if_bge.c revision 1.321 1 /* $NetBSD: if_bge.c,v 1.321 2019/01/16 07:32:13 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.321 2019/01/16 07:32:13 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *m, bool);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Gigabit Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Gigabit Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Gigabit Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Gigabit Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Gigabit Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Gigabit Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Gigabit Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Gigabit Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
747 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
748 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
749
750 { 0, NULL }
751 };
752
753 /*
754 * Some defaults for major revisions, so that newer steppings
755 * that we don't know about have a shot at working.
756 */
757 static const struct bge_revision bge_majorrevs[] = {
758 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
759 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
760 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
761 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
762 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
763 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
764 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
767 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
768 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
769 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
770 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
771 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
772 /* 5754 and 5787 share the same ASIC ID */
773 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
774 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
775 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
776 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
777 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
778 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
779 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
780 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
781
782 { 0, NULL }
783 };
784
785 static int bge_allow_asf = 1;
786
787 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
788 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
789
790 static uint32_t
791 bge_readmem_ind(struct bge_softc *sc, int off)
792 {
793 pcireg_t val;
794
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
796 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
797 return 0;
798
799 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
800 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
801 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
802 return val;
803 }
804
805 static void
806 bge_writemem_ind(struct bge_softc *sc, int off, int val)
807 {
808
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
812 }
813
814 /*
815 * PCI Express only
816 */
817 static void
818 bge_set_max_readrq(struct bge_softc *sc)
819 {
820 pcireg_t val;
821
822 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
823 + PCIE_DCSR);
824 val &= ~PCIE_DCSR_MAX_READ_REQ;
825 switch (sc->bge_expmrq) {
826 case 2048:
827 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
828 break;
829 case 4096:
830 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
831 break;
832 default:
833 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
834 break;
835 }
836 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
837 + PCIE_DCSR, val);
838 }
839
840 #ifdef notdef
841 static uint32_t
842 bge_readreg_ind(struct bge_softc *sc, int off)
843 {
844 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
845 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
846 }
847 #endif
848
849 static void
850 bge_writereg_ind(struct bge_softc *sc, int off, int val)
851 {
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
854 }
855
856 static void
857 bge_writemem_direct(struct bge_softc *sc, int off, int val)
858 {
859 CSR_WRITE_4(sc, off, val);
860 }
861
862 static void
863 bge_writembx(struct bge_softc *sc, int off, int val)
864 {
865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
866 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
867
868 CSR_WRITE_4(sc, off, val);
869 }
870
871 static void
872 bge_writembx_flush(struct bge_softc *sc, int off, int val)
873 {
874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
875 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
876
877 CSR_WRITE_4_FLUSH(sc, off, val);
878 }
879
880 /*
881 * Clear all stale locks and select the lock for this driver instance.
882 */
883 void
884 bge_ape_lock_init(struct bge_softc *sc)
885 {
886 struct pci_attach_args *pa = &(sc->bge_pa);
887 uint32_t bit, regbase;
888 int i;
889
890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
891 regbase = BGE_APE_LOCK_GRANT;
892 else
893 regbase = BGE_APE_PER_LOCK_GRANT;
894
895 /* Clear any stale locks. */
896 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
897 switch (i) {
898 case BGE_APE_LOCK_PHY0:
899 case BGE_APE_LOCK_PHY1:
900 case BGE_APE_LOCK_PHY2:
901 case BGE_APE_LOCK_PHY3:
902 bit = BGE_APE_LOCK_GRANT_DRIVER0;
903 break;
904 default:
905 if (pa->pa_function == 0)
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 else
908 bit = (1 << pa->pa_function);
909 }
910 APE_WRITE_4(sc, regbase + 4 * i, bit);
911 }
912
913 /* Select the PHY lock based on the device's function number. */
914 switch (pa->pa_function) {
915 case 0:
916 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
917 break;
918 case 1:
919 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
920 break;
921 case 2:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
923 break;
924 case 3:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
926 break;
927 default:
928 printf("%s: PHY lock not supported on function\n",
929 device_xname(sc->bge_dev));
930 break;
931 }
932 }
933
934 /*
935 * Check for APE firmware, set flags, and print version info.
936 */
937 void
938 bge_ape_read_fw_ver(struct bge_softc *sc)
939 {
940 const char *fwtype;
941 uint32_t apedata, features;
942
943 /* Check for a valid APE signature in shared memory. */
944 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
945 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
946 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
947 return;
948 }
949
950 /* Check if APE firmware is running. */
951 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
952 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
953 printf("%s: APE signature found but FW status not ready! "
954 "0x%08x\n", device_xname(sc->bge_dev), apedata);
955 return;
956 }
957
958 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
959
960 /* Fetch the APE firwmare type and version. */
961 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
962 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
963 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
964 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
965 fwtype = "NCSI";
966 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
967 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
968 fwtype = "DASH";
969 } else
970 fwtype = "UNKN";
971
972 /* Print the APE firmware version. */
973 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
974 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
975 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
976 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
977 (apedata & BGE_APE_FW_VERSION_BLDMSK));
978 }
979
980 int
981 bge_ape_lock(struct bge_softc *sc, int locknum)
982 {
983 struct pci_attach_args *pa = &(sc->bge_pa);
984 uint32_t bit, gnt, req, status;
985 int i, off;
986
987 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
988 return (0);
989
990 /* Lock request/grant registers have different bases. */
991 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
992 req = BGE_APE_LOCK_REQ;
993 gnt = BGE_APE_LOCK_GRANT;
994 } else {
995 req = BGE_APE_PER_LOCK_REQ;
996 gnt = BGE_APE_PER_LOCK_GRANT;
997 }
998
999 off = 4 * locknum;
1000
1001 switch (locknum) {
1002 case BGE_APE_LOCK_GPIO:
1003 /* Lock required when using GPIO. */
1004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1005 return (0);
1006 if (pa->pa_function == 0)
1007 bit = BGE_APE_LOCK_REQ_DRIVER0;
1008 else
1009 bit = (1 << pa->pa_function);
1010 break;
1011 case BGE_APE_LOCK_GRC:
1012 /* Lock required to reset the device. */
1013 if (pa->pa_function == 0)
1014 bit = BGE_APE_LOCK_REQ_DRIVER0;
1015 else
1016 bit = (1 << pa->pa_function);
1017 break;
1018 case BGE_APE_LOCK_MEM:
1019 /* Lock required when accessing certain APE memory. */
1020 if (pa->pa_function == 0)
1021 bit = BGE_APE_LOCK_REQ_DRIVER0;
1022 else
1023 bit = (1 << pa->pa_function);
1024 break;
1025 case BGE_APE_LOCK_PHY0:
1026 case BGE_APE_LOCK_PHY1:
1027 case BGE_APE_LOCK_PHY2:
1028 case BGE_APE_LOCK_PHY3:
1029 /* Lock required when accessing PHYs. */
1030 bit = BGE_APE_LOCK_REQ_DRIVER0;
1031 break;
1032 default:
1033 return (EINVAL);
1034 }
1035
1036 /* Request a lock. */
1037 APE_WRITE_4_FLUSH(sc, req + off, bit);
1038
1039 /* Wait up to 1 second to acquire lock. */
1040 for (i = 0; i < 20000; i++) {
1041 status = APE_READ_4(sc, gnt + off);
1042 if (status == bit)
1043 break;
1044 DELAY(50);
1045 }
1046
1047 /* Handle any errors. */
1048 if (status != bit) {
1049 printf("%s: APE lock %d request failed! "
1050 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1051 device_xname(sc->bge_dev),
1052 locknum, req + off, bit & 0xFFFF, gnt + off,
1053 status & 0xFFFF);
1054 /* Revoke the lock request. */
1055 APE_WRITE_4(sc, gnt + off, bit);
1056 return (EBUSY);
1057 }
1058
1059 return (0);
1060 }
1061
1062 void
1063 bge_ape_unlock(struct bge_softc *sc, int locknum)
1064 {
1065 struct pci_attach_args *pa = &(sc->bge_pa);
1066 uint32_t bit, gnt;
1067 int off;
1068
1069 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1070 return;
1071
1072 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1073 gnt = BGE_APE_LOCK_GRANT;
1074 else
1075 gnt = BGE_APE_PER_LOCK_GRANT;
1076
1077 off = 4 * locknum;
1078
1079 switch (locknum) {
1080 case BGE_APE_LOCK_GPIO:
1081 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1082 return;
1083 if (pa->pa_function == 0)
1084 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1085 else
1086 bit = (1 << pa->pa_function);
1087 break;
1088 case BGE_APE_LOCK_GRC:
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_MEM:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_PHY0:
1101 case BGE_APE_LOCK_PHY1:
1102 case BGE_APE_LOCK_PHY2:
1103 case BGE_APE_LOCK_PHY3:
1104 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1105 break;
1106 default:
1107 return;
1108 }
1109
1110 /* Write and flush for consecutive bge_ape_lock() */
1111 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1112 }
1113
1114 /*
1115 * Send an event to the APE firmware.
1116 */
1117 void
1118 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1119 {
1120 uint32_t apedata;
1121 int i;
1122
1123 /* NCSI does not support APE events. */
1124 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1125 return;
1126
1127 /* Wait up to 1ms for APE to service previous event. */
1128 for (i = 10; i > 0; i--) {
1129 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1130 break;
1131 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1132 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1133 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1134 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1135 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1136 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1137 break;
1138 }
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 DELAY(100);
1141 }
1142 if (i == 0) {
1143 printf("%s: APE event 0x%08x send timed out\n",
1144 device_xname(sc->bge_dev), event);
1145 }
1146 }
1147
1148 void
1149 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1150 {
1151 uint32_t apedata, event;
1152
1153 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1154 return;
1155
1156 switch (kind) {
1157 case BGE_RESET_START:
1158 /* If this is the first load, clear the load counter. */
1159 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1160 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1161 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1162 else {
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1164 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1165 }
1166 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1167 BGE_APE_HOST_SEG_SIG_MAGIC);
1168 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1169 BGE_APE_HOST_SEG_LEN_MAGIC);
1170
1171 /* Add some version info if bge(4) supports it. */
1172 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1173 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1174 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1175 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1176 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1177 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1179 BGE_APE_HOST_DRVR_STATE_START);
1180 event = BGE_APE_EVENT_STATUS_STATE_START;
1181 break;
1182 case BGE_RESET_SHUTDOWN:
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1185 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1186 break;
1187 case BGE_RESET_SUSPEND:
1188 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1189 break;
1190 default:
1191 return;
1192 }
1193
1194 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1195 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1196 }
1197
1198 static uint8_t
1199 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1200 {
1201 uint32_t access, byte = 0;
1202 int i;
1203
1204 /* Lock. */
1205 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1206 for (i = 0; i < 8000; i++) {
1207 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1208 break;
1209 DELAY(20);
1210 }
1211 if (i == 8000)
1212 return 1;
1213
1214 /* Enable access. */
1215 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1216 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1217
1218 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1219 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1220 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1221 DELAY(10);
1222 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1223 DELAY(10);
1224 break;
1225 }
1226 }
1227
1228 if (i == BGE_TIMEOUT * 10) {
1229 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1230 return 1;
1231 }
1232
1233 /* Get result. */
1234 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1235
1236 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1237
1238 /* Disable access. */
1239 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1240
1241 /* Unlock. */
1242 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * Read a sequence of bytes from NVRAM.
1249 */
1250 static int
1251 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1252 {
1253 int error = 0, i;
1254 uint8_t byte = 0;
1255
1256 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1257 return 1;
1258
1259 for (i = 0; i < cnt; i++) {
1260 error = bge_nvram_getbyte(sc, off + i, &byte);
1261 if (error)
1262 break;
1263 *(dest + i) = byte;
1264 }
1265
1266 return (error ? 1 : 0);
1267 }
1268
1269 /*
1270 * Read a byte of data stored in the EEPROM at address 'addr.' The
1271 * BCM570x supports both the traditional bitbang interface and an
1272 * auto access interface for reading the EEPROM. We use the auto
1273 * access method.
1274 */
1275 static uint8_t
1276 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1277 {
1278 int i;
1279 uint32_t byte = 0;
1280
1281 /*
1282 * Enable use of auto EEPROM access so we can avoid
1283 * having to use the bitbang method.
1284 */
1285 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1286
1287 /* Reset the EEPROM, load the clock period. */
1288 CSR_WRITE_4(sc, BGE_EE_ADDR,
1289 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1290 DELAY(20);
1291
1292 /* Issue the read EEPROM command. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1294
1295 /* Wait for completion */
1296 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1297 DELAY(10);
1298 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1299 break;
1300 }
1301
1302 if (i == BGE_TIMEOUT * 10) {
1303 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1304 return 1;
1305 }
1306
1307 /* Get result. */
1308 byte = CSR_READ_4(sc, BGE_EE_DATA);
1309
1310 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Read a sequence of bytes from the EEPROM.
1317 */
1318 static int
1319 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1320 {
1321 int error = 0, i;
1322 uint8_t byte = 0;
1323 char *dest = destv;
1324
1325 for (i = 0; i < cnt; i++) {
1326 error = bge_eeprom_getbyte(sc, off + i, &byte);
1327 if (error)
1328 break;
1329 *(dest + i) = byte;
1330 }
1331
1332 return (error ? 1 : 0);
1333 }
1334
1335 static int
1336 bge_miibus_readreg(device_t dev, int phy, int reg)
1337 {
1338 struct bge_softc *sc = device_private(dev);
1339 uint32_t val;
1340 uint32_t autopoll;
1341 int i;
1342
1343 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1344 return 0;
1345
1346 /* Reading with autopolling on may trigger PCI errors */
1347 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1348 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1349 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1350 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1351 DELAY(80);
1352 }
1353
1354 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1355 BGE_MIPHY(phy) | BGE_MIREG(reg));
1356
1357 for (i = 0; i < BGE_TIMEOUT; i++) {
1358 delay(10);
1359 val = CSR_READ_4(sc, BGE_MI_COMM);
1360 if (!(val & BGE_MICOMM_BUSY)) {
1361 DELAY(5);
1362 val = CSR_READ_4(sc, BGE_MI_COMM);
1363 break;
1364 }
1365 }
1366
1367 if (i == BGE_TIMEOUT) {
1368 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1369 val = 0;
1370 goto done;
1371 }
1372
1373 done:
1374 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1375 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1376 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1377 DELAY(80);
1378 }
1379
1380 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1381
1382 if (val & BGE_MICOMM_READFAIL)
1383 return 0;
1384
1385 return (val & 0xFFFF);
1386 }
1387
1388 static void
1389 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1390 {
1391 struct bge_softc *sc = device_private(dev);
1392 uint32_t autopoll;
1393 int i;
1394
1395 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1396 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1397 return;
1398
1399 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 return;
1401
1402 /* Reading with autopolling on may trigger PCI errors */
1403 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1404 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1405 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1406 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1407 DELAY(80);
1408 }
1409
1410 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1411 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1412
1413 for (i = 0; i < BGE_TIMEOUT; i++) {
1414 delay(10);
1415 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1416 delay(5);
1417 CSR_READ_4(sc, BGE_MI_COMM);
1418 break;
1419 }
1420 }
1421
1422 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1423 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1424 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1425 delay(80);
1426 }
1427
1428 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1429
1430 if (i == BGE_TIMEOUT)
1431 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1432 }
1433
1434 static void
1435 bge_miibus_statchg(struct ifnet *ifp)
1436 {
1437 struct bge_softc *sc = ifp->if_softc;
1438 struct mii_data *mii = &sc->bge_mii;
1439 uint32_t mac_mode, rx_mode, tx_mode;
1440
1441 /*
1442 * Get flow control negotiation result.
1443 */
1444 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1445 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1446 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1447
1448 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1449 mii->mii_media_status & IFM_ACTIVE &&
1450 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1451 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1452 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1453 (!(mii->mii_media_status & IFM_ACTIVE) ||
1454 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1455 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1456
1457 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1458 return;
1459
1460 /* Set the port mode (MII/GMII) to match the link speed. */
1461 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1462 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1463 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1464 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1465 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1466 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1467 mac_mode |= BGE_PORTMODE_GMII;
1468 else
1469 mac_mode |= BGE_PORTMODE_MII;
1470
1471 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1472 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1473 if ((mii->mii_media_active & IFM_FDX) != 0) {
1474 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1475 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1476 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1477 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1478 } else
1479 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1480
1481 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1482 DELAY(40);
1483 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1484 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1485 }
1486
1487 /*
1488 * Update rx threshold levels to values in a particular slot
1489 * of the interrupt-mitigation table bge_rx_threshes.
1490 */
1491 static void
1492 bge_set_thresh(struct ifnet *ifp, int lvl)
1493 {
1494 struct bge_softc *sc = ifp->if_softc;
1495 int s;
1496
1497 /* For now, just save the new Rx-intr thresholds and record
1498 * that a threshold update is pending. Updating the hardware
1499 * registers here (even at splhigh()) is observed to
1500 * occasionaly cause glitches where Rx-interrupts are not
1501 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1502 */
1503 s = splnet();
1504 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1505 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1506 sc->bge_pending_rxintr_change = 1;
1507 splx(s);
1508 }
1509
1510
1511 /*
1512 * Update Rx thresholds of all bge devices
1513 */
1514 static void
1515 bge_update_all_threshes(int lvl)
1516 {
1517 struct ifnet *ifp;
1518 const char * const namebuf = "bge";
1519 int namelen;
1520 int s;
1521
1522 if (lvl < 0)
1523 lvl = 0;
1524 else if (lvl >= NBGE_RX_THRESH)
1525 lvl = NBGE_RX_THRESH - 1;
1526
1527 namelen = strlen(namebuf);
1528 /*
1529 * Now search all the interfaces for this name/number
1530 */
1531 s = pserialize_read_enter();
1532 IFNET_READER_FOREACH(ifp) {
1533 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1534 continue;
1535 /* We got a match: update if doing auto-threshold-tuning */
1536 if (bge_auto_thresh)
1537 bge_set_thresh(ifp, lvl);
1538 }
1539 pserialize_read_exit(s);
1540 }
1541
1542 /*
1543 * Handle events that have triggered interrupts.
1544 */
1545 static void
1546 bge_handle_events(struct bge_softc *sc)
1547 {
1548
1549 return;
1550 }
1551
1552 /*
1553 * Memory management for jumbo frames.
1554 */
1555
1556 static int
1557 bge_alloc_jumbo_mem(struct bge_softc *sc)
1558 {
1559 char *ptr, *kva;
1560 bus_dma_segment_t seg;
1561 int i, rseg, state, error;
1562 struct bge_jpool_entry *entry;
1563
1564 state = error = 0;
1565
1566 /* Grab a big chunk o' storage. */
1567 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1568 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1569 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1570 return ENOBUFS;
1571 }
1572
1573 state = 1;
1574 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1575 BUS_DMA_NOWAIT)) {
1576 aprint_error_dev(sc->bge_dev,
1577 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1578 error = ENOBUFS;
1579 goto out;
1580 }
1581
1582 state = 2;
1583 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1584 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1585 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1586 error = ENOBUFS;
1587 goto out;
1588 }
1589
1590 state = 3;
1591 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1592 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1593 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1594 error = ENOBUFS;
1595 goto out;
1596 }
1597
1598 state = 4;
1599 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1600 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1601
1602 SLIST_INIT(&sc->bge_jfree_listhead);
1603 SLIST_INIT(&sc->bge_jinuse_listhead);
1604
1605 /*
1606 * Now divide it up into 9K pieces and save the addresses
1607 * in an array.
1608 */
1609 ptr = sc->bge_cdata.bge_jumbo_buf;
1610 for (i = 0; i < BGE_JSLOTS; i++) {
1611 sc->bge_cdata.bge_jslots[i] = ptr;
1612 ptr += BGE_JLEN;
1613 entry = malloc(sizeof(struct bge_jpool_entry),
1614 M_DEVBUF, M_NOWAIT);
1615 if (entry == NULL) {
1616 aprint_error_dev(sc->bge_dev,
1617 "no memory for jumbo buffer queue!\n");
1618 error = ENOBUFS;
1619 goto out;
1620 }
1621 entry->slot = i;
1622 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1623 entry, jpool_entries);
1624 }
1625 out:
1626 if (error != 0) {
1627 switch (state) {
1628 case 4:
1629 bus_dmamap_unload(sc->bge_dmatag,
1630 sc->bge_cdata.bge_rx_jumbo_map);
1631 case 3:
1632 bus_dmamap_destroy(sc->bge_dmatag,
1633 sc->bge_cdata.bge_rx_jumbo_map);
1634 case 2:
1635 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1636 case 1:
1637 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1638 break;
1639 default:
1640 break;
1641 }
1642 }
1643
1644 return error;
1645 }
1646
1647 /*
1648 * Allocate a jumbo buffer.
1649 */
1650 static void *
1651 bge_jalloc(struct bge_softc *sc)
1652 {
1653 struct bge_jpool_entry *entry;
1654
1655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1656
1657 if (entry == NULL) {
1658 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1659 return NULL;
1660 }
1661
1662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1664 return (sc->bge_cdata.bge_jslots[entry->slot]);
1665 }
1666
1667 /*
1668 * Release a jumbo buffer.
1669 */
1670 static void
1671 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1672 {
1673 struct bge_jpool_entry *entry;
1674 struct bge_softc *sc;
1675 int i, s;
1676
1677 /* Extract the softc struct pointer. */
1678 sc = (struct bge_softc *)arg;
1679
1680 if (sc == NULL)
1681 panic("bge_jfree: can't find softc pointer!");
1682
1683 /* calculate the slot this buffer belongs to */
1684
1685 i = ((char *)buf
1686 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1687
1688 if ((i < 0) || (i >= BGE_JSLOTS))
1689 panic("bge_jfree: asked to free buffer that we don't manage!");
1690
1691 s = splvm();
1692 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1693 if (entry == NULL)
1694 panic("bge_jfree: buffer not in use!");
1695 entry->slot = i;
1696 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1697 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1698
1699 if (__predict_true(m != NULL))
1700 pool_cache_put(mb_cache, m);
1701 splx(s);
1702 }
1703
1704
1705 /*
1706 * Initialize a standard receive ring descriptor.
1707 */
1708 static int
1709 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1710 bus_dmamap_t dmamap)
1711 {
1712 struct mbuf *m_new = NULL;
1713 struct bge_rx_bd *r;
1714 int error;
1715
1716 if (dmamap == NULL)
1717 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1718
1719 if (dmamap == NULL) {
1720 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1721 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1722 if (error != 0)
1723 return error;
1724 }
1725
1726 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1727
1728 if (m == NULL) {
1729 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1730 if (m_new == NULL)
1731 return ENOBUFS;
1732
1733 MCLGET(m_new, M_DONTWAIT);
1734 if (!(m_new->m_flags & M_EXT)) {
1735 m_freem(m_new);
1736 return ENOBUFS;
1737 }
1738 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1739
1740 } else {
1741 m_new = m;
1742 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1743 m_new->m_data = m_new->m_ext.ext_buf;
1744 }
1745 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1746 m_adj(m_new, ETHER_ALIGN);
1747 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1748 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1749 m_freem(m_new);
1750 return ENOBUFS;
1751 }
1752 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1753 BUS_DMASYNC_PREREAD);
1754
1755 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1756 r = &sc->bge_rdata->bge_rx_std_ring[i];
1757 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1758 r->bge_flags = BGE_RXBDFLAG_END;
1759 r->bge_len = m_new->m_len;
1760 r->bge_idx = i;
1761
1762 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1763 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1764 i * sizeof (struct bge_rx_bd),
1765 sizeof (struct bge_rx_bd),
1766 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1767
1768 return 0;
1769 }
1770
1771 /*
1772 * Initialize a jumbo receive ring descriptor. This allocates
1773 * a jumbo buffer from the pool managed internally by the driver.
1774 */
1775 static int
1776 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1777 {
1778 struct mbuf *m_new = NULL;
1779 struct bge_rx_bd *r;
1780 void *buf = NULL;
1781
1782 if (m == NULL) {
1783
1784 /* Allocate the mbuf. */
1785 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1786 if (m_new == NULL)
1787 return ENOBUFS;
1788
1789 /* Allocate the jumbo buffer */
1790 buf = bge_jalloc(sc);
1791 if (buf == NULL) {
1792 m_freem(m_new);
1793 aprint_error_dev(sc->bge_dev,
1794 "jumbo allocation failed -- packet dropped!\n");
1795 return ENOBUFS;
1796 }
1797
1798 /* Attach the buffer to the mbuf. */
1799 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1800 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1801 bge_jfree, sc);
1802 m_new->m_flags |= M_EXT_RW;
1803 } else {
1804 m_new = m;
1805 buf = m_new->m_data = m_new->m_ext.ext_buf;
1806 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1807 }
1808 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1809 m_adj(m_new, ETHER_ALIGN);
1810 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1811 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1812 BUS_DMASYNC_PREREAD);
1813 /* Set up the descriptor. */
1814 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1815 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1816 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1817 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1818 r->bge_len = m_new->m_len;
1819 r->bge_idx = i;
1820
1821 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1822 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1823 i * sizeof (struct bge_rx_bd),
1824 sizeof (struct bge_rx_bd),
1825 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1832 * that's 1MB or memory, which is a lot. For now, we fill only the first
1833 * 256 ring entries and hope that our CPU is fast enough to keep up with
1834 * the NIC.
1835 */
1836 static int
1837 bge_init_rx_ring_std(struct bge_softc *sc)
1838 {
1839 int i;
1840
1841 if (sc->bge_flags & BGEF_RXRING_VALID)
1842 return 0;
1843
1844 for (i = 0; i < BGE_SSLOTS; i++) {
1845 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1846 return ENOBUFS;
1847 }
1848
1849 sc->bge_std = i - 1;
1850 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1851
1852 sc->bge_flags |= BGEF_RXRING_VALID;
1853
1854 return 0;
1855 }
1856
1857 static void
1858 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1859 {
1860 int i;
1861
1862 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1863 return;
1864
1865 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1866 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1867 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1868 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1869 if (disable) {
1870 bus_dmamap_destroy(sc->bge_dmatag,
1871 sc->bge_cdata.bge_rx_std_map[i]);
1872 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1873 }
1874 }
1875 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1876 sizeof(struct bge_rx_bd));
1877 }
1878
1879 sc->bge_flags &= ~BGEF_RXRING_VALID;
1880 }
1881
1882 static int
1883 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1884 {
1885 int i;
1886 volatile struct bge_rcb *rcb;
1887
1888 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1889 return 0;
1890
1891 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1892 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1893 return ENOBUFS;
1894 }
1895
1896 sc->bge_jumbo = i - 1;
1897 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1898
1899 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1900 rcb->bge_maxlen_flags = 0;
1901 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1902
1903 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1904
1905 return 0;
1906 }
1907
1908 static void
1909 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1910 {
1911 int i;
1912
1913 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1914 return;
1915
1916 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1917 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1918 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1919 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1920 }
1921 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1922 sizeof(struct bge_rx_bd));
1923 }
1924
1925 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1926 }
1927
1928 static void
1929 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1930 {
1931 int i;
1932 struct txdmamap_pool_entry *dma;
1933
1934 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1935 return;
1936
1937 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1938 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1939 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1940 sc->bge_cdata.bge_tx_chain[i] = NULL;
1941 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1942 link);
1943 sc->txdma[i] = 0;
1944 }
1945 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1946 sizeof(struct bge_tx_bd));
1947 }
1948
1949 if (disable) {
1950 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1951 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1952 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1953 if (sc->bge_dma64) {
1954 bus_dmamap_destroy(sc->bge_dmatag32,
1955 dma->dmamap32);
1956 }
1957 free(dma, M_DEVBUF);
1958 }
1959 SLIST_INIT(&sc->txdma_list);
1960 }
1961
1962 sc->bge_flags &= ~BGEF_TXRING_VALID;
1963 }
1964
1965 static int
1966 bge_init_tx_ring(struct bge_softc *sc)
1967 {
1968 struct ifnet *ifp = &sc->ethercom.ec_if;
1969 int i;
1970 bus_dmamap_t dmamap, dmamap32;
1971 bus_size_t maxsegsz;
1972 struct txdmamap_pool_entry *dma;
1973
1974 if (sc->bge_flags & BGEF_TXRING_VALID)
1975 return 0;
1976
1977 sc->bge_txcnt = 0;
1978 sc->bge_tx_saved_considx = 0;
1979
1980 /* Initialize transmit producer index for host-memory send ring. */
1981 sc->bge_tx_prodidx = 0;
1982 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1983 /* 5700 b2 errata */
1984 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1985 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1986
1987 /* NIC-memory send ring not used; initialize to zero. */
1988 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1989 /* 5700 b2 errata */
1990 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1991 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1992
1993 /* Limit DMA segment size for some chips */
1994 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1995 (ifp->if_mtu <= ETHERMTU))
1996 maxsegsz = 2048;
1997 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1998 maxsegsz = 4096;
1999 else
2000 maxsegsz = ETHER_MAX_LEN_JUMBO;
2001
2002 if (SLIST_FIRST(&sc->txdma_list) != NULL)
2003 goto alloc_done;
2004
2005 for (i = 0; i < BGE_TX_RING_CNT; i++) {
2006 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
2007 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2008 &dmamap))
2009 return ENOBUFS;
2010 if (dmamap == NULL)
2011 panic("dmamap NULL in bge_init_tx_ring");
2012 if (sc->bge_dma64) {
2013 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
2014 BGE_NTXSEG, maxsegsz, 0,
2015 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2016 &dmamap32)) {
2017 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2018 return ENOBUFS;
2019 }
2020 if (dmamap32 == NULL)
2021 panic("dmamap32 NULL in bge_init_tx_ring");
2022 } else
2023 dmamap32 = dmamap;
2024 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
2025 if (dma == NULL) {
2026 aprint_error_dev(sc->bge_dev,
2027 "can't alloc txdmamap_pool_entry\n");
2028 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2029 if (sc->bge_dma64)
2030 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
2031 return ENOMEM;
2032 }
2033 dma->dmamap = dmamap;
2034 dma->dmamap32 = dmamap32;
2035 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2036 }
2037 alloc_done:
2038 sc->bge_flags |= BGEF_TXRING_VALID;
2039
2040 return 0;
2041 }
2042
2043 static void
2044 bge_setmulti(struct bge_softc *sc)
2045 {
2046 struct ethercom *ac = &sc->ethercom;
2047 struct ifnet *ifp = &ac->ec_if;
2048 struct ether_multi *enm;
2049 struct ether_multistep step;
2050 uint32_t hashes[4] = { 0, 0, 0, 0 };
2051 uint32_t h;
2052 int i;
2053
2054 if (ifp->if_flags & IFF_PROMISC)
2055 goto allmulti;
2056
2057 /* Now program new ones. */
2058 ETHER_FIRST_MULTI(step, ac, enm);
2059 while (enm != NULL) {
2060 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2061 /*
2062 * We must listen to a range of multicast addresses.
2063 * For now, just accept all multicasts, rather than
2064 * trying to set only those filter bits needed to match
2065 * the range. (At this time, the only use of address
2066 * ranges is for IP multicast routing, for which the
2067 * range is big enough to require all bits set.)
2068 */
2069 goto allmulti;
2070 }
2071
2072 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2073
2074 /* Just want the 7 least-significant bits. */
2075 h &= 0x7f;
2076
2077 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2078 ETHER_NEXT_MULTI(step, enm);
2079 }
2080
2081 ifp->if_flags &= ~IFF_ALLMULTI;
2082 goto setit;
2083
2084 allmulti:
2085 ifp->if_flags |= IFF_ALLMULTI;
2086 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2087
2088 setit:
2089 for (i = 0; i < 4; i++)
2090 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2091 }
2092
2093 static void
2094 bge_sig_pre_reset(struct bge_softc *sc, int type)
2095 {
2096
2097 /*
2098 * Some chips don't like this so only do this if ASF is enabled
2099 */
2100 if (sc->bge_asf_mode)
2101 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2102
2103 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2104 switch (type) {
2105 case BGE_RESET_START:
2106 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2107 BGE_FW_DRV_STATE_START);
2108 break;
2109 case BGE_RESET_SHUTDOWN:
2110 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2111 BGE_FW_DRV_STATE_UNLOAD);
2112 break;
2113 case BGE_RESET_SUSPEND:
2114 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2115 BGE_FW_DRV_STATE_SUSPEND);
2116 break;
2117 }
2118 }
2119
2120 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2121 bge_ape_driver_state_change(sc, type);
2122 }
2123
2124 static void
2125 bge_sig_post_reset(struct bge_softc *sc, int type)
2126 {
2127
2128 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2129 switch (type) {
2130 case BGE_RESET_START:
2131 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2132 BGE_FW_DRV_STATE_START_DONE);
2133 /* START DONE */
2134 break;
2135 case BGE_RESET_SHUTDOWN:
2136 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2137 BGE_FW_DRV_STATE_UNLOAD_DONE);
2138 break;
2139 }
2140 }
2141
2142 if (type == BGE_RESET_SHUTDOWN)
2143 bge_ape_driver_state_change(sc, type);
2144 }
2145
2146 static void
2147 bge_sig_legacy(struct bge_softc *sc, int type)
2148 {
2149
2150 if (sc->bge_asf_mode) {
2151 switch (type) {
2152 case BGE_RESET_START:
2153 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2154 BGE_FW_DRV_STATE_START);
2155 break;
2156 case BGE_RESET_SHUTDOWN:
2157 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2158 BGE_FW_DRV_STATE_UNLOAD);
2159 break;
2160 }
2161 }
2162 }
2163
2164 static void
2165 bge_wait_for_event_ack(struct bge_softc *sc)
2166 {
2167 int i;
2168
2169 /* wait up to 2500usec */
2170 for (i = 0; i < 250; i++) {
2171 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2172 BGE_RX_CPU_DRV_EVENT))
2173 break;
2174 DELAY(10);
2175 }
2176 }
2177
2178 static void
2179 bge_stop_fw(struct bge_softc *sc)
2180 {
2181
2182 if (sc->bge_asf_mode) {
2183 bge_wait_for_event_ack(sc);
2184
2185 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2186 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2187 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2188
2189 bge_wait_for_event_ack(sc);
2190 }
2191 }
2192
2193 static int
2194 bge_poll_fw(struct bge_softc *sc)
2195 {
2196 uint32_t val;
2197 int i;
2198
2199 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2200 for (i = 0; i < BGE_TIMEOUT; i++) {
2201 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2202 if (val & BGE_VCPU_STATUS_INIT_DONE)
2203 break;
2204 DELAY(100);
2205 }
2206 if (i >= BGE_TIMEOUT) {
2207 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2208 return -1;
2209 }
2210 } else {
2211 /*
2212 * Poll the value location we just wrote until
2213 * we see the 1's complement of the magic number.
2214 * This indicates that the firmware initialization
2215 * is complete.
2216 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2217 */
2218 for (i = 0; i < BGE_TIMEOUT; i++) {
2219 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2220 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2221 break;
2222 DELAY(10);
2223 }
2224
2225 if ((i >= BGE_TIMEOUT)
2226 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2227 aprint_error_dev(sc->bge_dev,
2228 "firmware handshake timed out, val = %x\n", val);
2229 return -1;
2230 }
2231 }
2232
2233 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2234 /* tg3 says we have to wait extra time */
2235 delay(10 * 1000);
2236 }
2237
2238 return 0;
2239 }
2240
2241 int
2242 bge_phy_addr(struct bge_softc *sc)
2243 {
2244 struct pci_attach_args *pa = &(sc->bge_pa);
2245 int phy_addr = 1;
2246
2247 /*
2248 * PHY address mapping for various devices.
2249 *
2250 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2251 * ---------+-------+-------+-------+-------+
2252 * BCM57XX | 1 | X | X | X |
2253 * BCM5704 | 1 | X | 1 | X |
2254 * BCM5717 | 1 | 8 | 2 | 9 |
2255 * BCM5719 | 1 | 8 | 2 | 9 |
2256 * BCM5720 | 1 | 8 | 2 | 9 |
2257 *
2258 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2259 * ---------+-------+-------+-------+-------+
2260 * BCM57XX | X | X | X | X |
2261 * BCM5704 | X | X | X | X |
2262 * BCM5717 | X | X | X | X |
2263 * BCM5719 | 3 | 10 | 4 | 11 |
2264 * BCM5720 | X | X | X | X |
2265 *
2266 * Other addresses may respond but they are not
2267 * IEEE compliant PHYs and should be ignored.
2268 */
2269 switch (BGE_ASICREV(sc->bge_chipid)) {
2270 case BGE_ASICREV_BCM5717:
2271 case BGE_ASICREV_BCM5719:
2272 case BGE_ASICREV_BCM5720:
2273 phy_addr = pa->pa_function;
2274 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2275 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2276 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2277 } else {
2278 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2279 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2280 }
2281 }
2282
2283 return phy_addr;
2284 }
2285
2286 /*
2287 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2288 * self-test results.
2289 */
2290 static int
2291 bge_chipinit(struct bge_softc *sc)
2292 {
2293 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2294 int i;
2295
2296 /* Set endianness before we access any non-PCI registers. */
2297 misc_ctl = BGE_INIT;
2298 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2299 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2300 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2301 misc_ctl);
2302
2303 /*
2304 * Clear the MAC statistics block in the NIC's
2305 * internal memory.
2306 */
2307 for (i = BGE_STATS_BLOCK;
2308 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2309 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2310
2311 for (i = BGE_STATUS_BLOCK;
2312 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2313 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2314
2315 /* 5717 workaround from tg3 */
2316 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2317 /* Save */
2318 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2319
2320 /* Temporary modify MODE_CTL to control TLP */
2321 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2322 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2323
2324 /* Control TLP */
2325 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2326 BGE_TLP_PHYCTL1);
2327 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2328 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2329
2330 /* Restore */
2331 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2332 }
2333
2334 if (BGE_IS_57765_FAMILY(sc)) {
2335 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2336 /* Save */
2337 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2338
2339 /* Temporary modify MODE_CTL to control TLP */
2340 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2341 CSR_WRITE_4(sc, BGE_MODE_CTL,
2342 reg | BGE_MODECTL_PCIE_TLPADDR1);
2343
2344 /* Control TLP */
2345 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2346 BGE_TLP_PHYCTL5);
2347 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2348 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2349
2350 /* Restore */
2351 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2352 }
2353 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2354 /*
2355 * For the 57766 and non Ax versions of 57765, bootcode
2356 * needs to setup the PCIE Fast Training Sequence (FTS)
2357 * value to prevent transmit hangs.
2358 */
2359 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2360 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2361 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2362
2363 /* Save */
2364 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2365
2366 /* Temporary modify MODE_CTL to control TLP */
2367 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2368 CSR_WRITE_4(sc, BGE_MODE_CTL,
2369 reg | BGE_MODECTL_PCIE_TLPADDR0);
2370
2371 /* Control TLP */
2372 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2373 BGE_TLP_FTSMAX);
2374 reg &= ~BGE_TLP_FTSMAX_MSK;
2375 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2376 reg | BGE_TLP_FTSMAX_VAL);
2377
2378 /* Restore */
2379 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2380 }
2381
2382 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2383 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2384 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2385 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2386 }
2387
2388 /* Set up the PCI DMA control register. */
2389 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2390 if (sc->bge_flags & BGEF_PCIE) {
2391 /* Read watermark not used, 128 bytes for write. */
2392 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2393 device_xname(sc->bge_dev)));
2394 if (sc->bge_mps >= 256)
2395 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2396 else
2397 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2398 } else if (sc->bge_flags & BGEF_PCIX) {
2399 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2400 device_xname(sc->bge_dev)));
2401 /* PCI-X bus */
2402 if (BGE_IS_5714_FAMILY(sc)) {
2403 /* 256 bytes for read and write. */
2404 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2405 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2406
2407 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2408 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2409 else
2410 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2411 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2412 /*
2413 * In the BCM5703, the DMA read watermark should
2414 * be set to less than or equal to the maximum
2415 * memory read byte count of the PCI-X command
2416 * register.
2417 */
2418 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2419 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2420 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2421 /* 1536 bytes for read, 384 bytes for write. */
2422 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2423 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2424 } else {
2425 /* 384 bytes for read and write. */
2426 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2427 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2428 (0x0F);
2429 }
2430
2431 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2432 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2433 uint32_t tmp;
2434
2435 /* Set ONEDMA_ATONCE for hardware workaround. */
2436 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2437 if (tmp == 6 || tmp == 7)
2438 dma_rw_ctl |=
2439 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2440
2441 /* Set PCI-X DMA write workaround. */
2442 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2443 }
2444 } else {
2445 /* Conventional PCI bus: 256 bytes for read and write. */
2446 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2447 device_xname(sc->bge_dev)));
2448 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2449 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2450
2451 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2452 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2453 dma_rw_ctl |= 0x0F;
2454 }
2455
2456 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2457 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2458 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2459 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2460
2461 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2462 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2463 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2464
2465 if (BGE_IS_57765_PLUS(sc)) {
2466 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2467 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2468 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2469
2470 /*
2471 * Enable HW workaround for controllers that misinterpret
2472 * a status tag update and leave interrupts permanently
2473 * disabled.
2474 */
2475 if (!BGE_IS_57765_FAMILY(sc) &&
2476 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2477 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2478 }
2479
2480 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2481 dma_rw_ctl);
2482
2483 /*
2484 * Set up general mode register.
2485 */
2486 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2487 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2488 /* Retain Host-2-BMC settings written by APE firmware. */
2489 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2490 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2491 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2492 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2493 }
2494 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2495 BGE_MODECTL_TX_NO_PHDR_CSUM;
2496
2497 /*
2498 * BCM5701 B5 have a bug causing data corruption when using
2499 * 64-bit DMA reads, which can be terminated early and then
2500 * completed later as 32-bit accesses, in combination with
2501 * certain bridges.
2502 */
2503 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2504 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2505 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2506
2507 /*
2508 * Tell the firmware the driver is running
2509 */
2510 if (sc->bge_asf_mode & ASF_STACKUP)
2511 mode_ctl |= BGE_MODECTL_STACKUP;
2512
2513 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2514
2515 /*
2516 * Disable memory write invalidate. Apparently it is not supported
2517 * properly by these devices.
2518 */
2519 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2520 PCI_COMMAND_INVALIDATE_ENABLE);
2521
2522 #ifdef __brokenalpha__
2523 /*
2524 * Must insure that we do not cross an 8K (bytes) boundary
2525 * for DMA reads. Our highest limit is 1K bytes. This is a
2526 * restriction on some ALPHA platforms with early revision
2527 * 21174 PCI chipsets, such as the AlphaPC 164lx
2528 */
2529 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2530 #endif
2531
2532 /* Set the timer prescaler (always 66MHz) */
2533 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2534
2535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2536 DELAY(40); /* XXX */
2537
2538 /* Put PHY into ready state */
2539 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2540 DELAY(40);
2541 }
2542
2543 return 0;
2544 }
2545
2546 static int
2547 bge_blockinit(struct bge_softc *sc)
2548 {
2549 volatile struct bge_rcb *rcb;
2550 bus_size_t rcb_addr;
2551 struct ifnet *ifp = &sc->ethercom.ec_if;
2552 bge_hostaddr taddr;
2553 uint32_t dmactl, mimode, val;
2554 int i, limit;
2555
2556 /*
2557 * Initialize the memory window pointer register so that
2558 * we can access the first 32K of internal NIC RAM. This will
2559 * allow us to set up the TX send ring RCBs and the RX return
2560 * ring RCBs, plus other things which live in NIC memory.
2561 */
2562 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2563
2564 if (!BGE_IS_5705_PLUS(sc)) {
2565 /* 57XX step 33 */
2566 /* Configure mbuf memory pool */
2567 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2568 BGE_BUFFPOOL_1);
2569
2570 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2571 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2572 else
2573 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2574
2575 /* 57XX step 34 */
2576 /* Configure DMA resource pool */
2577 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2578 BGE_DMA_DESCRIPTORS);
2579 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2580 }
2581
2582 /* 5718 step 11, 57XX step 35 */
2583 /*
2584 * Configure mbuf pool watermarks. New broadcom docs strongly
2585 * recommend these.
2586 */
2587 if (BGE_IS_5717_PLUS(sc)) {
2588 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2589 if (ifp->if_mtu > ETHERMTU) {
2590 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2591 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2592 } else {
2593 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2594 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2595 }
2596 } else if (BGE_IS_5705_PLUS(sc)) {
2597 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2598
2599 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2600 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2601 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2602 } else {
2603 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2604 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2605 }
2606 } else {
2607 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2608 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2609 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2610 }
2611
2612 /* 57XX step 36 */
2613 /* Configure DMA resource watermarks */
2614 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2615 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2616
2617 /* 5718 step 13, 57XX step 38 */
2618 /* Enable buffer manager */
2619 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2620 /*
2621 * Change the arbitration algorithm of TXMBUF read request to
2622 * round-robin instead of priority based for BCM5719. When
2623 * TXFIFO is almost empty, RDMA will hold its request until
2624 * TXFIFO is not almost empty.
2625 */
2626 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2627 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2628 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2629 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2630 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2631 val |= BGE_BMANMODE_LOMBUF_ATTN;
2632 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2633
2634 /* 57XX step 39 */
2635 /* Poll for buffer manager start indication */
2636 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2637 DELAY(10);
2638 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2639 break;
2640 }
2641
2642 if (i == BGE_TIMEOUT * 2) {
2643 aprint_error_dev(sc->bge_dev,
2644 "buffer manager failed to start\n");
2645 return ENXIO;
2646 }
2647
2648 /* 57XX step 40 */
2649 /* Enable flow-through queues */
2650 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2651 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2652
2653 /* Wait until queue initialization is complete */
2654 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2655 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2656 break;
2657 DELAY(10);
2658 }
2659
2660 if (i == BGE_TIMEOUT * 2) {
2661 aprint_error_dev(sc->bge_dev,
2662 "flow-through queue init failed\n");
2663 return ENXIO;
2664 }
2665
2666 /*
2667 * Summary of rings supported by the controller:
2668 *
2669 * Standard Receive Producer Ring
2670 * - This ring is used to feed receive buffers for "standard"
2671 * sized frames (typically 1536 bytes) to the controller.
2672 *
2673 * Jumbo Receive Producer Ring
2674 * - This ring is used to feed receive buffers for jumbo sized
2675 * frames (i.e. anything bigger than the "standard" frames)
2676 * to the controller.
2677 *
2678 * Mini Receive Producer Ring
2679 * - This ring is used to feed receive buffers for "mini"
2680 * sized frames to the controller.
2681 * - This feature required external memory for the controller
2682 * but was never used in a production system. Should always
2683 * be disabled.
2684 *
2685 * Receive Return Ring
2686 * - After the controller has placed an incoming frame into a
2687 * receive buffer that buffer is moved into a receive return
2688 * ring. The driver is then responsible to passing the
2689 * buffer up to the stack. Many versions of the controller
2690 * support multiple RR rings.
2691 *
2692 * Send Ring
2693 * - This ring is used for outgoing frames. Many versions of
2694 * the controller support multiple send rings.
2695 */
2696
2697 /* 5718 step 15, 57XX step 41 */
2698 /* Initialize the standard RX ring control block */
2699 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2700 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2701 /* 5718 step 16 */
2702 if (BGE_IS_57765_PLUS(sc)) {
2703 /*
2704 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2705 * Bits 15-2 : Maximum RX frame size
2706 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2707 * Bit 0 : Reserved
2708 */
2709 rcb->bge_maxlen_flags =
2710 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2711 } else if (BGE_IS_5705_PLUS(sc)) {
2712 /*
2713 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2714 * Bits 15-2 : Reserved (should be 0)
2715 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2716 * Bit 0 : Reserved
2717 */
2718 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2719 } else {
2720 /*
2721 * Ring size is always XXX entries
2722 * Bits 31-16: Maximum RX frame size
2723 * Bits 15-2 : Reserved (should be 0)
2724 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2725 * Bit 0 : Reserved
2726 */
2727 rcb->bge_maxlen_flags =
2728 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2729 }
2730 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2731 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2732 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2733 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2734 else
2735 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2736 /* Write the standard receive producer ring control block. */
2737 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2738 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2739 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2740 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2741
2742 /* Reset the standard receive producer ring producer index. */
2743 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2744
2745 /* 57XX step 42 */
2746 /*
2747 * Initialize the jumbo RX ring control block
2748 * We set the 'ring disabled' bit in the flags
2749 * field until we're actually ready to start
2750 * using this ring (i.e. once we set the MTU
2751 * high enough to require it).
2752 */
2753 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2754 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2755 BGE_HOSTADDR(rcb->bge_hostaddr,
2756 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2757 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2758 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2759 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2760 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2761 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2762 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2763 else
2764 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2765 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2766 rcb->bge_hostaddr.bge_addr_hi);
2767 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2768 rcb->bge_hostaddr.bge_addr_lo);
2769 /* Program the jumbo receive producer ring RCB parameters. */
2770 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2771 rcb->bge_maxlen_flags);
2772 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2773 /* Reset the jumbo receive producer ring producer index. */
2774 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2775 }
2776
2777 /* 57XX step 43 */
2778 /* Disable the mini receive producer ring RCB. */
2779 if (BGE_IS_5700_FAMILY(sc)) {
2780 /* Set up dummy disabled mini ring RCB */
2781 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2782 rcb->bge_maxlen_flags =
2783 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2784 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2785 rcb->bge_maxlen_flags);
2786 /* Reset the mini receive producer ring producer index. */
2787 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2788
2789 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2790 offsetof(struct bge_ring_data, bge_info),
2791 sizeof (struct bge_gib),
2792 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2793 }
2794
2795 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2796 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2797 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2798 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2799 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2800 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2801 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2802 }
2803 /* 5718 step 14, 57XX step 44 */
2804 /*
2805 * The BD ring replenish thresholds control how often the
2806 * hardware fetches new BD's from the producer rings in host
2807 * memory. Setting the value too low on a busy system can
2808 * starve the hardware and recue the throughpout.
2809 *
2810 * Set the BD ring replenish thresholds. The recommended
2811 * values are 1/8th the number of descriptors allocated to
2812 * each ring, but since we try to avoid filling the entire
2813 * ring we set these to the minimal value of 8. This needs to
2814 * be done on several of the supported chip revisions anyway,
2815 * to work around HW bugs.
2816 */
2817 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2818 if (BGE_IS_JUMBO_CAPABLE(sc))
2819 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2820
2821 /* 5718 step 18 */
2822 if (BGE_IS_5717_PLUS(sc)) {
2823 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2824 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2825 }
2826
2827 /* 57XX step 45 */
2828 /*
2829 * Disable all send rings by setting the 'ring disabled' bit
2830 * in the flags field of all the TX send ring control blocks,
2831 * located in NIC memory.
2832 */
2833 if (BGE_IS_5700_FAMILY(sc)) {
2834 /* 5700 to 5704 had 16 send rings. */
2835 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2836 } else if (BGE_IS_5717_PLUS(sc)) {
2837 limit = BGE_TX_RINGS_5717_MAX;
2838 } else if (BGE_IS_57765_FAMILY(sc)) {
2839 limit = BGE_TX_RINGS_57765_MAX;
2840 } else
2841 limit = 1;
2842 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2843 for (i = 0; i < limit; i++) {
2844 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2845 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2846 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2847 rcb_addr += sizeof(struct bge_rcb);
2848 }
2849
2850 /* 57XX step 46 and 47 */
2851 /* Configure send ring RCB 0 (we use only the first ring) */
2852 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2853 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2854 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2855 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2856 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2857 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2858 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2859 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2860 else
2861 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2862 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2863 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2864 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2865
2866 /* 57XX step 48 */
2867 /*
2868 * Disable all receive return rings by setting the
2869 * 'ring diabled' bit in the flags field of all the receive
2870 * return ring control blocks, located in NIC memory.
2871 */
2872 if (BGE_IS_5717_PLUS(sc)) {
2873 /* Should be 17, use 16 until we get an SRAM map. */
2874 limit = 16;
2875 } else if (BGE_IS_5700_FAMILY(sc))
2876 limit = BGE_RX_RINGS_MAX;
2877 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2878 BGE_IS_57765_FAMILY(sc))
2879 limit = 4;
2880 else
2881 limit = 1;
2882 /* Disable all receive return rings */
2883 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2884 for (i = 0; i < limit; i++) {
2885 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2886 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2887 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2888 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2889 BGE_RCB_FLAG_RING_DISABLED));
2890 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2891 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2892 (i * (sizeof(uint64_t))), 0);
2893 rcb_addr += sizeof(struct bge_rcb);
2894 }
2895
2896 /* 57XX step 49 */
2897 /*
2898 * Set up receive return ring 0. Note that the NIC address
2899 * for RX return rings is 0x0. The return rings live entirely
2900 * within the host, so the nicaddr field in the RCB isn't used.
2901 */
2902 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2903 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2904 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2905 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2906 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2907 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2908 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2909
2910 /* 5718 step 24, 57XX step 53 */
2911 /* Set random backoff seed for TX */
2912 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2913 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2914 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2915 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2916 BGE_TX_BACKOFF_SEED_MASK);
2917
2918 /* 5718 step 26, 57XX step 55 */
2919 /* Set inter-packet gap */
2920 val = 0x2620;
2921 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2922 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2923 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2924 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2925
2926 /* 5718 step 27, 57XX step 56 */
2927 /*
2928 * Specify which ring to use for packets that don't match
2929 * any RX rules.
2930 */
2931 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2932
2933 /* 5718 step 28, 57XX step 57 */
2934 /*
2935 * Configure number of RX lists. One interrupt distribution
2936 * list, sixteen active lists, one bad frames class.
2937 */
2938 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2939
2940 /* 5718 step 29, 57XX step 58 */
2941 /* Inialize RX list placement stats mask. */
2942 if (BGE_IS_575X_PLUS(sc)) {
2943 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2944 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2945 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2946 } else
2947 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2948
2949 /* 5718 step 30, 57XX step 59 */
2950 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2951
2952 /* 5718 step 33, 57XX step 62 */
2953 /* Disable host coalescing until we get it set up */
2954 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2955
2956 /* 5718 step 34, 57XX step 63 */
2957 /* Poll to make sure it's shut down. */
2958 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2959 DELAY(10);
2960 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2961 break;
2962 }
2963
2964 if (i == BGE_TIMEOUT * 2) {
2965 aprint_error_dev(sc->bge_dev,
2966 "host coalescing engine failed to idle\n");
2967 return ENXIO;
2968 }
2969
2970 /* 5718 step 35, 36, 37 */
2971 /* Set up host coalescing defaults */
2972 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2973 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2974 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2975 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2976 if (!(BGE_IS_5705_PLUS(sc))) {
2977 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2978 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2979 }
2980 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2981 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2982
2983 /* Set up address of statistics block */
2984 if (BGE_IS_5700_FAMILY(sc)) {
2985 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2986 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2987 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2988 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2989 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2990 }
2991
2992 /* 5718 step 38 */
2993 /* Set up address of status block */
2994 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2995 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2996 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2997 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2998 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2999 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
3000
3001 /* Set up status block size. */
3002 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
3003 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
3004 val = BGE_STATBLKSZ_FULL;
3005 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
3006 } else {
3007 val = BGE_STATBLKSZ_32BYTE;
3008 bzero(&sc->bge_rdata->bge_status_block, 32);
3009 }
3010
3011 /* 5718 step 39, 57XX step 73 */
3012 /* Turn on host coalescing state machine */
3013 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
3014
3015 /* 5718 step 40, 57XX step 74 */
3016 /* Turn on RX BD completion state machine and enable attentions */
3017 CSR_WRITE_4(sc, BGE_RBDC_MODE,
3018 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
3019
3020 /* 5718 step 41, 57XX step 75 */
3021 /* Turn on RX list placement state machine */
3022 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3023
3024 /* 57XX step 76 */
3025 /* Turn on RX list selector state machine. */
3026 if (!(BGE_IS_5705_PLUS(sc)))
3027 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3028
3029 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
3030 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
3031 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
3032 BGE_MACMODE_FRMHDR_DMA_ENB;
3033
3034 if (sc->bge_flags & BGEF_FIBER_TBI)
3035 val |= BGE_PORTMODE_TBI;
3036 else if (sc->bge_flags & BGEF_FIBER_MII)
3037 val |= BGE_PORTMODE_GMII;
3038 else
3039 val |= BGE_PORTMODE_MII;
3040
3041 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3042 /* Allow APE to send/receive frames. */
3043 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3044 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3045
3046 /* Turn on DMA, clear stats */
3047 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3048 /* 5718 step 44 */
3049 DELAY(40);
3050
3051 /* 5718 step 45, 57XX step 79 */
3052 /* Set misc. local control, enable interrupts on attentions */
3053 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3054 if (BGE_IS_5717_PLUS(sc)) {
3055 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3056 /* 5718 step 46 */
3057 DELAY(100);
3058 }
3059
3060 /* 57XX step 81 */
3061 /* Turn on DMA completion state machine */
3062 if (!(BGE_IS_5705_PLUS(sc)))
3063 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3064
3065 /* 5718 step 47, 57XX step 82 */
3066 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3067
3068 /* 5718 step 48 */
3069 /* Enable host coalescing bug fix. */
3070 if (BGE_IS_5755_PLUS(sc))
3071 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3072
3073 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3074 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3075
3076 /* Turn on write DMA state machine */
3077 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3078 /* 5718 step 49 */
3079 DELAY(40);
3080
3081 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3082
3083 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3084 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3085
3086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3087 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3088 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3089 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3090 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3091 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3092
3093 if (sc->bge_flags & BGEF_PCIE)
3094 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3095 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3096 if (ifp->if_mtu <= ETHERMTU)
3097 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3098 }
3099 if (sc->bge_flags & BGEF_TSO) {
3100 val |= BGE_RDMAMODE_TSO4_ENABLE;
3101 if (BGE_IS_5717_PLUS(sc))
3102 val |= BGE_RDMAMODE_TSO6_ENABLE;
3103 }
3104
3105 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3106 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3107 BGE_RDMAMODE_H2BNC_VLAN_DET;
3108 /*
3109 * Allow multiple outstanding read requests from
3110 * non-LSO read DMA engine.
3111 */
3112 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3113 }
3114
3115 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3116 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3117 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3118 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3119 BGE_IS_57765_PLUS(sc)) {
3120 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3121 /*
3122 * Adjust tx margin to prevent TX data corruption and
3123 * fix internal FIFO overflow.
3124 */
3125 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3126 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3127 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3128 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3129 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3130 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3131 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3132 }
3133 /*
3134 * Enable fix for read DMA FIFO overruns.
3135 * The fix is to limit the number of RX BDs
3136 * the hardware would fetch at a fime.
3137 */
3138 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3139 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3140 }
3141
3142 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3143 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3144 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3145 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3146 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3147 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3148 /*
3149 * Allow 4KB burst length reads for non-LSO frames.
3150 * Enable 512B burst length reads for buffer descriptors.
3151 */
3152 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3153 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3154 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3155 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3156 }
3157 /* Turn on read DMA state machine */
3158 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3159 /* 5718 step 52 */
3160 delay(40);
3161
3162 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3163 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3164 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
3165 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
3166 if ((val & 0xFFFF) > BGE_FRAMELEN)
3167 break;
3168 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
3169 break;
3170 }
3171 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
3172 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
3173 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
3174 val |= BGE_RDMA_TX_LENGTH_WA_5719;
3175 else
3176 val |= BGE_RDMA_TX_LENGTH_WA_5720;
3177 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
3178 }
3179 }
3180
3181 /* 5718 step 56, 57XX step 84 */
3182 /* Turn on RX data completion state machine */
3183 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3184
3185 /* Turn on RX data and RX BD initiator state machine */
3186 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3187
3188 /* 57XX step 85 */
3189 /* Turn on Mbuf cluster free state machine */
3190 if (!BGE_IS_5705_PLUS(sc))
3191 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3192
3193 /* 5718 step 57, 57XX step 86 */
3194 /* Turn on send data completion state machine */
3195 val = BGE_SDCMODE_ENABLE;
3196 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3197 val |= BGE_SDCMODE_CDELAY;
3198 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3199
3200 /* 5718 step 58 */
3201 /* Turn on send BD completion state machine */
3202 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3203
3204 /* 57XX step 88 */
3205 /* Turn on RX BD initiator state machine */
3206 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3207
3208 /* 5718 step 60, 57XX step 90 */
3209 /* Turn on send data initiator state machine */
3210 if (sc->bge_flags & BGEF_TSO) {
3211 /* XXX: magic value from Linux driver */
3212 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3213 BGE_SDIMODE_HW_LSO_PRE_DMA);
3214 } else
3215 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3216
3217 /* 5718 step 61, 57XX step 91 */
3218 /* Turn on send BD initiator state machine */
3219 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3220
3221 /* 5718 step 62, 57XX step 92 */
3222 /* Turn on send BD selector state machine */
3223 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3224
3225 /* 5718 step 31, 57XX step 60 */
3226 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3227 /* 5718 step 32, 57XX step 61 */
3228 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3229 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3230
3231 /* ack/clear link change events */
3232 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3233 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3234 BGE_MACSTAT_LINK_CHANGED);
3235 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3236
3237 /*
3238 * Enable attention when the link has changed state for
3239 * devices that use auto polling.
3240 */
3241 if (sc->bge_flags & BGEF_FIBER_TBI) {
3242 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3243 } else {
3244 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3245 mimode = BGE_MIMODE_500KHZ_CONST;
3246 else
3247 mimode = BGE_MIMODE_BASE;
3248 /* 5718 step 68. 5718 step 69 (optionally). */
3249 if (BGE_IS_5700_FAMILY(sc) ||
3250 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3251 mimode |= BGE_MIMODE_AUTOPOLL;
3252 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3253 }
3254 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3255 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3257 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3258 BGE_EVTENB_MI_INTERRUPT);
3259 }
3260
3261 /*
3262 * Clear any pending link state attention.
3263 * Otherwise some link state change events may be lost until attention
3264 * is cleared by bge_intr() -> bge_link_upd() sequence.
3265 * It's not necessary on newer BCM chips - perhaps enabling link
3266 * state change attentions implies clearing pending attention.
3267 */
3268 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3269 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3270 BGE_MACSTAT_LINK_CHANGED);
3271
3272 /* Enable link state change attentions. */
3273 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3274
3275 return 0;
3276 }
3277
3278 static const struct bge_revision *
3279 bge_lookup_rev(uint32_t chipid)
3280 {
3281 const struct bge_revision *br;
3282
3283 for (br = bge_revisions; br->br_name != NULL; br++) {
3284 if (br->br_chipid == chipid)
3285 return br;
3286 }
3287
3288 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3289 if (br->br_chipid == BGE_ASICREV(chipid))
3290 return br;
3291 }
3292
3293 return NULL;
3294 }
3295
3296 static const struct bge_product *
3297 bge_lookup(const struct pci_attach_args *pa)
3298 {
3299 const struct bge_product *bp;
3300
3301 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3302 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3303 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3304 return bp;
3305 }
3306
3307 return NULL;
3308 }
3309
3310 static uint32_t
3311 bge_chipid(const struct pci_attach_args *pa)
3312 {
3313 uint32_t id;
3314
3315 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3316 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3317
3318 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3319 switch (PCI_PRODUCT(pa->pa_id)) {
3320 case PCI_PRODUCT_BROADCOM_BCM5717:
3321 case PCI_PRODUCT_BROADCOM_BCM5718:
3322 case PCI_PRODUCT_BROADCOM_BCM5719:
3323 case PCI_PRODUCT_BROADCOM_BCM5720:
3324 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3325 BGE_PCI_GEN2_PRODID_ASICREV);
3326 break;
3327 case PCI_PRODUCT_BROADCOM_BCM57761:
3328 case PCI_PRODUCT_BROADCOM_BCM57762:
3329 case PCI_PRODUCT_BROADCOM_BCM57765:
3330 case PCI_PRODUCT_BROADCOM_BCM57766:
3331 case PCI_PRODUCT_BROADCOM_BCM57781:
3332 case PCI_PRODUCT_BROADCOM_BCM57782:
3333 case PCI_PRODUCT_BROADCOM_BCM57785:
3334 case PCI_PRODUCT_BROADCOM_BCM57786:
3335 case PCI_PRODUCT_BROADCOM_BCM57791:
3336 case PCI_PRODUCT_BROADCOM_BCM57795:
3337 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3338 BGE_PCI_GEN15_PRODID_ASICREV);
3339 break;
3340 default:
3341 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3342 BGE_PCI_PRODID_ASICREV);
3343 break;
3344 }
3345 }
3346
3347 return id;
3348 }
3349
3350 /*
3351 * Return true if MSI can be used with this device.
3352 */
3353 static int
3354 bge_can_use_msi(struct bge_softc *sc)
3355 {
3356 int can_use_msi = 0;
3357
3358 switch (BGE_ASICREV(sc->bge_chipid)) {
3359 case BGE_ASICREV_BCM5714_A0:
3360 case BGE_ASICREV_BCM5714:
3361 /*
3362 * Apparently, MSI doesn't work when these chips are
3363 * configured in single-port mode.
3364 */
3365 break;
3366 case BGE_ASICREV_BCM5750:
3367 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3368 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3369 can_use_msi = 1;
3370 break;
3371 default:
3372 if (BGE_IS_575X_PLUS(sc))
3373 can_use_msi = 1;
3374 }
3375 return (can_use_msi);
3376 }
3377
3378 /*
3379 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3380 * against our list and return its name if we find a match. Note
3381 * that since the Broadcom controller contains VPD support, we
3382 * can get the device name string from the controller itself instead
3383 * of the compiled-in string. This is a little slow, but it guarantees
3384 * we'll always announce the right product name.
3385 */
3386 static int
3387 bge_probe(device_t parent, cfdata_t match, void *aux)
3388 {
3389 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3390
3391 if (bge_lookup(pa) != NULL)
3392 return 1;
3393
3394 return 0;
3395 }
3396
3397 static void
3398 bge_attach(device_t parent, device_t self, void *aux)
3399 {
3400 struct bge_softc *sc = device_private(self);
3401 struct pci_attach_args *pa = aux;
3402 prop_dictionary_t dict;
3403 const struct bge_product *bp;
3404 const struct bge_revision *br;
3405 pci_chipset_tag_t pc;
3406 const char *intrstr = NULL;
3407 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3408 uint32_t command;
3409 struct ifnet *ifp;
3410 uint32_t misccfg, mimode;
3411 void * kva;
3412 u_char eaddr[ETHER_ADDR_LEN];
3413 pcireg_t memtype, subid, reg;
3414 bus_addr_t memaddr;
3415 uint32_t pm_ctl;
3416 bool no_seeprom;
3417 int capmask;
3418 int mii_flags;
3419 int map_flags;
3420 char intrbuf[PCI_INTRSTR_LEN];
3421
3422 bp = bge_lookup(pa);
3423 KASSERT(bp != NULL);
3424
3425 sc->sc_pc = pa->pa_pc;
3426 sc->sc_pcitag = pa->pa_tag;
3427 sc->bge_dev = self;
3428
3429 sc->bge_pa = *pa;
3430 pc = sc->sc_pc;
3431 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3432
3433 aprint_naive(": Ethernet controller\n");
3434 aprint_normal(": %s\n", bp->bp_name);
3435
3436 /*
3437 * Map control/status registers.
3438 */
3439 DPRINTFN(5, ("Map control/status regs\n"));
3440 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3441 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3442 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3443 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3444
3445 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3446 aprint_error_dev(sc->bge_dev,
3447 "failed to enable memory mapping!\n");
3448 return;
3449 }
3450
3451 DPRINTFN(5, ("pci_mem_find\n"));
3452 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3453 switch (memtype) {
3454 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3455 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3456 #if 0
3457 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3458 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3459 &memaddr, &sc->bge_bsize) == 0)
3460 break;
3461 #else
3462 /*
3463 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3464 * system get NMI on boot (PR#48451). This problem might not be
3465 * the driver's bug but our PCI common part's bug. Until we
3466 * find a real reason, we ignore the prefetchable bit.
3467 */
3468 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3469 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3470 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3471 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3472 map_flags, &sc->bge_bhandle) == 0) {
3473 sc->bge_btag = pa->pa_memt;
3474 break;
3475 }
3476 }
3477 #endif
3478 default:
3479 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3480 return;
3481 }
3482
3483 /* Save various chip information. */
3484 sc->bge_chipid = bge_chipid(pa);
3485 sc->bge_phy_addr = bge_phy_addr(sc);
3486
3487 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3488 &sc->bge_pciecap, NULL) != 0) {
3489 /* PCIe */
3490 sc->bge_flags |= BGEF_PCIE;
3491 /* Extract supported maximum payload size. */
3492 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3493 sc->bge_pciecap + PCIE_DCAP);
3494 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3496 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3497 sc->bge_expmrq = 2048;
3498 else
3499 sc->bge_expmrq = 4096;
3500 bge_set_max_readrq(sc);
3501 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3502 /* PCIe without PCIe cap */
3503 sc->bge_flags |= BGEF_PCIE;
3504 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3505 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3506 /* PCI-X */
3507 sc->bge_flags |= BGEF_PCIX;
3508 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3509 &sc->bge_pcixcap, NULL) == 0)
3510 aprint_error_dev(sc->bge_dev,
3511 "unable to find PCIX capability\n");
3512 }
3513
3514 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3515 /*
3516 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3517 * can clobber the chip's PCI config-space power control
3518 * registers, leaving the card in D3 powersave state. We do
3519 * not have memory-mapped registers in this state, so force
3520 * device into D0 state before starting initialization.
3521 */
3522 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3523 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3524 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3525 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3526 DELAY(1000); /* 27 usec is allegedly sufficent */
3527 }
3528
3529 /* Save chipset family. */
3530 switch (BGE_ASICREV(sc->bge_chipid)) {
3531 case BGE_ASICREV_BCM5717:
3532 case BGE_ASICREV_BCM5719:
3533 case BGE_ASICREV_BCM5720:
3534 sc->bge_flags |= BGEF_5717_PLUS;
3535 /* FALLTHROUGH */
3536 case BGE_ASICREV_BCM57765:
3537 case BGE_ASICREV_BCM57766:
3538 if (!BGE_IS_5717_PLUS(sc))
3539 sc->bge_flags |= BGEF_57765_FAMILY;
3540 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3541 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3542 /* Jumbo frame on BCM5719 A0 does not work. */
3543 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3544 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3545 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3546 break;
3547 case BGE_ASICREV_BCM5755:
3548 case BGE_ASICREV_BCM5761:
3549 case BGE_ASICREV_BCM5784:
3550 case BGE_ASICREV_BCM5785:
3551 case BGE_ASICREV_BCM5787:
3552 case BGE_ASICREV_BCM57780:
3553 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3554 break;
3555 case BGE_ASICREV_BCM5700:
3556 case BGE_ASICREV_BCM5701:
3557 case BGE_ASICREV_BCM5703:
3558 case BGE_ASICREV_BCM5704:
3559 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3560 break;
3561 case BGE_ASICREV_BCM5714_A0:
3562 case BGE_ASICREV_BCM5780:
3563 case BGE_ASICREV_BCM5714:
3564 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3565 /* FALLTHROUGH */
3566 case BGE_ASICREV_BCM5750:
3567 case BGE_ASICREV_BCM5752:
3568 case BGE_ASICREV_BCM5906:
3569 sc->bge_flags |= BGEF_575X_PLUS;
3570 /* FALLTHROUGH */
3571 case BGE_ASICREV_BCM5705:
3572 sc->bge_flags |= BGEF_5705_PLUS;
3573 break;
3574 }
3575
3576 /* Identify chips with APE processor. */
3577 switch (BGE_ASICREV(sc->bge_chipid)) {
3578 case BGE_ASICREV_BCM5717:
3579 case BGE_ASICREV_BCM5719:
3580 case BGE_ASICREV_BCM5720:
3581 case BGE_ASICREV_BCM5761:
3582 sc->bge_flags |= BGEF_APE;
3583 break;
3584 }
3585
3586 /*
3587 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3588 * not actually a MAC controller bug but an issue with the embedded
3589 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3590 */
3591 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3592 sc->bge_flags |= BGEF_40BIT_BUG;
3593
3594 /* Chips with APE need BAR2 access for APE registers/memory. */
3595 if ((sc->bge_flags & BGEF_APE) != 0) {
3596 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3597 #if 0
3598 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3599 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3600 &sc->bge_apesize)) {
3601 aprint_error_dev(sc->bge_dev,
3602 "couldn't map BAR2 memory\n");
3603 return;
3604 }
3605 #else
3606 /*
3607 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3608 * system get NMI on boot (PR#48451). This problem might not be
3609 * the driver's bug but our PCI common part's bug. Until we
3610 * find a real reason, we ignore the prefetchable bit.
3611 */
3612 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3613 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3614 aprint_error_dev(sc->bge_dev,
3615 "couldn't map BAR2 memory\n");
3616 return;
3617 }
3618
3619 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3620 if (bus_space_map(pa->pa_memt, memaddr,
3621 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3622 aprint_error_dev(sc->bge_dev,
3623 "couldn't map BAR2 memory\n");
3624 return;
3625 }
3626 sc->bge_apetag = pa->pa_memt;
3627 #endif
3628
3629 /* Enable APE register/memory access by host driver. */
3630 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3631 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3632 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3633 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3634 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3635
3636 bge_ape_lock_init(sc);
3637 bge_ape_read_fw_ver(sc);
3638 }
3639
3640 /* Identify the chips that use an CPMU. */
3641 if (BGE_IS_5717_PLUS(sc) ||
3642 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3643 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3644 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3646 sc->bge_flags |= BGEF_CPMU_PRESENT;
3647
3648 /* Set MI_MODE */
3649 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3650 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3651 mimode |= BGE_MIMODE_500KHZ_CONST;
3652 else
3653 mimode |= BGE_MIMODE_BASE;
3654 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3655
3656 /*
3657 * When using the BCM5701 in PCI-X mode, data corruption has
3658 * been observed in the first few bytes of some received packets.
3659 * Aligning the packet buffer in memory eliminates the corruption.
3660 * Unfortunately, this misaligns the packet payloads. On platforms
3661 * which do not support unaligned accesses, we will realign the
3662 * payloads by copying the received packets.
3663 */
3664 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3665 sc->bge_flags & BGEF_PCIX)
3666 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3667
3668 if (BGE_IS_5700_FAMILY(sc))
3669 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3670
3671 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3672 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3673
3674 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3675 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3676 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3677 sc->bge_flags |= BGEF_IS_5788;
3678
3679 /*
3680 * Some controllers seem to require a special firmware to use
3681 * TSO. But the firmware is not available to FreeBSD and Linux
3682 * claims that the TSO performed by the firmware is slower than
3683 * hardware based TSO. Moreover the firmware based TSO has one
3684 * known bug which can't handle TSO if ethernet header + IP/TCP
3685 * header is greater than 80 bytes. The workaround for the TSO
3686 * bug exist but it seems it's too expensive than not using
3687 * TSO at all. Some hardwares also have the TSO bug so limit
3688 * the TSO to the controllers that are not affected TSO issues
3689 * (e.g. 5755 or higher).
3690 */
3691 if (BGE_IS_5755_PLUS(sc)) {
3692 /*
3693 * BCM5754 and BCM5787 shares the same ASIC id so
3694 * explicit device id check is required.
3695 */
3696 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3697 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3698 sc->bge_flags |= BGEF_TSO;
3699 /* TSO on BCM5719 A0 does not work. */
3700 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3701 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3702 sc->bge_flags &= ~BGEF_TSO;
3703 }
3704
3705 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3706 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3707 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3708 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3709 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3710 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3711 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3712 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3713 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3714 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3715 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3716 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3717 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3718 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3719 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3720 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3721 /* These chips are 10/100 only. */
3722 capmask &= ~BMSR_EXTSTAT;
3723 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3724 }
3725
3726 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3727 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3728 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3729 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3730 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3731
3732 /* Set various PHY bug flags. */
3733 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3734 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3735 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3736 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3737 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3738 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3739 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3740 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3741 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3742 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3743 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3744 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3745 if (BGE_IS_5705_PLUS(sc) &&
3746 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3747 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3748 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3749 !BGE_IS_57765_PLUS(sc)) {
3750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3751 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3752 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3753 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3754 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3755 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3756 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3757 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3758 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3759 } else
3760 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3761 }
3762
3763 /*
3764 * SEEPROM check.
3765 * First check if firmware knows we do not have SEEPROM.
3766 */
3767 if (prop_dictionary_get_bool(device_properties(self),
3768 "without-seeprom", &no_seeprom) && no_seeprom)
3769 sc->bge_flags |= BGEF_NO_EEPROM;
3770
3771 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3772 sc->bge_flags |= BGEF_NO_EEPROM;
3773
3774 /* Now check the 'ROM failed' bit on the RX CPU */
3775 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3776 sc->bge_flags |= BGEF_NO_EEPROM;
3777
3778 sc->bge_asf_mode = 0;
3779 /* No ASF if APE present. */
3780 if ((sc->bge_flags & BGEF_APE) == 0) {
3781 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3782 BGE_SRAM_DATA_SIG_MAGIC)) {
3783 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3784 BGE_HWCFG_ASF) {
3785 sc->bge_asf_mode |= ASF_ENABLE;
3786 sc->bge_asf_mode |= ASF_STACKUP;
3787 if (BGE_IS_575X_PLUS(sc))
3788 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3789 }
3790 }
3791 }
3792
3793 int counts[PCI_INTR_TYPE_SIZE] = {
3794 [PCI_INTR_TYPE_INTX] = 1,
3795 [PCI_INTR_TYPE_MSI] = 1,
3796 [PCI_INTR_TYPE_MSIX] = 1,
3797 };
3798 int max_type = PCI_INTR_TYPE_MSIX;
3799
3800 if (!bge_can_use_msi(sc)) {
3801 /* MSI broken, allow only INTx */
3802 max_type = PCI_INTR_TYPE_INTX;
3803 }
3804
3805 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3806 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3807 return;
3808 }
3809
3810 DPRINTFN(5, ("pci_intr_string\n"));
3811 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3812 sizeof(intrbuf));
3813 DPRINTFN(5, ("pci_intr_establish\n"));
3814 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3815 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3816 if (sc->bge_intrhand == NULL) {
3817 pci_intr_release(pc, sc->bge_pihp, 1);
3818 sc->bge_pihp = NULL;
3819
3820 aprint_error_dev(self, "couldn't establish interrupt");
3821 if (intrstr != NULL)
3822 aprint_error(" at %s", intrstr);
3823 aprint_error("\n");
3824 return;
3825 }
3826 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3827
3828 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3829 case PCI_INTR_TYPE_MSIX:
3830 case PCI_INTR_TYPE_MSI:
3831 KASSERT(bge_can_use_msi(sc));
3832 sc->bge_flags |= BGEF_MSI;
3833 break;
3834 default:
3835 /* nothing to do */
3836 break;
3837 }
3838
3839 /*
3840 * All controllers except BCM5700 supports tagged status but
3841 * we use tagged status only for MSI case on BCM5717. Otherwise
3842 * MSI on BCM5717 does not work.
3843 */
3844 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3845 sc->bge_flags |= BGEF_TAGGED_STATUS;
3846
3847 /*
3848 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3849 * lock in bge_reset().
3850 */
3851 CSR_WRITE_4(sc, BGE_EE_ADDR,
3852 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3853 delay(1000);
3854 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3855
3856 bge_stop_fw(sc);
3857 bge_sig_pre_reset(sc, BGE_RESET_START);
3858 if (bge_reset(sc))
3859 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3860
3861 /*
3862 * Read the hardware config word in the first 32k of NIC internal
3863 * memory, or fall back to the config word in the EEPROM.
3864 * Note: on some BCM5700 cards, this value appears to be unset.
3865 */
3866 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3867 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3868 BGE_SRAM_DATA_SIG_MAGIC) {
3869 uint32_t tmp;
3870
3871 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3872 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3873 BGE_SRAM_DATA_VER_SHIFT;
3874 if ((0 < tmp) && (tmp < 0x100))
3875 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3876 if (sc->bge_flags & BGEF_PCIE)
3877 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3879 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3880 if (BGE_IS_5717_PLUS(sc))
3881 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3882 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3883 bge_read_eeprom(sc, (void *)&hwcfg,
3884 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3885 hwcfg = be32toh(hwcfg);
3886 }
3887 aprint_normal_dev(sc->bge_dev,
3888 "HW config %08x, %08x, %08x, %08x %08x\n",
3889 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3890
3891 bge_sig_legacy(sc, BGE_RESET_START);
3892 bge_sig_post_reset(sc, BGE_RESET_START);
3893
3894 if (bge_chipinit(sc)) {
3895 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3896 bge_release_resources(sc);
3897 return;
3898 }
3899
3900 /*
3901 * Get station address from the EEPROM.
3902 */
3903 if (bge_get_eaddr(sc, eaddr)) {
3904 aprint_error_dev(sc->bge_dev,
3905 "failed to read station address\n");
3906 bge_release_resources(sc);
3907 return;
3908 }
3909
3910 br = bge_lookup_rev(sc->bge_chipid);
3911
3912 if (br == NULL) {
3913 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3914 sc->bge_chipid);
3915 } else {
3916 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3917 br->br_name, sc->bge_chipid);
3918 }
3919 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3920
3921 /* Allocate the general information block and ring buffers. */
3922 if (pci_dma64_available(pa)) {
3923 sc->bge_dmatag = pa->pa_dmat64;
3924 sc->bge_dmatag32 = pa->pa_dmat;
3925 sc->bge_dma64 = true;
3926 } else {
3927 sc->bge_dmatag = pa->pa_dmat;
3928 sc->bge_dmatag32 = pa->pa_dmat;
3929 sc->bge_dma64 = false;
3930 }
3931
3932 /* 40bit DMA workaround */
3933 if (sizeof(bus_addr_t) > 4) {
3934 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3935 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3936
3937 if (bus_dmatag_subregion(olddmatag, 0,
3938 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3939 BUS_DMA_NOWAIT) != 0) {
3940 aprint_error_dev(self,
3941 "WARNING: failed to restrict dma range,"
3942 " falling back to parent bus dma range\n");
3943 sc->bge_dmatag = olddmatag;
3944 }
3945 }
3946 }
3947 SLIST_INIT(&sc->txdma_list);
3948 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3949 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3950 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3951 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3952 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3953 return;
3954 }
3955 DPRINTFN(5, ("bus_dmamem_map\n"));
3956 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3957 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3958 BUS_DMA_NOWAIT)) {
3959 aprint_error_dev(sc->bge_dev,
3960 "can't map DMA buffers (%zu bytes)\n",
3961 sizeof(struct bge_ring_data));
3962 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3963 sc->bge_ring_rseg);
3964 return;
3965 }
3966 DPRINTFN(5, ("bus_dmamem_create\n"));
3967 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3968 sizeof(struct bge_ring_data), 0,
3969 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3970 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3971 bus_dmamem_unmap(sc->bge_dmatag, kva,
3972 sizeof(struct bge_ring_data));
3973 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3974 sc->bge_ring_rseg);
3975 return;
3976 }
3977 DPRINTFN(5, ("bus_dmamem_load\n"));
3978 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3979 sizeof(struct bge_ring_data), NULL,
3980 BUS_DMA_NOWAIT)) {
3981 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3982 bus_dmamem_unmap(sc->bge_dmatag, kva,
3983 sizeof(struct bge_ring_data));
3984 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3985 sc->bge_ring_rseg);
3986 return;
3987 }
3988
3989 DPRINTFN(5, ("bzero\n"));
3990 sc->bge_rdata = (struct bge_ring_data *)kva;
3991
3992 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3993
3994 /* Try to allocate memory for jumbo buffers. */
3995 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3996 if (bge_alloc_jumbo_mem(sc)) {
3997 aprint_error_dev(sc->bge_dev,
3998 "jumbo buffer allocation failed\n");
3999 } else
4000 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
4001 }
4002
4003 /* Set default tuneable values. */
4004 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
4005 sc->bge_rx_coal_ticks = 150;
4006 sc->bge_rx_max_coal_bds = 64;
4007 sc->bge_tx_coal_ticks = 300;
4008 sc->bge_tx_max_coal_bds = 400;
4009 if (BGE_IS_5705_PLUS(sc)) {
4010 sc->bge_tx_coal_ticks = (12 * 5);
4011 sc->bge_tx_max_coal_bds = (12 * 5);
4012 aprint_verbose_dev(sc->bge_dev,
4013 "setting short Tx thresholds\n");
4014 }
4015
4016 if (BGE_IS_5717_PLUS(sc))
4017 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4018 else if (BGE_IS_5705_PLUS(sc))
4019 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
4020 else
4021 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4022
4023 /* Set up ifnet structure */
4024 ifp = &sc->ethercom.ec_if;
4025 ifp->if_softc = sc;
4026 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
4027 ifp->if_ioctl = bge_ioctl;
4028 ifp->if_stop = bge_stop;
4029 ifp->if_start = bge_start;
4030 ifp->if_init = bge_init;
4031 ifp->if_watchdog = bge_watchdog;
4032 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
4033 IFQ_SET_READY(&ifp->if_snd);
4034 DPRINTFN(5, ("strcpy if_xname\n"));
4035 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
4036
4037 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
4038 sc->ethercom.ec_if.if_capabilities |=
4039 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
4040 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
4041 sc->ethercom.ec_if.if_capabilities |=
4042 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
4043 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
4044 #endif
4045 sc->ethercom.ec_capabilities |=
4046 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
4047
4048 if (sc->bge_flags & BGEF_TSO)
4049 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
4050
4051 /*
4052 * Do MII setup.
4053 */
4054 DPRINTFN(5, ("mii setup\n"));
4055 sc->bge_mii.mii_ifp = ifp;
4056 sc->bge_mii.mii_readreg = bge_miibus_readreg;
4057 sc->bge_mii.mii_writereg = bge_miibus_writereg;
4058 sc->bge_mii.mii_statchg = bge_miibus_statchg;
4059
4060 /*
4061 * Figure out what sort of media we have by checking the hardware
4062 * config word. Note: on some BCM5700 cards, this value appears to be
4063 * unset. If that's the case, we have to rely on identifying the NIC
4064 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4065 * The SysKonnect SK-9D41 is a 1000baseSX card.
4066 */
4067 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4068 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4069 if (BGE_IS_5705_PLUS(sc)) {
4070 sc->bge_flags |= BGEF_FIBER_MII;
4071 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4072 } else
4073 sc->bge_flags |= BGEF_FIBER_TBI;
4074 }
4075
4076 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4077 if (BGE_IS_JUMBO_CAPABLE(sc))
4078 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4079
4080 /* set phyflags and chipid before mii_attach() */
4081 dict = device_properties(self);
4082 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4083 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4084
4085 if (sc->bge_flags & BGEF_FIBER_TBI) {
4086 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4087 bge_ifmedia_sts);
4088 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4089 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4090 0, NULL);
4091 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4092 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4093 /* Pretend the user requested this setting */
4094 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4095 } else {
4096 /*
4097 * Do transceiver setup and tell the firmware the
4098 * driver is down so we can try to get access the
4099 * probe if ASF is running. Retry a couple of times
4100 * if we get a conflict with the ASF firmware accessing
4101 * the PHY.
4102 */
4103 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4104 bge_asf_driver_up(sc);
4105
4106 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4107 bge_ifmedia_sts);
4108 mii_flags = MIIF_DOPAUSE;
4109 if (sc->bge_flags & BGEF_FIBER_MII)
4110 mii_flags |= MIIF_HAVEFIBER;
4111 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4112 MII_OFFSET_ANY, mii_flags);
4113
4114 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4115 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4116 ifmedia_add(&sc->bge_mii.mii_media,
4117 IFM_ETHER|IFM_MANUAL, 0, NULL);
4118 ifmedia_set(&sc->bge_mii.mii_media,
4119 IFM_ETHER|IFM_MANUAL);
4120 } else
4121 ifmedia_set(&sc->bge_mii.mii_media,
4122 IFM_ETHER|IFM_AUTO);
4123
4124 /*
4125 * Now tell the firmware we are going up after probing the PHY
4126 */
4127 if (sc->bge_asf_mode & ASF_STACKUP)
4128 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4129 }
4130
4131 /*
4132 * Call MI attach routine.
4133 */
4134 DPRINTFN(5, ("if_attach\n"));
4135 if_attach(ifp);
4136 if_deferred_start_init(ifp, NULL);
4137 DPRINTFN(5, ("ether_ifattach\n"));
4138 ether_ifattach(ifp, eaddr);
4139 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4140 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4141 RND_TYPE_NET, RND_FLAG_DEFAULT);
4142 #ifdef BGE_EVENT_COUNTERS
4143 /*
4144 * Attach event counters.
4145 */
4146 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4147 NULL, device_xname(sc->bge_dev), "intr");
4148 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4149 NULL, device_xname(sc->bge_dev), "intr_spurious");
4150 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4151 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4152 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4153 NULL, device_xname(sc->bge_dev), "tx_xoff");
4154 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4155 NULL, device_xname(sc->bge_dev), "tx_xon");
4156 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4157 NULL, device_xname(sc->bge_dev), "rx_xoff");
4158 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4159 NULL, device_xname(sc->bge_dev), "rx_xon");
4160 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4161 NULL, device_xname(sc->bge_dev), "rx_macctl");
4162 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4163 NULL, device_xname(sc->bge_dev), "xoffentered");
4164 #endif /* BGE_EVENT_COUNTERS */
4165 DPRINTFN(5, ("callout_init\n"));
4166 callout_init(&sc->bge_timeout, 0);
4167
4168 if (pmf_device_register(self, NULL, NULL))
4169 pmf_class_network_register(self, ifp);
4170 else
4171 aprint_error_dev(self, "couldn't establish power handler\n");
4172
4173 bge_sysctl_init(sc);
4174
4175 #ifdef BGE_DEBUG
4176 bge_debug_info(sc);
4177 #endif
4178 }
4179
4180 /*
4181 * Stop all chip I/O so that the kernel's probe routines don't
4182 * get confused by errant DMAs when rebooting.
4183 */
4184 static int
4185 bge_detach(device_t self, int flags __unused)
4186 {
4187 struct bge_softc *sc = device_private(self);
4188 struct ifnet *ifp = &sc->ethercom.ec_if;
4189 int s;
4190
4191 s = splnet();
4192 /* Stop the interface. Callouts are stopped in it. */
4193 bge_stop(ifp, 1);
4194 splx(s);
4195
4196 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4197
4198 /* Delete all remaining media. */
4199 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4200
4201 ether_ifdetach(ifp);
4202 if_detach(ifp);
4203
4204 bge_release_resources(sc);
4205
4206 return 0;
4207 }
4208
4209 static void
4210 bge_release_resources(struct bge_softc *sc)
4211 {
4212
4213 /* Detach sysctl */
4214 if (sc->bge_log != NULL)
4215 sysctl_teardown(&sc->bge_log);
4216
4217 #ifdef BGE_EVENT_COUNTERS
4218 /* Detach event counters. */
4219 evcnt_detach(&sc->bge_ev_intr);
4220 evcnt_detach(&sc->bge_ev_intr_spurious);
4221 evcnt_detach(&sc->bge_ev_intr_spurious2);
4222 evcnt_detach(&sc->bge_ev_tx_xoff);
4223 evcnt_detach(&sc->bge_ev_tx_xon);
4224 evcnt_detach(&sc->bge_ev_rx_xoff);
4225 evcnt_detach(&sc->bge_ev_rx_xon);
4226 evcnt_detach(&sc->bge_ev_rx_macctl);
4227 evcnt_detach(&sc->bge_ev_xoffentered);
4228 #endif /* BGE_EVENT_COUNTERS */
4229
4230 /* Disestablish the interrupt handler */
4231 if (sc->bge_intrhand != NULL) {
4232 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4233 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4234 sc->bge_intrhand = NULL;
4235 }
4236
4237 if (sc->bge_dmatag != NULL) {
4238 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4239 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4240 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4241 sizeof(struct bge_ring_data));
4242 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4243 sc->bge_ring_rseg);
4244 }
4245
4246 /* Unmap the device registers */
4247 if (sc->bge_bsize != 0) {
4248 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4249 sc->bge_bsize = 0;
4250 }
4251
4252 /* Unmap the APE registers */
4253 if (sc->bge_apesize != 0) {
4254 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4255 sc->bge_apesize);
4256 sc->bge_apesize = 0;
4257 }
4258 }
4259
4260 static int
4261 bge_reset(struct bge_softc *sc)
4262 {
4263 uint32_t cachesize, command;
4264 uint32_t reset, mac_mode, mac_mode_mask;
4265 pcireg_t devctl, reg;
4266 int i, val;
4267 void (*write_op)(struct bge_softc *, int, int);
4268
4269 /* Make mask for BGE_MAC_MODE register. */
4270 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4271 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4272 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4273 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4274 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4275
4276 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4277 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4278 if (sc->bge_flags & BGEF_PCIE)
4279 write_op = bge_writemem_direct;
4280 else
4281 write_op = bge_writemem_ind;
4282 } else
4283 write_op = bge_writereg_ind;
4284
4285 /* 57XX step 4 */
4286 /* Acquire the NVM lock */
4287 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4288 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4289 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4290 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4291 for (i = 0; i < 8000; i++) {
4292 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4293 BGE_NVRAMSWARB_GNT1)
4294 break;
4295 DELAY(20);
4296 }
4297 if (i == 8000) {
4298 printf("%s: NVRAM lock timedout!\n",
4299 device_xname(sc->bge_dev));
4300 }
4301 }
4302
4303 /* Take APE lock when performing reset. */
4304 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4305
4306 /* 57XX step 3 */
4307 /* Save some important PCI state. */
4308 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4309 /* 5718 reset step 3 */
4310 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4311
4312 /* 5718 reset step 5, 57XX step 5b-5d */
4313 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4314 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4315 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4316
4317 /* XXX ???: Disable fastboot on controllers that support it. */
4318 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4319 BGE_IS_5755_PLUS(sc))
4320 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4321
4322 /* 5718 reset step 2, 57XX step 6 */
4323 /*
4324 * Write the magic number to SRAM at offset 0xB50.
4325 * When firmware finishes its initialization it will
4326 * write ~BGE_MAGIC_NUMBER to the same location.
4327 */
4328 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4329
4330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4331 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4332 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4333 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4334 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4335 }
4336
4337 /* 5718 reset step 6, 57XX step 7 */
4338 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4339 /*
4340 * XXX: from FreeBSD/Linux; no documentation
4341 */
4342 if (sc->bge_flags & BGEF_PCIE) {
4343 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4344 !BGE_IS_57765_PLUS(sc) &&
4345 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4346 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4347 /* PCI Express 1.0 system */
4348 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4349 BGE_PHY_PCIE_SCRAM_MODE);
4350 }
4351 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4352 /*
4353 * Prevent PCI Express link training
4354 * during global reset.
4355 */
4356 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4357 reset |= (1 << 29);
4358 }
4359 }
4360
4361 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4362 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4363 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4364 i | BGE_VCPU_STATUS_DRV_RESET);
4365 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4366 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4367 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4368 }
4369
4370 /*
4371 * Set GPHY Power Down Override to leave GPHY
4372 * powered up in D0 uninitialized.
4373 */
4374 if (BGE_IS_5705_PLUS(sc) &&
4375 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4376 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4377
4378 /* Issue global reset */
4379 write_op(sc, BGE_MISC_CFG, reset);
4380
4381 /* 5718 reset step 7, 57XX step 8 */
4382 if (sc->bge_flags & BGEF_PCIE)
4383 delay(100*1000); /* too big */
4384 else
4385 delay(1000);
4386
4387 if (sc->bge_flags & BGEF_PCIE) {
4388 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4389 DELAY(500000);
4390 /* XXX: Magic Numbers */
4391 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4392 BGE_PCI_UNKNOWN0);
4393 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4394 BGE_PCI_UNKNOWN0,
4395 reg | (1 << 15));
4396 }
4397 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4398 sc->bge_pciecap + PCIE_DCSR);
4399 /* Clear enable no snoop and disable relaxed ordering. */
4400 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4401 PCIE_DCSR_ENA_NO_SNOOP);
4402
4403 /* Set PCIE max payload size to 128 for older PCIe devices */
4404 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4405 devctl &= ~(0x00e0);
4406 /* Clear device status register. Write 1b to clear */
4407 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4408 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4409 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4410 sc->bge_pciecap + PCIE_DCSR, devctl);
4411 bge_set_max_readrq(sc);
4412 }
4413
4414 /* From Linux: dummy read to flush PCI posted writes */
4415 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4416
4417 /*
4418 * Reset some of the PCI state that got zapped by reset
4419 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4420 * set, too.
4421 */
4422 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4423 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4424 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4425 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4426 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4427 (sc->bge_flags & BGEF_PCIX) != 0)
4428 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4429 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4430 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4431 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4432 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4433 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4434 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4435 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4436
4437 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4438 if (sc->bge_flags & BGEF_PCIX) {
4439 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4440 + PCIX_CMD);
4441 /* Set max memory read byte count to 2K */
4442 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4443 reg &= ~PCIX_CMD_BYTECNT_MASK;
4444 reg |= PCIX_CMD_BCNT_2048;
4445 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4446 /*
4447 * For 5704, set max outstanding split transaction
4448 * field to 0 (0 means it supports 1 request)
4449 */
4450 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4451 | PCIX_CMD_BYTECNT_MASK);
4452 reg |= PCIX_CMD_BCNT_2048;
4453 }
4454 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4455 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4456 }
4457
4458 /* 5718 reset step 10, 57XX step 12 */
4459 /* Enable memory arbiter. */
4460 if (BGE_IS_5714_FAMILY(sc)) {
4461 val = CSR_READ_4(sc, BGE_MARB_MODE);
4462 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4463 } else
4464 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4465
4466 /* XXX 5721, 5751 and 5752 */
4467 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4468 /* Step 19: */
4469 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4470 /* Step 20: */
4471 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4472 }
4473
4474 /* 5718 reset step 12, 57XX step 15 and 16 */
4475 /* Fix up byte swapping */
4476 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4477
4478 /* 5718 reset step 13, 57XX step 17 */
4479 /* Poll until the firmware initialization is complete */
4480 bge_poll_fw(sc);
4481
4482 /* 57XX step 21 */
4483 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4484 pcireg_t msidata;
4485
4486 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4487 BGE_PCI_MSI_DATA);
4488 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4489 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4490 msidata);
4491 }
4492
4493 /* 57XX step 18 */
4494 /* Write mac mode. */
4495 val = CSR_READ_4(sc, BGE_MAC_MODE);
4496 /* Restore mac_mode_mask's bits using mac_mode */
4497 val = (val & ~mac_mode_mask) | mac_mode;
4498 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4499 DELAY(40);
4500
4501 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4502
4503 /*
4504 * The 5704 in TBI mode apparently needs some special
4505 * adjustment to insure the SERDES drive level is set
4506 * to 1.2V.
4507 */
4508 if (sc->bge_flags & BGEF_FIBER_TBI &&
4509 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4510 uint32_t serdescfg;
4511
4512 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4513 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4514 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4515 }
4516
4517 if (sc->bge_flags & BGEF_PCIE &&
4518 !BGE_IS_57765_PLUS(sc) &&
4519 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4520 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4521 uint32_t v;
4522
4523 /* Enable PCI Express bug fix */
4524 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4525 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4526 v | BGE_TLP_DATA_FIFO_PROTECT);
4527 }
4528
4529 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4530 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4531 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4532
4533 return 0;
4534 }
4535
4536 /*
4537 * Frame reception handling. This is called if there's a frame
4538 * on the receive return list.
4539 *
4540 * Note: we have to be able to handle two possibilities here:
4541 * 1) the frame is from the jumbo receive ring
4542 * 2) the frame is from the standard receive ring
4543 */
4544
4545 static void
4546 bge_rxeof(struct bge_softc *sc)
4547 {
4548 struct ifnet *ifp;
4549 uint16_t rx_prod, rx_cons;
4550 int stdcnt = 0, jumbocnt = 0;
4551 bus_dmamap_t dmamap;
4552 bus_addr_t offset, toff;
4553 bus_size_t tlen;
4554 int tosync;
4555
4556 rx_cons = sc->bge_rx_saved_considx;
4557 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4558
4559 /* Nothing to do */
4560 if (rx_cons == rx_prod)
4561 return;
4562
4563 ifp = &sc->ethercom.ec_if;
4564
4565 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4566 offsetof(struct bge_ring_data, bge_status_block),
4567 sizeof (struct bge_status_block),
4568 BUS_DMASYNC_POSTREAD);
4569
4570 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4571 tosync = rx_prod - rx_cons;
4572
4573 if (tosync != 0)
4574 rnd_add_uint32(&sc->rnd_source, tosync);
4575
4576 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4577
4578 if (tosync < 0) {
4579 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4580 sizeof (struct bge_rx_bd);
4581 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4582 toff, tlen, BUS_DMASYNC_POSTREAD);
4583 tosync = -tosync;
4584 }
4585
4586 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4587 offset, tosync * sizeof (struct bge_rx_bd),
4588 BUS_DMASYNC_POSTREAD);
4589
4590 while (rx_cons != rx_prod) {
4591 struct bge_rx_bd *cur_rx;
4592 uint32_t rxidx;
4593 struct mbuf *m = NULL;
4594
4595 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4596
4597 rxidx = cur_rx->bge_idx;
4598 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4599
4600 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4601 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4602 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4603 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4604 jumbocnt++;
4605 bus_dmamap_sync(sc->bge_dmatag,
4606 sc->bge_cdata.bge_rx_jumbo_map,
4607 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4608 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4609 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4610 ifp->if_ierrors++;
4611 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4612 continue;
4613 }
4614 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4615 NULL)== ENOBUFS) {
4616 ifp->if_ierrors++;
4617 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4618 continue;
4619 }
4620 } else {
4621 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4622 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4623
4624 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4625 stdcnt++;
4626 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4627 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4628 if (dmamap == NULL) {
4629 ifp->if_ierrors++;
4630 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4631 continue;
4632 }
4633 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4634 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4635 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4636 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4637 ifp->if_ierrors++;
4638 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4639 continue;
4640 }
4641 if (bge_newbuf_std(sc, sc->bge_std,
4642 NULL, dmamap) == ENOBUFS) {
4643 ifp->if_ierrors++;
4644 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4645 continue;
4646 }
4647 }
4648
4649 #ifndef __NO_STRICT_ALIGNMENT
4650 /*
4651 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4652 * the Rx buffer has the layer-2 header unaligned.
4653 * If our CPU requires alignment, re-align by copying.
4654 */
4655 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4656 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4657 cur_rx->bge_len);
4658 m->m_data += ETHER_ALIGN;
4659 }
4660 #endif
4661
4662 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4663 m_set_rcvif(m, ifp);
4664
4665 bge_rxcsum(sc, cur_rx, m);
4666
4667 /*
4668 * If we received a packet with a vlan tag, pass it
4669 * to vlan_input() instead of ether_input().
4670 */
4671 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4672 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4673 }
4674
4675 if_percpuq_enqueue(ifp->if_percpuq, m);
4676 }
4677
4678 sc->bge_rx_saved_considx = rx_cons;
4679 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4680 if (stdcnt)
4681 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4682 if (jumbocnt)
4683 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4684 }
4685
4686 static void
4687 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4688 {
4689
4690 if (BGE_IS_57765_PLUS(sc)) {
4691 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4692 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4693 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4694 if ((cur_rx->bge_error_flag &
4695 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4696 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4697 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4698 m->m_pkthdr.csum_data =
4699 cur_rx->bge_tcp_udp_csum;
4700 m->m_pkthdr.csum_flags |=
4701 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4702 M_CSUM_DATA);
4703 }
4704 }
4705 } else {
4706 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4707 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4708 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4709 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4710 /*
4711 * Rx transport checksum-offload may also
4712 * have bugs with packets which, when transmitted,
4713 * were `runts' requiring padding.
4714 */
4715 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4716 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4717 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4718 m->m_pkthdr.csum_data =
4719 cur_rx->bge_tcp_udp_csum;
4720 m->m_pkthdr.csum_flags |=
4721 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4722 M_CSUM_DATA);
4723 }
4724 }
4725 }
4726
4727 static void
4728 bge_txeof(struct bge_softc *sc)
4729 {
4730 struct bge_tx_bd *cur_tx = NULL;
4731 struct ifnet *ifp;
4732 struct txdmamap_pool_entry *dma;
4733 bus_addr_t offset, toff;
4734 bus_size_t tlen;
4735 int tosync;
4736 struct mbuf *m;
4737
4738 ifp = &sc->ethercom.ec_if;
4739
4740 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4741 offsetof(struct bge_ring_data, bge_status_block),
4742 sizeof (struct bge_status_block),
4743 BUS_DMASYNC_POSTREAD);
4744
4745 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4746 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4747 sc->bge_tx_saved_considx;
4748
4749 if (tosync != 0)
4750 rnd_add_uint32(&sc->rnd_source, tosync);
4751
4752 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4753
4754 if (tosync < 0) {
4755 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4756 sizeof (struct bge_tx_bd);
4757 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4758 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4759 tosync = -tosync;
4760 }
4761
4762 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4763 offset, tosync * sizeof (struct bge_tx_bd),
4764 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4765
4766 /*
4767 * Go through our tx ring and free mbufs for those
4768 * frames that have been sent.
4769 */
4770 while (sc->bge_tx_saved_considx !=
4771 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4772 uint32_t idx = 0;
4773
4774 idx = sc->bge_tx_saved_considx;
4775 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4776 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4777 ifp->if_opackets++;
4778 m = sc->bge_cdata.bge_tx_chain[idx];
4779 if (m != NULL) {
4780 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4781 dma = sc->txdma[idx];
4782 if (dma->is_dma32) {
4783 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4784 0, dma->dmamap32->dm_mapsize,
4785 BUS_DMASYNC_POSTWRITE);
4786 bus_dmamap_unload(
4787 sc->bge_dmatag32, dma->dmamap32);
4788 } else {
4789 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4790 0, dma->dmamap->dm_mapsize,
4791 BUS_DMASYNC_POSTWRITE);
4792 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4793 }
4794 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4795 sc->txdma[idx] = NULL;
4796
4797 m_freem(m);
4798 }
4799 sc->bge_txcnt--;
4800 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4801 ifp->if_timer = 0;
4802 }
4803
4804 if (cur_tx != NULL)
4805 ifp->if_flags &= ~IFF_OACTIVE;
4806 }
4807
4808 static int
4809 bge_intr(void *xsc)
4810 {
4811 struct bge_softc *sc;
4812 struct ifnet *ifp;
4813 uint32_t pcistate, statusword, statustag;
4814 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4815
4816 sc = xsc;
4817 ifp = &sc->ethercom.ec_if;
4818
4819 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4820 if (BGE_IS_5717_PLUS(sc))
4821 intrmask = 0;
4822
4823 /* It is possible for the interrupt to arrive before
4824 * the status block is updated prior to the interrupt.
4825 * Reading the PCI State register will confirm whether the
4826 * interrupt is ours and will flush the status block.
4827 */
4828 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4829
4830 /* read status word from status block */
4831 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4832 offsetof(struct bge_ring_data, bge_status_block),
4833 sizeof (struct bge_status_block),
4834 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4835 statusword = sc->bge_rdata->bge_status_block.bge_status;
4836 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4837
4838 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4839 if (sc->bge_lasttag == statustag &&
4840 (~pcistate & intrmask)) {
4841 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4842 return (0);
4843 }
4844 sc->bge_lasttag = statustag;
4845 } else {
4846 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4847 !(~pcistate & intrmask)) {
4848 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4849 return (0);
4850 }
4851 statustag = 0;
4852 }
4853 /* Ack interrupt and stop others from occurring. */
4854 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4855 BGE_EVCNT_INCR(sc->bge_ev_intr);
4856
4857 /* clear status word */
4858 sc->bge_rdata->bge_status_block.bge_status = 0;
4859
4860 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4861 offsetof(struct bge_ring_data, bge_status_block),
4862 sizeof (struct bge_status_block),
4863 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4864
4865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4866 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4867 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4868 bge_link_upd(sc);
4869
4870 if (ifp->if_flags & IFF_RUNNING) {
4871 /* Check RX return ring producer/consumer */
4872 bge_rxeof(sc);
4873
4874 /* Check TX ring producer/consumer */
4875 bge_txeof(sc);
4876 }
4877
4878 if (sc->bge_pending_rxintr_change) {
4879 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4880 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4881
4882 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4883 DELAY(10);
4884 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4885
4886 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4887 DELAY(10);
4888 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4889
4890 sc->bge_pending_rxintr_change = 0;
4891 }
4892 bge_handle_events(sc);
4893
4894 /* Re-enable interrupts. */
4895 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4896
4897 if (ifp->if_flags & IFF_RUNNING)
4898 if_schedule_deferred_start(ifp);
4899
4900 return 1;
4901 }
4902
4903 static void
4904 bge_asf_driver_up(struct bge_softc *sc)
4905 {
4906 if (sc->bge_asf_mode & ASF_STACKUP) {
4907 /* Send ASF heartbeat aprox. every 2s */
4908 if (sc->bge_asf_count)
4909 sc->bge_asf_count --;
4910 else {
4911 sc->bge_asf_count = 2;
4912
4913 bge_wait_for_event_ack(sc);
4914
4915 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4916 BGE_FW_CMD_DRV_ALIVE3);
4917 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4918 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4919 BGE_FW_HB_TIMEOUT_SEC);
4920 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4921 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4922 BGE_RX_CPU_DRV_EVENT);
4923 }
4924 }
4925 }
4926
4927 static void
4928 bge_tick(void *xsc)
4929 {
4930 struct bge_softc *sc = xsc;
4931 struct mii_data *mii = &sc->bge_mii;
4932 int s;
4933
4934 s = splnet();
4935
4936 if (BGE_IS_5705_PLUS(sc))
4937 bge_stats_update_regs(sc);
4938 else
4939 bge_stats_update(sc);
4940
4941 if (sc->bge_flags & BGEF_FIBER_TBI) {
4942 /*
4943 * Since in TBI mode auto-polling can't be used we should poll
4944 * link status manually. Here we register pending link event
4945 * and trigger interrupt.
4946 */
4947 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4948 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4949 } else {
4950 /*
4951 * Do not touch PHY if we have link up. This could break
4952 * IPMI/ASF mode or produce extra input errors.
4953 * (extra input errors was reported for bcm5701 & bcm5704).
4954 */
4955 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4956 mii_tick(mii);
4957 }
4958
4959 bge_asf_driver_up(sc);
4960
4961 if (!sc->bge_detaching)
4962 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4963
4964 splx(s);
4965 }
4966
4967 static void
4968 bge_stats_update_regs(struct bge_softc *sc)
4969 {
4970 struct ifnet *ifp = &sc->ethercom.ec_if;
4971
4972 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4973 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4974
4975 /*
4976 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4977 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4978 * (silicon bug). There's no reliable workaround so just
4979 * ignore the counter
4980 */
4981 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4982 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
4983 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
4984 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4985 }
4986 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4987 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4988 }
4989
4990 static void
4991 bge_stats_update(struct bge_softc *sc)
4992 {
4993 struct ifnet *ifp = &sc->ethercom.ec_if;
4994 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4995
4996 #define READ_STAT(sc, stats, stat) \
4997 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4998
4999 ifp->if_collisions +=
5000 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
5001 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
5002 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
5003 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
5004 ifp->if_collisions;
5005
5006 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
5007 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
5008 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
5009 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
5010 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
5011 READ_STAT(sc, stats,
5012 xoffPauseFramesReceived.bge_addr_lo));
5013 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
5014 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
5015 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
5016 READ_STAT(sc, stats,
5017 macControlFramesReceived.bge_addr_lo));
5018 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
5019 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
5020
5021 #undef READ_STAT
5022
5023 #ifdef notdef
5024 ifp->if_collisions +=
5025 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
5026 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
5027 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
5028 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
5029 ifp->if_collisions;
5030 #endif
5031 }
5032
5033 /*
5034 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5035 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5036 * but when such padded frames employ the bge IP/TCP checksum offload,
5037 * the hardware checksum assist gives incorrect results (possibly
5038 * from incorporating its own padding into the UDP/TCP checksum; who knows).
5039 * If we pad such runts with zeros, the onboard checksum comes out correct.
5040 */
5041 static inline int
5042 bge_cksum_pad(struct mbuf *pkt)
5043 {
5044 struct mbuf *last = NULL;
5045 int padlen;
5046
5047 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
5048
5049 /* if there's only the packet-header and we can pad there, use it. */
5050 if (pkt->m_pkthdr.len == pkt->m_len &&
5051 M_TRAILINGSPACE(pkt) >= padlen) {
5052 last = pkt;
5053 } else {
5054 /*
5055 * Walk packet chain to find last mbuf. We will either
5056 * pad there, or append a new mbuf and pad it
5057 * (thus perhaps avoiding the bcm5700 dma-min bug).
5058 */
5059 for (last = pkt; last->m_next != NULL; last = last->m_next) {
5060 continue; /* do nothing */
5061 }
5062
5063 /* `last' now points to last in chain. */
5064 if (M_TRAILINGSPACE(last) < padlen) {
5065 /* Allocate new empty mbuf, pad it. Compact later. */
5066 struct mbuf *n;
5067 MGET(n, M_DONTWAIT, MT_DATA);
5068 if (n == NULL)
5069 return ENOBUFS;
5070 n->m_len = 0;
5071 last->m_next = n;
5072 last = n;
5073 }
5074 }
5075
5076 KDASSERT(!M_READONLY(last));
5077 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5078
5079 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5080 memset(mtod(last, char *) + last->m_len, 0, padlen);
5081 last->m_len += padlen;
5082 pkt->m_pkthdr.len += padlen;
5083 return 0;
5084 }
5085
5086 /*
5087 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5088 */
5089 static inline int
5090 bge_compact_dma_runt(struct mbuf *pkt)
5091 {
5092 struct mbuf *m, *prev;
5093 int totlen;
5094
5095 prev = NULL;
5096 totlen = 0;
5097
5098 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5099 int mlen = m->m_len;
5100 int shortfall = 8 - mlen ;
5101
5102 totlen += mlen;
5103 if (mlen == 0)
5104 continue;
5105 if (mlen >= 8)
5106 continue;
5107
5108 /* If we get here, mbuf data is too small for DMA engine.
5109 * Try to fix by shuffling data to prev or next in chain.
5110 * If that fails, do a compacting deep-copy of the whole chain.
5111 */
5112
5113 /* Internal frag. If fits in prev, copy it there. */
5114 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5115 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5116 prev->m_len += mlen;
5117 m->m_len = 0;
5118 /* XXX stitch chain */
5119 prev->m_next = m_free(m);
5120 m = prev;
5121 continue;
5122 }
5123 else if (m->m_next != NULL &&
5124 M_TRAILINGSPACE(m) >= shortfall &&
5125 m->m_next->m_len >= (8 + shortfall)) {
5126 /* m is writable and have enough data in next, pull up. */
5127
5128 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5129 shortfall);
5130 m->m_len += shortfall;
5131 m->m_next->m_len -= shortfall;
5132 m->m_next->m_data += shortfall;
5133 }
5134 else if (m->m_next == NULL || 1) {
5135 /* Got a runt at the very end of the packet.
5136 * borrow data from the tail of the preceding mbuf and
5137 * update its length in-place. (The original data is still
5138 * valid, so we can do this even if prev is not writable.)
5139 */
5140
5141 /* if we'd make prev a runt, just move all of its data. */
5142 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5143 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5144
5145 if ((prev->m_len - shortfall) < 8)
5146 shortfall = prev->m_len;
5147
5148 #ifdef notyet /* just do the safe slow thing for now */
5149 if (!M_READONLY(m)) {
5150 if (M_LEADINGSPACE(m) < shorfall) {
5151 void *m_dat;
5152 m_dat = (m->m_flags & M_PKTHDR) ?
5153 m->m_pktdat : m->dat;
5154 memmove(m_dat, mtod(m, void*), m->m_len);
5155 m->m_data = m_dat;
5156 }
5157 } else
5158 #endif /* just do the safe slow thing */
5159 {
5160 struct mbuf * n = NULL;
5161 int newprevlen = prev->m_len - shortfall;
5162
5163 MGET(n, M_NOWAIT, MT_DATA);
5164 if (n == NULL)
5165 return ENOBUFS;
5166 KASSERT(m->m_len + shortfall < MLEN
5167 /*,
5168 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5169
5170 /* first copy the data we're stealing from prev */
5171 memcpy(n->m_data, prev->m_data + newprevlen,
5172 shortfall);
5173
5174 /* update prev->m_len accordingly */
5175 prev->m_len -= shortfall;
5176
5177 /* copy data from runt m */
5178 memcpy(n->m_data + shortfall, m->m_data,
5179 m->m_len);
5180
5181 /* n holds what we stole from prev, plus m */
5182 n->m_len = shortfall + m->m_len;
5183
5184 /* stitch n into chain and free m */
5185 n->m_next = m->m_next;
5186 prev->m_next = n;
5187 /* KASSERT(m->m_next == NULL); */
5188 m->m_next = NULL;
5189 m_free(m);
5190 m = n; /* for continuing loop */
5191 }
5192 }
5193 }
5194 return 0;
5195 }
5196
5197 /*
5198 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5199 * pointers to descriptors.
5200 */
5201 static int
5202 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5203 {
5204 struct ifnet *ifp = &sc->ethercom.ec_if;
5205 struct bge_tx_bd *f, *prev_f;
5206 uint32_t frag, cur;
5207 uint16_t csum_flags = 0;
5208 uint16_t txbd_tso_flags = 0;
5209 struct txdmamap_pool_entry *dma;
5210 bus_dmamap_t dmamap;
5211 bus_dma_tag_t dmatag;
5212 int i = 0;
5213 int use_tso, maxsegsize, error;
5214 bool have_vtag;
5215 uint16_t vtag;
5216 bool remap;
5217
5218 if (m_head->m_pkthdr.csum_flags) {
5219 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5220 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5221 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5222 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5223 }
5224
5225 /*
5226 * If we were asked to do an outboard checksum, and the NIC
5227 * has the bug where it sometimes adds in the Ethernet padding,
5228 * explicitly pad with zeros so the cksum will be correct either way.
5229 * (For now, do this for all chip versions, until newer
5230 * are confirmed to not require the workaround.)
5231 */
5232 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5233 #ifdef notyet
5234 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5235 #endif
5236 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5237 goto check_dma_bug;
5238
5239 if (bge_cksum_pad(m_head) != 0)
5240 return ENOBUFS;
5241
5242 check_dma_bug:
5243 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5244 goto doit;
5245
5246 /*
5247 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5248 * less than eight bytes. If we encounter a teeny mbuf
5249 * at the end of a chain, we can pad. Otherwise, copy.
5250 */
5251 if (bge_compact_dma_runt(m_head) != 0)
5252 return ENOBUFS;
5253
5254 doit:
5255 dma = SLIST_FIRST(&sc->txdma_list);
5256 if (dma == NULL) {
5257 ifp->if_flags |= IFF_OACTIVE;
5258 return ENOBUFS;
5259 }
5260 dmamap = dma->dmamap;
5261 dmatag = sc->bge_dmatag;
5262 dma->is_dma32 = false;
5263
5264 /*
5265 * Set up any necessary TSO state before we start packing...
5266 */
5267 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5268 if (!use_tso) {
5269 maxsegsize = 0;
5270 } else { /* TSO setup */
5271 unsigned mss;
5272 struct ether_header *eh;
5273 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5274 unsigned bge_hlen;
5275 struct mbuf * m0 = m_head;
5276 struct ip *ip;
5277 struct tcphdr *th;
5278 int iphl, hlen;
5279
5280 /*
5281 * XXX It would be nice if the mbuf pkthdr had offset
5282 * fields for the protocol headers.
5283 */
5284
5285 eh = mtod(m0, struct ether_header *);
5286 switch (htons(eh->ether_type)) {
5287 case ETHERTYPE_IP:
5288 offset = ETHER_HDR_LEN;
5289 break;
5290
5291 case ETHERTYPE_VLAN:
5292 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5293 break;
5294
5295 default:
5296 /*
5297 * Don't support this protocol or encapsulation.
5298 */
5299 return ENOBUFS;
5300 }
5301
5302 /*
5303 * TCP/IP headers are in the first mbuf; we can do
5304 * this the easy way.
5305 */
5306 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5307 hlen = iphl + offset;
5308 if (__predict_false(m0->m_len <
5309 (hlen + sizeof(struct tcphdr)))) {
5310
5311 aprint_error_dev(sc->bge_dev,
5312 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5313 "not handled yet\n",
5314 m0->m_len, hlen+ sizeof(struct tcphdr));
5315 #ifdef NOTYET
5316 /*
5317 * XXX jonathan (at) NetBSD.org: untested.
5318 * how to force this branch to be taken?
5319 */
5320 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5321
5322 m_copydata(m0, offset, sizeof(ip), &ip);
5323 m_copydata(m0, hlen, sizeof(th), &th);
5324
5325 ip.ip_len = 0;
5326
5327 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5328 sizeof(ip.ip_len), &ip.ip_len);
5329
5330 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5331 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5332
5333 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5334 sizeof(th.th_sum), &th.th_sum);
5335
5336 hlen += th.th_off << 2;
5337 iptcp_opt_words = hlen;
5338 #else
5339 /*
5340 * if_wm "hard" case not yet supported, can we not
5341 * mandate it out of existence?
5342 */
5343 (void) ip; (void)th; (void) ip_tcp_hlen;
5344
5345 return ENOBUFS;
5346 #endif
5347 } else {
5348 ip = (struct ip *) (mtod(m0, char *) + offset);
5349 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5350 ip_tcp_hlen = iphl + (th->th_off << 2);
5351
5352 /* Total IP/TCP options, in 32-bit words */
5353 iptcp_opt_words = (ip_tcp_hlen
5354 - sizeof(struct tcphdr)
5355 - sizeof(struct ip)) >> 2;
5356 }
5357 if (BGE_IS_575X_PLUS(sc)) {
5358 th->th_sum = 0;
5359 csum_flags = 0;
5360 } else {
5361 /*
5362 * XXX jonathan (at) NetBSD.org: 5705 untested.
5363 * Requires TSO firmware patch for 5701/5703/5704.
5364 */
5365 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5366 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5367 }
5368
5369 mss = m_head->m_pkthdr.segsz;
5370 txbd_tso_flags |=
5371 BGE_TXBDFLAG_CPU_PRE_DMA |
5372 BGE_TXBDFLAG_CPU_POST_DMA;
5373
5374 /*
5375 * Our NIC TSO-assist assumes TSO has standard, optionless
5376 * IPv4 and TCP headers, which total 40 bytes. By default,
5377 * the NIC copies 40 bytes of IP/TCP header from the
5378 * supplied header into the IP/TCP header portion of
5379 * each post-TSO-segment. If the supplied packet has IP or
5380 * TCP options, we need to tell the NIC to copy those extra
5381 * bytes into each post-TSO header, in addition to the normal
5382 * 40-byte IP/TCP header (and to leave space accordingly).
5383 * Unfortunately, the driver encoding of option length
5384 * varies across different ASIC families.
5385 */
5386 tcp_seg_flags = 0;
5387 bge_hlen = ip_tcp_hlen >> 2;
5388 if (BGE_IS_5717_PLUS(sc)) {
5389 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5390 txbd_tso_flags |=
5391 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5392 } else if (BGE_IS_5705_PLUS(sc)) {
5393 tcp_seg_flags =
5394 bge_hlen << 11;
5395 } else {
5396 /* XXX iptcp_opt_words or bge_hlen ? */
5397 txbd_tso_flags |=
5398 iptcp_opt_words << 12;
5399 }
5400 maxsegsize = mss | tcp_seg_flags;
5401 ip->ip_len = htons(mss + ip_tcp_hlen);
5402 ip->ip_sum = 0;
5403
5404 } /* TSO setup */
5405
5406 have_vtag = vlan_has_tag(m_head);
5407 if (have_vtag)
5408 vtag = vlan_get_tag(m_head);
5409
5410 /*
5411 * Start packing the mbufs in this chain into
5412 * the fragment pointers. Stop when we run out
5413 * of fragments or hit the end of the mbuf chain.
5414 */
5415 remap = true;
5416 load_again:
5417 error = bus_dmamap_load_mbuf(dmatag, dmamap,
5418 m_head, BUS_DMA_NOWAIT);
5419 if (__predict_false(error)) {
5420 if (error == EFBIG && remap) {
5421 struct mbuf *m;
5422 remap = false;
5423 m = m_defrag(m_head, M_NOWAIT);
5424 if (m != NULL) {
5425 KASSERT(m == m_head);
5426 goto load_again;
5427 }
5428 }
5429 return error;
5430 }
5431 /*
5432 * Sanity check: avoid coming within 16 descriptors
5433 * of the end of the ring.
5434 */
5435 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5436 BGE_TSO_PRINTF(("%s: "
5437 " dmamap_load_mbuf too close to ring wrap\n",
5438 device_xname(sc->bge_dev)));
5439 goto fail_unload;
5440 }
5441
5442 /* Iterate over dmap-map fragments. */
5443 f = prev_f = NULL;
5444 cur = frag = *txidx;
5445
5446 for (i = 0; i < dmamap->dm_nsegs; i++) {
5447 f = &sc->bge_rdata->bge_tx_ring[frag];
5448 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5449 break;
5450
5451 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5452 f->bge_len = dmamap->dm_segs[i].ds_len;
5453 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5454 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5455 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5456 (prev_f != NULL &&
5457 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5458 ) {
5459 /*
5460 * watchdog timeout issue was observed with TSO,
5461 * limiting DMA address space to 32bits seems to
5462 * address the issue.
5463 */
5464 bus_dmamap_unload(dmatag, dmamap);
5465 dmatag = sc->bge_dmatag32;
5466 dmamap = dma->dmamap32;
5467 dma->is_dma32 = true;
5468 remap = true;
5469 goto load_again;
5470 }
5471
5472 /*
5473 * For 5751 and follow-ons, for TSO we must turn
5474 * off checksum-assist flag in the tx-descr, and
5475 * supply the ASIC-revision-specific encoding
5476 * of TSO flags and segsize.
5477 */
5478 if (use_tso) {
5479 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5480 f->bge_rsvd = maxsegsize;
5481 f->bge_flags = csum_flags | txbd_tso_flags;
5482 } else {
5483 f->bge_rsvd = 0;
5484 f->bge_flags =
5485 (csum_flags | txbd_tso_flags) & 0x0fff;
5486 }
5487 } else {
5488 f->bge_rsvd = 0;
5489 f->bge_flags = csum_flags;
5490 }
5491
5492 if (have_vtag) {
5493 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5494 f->bge_vlan_tag = vtag;
5495 } else {
5496 f->bge_vlan_tag = 0;
5497 }
5498 prev_f = f;
5499 cur = frag;
5500 BGE_INC(frag, BGE_TX_RING_CNT);
5501 }
5502
5503 if (i < dmamap->dm_nsegs) {
5504 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5505 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5506 goto fail_unload;
5507 }
5508
5509 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5510 BUS_DMASYNC_PREWRITE);
5511
5512 if (frag == sc->bge_tx_saved_considx) {
5513 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5514 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5515
5516 goto fail_unload;
5517 }
5518
5519 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5520 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5521 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5522 sc->txdma[cur] = dma;
5523 sc->bge_txcnt += dmamap->dm_nsegs;
5524
5525 *txidx = frag;
5526
5527 return 0;
5528
5529 fail_unload:
5530 bus_dmamap_unload(dmatag, dmamap);
5531 ifp->if_flags |= IFF_OACTIVE;
5532
5533 return ENOBUFS;
5534 }
5535
5536 /*
5537 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5538 * to the mbuf data regions directly in the transmit descriptors.
5539 */
5540 static void
5541 bge_start(struct ifnet *ifp)
5542 {
5543 struct bge_softc *sc;
5544 struct mbuf *m_head = NULL;
5545 struct mbuf *m;
5546 uint32_t prodidx;
5547 int pkts = 0;
5548 int error;
5549
5550 sc = ifp->if_softc;
5551
5552 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5553 return;
5554
5555 prodidx = sc->bge_tx_prodidx;
5556
5557 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5558 IFQ_POLL(&ifp->if_snd, m_head);
5559 if (m_head == NULL)
5560 break;
5561
5562 #if 0
5563 /*
5564 * XXX
5565 * safety overkill. If this is a fragmented packet chain
5566 * with delayed TCP/UDP checksums, then only encapsulate
5567 * it if we have enough descriptors to handle the entire
5568 * chain at once.
5569 * (paranoia -- may not actually be needed)
5570 */
5571 if (m_head->m_flags & M_FIRSTFRAG &&
5572 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5573 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5574 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5575 ifp->if_flags |= IFF_OACTIVE;
5576 break;
5577 }
5578 }
5579 #endif
5580
5581 /*
5582 * Pack the data into the transmit ring. If we
5583 * don't have room, set the OACTIVE flag and wait
5584 * for the NIC to drain the ring.
5585 */
5586 error = bge_encap(sc, m_head, &prodidx);
5587 if (__predict_false(error)) {
5588 if (ifp->if_flags & IFF_OACTIVE) {
5589 /* just wait for the transmit ring to drain */
5590 break;
5591 }
5592 IFQ_DEQUEUE(&ifp->if_snd, m);
5593 KASSERT(m == m_head);
5594 m_freem(m_head);
5595 continue;
5596 }
5597
5598 /* now we are committed to transmit the packet */
5599 IFQ_DEQUEUE(&ifp->if_snd, m);
5600 KASSERT(m == m_head);
5601 pkts++;
5602
5603 /*
5604 * If there's a BPF listener, bounce a copy of this frame
5605 * to him.
5606 */
5607 bpf_mtap(ifp, m_head, BPF_D_OUT);
5608 }
5609 if (pkts == 0)
5610 return;
5611
5612 /* Transmit */
5613 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5614 /* 5700 b2 errata */
5615 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5616 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5617
5618 sc->bge_tx_prodidx = prodidx;
5619
5620 /*
5621 * Set a timeout in case the chip goes out to lunch.
5622 */
5623 ifp->if_timer = 5;
5624 }
5625
5626 static int
5627 bge_init(struct ifnet *ifp)
5628 {
5629 struct bge_softc *sc = ifp->if_softc;
5630 const uint16_t *m;
5631 uint32_t mode, reg;
5632 int s, error = 0;
5633
5634 s = splnet();
5635
5636 ifp = &sc->ethercom.ec_if;
5637
5638 /* Cancel pending I/O and flush buffers. */
5639 bge_stop(ifp, 0);
5640
5641 bge_stop_fw(sc);
5642 bge_sig_pre_reset(sc, BGE_RESET_START);
5643 bge_reset(sc);
5644 bge_sig_legacy(sc, BGE_RESET_START);
5645
5646 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5647 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5648 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5649 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5650 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5651
5652 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5653 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5654 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5655 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5656
5657 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5658 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5659 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5660 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5661
5662 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5663 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5664 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5665 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5666 }
5667
5668 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5669 pcireg_t aercap;
5670
5671 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5672 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5673 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5674 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5675 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5676
5677 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5678 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5679 | BGE_PCIE_EIDLE_DELAY_13CLK;
5680 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5681
5682 /* Clear correctable error */
5683 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5684 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5685 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5686 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5687
5688 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5689 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5690 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5691 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5692 }
5693
5694 bge_sig_post_reset(sc, BGE_RESET_START);
5695
5696 bge_chipinit(sc);
5697
5698 /*
5699 * Init the various state machines, ring
5700 * control blocks and firmware.
5701 */
5702 error = bge_blockinit(sc);
5703 if (error != 0) {
5704 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5705 error);
5706 splx(s);
5707 return error;
5708 }
5709
5710 ifp = &sc->ethercom.ec_if;
5711
5712 /* 5718 step 25, 57XX step 54 */
5713 /* Specify MTU. */
5714 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5715 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5716
5717 /* 5718 step 23 */
5718 /* Load our MAC address. */
5719 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5720 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5721 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5722
5723 /* Enable or disable promiscuous mode as needed. */
5724 if (ifp->if_flags & IFF_PROMISC)
5725 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5726 else
5727 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5728
5729 /* Program multicast filter. */
5730 bge_setmulti(sc);
5731
5732 /* Init RX ring. */
5733 bge_init_rx_ring_std(sc);
5734
5735 /*
5736 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5737 * memory to insure that the chip has in fact read the first
5738 * entry of the ring.
5739 */
5740 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5741 uint32_t v, i;
5742 for (i = 0; i < 10; i++) {
5743 DELAY(20);
5744 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5745 if (v == (MCLBYTES - ETHER_ALIGN))
5746 break;
5747 }
5748 if (i == 10)
5749 aprint_error_dev(sc->bge_dev,
5750 "5705 A0 chip failed to load RX ring\n");
5751 }
5752
5753 /* Init jumbo RX ring. */
5754 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5755 bge_init_rx_ring_jumbo(sc);
5756
5757 /* Init our RX return ring index */
5758 sc->bge_rx_saved_considx = 0;
5759
5760 /* Init TX ring. */
5761 bge_init_tx_ring(sc);
5762
5763 /* 5718 step 63, 57XX step 94 */
5764 /* Enable TX MAC state machine lockup fix. */
5765 mode = CSR_READ_4(sc, BGE_TX_MODE);
5766 if (BGE_IS_5755_PLUS(sc) ||
5767 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5768 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5769 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5770 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5771 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5772 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5773 }
5774
5775 /* Turn on transmitter */
5776 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5777 /* 5718 step 64 */
5778 DELAY(100);
5779
5780 /* 5718 step 65, 57XX step 95 */
5781 /* Turn on receiver */
5782 mode = CSR_READ_4(sc, BGE_RX_MODE);
5783 if (BGE_IS_5755_PLUS(sc))
5784 mode |= BGE_RXMODE_IPV6_ENABLE;
5785 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5786 /* 5718 step 66 */
5787 DELAY(10);
5788
5789 /* 5718 step 12, 57XX step 37 */
5790 /*
5791 * XXX Doucments of 5718 series and 577xx say the recommended value
5792 * is 1, but tg3 set 1 only on 57765 series.
5793 */
5794 if (BGE_IS_57765_PLUS(sc))
5795 reg = 1;
5796 else
5797 reg = 2;
5798 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5799
5800 /* Tell firmware we're alive. */
5801 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5802
5803 /* Enable host interrupts. */
5804 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5805 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5806 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5807
5808 if ((error = bge_ifmedia_upd(ifp)) != 0)
5809 goto out;
5810
5811 ifp->if_flags |= IFF_RUNNING;
5812 ifp->if_flags &= ~IFF_OACTIVE;
5813
5814 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5815
5816 out:
5817 sc->bge_if_flags = ifp->if_flags;
5818 splx(s);
5819
5820 return error;
5821 }
5822
5823 /*
5824 * Set media options.
5825 */
5826 static int
5827 bge_ifmedia_upd(struct ifnet *ifp)
5828 {
5829 struct bge_softc *sc = ifp->if_softc;
5830 struct mii_data *mii = &sc->bge_mii;
5831 struct ifmedia *ifm = &sc->bge_ifmedia;
5832 int rc;
5833
5834 /* If this is a 1000baseX NIC, enable the TBI port. */
5835 if (sc->bge_flags & BGEF_FIBER_TBI) {
5836 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5837 return EINVAL;
5838 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5839 case IFM_AUTO:
5840 /*
5841 * The BCM5704 ASIC appears to have a special
5842 * mechanism for programming the autoneg
5843 * advertisement registers in TBI mode.
5844 */
5845 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5846 uint32_t sgdig;
5847 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5848 if (sgdig & BGE_SGDIGSTS_DONE) {
5849 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5850 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5851 sgdig |= BGE_SGDIGCFG_AUTO |
5852 BGE_SGDIGCFG_PAUSE_CAP |
5853 BGE_SGDIGCFG_ASYM_PAUSE;
5854 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5855 sgdig | BGE_SGDIGCFG_SEND);
5856 DELAY(5);
5857 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5858 sgdig);
5859 }
5860 }
5861 break;
5862 case IFM_1000_SX:
5863 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5864 BGE_CLRBIT(sc, BGE_MAC_MODE,
5865 BGE_MACMODE_HALF_DUPLEX);
5866 } else {
5867 BGE_SETBIT(sc, BGE_MAC_MODE,
5868 BGE_MACMODE_HALF_DUPLEX);
5869 }
5870 DELAY(40);
5871 break;
5872 default:
5873 return EINVAL;
5874 }
5875 /* XXX 802.3x flow control for 1000BASE-SX */
5876 return 0;
5877 }
5878
5879 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5880 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5881 uint32_t reg;
5882
5883 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5884 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5885 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5886 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5887 }
5888 }
5889
5890 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5891 if ((rc = mii_mediachg(mii)) == ENXIO)
5892 return 0;
5893
5894 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5895 uint32_t reg;
5896
5897 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5898 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5899 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5900 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5901 delay(40);
5902 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5903 }
5904 }
5905
5906 /*
5907 * Force an interrupt so that we will call bge_link_upd
5908 * if needed and clear any pending link state attention.
5909 * Without this we are not getting any further interrupts
5910 * for link state changes and thus will not UP the link and
5911 * not be able to send in bge_start. The only way to get
5912 * things working was to receive a packet and get a RX intr.
5913 */
5914 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5915 sc->bge_flags & BGEF_IS_5788)
5916 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5917 else
5918 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5919
5920 return rc;
5921 }
5922
5923 /*
5924 * Report current media status.
5925 */
5926 static void
5927 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5928 {
5929 struct bge_softc *sc = ifp->if_softc;
5930 struct mii_data *mii = &sc->bge_mii;
5931
5932 if (sc->bge_flags & BGEF_FIBER_TBI) {
5933 ifmr->ifm_status = IFM_AVALID;
5934 ifmr->ifm_active = IFM_ETHER;
5935 if (CSR_READ_4(sc, BGE_MAC_STS) &
5936 BGE_MACSTAT_TBI_PCS_SYNCHED)
5937 ifmr->ifm_status |= IFM_ACTIVE;
5938 ifmr->ifm_active |= IFM_1000_SX;
5939 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5940 ifmr->ifm_active |= IFM_HDX;
5941 else
5942 ifmr->ifm_active |= IFM_FDX;
5943 return;
5944 }
5945
5946 mii_pollstat(mii);
5947 ifmr->ifm_status = mii->mii_media_status;
5948 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5949 sc->bge_flowflags;
5950 }
5951
5952 static int
5953 bge_ifflags_cb(struct ethercom *ec)
5954 {
5955 struct ifnet *ifp = &ec->ec_if;
5956 struct bge_softc *sc = ifp->if_softc;
5957 int change = ifp->if_flags ^ sc->bge_if_flags;
5958
5959 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5960 return ENETRESET;
5961 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5962 return 0;
5963
5964 if ((ifp->if_flags & IFF_PROMISC) == 0)
5965 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5966 else
5967 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5968
5969 bge_setmulti(sc);
5970
5971 sc->bge_if_flags = ifp->if_flags;
5972 return 0;
5973 }
5974
5975 static int
5976 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5977 {
5978 struct bge_softc *sc = ifp->if_softc;
5979 struct ifreq *ifr = (struct ifreq *) data;
5980 int s, error = 0;
5981 struct mii_data *mii;
5982
5983 s = splnet();
5984
5985 switch (command) {
5986 case SIOCSIFMEDIA:
5987 /* XXX Flow control is not supported for 1000BASE-SX */
5988 if (sc->bge_flags & BGEF_FIBER_TBI) {
5989 ifr->ifr_media &= ~IFM_ETH_FMASK;
5990 sc->bge_flowflags = 0;
5991 }
5992
5993 /* Flow control requires full-duplex mode. */
5994 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5995 (ifr->ifr_media & IFM_FDX) == 0) {
5996 ifr->ifr_media &= ~IFM_ETH_FMASK;
5997 }
5998 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5999 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
6000 /* We can do both TXPAUSE and RXPAUSE. */
6001 ifr->ifr_media |=
6002 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
6003 }
6004 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
6005 }
6006 /* FALLTHROUGH */
6007 case SIOCGIFMEDIA:
6008 if (sc->bge_flags & BGEF_FIBER_TBI) {
6009 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
6010 command);
6011 } else {
6012 mii = &sc->bge_mii;
6013 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
6014 command);
6015 }
6016 break;
6017 default:
6018 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
6019 break;
6020
6021 error = 0;
6022
6023 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
6024 ;
6025 else if (ifp->if_flags & IFF_RUNNING)
6026 bge_setmulti(sc);
6027 break;
6028 }
6029
6030 splx(s);
6031
6032 return error;
6033 }
6034
6035 static void
6036 bge_watchdog(struct ifnet *ifp)
6037 {
6038 struct bge_softc *sc;
6039 uint32_t status;
6040
6041 sc = ifp->if_softc;
6042
6043 /* If pause frames are active then don't reset the hardware. */
6044 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6045 status = CSR_READ_4(sc, BGE_RX_STS);
6046 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6047 /*
6048 * If link partner has us in XOFF state then wait for
6049 * the condition to clear.
6050 */
6051 CSR_WRITE_4(sc, BGE_RX_STS, status);
6052 ifp->if_timer = 5;
6053 return;
6054 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6055 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6056 /*
6057 * If link partner has us in XOFF state then wait for
6058 * the condition to clear.
6059 */
6060 CSR_WRITE_4(sc, BGE_RX_STS, status);
6061 ifp->if_timer = 5;
6062 return;
6063 }
6064 /*
6065 * Any other condition is unexpected and the controller
6066 * should be reset.
6067 */
6068 }
6069
6070 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
6071
6072 ifp->if_flags &= ~IFF_RUNNING;
6073 bge_init(ifp);
6074
6075 ifp->if_oerrors++;
6076 }
6077
6078 static void
6079 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6080 {
6081 int i;
6082
6083 BGE_CLRBIT_FLUSH(sc, reg, bit);
6084
6085 for (i = 0; i < 1000; i++) {
6086 delay(100);
6087 if ((CSR_READ_4(sc, reg) & bit) == 0)
6088 return;
6089 }
6090
6091 /*
6092 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6093 * on some environment (and once after boot?)
6094 */
6095 if (reg != BGE_SRS_MODE)
6096 aprint_error_dev(sc->bge_dev,
6097 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6098 (u_long)reg, bit);
6099 }
6100
6101 /*
6102 * Stop the adapter and free any mbufs allocated to the
6103 * RX and TX lists.
6104 */
6105 static void
6106 bge_stop(struct ifnet *ifp, int disable)
6107 {
6108 struct bge_softc *sc = ifp->if_softc;
6109
6110 if (disable) {
6111 sc->bge_detaching = 1;
6112 callout_halt(&sc->bge_timeout, NULL);
6113 } else
6114 callout_stop(&sc->bge_timeout);
6115
6116 /* Disable host interrupts. */
6117 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6118 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6119
6120 /*
6121 * Tell firmware we're shutting down.
6122 */
6123 bge_stop_fw(sc);
6124 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6125
6126 /*
6127 * Disable all of the receiver blocks.
6128 */
6129 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6130 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6131 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6132 if (BGE_IS_5700_FAMILY(sc))
6133 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6134 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6135 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6136 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6137
6138 /*
6139 * Disable all of the transmit blocks.
6140 */
6141 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6142 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6143 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6144 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6145 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6146 if (BGE_IS_5700_FAMILY(sc))
6147 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6148 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6149
6150 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6151 delay(40);
6152
6153 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6154
6155 /*
6156 * Shut down all of the memory managers and related
6157 * state machines.
6158 */
6159 /* 5718 step 5a,5b */
6160 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6161 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6162 if (BGE_IS_5700_FAMILY(sc))
6163 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6164
6165 /* 5718 step 5c,5d */
6166 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6167 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6168
6169 if (BGE_IS_5700_FAMILY(sc)) {
6170 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6171 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6172 }
6173
6174 bge_reset(sc);
6175 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6176 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6177
6178 /*
6179 * Keep the ASF firmware running if up.
6180 */
6181 if (sc->bge_asf_mode & ASF_STACKUP)
6182 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6183 else
6184 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6185
6186 /* Free the RX lists. */
6187 bge_free_rx_ring_std(sc, disable);
6188
6189 /* Free jumbo RX list. */
6190 if (BGE_IS_JUMBO_CAPABLE(sc))
6191 bge_free_rx_ring_jumbo(sc);
6192
6193 /* Free TX buffers. */
6194 bge_free_tx_ring(sc, disable);
6195
6196 /*
6197 * Isolate/power down the PHY.
6198 */
6199 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6200 mii_down(&sc->bge_mii);
6201
6202 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6203
6204 /* Clear MAC's link state (PHY may still have link UP). */
6205 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6206
6207 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6208 }
6209
6210 static void
6211 bge_link_upd(struct bge_softc *sc)
6212 {
6213 struct ifnet *ifp = &sc->ethercom.ec_if;
6214 struct mii_data *mii = &sc->bge_mii;
6215 uint32_t status;
6216 int link;
6217
6218 /* Clear 'pending link event' flag */
6219 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6220
6221 /*
6222 * Process link state changes.
6223 * Grrr. The link status word in the status block does
6224 * not work correctly on the BCM5700 rev AX and BX chips,
6225 * according to all available information. Hence, we have
6226 * to enable MII interrupts in order to properly obtain
6227 * async link changes. Unfortunately, this also means that
6228 * we have to read the MAC status register to detect link
6229 * changes, thereby adding an additional register access to
6230 * the interrupt handler.
6231 */
6232
6233 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6234 status = CSR_READ_4(sc, BGE_MAC_STS);
6235 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6236 mii_pollstat(mii);
6237
6238 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6239 mii->mii_media_status & IFM_ACTIVE &&
6240 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6241 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6242 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6243 (!(mii->mii_media_status & IFM_ACTIVE) ||
6244 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6245 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6246
6247 /* Clear the interrupt */
6248 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6249 BGE_EVTENB_MI_INTERRUPT);
6250 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6251 BRGPHY_MII_ISR);
6252 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6253 BRGPHY_MII_IMR, BRGPHY_INTRS);
6254 }
6255 return;
6256 }
6257
6258 if (sc->bge_flags & BGEF_FIBER_TBI) {
6259 status = CSR_READ_4(sc, BGE_MAC_STS);
6260 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6261 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6262 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6263 if (BGE_ASICREV(sc->bge_chipid)
6264 == BGE_ASICREV_BCM5704) {
6265 BGE_CLRBIT(sc, BGE_MAC_MODE,
6266 BGE_MACMODE_TBI_SEND_CFGS);
6267 DELAY(40);
6268 }
6269 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6270 if_link_state_change(ifp, LINK_STATE_UP);
6271 }
6272 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6273 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6274 if_link_state_change(ifp, LINK_STATE_DOWN);
6275 }
6276 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6277 /*
6278 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6279 * bit in status word always set. Workaround this bug by
6280 * reading PHY link status directly.
6281 */
6282 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6283 BGE_STS_LINK : 0;
6284
6285 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6286 mii_pollstat(mii);
6287
6288 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6289 mii->mii_media_status & IFM_ACTIVE &&
6290 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6291 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6292 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6293 (!(mii->mii_media_status & IFM_ACTIVE) ||
6294 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6295 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6296 }
6297 } else {
6298 /*
6299 * For controllers that call mii_tick, we have to poll
6300 * link status.
6301 */
6302 mii_pollstat(mii);
6303 }
6304
6305 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6306 uint32_t reg, scale;
6307
6308 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6309 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6310 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6311 scale = 65;
6312 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6313 scale = 6;
6314 else
6315 scale = 12;
6316
6317 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6318 ~BGE_MISCCFG_TIMER_PRESCALER;
6319 reg |= scale << 1;
6320 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6321 }
6322 /* Clear the attention */
6323 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6324 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6325 BGE_MACSTAT_LINK_CHANGED);
6326 }
6327
6328 static int
6329 bge_sysctl_verify(SYSCTLFN_ARGS)
6330 {
6331 int error, t;
6332 struct sysctlnode node;
6333
6334 node = *rnode;
6335 t = *(int*)rnode->sysctl_data;
6336 node.sysctl_data = &t;
6337 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6338 if (error || newp == NULL)
6339 return error;
6340
6341 #if 0
6342 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6343 node.sysctl_num, rnode->sysctl_num));
6344 #endif
6345
6346 if (node.sysctl_num == bge_rxthresh_nodenum) {
6347 if (t < 0 || t >= NBGE_RX_THRESH)
6348 return EINVAL;
6349 bge_update_all_threshes(t);
6350 } else
6351 return EINVAL;
6352
6353 *(int*)rnode->sysctl_data = t;
6354
6355 return 0;
6356 }
6357
6358 /*
6359 * Set up sysctl(3) MIB, hw.bge.*.
6360 */
6361 static void
6362 bge_sysctl_init(struct bge_softc *sc)
6363 {
6364 int rc, bge_root_num;
6365 const struct sysctlnode *node;
6366
6367 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6368 0, CTLTYPE_NODE, "bge",
6369 SYSCTL_DESCR("BGE interface controls"),
6370 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6371 goto out;
6372 }
6373
6374 bge_root_num = node->sysctl_num;
6375
6376 /* BGE Rx interrupt mitigation level */
6377 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6378 CTLFLAG_READWRITE,
6379 CTLTYPE_INT, "rx_lvl",
6380 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6381 bge_sysctl_verify, 0,
6382 &bge_rx_thresh_lvl,
6383 0, CTL_HW, bge_root_num, CTL_CREATE,
6384 CTL_EOL)) != 0) {
6385 goto out;
6386 }
6387
6388 bge_rxthresh_nodenum = node->sysctl_num;
6389
6390 return;
6391
6392 out:
6393 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6394 }
6395
6396 #ifdef BGE_DEBUG
6397 void
6398 bge_debug_info(struct bge_softc *sc)
6399 {
6400
6401 printf("Hardware Flags:\n");
6402 if (BGE_IS_57765_PLUS(sc))
6403 printf(" - 57765 Plus\n");
6404 if (BGE_IS_5717_PLUS(sc))
6405 printf(" - 5717 Plus\n");
6406 if (BGE_IS_5755_PLUS(sc))
6407 printf(" - 5755 Plus\n");
6408 if (BGE_IS_575X_PLUS(sc))
6409 printf(" - 575X Plus\n");
6410 if (BGE_IS_5705_PLUS(sc))
6411 printf(" - 5705 Plus\n");
6412 if (BGE_IS_5714_FAMILY(sc))
6413 printf(" - 5714 Family\n");
6414 if (BGE_IS_5700_FAMILY(sc))
6415 printf(" - 5700 Family\n");
6416 if (sc->bge_flags & BGEF_IS_5788)
6417 printf(" - 5788\n");
6418 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6419 printf(" - Supports Jumbo Frames\n");
6420 if (sc->bge_flags & BGEF_NO_EEPROM)
6421 printf(" - No EEPROM\n");
6422 if (sc->bge_flags & BGEF_PCIX)
6423 printf(" - PCI-X Bus\n");
6424 if (sc->bge_flags & BGEF_PCIE)
6425 printf(" - PCI Express Bus\n");
6426 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6427 printf(" - RX Alignment Bug\n");
6428 if (sc->bge_flags & BGEF_APE)
6429 printf(" - APE\n");
6430 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6431 printf(" - CPMU\n");
6432 if (sc->bge_flags & BGEF_TSO)
6433 printf(" - TSO\n");
6434 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6435 printf(" - TAGGED_STATUS\n");
6436
6437 /* PHY related */
6438 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6439 printf(" - No 3 LEDs\n");
6440 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6441 printf(" - CRC bug\n");
6442 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6443 printf(" - ADC bug\n");
6444 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6445 printf(" - 5704 A0 bug\n");
6446 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6447 printf(" - jitter bug\n");
6448 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6449 printf(" - BER bug\n");
6450 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6451 printf(" - adjust trim\n");
6452 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6453 printf(" - no wirespeed\n");
6454
6455 /* ASF related */
6456 if (sc->bge_asf_mode & ASF_ENABLE)
6457 printf(" - ASF enable\n");
6458 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6459 printf(" - ASF new handshake\n");
6460 if (sc->bge_asf_mode & ASF_STACKUP)
6461 printf(" - ASF stackup\n");
6462 }
6463 #endif /* BGE_DEBUG */
6464
6465 static int
6466 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6467 {
6468 prop_dictionary_t dict;
6469 prop_data_t ea;
6470
6471 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6472 return 1;
6473
6474 dict = device_properties(sc->bge_dev);
6475 ea = prop_dictionary_get(dict, "mac-address");
6476 if (ea != NULL) {
6477 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6478 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6479 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6480 return 0;
6481 }
6482
6483 return 1;
6484 }
6485
6486 static int
6487 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6488 {
6489 uint32_t mac_addr;
6490
6491 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6492 if ((mac_addr >> 16) == 0x484b) {
6493 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6494 ether_addr[1] = (uint8_t)mac_addr;
6495 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6496 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6497 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6498 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6499 ether_addr[5] = (uint8_t)mac_addr;
6500 return 0;
6501 }
6502 return 1;
6503 }
6504
6505 static int
6506 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6507 {
6508 int mac_offset = BGE_EE_MAC_OFFSET;
6509
6510 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6511 mac_offset = BGE_EE_MAC_OFFSET_5906;
6512
6513 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6514 ETHER_ADDR_LEN));
6515 }
6516
6517 static int
6518 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6519 {
6520
6521 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6522 return 1;
6523
6524 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6525 ETHER_ADDR_LEN));
6526 }
6527
6528 static int
6529 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6530 {
6531 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6532 /* NOTE: Order is critical */
6533 bge_get_eaddr_fw,
6534 bge_get_eaddr_mem,
6535 bge_get_eaddr_nvram,
6536 bge_get_eaddr_eeprom,
6537 NULL
6538 };
6539 const bge_eaddr_fcn_t *func;
6540
6541 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6542 if ((*func)(sc, eaddr) == 0)
6543 break;
6544 }
6545 return (*func == NULL ? ENXIO : 0);
6546 }
6547