMA |
5267 BGE_TXBDFLAG_CPU_POST_DMA;
5268
5269 /*
5270 * Our NIC TSO-assist assumes TSO has standard, optionless
5271 * IPv4 and TCP headers, which total 40 bytes. By default,
5272 * the NIC copies 40 bytes of IP/TCP header from the
5273 * supplied header into the IP/TCP header portion of
5274 * each post-TSO-segment. If the supplied packet has IP or
5275 * TCP options, we need to tell the NIC to copy those extra
5276 * bytes into each post-TSO header, in addition to the normal
5277 * 40-byte IP/TCP header (and to leave space accordingly).
5278 * Unfortunately, the driver encoding of option length
5279 * varies across different ASIC families.
5280 */
5281 tcp_seg_flags = 0;
5282 if (iptcp_opt_words) {
5283 if (BGE_IS_5705_PLUS(sc)) {
5284 tcp_seg_flags =
5285 iptcp_opt_words << 11;
5286 } else {
5287 txbd_tso_flags |=
5288 iptcp_opt_words << 12;
5289 }
5290 }
5291 maxsegsize = mss | tcp_seg_flags;
5292 ip->ip_len = htons(mss + ip_tcp_hlen);
5293
5294 } /* TSO setup */
5295
5296 /*
5297 * Start packing the mbufs in this chain into
5298 * the fragment pointers. Stop when we run out
5299 * of fragments or hit the end of the mbuf chain.
5300 */
5301 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5302 BUS_DMA_NOWAIT);
5303 if (error)
5304 return ENOBUFS;
5305 /*
5306 * Sanity check: avoid coming within 16 descriptors
5307 * of the end of the ring.
5308 */
5309 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5310 BGE_TSO_PRINTF(("%s: "
5311 " dmamap_load_mbuf too close to ring wrap\n",
5312 device_xname(sc->bge_dev)));
5313 goto fail_unload;
5314 }
5315
5316 mtag = sc->ethercom.ec_nvlans ?
5317 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5318
5319
5320 /* Iterate over dmap-map fragments. */
5321 for (i = 0; i < dmamap->dm_nsegs; i++) {
5322 f = &sc->bge_rdata->bge_tx_ring[frag];
5323 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5324 break;
5325
5326 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5327 f->bge_len = dmamap->dm_segs[i].ds_len;
5328
5329 /*
5330 * For 5751 and follow-ons, for TSO we must turn
5331 * off checksum-assist flag in the tx-descr, and
5332 * supply the ASIC-revision-specific encoding
5333 * of TSO flags and segsize.
5334 */
5335 if (use_tso) {
5336 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5337 f->bge_rsvd = maxsegsize;
5338 f->bge_flags = csum_flags | txbd_tso_flags;
5339 } else {
5340 f->bge_rsvd = 0;
5341 f->bge_flags =
5342 (csum_flags | txbd_tso_flags) & 0x0fff;
5343 }
5344 } else {
5345 f->bge_rsvd = 0;
5346 f->bge_flags = csum_flags;
5347 }
5348
5349 if (mtag != NULL) {
5350 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5351 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5352 } else {
5353 f->bge_vlan_tag = 0;
5354 }
5355 cur = frag;
5356 BGE_INC(frag, BGE_TX_RING_CNT);
5357 }
5358
5359 if (i < dmamap->dm_nsegs) {
5360 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5361 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5362 goto fail_unload;
5363 }
5364
5365 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5366 BUS_DMASYNC_PREWRITE);
5367
5368 if (frag == sc->bge_tx_saved_considx) {
5369 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5370 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5371
5372 goto fail_unload;
5373 }
5374
5375 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5376 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5377 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5378 sc->txdma[cur] = dma;
5379 sc->bge_txcnt += dmamap->dm_nsegs;
5380
5381 *txidx = frag;
5382
5383 return 0;
5384
5385 fail_unload:
5386 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5387
5388 return ENOBUFS;
5389 }
5390
5391 /*
5392 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5393 * to the mbuf data regions directly in the transmit descriptors.
5394 */
5395 static void
5396 bge_start(struct ifnet *ifp)
5397 {
5398 struct bge_softc *sc;
5399 struct mbuf *m_head = NULL;
5400 uint32_t prodidx;
5401 int pkts = 0;
5402
5403 sc = ifp->if_softc;
5404
5405 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5406 return;
5407
5408 prodidx = sc->bge_tx_prodidx;
5409
5410 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5411 IFQ_POLL(&ifp->if_snd, m_head);
5412 if (m_head == NULL)
5413 break;
5414
5415 #if 0
5416 /*
5417 * XXX
5418 * safety overkill. If this is a fragmented packet chain
5419 * with delayed TCP/UDP checksums, then only encapsulate
5420 * it if we have enough descriptors to handle the entire
5421 * chain at once.
5422 * (paranoia -- may not actually be needed)
5423 */
5424 if (m_head->m_flags & M_FIRSTFRAG &&
5425 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5426 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5427 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5428 ifp->if_flags |= IFF_OACTIVE;
5429 break;
5430 }
5431 }
5432 #endif
5433
5434 /*
5435 * Pack the data into the transmit ring. If we
5436 * don't have room, set the OACTIVE flag and wait
5437 * for the NIC to drain the ring.
5438 */
5439 if (bge_encap(sc, m_head, &prodidx)) {
5440 ifp->if_flags |= IFF_OACTIVE;
5441 break;
5442 }
5443
5444 /* now we are committed to transmit the packet */
5445 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5446 pkts++;
5447
5448 /*
5449 * If there's a BPF listener, bounce a copy of this frame
5450 * to him.
5451 */
5452 bpf_mtap(ifp, m_head);
5453 }
5454 if (pkts == 0)
5455 return;
5456
5457 /* Transmit */
5458 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5459 /* 5700 b2 errata */
5460 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5461 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5462
5463 sc->bge_tx_prodidx = prodidx;
5464
5465 /*
5466 * Set a timeout in case the chip goes out to lunch.
5467 */
5468 ifp->if_timer = 5;
5469 }
5470
5471 static int
5472 bge_init(struct ifnet *ifp)
5473 {
5474 struct bge_softc *sc = ifp->if_softc;
5475 const uint16_t *m;
5476 uint32_t mode, reg;
5477 int s, error = 0;
5478
5479 s = splnet();
5480
5481 ifp = &sc->ethercom.ec_if;
5482
5483 /* Cancel pending I/O and flush buffers. */
5484 bge_stop(ifp, 0);
5485
5486 bge_stop_fw(sc);
5487 bge_sig_pre_reset(sc, BGE_RESET_START);
5488 bge_reset(sc);
5489 bge_sig_legacy(sc, BGE_RESET_START);
5490
5491 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5492 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5493 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5494 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5495 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5496
5497 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5498 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5499 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5500 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5501
5502 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5503 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5504 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5505 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5506
5507 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5508 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5509 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5510 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5511 }
5512
5513 bge_sig_post_reset(sc, BGE_RESET_START);
5514
5515 bge_chipinit(sc);
5516
5517 /*
5518 * Init the various state machines, ring
5519 * control blocks and firmware.
5520 */
5521 error = bge_blockinit(sc);
5522 if (error != 0) {
5523 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5524 error);
5525 splx(s);
5526 return error;
5527 }
5528
5529 ifp = &sc->ethercom.ec_if;
5530
5531 /* 5718 step 25, 57XX step 54 */
5532 /* Specify MTU. */
5533 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5534 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5535
5536 /* 5718 step 23 */
5537 /* Load our MAC address. */
5538 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5539 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5540 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5541
5542 /* Enable or disable promiscuous mode as needed. */
5543 if (ifp->if_flags & IFF_PROMISC)
5544 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5545 else
5546 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5547
5548 /* Program multicast filter. */
5549 bge_setmulti(sc);
5550
5551 /* Init RX ring. */
5552 bge_init_rx_ring_std(sc);
5553
5554 /*
5555 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5556 * memory to insure that the chip has in fact read the first
5557 * entry of the ring.
5558 */
5559 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5560 uint32_t v, i;
5561 for (i = 0; i < 10; i++) {
5562 DELAY(20);
5563 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5564 if (v == (MCLBYTES - ETHER_ALIGN))
5565 break;
5566 }
5567 if (i == 10)
5568 aprint_error_dev(sc->bge_dev,
5569 "5705 A0 chip failed to load RX ring\n");
5570 }
5571
5572 /* Init jumbo RX ring. */
5573 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5574 bge_init_rx_ring_jumbo(sc);
5575
5576 /* Init our RX return ring index */
5577 sc->bge_rx_saved_considx = 0;
5578
5579 /* Init TX ring. */
5580 bge_init_tx_ring(sc);
5581
5582 /* 5718 step 63, 57XX step 94 */
5583 /* Enable TX MAC state machine lockup fix. */
5584 mode = CSR_READ_4(sc, BGE_TX_MODE);
5585 if (BGE_IS_5755_PLUS(sc) ||
5586 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5587 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5588 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5589 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5590 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5591 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5592 }
5593
5594 /* Turn on transmitter */
5595 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5596 /* 5718 step 64 */
5597 DELAY(100);
5598
5599 /* 5718 step 65, 57XX step 95 */
5600 /* Turn on receiver */
5601 mode = CSR_READ_4(sc, BGE_RX_MODE);
5602 if (BGE_IS_5755_PLUS(sc))
5603 mode |= BGE_RXMODE_IPV6_ENABLE;
5604 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5605 /* 5718 step 66 */
5606 DELAY(10);
5607
5608 /* 5718 step 12, 57XX step 37 */
5609 /*
5610 * XXX Doucments of 5718 series and 577xx say the recommended value
5611 * is 1, but tg3 set 1 only on 57765 series.
5612 */
5613 if (BGE_IS_57765_PLUS(sc))
5614 reg = 1;
5615 else
5616 reg = 2;
5617 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5618
5619 /* Tell firmware we're alive. */
5620 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5621
5622 /* Enable host interrupts. */
5623 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5624 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5625 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5626
5627 if ((error = bge_ifmedia_upd(ifp)) != 0)
5628 goto out;
5629
5630 ifp->if_flags |= IFF_RUNNING;
5631 ifp->if_flags &= ~IFF_OACTIVE;
5632
5633 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5634
5635 out:
5636 sc->bge_if_flags = ifp->if_flags;
5637 splx(s);
5638
5639 return error;
5640 }
5641
5642 /*
5643 * Set media options.
5644 */
5645 static int
5646 bge_ifmedia_upd(struct ifnet *ifp)
5647 {
5648 struct bge_softc *sc = ifp->if_softc;
5649 struct mii_data *mii = &sc->bge_mii;
5650 struct ifmedia *ifm = &sc->bge_ifmedia;
5651 int rc;
5652
5653 /* If this is a 1000baseX NIC, enable the TBI port. */
5654 if (sc->bge_flags & BGEF_FIBER_TBI) {
5655 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5656 return EINVAL;
5657 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5658 case IFM_AUTO:
5659 /*
5660 * The BCM5704 ASIC appears to have a special
5661 * mechanism for programming the autoneg
5662 * advertisement registers in TBI mode.
5663 */
5664 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5665 uint32_t sgdig;
5666 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5667 if (sgdig & BGE_SGDIGSTS_DONE) {
5668 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5669 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5670 sgdig |= BGE_SGDIGCFG_AUTO |
5671 BGE_SGDIGCFG_PAUSE_CAP |
5672 BGE_SGDIGCFG_ASYM_PAUSE;
5673 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5674 sgdig | BGE_SGDIGCFG_SEND);
5675 DELAY(5);
5676 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5677 sgdig);
5678 }
5679 }
5680 break;
5681 case IFM_1000_SX:
5682 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5683 BGE_CLRBIT(sc, BGE_MAC_MODE,
5684 BGE_MACMODE_HALF_DUPLEX);
5685 } else {
5686 BGE_SETBIT(sc, BGE_MAC_MODE,
5687 BGE_MACMODE_HALF_DUPLEX);
5688 }
5689 DELAY(40);
5690 break;
5691 default:
5692 return EINVAL;
5693 }
5694 /* XXX 802.3x flow control for 1000BASE-SX */
5695 return 0;
5696 }
5697
5698 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5699 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5700 uint32_t reg;
5701
5702 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5703 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5704 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5705 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5706 }
5707 }
5708
5709 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5710 if ((rc = mii_mediachg(mii)) == ENXIO)
5711 return 0;
5712
5713 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5714 uint32_t reg;
5715
5716 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5717 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5718 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5719 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5720 delay(40);
5721 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5722 }
5723 }
5724
5725 /*
5726 * Force an interrupt so that we will call bge_link_upd
5727 * if needed and clear any pending link state attention.
5728 * Without this we are not getting any further interrupts
5729 * for link state changes and thus will not UP the link and
5730 * not be able to send in bge_start. The only way to get
5731 * things working was to receive a packet and get a RX intr.
5732 */
5733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5734 sc->bge_flags & BGEF_IS_5788)
5735 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5736 else
5737 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5738
5739 return rc;
5740 }
5741
5742 /*
5743 * Report current media status.
5744 */
5745 static void
5746 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5747 {
5748 struct bge_softc *sc = ifp->if_softc;
5749 struct mii_data *mii = &sc->bge_mii;
5750
5751 if (sc->bge_flags & BGEF_FIBER_TBI) {
5752 ifmr->ifm_status = IFM_AVALID;
5753 ifmr->ifm_active = IFM_ETHER;
5754 if (CSR_READ_4(sc, BGE_MAC_STS) &
5755 BGE_MACSTAT_TBI_PCS_SYNCHED)
5756 ifmr->ifm_status |= IFM_ACTIVE;
5757 ifmr->ifm_active |= IFM_1000_SX;
5758 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5759 ifmr->ifm_active |= IFM_HDX;
5760 else
5761 ifmr->ifm_active |= IFM_FDX;
5762 return;
5763 }
5764
5765 mii_pollstat(mii);
5766 ifmr->ifm_status = mii->mii_media_status;
5767 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5768 sc->bge_flowflags;
5769 }
5770
5771 static int
5772 bge_ifflags_cb(struct ethercom *ec)
5773 {
5774 struct ifnet *ifp = &ec->ec_if;
5775 struct bge_softc *sc = ifp->if_softc;
5776 int change = ifp->if_flags ^ sc->bge_if_flags;
5777
5778 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5779 return ENETRESET;
5780 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5781 return 0;
5782
5783 if ((ifp->if_flags & IFF_PROMISC) == 0)
5784 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5785 else
5786 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5787
5788 bge_setmulti(sc);
5789
5790 sc->bge_if_flags = ifp->if_flags;
5791 return 0;
5792 }
5793
5794 static int
5795 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5796 {
5797 struct bge_softc *sc = ifp->if_softc;
5798 struct ifreq *ifr = (struct ifreq *) data;
5799 int s, error = 0;
5800 struct mii_data *mii;
5801
5802 s = splnet();
5803
5804 switch (command) {
5805 case SIOCSIFMEDIA:
5806 /* XXX Flow control is not supported for 1000BASE-SX */
5807 if (sc->bge_flags & BGEF_FIBER_TBI) {
5808 ifr->ifr_media &= ~IFM_ETH_FMASK;
5809 sc->bge_flowflags = 0;
5810 }
5811
5812 /* Flow control requires full-duplex mode. */
5813 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5814 (ifr->ifr_media & IFM_FDX) == 0) {
5815 ifr->ifr_media &= ~IFM_ETH_FMASK;
5816 }
5817 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5818 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5819 /* We can do both TXPAUSE and RXPAUSE. */
5820 ifr->ifr_media |=
5821 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5822 }
5823 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5824 }
5825 /* FALLTHROUGH */
5826 case SIOCGIFMEDIA:
5827 if (sc->bge_flags & BGEF_FIBER_TBI) {
5828 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5829 command);
5830 } else {
5831 mii = &sc->bge_mii;
5832 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5833 command);
5834 }
5835 break;
5836 default:
5837 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5838 break;
5839
5840 error = 0;
5841
5842 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5843 ;
5844 else if (ifp->if_flags & IFF_RUNNING)
5845 bge_setmulti(sc);
5846 break;
5847 }
5848
5849 splx(s);
5850
5851 return error;
5852 }
5853
5854 static void
5855 bge_watchdog(struct ifnet *ifp)
5856 {
5857 struct bge_softc *sc;
5858
5859 sc = ifp->if_softc;
5860
5861 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5862
5863 ifp->if_flags &= ~IFF_RUNNING;
5864 bge_init(ifp);
5865
5866 ifp->if_oerrors++;
5867 }
5868
5869 static void
5870 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5871 {
5872 int i;
5873
5874 BGE_CLRBIT_FLUSH(sc, reg, bit);
5875
5876 for (i = 0; i < 1000; i++) {
5877 delay(100);
5878 if ((CSR_READ_4(sc, reg) & bit) == 0)
5879 return;
5880 }
5881
5882 /*
5883 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5884 * on some environment (and once after boot?)
5885 */
5886 if (reg != BGE_SRS_MODE)
5887 aprint_error_dev(sc->bge_dev,
5888 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5889 (u_long)reg, bit);
5890 }
5891
5892 /*
5893 * Stop the adapter and free any mbufs allocated to the
5894 * RX and TX lists.
5895 */
5896 static void
5897 bge_stop(struct ifnet *ifp, int disable)
5898 {
5899 struct bge_softc *sc = ifp->if_softc;
5900
5901 if (disable) {
5902 sc->bge_detaching = 1;
5903 callout_halt(&sc->bge_timeout, NULL);
5904 } else
5905 callout_stop(&sc->bge_timeout);
5906
5907 /* Disable host interrupts. */
5908 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5909 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5910
5911 /*
5912 * Tell firmware we're shutting down.
5913 */
5914 bge_stop_fw(sc);
5915 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5916
5917 /*
5918 * Disable all of the receiver blocks.
5919 */
5920 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5921 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5922 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5923 if (BGE_IS_5700_FAMILY(sc))
5924 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5925 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5926 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5927 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5928
5929 /*
5930 * Disable all of the transmit blocks.
5931 */
5932 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5933 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5934 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5935 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5936 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5937 if (BGE_IS_5700_FAMILY(sc))
5938 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5939 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5940
5941 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5942 delay(40);
5943
5944 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5945
5946 /*
5947 * Shut down all of the memory managers and related
5948 * state machines.
5949 */
5950 /* 5718 step 5a,5b */
5951 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5952 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5953 if (BGE_IS_5700_FAMILY(sc))
5954 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5955
5956 /* 5718 step 5c,5d */
5957 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5958 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5959
5960 if (BGE_IS_5700_FAMILY(sc)) {
5961 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5962 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5963 }
5964
5965 bge_reset(sc);
5966 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5967 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5968
5969 /*
5970 * Keep the ASF firmware running if up.
5971 */
5972 if (sc->bge_asf_mode & ASF_STACKUP)
5973 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5974 else
5975 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5976
5977 /* Free the RX lists. */
5978 bge_free_rx_ring_std(sc);
5979
5980 /* Free jumbo RX list. */
5981 if (BGE_IS_JUMBO_CAPABLE(sc))
5982 bge_free_rx_ring_jumbo(sc);
5983
5984 /* Free TX buffers. */
5985 bge_free_tx_ring(sc);
5986
5987 /*
5988 * Isolate/power down the PHY.
5989 */
5990 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5991 mii_down(&sc->bge_mii);
5992
5993 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5994
5995 /* Clear MAC's link state (PHY may still have link UP). */
5996 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5997
5998 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5999 }
6000
6001 static void
6002 bge_link_upd(struct bge_softc *sc)
6003 {
6004 struct ifnet *ifp = &sc->ethercom.ec_if;
6005 struct mii_data *mii = &sc->bge_mii;
6006 uint32_t status;
6007 int link;
6008
6009 /* Clear 'pending link event' flag */
6010 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6011
6012 /*
6013 * Process link state changes.
6014 * Grrr. The link status word in the status block does
6015 * not work correctly on the BCM5700 rev AX and BX chips,
6016 * according to all available information. Hence, we have
6017 * to enable MII interrupts in order to properly obtain
6018 * async link changes. Unfortunately, this also means that
6019 * we have to read the MAC status register to detect link
6020 * changes, thereby adding an additional register access to
6021 * the interrupt handler.
6022 */
6023
6024 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6025 status = CSR_READ_4(sc, BGE_MAC_STS);
6026 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6027 mii_pollstat(mii);
6028
6029 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6030 mii->mii_media_status & IFM_ACTIVE &&
6031 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6032 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6033 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6034 (!(mii->mii_media_status & IFM_ACTIVE) ||
6035 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6036 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6037
6038 /* Clear the interrupt */
6039 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6040 BGE_EVTENB_MI_INTERRUPT);
6041 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6042 BRGPHY_MII_ISR);
6043 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6044 BRGPHY_MII_IMR, BRGPHY_INTRS);
6045 }
6046 return;
6047 }
6048
6049 if (sc->bge_flags & BGEF_FIBER_TBI) {
6050 status = CSR_READ_4(sc, BGE_MAC_STS);
6051 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6052 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6053 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6054 if (BGE_ASICREV(sc->bge_chipid)
6055 == BGE_ASICREV_BCM5704) {
6056 BGE_CLRBIT(sc, BGE_MAC_MODE,
6057 BGE_MACMODE_TBI_SEND_CFGS);
6058 DELAY(40);
6059 }
6060 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6061 if_link_state_change(ifp, LINK_STATE_UP);
6062 }
6063 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6064 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6065 if_link_state_change(ifp, LINK_STATE_DOWN);
6066 }
6067 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6068 /*
6069 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6070 * bit in status word always set. Workaround this bug by
6071 * reading PHY link status directly.
6072 */
6073 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6074 BGE_STS_LINK : 0;
6075
6076 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6077 mii_pollstat(mii);
6078
6079 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6080 mii->mii_media_status & IFM_ACTIVE &&
6081 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6082 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6083 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6084 (!(mii->mii_media_status & IFM_ACTIVE) ||
6085 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6086 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6087 }
6088 } else {
6089 /*
6090 * For controllers that call mii_tick, we have to poll
6091 * link status.
6092 */
6093 mii_pollstat(mii);
6094 }
6095
6096 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6097 uint32_t reg, scale;
6098
6099 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6100 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6101 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6102 scale = 65;
6103 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6104 scale = 6;
6105 else
6106 scale = 12;
6107
6108 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6109 ~BGE_MISCCFG_TIMER_PRESCALER;
6110 reg |= scale << 1;
6111 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6112 }
6113 /* Clear the attention */
6114 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6115 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6116 BGE_MACSTAT_LINK_CHANGED);
6117 }
6118
6119 static int
6120 bge_sysctl_verify(SYSCTLFN_ARGS)
6121 {
6122 int error, t;
6123 struct sysctlnode node;
6124
6125 node = *rnode;
6126 t = *(int*)rnode->sysctl_data;
6127 node.sysctl_data = &t;
6128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6129 if (error || newp == NULL)
6130 return error;
6131
6132 #if 0
6133 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6134 node.sysctl_num, rnode->sysctl_num));
6135 #endif
6136
6137 if (node.sysctl_num == bge_rxthresh_nodenum) {
6138 if (t < 0 || t >= NBGE_RX_THRESH)
6139 return EINVAL;
6140 bge_update_all_threshes(t);
6141 } else
6142 return EINVAL;
6143
6144 *(int*)rnode->sysctl_data = t;
6145
6146 return 0;
6147 }
6148
6149 /*
6150 * Set up sysctl(3) MIB, hw.bge.*.
6151 */
6152 static void
6153 bge_sysctl_init(struct bge_softc *sc)
6154 {
6155 int rc, bge_root_num;
6156 const struct sysctlnode *node;
6157
6158 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6159 0, CTLTYPE_NODE, "bge",
6160 SYSCTL_DESCR("BGE interface controls"),
6161 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6162 goto out;
6163 }
6164
6165 bge_root_num = node->sysctl_num;
6166
6167 /* BGE Rx interrupt mitigation level */
6168 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6169 CTLFLAG_READWRITE,
6170 CTLTYPE_INT, "rx_lvl",
6171 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6172 bge_sysctl_verify, 0,
6173 &bge_rx_thresh_lvl,
6174 0, CTL_HW, bge_root_num, CTL_CREATE,
6175 CTL_EOL)) != 0) {
6176 goto out;
6177 }
6178
6179 bge_rxthresh_nodenum = node->sysctl_num;
6180
6181 return;
6182
6183 out:
6184 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6185 }
6186
6187 #ifdef BGE_DEBUG
6188 void
6189 bge_debug_info(struct bge_softc *sc)
6190 {
6191
6192 printf("Hardware Flags:\n");
6193 if (BGE_IS_57765_PLUS(sc))
6194 printf(" - 57765 Plus\n");
6195 if (BGE_IS_5717_PLUS(sc))
6196 printf(" - 5717 Plus\n");
6197 if (BGE_IS_5755_PLUS(sc))
6198 printf(" - 5755 Plus\n");
6199 if (BGE_IS_575X_PLUS(sc))
6200 printf(" - 575X Plus\n");
6201 if (BGE_IS_5705_PLUS(sc))
6202 printf(" - 5705 Plus\n");
6203 if (BGE_IS_5714_FAMILY(sc))
6204 printf(" - 5714 Family\n");
6205 if (BGE_IS_5700_FAMILY(sc))
6206 printf(" - 5700 Family\n");
6207 if (sc->bge_flags & BGEF_IS_5788)
6208 printf(" - 5788\n");
6209 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6210 printf(" - Supports Jumbo Frames\n");
6211 if (sc->bge_flags & BGEF_NO_EEPROM)
6212 printf(" - No EEPROM\n");
6213 if (sc->bge_flags & BGEF_PCIX)
6214 printf(" - PCI-X Bus\n");
6215 if (sc->bge_flags & BGEF_PCIE)
6216 printf(" - PCI Express Bus\n");
6217 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6218 printf(" - RX Alignment Bug\n");
6219 if (sc->bge_flags & BGEF_APE)
6220 printf(" - APE\n");
6221 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6222 printf(" - CPMU\n");
6223 if (sc->bge_flags & BGEF_TSO)
6224 printf(" - TSO\n");
6225 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6226 printf(" - TAGGED_STATUS\n");
6227
6228 /* PHY related */
6229 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6230 printf(" - No 3 LEDs\n");
6231 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6232 printf(" - CRC bug\n");
6233 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6234 printf(" - ADC bug\n");
6235 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6236 printf(" - 5704 A0 bug\n");
6237 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6238 printf(" - jitter bug\n");
6239 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6240 printf(" - BER bug\n");
6241 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6242 printf(" - adjust trim\n");
6243 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6244 printf(" - no wirespeed\n");
6245
6246 /* ASF related */
6247 if (sc->bge_asf_mode & ASF_ENABLE)
6248 printf(" - ASF enable\n");
6249 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6250 printf(" - ASF new handshake\n");
6251 if (sc->bge_asf_mode & ASF_STACKUP)
6252 printf(" - ASF stackup\n");
6253 }
6254 #endif /* BGE_DEBUG */
6255
6256 static int
6257 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6258 {
6259 prop_dictionary_t dict;
6260 prop_data_t ea;
6261
6262 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6263 return 1;
6264
6265 dict = device_properties(sc->bge_dev);
6266 ea = prop_dictionary_get(dict, "mac-address");
6267 if (ea != NULL) {
6268 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6269 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6270 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6271 return 0;
6272 }
6273
6274 return 1;
6275 }
6276
6277 static int
6278 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6279 {
6280 uint32_t mac_addr;
6281
6282 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6283 if ((mac_addr >> 16) == 0x484b) {
6284 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6285 ether_addr[1] = (uint8_t)mac_addr;
6286 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6287 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6288 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6289 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6290 ether_addr[5] = (uint8_t)mac_addr;
6291 return 0;
6292 }
6293 return 1;
6294 }
6295
6296 static int
6297 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6298 {
6299 int mac_offset = BGE_EE_MAC_OFFSET;
6300
6301 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6302 mac_offset = BGE_EE_MAC_OFFSET_5906;
6303
6304 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6305 ETHER_ADDR_LEN));
6306 }
6307
6308 static int
6309 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6310 {
6311
6312 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6313 return 1;
6314
6315 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6316 ETHER_ADDR_LEN));
6317 }
6318
6319 static int
6320 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6321 {
6322 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6323 /* NOTE: Order is critical */
6324 bge_get_eaddr_fw,
6325 bge_get_eaddr_mem,
6326 bge_get_eaddr_nvram,
6327 bge_get_eaddr_eeprom,
6328 NULL
6329 };
6330 const bge_eaddr_fcn_t *func;
6331
6332 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6333 if ((*func)(sc, eaddr) == 0)
6334 break;
6335 }
6336 return (*func == NULL ? ENXIO : 0);
6337 }
6338