if_bge.c revision 1.313 1 /* $NetBSD: if_bge.c,v 1.313 2017/11/22 02:35:54 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.313 2017/11/22 02:35:54 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Gigabit Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Gigabit Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Gigabit Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Gigabit Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Gigabit Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Gigabit Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Gigabit Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Gigabit Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
747 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
748 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
749
750 { 0, NULL }
751 };
752
753 /*
754 * Some defaults for major revisions, so that newer steppings
755 * that we don't know about have a shot at working.
756 */
757 static const struct bge_revision bge_majorrevs[] = {
758 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
759 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
760 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
761 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
762 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
763 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
764 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
767 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
768 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
769 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
770 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
771 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
772 /* 5754 and 5787 share the same ASIC ID */
773 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
774 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
775 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
776 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
777 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
778 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
779 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
780 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
781
782 { 0, NULL }
783 };
784
785 static int bge_allow_asf = 1;
786
787 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
788 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
789
790 static uint32_t
791 bge_readmem_ind(struct bge_softc *sc, int off)
792 {
793 pcireg_t val;
794
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
796 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
797 return 0;
798
799 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
800 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
801 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
802 return val;
803 }
804
805 static void
806 bge_writemem_ind(struct bge_softc *sc, int off, int val)
807 {
808
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
812 }
813
814 /*
815 * PCI Express only
816 */
817 static void
818 bge_set_max_readrq(struct bge_softc *sc)
819 {
820 pcireg_t val;
821
822 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
823 + PCIE_DCSR);
824 val &= ~PCIE_DCSR_MAX_READ_REQ;
825 switch (sc->bge_expmrq) {
826 case 2048:
827 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
828 break;
829 case 4096:
830 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
831 break;
832 default:
833 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
834 break;
835 }
836 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
837 + PCIE_DCSR, val);
838 }
839
840 #ifdef notdef
841 static uint32_t
842 bge_readreg_ind(struct bge_softc *sc, int off)
843 {
844 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
845 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
846 }
847 #endif
848
849 static void
850 bge_writereg_ind(struct bge_softc *sc, int off, int val)
851 {
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
854 }
855
856 static void
857 bge_writemem_direct(struct bge_softc *sc, int off, int val)
858 {
859 CSR_WRITE_4(sc, off, val);
860 }
861
862 static void
863 bge_writembx(struct bge_softc *sc, int off, int val)
864 {
865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
866 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
867
868 CSR_WRITE_4(sc, off, val);
869 }
870
871 static void
872 bge_writembx_flush(struct bge_softc *sc, int off, int val)
873 {
874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
875 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
876
877 CSR_WRITE_4_FLUSH(sc, off, val);
878 }
879
880 /*
881 * Clear all stale locks and select the lock for this driver instance.
882 */
883 void
884 bge_ape_lock_init(struct bge_softc *sc)
885 {
886 struct pci_attach_args *pa = &(sc->bge_pa);
887 uint32_t bit, regbase;
888 int i;
889
890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
891 regbase = BGE_APE_LOCK_GRANT;
892 else
893 regbase = BGE_APE_PER_LOCK_GRANT;
894
895 /* Clear any stale locks. */
896 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
897 switch (i) {
898 case BGE_APE_LOCK_PHY0:
899 case BGE_APE_LOCK_PHY1:
900 case BGE_APE_LOCK_PHY2:
901 case BGE_APE_LOCK_PHY3:
902 bit = BGE_APE_LOCK_GRANT_DRIVER0;
903 break;
904 default:
905 if (pa->pa_function == 0)
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 else
908 bit = (1 << pa->pa_function);
909 }
910 APE_WRITE_4(sc, regbase + 4 * i, bit);
911 }
912
913 /* Select the PHY lock based on the device's function number. */
914 switch (pa->pa_function) {
915 case 0:
916 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
917 break;
918 case 1:
919 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
920 break;
921 case 2:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
923 break;
924 case 3:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
926 break;
927 default:
928 printf("%s: PHY lock not supported on function\n",
929 device_xname(sc->bge_dev));
930 break;
931 }
932 }
933
934 /*
935 * Check for APE firmware, set flags, and print version info.
936 */
937 void
938 bge_ape_read_fw_ver(struct bge_softc *sc)
939 {
940 const char *fwtype;
941 uint32_t apedata, features;
942
943 /* Check for a valid APE signature in shared memory. */
944 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
945 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
946 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
947 return;
948 }
949
950 /* Check if APE firmware is running. */
951 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
952 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
953 printf("%s: APE signature found but FW status not ready! "
954 "0x%08x\n", device_xname(sc->bge_dev), apedata);
955 return;
956 }
957
958 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
959
960 /* Fetch the APE firwmare type and version. */
961 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
962 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
963 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
964 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
965 fwtype = "NCSI";
966 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
967 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
968 fwtype = "DASH";
969 } else
970 fwtype = "UNKN";
971
972 /* Print the APE firmware version. */
973 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
974 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
975 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
976 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
977 (apedata & BGE_APE_FW_VERSION_BLDMSK));
978 }
979
980 int
981 bge_ape_lock(struct bge_softc *sc, int locknum)
982 {
983 struct pci_attach_args *pa = &(sc->bge_pa);
984 uint32_t bit, gnt, req, status;
985 int i, off;
986
987 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
988 return (0);
989
990 /* Lock request/grant registers have different bases. */
991 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
992 req = BGE_APE_LOCK_REQ;
993 gnt = BGE_APE_LOCK_GRANT;
994 } else {
995 req = BGE_APE_PER_LOCK_REQ;
996 gnt = BGE_APE_PER_LOCK_GRANT;
997 }
998
999 off = 4 * locknum;
1000
1001 switch (locknum) {
1002 case BGE_APE_LOCK_GPIO:
1003 /* Lock required when using GPIO. */
1004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1005 return (0);
1006 if (pa->pa_function == 0)
1007 bit = BGE_APE_LOCK_REQ_DRIVER0;
1008 else
1009 bit = (1 << pa->pa_function);
1010 break;
1011 case BGE_APE_LOCK_GRC:
1012 /* Lock required to reset the device. */
1013 if (pa->pa_function == 0)
1014 bit = BGE_APE_LOCK_REQ_DRIVER0;
1015 else
1016 bit = (1 << pa->pa_function);
1017 break;
1018 case BGE_APE_LOCK_MEM:
1019 /* Lock required when accessing certain APE memory. */
1020 if (pa->pa_function == 0)
1021 bit = BGE_APE_LOCK_REQ_DRIVER0;
1022 else
1023 bit = (1 << pa->pa_function);
1024 break;
1025 case BGE_APE_LOCK_PHY0:
1026 case BGE_APE_LOCK_PHY1:
1027 case BGE_APE_LOCK_PHY2:
1028 case BGE_APE_LOCK_PHY3:
1029 /* Lock required when accessing PHYs. */
1030 bit = BGE_APE_LOCK_REQ_DRIVER0;
1031 break;
1032 default:
1033 return (EINVAL);
1034 }
1035
1036 /* Request a lock. */
1037 APE_WRITE_4_FLUSH(sc, req + off, bit);
1038
1039 /* Wait up to 1 second to acquire lock. */
1040 for (i = 0; i < 20000; i++) {
1041 status = APE_READ_4(sc, gnt + off);
1042 if (status == bit)
1043 break;
1044 DELAY(50);
1045 }
1046
1047 /* Handle any errors. */
1048 if (status != bit) {
1049 printf("%s: APE lock %d request failed! "
1050 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1051 device_xname(sc->bge_dev),
1052 locknum, req + off, bit & 0xFFFF, gnt + off,
1053 status & 0xFFFF);
1054 /* Revoke the lock request. */
1055 APE_WRITE_4(sc, gnt + off, bit);
1056 return (EBUSY);
1057 }
1058
1059 return (0);
1060 }
1061
1062 void
1063 bge_ape_unlock(struct bge_softc *sc, int locknum)
1064 {
1065 struct pci_attach_args *pa = &(sc->bge_pa);
1066 uint32_t bit, gnt;
1067 int off;
1068
1069 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1070 return;
1071
1072 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1073 gnt = BGE_APE_LOCK_GRANT;
1074 else
1075 gnt = BGE_APE_PER_LOCK_GRANT;
1076
1077 off = 4 * locknum;
1078
1079 switch (locknum) {
1080 case BGE_APE_LOCK_GPIO:
1081 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1082 return;
1083 if (pa->pa_function == 0)
1084 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1085 else
1086 bit = (1 << pa->pa_function);
1087 break;
1088 case BGE_APE_LOCK_GRC:
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_MEM:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_PHY0:
1101 case BGE_APE_LOCK_PHY1:
1102 case BGE_APE_LOCK_PHY2:
1103 case BGE_APE_LOCK_PHY3:
1104 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1105 break;
1106 default:
1107 return;
1108 }
1109
1110 /* Write and flush for consecutive bge_ape_lock() */
1111 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1112 }
1113
1114 /*
1115 * Send an event to the APE firmware.
1116 */
1117 void
1118 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1119 {
1120 uint32_t apedata;
1121 int i;
1122
1123 /* NCSI does not support APE events. */
1124 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1125 return;
1126
1127 /* Wait up to 1ms for APE to service previous event. */
1128 for (i = 10; i > 0; i--) {
1129 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1130 break;
1131 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1132 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1133 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1134 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1135 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1136 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1137 break;
1138 }
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 DELAY(100);
1141 }
1142 if (i == 0) {
1143 printf("%s: APE event 0x%08x send timed out\n",
1144 device_xname(sc->bge_dev), event);
1145 }
1146 }
1147
1148 void
1149 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1150 {
1151 uint32_t apedata, event;
1152
1153 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1154 return;
1155
1156 switch (kind) {
1157 case BGE_RESET_START:
1158 /* If this is the first load, clear the load counter. */
1159 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1160 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1161 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1162 else {
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1164 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1165 }
1166 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1167 BGE_APE_HOST_SEG_SIG_MAGIC);
1168 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1169 BGE_APE_HOST_SEG_LEN_MAGIC);
1170
1171 /* Add some version info if bge(4) supports it. */
1172 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1173 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1174 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1175 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1176 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1177 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1179 BGE_APE_HOST_DRVR_STATE_START);
1180 event = BGE_APE_EVENT_STATUS_STATE_START;
1181 break;
1182 case BGE_RESET_SHUTDOWN:
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1185 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1186 break;
1187 case BGE_RESET_SUSPEND:
1188 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1189 break;
1190 default:
1191 return;
1192 }
1193
1194 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1195 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1196 }
1197
1198 static uint8_t
1199 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1200 {
1201 uint32_t access, byte = 0;
1202 int i;
1203
1204 /* Lock. */
1205 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1206 for (i = 0; i < 8000; i++) {
1207 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1208 break;
1209 DELAY(20);
1210 }
1211 if (i == 8000)
1212 return 1;
1213
1214 /* Enable access. */
1215 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1216 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1217
1218 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1219 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1220 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1221 DELAY(10);
1222 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1223 DELAY(10);
1224 break;
1225 }
1226 }
1227
1228 if (i == BGE_TIMEOUT * 10) {
1229 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1230 return 1;
1231 }
1232
1233 /* Get result. */
1234 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1235
1236 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1237
1238 /* Disable access. */
1239 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1240
1241 /* Unlock. */
1242 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * Read a sequence of bytes from NVRAM.
1249 */
1250 static int
1251 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1252 {
1253 int error = 0, i;
1254 uint8_t byte = 0;
1255
1256 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1257 return 1;
1258
1259 for (i = 0; i < cnt; i++) {
1260 error = bge_nvram_getbyte(sc, off + i, &byte);
1261 if (error)
1262 break;
1263 *(dest + i) = byte;
1264 }
1265
1266 return (error ? 1 : 0);
1267 }
1268
1269 /*
1270 * Read a byte of data stored in the EEPROM at address 'addr.' The
1271 * BCM570x supports both the traditional bitbang interface and an
1272 * auto access interface for reading the EEPROM. We use the auto
1273 * access method.
1274 */
1275 static uint8_t
1276 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1277 {
1278 int i;
1279 uint32_t byte = 0;
1280
1281 /*
1282 * Enable use of auto EEPROM access so we can avoid
1283 * having to use the bitbang method.
1284 */
1285 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1286
1287 /* Reset the EEPROM, load the clock period. */
1288 CSR_WRITE_4(sc, BGE_EE_ADDR,
1289 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1290 DELAY(20);
1291
1292 /* Issue the read EEPROM command. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1294
1295 /* Wait for completion */
1296 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1297 DELAY(10);
1298 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1299 break;
1300 }
1301
1302 if (i == BGE_TIMEOUT * 10) {
1303 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1304 return 1;
1305 }
1306
1307 /* Get result. */
1308 byte = CSR_READ_4(sc, BGE_EE_DATA);
1309
1310 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Read a sequence of bytes from the EEPROM.
1317 */
1318 static int
1319 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1320 {
1321 int error = 0, i;
1322 uint8_t byte = 0;
1323 char *dest = destv;
1324
1325 for (i = 0; i < cnt; i++) {
1326 error = bge_eeprom_getbyte(sc, off + i, &byte);
1327 if (error)
1328 break;
1329 *(dest + i) = byte;
1330 }
1331
1332 return (error ? 1 : 0);
1333 }
1334
1335 static int
1336 bge_miibus_readreg(device_t dev, int phy, int reg)
1337 {
1338 struct bge_softc *sc = device_private(dev);
1339 uint32_t val;
1340 uint32_t autopoll;
1341 int i;
1342
1343 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1344 return 0;
1345
1346 /* Reading with autopolling on may trigger PCI errors */
1347 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1348 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1349 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1350 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1351 DELAY(80);
1352 }
1353
1354 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1355 BGE_MIPHY(phy) | BGE_MIREG(reg));
1356
1357 for (i = 0; i < BGE_TIMEOUT; i++) {
1358 delay(10);
1359 val = CSR_READ_4(sc, BGE_MI_COMM);
1360 if (!(val & BGE_MICOMM_BUSY)) {
1361 DELAY(5);
1362 val = CSR_READ_4(sc, BGE_MI_COMM);
1363 break;
1364 }
1365 }
1366
1367 if (i == BGE_TIMEOUT) {
1368 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1369 val = 0;
1370 goto done;
1371 }
1372
1373 done:
1374 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1375 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1376 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1377 DELAY(80);
1378 }
1379
1380 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1381
1382 if (val & BGE_MICOMM_READFAIL)
1383 return 0;
1384
1385 return (val & 0xFFFF);
1386 }
1387
1388 static void
1389 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1390 {
1391 struct bge_softc *sc = device_private(dev);
1392 uint32_t autopoll;
1393 int i;
1394
1395 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1396 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1397 return;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 /* Reading with autopolling on may trigger PCI errors */
1403 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1404 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1405 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1406 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1407 DELAY(80);
1408 }
1409
1410 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1411 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1412
1413 for (i = 0; i < BGE_TIMEOUT; i++) {
1414 delay(10);
1415 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1416 delay(5);
1417 CSR_READ_4(sc, BGE_MI_COMM);
1418 break;
1419 }
1420 }
1421
1422 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1423 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1424 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1425 delay(80);
1426 }
1427
1428 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1429
1430 if (i == BGE_TIMEOUT)
1431 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1432 }
1433
1434 static void
1435 bge_miibus_statchg(struct ifnet *ifp)
1436 {
1437 struct bge_softc *sc = ifp->if_softc;
1438 struct mii_data *mii = &sc->bge_mii;
1439 uint32_t mac_mode, rx_mode, tx_mode;
1440
1441 /*
1442 * Get flow control negotiation result.
1443 */
1444 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1445 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1446 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1447
1448 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1449 mii->mii_media_status & IFM_ACTIVE &&
1450 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1451 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1452 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1453 (!(mii->mii_media_status & IFM_ACTIVE) ||
1454 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1455 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1456
1457 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1458 return;
1459
1460 /* Set the port mode (MII/GMII) to match the link speed. */
1461 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1462 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1463 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1464 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1465 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1466 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1467 mac_mode |= BGE_PORTMODE_GMII;
1468 else
1469 mac_mode |= BGE_PORTMODE_MII;
1470
1471 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1472 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1473 if ((mii->mii_media_active & IFM_FDX) != 0) {
1474 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1475 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1476 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1477 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1478 } else
1479 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1480
1481 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1482 DELAY(40);
1483 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1484 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1485 }
1486
1487 /*
1488 * Update rx threshold levels to values in a particular slot
1489 * of the interrupt-mitigation table bge_rx_threshes.
1490 */
1491 static void
1492 bge_set_thresh(struct ifnet *ifp, int lvl)
1493 {
1494 struct bge_softc *sc = ifp->if_softc;
1495 int s;
1496
1497 /* For now, just save the new Rx-intr thresholds and record
1498 * that a threshold update is pending. Updating the hardware
1499 * registers here (even at splhigh()) is observed to
1500 * occasionaly cause glitches where Rx-interrupts are not
1501 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1502 */
1503 s = splnet();
1504 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1505 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1506 sc->bge_pending_rxintr_change = 1;
1507 splx(s);
1508 }
1509
1510
1511 /*
1512 * Update Rx thresholds of all bge devices
1513 */
1514 static void
1515 bge_update_all_threshes(int lvl)
1516 {
1517 struct ifnet *ifp;
1518 const char * const namebuf = "bge";
1519 int namelen;
1520 int s;
1521
1522 if (lvl < 0)
1523 lvl = 0;
1524 else if (lvl >= NBGE_RX_THRESH)
1525 lvl = NBGE_RX_THRESH - 1;
1526
1527 namelen = strlen(namebuf);
1528 /*
1529 * Now search all the interfaces for this name/number
1530 */
1531 s = pserialize_read_enter();
1532 IFNET_READER_FOREACH(ifp) {
1533 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1534 continue;
1535 /* We got a match: update if doing auto-threshold-tuning */
1536 if (bge_auto_thresh)
1537 bge_set_thresh(ifp, lvl);
1538 }
1539 pserialize_read_exit(s);
1540 }
1541
1542 /*
1543 * Handle events that have triggered interrupts.
1544 */
1545 static void
1546 bge_handle_events(struct bge_softc *sc)
1547 {
1548
1549 return;
1550 }
1551
1552 /*
1553 * Memory management for jumbo frames.
1554 */
1555
1556 static int
1557 bge_alloc_jumbo_mem(struct bge_softc *sc)
1558 {
1559 char *ptr, *kva;
1560 bus_dma_segment_t seg;
1561 int i, rseg, state, error;
1562 struct bge_jpool_entry *entry;
1563
1564 state = error = 0;
1565
1566 /* Grab a big chunk o' storage. */
1567 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1568 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1569 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1570 return ENOBUFS;
1571 }
1572
1573 state = 1;
1574 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1575 BUS_DMA_NOWAIT)) {
1576 aprint_error_dev(sc->bge_dev,
1577 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1578 error = ENOBUFS;
1579 goto out;
1580 }
1581
1582 state = 2;
1583 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1584 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1585 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1586 error = ENOBUFS;
1587 goto out;
1588 }
1589
1590 state = 3;
1591 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1592 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1593 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1594 error = ENOBUFS;
1595 goto out;
1596 }
1597
1598 state = 4;
1599 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1600 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1601
1602 SLIST_INIT(&sc->bge_jfree_listhead);
1603 SLIST_INIT(&sc->bge_jinuse_listhead);
1604
1605 /*
1606 * Now divide it up into 9K pieces and save the addresses
1607 * in an array.
1608 */
1609 ptr = sc->bge_cdata.bge_jumbo_buf;
1610 for (i = 0; i < BGE_JSLOTS; i++) {
1611 sc->bge_cdata.bge_jslots[i] = ptr;
1612 ptr += BGE_JLEN;
1613 entry = malloc(sizeof(struct bge_jpool_entry),
1614 M_DEVBUF, M_NOWAIT);
1615 if (entry == NULL) {
1616 aprint_error_dev(sc->bge_dev,
1617 "no memory for jumbo buffer queue!\n");
1618 error = ENOBUFS;
1619 goto out;
1620 }
1621 entry->slot = i;
1622 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1623 entry, jpool_entries);
1624 }
1625 out:
1626 if (error != 0) {
1627 switch (state) {
1628 case 4:
1629 bus_dmamap_unload(sc->bge_dmatag,
1630 sc->bge_cdata.bge_rx_jumbo_map);
1631 case 3:
1632 bus_dmamap_destroy(sc->bge_dmatag,
1633 sc->bge_cdata.bge_rx_jumbo_map);
1634 case 2:
1635 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1636 case 1:
1637 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1638 break;
1639 default:
1640 break;
1641 }
1642 }
1643
1644 return error;
1645 }
1646
1647 /*
1648 * Allocate a jumbo buffer.
1649 */
1650 static void *
1651 bge_jalloc(struct bge_softc *sc)
1652 {
1653 struct bge_jpool_entry *entry;
1654
1655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1656
1657 if (entry == NULL) {
1658 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1659 return NULL;
1660 }
1661
1662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1664 return (sc->bge_cdata.bge_jslots[entry->slot]);
1665 }
1666
1667 /*
1668 * Release a jumbo buffer.
1669 */
1670 static void
1671 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1672 {
1673 struct bge_jpool_entry *entry;
1674 struct bge_softc *sc;
1675 int i, s;
1676
1677 /* Extract the softc struct pointer. */
1678 sc = (struct bge_softc *)arg;
1679
1680 if (sc == NULL)
1681 panic("bge_jfree: can't find softc pointer!");
1682
1683 /* calculate the slot this buffer belongs to */
1684
1685 i = ((char *)buf
1686 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1687
1688 if ((i < 0) || (i >= BGE_JSLOTS))
1689 panic("bge_jfree: asked to free buffer that we don't manage!");
1690
1691 s = splvm();
1692 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1693 if (entry == NULL)
1694 panic("bge_jfree: buffer not in use!");
1695 entry->slot = i;
1696 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1697 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1698
1699 if (__predict_true(m != NULL))
1700 pool_cache_put(mb_cache, m);
1701 splx(s);
1702 }
1703
1704
1705 /*
1706 * Initialize a standard receive ring descriptor.
1707 */
1708 static int
1709 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1710 bus_dmamap_t dmamap)
1711 {
1712 struct mbuf *m_new = NULL;
1713 struct bge_rx_bd *r;
1714 int error;
1715
1716 if (dmamap == NULL) {
1717 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1718 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1719 if (error != 0)
1720 return error;
1721 }
1722
1723 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1724
1725 if (m == NULL) {
1726 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1727 if (m_new == NULL)
1728 return ENOBUFS;
1729
1730 MCLGET(m_new, M_DONTWAIT);
1731 if (!(m_new->m_flags & M_EXT)) {
1732 m_freem(m_new);
1733 return ENOBUFS;
1734 }
1735 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1736
1737 } else {
1738 m_new = m;
1739 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1740 m_new->m_data = m_new->m_ext.ext_buf;
1741 }
1742 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1743 m_adj(m_new, ETHER_ALIGN);
1744 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1745 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1746 m_freem(m_new);
1747 return ENOBUFS;
1748 }
1749 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1750 BUS_DMASYNC_PREREAD);
1751
1752 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1753 r = &sc->bge_rdata->bge_rx_std_ring[i];
1754 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1755 r->bge_flags = BGE_RXBDFLAG_END;
1756 r->bge_len = m_new->m_len;
1757 r->bge_idx = i;
1758
1759 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1760 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1761 i * sizeof (struct bge_rx_bd),
1762 sizeof (struct bge_rx_bd),
1763 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * Initialize a jumbo receive ring descriptor. This allocates
1770 * a jumbo buffer from the pool managed internally by the driver.
1771 */
1772 static int
1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1774 {
1775 struct mbuf *m_new = NULL;
1776 struct bge_rx_bd *r;
1777 void *buf = NULL;
1778
1779 if (m == NULL) {
1780
1781 /* Allocate the mbuf. */
1782 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1783 if (m_new == NULL)
1784 return ENOBUFS;
1785
1786 /* Allocate the jumbo buffer */
1787 buf = bge_jalloc(sc);
1788 if (buf == NULL) {
1789 m_freem(m_new);
1790 aprint_error_dev(sc->bge_dev,
1791 "jumbo allocation failed -- packet dropped!\n");
1792 return ENOBUFS;
1793 }
1794
1795 /* Attach the buffer to the mbuf. */
1796 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1797 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1798 bge_jfree, sc);
1799 m_new->m_flags |= M_EXT_RW;
1800 } else {
1801 m_new = m;
1802 buf = m_new->m_data = m_new->m_ext.ext_buf;
1803 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1804 }
1805 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1806 m_adj(m_new, ETHER_ALIGN);
1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1808 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1809 BUS_DMASYNC_PREREAD);
1810 /* Set up the descriptor. */
1811 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1812 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1813 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1814 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1815 r->bge_len = m_new->m_len;
1816 r->bge_idx = i;
1817
1818 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1819 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1820 i * sizeof (struct bge_rx_bd),
1821 sizeof (struct bge_rx_bd),
1822 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1823
1824 return 0;
1825 }
1826
1827 /*
1828 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1829 * that's 1MB or memory, which is a lot. For now, we fill only the first
1830 * 256 ring entries and hope that our CPU is fast enough to keep up with
1831 * the NIC.
1832 */
1833 static int
1834 bge_init_rx_ring_std(struct bge_softc *sc)
1835 {
1836 int i;
1837
1838 if (sc->bge_flags & BGEF_RXRING_VALID)
1839 return 0;
1840
1841 for (i = 0; i < BGE_SSLOTS; i++) {
1842 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1843 return ENOBUFS;
1844 }
1845
1846 sc->bge_std = i - 1;
1847 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1848
1849 sc->bge_flags |= BGEF_RXRING_VALID;
1850
1851 return 0;
1852 }
1853
1854 static void
1855 bge_free_rx_ring_std(struct bge_softc *sc)
1856 {
1857 int i;
1858
1859 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1860 return;
1861
1862 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1863 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1864 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1865 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1866 bus_dmamap_destroy(sc->bge_dmatag,
1867 sc->bge_cdata.bge_rx_std_map[i]);
1868 }
1869 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1870 sizeof(struct bge_rx_bd));
1871 }
1872
1873 sc->bge_flags &= ~BGEF_RXRING_VALID;
1874 }
1875
1876 static int
1877 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1878 {
1879 int i;
1880 volatile struct bge_rcb *rcb;
1881
1882 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1883 return 0;
1884
1885 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1886 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1887 return ENOBUFS;
1888 }
1889
1890 sc->bge_jumbo = i - 1;
1891 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1892
1893 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1894 rcb->bge_maxlen_flags = 0;
1895 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1896
1897 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1898
1899 return 0;
1900 }
1901
1902 static void
1903 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1904 {
1905 int i;
1906
1907 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1908 return;
1909
1910 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1911 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1912 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1913 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1914 }
1915 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1916 sizeof(struct bge_rx_bd));
1917 }
1918
1919 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1920 }
1921
1922 static void
1923 bge_free_tx_ring(struct bge_softc *sc)
1924 {
1925 int i;
1926 struct txdmamap_pool_entry *dma;
1927
1928 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1929 return;
1930
1931 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1932 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1933 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1934 sc->bge_cdata.bge_tx_chain[i] = NULL;
1935 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1936 link);
1937 sc->txdma[i] = 0;
1938 }
1939 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1940 sizeof(struct bge_tx_bd));
1941 }
1942
1943 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1944 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1945 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1946 free(dma, M_DEVBUF);
1947 }
1948
1949 sc->bge_flags &= ~BGEF_TXRING_VALID;
1950 }
1951
1952 static int
1953 bge_init_tx_ring(struct bge_softc *sc)
1954 {
1955 struct ifnet *ifp = &sc->ethercom.ec_if;
1956 int i;
1957 bus_dmamap_t dmamap;
1958 bus_size_t maxsegsz;
1959 struct txdmamap_pool_entry *dma;
1960
1961 if (sc->bge_flags & BGEF_TXRING_VALID)
1962 return 0;
1963
1964 sc->bge_txcnt = 0;
1965 sc->bge_tx_saved_considx = 0;
1966
1967 /* Initialize transmit producer index for host-memory send ring. */
1968 sc->bge_tx_prodidx = 0;
1969 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970 /* 5700 b2 errata */
1971 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1972 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973
1974 /* NIC-memory send ring not used; initialize to zero. */
1975 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976 /* 5700 b2 errata */
1977 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1978 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979
1980 /* Limit DMA segment size for some chips */
1981 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1982 (ifp->if_mtu <= ETHERMTU))
1983 maxsegsz = 2048;
1984 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1985 maxsegsz = 4096;
1986 else
1987 maxsegsz = ETHER_MAX_LEN_JUMBO;
1988 SLIST_INIT(&sc->txdma_list);
1989 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1990 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1991 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1992 &dmamap))
1993 return ENOBUFS;
1994 if (dmamap == NULL)
1995 panic("dmamap NULL in bge_init_tx_ring");
1996 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1997 if (dma == NULL) {
1998 aprint_error_dev(sc->bge_dev,
1999 "can't alloc txdmamap_pool_entry\n");
2000 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2001 return ENOMEM;
2002 }
2003 dma->dmamap = dmamap;
2004 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2005 }
2006
2007 sc->bge_flags |= BGEF_TXRING_VALID;
2008
2009 return 0;
2010 }
2011
2012 static void
2013 bge_setmulti(struct bge_softc *sc)
2014 {
2015 struct ethercom *ac = &sc->ethercom;
2016 struct ifnet *ifp = &ac->ec_if;
2017 struct ether_multi *enm;
2018 struct ether_multistep step;
2019 uint32_t hashes[4] = { 0, 0, 0, 0 };
2020 uint32_t h;
2021 int i;
2022
2023 if (ifp->if_flags & IFF_PROMISC)
2024 goto allmulti;
2025
2026 /* Now program new ones. */
2027 ETHER_FIRST_MULTI(step, ac, enm);
2028 while (enm != NULL) {
2029 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 /*
2031 * We must listen to a range of multicast addresses.
2032 * For now, just accept all multicasts, rather than
2033 * trying to set only those filter bits needed to match
2034 * the range. (At this time, the only use of address
2035 * ranges is for IP multicast routing, for which the
2036 * range is big enough to require all bits set.)
2037 */
2038 goto allmulti;
2039 }
2040
2041 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042
2043 /* Just want the 7 least-significant bits. */
2044 h &= 0x7f;
2045
2046 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2047 ETHER_NEXT_MULTI(step, enm);
2048 }
2049
2050 ifp->if_flags &= ~IFF_ALLMULTI;
2051 goto setit;
2052
2053 allmulti:
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2056
2057 setit:
2058 for (i = 0; i < 4; i++)
2059 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2060 }
2061
2062 static void
2063 bge_sig_pre_reset(struct bge_softc *sc, int type)
2064 {
2065
2066 /*
2067 * Some chips don't like this so only do this if ASF is enabled
2068 */
2069 if (sc->bge_asf_mode)
2070 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2071
2072 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2073 switch (type) {
2074 case BGE_RESET_START:
2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 BGE_FW_DRV_STATE_START);
2077 break;
2078 case BGE_RESET_SHUTDOWN:
2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 BGE_FW_DRV_STATE_UNLOAD);
2081 break;
2082 case BGE_RESET_SUSPEND:
2083 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2084 BGE_FW_DRV_STATE_SUSPEND);
2085 break;
2086 }
2087 }
2088
2089 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2090 bge_ape_driver_state_change(sc, type);
2091 }
2092
2093 static void
2094 bge_sig_post_reset(struct bge_softc *sc, int type)
2095 {
2096
2097 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2098 switch (type) {
2099 case BGE_RESET_START:
2100 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2101 BGE_FW_DRV_STATE_START_DONE);
2102 /* START DONE */
2103 break;
2104 case BGE_RESET_SHUTDOWN:
2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 BGE_FW_DRV_STATE_UNLOAD_DONE);
2107 break;
2108 }
2109 }
2110
2111 if (type == BGE_RESET_SHUTDOWN)
2112 bge_ape_driver_state_change(sc, type);
2113 }
2114
2115 static void
2116 bge_sig_legacy(struct bge_softc *sc, int type)
2117 {
2118
2119 if (sc->bge_asf_mode) {
2120 switch (type) {
2121 case BGE_RESET_START:
2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 BGE_FW_DRV_STATE_START);
2124 break;
2125 case BGE_RESET_SHUTDOWN:
2126 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2127 BGE_FW_DRV_STATE_UNLOAD);
2128 break;
2129 }
2130 }
2131 }
2132
2133 static void
2134 bge_wait_for_event_ack(struct bge_softc *sc)
2135 {
2136 int i;
2137
2138 /* wait up to 2500usec */
2139 for (i = 0; i < 250; i++) {
2140 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2141 BGE_RX_CPU_DRV_EVENT))
2142 break;
2143 DELAY(10);
2144 }
2145 }
2146
2147 static void
2148 bge_stop_fw(struct bge_softc *sc)
2149 {
2150
2151 if (sc->bge_asf_mode) {
2152 bge_wait_for_event_ack(sc);
2153
2154 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2155 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2156 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2157
2158 bge_wait_for_event_ack(sc);
2159 }
2160 }
2161
2162 static int
2163 bge_poll_fw(struct bge_softc *sc)
2164 {
2165 uint32_t val;
2166 int i;
2167
2168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2169 for (i = 0; i < BGE_TIMEOUT; i++) {
2170 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2171 if (val & BGE_VCPU_STATUS_INIT_DONE)
2172 break;
2173 DELAY(100);
2174 }
2175 if (i >= BGE_TIMEOUT) {
2176 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2177 return -1;
2178 }
2179 } else {
2180 /*
2181 * Poll the value location we just wrote until
2182 * we see the 1's complement of the magic number.
2183 * This indicates that the firmware initialization
2184 * is complete.
2185 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2186 */
2187 for (i = 0; i < BGE_TIMEOUT; i++) {
2188 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2189 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2190 break;
2191 DELAY(10);
2192 }
2193
2194 if ((i >= BGE_TIMEOUT)
2195 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2196 aprint_error_dev(sc->bge_dev,
2197 "firmware handshake timed out, val = %x\n", val);
2198 return -1;
2199 }
2200 }
2201
2202 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2203 /* tg3 says we have to wait extra time */
2204 delay(10 * 1000);
2205 }
2206
2207 return 0;
2208 }
2209
2210 int
2211 bge_phy_addr(struct bge_softc *sc)
2212 {
2213 struct pci_attach_args *pa = &(sc->bge_pa);
2214 int phy_addr = 1;
2215
2216 /*
2217 * PHY address mapping for various devices.
2218 *
2219 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2220 * ---------+-------+-------+-------+-------+
2221 * BCM57XX | 1 | X | X | X |
2222 * BCM5704 | 1 | X | 1 | X |
2223 * BCM5717 | 1 | 8 | 2 | 9 |
2224 * BCM5719 | 1 | 8 | 2 | 9 |
2225 * BCM5720 | 1 | 8 | 2 | 9 |
2226 *
2227 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2228 * ---------+-------+-------+-------+-------+
2229 * BCM57XX | X | X | X | X |
2230 * BCM5704 | X | X | X | X |
2231 * BCM5717 | X | X | X | X |
2232 * BCM5719 | 3 | 10 | 4 | 11 |
2233 * BCM5720 | X | X | X | X |
2234 *
2235 * Other addresses may respond but they are not
2236 * IEEE compliant PHYs and should be ignored.
2237 */
2238 switch (BGE_ASICREV(sc->bge_chipid)) {
2239 case BGE_ASICREV_BCM5717:
2240 case BGE_ASICREV_BCM5719:
2241 case BGE_ASICREV_BCM5720:
2242 phy_addr = pa->pa_function;
2243 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2244 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2245 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2246 } else {
2247 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2248 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2249 }
2250 }
2251
2252 return phy_addr;
2253 }
2254
2255 /*
2256 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2257 * self-test results.
2258 */
2259 static int
2260 bge_chipinit(struct bge_softc *sc)
2261 {
2262 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2263 int i;
2264
2265 /* Set endianness before we access any non-PCI registers. */
2266 misc_ctl = BGE_INIT;
2267 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2268 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2269 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2270 misc_ctl);
2271
2272 /*
2273 * Clear the MAC statistics block in the NIC's
2274 * internal memory.
2275 */
2276 for (i = BGE_STATS_BLOCK;
2277 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279
2280 for (i = BGE_STATUS_BLOCK;
2281 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2282 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2283
2284 /* 5717 workaround from tg3 */
2285 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2286 /* Save */
2287 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2288
2289 /* Temporary modify MODE_CTL to control TLP */
2290 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2291 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2292
2293 /* Control TLP */
2294 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2295 BGE_TLP_PHYCTL1);
2296 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2297 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2298
2299 /* Restore */
2300 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2301 }
2302
2303 if (BGE_IS_57765_FAMILY(sc)) {
2304 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2305 /* Save */
2306 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2307
2308 /* Temporary modify MODE_CTL to control TLP */
2309 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2310 CSR_WRITE_4(sc, BGE_MODE_CTL,
2311 reg | BGE_MODECTL_PCIE_TLPADDR1);
2312
2313 /* Control TLP */
2314 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2315 BGE_TLP_PHYCTL5);
2316 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2317 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2318
2319 /* Restore */
2320 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 }
2322 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2323 /*
2324 * For the 57766 and non Ax versions of 57765, bootcode
2325 * needs to setup the PCIE Fast Training Sequence (FTS)
2326 * value to prevent transmit hangs.
2327 */
2328 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2329 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2330 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2331
2332 /* Save */
2333 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2334
2335 /* Temporary modify MODE_CTL to control TLP */
2336 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2337 CSR_WRITE_4(sc, BGE_MODE_CTL,
2338 reg | BGE_MODECTL_PCIE_TLPADDR0);
2339
2340 /* Control TLP */
2341 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2342 BGE_TLP_FTSMAX);
2343 reg &= ~BGE_TLP_FTSMAX_MSK;
2344 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2345 reg | BGE_TLP_FTSMAX_VAL);
2346
2347 /* Restore */
2348 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2349 }
2350
2351 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2352 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2353 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2354 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2355 }
2356
2357 /* Set up the PCI DMA control register. */
2358 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2359 if (sc->bge_flags & BGEF_PCIE) {
2360 /* Read watermark not used, 128 bytes for write. */
2361 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2362 device_xname(sc->bge_dev)));
2363 if (sc->bge_mps >= 256)
2364 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2365 else
2366 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2367 } else if (sc->bge_flags & BGEF_PCIX) {
2368 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2369 device_xname(sc->bge_dev)));
2370 /* PCI-X bus */
2371 if (BGE_IS_5714_FAMILY(sc)) {
2372 /* 256 bytes for read and write. */
2373 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2374 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2375
2376 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2377 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2378 else
2379 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2380 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2381 /*
2382 * In the BCM5703, the DMA read watermark should
2383 * be set to less than or equal to the maximum
2384 * memory read byte count of the PCI-X command
2385 * register.
2386 */
2387 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2388 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2389 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2390 /* 1536 bytes for read, 384 bytes for write. */
2391 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2392 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2393 } else {
2394 /* 384 bytes for read and write. */
2395 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2396 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2397 (0x0F);
2398 }
2399
2400 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2401 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2402 uint32_t tmp;
2403
2404 /* Set ONEDMA_ATONCE for hardware workaround. */
2405 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2406 if (tmp == 6 || tmp == 7)
2407 dma_rw_ctl |=
2408 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2409
2410 /* Set PCI-X DMA write workaround. */
2411 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2412 }
2413 } else {
2414 /* Conventional PCI bus: 256 bytes for read and write. */
2415 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2416 device_xname(sc->bge_dev)));
2417 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2418 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2419
2420 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2421 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2422 dma_rw_ctl |= 0x0F;
2423 }
2424
2425 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2426 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2427 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2428 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2429
2430 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2431 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2432 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2433
2434 if (BGE_IS_57765_PLUS(sc)) {
2435 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2436 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2437 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2438
2439 /*
2440 * Enable HW workaround for controllers that misinterpret
2441 * a status tag update and leave interrupts permanently
2442 * disabled.
2443 */
2444 if (!BGE_IS_57765_FAMILY(sc) &&
2445 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2446 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2447 }
2448
2449 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2450 dma_rw_ctl);
2451
2452 /*
2453 * Set up general mode register.
2454 */
2455 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2456 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2457 /* Retain Host-2-BMC settings written by APE firmware. */
2458 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2459 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2460 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2461 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2462 }
2463 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2464 BGE_MODECTL_TX_NO_PHDR_CSUM;
2465
2466 /*
2467 * BCM5701 B5 have a bug causing data corruption when using
2468 * 64-bit DMA reads, which can be terminated early and then
2469 * completed later as 32-bit accesses, in combination with
2470 * certain bridges.
2471 */
2472 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2473 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2474 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2475
2476 /*
2477 * Tell the firmware the driver is running
2478 */
2479 if (sc->bge_asf_mode & ASF_STACKUP)
2480 mode_ctl |= BGE_MODECTL_STACKUP;
2481
2482 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2483
2484 /*
2485 * Disable memory write invalidate. Apparently it is not supported
2486 * properly by these devices.
2487 */
2488 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2489 PCI_COMMAND_INVALIDATE_ENABLE);
2490
2491 #ifdef __brokenalpha__
2492 /*
2493 * Must insure that we do not cross an 8K (bytes) boundary
2494 * for DMA reads. Our highest limit is 1K bytes. This is a
2495 * restriction on some ALPHA platforms with early revision
2496 * 21174 PCI chipsets, such as the AlphaPC 164lx
2497 */
2498 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2499 #endif
2500
2501 /* Set the timer prescaler (always 66MHz) */
2502 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2503
2504 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2505 DELAY(40); /* XXX */
2506
2507 /* Put PHY into ready state */
2508 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2509 DELAY(40);
2510 }
2511
2512 return 0;
2513 }
2514
2515 static int
2516 bge_blockinit(struct bge_softc *sc)
2517 {
2518 volatile struct bge_rcb *rcb;
2519 bus_size_t rcb_addr;
2520 struct ifnet *ifp = &sc->ethercom.ec_if;
2521 bge_hostaddr taddr;
2522 uint32_t dmactl, mimode, val;
2523 int i, limit;
2524
2525 /*
2526 * Initialize the memory window pointer register so that
2527 * we can access the first 32K of internal NIC RAM. This will
2528 * allow us to set up the TX send ring RCBs and the RX return
2529 * ring RCBs, plus other things which live in NIC memory.
2530 */
2531 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2532
2533 if (!BGE_IS_5705_PLUS(sc)) {
2534 /* 57XX step 33 */
2535 /* Configure mbuf memory pool */
2536 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2537 BGE_BUFFPOOL_1);
2538
2539 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2540 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2541 else
2542 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2543
2544 /* 57XX step 34 */
2545 /* Configure DMA resource pool */
2546 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2547 BGE_DMA_DESCRIPTORS);
2548 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2549 }
2550
2551 /* 5718 step 11, 57XX step 35 */
2552 /*
2553 * Configure mbuf pool watermarks. New broadcom docs strongly
2554 * recommend these.
2555 */
2556 if (BGE_IS_5717_PLUS(sc)) {
2557 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2560 } else if (BGE_IS_5705_PLUS(sc)) {
2561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2562
2563 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2566 } else {
2567 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2568 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2569 }
2570 } else {
2571 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2572 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2573 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2574 }
2575
2576 /* 57XX step 36 */
2577 /* Configure DMA resource watermarks */
2578 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2579 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2580
2581 /* 5718 step 13, 57XX step 38 */
2582 /* Enable buffer manager */
2583 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2584 /*
2585 * Change the arbitration algorithm of TXMBUF read request to
2586 * round-robin instead of priority based for BCM5719. When
2587 * TXFIFO is almost empty, RDMA will hold its request until
2588 * TXFIFO is not almost empty.
2589 */
2590 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2591 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2593 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2594 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2595 val |= BGE_BMANMODE_LOMBUF_ATTN;
2596 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2597
2598 /* 57XX step 39 */
2599 /* Poll for buffer manager start indication */
2600 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2601 DELAY(10);
2602 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2603 break;
2604 }
2605
2606 if (i == BGE_TIMEOUT * 2) {
2607 aprint_error_dev(sc->bge_dev,
2608 "buffer manager failed to start\n");
2609 return ENXIO;
2610 }
2611
2612 /* 57XX step 40 */
2613 /* Enable flow-through queues */
2614 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2615 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2616
2617 /* Wait until queue initialization is complete */
2618 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2619 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2620 break;
2621 DELAY(10);
2622 }
2623
2624 if (i == BGE_TIMEOUT * 2) {
2625 aprint_error_dev(sc->bge_dev,
2626 "flow-through queue init failed\n");
2627 return ENXIO;
2628 }
2629
2630 /*
2631 * Summary of rings supported by the controller:
2632 *
2633 * Standard Receive Producer Ring
2634 * - This ring is used to feed receive buffers for "standard"
2635 * sized frames (typically 1536 bytes) to the controller.
2636 *
2637 * Jumbo Receive Producer Ring
2638 * - This ring is used to feed receive buffers for jumbo sized
2639 * frames (i.e. anything bigger than the "standard" frames)
2640 * to the controller.
2641 *
2642 * Mini Receive Producer Ring
2643 * - This ring is used to feed receive buffers for "mini"
2644 * sized frames to the controller.
2645 * - This feature required external memory for the controller
2646 * but was never used in a production system. Should always
2647 * be disabled.
2648 *
2649 * Receive Return Ring
2650 * - After the controller has placed an incoming frame into a
2651 * receive buffer that buffer is moved into a receive return
2652 * ring. The driver is then responsible to passing the
2653 * buffer up to the stack. Many versions of the controller
2654 * support multiple RR rings.
2655 *
2656 * Send Ring
2657 * - This ring is used for outgoing frames. Many versions of
2658 * the controller support multiple send rings.
2659 */
2660
2661 /* 5718 step 15, 57XX step 41 */
2662 /* Initialize the standard RX ring control block */
2663 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2664 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2665 /* 5718 step 16 */
2666 if (BGE_IS_57765_PLUS(sc)) {
2667 /*
2668 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2669 * Bits 15-2 : Maximum RX frame size
2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2671 * Bit 0 : Reserved
2672 */
2673 rcb->bge_maxlen_flags =
2674 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2675 } else if (BGE_IS_5705_PLUS(sc)) {
2676 /*
2677 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2678 * Bits 15-2 : Reserved (should be 0)
2679 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2680 * Bit 0 : Reserved
2681 */
2682 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2683 } else {
2684 /*
2685 * Ring size is always XXX entries
2686 * Bits 31-16: Maximum RX frame size
2687 * Bits 15-2 : Reserved (should be 0)
2688 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2689 * Bit 0 : Reserved
2690 */
2691 rcb->bge_maxlen_flags =
2692 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2693 }
2694 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2695 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2696 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2697 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2698 else
2699 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2700 /* Write the standard receive producer ring control block. */
2701 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2702 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2703 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2704 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2705
2706 /* Reset the standard receive producer ring producer index. */
2707 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2708
2709 /* 57XX step 42 */
2710 /*
2711 * Initialize the jumbo RX ring control block
2712 * We set the 'ring disabled' bit in the flags
2713 * field until we're actually ready to start
2714 * using this ring (i.e. once we set the MTU
2715 * high enough to require it).
2716 */
2717 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2718 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2719 BGE_HOSTADDR(rcb->bge_hostaddr,
2720 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2721 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2722 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2724 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2725 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2726 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2727 else
2728 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2729 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2730 rcb->bge_hostaddr.bge_addr_hi);
2731 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2732 rcb->bge_hostaddr.bge_addr_lo);
2733 /* Program the jumbo receive producer ring RCB parameters. */
2734 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2735 rcb->bge_maxlen_flags);
2736 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2737 /* Reset the jumbo receive producer ring producer index. */
2738 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2739 }
2740
2741 /* 57XX step 43 */
2742 /* Disable the mini receive producer ring RCB. */
2743 if (BGE_IS_5700_FAMILY(sc)) {
2744 /* Set up dummy disabled mini ring RCB */
2745 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2746 rcb->bge_maxlen_flags =
2747 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2748 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2749 rcb->bge_maxlen_flags);
2750 /* Reset the mini receive producer ring producer index. */
2751 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2752
2753 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2754 offsetof(struct bge_ring_data, bge_info),
2755 sizeof (struct bge_gib),
2756 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2757 }
2758
2759 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2760 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2761 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2762 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2763 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2764 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2765 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2766 }
2767 /* 5718 step 14, 57XX step 44 */
2768 /*
2769 * The BD ring replenish thresholds control how often the
2770 * hardware fetches new BD's from the producer rings in host
2771 * memory. Setting the value too low on a busy system can
2772 * starve the hardware and recue the throughpout.
2773 *
2774 * Set the BD ring replenish thresholds. The recommended
2775 * values are 1/8th the number of descriptors allocated to
2776 * each ring, but since we try to avoid filling the entire
2777 * ring we set these to the minimal value of 8. This needs to
2778 * be done on several of the supported chip revisions anyway,
2779 * to work around HW bugs.
2780 */
2781 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2782 if (BGE_IS_JUMBO_CAPABLE(sc))
2783 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2784
2785 /* 5718 step 18 */
2786 if (BGE_IS_5717_PLUS(sc)) {
2787 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2788 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2789 }
2790
2791 /* 57XX step 45 */
2792 /*
2793 * Disable all send rings by setting the 'ring disabled' bit
2794 * in the flags field of all the TX send ring control blocks,
2795 * located in NIC memory.
2796 */
2797 if (BGE_IS_5700_FAMILY(sc)) {
2798 /* 5700 to 5704 had 16 send rings. */
2799 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2800 } else if (BGE_IS_5717_PLUS(sc)) {
2801 limit = BGE_TX_RINGS_5717_MAX;
2802 } else if (BGE_IS_57765_FAMILY(sc)) {
2803 limit = BGE_TX_RINGS_57765_MAX;
2804 } else
2805 limit = 1;
2806 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2807 for (i = 0; i < limit; i++) {
2808 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2809 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2810 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2811 rcb_addr += sizeof(struct bge_rcb);
2812 }
2813
2814 /* 57XX step 46 and 47 */
2815 /* Configure send ring RCB 0 (we use only the first ring) */
2816 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2817 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2818 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2819 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2821 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2822 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2823 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2824 else
2825 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2826 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2827 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2828 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2829
2830 /* 57XX step 48 */
2831 /*
2832 * Disable all receive return rings by setting the
2833 * 'ring diabled' bit in the flags field of all the receive
2834 * return ring control blocks, located in NIC memory.
2835 */
2836 if (BGE_IS_5717_PLUS(sc)) {
2837 /* Should be 17, use 16 until we get an SRAM map. */
2838 limit = 16;
2839 } else if (BGE_IS_5700_FAMILY(sc))
2840 limit = BGE_RX_RINGS_MAX;
2841 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2842 BGE_IS_57765_FAMILY(sc))
2843 limit = 4;
2844 else
2845 limit = 1;
2846 /* Disable all receive return rings */
2847 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2848 for (i = 0; i < limit; i++) {
2849 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2850 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2851 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2852 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2853 BGE_RCB_FLAG_RING_DISABLED));
2854 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2855 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2856 (i * (sizeof(uint64_t))), 0);
2857 rcb_addr += sizeof(struct bge_rcb);
2858 }
2859
2860 /* 57XX step 49 */
2861 /*
2862 * Set up receive return ring 0. Note that the NIC address
2863 * for RX return rings is 0x0. The return rings live entirely
2864 * within the host, so the nicaddr field in the RCB isn't used.
2865 */
2866 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2867 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2868 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2869 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2870 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2871 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2872 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2873
2874 /* 5718 step 24, 57XX step 53 */
2875 /* Set random backoff seed for TX */
2876 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2877 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2878 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2879 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2880 BGE_TX_BACKOFF_SEED_MASK);
2881
2882 /* 5718 step 26, 57XX step 55 */
2883 /* Set inter-packet gap */
2884 val = 0x2620;
2885 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2886 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2887 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2888 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2889
2890 /* 5718 step 27, 57XX step 56 */
2891 /*
2892 * Specify which ring to use for packets that don't match
2893 * any RX rules.
2894 */
2895 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2896
2897 /* 5718 step 28, 57XX step 57 */
2898 /*
2899 * Configure number of RX lists. One interrupt distribution
2900 * list, sixteen active lists, one bad frames class.
2901 */
2902 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2903
2904 /* 5718 step 29, 57XX step 58 */
2905 /* Inialize RX list placement stats mask. */
2906 if (BGE_IS_575X_PLUS(sc)) {
2907 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2908 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2909 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2910 } else
2911 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2912
2913 /* 5718 step 30, 57XX step 59 */
2914 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2915
2916 /* 5718 step 33, 57XX step 62 */
2917 /* Disable host coalescing until we get it set up */
2918 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2919
2920 /* 5718 step 34, 57XX step 63 */
2921 /* Poll to make sure it's shut down. */
2922 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2923 DELAY(10);
2924 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2925 break;
2926 }
2927
2928 if (i == BGE_TIMEOUT * 2) {
2929 aprint_error_dev(sc->bge_dev,
2930 "host coalescing engine failed to idle\n");
2931 return ENXIO;
2932 }
2933
2934 /* 5718 step 35, 36, 37 */
2935 /* Set up host coalescing defaults */
2936 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2937 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2938 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2939 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2940 if (!(BGE_IS_5705_PLUS(sc))) {
2941 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2942 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2943 }
2944 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2945 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2946
2947 /* Set up address of statistics block */
2948 if (BGE_IS_5700_FAMILY(sc)) {
2949 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2950 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2951 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2952 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2953 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2954 }
2955
2956 /* 5718 step 38 */
2957 /* Set up address of status block */
2958 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2959 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2960 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2961 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2962 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2963 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2964
2965 /* Set up status block size. */
2966 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2967 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2968 val = BGE_STATBLKSZ_FULL;
2969 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2970 } else {
2971 val = BGE_STATBLKSZ_32BYTE;
2972 bzero(&sc->bge_rdata->bge_status_block, 32);
2973 }
2974
2975 /* 5718 step 39, 57XX step 73 */
2976 /* Turn on host coalescing state machine */
2977 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2978
2979 /* 5718 step 40, 57XX step 74 */
2980 /* Turn on RX BD completion state machine and enable attentions */
2981 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2982 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2983
2984 /* 5718 step 41, 57XX step 75 */
2985 /* Turn on RX list placement state machine */
2986 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2987
2988 /* 57XX step 76 */
2989 /* Turn on RX list selector state machine. */
2990 if (!(BGE_IS_5705_PLUS(sc)))
2991 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2992
2993 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2994 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2995 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2996 BGE_MACMODE_FRMHDR_DMA_ENB;
2997
2998 if (sc->bge_flags & BGEF_FIBER_TBI)
2999 val |= BGE_PORTMODE_TBI;
3000 else if (sc->bge_flags & BGEF_FIBER_MII)
3001 val |= BGE_PORTMODE_GMII;
3002 else
3003 val |= BGE_PORTMODE_MII;
3004
3005 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3006 /* Allow APE to send/receive frames. */
3007 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3008 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3009
3010 /* Turn on DMA, clear stats */
3011 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3012 /* 5718 step 44 */
3013 DELAY(40);
3014
3015 /* 5718 step 45, 57XX step 79 */
3016 /* Set misc. local control, enable interrupts on attentions */
3017 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3018 if (BGE_IS_5717_PLUS(sc)) {
3019 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3020 /* 5718 step 46 */
3021 DELAY(100);
3022 }
3023
3024 /* 57XX step 81 */
3025 /* Turn on DMA completion state machine */
3026 if (!(BGE_IS_5705_PLUS(sc)))
3027 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3028
3029 /* 5718 step 47, 57XX step 82 */
3030 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3031
3032 /* 5718 step 48 */
3033 /* Enable host coalescing bug fix. */
3034 if (BGE_IS_5755_PLUS(sc))
3035 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3036
3037 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3038 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3039
3040 /* Turn on write DMA state machine */
3041 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3042 /* 5718 step 49 */
3043 DELAY(40);
3044
3045 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3046
3047 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3048 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3049
3050 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3051 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3052 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3053 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3054 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3055 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3056
3057 if (sc->bge_flags & BGEF_PCIE)
3058 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3059 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3060 if (ifp->if_mtu <= ETHERMTU)
3061 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3062 }
3063 if (sc->bge_flags & BGEF_TSO)
3064 val |= BGE_RDMAMODE_TSO4_ENABLE;
3065
3066 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3067 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3068 BGE_RDMAMODE_H2BNC_VLAN_DET;
3069 /*
3070 * Allow multiple outstanding read requests from
3071 * non-LSO read DMA engine.
3072 */
3073 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3074 }
3075
3076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3077 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3078 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3079 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3080 BGE_IS_57765_PLUS(sc)) {
3081 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3082 /*
3083 * Adjust tx margin to prevent TX data corruption and
3084 * fix internal FIFO overflow.
3085 */
3086 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3087 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3088 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3089 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3090 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3091 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3092 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3093 }
3094 /*
3095 * Enable fix for read DMA FIFO overruns.
3096 * The fix is to limit the number of RX BDs
3097 * the hardware would fetch at a fime.
3098 */
3099 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3100 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3101 }
3102
3103 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3104 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3105 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3106 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3107 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3108 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3109 /*
3110 * Allow 4KB burst length reads for non-LSO frames.
3111 * Enable 512B burst length reads for buffer descriptors.
3112 */
3113 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3114 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3115 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3116 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3117 }
3118
3119 /* Turn on read DMA state machine */
3120 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3121 /* 5718 step 52 */
3122 delay(40);
3123
3124 /* 5718 step 56, 57XX step 84 */
3125 /* Turn on RX data completion state machine */
3126 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3127
3128 /* Turn on RX data and RX BD initiator state machine */
3129 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3130
3131 /* 57XX step 85 */
3132 /* Turn on Mbuf cluster free state machine */
3133 if (!BGE_IS_5705_PLUS(sc))
3134 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3135
3136 /* 5718 step 57, 57XX step 86 */
3137 /* Turn on send data completion state machine */
3138 val = BGE_SDCMODE_ENABLE;
3139 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3140 val |= BGE_SDCMODE_CDELAY;
3141 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3142
3143 /* 5718 step 58 */
3144 /* Turn on send BD completion state machine */
3145 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3146
3147 /* 57XX step 88 */
3148 /* Turn on RX BD initiator state machine */
3149 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3150
3151 /* 5718 step 60, 57XX step 90 */
3152 /* Turn on send data initiator state machine */
3153 if (sc->bge_flags & BGEF_TSO) {
3154 /* XXX: magic value from Linux driver */
3155 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3156 BGE_SDIMODE_HW_LSO_PRE_DMA);
3157 } else
3158 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3159
3160 /* 5718 step 61, 57XX step 91 */
3161 /* Turn on send BD initiator state machine */
3162 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3163
3164 /* 5718 step 62, 57XX step 92 */
3165 /* Turn on send BD selector state machine */
3166 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3167
3168 /* 5718 step 31, 57XX step 60 */
3169 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3170 /* 5718 step 32, 57XX step 61 */
3171 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3172 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3173
3174 /* ack/clear link change events */
3175 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3176 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3177 BGE_MACSTAT_LINK_CHANGED);
3178 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3179
3180 /*
3181 * Enable attention when the link has changed state for
3182 * devices that use auto polling.
3183 */
3184 if (sc->bge_flags & BGEF_FIBER_TBI) {
3185 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3186 } else {
3187 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3188 mimode = BGE_MIMODE_500KHZ_CONST;
3189 else
3190 mimode = BGE_MIMODE_BASE;
3191 /* 5718 step 68. 5718 step 69 (optionally). */
3192 if (BGE_IS_5700_FAMILY(sc) ||
3193 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3194 mimode |= BGE_MIMODE_AUTOPOLL;
3195 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3196 }
3197 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3198 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3199 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3200 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3201 BGE_EVTENB_MI_INTERRUPT);
3202 }
3203
3204 /*
3205 * Clear any pending link state attention.
3206 * Otherwise some link state change events may be lost until attention
3207 * is cleared by bge_intr() -> bge_link_upd() sequence.
3208 * It's not necessary on newer BCM chips - perhaps enabling link
3209 * state change attentions implies clearing pending attention.
3210 */
3211 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3212 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3213 BGE_MACSTAT_LINK_CHANGED);
3214
3215 /* Enable link state change attentions. */
3216 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3217
3218 return 0;
3219 }
3220
3221 static const struct bge_revision *
3222 bge_lookup_rev(uint32_t chipid)
3223 {
3224 const struct bge_revision *br;
3225
3226 for (br = bge_revisions; br->br_name != NULL; br++) {
3227 if (br->br_chipid == chipid)
3228 return br;
3229 }
3230
3231 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3232 if (br->br_chipid == BGE_ASICREV(chipid))
3233 return br;
3234 }
3235
3236 return NULL;
3237 }
3238
3239 static const struct bge_product *
3240 bge_lookup(const struct pci_attach_args *pa)
3241 {
3242 const struct bge_product *bp;
3243
3244 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3245 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3246 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3247 return bp;
3248 }
3249
3250 return NULL;
3251 }
3252
3253 static uint32_t
3254 bge_chipid(const struct pci_attach_args *pa)
3255 {
3256 uint32_t id;
3257
3258 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3259 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3260
3261 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3262 switch (PCI_PRODUCT(pa->pa_id)) {
3263 case PCI_PRODUCT_BROADCOM_BCM5717:
3264 case PCI_PRODUCT_BROADCOM_BCM5718:
3265 case PCI_PRODUCT_BROADCOM_BCM5719:
3266 case PCI_PRODUCT_BROADCOM_BCM5720:
3267 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3268 BGE_PCI_GEN2_PRODID_ASICREV);
3269 break;
3270 case PCI_PRODUCT_BROADCOM_BCM57761:
3271 case PCI_PRODUCT_BROADCOM_BCM57762:
3272 case PCI_PRODUCT_BROADCOM_BCM57765:
3273 case PCI_PRODUCT_BROADCOM_BCM57766:
3274 case PCI_PRODUCT_BROADCOM_BCM57781:
3275 case PCI_PRODUCT_BROADCOM_BCM57782:
3276 case PCI_PRODUCT_BROADCOM_BCM57785:
3277 case PCI_PRODUCT_BROADCOM_BCM57786:
3278 case PCI_PRODUCT_BROADCOM_BCM57791:
3279 case PCI_PRODUCT_BROADCOM_BCM57795:
3280 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3281 BGE_PCI_GEN15_PRODID_ASICREV);
3282 break;
3283 default:
3284 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3285 BGE_PCI_PRODID_ASICREV);
3286 break;
3287 }
3288 }
3289
3290 return id;
3291 }
3292
3293 /*
3294 * Return true if MSI can be used with this device.
3295 */
3296 static int
3297 bge_can_use_msi(struct bge_softc *sc)
3298 {
3299 int can_use_msi = 0;
3300
3301 switch (BGE_ASICREV(sc->bge_chipid)) {
3302 case BGE_ASICREV_BCM5714_A0:
3303 case BGE_ASICREV_BCM5714:
3304 /*
3305 * Apparently, MSI doesn't work when these chips are
3306 * configured in single-port mode.
3307 */
3308 break;
3309 case BGE_ASICREV_BCM5750:
3310 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3311 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3312 can_use_msi = 1;
3313 break;
3314 default:
3315 if (BGE_IS_575X_PLUS(sc))
3316 can_use_msi = 1;
3317 }
3318 return (can_use_msi);
3319 }
3320
3321 /*
3322 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3323 * against our list and return its name if we find a match. Note
3324 * that since the Broadcom controller contains VPD support, we
3325 * can get the device name string from the controller itself instead
3326 * of the compiled-in string. This is a little slow, but it guarantees
3327 * we'll always announce the right product name.
3328 */
3329 static int
3330 bge_probe(device_t parent, cfdata_t match, void *aux)
3331 {
3332 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3333
3334 if (bge_lookup(pa) != NULL)
3335 return 1;
3336
3337 return 0;
3338 }
3339
3340 static void
3341 bge_attach(device_t parent, device_t self, void *aux)
3342 {
3343 struct bge_softc *sc = device_private(self);
3344 struct pci_attach_args *pa = aux;
3345 prop_dictionary_t dict;
3346 const struct bge_product *bp;
3347 const struct bge_revision *br;
3348 pci_chipset_tag_t pc;
3349 int counts[PCI_INTR_TYPE_SIZE];
3350 pci_intr_type_t intr_type, max_type;
3351 const char *intrstr = NULL;
3352 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3353 uint32_t command;
3354 struct ifnet *ifp;
3355 uint32_t misccfg, mimode;
3356 void * kva;
3357 u_char eaddr[ETHER_ADDR_LEN];
3358 pcireg_t memtype, subid, reg;
3359 bus_addr_t memaddr;
3360 uint32_t pm_ctl;
3361 bool no_seeprom;
3362 int capmask;
3363 int mii_flags;
3364 int map_flags;
3365 char intrbuf[PCI_INTRSTR_LEN];
3366
3367 bp = bge_lookup(pa);
3368 KASSERT(bp != NULL);
3369
3370 sc->sc_pc = pa->pa_pc;
3371 sc->sc_pcitag = pa->pa_tag;
3372 sc->bge_dev = self;
3373
3374 sc->bge_pa = *pa;
3375 pc = sc->sc_pc;
3376 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3377
3378 aprint_naive(": Ethernet controller\n");
3379 aprint_normal(": %s\n", bp->bp_name);
3380
3381 /*
3382 * Map control/status registers.
3383 */
3384 DPRINTFN(5, ("Map control/status regs\n"));
3385 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3386 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3387 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3388 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3389
3390 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3391 aprint_error_dev(sc->bge_dev,
3392 "failed to enable memory mapping!\n");
3393 return;
3394 }
3395
3396 DPRINTFN(5, ("pci_mem_find\n"));
3397 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3398 switch (memtype) {
3399 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3400 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3401 #if 0
3402 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3403 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3404 &memaddr, &sc->bge_bsize) == 0)
3405 break;
3406 #else
3407 /*
3408 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3409 * system get NMI on boot (PR#48451). This problem might not be
3410 * the driver's bug but our PCI common part's bug. Until we
3411 * find a real reason, we ignore the prefetchable bit.
3412 */
3413 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3414 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3415 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3416 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3417 map_flags, &sc->bge_bhandle) == 0) {
3418 sc->bge_btag = pa->pa_memt;
3419 break;
3420 }
3421 }
3422 #endif
3423 default:
3424 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3425 return;
3426 }
3427
3428 /* Save various chip information. */
3429 sc->bge_chipid = bge_chipid(pa);
3430 sc->bge_phy_addr = bge_phy_addr(sc);
3431
3432 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3433 &sc->bge_pciecap, NULL) != 0) {
3434 /* PCIe */
3435 sc->bge_flags |= BGEF_PCIE;
3436 /* Extract supported maximum payload size. */
3437 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3438 sc->bge_pciecap + PCIE_DCAP);
3439 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3440 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3441 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3442 sc->bge_expmrq = 2048;
3443 else
3444 sc->bge_expmrq = 4096;
3445 bge_set_max_readrq(sc);
3446 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3447 /* PCIe without PCIe cap */
3448 sc->bge_flags |= BGEF_PCIE;
3449 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3450 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3451 /* PCI-X */
3452 sc->bge_flags |= BGEF_PCIX;
3453 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3454 &sc->bge_pcixcap, NULL) == 0)
3455 aprint_error_dev(sc->bge_dev,
3456 "unable to find PCIX capability\n");
3457 }
3458
3459 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3460 /*
3461 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3462 * can clobber the chip's PCI config-space power control
3463 * registers, leaving the card in D3 powersave state. We do
3464 * not have memory-mapped registers in this state, so force
3465 * device into D0 state before starting initialization.
3466 */
3467 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3468 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3469 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3470 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3471 DELAY(1000); /* 27 usec is allegedly sufficent */
3472 }
3473
3474 /* Save chipset family. */
3475 switch (BGE_ASICREV(sc->bge_chipid)) {
3476 case BGE_ASICREV_BCM5717:
3477 case BGE_ASICREV_BCM5719:
3478 case BGE_ASICREV_BCM5720:
3479 sc->bge_flags |= BGEF_5717_PLUS;
3480 /* FALLTHROUGH */
3481 case BGE_ASICREV_BCM57765:
3482 case BGE_ASICREV_BCM57766:
3483 if (!BGE_IS_5717_PLUS(sc))
3484 sc->bge_flags |= BGEF_57765_FAMILY;
3485 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3486 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3487 /* Jumbo frame on BCM5719 A0 does not work. */
3488 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3489 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3490 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3491 break;
3492 case BGE_ASICREV_BCM5755:
3493 case BGE_ASICREV_BCM5761:
3494 case BGE_ASICREV_BCM5784:
3495 case BGE_ASICREV_BCM5785:
3496 case BGE_ASICREV_BCM5787:
3497 case BGE_ASICREV_BCM57780:
3498 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3499 break;
3500 case BGE_ASICREV_BCM5700:
3501 case BGE_ASICREV_BCM5701:
3502 case BGE_ASICREV_BCM5703:
3503 case BGE_ASICREV_BCM5704:
3504 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3505 break;
3506 case BGE_ASICREV_BCM5714_A0:
3507 case BGE_ASICREV_BCM5780:
3508 case BGE_ASICREV_BCM5714:
3509 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3510 /* FALLTHROUGH */
3511 case BGE_ASICREV_BCM5750:
3512 case BGE_ASICREV_BCM5752:
3513 case BGE_ASICREV_BCM5906:
3514 sc->bge_flags |= BGEF_575X_PLUS;
3515 /* FALLTHROUGH */
3516 case BGE_ASICREV_BCM5705:
3517 sc->bge_flags |= BGEF_5705_PLUS;
3518 break;
3519 }
3520
3521 /* Identify chips with APE processor. */
3522 switch (BGE_ASICREV(sc->bge_chipid)) {
3523 case BGE_ASICREV_BCM5717:
3524 case BGE_ASICREV_BCM5719:
3525 case BGE_ASICREV_BCM5720:
3526 case BGE_ASICREV_BCM5761:
3527 sc->bge_flags |= BGEF_APE;
3528 break;
3529 }
3530
3531 /*
3532 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3533 * not actually a MAC controller bug but an issue with the embedded
3534 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3535 */
3536 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3537 sc->bge_flags |= BGEF_40BIT_BUG;
3538
3539 /* Chips with APE need BAR2 access for APE registers/memory. */
3540 if ((sc->bge_flags & BGEF_APE) != 0) {
3541 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3542 #if 0
3543 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3544 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3545 &sc->bge_apesize)) {
3546 aprint_error_dev(sc->bge_dev,
3547 "couldn't map BAR2 memory\n");
3548 return;
3549 }
3550 #else
3551 /*
3552 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3553 * system get NMI on boot (PR#48451). This problem might not be
3554 * the driver's bug but our PCI common part's bug. Until we
3555 * find a real reason, we ignore the prefetchable bit.
3556 */
3557 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3558 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3559 aprint_error_dev(sc->bge_dev,
3560 "couldn't map BAR2 memory\n");
3561 return;
3562 }
3563
3564 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3565 if (bus_space_map(pa->pa_memt, memaddr,
3566 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3567 aprint_error_dev(sc->bge_dev,
3568 "couldn't map BAR2 memory\n");
3569 return;
3570 }
3571 sc->bge_apetag = pa->pa_memt;
3572 #endif
3573
3574 /* Enable APE register/memory access by host driver. */
3575 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3576 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3577 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3578 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3579 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3580
3581 bge_ape_lock_init(sc);
3582 bge_ape_read_fw_ver(sc);
3583 }
3584
3585 /* Identify the chips that use an CPMU. */
3586 if (BGE_IS_5717_PLUS(sc) ||
3587 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3588 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3589 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3590 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3591 sc->bge_flags |= BGEF_CPMU_PRESENT;
3592
3593 /* Set MI_MODE */
3594 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3595 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3596 mimode |= BGE_MIMODE_500KHZ_CONST;
3597 else
3598 mimode |= BGE_MIMODE_BASE;
3599 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3600
3601 /*
3602 * When using the BCM5701 in PCI-X mode, data corruption has
3603 * been observed in the first few bytes of some received packets.
3604 * Aligning the packet buffer in memory eliminates the corruption.
3605 * Unfortunately, this misaligns the packet payloads. On platforms
3606 * which do not support unaligned accesses, we will realign the
3607 * payloads by copying the received packets.
3608 */
3609 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3610 sc->bge_flags & BGEF_PCIX)
3611 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3612
3613 if (BGE_IS_5700_FAMILY(sc))
3614 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3615
3616 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3617 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3618
3619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3620 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3621 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3622 sc->bge_flags |= BGEF_IS_5788;
3623
3624 /*
3625 * Some controllers seem to require a special firmware to use
3626 * TSO. But the firmware is not available to FreeBSD and Linux
3627 * claims that the TSO performed by the firmware is slower than
3628 * hardware based TSO. Moreover the firmware based TSO has one
3629 * known bug which can't handle TSO if ethernet header + IP/TCP
3630 * header is greater than 80 bytes. The workaround for the TSO
3631 * bug exist but it seems it's too expensive than not using
3632 * TSO at all. Some hardwares also have the TSO bug so limit
3633 * the TSO to the controllers that are not affected TSO issues
3634 * (e.g. 5755 or higher).
3635 */
3636 if (BGE_IS_5755_PLUS(sc)) {
3637 /*
3638 * BCM5754 and BCM5787 shares the same ASIC id so
3639 * explicit device id check is required.
3640 */
3641 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3642 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3643 sc->bge_flags |= BGEF_TSO;
3644 }
3645
3646 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3647 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3648 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3649 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3650 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3651 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3652 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3653 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3654 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3655 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3656 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3657 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3658 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3659 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3660 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3661 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3662 /* These chips are 10/100 only. */
3663 capmask &= ~BMSR_EXTSTAT;
3664 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3665 }
3666
3667 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3668 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3669 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3670 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3671 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3672
3673 /* Set various PHY bug flags. */
3674 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3675 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3676 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3677 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3678 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3679 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3680 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3681 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3682 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3683 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3684 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3685 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3686 if (BGE_IS_5705_PLUS(sc) &&
3687 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3688 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3689 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3690 !BGE_IS_57765_PLUS(sc)) {
3691 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3692 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3693 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3694 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3695 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3696 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3697 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3698 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3699 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3700 } else
3701 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3702 }
3703
3704 /*
3705 * SEEPROM check.
3706 * First check if firmware knows we do not have SEEPROM.
3707 */
3708 if (prop_dictionary_get_bool(device_properties(self),
3709 "without-seeprom", &no_seeprom) && no_seeprom)
3710 sc->bge_flags |= BGEF_NO_EEPROM;
3711
3712 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3713 sc->bge_flags |= BGEF_NO_EEPROM;
3714
3715 /* Now check the 'ROM failed' bit on the RX CPU */
3716 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3717 sc->bge_flags |= BGEF_NO_EEPROM;
3718
3719 sc->bge_asf_mode = 0;
3720 /* No ASF if APE present. */
3721 if ((sc->bge_flags & BGEF_APE) == 0) {
3722 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3723 BGE_SRAM_DATA_SIG_MAGIC)) {
3724 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3725 BGE_HWCFG_ASF) {
3726 sc->bge_asf_mode |= ASF_ENABLE;
3727 sc->bge_asf_mode |= ASF_STACKUP;
3728 if (BGE_IS_575X_PLUS(sc))
3729 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3730 }
3731 }
3732 }
3733
3734 /* MSI-X will be used in future */
3735 counts[PCI_INTR_TYPE_MSI] = 1;
3736 counts[PCI_INTR_TYPE_INTX] = 1;
3737 /* Check MSI capability */
3738 if (bge_can_use_msi(sc) != 0) {
3739 max_type = PCI_INTR_TYPE_MSI;
3740 sc->bge_flags |= BGEF_MSI;
3741 } else
3742 max_type = PCI_INTR_TYPE_INTX;
3743
3744 alloc_retry:
3745 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3746 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3747 return;
3748 }
3749
3750 DPRINTFN(5, ("pci_intr_string\n"));
3751 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3752 sizeof(intrbuf));
3753 DPRINTFN(5, ("pci_intr_establish\n"));
3754 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3755 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3756 if (sc->bge_intrhand == NULL) {
3757 intr_type = pci_intr_type(pc, sc->bge_pihp[0]);
3758 aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
3759 (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
3760 pci_intr_release(pc, sc->bge_pihp, 1);
3761 switch (intr_type) {
3762 case PCI_INTR_TYPE_MSI:
3763 /* The next try is for INTx: Disable MSI */
3764 max_type = PCI_INTR_TYPE_INTX;
3765 counts[PCI_INTR_TYPE_INTX] = 1;
3766 sc->bge_flags &= ~BGEF_MSI;
3767 goto alloc_retry;
3768 case PCI_INTR_TYPE_INTX:
3769 default:
3770 /* See below */
3771 break;
3772 }
3773 }
3774
3775 if (sc->bge_intrhand == NULL) {
3776 aprint_error_dev(sc->bge_dev,
3777 "couldn't establish interrupt%s%s\n",
3778 intrstr ? " at " : "", intrstr ? intrstr : "");
3779 return;
3780 }
3781 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3782
3783 /*
3784 * All controllers except BCM5700 supports tagged status but
3785 * we use tagged status only for MSI case on BCM5717. Otherwise
3786 * MSI on BCM5717 does not work.
3787 */
3788 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3789 sc->bge_flags |= BGEF_TAGGED_STATUS;
3790
3791 /*
3792 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3793 * lock in bge_reset().
3794 */
3795 CSR_WRITE_4(sc, BGE_EE_ADDR,
3796 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3797 delay(1000);
3798 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3799
3800 bge_stop_fw(sc);
3801 bge_sig_pre_reset(sc, BGE_RESET_START);
3802 if (bge_reset(sc))
3803 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3804
3805 /*
3806 * Read the hardware config word in the first 32k of NIC internal
3807 * memory, or fall back to the config word in the EEPROM.
3808 * Note: on some BCM5700 cards, this value appears to be unset.
3809 */
3810 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3811 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3812 BGE_SRAM_DATA_SIG_MAGIC) {
3813 uint32_t tmp;
3814
3815 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3816 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3817 BGE_SRAM_DATA_VER_SHIFT;
3818 if ((0 < tmp) && (tmp < 0x100))
3819 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3820 if (sc->bge_flags & BGEF_PCIE)
3821 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3823 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3824 if (BGE_IS_5717_PLUS(sc))
3825 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3826 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3827 bge_read_eeprom(sc, (void *)&hwcfg,
3828 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3829 hwcfg = be32toh(hwcfg);
3830 }
3831 aprint_normal_dev(sc->bge_dev,
3832 "HW config %08x, %08x, %08x, %08x %08x\n",
3833 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3834
3835 bge_sig_legacy(sc, BGE_RESET_START);
3836 bge_sig_post_reset(sc, BGE_RESET_START);
3837
3838 if (bge_chipinit(sc)) {
3839 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3840 bge_release_resources(sc);
3841 return;
3842 }
3843
3844 /*
3845 * Get station address from the EEPROM.
3846 */
3847 if (bge_get_eaddr(sc, eaddr)) {
3848 aprint_error_dev(sc->bge_dev,
3849 "failed to read station address\n");
3850 bge_release_resources(sc);
3851 return;
3852 }
3853
3854 br = bge_lookup_rev(sc->bge_chipid);
3855
3856 if (br == NULL) {
3857 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3858 sc->bge_chipid);
3859 } else {
3860 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3861 br->br_name, sc->bge_chipid);
3862 }
3863 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3864
3865 /* Allocate the general information block and ring buffers. */
3866 if (pci_dma64_available(pa))
3867 sc->bge_dmatag = pa->pa_dmat64;
3868 else
3869 sc->bge_dmatag = pa->pa_dmat;
3870
3871 /* 40bit DMA workaround */
3872 if (sizeof(bus_addr_t) > 4) {
3873 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3874 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3875
3876 if (bus_dmatag_subregion(olddmatag, 0,
3877 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3878 BUS_DMA_NOWAIT) != 0) {
3879 aprint_error_dev(self,
3880 "WARNING: failed to restrict dma range,"
3881 " falling back to parent bus dma range\n");
3882 sc->bge_dmatag = olddmatag;
3883 }
3884 }
3885 }
3886 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3887 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3888 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3889 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3890 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3891 return;
3892 }
3893 DPRINTFN(5, ("bus_dmamem_map\n"));
3894 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3895 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3896 BUS_DMA_NOWAIT)) {
3897 aprint_error_dev(sc->bge_dev,
3898 "can't map DMA buffers (%zu bytes)\n",
3899 sizeof(struct bge_ring_data));
3900 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3901 sc->bge_ring_rseg);
3902 return;
3903 }
3904 DPRINTFN(5, ("bus_dmamem_create\n"));
3905 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3906 sizeof(struct bge_ring_data), 0,
3907 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3908 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3909 bus_dmamem_unmap(sc->bge_dmatag, kva,
3910 sizeof(struct bge_ring_data));
3911 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3912 sc->bge_ring_rseg);
3913 return;
3914 }
3915 DPRINTFN(5, ("bus_dmamem_load\n"));
3916 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3917 sizeof(struct bge_ring_data), NULL,
3918 BUS_DMA_NOWAIT)) {
3919 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3920 bus_dmamem_unmap(sc->bge_dmatag, kva,
3921 sizeof(struct bge_ring_data));
3922 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3923 sc->bge_ring_rseg);
3924 return;
3925 }
3926
3927 DPRINTFN(5, ("bzero\n"));
3928 sc->bge_rdata = (struct bge_ring_data *)kva;
3929
3930 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3931
3932 /* Try to allocate memory for jumbo buffers. */
3933 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3934 if (bge_alloc_jumbo_mem(sc)) {
3935 aprint_error_dev(sc->bge_dev,
3936 "jumbo buffer allocation failed\n");
3937 } else
3938 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3939 }
3940
3941 /* Set default tuneable values. */
3942 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3943 sc->bge_rx_coal_ticks = 150;
3944 sc->bge_rx_max_coal_bds = 64;
3945 sc->bge_tx_coal_ticks = 300;
3946 sc->bge_tx_max_coal_bds = 400;
3947 if (BGE_IS_5705_PLUS(sc)) {
3948 sc->bge_tx_coal_ticks = (12 * 5);
3949 sc->bge_tx_max_coal_bds = (12 * 5);
3950 aprint_verbose_dev(sc->bge_dev,
3951 "setting short Tx thresholds\n");
3952 }
3953
3954 if (BGE_IS_5717_PLUS(sc))
3955 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3956 else if (BGE_IS_5705_PLUS(sc))
3957 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3958 else
3959 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3960
3961 /* Set up ifnet structure */
3962 ifp = &sc->ethercom.ec_if;
3963 ifp->if_softc = sc;
3964 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3965 ifp->if_ioctl = bge_ioctl;
3966 ifp->if_stop = bge_stop;
3967 ifp->if_start = bge_start;
3968 ifp->if_init = bge_init;
3969 ifp->if_watchdog = bge_watchdog;
3970 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3971 IFQ_SET_READY(&ifp->if_snd);
3972 DPRINTFN(5, ("strcpy if_xname\n"));
3973 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3974
3975 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3976 sc->ethercom.ec_if.if_capabilities |=
3977 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3978 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3979 sc->ethercom.ec_if.if_capabilities |=
3980 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3981 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3982 #endif
3983 sc->ethercom.ec_capabilities |=
3984 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3985
3986 if (sc->bge_flags & BGEF_TSO)
3987 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3988
3989 /*
3990 * Do MII setup.
3991 */
3992 DPRINTFN(5, ("mii setup\n"));
3993 sc->bge_mii.mii_ifp = ifp;
3994 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3995 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3996 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3997
3998 /*
3999 * Figure out what sort of media we have by checking the hardware
4000 * config word. Note: on some BCM5700 cards, this value appears to be
4001 * unset. If that's the case, we have to rely on identifying the NIC
4002 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4003 * The SysKonnect SK-9D41 is a 1000baseSX card.
4004 */
4005 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4006 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4007 if (BGE_IS_5705_PLUS(sc)) {
4008 sc->bge_flags |= BGEF_FIBER_MII;
4009 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4010 } else
4011 sc->bge_flags |= BGEF_FIBER_TBI;
4012 }
4013
4014 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4015 if (BGE_IS_JUMBO_CAPABLE(sc))
4016 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4017
4018 /* set phyflags and chipid before mii_attach() */
4019 dict = device_properties(self);
4020 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4021 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4022
4023 if (sc->bge_flags & BGEF_FIBER_TBI) {
4024 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4025 bge_ifmedia_sts);
4026 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4027 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4028 0, NULL);
4029 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4030 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4031 /* Pretend the user requested this setting */
4032 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4033 } else {
4034 /*
4035 * Do transceiver setup and tell the firmware the
4036 * driver is down so we can try to get access the
4037 * probe if ASF is running. Retry a couple of times
4038 * if we get a conflict with the ASF firmware accessing
4039 * the PHY.
4040 */
4041 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4042 bge_asf_driver_up(sc);
4043
4044 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4045 bge_ifmedia_sts);
4046 mii_flags = MIIF_DOPAUSE;
4047 if (sc->bge_flags & BGEF_FIBER_MII)
4048 mii_flags |= MIIF_HAVEFIBER;
4049 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4050 MII_OFFSET_ANY, mii_flags);
4051
4052 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4053 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4054 ifmedia_add(&sc->bge_mii.mii_media,
4055 IFM_ETHER|IFM_MANUAL, 0, NULL);
4056 ifmedia_set(&sc->bge_mii.mii_media,
4057 IFM_ETHER|IFM_MANUAL);
4058 } else
4059 ifmedia_set(&sc->bge_mii.mii_media,
4060 IFM_ETHER|IFM_AUTO);
4061
4062 /*
4063 * Now tell the firmware we are going up after probing the PHY
4064 */
4065 if (sc->bge_asf_mode & ASF_STACKUP)
4066 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4067 }
4068
4069 /*
4070 * Call MI attach routine.
4071 */
4072 DPRINTFN(5, ("if_attach\n"));
4073 if_attach(ifp);
4074 if_deferred_start_init(ifp, NULL);
4075 DPRINTFN(5, ("ether_ifattach\n"));
4076 ether_ifattach(ifp, eaddr);
4077 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4078 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4079 RND_TYPE_NET, RND_FLAG_DEFAULT);
4080 #ifdef BGE_EVENT_COUNTERS
4081 /*
4082 * Attach event counters.
4083 */
4084 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4085 NULL, device_xname(sc->bge_dev), "intr");
4086 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4087 NULL, device_xname(sc->bge_dev), "intr_spurious");
4088 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4089 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4090 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4091 NULL, device_xname(sc->bge_dev), "tx_xoff");
4092 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4093 NULL, device_xname(sc->bge_dev), "tx_xon");
4094 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4095 NULL, device_xname(sc->bge_dev), "rx_xoff");
4096 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4097 NULL, device_xname(sc->bge_dev), "rx_xon");
4098 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4099 NULL, device_xname(sc->bge_dev), "rx_macctl");
4100 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4101 NULL, device_xname(sc->bge_dev), "xoffentered");
4102 #endif /* BGE_EVENT_COUNTERS */
4103 DPRINTFN(5, ("callout_init\n"));
4104 callout_init(&sc->bge_timeout, 0);
4105
4106 if (pmf_device_register(self, NULL, NULL))
4107 pmf_class_network_register(self, ifp);
4108 else
4109 aprint_error_dev(self, "couldn't establish power handler\n");
4110
4111 bge_sysctl_init(sc);
4112
4113 #ifdef BGE_DEBUG
4114 bge_debug_info(sc);
4115 #endif
4116 }
4117
4118 /*
4119 * Stop all chip I/O so that the kernel's probe routines don't
4120 * get confused by errant DMAs when rebooting.
4121 */
4122 static int
4123 bge_detach(device_t self, int flags __unused)
4124 {
4125 struct bge_softc *sc = device_private(self);
4126 struct ifnet *ifp = &sc->ethercom.ec_if;
4127 int s;
4128
4129 s = splnet();
4130 /* Stop the interface. Callouts are stopped in it. */
4131 bge_stop(ifp, 1);
4132 splx(s);
4133
4134 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4135
4136 /* Delete all remaining media. */
4137 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4138
4139 ether_ifdetach(ifp);
4140 if_detach(ifp);
4141
4142 bge_release_resources(sc);
4143
4144 return 0;
4145 }
4146
4147 static void
4148 bge_release_resources(struct bge_softc *sc)
4149 {
4150
4151 /* Detach sysctl */
4152 if (sc->bge_log != NULL)
4153 sysctl_teardown(&sc->bge_log);
4154
4155 #ifdef BGE_EVENT_COUNTERS
4156 /* Detach event counters. */
4157 evcnt_detach(&sc->bge_ev_intr);
4158 evcnt_detach(&sc->bge_ev_intr_spurious);
4159 evcnt_detach(&sc->bge_ev_intr_spurious2);
4160 evcnt_detach(&sc->bge_ev_tx_xoff);
4161 evcnt_detach(&sc->bge_ev_tx_xon);
4162 evcnt_detach(&sc->bge_ev_rx_xoff);
4163 evcnt_detach(&sc->bge_ev_rx_xon);
4164 evcnt_detach(&sc->bge_ev_rx_macctl);
4165 evcnt_detach(&sc->bge_ev_xoffentered);
4166 #endif /* BGE_EVENT_COUNTERS */
4167
4168 /* Disestablish the interrupt handler */
4169 if (sc->bge_intrhand != NULL) {
4170 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4171 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4172 sc->bge_intrhand = NULL;
4173 }
4174
4175 if (sc->bge_dmatag != NULL) {
4176 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4177 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4178 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4179 sizeof(struct bge_ring_data));
4180 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4181 sc->bge_ring_rseg);
4182 }
4183
4184 /* Unmap the device registers */
4185 if (sc->bge_bsize != 0) {
4186 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4187 sc->bge_bsize = 0;
4188 }
4189
4190 /* Unmap the APE registers */
4191 if (sc->bge_apesize != 0) {
4192 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4193 sc->bge_apesize);
4194 sc->bge_apesize = 0;
4195 }
4196 }
4197
4198 static int
4199 bge_reset(struct bge_softc *sc)
4200 {
4201 uint32_t cachesize, command;
4202 uint32_t reset, mac_mode, mac_mode_mask;
4203 pcireg_t devctl, reg;
4204 int i, val;
4205 void (*write_op)(struct bge_softc *, int, int);
4206
4207 /* Make mask for BGE_MAC_MODE register. */
4208 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4209 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4210 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4211 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4212 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4213
4214 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4215 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4216 if (sc->bge_flags & BGEF_PCIE)
4217 write_op = bge_writemem_direct;
4218 else
4219 write_op = bge_writemem_ind;
4220 } else
4221 write_op = bge_writereg_ind;
4222
4223 /* 57XX step 4 */
4224 /* Acquire the NVM lock */
4225 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4226 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4227 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4228 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4229 for (i = 0; i < 8000; i++) {
4230 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4231 BGE_NVRAMSWARB_GNT1)
4232 break;
4233 DELAY(20);
4234 }
4235 if (i == 8000) {
4236 printf("%s: NVRAM lock timedout!\n",
4237 device_xname(sc->bge_dev));
4238 }
4239 }
4240
4241 /* Take APE lock when performing reset. */
4242 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4243
4244 /* 57XX step 3 */
4245 /* Save some important PCI state. */
4246 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4247 /* 5718 reset step 3 */
4248 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4249
4250 /* 5718 reset step 5, 57XX step 5b-5d */
4251 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4252 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4253 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4254
4255 /* XXX ???: Disable fastboot on controllers that support it. */
4256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4257 BGE_IS_5755_PLUS(sc))
4258 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4259
4260 /* 5718 reset step 2, 57XX step 6 */
4261 /*
4262 * Write the magic number to SRAM at offset 0xB50.
4263 * When firmware finishes its initialization it will
4264 * write ~BGE_MAGIC_NUMBER to the same location.
4265 */
4266 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4267
4268 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4269 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4270 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4271 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4272 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4273 }
4274
4275 /* 5718 reset step 6, 57XX step 7 */
4276 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4277 /*
4278 * XXX: from FreeBSD/Linux; no documentation
4279 */
4280 if (sc->bge_flags & BGEF_PCIE) {
4281 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4282 !BGE_IS_57765_PLUS(sc) &&
4283 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4284 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4285 /* PCI Express 1.0 system */
4286 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4287 BGE_PHY_PCIE_SCRAM_MODE);
4288 }
4289 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4290 /*
4291 * Prevent PCI Express link training
4292 * during global reset.
4293 */
4294 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4295 reset |= (1 << 29);
4296 }
4297 }
4298
4299 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4300 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4301 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4302 i | BGE_VCPU_STATUS_DRV_RESET);
4303 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4304 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4305 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4306 }
4307
4308 /*
4309 * Set GPHY Power Down Override to leave GPHY
4310 * powered up in D0 uninitialized.
4311 */
4312 if (BGE_IS_5705_PLUS(sc) &&
4313 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4314 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4315
4316 /* Issue global reset */
4317 write_op(sc, BGE_MISC_CFG, reset);
4318
4319 /* 5718 reset step 7, 57XX step 8 */
4320 if (sc->bge_flags & BGEF_PCIE)
4321 delay(100*1000); /* too big */
4322 else
4323 delay(1000);
4324
4325 if (sc->bge_flags & BGEF_PCIE) {
4326 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4327 DELAY(500000);
4328 /* XXX: Magic Numbers */
4329 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4330 BGE_PCI_UNKNOWN0);
4331 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4332 BGE_PCI_UNKNOWN0,
4333 reg | (1 << 15));
4334 }
4335 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4336 sc->bge_pciecap + PCIE_DCSR);
4337 /* Clear enable no snoop and disable relaxed ordering. */
4338 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4339 PCIE_DCSR_ENA_NO_SNOOP);
4340
4341 /* Set PCIE max payload size to 128 for older PCIe devices */
4342 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4343 devctl &= ~(0x00e0);
4344 /* Clear device status register. Write 1b to clear */
4345 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4346 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4347 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4348 sc->bge_pciecap + PCIE_DCSR, devctl);
4349 bge_set_max_readrq(sc);
4350 }
4351
4352 /* From Linux: dummy read to flush PCI posted writes */
4353 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4354
4355 /*
4356 * Reset some of the PCI state that got zapped by reset
4357 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4358 * set, too.
4359 */
4360 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4361 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4362 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4363 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4364 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4365 (sc->bge_flags & BGEF_PCIX) != 0)
4366 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4367 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4368 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4369 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4370 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4371 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4372 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4373 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4374
4375 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4376 if (sc->bge_flags & BGEF_PCIX) {
4377 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4378 + PCIX_CMD);
4379 /* Set max memory read byte count to 2K */
4380 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4381 reg &= ~PCIX_CMD_BYTECNT_MASK;
4382 reg |= PCIX_CMD_BCNT_2048;
4383 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4384 /*
4385 * For 5704, set max outstanding split transaction
4386 * field to 0 (0 means it supports 1 request)
4387 */
4388 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4389 | PCIX_CMD_BYTECNT_MASK);
4390 reg |= PCIX_CMD_BCNT_2048;
4391 }
4392 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4393 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4394 }
4395
4396 /* 5718 reset step 10, 57XX step 12 */
4397 /* Enable memory arbiter. */
4398 if (BGE_IS_5714_FAMILY(sc)) {
4399 val = CSR_READ_4(sc, BGE_MARB_MODE);
4400 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4401 } else
4402 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4403
4404 /* XXX 5721, 5751 and 5752 */
4405 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4406 /* Step 19: */
4407 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4408 /* Step 20: */
4409 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4410 }
4411
4412 /* 5718 reset step 12, 57XX step 15 and 16 */
4413 /* Fix up byte swapping */
4414 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4415
4416 /* 5718 reset step 13, 57XX step 17 */
4417 /* Poll until the firmware initialization is complete */
4418 bge_poll_fw(sc);
4419
4420 /* 57XX step 21 */
4421 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4422 pcireg_t msidata;
4423
4424 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4425 BGE_PCI_MSI_DATA);
4426 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4427 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4428 msidata);
4429 }
4430
4431 /* 57XX step 18 */
4432 /* Write mac mode. */
4433 val = CSR_READ_4(sc, BGE_MAC_MODE);
4434 /* Restore mac_mode_mask's bits using mac_mode */
4435 val = (val & ~mac_mode_mask) | mac_mode;
4436 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4437 DELAY(40);
4438
4439 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4440
4441 /*
4442 * The 5704 in TBI mode apparently needs some special
4443 * adjustment to insure the SERDES drive level is set
4444 * to 1.2V.
4445 */
4446 if (sc->bge_flags & BGEF_FIBER_TBI &&
4447 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4448 uint32_t serdescfg;
4449
4450 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4451 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4452 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4453 }
4454
4455 if (sc->bge_flags & BGEF_PCIE &&
4456 !BGE_IS_57765_PLUS(sc) &&
4457 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4458 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4459 uint32_t v;
4460
4461 /* Enable PCI Express bug fix */
4462 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4463 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4464 v | BGE_TLP_DATA_FIFO_PROTECT);
4465 }
4466
4467 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4468 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4469 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4470
4471 return 0;
4472 }
4473
4474 /*
4475 * Frame reception handling. This is called if there's a frame
4476 * on the receive return list.
4477 *
4478 * Note: we have to be able to handle two possibilities here:
4479 * 1) the frame is from the jumbo receive ring
4480 * 2) the frame is from the standard receive ring
4481 */
4482
4483 static void
4484 bge_rxeof(struct bge_softc *sc)
4485 {
4486 struct ifnet *ifp;
4487 uint16_t rx_prod, rx_cons;
4488 int stdcnt = 0, jumbocnt = 0;
4489 bus_dmamap_t dmamap;
4490 bus_addr_t offset, toff;
4491 bus_size_t tlen;
4492 int tosync;
4493
4494 rx_cons = sc->bge_rx_saved_considx;
4495 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4496
4497 /* Nothing to do */
4498 if (rx_cons == rx_prod)
4499 return;
4500
4501 ifp = &sc->ethercom.ec_if;
4502
4503 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4504 offsetof(struct bge_ring_data, bge_status_block),
4505 sizeof (struct bge_status_block),
4506 BUS_DMASYNC_POSTREAD);
4507
4508 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4509 tosync = rx_prod - rx_cons;
4510
4511 if (tosync != 0)
4512 rnd_add_uint32(&sc->rnd_source, tosync);
4513
4514 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4515
4516 if (tosync < 0) {
4517 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4518 sizeof (struct bge_rx_bd);
4519 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4520 toff, tlen, BUS_DMASYNC_POSTREAD);
4521 tosync = -tosync;
4522 }
4523
4524 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4525 offset, tosync * sizeof (struct bge_rx_bd),
4526 BUS_DMASYNC_POSTREAD);
4527
4528 while (rx_cons != rx_prod) {
4529 struct bge_rx_bd *cur_rx;
4530 uint32_t rxidx;
4531 struct mbuf *m = NULL;
4532
4533 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4534
4535 rxidx = cur_rx->bge_idx;
4536 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4537
4538 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4539 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4540 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4541 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4542 jumbocnt++;
4543 bus_dmamap_sync(sc->bge_dmatag,
4544 sc->bge_cdata.bge_rx_jumbo_map,
4545 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4546 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4547 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4548 ifp->if_ierrors++;
4549 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4550 continue;
4551 }
4552 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4553 NULL)== ENOBUFS) {
4554 ifp->if_ierrors++;
4555 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4556 continue;
4557 }
4558 } else {
4559 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4560 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4561
4562 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4563 stdcnt++;
4564 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4565 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4566 if (dmamap == NULL) {
4567 ifp->if_ierrors++;
4568 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4569 continue;
4570 }
4571 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4572 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4573 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4574 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4575 ifp->if_ierrors++;
4576 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4577 continue;
4578 }
4579 if (bge_newbuf_std(sc, sc->bge_std,
4580 NULL, dmamap) == ENOBUFS) {
4581 ifp->if_ierrors++;
4582 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4583 continue;
4584 }
4585 }
4586
4587 #ifndef __NO_STRICT_ALIGNMENT
4588 /*
4589 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4590 * the Rx buffer has the layer-2 header unaligned.
4591 * If our CPU requires alignment, re-align by copying.
4592 */
4593 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4594 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4595 cur_rx->bge_len);
4596 m->m_data += ETHER_ALIGN;
4597 }
4598 #endif
4599
4600 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4601 m_set_rcvif(m, ifp);
4602
4603 bge_rxcsum(sc, cur_rx, m);
4604
4605 /*
4606 * If we received a packet with a vlan tag, pass it
4607 * to vlan_input() instead of ether_input().
4608 */
4609 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4610 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4611 }
4612
4613 if_percpuq_enqueue(ifp->if_percpuq, m);
4614 }
4615
4616 sc->bge_rx_saved_considx = rx_cons;
4617 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4618 if (stdcnt)
4619 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4620 if (jumbocnt)
4621 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4622 }
4623
4624 static void
4625 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4626 {
4627
4628 if (BGE_IS_57765_PLUS(sc)) {
4629 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4630 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4631 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4632 if ((cur_rx->bge_error_flag &
4633 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4634 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4635 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4636 m->m_pkthdr.csum_data =
4637 cur_rx->bge_tcp_udp_csum;
4638 m->m_pkthdr.csum_flags |=
4639 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4640 M_CSUM_DATA);
4641 }
4642 }
4643 } else {
4644 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4645 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4646 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4647 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4648 /*
4649 * Rx transport checksum-offload may also
4650 * have bugs with packets which, when transmitted,
4651 * were `runts' requiring padding.
4652 */
4653 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4654 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4655 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4656 m->m_pkthdr.csum_data =
4657 cur_rx->bge_tcp_udp_csum;
4658 m->m_pkthdr.csum_flags |=
4659 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4660 M_CSUM_DATA);
4661 }
4662 }
4663 }
4664
4665 static void
4666 bge_txeof(struct bge_softc *sc)
4667 {
4668 struct bge_tx_bd *cur_tx = NULL;
4669 struct ifnet *ifp;
4670 struct txdmamap_pool_entry *dma;
4671 bus_addr_t offset, toff;
4672 bus_size_t tlen;
4673 int tosync;
4674 struct mbuf *m;
4675
4676 ifp = &sc->ethercom.ec_if;
4677
4678 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4679 offsetof(struct bge_ring_data, bge_status_block),
4680 sizeof (struct bge_status_block),
4681 BUS_DMASYNC_POSTREAD);
4682
4683 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4684 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4685 sc->bge_tx_saved_considx;
4686
4687 if (tosync != 0)
4688 rnd_add_uint32(&sc->rnd_source, tosync);
4689
4690 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4691
4692 if (tosync < 0) {
4693 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4694 sizeof (struct bge_tx_bd);
4695 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4696 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4697 tosync = -tosync;
4698 }
4699
4700 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4701 offset, tosync * sizeof (struct bge_tx_bd),
4702 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4703
4704 /*
4705 * Go through our tx ring and free mbufs for those
4706 * frames that have been sent.
4707 */
4708 while (sc->bge_tx_saved_considx !=
4709 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4710 uint32_t idx = 0;
4711
4712 idx = sc->bge_tx_saved_considx;
4713 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4714 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4715 ifp->if_opackets++;
4716 m = sc->bge_cdata.bge_tx_chain[idx];
4717 if (m != NULL) {
4718 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4719 dma = sc->txdma[idx];
4720 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4721 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4722 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4723 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4724 sc->txdma[idx] = NULL;
4725
4726 m_freem(m);
4727 }
4728 sc->bge_txcnt--;
4729 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4730 ifp->if_timer = 0;
4731 }
4732
4733 if (cur_tx != NULL)
4734 ifp->if_flags &= ~IFF_OACTIVE;
4735 }
4736
4737 static int
4738 bge_intr(void *xsc)
4739 {
4740 struct bge_softc *sc;
4741 struct ifnet *ifp;
4742 uint32_t pcistate, statusword, statustag;
4743 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4744
4745 sc = xsc;
4746 ifp = &sc->ethercom.ec_if;
4747
4748 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4749 if (BGE_IS_5717_PLUS(sc))
4750 intrmask = 0;
4751
4752 /* It is possible for the interrupt to arrive before
4753 * the status block is updated prior to the interrupt.
4754 * Reading the PCI State register will confirm whether the
4755 * interrupt is ours and will flush the status block.
4756 */
4757 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4758
4759 /* read status word from status block */
4760 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4761 offsetof(struct bge_ring_data, bge_status_block),
4762 sizeof (struct bge_status_block),
4763 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4764 statusword = sc->bge_rdata->bge_status_block.bge_status;
4765 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4766
4767 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4768 if (sc->bge_lasttag == statustag &&
4769 (~pcistate & intrmask)) {
4770 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4771 return (0);
4772 }
4773 sc->bge_lasttag = statustag;
4774 } else {
4775 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4776 !(~pcistate & intrmask)) {
4777 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4778 return (0);
4779 }
4780 statustag = 0;
4781 }
4782 /* Ack interrupt and stop others from occurring. */
4783 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4784 BGE_EVCNT_INCR(sc->bge_ev_intr);
4785
4786 /* clear status word */
4787 sc->bge_rdata->bge_status_block.bge_status = 0;
4788
4789 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4790 offsetof(struct bge_ring_data, bge_status_block),
4791 sizeof (struct bge_status_block),
4792 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4793
4794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4795 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4796 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4797 bge_link_upd(sc);
4798
4799 if (ifp->if_flags & IFF_RUNNING) {
4800 /* Check RX return ring producer/consumer */
4801 bge_rxeof(sc);
4802
4803 /* Check TX ring producer/consumer */
4804 bge_txeof(sc);
4805 }
4806
4807 if (sc->bge_pending_rxintr_change) {
4808 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4809 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4810
4811 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4812 DELAY(10);
4813 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4814
4815 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4816 DELAY(10);
4817 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4818
4819 sc->bge_pending_rxintr_change = 0;
4820 }
4821 bge_handle_events(sc);
4822
4823 /* Re-enable interrupts. */
4824 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4825
4826 if (ifp->if_flags & IFF_RUNNING)
4827 if_schedule_deferred_start(ifp);
4828
4829 return 1;
4830 }
4831
4832 static void
4833 bge_asf_driver_up(struct bge_softc *sc)
4834 {
4835 if (sc->bge_asf_mode & ASF_STACKUP) {
4836 /* Send ASF heartbeat aprox. every 2s */
4837 if (sc->bge_asf_count)
4838 sc->bge_asf_count --;
4839 else {
4840 sc->bge_asf_count = 2;
4841
4842 bge_wait_for_event_ack(sc);
4843
4844 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4845 BGE_FW_CMD_DRV_ALIVE3);
4846 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4847 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4848 BGE_FW_HB_TIMEOUT_SEC);
4849 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4850 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4851 BGE_RX_CPU_DRV_EVENT);
4852 }
4853 }
4854 }
4855
4856 static void
4857 bge_tick(void *xsc)
4858 {
4859 struct bge_softc *sc = xsc;
4860 struct mii_data *mii = &sc->bge_mii;
4861 int s;
4862
4863 s = splnet();
4864
4865 if (BGE_IS_5705_PLUS(sc))
4866 bge_stats_update_regs(sc);
4867 else
4868 bge_stats_update(sc);
4869
4870 if (sc->bge_flags & BGEF_FIBER_TBI) {
4871 /*
4872 * Since in TBI mode auto-polling can't be used we should poll
4873 * link status manually. Here we register pending link event
4874 * and trigger interrupt.
4875 */
4876 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4877 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4878 } else {
4879 /*
4880 * Do not touch PHY if we have link up. This could break
4881 * IPMI/ASF mode or produce extra input errors.
4882 * (extra input errors was reported for bcm5701 & bcm5704).
4883 */
4884 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4885 mii_tick(mii);
4886 }
4887
4888 bge_asf_driver_up(sc);
4889
4890 if (!sc->bge_detaching)
4891 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4892
4893 splx(s);
4894 }
4895
4896 static void
4897 bge_stats_update_regs(struct bge_softc *sc)
4898 {
4899 struct ifnet *ifp = &sc->ethercom.ec_if;
4900
4901 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4902 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4903
4904 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4905 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4906 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4907 }
4908
4909 static void
4910 bge_stats_update(struct bge_softc *sc)
4911 {
4912 struct ifnet *ifp = &sc->ethercom.ec_if;
4913 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4914
4915 #define READ_STAT(sc, stats, stat) \
4916 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4917
4918 ifp->if_collisions +=
4919 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4920 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4921 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4922 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4923 ifp->if_collisions;
4924
4925 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4926 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4927 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4928 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4929 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4930 READ_STAT(sc, stats,
4931 xoffPauseFramesReceived.bge_addr_lo));
4932 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4933 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4934 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4935 READ_STAT(sc, stats,
4936 macControlFramesReceived.bge_addr_lo));
4937 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4938 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4939
4940 #undef READ_STAT
4941
4942 #ifdef notdef
4943 ifp->if_collisions +=
4944 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4945 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4946 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4947 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4948 ifp->if_collisions;
4949 #endif
4950 }
4951
4952 /*
4953 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4954 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4955 * but when such padded frames employ the bge IP/TCP checksum offload,
4956 * the hardware checksum assist gives incorrect results (possibly
4957 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4958 * If we pad such runts with zeros, the onboard checksum comes out correct.
4959 */
4960 static inline int
4961 bge_cksum_pad(struct mbuf *pkt)
4962 {
4963 struct mbuf *last = NULL;
4964 int padlen;
4965
4966 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4967
4968 /* if there's only the packet-header and we can pad there, use it. */
4969 if (pkt->m_pkthdr.len == pkt->m_len &&
4970 M_TRAILINGSPACE(pkt) >= padlen) {
4971 last = pkt;
4972 } else {
4973 /*
4974 * Walk packet chain to find last mbuf. We will either
4975 * pad there, or append a new mbuf and pad it
4976 * (thus perhaps avoiding the bcm5700 dma-min bug).
4977 */
4978 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4979 continue; /* do nothing */
4980 }
4981
4982 /* `last' now points to last in chain. */
4983 if (M_TRAILINGSPACE(last) < padlen) {
4984 /* Allocate new empty mbuf, pad it. Compact later. */
4985 struct mbuf *n;
4986 MGET(n, M_DONTWAIT, MT_DATA);
4987 if (n == NULL)
4988 return ENOBUFS;
4989 n->m_len = 0;
4990 last->m_next = n;
4991 last = n;
4992 }
4993 }
4994
4995 KDASSERT(!M_READONLY(last));
4996 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4997
4998 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4999 memset(mtod(last, char *) + last->m_len, 0, padlen);
5000 last->m_len += padlen;
5001 pkt->m_pkthdr.len += padlen;
5002 return 0;
5003 }
5004
5005 /*
5006 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5007 */
5008 static inline int
5009 bge_compact_dma_runt(struct mbuf *pkt)
5010 {
5011 struct mbuf *m, *prev;
5012 int totlen;
5013
5014 prev = NULL;
5015 totlen = 0;
5016
5017 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5018 int mlen = m->m_len;
5019 int shortfall = 8 - mlen ;
5020
5021 totlen += mlen;
5022 if (mlen == 0)
5023 continue;
5024 if (mlen >= 8)
5025 continue;
5026
5027 /* If we get here, mbuf data is too small for DMA engine.
5028 * Try to fix by shuffling data to prev or next in chain.
5029 * If that fails, do a compacting deep-copy of the whole chain.
5030 */
5031
5032 /* Internal frag. If fits in prev, copy it there. */
5033 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5034 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5035 prev->m_len += mlen;
5036 m->m_len = 0;
5037 /* XXX stitch chain */
5038 prev->m_next = m_free(m);
5039 m = prev;
5040 continue;
5041 }
5042 else if (m->m_next != NULL &&
5043 M_TRAILINGSPACE(m) >= shortfall &&
5044 m->m_next->m_len >= (8 + shortfall)) {
5045 /* m is writable and have enough data in next, pull up. */
5046
5047 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5048 shortfall);
5049 m->m_len += shortfall;
5050 m->m_next->m_len -= shortfall;
5051 m->m_next->m_data += shortfall;
5052 }
5053 else if (m->m_next == NULL || 1) {
5054 /* Got a runt at the very end of the packet.
5055 * borrow data from the tail of the preceding mbuf and
5056 * update its length in-place. (The original data is still
5057 * valid, so we can do this even if prev is not writable.)
5058 */
5059
5060 /* if we'd make prev a runt, just move all of its data. */
5061 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5062 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5063
5064 if ((prev->m_len - shortfall) < 8)
5065 shortfall = prev->m_len;
5066
5067 #ifdef notyet /* just do the safe slow thing for now */
5068 if (!M_READONLY(m)) {
5069 if (M_LEADINGSPACE(m) < shorfall) {
5070 void *m_dat;
5071 m_dat = (m->m_flags & M_PKTHDR) ?
5072 m->m_pktdat : m->dat;
5073 memmove(m_dat, mtod(m, void*), m->m_len);
5074 m->m_data = m_dat;
5075 }
5076 } else
5077 #endif /* just do the safe slow thing */
5078 {
5079 struct mbuf * n = NULL;
5080 int newprevlen = prev->m_len - shortfall;
5081
5082 MGET(n, M_NOWAIT, MT_DATA);
5083 if (n == NULL)
5084 return ENOBUFS;
5085 KASSERT(m->m_len + shortfall < MLEN
5086 /*,
5087 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5088
5089 /* first copy the data we're stealing from prev */
5090 memcpy(n->m_data, prev->m_data + newprevlen,
5091 shortfall);
5092
5093 /* update prev->m_len accordingly */
5094 prev->m_len -= shortfall;
5095
5096 /* copy data from runt m */
5097 memcpy(n->m_data + shortfall, m->m_data,
5098 m->m_len);
5099
5100 /* n holds what we stole from prev, plus m */
5101 n->m_len = shortfall + m->m_len;
5102
5103 /* stitch n into chain and free m */
5104 n->m_next = m->m_next;
5105 prev->m_next = n;
5106 /* KASSERT(m->m_next == NULL); */
5107 m->m_next = NULL;
5108 m_free(m);
5109 m = n; /* for continuing loop */
5110 }
5111 }
5112 }
5113 return 0;
5114 }
5115
5116 /*
5117 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5118 * pointers to descriptors.
5119 */
5120 static int
5121 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5122 {
5123 struct bge_tx_bd *f = NULL;
5124 uint32_t frag, cur;
5125 uint16_t csum_flags = 0;
5126 uint16_t txbd_tso_flags = 0;
5127 struct txdmamap_pool_entry *dma;
5128 bus_dmamap_t dmamap;
5129 int i = 0;
5130 int use_tso, maxsegsize, error;
5131 bool have_vtag;
5132 uint16_t vtag;
5133
5134 cur = frag = *txidx;
5135
5136 if (m_head->m_pkthdr.csum_flags) {
5137 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5138 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5139 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5140 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5141 }
5142
5143 /*
5144 * If we were asked to do an outboard checksum, and the NIC
5145 * has the bug where it sometimes adds in the Ethernet padding,
5146 * explicitly pad with zeros so the cksum will be correct either way.
5147 * (For now, do this for all chip versions, until newer
5148 * are confirmed to not require the workaround.)
5149 */
5150 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5151 #ifdef notyet
5152 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5153 #endif
5154 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5155 goto check_dma_bug;
5156
5157 if (bge_cksum_pad(m_head) != 0)
5158 return ENOBUFS;
5159
5160 check_dma_bug:
5161 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5162 goto doit;
5163
5164 /*
5165 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5166 * less than eight bytes. If we encounter a teeny mbuf
5167 * at the end of a chain, we can pad. Otherwise, copy.
5168 */
5169 if (bge_compact_dma_runt(m_head) != 0)
5170 return ENOBUFS;
5171
5172 doit:
5173 dma = SLIST_FIRST(&sc->txdma_list);
5174 if (dma == NULL)
5175 return ENOBUFS;
5176 dmamap = dma->dmamap;
5177
5178 /*
5179 * Set up any necessary TSO state before we start packing...
5180 */
5181 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5182 if (!use_tso) {
5183 maxsegsize = 0;
5184 } else { /* TSO setup */
5185 unsigned mss;
5186 struct ether_header *eh;
5187 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5188 struct mbuf * m0 = m_head;
5189 struct ip *ip;
5190 struct tcphdr *th;
5191 int iphl, hlen;
5192
5193 /*
5194 * XXX It would be nice if the mbuf pkthdr had offset
5195 * fields for the protocol headers.
5196 */
5197
5198 eh = mtod(m0, struct ether_header *);
5199 switch (htons(eh->ether_type)) {
5200 case ETHERTYPE_IP:
5201 offset = ETHER_HDR_LEN;
5202 break;
5203
5204 case ETHERTYPE_VLAN:
5205 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5206 break;
5207
5208 default:
5209 /*
5210 * Don't support this protocol or encapsulation.
5211 */
5212 return ENOBUFS;
5213 }
5214
5215 /*
5216 * TCP/IP headers are in the first mbuf; we can do
5217 * this the easy way.
5218 */
5219 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5220 hlen = iphl + offset;
5221 if (__predict_false(m0->m_len <
5222 (hlen + sizeof(struct tcphdr)))) {
5223
5224 aprint_debug_dev(sc->bge_dev,
5225 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5226 "not handled yet\n",
5227 m0->m_len, hlen+ sizeof(struct tcphdr));
5228 #ifdef NOTYET
5229 /*
5230 * XXX jonathan (at) NetBSD.org: untested.
5231 * how to force this branch to be taken?
5232 */
5233 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5234
5235 m_copydata(m0, offset, sizeof(ip), &ip);
5236 m_copydata(m0, hlen, sizeof(th), &th);
5237
5238 ip.ip_len = 0;
5239
5240 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5241 sizeof(ip.ip_len), &ip.ip_len);
5242
5243 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5244 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5245
5246 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5247 sizeof(th.th_sum), &th.th_sum);
5248
5249 hlen += th.th_off << 2;
5250 iptcp_opt_words = hlen;
5251 #else
5252 /*
5253 * if_wm "hard" case not yet supported, can we not
5254 * mandate it out of existence?
5255 */
5256 (void) ip; (void)th; (void) ip_tcp_hlen;
5257
5258 return ENOBUFS;
5259 #endif
5260 } else {
5261 ip = (struct ip *) (mtod(m0, char *) + offset);
5262 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5263 ip_tcp_hlen = iphl + (th->th_off << 2);
5264
5265 /* Total IP/TCP options, in 32-bit words */
5266 iptcp_opt_words = (ip_tcp_hlen
5267 - sizeof(struct tcphdr)
5268 - sizeof(struct ip)) >> 2;
5269 }
5270 if (BGE_IS_575X_PLUS(sc)) {
5271 th->th_sum = 0;
5272 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5273 } else {
5274 /*
5275 * XXX jonathan (at) NetBSD.org: 5705 untested.
5276 * Requires TSO firmware patch for 5701/5703/5704.
5277 */
5278 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5279 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5280 }
5281
5282 mss = m_head->m_pkthdr.segsz;
5283 txbd_tso_flags |=
5284 BGE_TXBDFLAG_CPU_PRE_DMA |
5285 BGE_TXBDFLAG_CPU_POST_DMA;
5286
5287 /*
5288 * Our NIC TSO-assist assumes TSO has standard, optionless
5289 * IPv4 and TCP headers, which total 40 bytes. By default,
5290 * the NIC copies 40 bytes of IP/TCP header from the
5291 * supplied header into the IP/TCP header portion of
5292 * each post-TSO-segment. If the supplied packet has IP or
5293 * TCP options, we need to tell the NIC to copy those extra
5294 * bytes into each post-TSO header, in addition to the normal
5295 * 40-byte IP/TCP header (and to leave space accordingly).
5296 * Unfortunately, the driver encoding of option length
5297 * varies across different ASIC families.
5298 */
5299 tcp_seg_flags = 0;
5300 if (iptcp_opt_words) {
5301 if (BGE_IS_5705_PLUS(sc)) {
5302 tcp_seg_flags =
5303 iptcp_opt_words << 11;
5304 } else {
5305 txbd_tso_flags |=
5306 iptcp_opt_words << 12;
5307 }
5308 }
5309 maxsegsize = mss | tcp_seg_flags;
5310 ip->ip_len = htons(mss + ip_tcp_hlen);
5311
5312 } /* TSO setup */
5313
5314 /*
5315 * Start packing the mbufs in this chain into
5316 * the fragment pointers. Stop when we run out
5317 * of fragments or hit the end of the mbuf chain.
5318 */
5319 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5320 BUS_DMA_NOWAIT);
5321 if (error)
5322 return ENOBUFS;
5323 /*
5324 * Sanity check: avoid coming within 16 descriptors
5325 * of the end of the ring.
5326 */
5327 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5328 BGE_TSO_PRINTF(("%s: "
5329 " dmamap_load_mbuf too close to ring wrap\n",
5330 device_xname(sc->bge_dev)));
5331 goto fail_unload;
5332 }
5333
5334 have_vtag = vlan_has_tag(m_head);
5335 if (have_vtag)
5336 vtag = vlan_get_tag(m_head);
5337
5338 /* Iterate over dmap-map fragments. */
5339 for (i = 0; i < dmamap->dm_nsegs; i++) {
5340 f = &sc->bge_rdata->bge_tx_ring[frag];
5341 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5342 break;
5343
5344 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5345 f->bge_len = dmamap->dm_segs[i].ds_len;
5346
5347 /*
5348 * For 5751 and follow-ons, for TSO we must turn
5349 * off checksum-assist flag in the tx-descr, and
5350 * supply the ASIC-revision-specific encoding
5351 * of TSO flags and segsize.
5352 */
5353 if (use_tso) {
5354 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5355 f->bge_rsvd = maxsegsize;
5356 f->bge_flags = csum_flags | txbd_tso_flags;
5357 } else {
5358 f->bge_rsvd = 0;
5359 f->bge_flags =
5360 (csum_flags | txbd_tso_flags) & 0x0fff;
5361 }
5362 } else {
5363 f->bge_rsvd = 0;
5364 f->bge_flags = csum_flags;
5365 }
5366
5367 if (have_vtag) {
5368 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5369 f->bge_vlan_tag = vtag;
5370 } else {
5371 f->bge_vlan_tag = 0;
5372 }
5373 cur = frag;
5374 BGE_INC(frag, BGE_TX_RING_CNT);
5375 }
5376
5377 if (i < dmamap->dm_nsegs) {
5378 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5379 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5380 goto fail_unload;
5381 }
5382
5383 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5384 BUS_DMASYNC_PREWRITE);
5385
5386 if (frag == sc->bge_tx_saved_considx) {
5387 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5388 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5389
5390 goto fail_unload;
5391 }
5392
5393 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5394 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5395 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5396 sc->txdma[cur] = dma;
5397 sc->bge_txcnt += dmamap->dm_nsegs;
5398
5399 *txidx = frag;
5400
5401 return 0;
5402
5403 fail_unload:
5404 bus_dmamap_unload(sc->bge_dmatag, dmamap);
5405
5406 return ENOBUFS;
5407 }
5408
5409 /*
5410 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5411 * to the mbuf data regions directly in the transmit descriptors.
5412 */
5413 static void
5414 bge_start(struct ifnet *ifp)
5415 {
5416 struct bge_softc *sc;
5417 struct mbuf *m_head = NULL;
5418 uint32_t prodidx;
5419 int pkts = 0;
5420
5421 sc = ifp->if_softc;
5422
5423 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5424 return;
5425
5426 prodidx = sc->bge_tx_prodidx;
5427
5428 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5429 IFQ_POLL(&ifp->if_snd, m_head);
5430 if (m_head == NULL)
5431 break;
5432
5433 #if 0
5434 /*
5435 * XXX
5436 * safety overkill. If this is a fragmented packet chain
5437 * with delayed TCP/UDP checksums, then only encapsulate
5438 * it if we have enough descriptors to handle the entire
5439 * chain at once.
5440 * (paranoia -- may not actually be needed)
5441 */
5442 if (m_head->m_flags & M_FIRSTFRAG &&
5443 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5444 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5445 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5446 ifp->if_flags |= IFF_OACTIVE;
5447 break;
5448 }
5449 }
5450 #endif
5451
5452 /*
5453 * Pack the data into the transmit ring. If we
5454 * don't have room, set the OACTIVE flag and wait
5455 * for the NIC to drain the ring.
5456 */
5457 if (bge_encap(sc, m_head, &prodidx)) {
5458 ifp->if_flags |= IFF_OACTIVE;
5459 break;
5460 }
5461
5462 /* now we are committed to transmit the packet */
5463 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5464 pkts++;
5465
5466 /*
5467 * If there's a BPF listener, bounce a copy of this frame
5468 * to him.
5469 */
5470 bpf_mtap(ifp, m_head);
5471 }
5472 if (pkts == 0)
5473 return;
5474
5475 /* Transmit */
5476 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5477 /* 5700 b2 errata */
5478 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5479 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5480
5481 sc->bge_tx_prodidx = prodidx;
5482
5483 /*
5484 * Set a timeout in case the chip goes out to lunch.
5485 */
5486 ifp->if_timer = 5;
5487 }
5488
5489 static int
5490 bge_init(struct ifnet *ifp)
5491 {
5492 struct bge_softc *sc = ifp->if_softc;
5493 const uint16_t *m;
5494 uint32_t mode, reg;
5495 int s, error = 0;
5496
5497 s = splnet();
5498
5499 ifp = &sc->ethercom.ec_if;
5500
5501 /* Cancel pending I/O and flush buffers. */
5502 bge_stop(ifp, 0);
5503
5504 bge_stop_fw(sc);
5505 bge_sig_pre_reset(sc, BGE_RESET_START);
5506 bge_reset(sc);
5507 bge_sig_legacy(sc, BGE_RESET_START);
5508
5509 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5510 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5511 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5512 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5513 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5514
5515 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5516 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5517 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5518 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5519
5520 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5521 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5522 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5523 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5524
5525 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5526 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5527 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5528 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5529 }
5530
5531 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5532 pcireg_t aercap;
5533
5534 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5535 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5536 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5537 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5538 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5539
5540 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5541 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5542 | BGE_PCIE_EIDLE_DELAY_13CLK;
5543 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5544
5545 /* Clear correctable error */
5546 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5547 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5548 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5549 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5550
5551 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5552 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5553 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5554 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5555 }
5556
5557 bge_sig_post_reset(sc, BGE_RESET_START);
5558
5559 bge_chipinit(sc);
5560
5561 /*
5562 * Init the various state machines, ring
5563 * control blocks and firmware.
5564 */
5565 error = bge_blockinit(sc);
5566 if (error != 0) {
5567 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5568 error);
5569 splx(s);
5570 return error;
5571 }
5572
5573 ifp = &sc->ethercom.ec_if;
5574
5575 /* 5718 step 25, 57XX step 54 */
5576 /* Specify MTU. */
5577 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5578 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5579
5580 /* 5718 step 23 */
5581 /* Load our MAC address. */
5582 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5583 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5584 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5585
5586 /* Enable or disable promiscuous mode as needed. */
5587 if (ifp->if_flags & IFF_PROMISC)
5588 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5589 else
5590 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5591
5592 /* Program multicast filter. */
5593 bge_setmulti(sc);
5594
5595 /* Init RX ring. */
5596 bge_init_rx_ring_std(sc);
5597
5598 /*
5599 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5600 * memory to insure that the chip has in fact read the first
5601 * entry of the ring.
5602 */
5603 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5604 uint32_t v, i;
5605 for (i = 0; i < 10; i++) {
5606 DELAY(20);
5607 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5608 if (v == (MCLBYTES - ETHER_ALIGN))
5609 break;
5610 }
5611 if (i == 10)
5612 aprint_error_dev(sc->bge_dev,
5613 "5705 A0 chip failed to load RX ring\n");
5614 }
5615
5616 /* Init jumbo RX ring. */
5617 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5618 bge_init_rx_ring_jumbo(sc);
5619
5620 /* Init our RX return ring index */
5621 sc->bge_rx_saved_considx = 0;
5622
5623 /* Init TX ring. */
5624 bge_init_tx_ring(sc);
5625
5626 /* 5718 step 63, 57XX step 94 */
5627 /* Enable TX MAC state machine lockup fix. */
5628 mode = CSR_READ_4(sc, BGE_TX_MODE);
5629 if (BGE_IS_5755_PLUS(sc) ||
5630 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5631 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5632 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5633 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5634 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5635 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5636 }
5637
5638 /* Turn on transmitter */
5639 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5640 /* 5718 step 64 */
5641 DELAY(100);
5642
5643 /* 5718 step 65, 57XX step 95 */
5644 /* Turn on receiver */
5645 mode = CSR_READ_4(sc, BGE_RX_MODE);
5646 if (BGE_IS_5755_PLUS(sc))
5647 mode |= BGE_RXMODE_IPV6_ENABLE;
5648 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5649 /* 5718 step 66 */
5650 DELAY(10);
5651
5652 /* 5718 step 12, 57XX step 37 */
5653 /*
5654 * XXX Doucments of 5718 series and 577xx say the recommended value
5655 * is 1, but tg3 set 1 only on 57765 series.
5656 */
5657 if (BGE_IS_57765_PLUS(sc))
5658 reg = 1;
5659 else
5660 reg = 2;
5661 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5662
5663 /* Tell firmware we're alive. */
5664 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5665
5666 /* Enable host interrupts. */
5667 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5668 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5669 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5670
5671 if ((error = bge_ifmedia_upd(ifp)) != 0)
5672 goto out;
5673
5674 ifp->if_flags |= IFF_RUNNING;
5675 ifp->if_flags &= ~IFF_OACTIVE;
5676
5677 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5678
5679 out:
5680 sc->bge_if_flags = ifp->if_flags;
5681 splx(s);
5682
5683 return error;
5684 }
5685
5686 /*
5687 * Set media options.
5688 */
5689 static int
5690 bge_ifmedia_upd(struct ifnet *ifp)
5691 {
5692 struct bge_softc *sc = ifp->if_softc;
5693 struct mii_data *mii = &sc->bge_mii;
5694 struct ifmedia *ifm = &sc->bge_ifmedia;
5695 int rc;
5696
5697 /* If this is a 1000baseX NIC, enable the TBI port. */
5698 if (sc->bge_flags & BGEF_FIBER_TBI) {
5699 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5700 return EINVAL;
5701 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5702 case IFM_AUTO:
5703 /*
5704 * The BCM5704 ASIC appears to have a special
5705 * mechanism for programming the autoneg
5706 * advertisement registers in TBI mode.
5707 */
5708 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5709 uint32_t sgdig;
5710 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5711 if (sgdig & BGE_SGDIGSTS_DONE) {
5712 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5713 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5714 sgdig |= BGE_SGDIGCFG_AUTO |
5715 BGE_SGDIGCFG_PAUSE_CAP |
5716 BGE_SGDIGCFG_ASYM_PAUSE;
5717 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5718 sgdig | BGE_SGDIGCFG_SEND);
5719 DELAY(5);
5720 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5721 sgdig);
5722 }
5723 }
5724 break;
5725 case IFM_1000_SX:
5726 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5727 BGE_CLRBIT(sc, BGE_MAC_MODE,
5728 BGE_MACMODE_HALF_DUPLEX);
5729 } else {
5730 BGE_SETBIT(sc, BGE_MAC_MODE,
5731 BGE_MACMODE_HALF_DUPLEX);
5732 }
5733 DELAY(40);
5734 break;
5735 default:
5736 return EINVAL;
5737 }
5738 /* XXX 802.3x flow control for 1000BASE-SX */
5739 return 0;
5740 }
5741
5742 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5743 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5744 uint32_t reg;
5745
5746 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5747 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5748 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5749 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5750 }
5751 }
5752
5753 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5754 if ((rc = mii_mediachg(mii)) == ENXIO)
5755 return 0;
5756
5757 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5758 uint32_t reg;
5759
5760 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5761 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5762 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5763 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5764 delay(40);
5765 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5766 }
5767 }
5768
5769 /*
5770 * Force an interrupt so that we will call bge_link_upd
5771 * if needed and clear any pending link state attention.
5772 * Without this we are not getting any further interrupts
5773 * for link state changes and thus will not UP the link and
5774 * not be able to send in bge_start. The only way to get
5775 * things working was to receive a packet and get a RX intr.
5776 */
5777 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5778 sc->bge_flags & BGEF_IS_5788)
5779 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5780 else
5781 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5782
5783 return rc;
5784 }
5785
5786 /*
5787 * Report current media status.
5788 */
5789 static void
5790 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5791 {
5792 struct bge_softc *sc = ifp->if_softc;
5793 struct mii_data *mii = &sc->bge_mii;
5794
5795 if (sc->bge_flags & BGEF_FIBER_TBI) {
5796 ifmr->ifm_status = IFM_AVALID;
5797 ifmr->ifm_active = IFM_ETHER;
5798 if (CSR_READ_4(sc, BGE_MAC_STS) &
5799 BGE_MACSTAT_TBI_PCS_SYNCHED)
5800 ifmr->ifm_status |= IFM_ACTIVE;
5801 ifmr->ifm_active |= IFM_1000_SX;
5802 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5803 ifmr->ifm_active |= IFM_HDX;
5804 else
5805 ifmr->ifm_active |= IFM_FDX;
5806 return;
5807 }
5808
5809 mii_pollstat(mii);
5810 ifmr->ifm_status = mii->mii_media_status;
5811 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5812 sc->bge_flowflags;
5813 }
5814
5815 static int
5816 bge_ifflags_cb(struct ethercom *ec)
5817 {
5818 struct ifnet *ifp = &ec->ec_if;
5819 struct bge_softc *sc = ifp->if_softc;
5820 int change = ifp->if_flags ^ sc->bge_if_flags;
5821
5822 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5823 return ENETRESET;
5824 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5825 return 0;
5826
5827 if ((ifp->if_flags & IFF_PROMISC) == 0)
5828 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5829 else
5830 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5831
5832 bge_setmulti(sc);
5833
5834 sc->bge_if_flags = ifp->if_flags;
5835 return 0;
5836 }
5837
5838 static int
5839 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5840 {
5841 struct bge_softc *sc = ifp->if_softc;
5842 struct ifreq *ifr = (struct ifreq *) data;
5843 int s, error = 0;
5844 struct mii_data *mii;
5845
5846 s = splnet();
5847
5848 switch (command) {
5849 case SIOCSIFMEDIA:
5850 /* XXX Flow control is not supported for 1000BASE-SX */
5851 if (sc->bge_flags & BGEF_FIBER_TBI) {
5852 ifr->ifr_media &= ~IFM_ETH_FMASK;
5853 sc->bge_flowflags = 0;
5854 }
5855
5856 /* Flow control requires full-duplex mode. */
5857 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5858 (ifr->ifr_media & IFM_FDX) == 0) {
5859 ifr->ifr_media &= ~IFM_ETH_FMASK;
5860 }
5861 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5862 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5863 /* We can do both TXPAUSE and RXPAUSE. */
5864 ifr->ifr_media |=
5865 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5866 }
5867 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5868 }
5869 /* FALLTHROUGH */
5870 case SIOCGIFMEDIA:
5871 if (sc->bge_flags & BGEF_FIBER_TBI) {
5872 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5873 command);
5874 } else {
5875 mii = &sc->bge_mii;
5876 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5877 command);
5878 }
5879 break;
5880 default:
5881 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5882 break;
5883
5884 error = 0;
5885
5886 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5887 ;
5888 else if (ifp->if_flags & IFF_RUNNING)
5889 bge_setmulti(sc);
5890 break;
5891 }
5892
5893 splx(s);
5894
5895 return error;
5896 }
5897
5898 static void
5899 bge_watchdog(struct ifnet *ifp)
5900 {
5901 struct bge_softc *sc;
5902
5903 sc = ifp->if_softc;
5904
5905 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5906
5907 ifp->if_flags &= ~IFF_RUNNING;
5908 bge_init(ifp);
5909
5910 ifp->if_oerrors++;
5911 }
5912
5913 static void
5914 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5915 {
5916 int i;
5917
5918 BGE_CLRBIT_FLUSH(sc, reg, bit);
5919
5920 for (i = 0; i < 1000; i++) {
5921 delay(100);
5922 if ((CSR_READ_4(sc, reg) & bit) == 0)
5923 return;
5924 }
5925
5926 /*
5927 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5928 * on some environment (and once after boot?)
5929 */
5930 if (reg != BGE_SRS_MODE)
5931 aprint_error_dev(sc->bge_dev,
5932 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5933 (u_long)reg, bit);
5934 }
5935
5936 /*
5937 * Stop the adapter and free any mbufs allocated to the
5938 * RX and TX lists.
5939 */
5940 static void
5941 bge_stop(struct ifnet *ifp, int disable)
5942 {
5943 struct bge_softc *sc = ifp->if_softc;
5944
5945 if (disable) {
5946 sc->bge_detaching = 1;
5947 callout_halt(&sc->bge_timeout, NULL);
5948 } else
5949 callout_stop(&sc->bge_timeout);
5950
5951 /* Disable host interrupts. */
5952 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5953 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5954
5955 /*
5956 * Tell firmware we're shutting down.
5957 */
5958 bge_stop_fw(sc);
5959 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5960
5961 /*
5962 * Disable all of the receiver blocks.
5963 */
5964 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5965 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5966 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5967 if (BGE_IS_5700_FAMILY(sc))
5968 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5969 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5970 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5971 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5972
5973 /*
5974 * Disable all of the transmit blocks.
5975 */
5976 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5977 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5978 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5979 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5980 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5981 if (BGE_IS_5700_FAMILY(sc))
5982 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5983 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5984
5985 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5986 delay(40);
5987
5988 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5989
5990 /*
5991 * Shut down all of the memory managers and related
5992 * state machines.
5993 */
5994 /* 5718 step 5a,5b */
5995 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5996 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5997 if (BGE_IS_5700_FAMILY(sc))
5998 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5999
6000 /* 5718 step 5c,5d */
6001 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6002 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6003
6004 if (BGE_IS_5700_FAMILY(sc)) {
6005 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6006 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6007 }
6008
6009 bge_reset(sc);
6010 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6011 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6012
6013 /*
6014 * Keep the ASF firmware running if up.
6015 */
6016 if (sc->bge_asf_mode & ASF_STACKUP)
6017 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6018 else
6019 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6020
6021 /* Free the RX lists. */
6022 bge_free_rx_ring_std(sc);
6023
6024 /* Free jumbo RX list. */
6025 if (BGE_IS_JUMBO_CAPABLE(sc))
6026 bge_free_rx_ring_jumbo(sc);
6027
6028 /* Free TX buffers. */
6029 bge_free_tx_ring(sc);
6030
6031 /*
6032 * Isolate/power down the PHY.
6033 */
6034 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6035 mii_down(&sc->bge_mii);
6036
6037 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6038
6039 /* Clear MAC's link state (PHY may still have link UP). */
6040 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6041
6042 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6043 }
6044
6045 static void
6046 bge_link_upd(struct bge_softc *sc)
6047 {
6048 struct ifnet *ifp = &sc->ethercom.ec_if;
6049 struct mii_data *mii = &sc->bge_mii;
6050 uint32_t status;
6051 int link;
6052
6053 /* Clear 'pending link event' flag */
6054 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6055
6056 /*
6057 * Process link state changes.
6058 * Grrr. The link status word in the status block does
6059 * not work correctly on the BCM5700 rev AX and BX chips,
6060 * according to all available information. Hence, we have
6061 * to enable MII interrupts in order to properly obtain
6062 * async link changes. Unfortunately, this also means that
6063 * we have to read the MAC status register to detect link
6064 * changes, thereby adding an additional register access to
6065 * the interrupt handler.
6066 */
6067
6068 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6069 status = CSR_READ_4(sc, BGE_MAC_STS);
6070 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6071 mii_pollstat(mii);
6072
6073 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6074 mii->mii_media_status & IFM_ACTIVE &&
6075 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6076 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6077 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6078 (!(mii->mii_media_status & IFM_ACTIVE) ||
6079 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6080 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6081
6082 /* Clear the interrupt */
6083 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6084 BGE_EVTENB_MI_INTERRUPT);
6085 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6086 BRGPHY_MII_ISR);
6087 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6088 BRGPHY_MII_IMR, BRGPHY_INTRS);
6089 }
6090 return;
6091 }
6092
6093 if (sc->bge_flags & BGEF_FIBER_TBI) {
6094 status = CSR_READ_4(sc, BGE_MAC_STS);
6095 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6096 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6097 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6098 if (BGE_ASICREV(sc->bge_chipid)
6099 == BGE_ASICREV_BCM5704) {
6100 BGE_CLRBIT(sc, BGE_MAC_MODE,
6101 BGE_MACMODE_TBI_SEND_CFGS);
6102 DELAY(40);
6103 }
6104 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6105 if_link_state_change(ifp, LINK_STATE_UP);
6106 }
6107 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6108 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6109 if_link_state_change(ifp, LINK_STATE_DOWN);
6110 }
6111 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6112 /*
6113 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6114 * bit in status word always set. Workaround this bug by
6115 * reading PHY link status directly.
6116 */
6117 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6118 BGE_STS_LINK : 0;
6119
6120 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6121 mii_pollstat(mii);
6122
6123 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6124 mii->mii_media_status & IFM_ACTIVE &&
6125 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6126 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6127 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6128 (!(mii->mii_media_status & IFM_ACTIVE) ||
6129 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6130 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6131 }
6132 } else {
6133 /*
6134 * For controllers that call mii_tick, we have to poll
6135 * link status.
6136 */
6137 mii_pollstat(mii);
6138 }
6139
6140 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6141 uint32_t reg, scale;
6142
6143 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6144 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6145 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6146 scale = 65;
6147 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6148 scale = 6;
6149 else
6150 scale = 12;
6151
6152 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6153 ~BGE_MISCCFG_TIMER_PRESCALER;
6154 reg |= scale << 1;
6155 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6156 }
6157 /* Clear the attention */
6158 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6159 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6160 BGE_MACSTAT_LINK_CHANGED);
6161 }
6162
6163 static int
6164 bge_sysctl_verify(SYSCTLFN_ARGS)
6165 {
6166 int error, t;
6167 struct sysctlnode node;
6168
6169 node = *rnode;
6170 t = *(int*)rnode->sysctl_data;
6171 node.sysctl_data = &t;
6172 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6173 if (error || newp == NULL)
6174 return error;
6175
6176 #if 0
6177 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6178 node.sysctl_num, rnode->sysctl_num));
6179 #endif
6180
6181 if (node.sysctl_num == bge_rxthresh_nodenum) {
6182 if (t < 0 || t >= NBGE_RX_THRESH)
6183 return EINVAL;
6184 bge_update_all_threshes(t);
6185 } else
6186 return EINVAL;
6187
6188 *(int*)rnode->sysctl_data = t;
6189
6190 return 0;
6191 }
6192
6193 /*
6194 * Set up sysctl(3) MIB, hw.bge.*.
6195 */
6196 static void
6197 bge_sysctl_init(struct bge_softc *sc)
6198 {
6199 int rc, bge_root_num;
6200 const struct sysctlnode *node;
6201
6202 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6203 0, CTLTYPE_NODE, "bge",
6204 SYSCTL_DESCR("BGE interface controls"),
6205 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6206 goto out;
6207 }
6208
6209 bge_root_num = node->sysctl_num;
6210
6211 /* BGE Rx interrupt mitigation level */
6212 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6213 CTLFLAG_READWRITE,
6214 CTLTYPE_INT, "rx_lvl",
6215 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6216 bge_sysctl_verify, 0,
6217 &bge_rx_thresh_lvl,
6218 0, CTL_HW, bge_root_num, CTL_CREATE,
6219 CTL_EOL)) != 0) {
6220 goto out;
6221 }
6222
6223 bge_rxthresh_nodenum = node->sysctl_num;
6224
6225 return;
6226
6227 out:
6228 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6229 }
6230
6231 #ifdef BGE_DEBUG
6232 void
6233 bge_debug_info(struct bge_softc *sc)
6234 {
6235
6236 printf("Hardware Flags:\n");
6237 if (BGE_IS_57765_PLUS(sc))
6238 printf(" - 57765 Plus\n");
6239 if (BGE_IS_5717_PLUS(sc))
6240 printf(" - 5717 Plus\n");
6241 if (BGE_IS_5755_PLUS(sc))
6242 printf(" - 5755 Plus\n");
6243 if (BGE_IS_575X_PLUS(sc))
6244 printf(" - 575X Plus\n");
6245 if (BGE_IS_5705_PLUS(sc))
6246 printf(" - 5705 Plus\n");
6247 if (BGE_IS_5714_FAMILY(sc))
6248 printf(" - 5714 Family\n");
6249 if (BGE_IS_5700_FAMILY(sc))
6250 printf(" - 5700 Family\n");
6251 if (sc->bge_flags & BGEF_IS_5788)
6252 printf(" - 5788\n");
6253 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6254 printf(" - Supports Jumbo Frames\n");
6255 if (sc->bge_flags & BGEF_NO_EEPROM)
6256 printf(" - No EEPROM\n");
6257 if (sc->bge_flags & BGEF_PCIX)
6258 printf(" - PCI-X Bus\n");
6259 if (sc->bge_flags & BGEF_PCIE)
6260 printf(" - PCI Express Bus\n");
6261 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6262 printf(" - RX Alignment Bug\n");
6263 if (sc->bge_flags & BGEF_APE)
6264 printf(" - APE\n");
6265 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6266 printf(" - CPMU\n");
6267 if (sc->bge_flags & BGEF_TSO)
6268 printf(" - TSO\n");
6269 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6270 printf(" - TAGGED_STATUS\n");
6271
6272 /* PHY related */
6273 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6274 printf(" - No 3 LEDs\n");
6275 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6276 printf(" - CRC bug\n");
6277 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6278 printf(" - ADC bug\n");
6279 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6280 printf(" - 5704 A0 bug\n");
6281 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6282 printf(" - jitter bug\n");
6283 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6284 printf(" - BER bug\n");
6285 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6286 printf(" - adjust trim\n");
6287 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6288 printf(" - no wirespeed\n");
6289
6290 /* ASF related */
6291 if (sc->bge_asf_mode & ASF_ENABLE)
6292 printf(" - ASF enable\n");
6293 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6294 printf(" - ASF new handshake\n");
6295 if (sc->bge_asf_mode & ASF_STACKUP)
6296 printf(" - ASF stackup\n");
6297 }
6298 #endif /* BGE_DEBUG */
6299
6300 static int
6301 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6302 {
6303 prop_dictionary_t dict;
6304 prop_data_t ea;
6305
6306 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6307 return 1;
6308
6309 dict = device_properties(sc->bge_dev);
6310 ea = prop_dictionary_get(dict, "mac-address");
6311 if (ea != NULL) {
6312 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6313 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6314 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6315 return 0;
6316 }
6317
6318 return 1;
6319 }
6320
6321 static int
6322 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6323 {
6324 uint32_t mac_addr;
6325
6326 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6327 if ((mac_addr >> 16) == 0x484b) {
6328 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6329 ether_addr[1] = (uint8_t)mac_addr;
6330 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6331 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6332 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6333 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6334 ether_addr[5] = (uint8_t)mac_addr;
6335 return 0;
6336 }
6337 return 1;
6338 }
6339
6340 static int
6341 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6342 {
6343 int mac_offset = BGE_EE_MAC_OFFSET;
6344
6345 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6346 mac_offset = BGE_EE_MAC_OFFSET_5906;
6347
6348 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6349 ETHER_ADDR_LEN));
6350 }
6351
6352 static int
6353 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6354 {
6355
6356 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6357 return 1;
6358
6359 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6360 ETHER_ADDR_LEN));
6361 }
6362
6363 static int
6364 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6365 {
6366 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6367 /* NOTE: Order is critical */
6368 bge_get_eaddr_fw,
6369 bge_get_eaddr_mem,
6370 bge_get_eaddr_nvram,
6371 bge_get_eaddr_eeprom,
6372 NULL
6373 };
6374 const bge_eaddr_fcn_t *func;
6375
6376 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6377 if ((*func)(sc, eaddr) == 0)
6378 break;
6379 }
6380 return (*func == NULL ? ENXIO : 0);
6381 }
6382