if_bge.c revision 1.322 1 /* $NetBSD: if_bge.c,v 1.322 2019/01/22 03:42:27 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.322 2019/01/22 03:42:27 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *m, bool);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Gigabit Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Gigabit Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Gigabit Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Gigabit Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Gigabit Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Gigabit Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Gigabit Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Gigabit Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
747 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
748 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
749
750 { 0, NULL }
751 };
752
753 /*
754 * Some defaults for major revisions, so that newer steppings
755 * that we don't know about have a shot at working.
756 */
757 static const struct bge_revision bge_majorrevs[] = {
758 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
759 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
760 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
761 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
762 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
763 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
764 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
767 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
768 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
769 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
770 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
771 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
772 /* 5754 and 5787 share the same ASIC ID */
773 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
774 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
775 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
776 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
777 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
778 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
779 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
780 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
781
782 { 0, NULL }
783 };
784
785 static int bge_allow_asf = 1;
786
787 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
788 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
789
790 static uint32_t
791 bge_readmem_ind(struct bge_softc *sc, int off)
792 {
793 pcireg_t val;
794
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
796 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
797 return 0;
798
799 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
800 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
801 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
802 return val;
803 }
804
805 static void
806 bge_writemem_ind(struct bge_softc *sc, int off, int val)
807 {
808
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
812 }
813
814 /*
815 * PCI Express only
816 */
817 static void
818 bge_set_max_readrq(struct bge_softc *sc)
819 {
820 pcireg_t val;
821
822 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
823 + PCIE_DCSR);
824 val &= ~PCIE_DCSR_MAX_READ_REQ;
825 switch (sc->bge_expmrq) {
826 case 2048:
827 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
828 break;
829 case 4096:
830 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
831 break;
832 default:
833 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
834 break;
835 }
836 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
837 + PCIE_DCSR, val);
838 }
839
840 #ifdef notdef
841 static uint32_t
842 bge_readreg_ind(struct bge_softc *sc, int off)
843 {
844 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
845 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
846 }
847 #endif
848
849 static void
850 bge_writereg_ind(struct bge_softc *sc, int off, int val)
851 {
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
854 }
855
856 static void
857 bge_writemem_direct(struct bge_softc *sc, int off, int val)
858 {
859 CSR_WRITE_4(sc, off, val);
860 }
861
862 static void
863 bge_writembx(struct bge_softc *sc, int off, int val)
864 {
865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
866 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
867
868 CSR_WRITE_4(sc, off, val);
869 }
870
871 static void
872 bge_writembx_flush(struct bge_softc *sc, int off, int val)
873 {
874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
875 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
876
877 CSR_WRITE_4_FLUSH(sc, off, val);
878 }
879
880 /*
881 * Clear all stale locks and select the lock for this driver instance.
882 */
883 void
884 bge_ape_lock_init(struct bge_softc *sc)
885 {
886 struct pci_attach_args *pa = &(sc->bge_pa);
887 uint32_t bit, regbase;
888 int i;
889
890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
891 regbase = BGE_APE_LOCK_GRANT;
892 else
893 regbase = BGE_APE_PER_LOCK_GRANT;
894
895 /* Clear any stale locks. */
896 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
897 switch (i) {
898 case BGE_APE_LOCK_PHY0:
899 case BGE_APE_LOCK_PHY1:
900 case BGE_APE_LOCK_PHY2:
901 case BGE_APE_LOCK_PHY3:
902 bit = BGE_APE_LOCK_GRANT_DRIVER0;
903 break;
904 default:
905 if (pa->pa_function == 0)
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 else
908 bit = (1 << pa->pa_function);
909 }
910 APE_WRITE_4(sc, regbase + 4 * i, bit);
911 }
912
913 /* Select the PHY lock based on the device's function number. */
914 switch (pa->pa_function) {
915 case 0:
916 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
917 break;
918 case 1:
919 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
920 break;
921 case 2:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
923 break;
924 case 3:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
926 break;
927 default:
928 printf("%s: PHY lock not supported on function\n",
929 device_xname(sc->bge_dev));
930 break;
931 }
932 }
933
934 /*
935 * Check for APE firmware, set flags, and print version info.
936 */
937 void
938 bge_ape_read_fw_ver(struct bge_softc *sc)
939 {
940 const char *fwtype;
941 uint32_t apedata, features;
942
943 /* Check for a valid APE signature in shared memory. */
944 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
945 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
946 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
947 return;
948 }
949
950 /* Check if APE firmware is running. */
951 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
952 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
953 printf("%s: APE signature found but FW status not ready! "
954 "0x%08x\n", device_xname(sc->bge_dev), apedata);
955 return;
956 }
957
958 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
959
960 /* Fetch the APE firwmare type and version. */
961 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
962 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
963 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
964 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
965 fwtype = "NCSI";
966 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
967 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
968 fwtype = "DASH";
969 } else
970 fwtype = "UNKN";
971
972 /* Print the APE firmware version. */
973 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
974 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
975 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
976 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
977 (apedata & BGE_APE_FW_VERSION_BLDMSK));
978 }
979
980 int
981 bge_ape_lock(struct bge_softc *sc, int locknum)
982 {
983 struct pci_attach_args *pa = &(sc->bge_pa);
984 uint32_t bit, gnt, req, status;
985 int i, off;
986
987 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
988 return (0);
989
990 /* Lock request/grant registers have different bases. */
991 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
992 req = BGE_APE_LOCK_REQ;
993 gnt = BGE_APE_LOCK_GRANT;
994 } else {
995 req = BGE_APE_PER_LOCK_REQ;
996 gnt = BGE_APE_PER_LOCK_GRANT;
997 }
998
999 off = 4 * locknum;
1000
1001 switch (locknum) {
1002 case BGE_APE_LOCK_GPIO:
1003 /* Lock required when using GPIO. */
1004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1005 return (0);
1006 if (pa->pa_function == 0)
1007 bit = BGE_APE_LOCK_REQ_DRIVER0;
1008 else
1009 bit = (1 << pa->pa_function);
1010 break;
1011 case BGE_APE_LOCK_GRC:
1012 /* Lock required to reset the device. */
1013 if (pa->pa_function == 0)
1014 bit = BGE_APE_LOCK_REQ_DRIVER0;
1015 else
1016 bit = (1 << pa->pa_function);
1017 break;
1018 case BGE_APE_LOCK_MEM:
1019 /* Lock required when accessing certain APE memory. */
1020 if (pa->pa_function == 0)
1021 bit = BGE_APE_LOCK_REQ_DRIVER0;
1022 else
1023 bit = (1 << pa->pa_function);
1024 break;
1025 case BGE_APE_LOCK_PHY0:
1026 case BGE_APE_LOCK_PHY1:
1027 case BGE_APE_LOCK_PHY2:
1028 case BGE_APE_LOCK_PHY3:
1029 /* Lock required when accessing PHYs. */
1030 bit = BGE_APE_LOCK_REQ_DRIVER0;
1031 break;
1032 default:
1033 return (EINVAL);
1034 }
1035
1036 /* Request a lock. */
1037 APE_WRITE_4_FLUSH(sc, req + off, bit);
1038
1039 /* Wait up to 1 second to acquire lock. */
1040 for (i = 0; i < 20000; i++) {
1041 status = APE_READ_4(sc, gnt + off);
1042 if (status == bit)
1043 break;
1044 DELAY(50);
1045 }
1046
1047 /* Handle any errors. */
1048 if (status != bit) {
1049 printf("%s: APE lock %d request failed! "
1050 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1051 device_xname(sc->bge_dev),
1052 locknum, req + off, bit & 0xFFFF, gnt + off,
1053 status & 0xFFFF);
1054 /* Revoke the lock request. */
1055 APE_WRITE_4(sc, gnt + off, bit);
1056 return (EBUSY);
1057 }
1058
1059 return (0);
1060 }
1061
1062 void
1063 bge_ape_unlock(struct bge_softc *sc, int locknum)
1064 {
1065 struct pci_attach_args *pa = &(sc->bge_pa);
1066 uint32_t bit, gnt;
1067 int off;
1068
1069 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1070 return;
1071
1072 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1073 gnt = BGE_APE_LOCK_GRANT;
1074 else
1075 gnt = BGE_APE_PER_LOCK_GRANT;
1076
1077 off = 4 * locknum;
1078
1079 switch (locknum) {
1080 case BGE_APE_LOCK_GPIO:
1081 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1082 return;
1083 if (pa->pa_function == 0)
1084 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1085 else
1086 bit = (1 << pa->pa_function);
1087 break;
1088 case BGE_APE_LOCK_GRC:
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_MEM:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_PHY0:
1101 case BGE_APE_LOCK_PHY1:
1102 case BGE_APE_LOCK_PHY2:
1103 case BGE_APE_LOCK_PHY3:
1104 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1105 break;
1106 default:
1107 return;
1108 }
1109
1110 /* Write and flush for consecutive bge_ape_lock() */
1111 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1112 }
1113
1114 /*
1115 * Send an event to the APE firmware.
1116 */
1117 void
1118 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1119 {
1120 uint32_t apedata;
1121 int i;
1122
1123 /* NCSI does not support APE events. */
1124 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1125 return;
1126
1127 /* Wait up to 1ms for APE to service previous event. */
1128 for (i = 10; i > 0; i--) {
1129 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1130 break;
1131 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1132 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1133 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1134 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1135 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1136 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1137 break;
1138 }
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 DELAY(100);
1141 }
1142 if (i == 0) {
1143 printf("%s: APE event 0x%08x send timed out\n",
1144 device_xname(sc->bge_dev), event);
1145 }
1146 }
1147
1148 void
1149 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1150 {
1151 uint32_t apedata, event;
1152
1153 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1154 return;
1155
1156 switch (kind) {
1157 case BGE_RESET_START:
1158 /* If this is the first load, clear the load counter. */
1159 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1160 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1161 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1162 else {
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1164 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1165 }
1166 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1167 BGE_APE_HOST_SEG_SIG_MAGIC);
1168 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1169 BGE_APE_HOST_SEG_LEN_MAGIC);
1170
1171 /* Add some version info if bge(4) supports it. */
1172 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1173 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1174 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1175 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1176 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1177 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1179 BGE_APE_HOST_DRVR_STATE_START);
1180 event = BGE_APE_EVENT_STATUS_STATE_START;
1181 break;
1182 case BGE_RESET_SHUTDOWN:
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1185 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1186 break;
1187 case BGE_RESET_SUSPEND:
1188 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1189 break;
1190 default:
1191 return;
1192 }
1193
1194 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1195 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1196 }
1197
1198 static uint8_t
1199 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1200 {
1201 uint32_t access, byte = 0;
1202 int i;
1203
1204 /* Lock. */
1205 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1206 for (i = 0; i < 8000; i++) {
1207 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1208 break;
1209 DELAY(20);
1210 }
1211 if (i == 8000)
1212 return 1;
1213
1214 /* Enable access. */
1215 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1216 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1217
1218 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1219 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1220 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1221 DELAY(10);
1222 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1223 DELAY(10);
1224 break;
1225 }
1226 }
1227
1228 if (i == BGE_TIMEOUT * 10) {
1229 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1230 return 1;
1231 }
1232
1233 /* Get result. */
1234 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1235
1236 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1237
1238 /* Disable access. */
1239 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1240
1241 /* Unlock. */
1242 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * Read a sequence of bytes from NVRAM.
1249 */
1250 static int
1251 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1252 {
1253 int error = 0, i;
1254 uint8_t byte = 0;
1255
1256 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1257 return 1;
1258
1259 for (i = 0; i < cnt; i++) {
1260 error = bge_nvram_getbyte(sc, off + i, &byte);
1261 if (error)
1262 break;
1263 *(dest + i) = byte;
1264 }
1265
1266 return (error ? 1 : 0);
1267 }
1268
1269 /*
1270 * Read a byte of data stored in the EEPROM at address 'addr.' The
1271 * BCM570x supports both the traditional bitbang interface and an
1272 * auto access interface for reading the EEPROM. We use the auto
1273 * access method.
1274 */
1275 static uint8_t
1276 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1277 {
1278 int i;
1279 uint32_t byte = 0;
1280
1281 /*
1282 * Enable use of auto EEPROM access so we can avoid
1283 * having to use the bitbang method.
1284 */
1285 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1286
1287 /* Reset the EEPROM, load the clock period. */
1288 CSR_WRITE_4(sc, BGE_EE_ADDR,
1289 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1290 DELAY(20);
1291
1292 /* Issue the read EEPROM command. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1294
1295 /* Wait for completion */
1296 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1297 DELAY(10);
1298 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1299 break;
1300 }
1301
1302 if (i == BGE_TIMEOUT * 10) {
1303 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1304 return 1;
1305 }
1306
1307 /* Get result. */
1308 byte = CSR_READ_4(sc, BGE_EE_DATA);
1309
1310 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Read a sequence of bytes from the EEPROM.
1317 */
1318 static int
1319 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1320 {
1321 int error = 0, i;
1322 uint8_t byte = 0;
1323 char *dest = destv;
1324
1325 for (i = 0; i < cnt; i++) {
1326 error = bge_eeprom_getbyte(sc, off + i, &byte);
1327 if (error)
1328 break;
1329 *(dest + i) = byte;
1330 }
1331
1332 return (error ? 1 : 0);
1333 }
1334
1335 static int
1336 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1337 {
1338 struct bge_softc *sc = device_private(dev);
1339 uint32_t data;
1340 uint32_t autopoll;
1341 int rv = 0;
1342 int i;
1343
1344 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1345 return -1;
1346
1347 /* Reading with autopolling on may trigger PCI errors */
1348 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1349 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1350 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1351 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1352 DELAY(80);
1353 }
1354
1355 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1356 BGE_MIPHY(phy) | BGE_MIREG(reg));
1357
1358 for (i = 0; i < BGE_TIMEOUT; i++) {
1359 delay(10);
1360 data = CSR_READ_4(sc, BGE_MI_COMM);
1361 if (!(data & BGE_MICOMM_BUSY)) {
1362 DELAY(5);
1363 data = CSR_READ_4(sc, BGE_MI_COMM);
1364 break;
1365 }
1366 }
1367
1368 if (i == BGE_TIMEOUT) {
1369 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1370 rv = ETIMEDOUT;
1371 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1372 rv = -1;
1373 else
1374 *val = data & BGE_MICOMM_DATA;
1375
1376 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1377 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1378 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1379 DELAY(80);
1380 }
1381
1382 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1383
1384 return rv;
1385 }
1386
1387 static int
1388 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1389 {
1390 struct bge_softc *sc = device_private(dev);
1391 uint32_t autopoll;
1392 int i;
1393
1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1396 return 0;
1397
1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 return -1;
1400
1401 /* Reading with autopolling on may trigger PCI errors */
1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 DELAY(80);
1407 }
1408
1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411
1412 for (i = 0; i < BGE_TIMEOUT; i++) {
1413 delay(10);
1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 delay(5);
1416 CSR_READ_4(sc, BGE_MI_COMM);
1417 break;
1418 }
1419 }
1420
1421 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 delay(80);
1425 }
1426
1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428
1429 if (i == BGE_TIMEOUT) {
1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 return ETIMEDOUT;
1432 }
1433
1434 return 0;
1435 }
1436
1437 static void
1438 bge_miibus_statchg(struct ifnet *ifp)
1439 {
1440 struct bge_softc *sc = ifp->if_softc;
1441 struct mii_data *mii = &sc->bge_mii;
1442 uint32_t mac_mode, rx_mode, tx_mode;
1443
1444 /*
1445 * Get flow control negotiation result.
1446 */
1447 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1448 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1449 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1450
1451 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 mii->mii_media_status & IFM_ACTIVE &&
1453 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1454 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1455 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1456 (!(mii->mii_media_status & IFM_ACTIVE) ||
1457 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1458 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1459
1460 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1461 return;
1462
1463 /* Set the port mode (MII/GMII) to match the link speed. */
1464 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1465 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1466 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1467 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1468 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1469 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1470 mac_mode |= BGE_PORTMODE_GMII;
1471 else
1472 mac_mode |= BGE_PORTMODE_MII;
1473
1474 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1475 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1476 if ((mii->mii_media_active & IFM_FDX) != 0) {
1477 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1478 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1479 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1480 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1481 } else
1482 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1483
1484 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1485 DELAY(40);
1486 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1487 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1488 }
1489
1490 /*
1491 * Update rx threshold levels to values in a particular slot
1492 * of the interrupt-mitigation table bge_rx_threshes.
1493 */
1494 static void
1495 bge_set_thresh(struct ifnet *ifp, int lvl)
1496 {
1497 struct bge_softc *sc = ifp->if_softc;
1498 int s;
1499
1500 /* For now, just save the new Rx-intr thresholds and record
1501 * that a threshold update is pending. Updating the hardware
1502 * registers here (even at splhigh()) is observed to
1503 * occasionaly cause glitches where Rx-interrupts are not
1504 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1505 */
1506 s = splnet();
1507 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1508 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1509 sc->bge_pending_rxintr_change = 1;
1510 splx(s);
1511 }
1512
1513
1514 /*
1515 * Update Rx thresholds of all bge devices
1516 */
1517 static void
1518 bge_update_all_threshes(int lvl)
1519 {
1520 struct ifnet *ifp;
1521 const char * const namebuf = "bge";
1522 int namelen;
1523 int s;
1524
1525 if (lvl < 0)
1526 lvl = 0;
1527 else if (lvl >= NBGE_RX_THRESH)
1528 lvl = NBGE_RX_THRESH - 1;
1529
1530 namelen = strlen(namebuf);
1531 /*
1532 * Now search all the interfaces for this name/number
1533 */
1534 s = pserialize_read_enter();
1535 IFNET_READER_FOREACH(ifp) {
1536 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1537 continue;
1538 /* We got a match: update if doing auto-threshold-tuning */
1539 if (bge_auto_thresh)
1540 bge_set_thresh(ifp, lvl);
1541 }
1542 pserialize_read_exit(s);
1543 }
1544
1545 /*
1546 * Handle events that have triggered interrupts.
1547 */
1548 static void
1549 bge_handle_events(struct bge_softc *sc)
1550 {
1551
1552 return;
1553 }
1554
1555 /*
1556 * Memory management for jumbo frames.
1557 */
1558
1559 static int
1560 bge_alloc_jumbo_mem(struct bge_softc *sc)
1561 {
1562 char *ptr, *kva;
1563 bus_dma_segment_t seg;
1564 int i, rseg, state, error;
1565 struct bge_jpool_entry *entry;
1566
1567 state = error = 0;
1568
1569 /* Grab a big chunk o' storage. */
1570 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1571 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1572 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1573 return ENOBUFS;
1574 }
1575
1576 state = 1;
1577 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1578 BUS_DMA_NOWAIT)) {
1579 aprint_error_dev(sc->bge_dev,
1580 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1581 error = ENOBUFS;
1582 goto out;
1583 }
1584
1585 state = 2;
1586 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1587 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1588 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1589 error = ENOBUFS;
1590 goto out;
1591 }
1592
1593 state = 3;
1594 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1595 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1596 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1597 error = ENOBUFS;
1598 goto out;
1599 }
1600
1601 state = 4;
1602 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1603 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1604
1605 SLIST_INIT(&sc->bge_jfree_listhead);
1606 SLIST_INIT(&sc->bge_jinuse_listhead);
1607
1608 /*
1609 * Now divide it up into 9K pieces and save the addresses
1610 * in an array.
1611 */
1612 ptr = sc->bge_cdata.bge_jumbo_buf;
1613 for (i = 0; i < BGE_JSLOTS; i++) {
1614 sc->bge_cdata.bge_jslots[i] = ptr;
1615 ptr += BGE_JLEN;
1616 entry = malloc(sizeof(struct bge_jpool_entry),
1617 M_DEVBUF, M_NOWAIT);
1618 if (entry == NULL) {
1619 aprint_error_dev(sc->bge_dev,
1620 "no memory for jumbo buffer queue!\n");
1621 error = ENOBUFS;
1622 goto out;
1623 }
1624 entry->slot = i;
1625 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1626 entry, jpool_entries);
1627 }
1628 out:
1629 if (error != 0) {
1630 switch (state) {
1631 case 4:
1632 bus_dmamap_unload(sc->bge_dmatag,
1633 sc->bge_cdata.bge_rx_jumbo_map);
1634 case 3:
1635 bus_dmamap_destroy(sc->bge_dmatag,
1636 sc->bge_cdata.bge_rx_jumbo_map);
1637 case 2:
1638 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1639 case 1:
1640 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1641 break;
1642 default:
1643 break;
1644 }
1645 }
1646
1647 return error;
1648 }
1649
1650 /*
1651 * Allocate a jumbo buffer.
1652 */
1653 static void *
1654 bge_jalloc(struct bge_softc *sc)
1655 {
1656 struct bge_jpool_entry *entry;
1657
1658 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1659
1660 if (entry == NULL) {
1661 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1662 return NULL;
1663 }
1664
1665 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1666 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1667 return (sc->bge_cdata.bge_jslots[entry->slot]);
1668 }
1669
1670 /*
1671 * Release a jumbo buffer.
1672 */
1673 static void
1674 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1675 {
1676 struct bge_jpool_entry *entry;
1677 struct bge_softc *sc;
1678 int i, s;
1679
1680 /* Extract the softc struct pointer. */
1681 sc = (struct bge_softc *)arg;
1682
1683 if (sc == NULL)
1684 panic("bge_jfree: can't find softc pointer!");
1685
1686 /* calculate the slot this buffer belongs to */
1687
1688 i = ((char *)buf
1689 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1690
1691 if ((i < 0) || (i >= BGE_JSLOTS))
1692 panic("bge_jfree: asked to free buffer that we don't manage!");
1693
1694 s = splvm();
1695 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1696 if (entry == NULL)
1697 panic("bge_jfree: buffer not in use!");
1698 entry->slot = i;
1699 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1700 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1701
1702 if (__predict_true(m != NULL))
1703 pool_cache_put(mb_cache, m);
1704 splx(s);
1705 }
1706
1707
1708 /*
1709 * Initialize a standard receive ring descriptor.
1710 */
1711 static int
1712 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1713 bus_dmamap_t dmamap)
1714 {
1715 struct mbuf *m_new = NULL;
1716 struct bge_rx_bd *r;
1717 int error;
1718
1719 if (dmamap == NULL)
1720 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1721
1722 if (dmamap == NULL) {
1723 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1724 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1725 if (error != 0)
1726 return error;
1727 }
1728
1729 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1730
1731 if (m == NULL) {
1732 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1733 if (m_new == NULL)
1734 return ENOBUFS;
1735
1736 MCLGET(m_new, M_DONTWAIT);
1737 if (!(m_new->m_flags & M_EXT)) {
1738 m_freem(m_new);
1739 return ENOBUFS;
1740 }
1741 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1742
1743 } else {
1744 m_new = m;
1745 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1746 m_new->m_data = m_new->m_ext.ext_buf;
1747 }
1748 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1749 m_adj(m_new, ETHER_ALIGN);
1750 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1751 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1752 m_freem(m_new);
1753 return ENOBUFS;
1754 }
1755 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1756 BUS_DMASYNC_PREREAD);
1757
1758 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1759 r = &sc->bge_rdata->bge_rx_std_ring[i];
1760 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1761 r->bge_flags = BGE_RXBDFLAG_END;
1762 r->bge_len = m_new->m_len;
1763 r->bge_idx = i;
1764
1765 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1766 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1767 i * sizeof (struct bge_rx_bd),
1768 sizeof (struct bge_rx_bd),
1769 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * Initialize a jumbo receive ring descriptor. This allocates
1776 * a jumbo buffer from the pool managed internally by the driver.
1777 */
1778 static int
1779 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1780 {
1781 struct mbuf *m_new = NULL;
1782 struct bge_rx_bd *r;
1783 void *buf = NULL;
1784
1785 if (m == NULL) {
1786
1787 /* Allocate the mbuf. */
1788 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1789 if (m_new == NULL)
1790 return ENOBUFS;
1791
1792 /* Allocate the jumbo buffer */
1793 buf = bge_jalloc(sc);
1794 if (buf == NULL) {
1795 m_freem(m_new);
1796 aprint_error_dev(sc->bge_dev,
1797 "jumbo allocation failed -- packet dropped!\n");
1798 return ENOBUFS;
1799 }
1800
1801 /* Attach the buffer to the mbuf. */
1802 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1803 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1804 bge_jfree, sc);
1805 m_new->m_flags |= M_EXT_RW;
1806 } else {
1807 m_new = m;
1808 buf = m_new->m_data = m_new->m_ext.ext_buf;
1809 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1810 }
1811 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1812 m_adj(m_new, ETHER_ALIGN);
1813 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1814 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1815 BUS_DMASYNC_PREREAD);
1816 /* Set up the descriptor. */
1817 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1818 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1819 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1820 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1821 r->bge_len = m_new->m_len;
1822 r->bge_idx = i;
1823
1824 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1825 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1826 i * sizeof (struct bge_rx_bd),
1827 sizeof (struct bge_rx_bd),
1828 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1829
1830 return 0;
1831 }
1832
1833 /*
1834 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1835 * that's 1MB or memory, which is a lot. For now, we fill only the first
1836 * 256 ring entries and hope that our CPU is fast enough to keep up with
1837 * the NIC.
1838 */
1839 static int
1840 bge_init_rx_ring_std(struct bge_softc *sc)
1841 {
1842 int i;
1843
1844 if (sc->bge_flags & BGEF_RXRING_VALID)
1845 return 0;
1846
1847 for (i = 0; i < BGE_SSLOTS; i++) {
1848 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1849 return ENOBUFS;
1850 }
1851
1852 sc->bge_std = i - 1;
1853 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1854
1855 sc->bge_flags |= BGEF_RXRING_VALID;
1856
1857 return 0;
1858 }
1859
1860 static void
1861 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1862 {
1863 int i;
1864
1865 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1866 return;
1867
1868 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1869 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1870 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1871 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1872 if (disable) {
1873 bus_dmamap_destroy(sc->bge_dmatag,
1874 sc->bge_cdata.bge_rx_std_map[i]);
1875 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1876 }
1877 }
1878 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1879 sizeof(struct bge_rx_bd));
1880 }
1881
1882 sc->bge_flags &= ~BGEF_RXRING_VALID;
1883 }
1884
1885 static int
1886 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1887 {
1888 int i;
1889 volatile struct bge_rcb *rcb;
1890
1891 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1892 return 0;
1893
1894 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1895 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1896 return ENOBUFS;
1897 }
1898
1899 sc->bge_jumbo = i - 1;
1900 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1901
1902 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1903 rcb->bge_maxlen_flags = 0;
1904 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1905
1906 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1907
1908 return 0;
1909 }
1910
1911 static void
1912 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1913 {
1914 int i;
1915
1916 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1917 return;
1918
1919 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1920 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1921 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1922 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1923 }
1924 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1925 sizeof(struct bge_rx_bd));
1926 }
1927
1928 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1929 }
1930
1931 static void
1932 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1933 {
1934 int i;
1935 struct txdmamap_pool_entry *dma;
1936
1937 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1938 return;
1939
1940 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1941 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1942 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1943 sc->bge_cdata.bge_tx_chain[i] = NULL;
1944 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1945 link);
1946 sc->txdma[i] = 0;
1947 }
1948 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1949 sizeof(struct bge_tx_bd));
1950 }
1951
1952 if (disable) {
1953 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1954 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1955 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1956 if (sc->bge_dma64) {
1957 bus_dmamap_destroy(sc->bge_dmatag32,
1958 dma->dmamap32);
1959 }
1960 free(dma, M_DEVBUF);
1961 }
1962 SLIST_INIT(&sc->txdma_list);
1963 }
1964
1965 sc->bge_flags &= ~BGEF_TXRING_VALID;
1966 }
1967
1968 static int
1969 bge_init_tx_ring(struct bge_softc *sc)
1970 {
1971 struct ifnet *ifp = &sc->ethercom.ec_if;
1972 int i;
1973 bus_dmamap_t dmamap, dmamap32;
1974 bus_size_t maxsegsz;
1975 struct txdmamap_pool_entry *dma;
1976
1977 if (sc->bge_flags & BGEF_TXRING_VALID)
1978 return 0;
1979
1980 sc->bge_txcnt = 0;
1981 sc->bge_tx_saved_considx = 0;
1982
1983 /* Initialize transmit producer index for host-memory send ring. */
1984 sc->bge_tx_prodidx = 0;
1985 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1986 /* 5700 b2 errata */
1987 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1988 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1989
1990 /* NIC-memory send ring not used; initialize to zero. */
1991 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1992 /* 5700 b2 errata */
1993 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1994 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1995
1996 /* Limit DMA segment size for some chips */
1997 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1998 (ifp->if_mtu <= ETHERMTU))
1999 maxsegsz = 2048;
2000 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2001 maxsegsz = 4096;
2002 else
2003 maxsegsz = ETHER_MAX_LEN_JUMBO;
2004
2005 if (SLIST_FIRST(&sc->txdma_list) != NULL)
2006 goto alloc_done;
2007
2008 for (i = 0; i < BGE_TX_RING_CNT; i++) {
2009 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
2010 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2011 &dmamap))
2012 return ENOBUFS;
2013 if (dmamap == NULL)
2014 panic("dmamap NULL in bge_init_tx_ring");
2015 if (sc->bge_dma64) {
2016 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
2017 BGE_NTXSEG, maxsegsz, 0,
2018 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2019 &dmamap32)) {
2020 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2021 return ENOBUFS;
2022 }
2023 if (dmamap32 == NULL)
2024 panic("dmamap32 NULL in bge_init_tx_ring");
2025 } else
2026 dmamap32 = dmamap;
2027 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
2028 if (dma == NULL) {
2029 aprint_error_dev(sc->bge_dev,
2030 "can't alloc txdmamap_pool_entry\n");
2031 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2032 if (sc->bge_dma64)
2033 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
2034 return ENOMEM;
2035 }
2036 dma->dmamap = dmamap;
2037 dma->dmamap32 = dmamap32;
2038 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2039 }
2040 alloc_done:
2041 sc->bge_flags |= BGEF_TXRING_VALID;
2042
2043 return 0;
2044 }
2045
2046 static void
2047 bge_setmulti(struct bge_softc *sc)
2048 {
2049 struct ethercom *ac = &sc->ethercom;
2050 struct ifnet *ifp = &ac->ec_if;
2051 struct ether_multi *enm;
2052 struct ether_multistep step;
2053 uint32_t hashes[4] = { 0, 0, 0, 0 };
2054 uint32_t h;
2055 int i;
2056
2057 if (ifp->if_flags & IFF_PROMISC)
2058 goto allmulti;
2059
2060 /* Now program new ones. */
2061 ETHER_FIRST_MULTI(step, ac, enm);
2062 while (enm != NULL) {
2063 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2064 /*
2065 * We must listen to a range of multicast addresses.
2066 * For now, just accept all multicasts, rather than
2067 * trying to set only those filter bits needed to match
2068 * the range. (At this time, the only use of address
2069 * ranges is for IP multicast routing, for which the
2070 * range is big enough to require all bits set.)
2071 */
2072 goto allmulti;
2073 }
2074
2075 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2076
2077 /* Just want the 7 least-significant bits. */
2078 h &= 0x7f;
2079
2080 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2081 ETHER_NEXT_MULTI(step, enm);
2082 }
2083
2084 ifp->if_flags &= ~IFF_ALLMULTI;
2085 goto setit;
2086
2087 allmulti:
2088 ifp->if_flags |= IFF_ALLMULTI;
2089 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2090
2091 setit:
2092 for (i = 0; i < 4; i++)
2093 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2094 }
2095
2096 static void
2097 bge_sig_pre_reset(struct bge_softc *sc, int type)
2098 {
2099
2100 /*
2101 * Some chips don't like this so only do this if ASF is enabled
2102 */
2103 if (sc->bge_asf_mode)
2104 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2105
2106 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2107 switch (type) {
2108 case BGE_RESET_START:
2109 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2110 BGE_FW_DRV_STATE_START);
2111 break;
2112 case BGE_RESET_SHUTDOWN:
2113 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2114 BGE_FW_DRV_STATE_UNLOAD);
2115 break;
2116 case BGE_RESET_SUSPEND:
2117 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2118 BGE_FW_DRV_STATE_SUSPEND);
2119 break;
2120 }
2121 }
2122
2123 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2124 bge_ape_driver_state_change(sc, type);
2125 }
2126
2127 static void
2128 bge_sig_post_reset(struct bge_softc *sc, int type)
2129 {
2130
2131 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2132 switch (type) {
2133 case BGE_RESET_START:
2134 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2135 BGE_FW_DRV_STATE_START_DONE);
2136 /* START DONE */
2137 break;
2138 case BGE_RESET_SHUTDOWN:
2139 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2140 BGE_FW_DRV_STATE_UNLOAD_DONE);
2141 break;
2142 }
2143 }
2144
2145 if (type == BGE_RESET_SHUTDOWN)
2146 bge_ape_driver_state_change(sc, type);
2147 }
2148
2149 static void
2150 bge_sig_legacy(struct bge_softc *sc, int type)
2151 {
2152
2153 if (sc->bge_asf_mode) {
2154 switch (type) {
2155 case BGE_RESET_START:
2156 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2157 BGE_FW_DRV_STATE_START);
2158 break;
2159 case BGE_RESET_SHUTDOWN:
2160 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2161 BGE_FW_DRV_STATE_UNLOAD);
2162 break;
2163 }
2164 }
2165 }
2166
2167 static void
2168 bge_wait_for_event_ack(struct bge_softc *sc)
2169 {
2170 int i;
2171
2172 /* wait up to 2500usec */
2173 for (i = 0; i < 250; i++) {
2174 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2175 BGE_RX_CPU_DRV_EVENT))
2176 break;
2177 DELAY(10);
2178 }
2179 }
2180
2181 static void
2182 bge_stop_fw(struct bge_softc *sc)
2183 {
2184
2185 if (sc->bge_asf_mode) {
2186 bge_wait_for_event_ack(sc);
2187
2188 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2189 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2190 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2191
2192 bge_wait_for_event_ack(sc);
2193 }
2194 }
2195
2196 static int
2197 bge_poll_fw(struct bge_softc *sc)
2198 {
2199 uint32_t val;
2200 int i;
2201
2202 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2203 for (i = 0; i < BGE_TIMEOUT; i++) {
2204 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2205 if (val & BGE_VCPU_STATUS_INIT_DONE)
2206 break;
2207 DELAY(100);
2208 }
2209 if (i >= BGE_TIMEOUT) {
2210 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2211 return -1;
2212 }
2213 } else {
2214 /*
2215 * Poll the value location we just wrote until
2216 * we see the 1's complement of the magic number.
2217 * This indicates that the firmware initialization
2218 * is complete.
2219 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2220 */
2221 for (i = 0; i < BGE_TIMEOUT; i++) {
2222 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2223 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2224 break;
2225 DELAY(10);
2226 }
2227
2228 if ((i >= BGE_TIMEOUT)
2229 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2230 aprint_error_dev(sc->bge_dev,
2231 "firmware handshake timed out, val = %x\n", val);
2232 return -1;
2233 }
2234 }
2235
2236 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2237 /* tg3 says we have to wait extra time */
2238 delay(10 * 1000);
2239 }
2240
2241 return 0;
2242 }
2243
2244 int
2245 bge_phy_addr(struct bge_softc *sc)
2246 {
2247 struct pci_attach_args *pa = &(sc->bge_pa);
2248 int phy_addr = 1;
2249
2250 /*
2251 * PHY address mapping for various devices.
2252 *
2253 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2254 * ---------+-------+-------+-------+-------+
2255 * BCM57XX | 1 | X | X | X |
2256 * BCM5704 | 1 | X | 1 | X |
2257 * BCM5717 | 1 | 8 | 2 | 9 |
2258 * BCM5719 | 1 | 8 | 2 | 9 |
2259 * BCM5720 | 1 | 8 | 2 | 9 |
2260 *
2261 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2262 * ---------+-------+-------+-------+-------+
2263 * BCM57XX | X | X | X | X |
2264 * BCM5704 | X | X | X | X |
2265 * BCM5717 | X | X | X | X |
2266 * BCM5719 | 3 | 10 | 4 | 11 |
2267 * BCM5720 | X | X | X | X |
2268 *
2269 * Other addresses may respond but they are not
2270 * IEEE compliant PHYs and should be ignored.
2271 */
2272 switch (BGE_ASICREV(sc->bge_chipid)) {
2273 case BGE_ASICREV_BCM5717:
2274 case BGE_ASICREV_BCM5719:
2275 case BGE_ASICREV_BCM5720:
2276 phy_addr = pa->pa_function;
2277 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2278 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2279 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2280 } else {
2281 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2282 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2283 }
2284 }
2285
2286 return phy_addr;
2287 }
2288
2289 /*
2290 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2291 * self-test results.
2292 */
2293 static int
2294 bge_chipinit(struct bge_softc *sc)
2295 {
2296 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2297 int i;
2298
2299 /* Set endianness before we access any non-PCI registers. */
2300 misc_ctl = BGE_INIT;
2301 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2302 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2303 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2304 misc_ctl);
2305
2306 /*
2307 * Clear the MAC statistics block in the NIC's
2308 * internal memory.
2309 */
2310 for (i = BGE_STATS_BLOCK;
2311 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2312 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2313
2314 for (i = BGE_STATUS_BLOCK;
2315 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2316 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2317
2318 /* 5717 workaround from tg3 */
2319 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2320 /* Save */
2321 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2322
2323 /* Temporary modify MODE_CTL to control TLP */
2324 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2325 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2326
2327 /* Control TLP */
2328 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2329 BGE_TLP_PHYCTL1);
2330 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2331 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2332
2333 /* Restore */
2334 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2335 }
2336
2337 if (BGE_IS_57765_FAMILY(sc)) {
2338 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2339 /* Save */
2340 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2341
2342 /* Temporary modify MODE_CTL to control TLP */
2343 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2344 CSR_WRITE_4(sc, BGE_MODE_CTL,
2345 reg | BGE_MODECTL_PCIE_TLPADDR1);
2346
2347 /* Control TLP */
2348 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2349 BGE_TLP_PHYCTL5);
2350 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2351 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2352
2353 /* Restore */
2354 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2355 }
2356 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2357 /*
2358 * For the 57766 and non Ax versions of 57765, bootcode
2359 * needs to setup the PCIE Fast Training Sequence (FTS)
2360 * value to prevent transmit hangs.
2361 */
2362 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2363 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2364 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2365
2366 /* Save */
2367 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2368
2369 /* Temporary modify MODE_CTL to control TLP */
2370 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2371 CSR_WRITE_4(sc, BGE_MODE_CTL,
2372 reg | BGE_MODECTL_PCIE_TLPADDR0);
2373
2374 /* Control TLP */
2375 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2376 BGE_TLP_FTSMAX);
2377 reg &= ~BGE_TLP_FTSMAX_MSK;
2378 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2379 reg | BGE_TLP_FTSMAX_VAL);
2380
2381 /* Restore */
2382 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2383 }
2384
2385 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2386 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2387 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2388 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2389 }
2390
2391 /* Set up the PCI DMA control register. */
2392 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2393 if (sc->bge_flags & BGEF_PCIE) {
2394 /* Read watermark not used, 128 bytes for write. */
2395 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2396 device_xname(sc->bge_dev)));
2397 if (sc->bge_mps >= 256)
2398 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2399 else
2400 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2401 } else if (sc->bge_flags & BGEF_PCIX) {
2402 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2403 device_xname(sc->bge_dev)));
2404 /* PCI-X bus */
2405 if (BGE_IS_5714_FAMILY(sc)) {
2406 /* 256 bytes for read and write. */
2407 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2408 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2409
2410 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2411 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2412 else
2413 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2414 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2415 /*
2416 * In the BCM5703, the DMA read watermark should
2417 * be set to less than or equal to the maximum
2418 * memory read byte count of the PCI-X command
2419 * register.
2420 */
2421 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2422 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2423 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2424 /* 1536 bytes for read, 384 bytes for write. */
2425 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2426 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2427 } else {
2428 /* 384 bytes for read and write. */
2429 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2430 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2431 (0x0F);
2432 }
2433
2434 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2435 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2436 uint32_t tmp;
2437
2438 /* Set ONEDMA_ATONCE for hardware workaround. */
2439 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2440 if (tmp == 6 || tmp == 7)
2441 dma_rw_ctl |=
2442 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2443
2444 /* Set PCI-X DMA write workaround. */
2445 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2446 }
2447 } else {
2448 /* Conventional PCI bus: 256 bytes for read and write. */
2449 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2450 device_xname(sc->bge_dev)));
2451 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2452 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2453
2454 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2455 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2456 dma_rw_ctl |= 0x0F;
2457 }
2458
2459 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2460 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2461 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2462 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2463
2464 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2465 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2466 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2467
2468 if (BGE_IS_57765_PLUS(sc)) {
2469 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2470 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2471 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2472
2473 /*
2474 * Enable HW workaround for controllers that misinterpret
2475 * a status tag update and leave interrupts permanently
2476 * disabled.
2477 */
2478 if (!BGE_IS_57765_FAMILY(sc) &&
2479 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2480 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2481 }
2482
2483 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2484 dma_rw_ctl);
2485
2486 /*
2487 * Set up general mode register.
2488 */
2489 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2490 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2491 /* Retain Host-2-BMC settings written by APE firmware. */
2492 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2493 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2494 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2495 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2496 }
2497 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2498 BGE_MODECTL_TX_NO_PHDR_CSUM;
2499
2500 /*
2501 * BCM5701 B5 have a bug causing data corruption when using
2502 * 64-bit DMA reads, which can be terminated early and then
2503 * completed later as 32-bit accesses, in combination with
2504 * certain bridges.
2505 */
2506 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2507 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2508 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2509
2510 /*
2511 * Tell the firmware the driver is running
2512 */
2513 if (sc->bge_asf_mode & ASF_STACKUP)
2514 mode_ctl |= BGE_MODECTL_STACKUP;
2515
2516 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2517
2518 /*
2519 * Disable memory write invalidate. Apparently it is not supported
2520 * properly by these devices.
2521 */
2522 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2523 PCI_COMMAND_INVALIDATE_ENABLE);
2524
2525 #ifdef __brokenalpha__
2526 /*
2527 * Must insure that we do not cross an 8K (bytes) boundary
2528 * for DMA reads. Our highest limit is 1K bytes. This is a
2529 * restriction on some ALPHA platforms with early revision
2530 * 21174 PCI chipsets, such as the AlphaPC 164lx
2531 */
2532 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2533 #endif
2534
2535 /* Set the timer prescaler (always 66MHz) */
2536 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2537
2538 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2539 DELAY(40); /* XXX */
2540
2541 /* Put PHY into ready state */
2542 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2543 DELAY(40);
2544 }
2545
2546 return 0;
2547 }
2548
2549 static int
2550 bge_blockinit(struct bge_softc *sc)
2551 {
2552 volatile struct bge_rcb *rcb;
2553 bus_size_t rcb_addr;
2554 struct ifnet *ifp = &sc->ethercom.ec_if;
2555 bge_hostaddr taddr;
2556 uint32_t dmactl, mimode, val;
2557 int i, limit;
2558
2559 /*
2560 * Initialize the memory window pointer register so that
2561 * we can access the first 32K of internal NIC RAM. This will
2562 * allow us to set up the TX send ring RCBs and the RX return
2563 * ring RCBs, plus other things which live in NIC memory.
2564 */
2565 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2566
2567 if (!BGE_IS_5705_PLUS(sc)) {
2568 /* 57XX step 33 */
2569 /* Configure mbuf memory pool */
2570 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2571 BGE_BUFFPOOL_1);
2572
2573 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2574 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2575 else
2576 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2577
2578 /* 57XX step 34 */
2579 /* Configure DMA resource pool */
2580 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2581 BGE_DMA_DESCRIPTORS);
2582 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2583 }
2584
2585 /* 5718 step 11, 57XX step 35 */
2586 /*
2587 * Configure mbuf pool watermarks. New broadcom docs strongly
2588 * recommend these.
2589 */
2590 if (BGE_IS_5717_PLUS(sc)) {
2591 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2592 if (ifp->if_mtu > ETHERMTU) {
2593 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2594 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2595 } else {
2596 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2597 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2598 }
2599 } else if (BGE_IS_5705_PLUS(sc)) {
2600 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2601
2602 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2603 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2604 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2605 } else {
2606 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2607 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2608 }
2609 } else {
2610 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2611 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2612 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2613 }
2614
2615 /* 57XX step 36 */
2616 /* Configure DMA resource watermarks */
2617 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2618 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2619
2620 /* 5718 step 13, 57XX step 38 */
2621 /* Enable buffer manager */
2622 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2623 /*
2624 * Change the arbitration algorithm of TXMBUF read request to
2625 * round-robin instead of priority based for BCM5719. When
2626 * TXFIFO is almost empty, RDMA will hold its request until
2627 * TXFIFO is not almost empty.
2628 */
2629 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2630 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2631 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2632 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2633 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2634 val |= BGE_BMANMODE_LOMBUF_ATTN;
2635 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2636
2637 /* 57XX step 39 */
2638 /* Poll for buffer manager start indication */
2639 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2640 DELAY(10);
2641 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2642 break;
2643 }
2644
2645 if (i == BGE_TIMEOUT * 2) {
2646 aprint_error_dev(sc->bge_dev,
2647 "buffer manager failed to start\n");
2648 return ENXIO;
2649 }
2650
2651 /* 57XX step 40 */
2652 /* Enable flow-through queues */
2653 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2654 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2655
2656 /* Wait until queue initialization is complete */
2657 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2658 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2659 break;
2660 DELAY(10);
2661 }
2662
2663 if (i == BGE_TIMEOUT * 2) {
2664 aprint_error_dev(sc->bge_dev,
2665 "flow-through queue init failed\n");
2666 return ENXIO;
2667 }
2668
2669 /*
2670 * Summary of rings supported by the controller:
2671 *
2672 * Standard Receive Producer Ring
2673 * - This ring is used to feed receive buffers for "standard"
2674 * sized frames (typically 1536 bytes) to the controller.
2675 *
2676 * Jumbo Receive Producer Ring
2677 * - This ring is used to feed receive buffers for jumbo sized
2678 * frames (i.e. anything bigger than the "standard" frames)
2679 * to the controller.
2680 *
2681 * Mini Receive Producer Ring
2682 * - This ring is used to feed receive buffers for "mini"
2683 * sized frames to the controller.
2684 * - This feature required external memory for the controller
2685 * but was never used in a production system. Should always
2686 * be disabled.
2687 *
2688 * Receive Return Ring
2689 * - After the controller has placed an incoming frame into a
2690 * receive buffer that buffer is moved into a receive return
2691 * ring. The driver is then responsible to passing the
2692 * buffer up to the stack. Many versions of the controller
2693 * support multiple RR rings.
2694 *
2695 * Send Ring
2696 * - This ring is used for outgoing frames. Many versions of
2697 * the controller support multiple send rings.
2698 */
2699
2700 /* 5718 step 15, 57XX step 41 */
2701 /* Initialize the standard RX ring control block */
2702 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2703 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2704 /* 5718 step 16 */
2705 if (BGE_IS_57765_PLUS(sc)) {
2706 /*
2707 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2708 * Bits 15-2 : Maximum RX frame size
2709 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2710 * Bit 0 : Reserved
2711 */
2712 rcb->bge_maxlen_flags =
2713 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2714 } else if (BGE_IS_5705_PLUS(sc)) {
2715 /*
2716 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2717 * Bits 15-2 : Reserved (should be 0)
2718 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2719 * Bit 0 : Reserved
2720 */
2721 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2722 } else {
2723 /*
2724 * Ring size is always XXX entries
2725 * Bits 31-16: Maximum RX frame size
2726 * Bits 15-2 : Reserved (should be 0)
2727 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2728 * Bit 0 : Reserved
2729 */
2730 rcb->bge_maxlen_flags =
2731 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2732 }
2733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2734 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2735 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2736 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2737 else
2738 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2739 /* Write the standard receive producer ring control block. */
2740 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2741 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2742 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2743 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2744
2745 /* Reset the standard receive producer ring producer index. */
2746 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2747
2748 /* 57XX step 42 */
2749 /*
2750 * Initialize the jumbo RX ring control block
2751 * We set the 'ring disabled' bit in the flags
2752 * field until we're actually ready to start
2753 * using this ring (i.e. once we set the MTU
2754 * high enough to require it).
2755 */
2756 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2757 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2758 BGE_HOSTADDR(rcb->bge_hostaddr,
2759 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2760 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2761 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2762 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2763 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2764 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2765 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2766 else
2767 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2768 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2769 rcb->bge_hostaddr.bge_addr_hi);
2770 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2771 rcb->bge_hostaddr.bge_addr_lo);
2772 /* Program the jumbo receive producer ring RCB parameters. */
2773 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2774 rcb->bge_maxlen_flags);
2775 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2776 /* Reset the jumbo receive producer ring producer index. */
2777 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2778 }
2779
2780 /* 57XX step 43 */
2781 /* Disable the mini receive producer ring RCB. */
2782 if (BGE_IS_5700_FAMILY(sc)) {
2783 /* Set up dummy disabled mini ring RCB */
2784 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2785 rcb->bge_maxlen_flags =
2786 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2787 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2788 rcb->bge_maxlen_flags);
2789 /* Reset the mini receive producer ring producer index. */
2790 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2791
2792 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2793 offsetof(struct bge_ring_data, bge_info),
2794 sizeof (struct bge_gib),
2795 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2796 }
2797
2798 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2800 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2801 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2802 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2803 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2804 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2805 }
2806 /* 5718 step 14, 57XX step 44 */
2807 /*
2808 * The BD ring replenish thresholds control how often the
2809 * hardware fetches new BD's from the producer rings in host
2810 * memory. Setting the value too low on a busy system can
2811 * starve the hardware and recue the throughpout.
2812 *
2813 * Set the BD ring replenish thresholds. The recommended
2814 * values are 1/8th the number of descriptors allocated to
2815 * each ring, but since we try to avoid filling the entire
2816 * ring we set these to the minimal value of 8. This needs to
2817 * be done on several of the supported chip revisions anyway,
2818 * to work around HW bugs.
2819 */
2820 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2821 if (BGE_IS_JUMBO_CAPABLE(sc))
2822 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2823
2824 /* 5718 step 18 */
2825 if (BGE_IS_5717_PLUS(sc)) {
2826 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2827 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2828 }
2829
2830 /* 57XX step 45 */
2831 /*
2832 * Disable all send rings by setting the 'ring disabled' bit
2833 * in the flags field of all the TX send ring control blocks,
2834 * located in NIC memory.
2835 */
2836 if (BGE_IS_5700_FAMILY(sc)) {
2837 /* 5700 to 5704 had 16 send rings. */
2838 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2839 } else if (BGE_IS_5717_PLUS(sc)) {
2840 limit = BGE_TX_RINGS_5717_MAX;
2841 } else if (BGE_IS_57765_FAMILY(sc)) {
2842 limit = BGE_TX_RINGS_57765_MAX;
2843 } else
2844 limit = 1;
2845 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2846 for (i = 0; i < limit; i++) {
2847 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2848 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2849 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2850 rcb_addr += sizeof(struct bge_rcb);
2851 }
2852
2853 /* 57XX step 46 and 47 */
2854 /* Configure send ring RCB 0 (we use only the first ring) */
2855 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2856 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2857 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2858 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2859 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2860 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2861 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2862 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2863 else
2864 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2865 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2866 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2867 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2868
2869 /* 57XX step 48 */
2870 /*
2871 * Disable all receive return rings by setting the
2872 * 'ring diabled' bit in the flags field of all the receive
2873 * return ring control blocks, located in NIC memory.
2874 */
2875 if (BGE_IS_5717_PLUS(sc)) {
2876 /* Should be 17, use 16 until we get an SRAM map. */
2877 limit = 16;
2878 } else if (BGE_IS_5700_FAMILY(sc))
2879 limit = BGE_RX_RINGS_MAX;
2880 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2881 BGE_IS_57765_FAMILY(sc))
2882 limit = 4;
2883 else
2884 limit = 1;
2885 /* Disable all receive return rings */
2886 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2887 for (i = 0; i < limit; i++) {
2888 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2889 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2890 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2891 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2892 BGE_RCB_FLAG_RING_DISABLED));
2893 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2894 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2895 (i * (sizeof(uint64_t))), 0);
2896 rcb_addr += sizeof(struct bge_rcb);
2897 }
2898
2899 /* 57XX step 49 */
2900 /*
2901 * Set up receive return ring 0. Note that the NIC address
2902 * for RX return rings is 0x0. The return rings live entirely
2903 * within the host, so the nicaddr field in the RCB isn't used.
2904 */
2905 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2906 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2907 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2908 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2909 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2910 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2911 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2912
2913 /* 5718 step 24, 57XX step 53 */
2914 /* Set random backoff seed for TX */
2915 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2916 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2917 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2918 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2919 BGE_TX_BACKOFF_SEED_MASK);
2920
2921 /* 5718 step 26, 57XX step 55 */
2922 /* Set inter-packet gap */
2923 val = 0x2620;
2924 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2925 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2926 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2927 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2928
2929 /* 5718 step 27, 57XX step 56 */
2930 /*
2931 * Specify which ring to use for packets that don't match
2932 * any RX rules.
2933 */
2934 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2935
2936 /* 5718 step 28, 57XX step 57 */
2937 /*
2938 * Configure number of RX lists. One interrupt distribution
2939 * list, sixteen active lists, one bad frames class.
2940 */
2941 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2942
2943 /* 5718 step 29, 57XX step 58 */
2944 /* Inialize RX list placement stats mask. */
2945 if (BGE_IS_575X_PLUS(sc)) {
2946 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2947 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2948 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2949 } else
2950 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2951
2952 /* 5718 step 30, 57XX step 59 */
2953 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2954
2955 /* 5718 step 33, 57XX step 62 */
2956 /* Disable host coalescing until we get it set up */
2957 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2958
2959 /* 5718 step 34, 57XX step 63 */
2960 /* Poll to make sure it's shut down. */
2961 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2962 DELAY(10);
2963 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2964 break;
2965 }
2966
2967 if (i == BGE_TIMEOUT * 2) {
2968 aprint_error_dev(sc->bge_dev,
2969 "host coalescing engine failed to idle\n");
2970 return ENXIO;
2971 }
2972
2973 /* 5718 step 35, 36, 37 */
2974 /* Set up host coalescing defaults */
2975 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2976 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2977 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2978 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2979 if (!(BGE_IS_5705_PLUS(sc))) {
2980 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2981 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2982 }
2983 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2984 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2985
2986 /* Set up address of statistics block */
2987 if (BGE_IS_5700_FAMILY(sc)) {
2988 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2989 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2990 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2991 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2992 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2993 }
2994
2995 /* 5718 step 38 */
2996 /* Set up address of status block */
2997 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2998 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2999 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
3000 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
3001 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
3002 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
3003
3004 /* Set up status block size. */
3005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
3006 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
3007 val = BGE_STATBLKSZ_FULL;
3008 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
3009 } else {
3010 val = BGE_STATBLKSZ_32BYTE;
3011 bzero(&sc->bge_rdata->bge_status_block, 32);
3012 }
3013
3014 /* 5718 step 39, 57XX step 73 */
3015 /* Turn on host coalescing state machine */
3016 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
3017
3018 /* 5718 step 40, 57XX step 74 */
3019 /* Turn on RX BD completion state machine and enable attentions */
3020 CSR_WRITE_4(sc, BGE_RBDC_MODE,
3021 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
3022
3023 /* 5718 step 41, 57XX step 75 */
3024 /* Turn on RX list placement state machine */
3025 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3026
3027 /* 57XX step 76 */
3028 /* Turn on RX list selector state machine. */
3029 if (!(BGE_IS_5705_PLUS(sc)))
3030 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3031
3032 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
3033 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
3034 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
3035 BGE_MACMODE_FRMHDR_DMA_ENB;
3036
3037 if (sc->bge_flags & BGEF_FIBER_TBI)
3038 val |= BGE_PORTMODE_TBI;
3039 else if (sc->bge_flags & BGEF_FIBER_MII)
3040 val |= BGE_PORTMODE_GMII;
3041 else
3042 val |= BGE_PORTMODE_MII;
3043
3044 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3045 /* Allow APE to send/receive frames. */
3046 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3047 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3048
3049 /* Turn on DMA, clear stats */
3050 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3051 /* 5718 step 44 */
3052 DELAY(40);
3053
3054 /* 5718 step 45, 57XX step 79 */
3055 /* Set misc. local control, enable interrupts on attentions */
3056 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3057 if (BGE_IS_5717_PLUS(sc)) {
3058 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3059 /* 5718 step 46 */
3060 DELAY(100);
3061 }
3062
3063 /* 57XX step 81 */
3064 /* Turn on DMA completion state machine */
3065 if (!(BGE_IS_5705_PLUS(sc)))
3066 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3067
3068 /* 5718 step 47, 57XX step 82 */
3069 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3070
3071 /* 5718 step 48 */
3072 /* Enable host coalescing bug fix. */
3073 if (BGE_IS_5755_PLUS(sc))
3074 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3075
3076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3077 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3078
3079 /* Turn on write DMA state machine */
3080 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3081 /* 5718 step 49 */
3082 DELAY(40);
3083
3084 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3085
3086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3087 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3088
3089 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3090 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3091 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3092 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3093 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3094 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3095
3096 if (sc->bge_flags & BGEF_PCIE)
3097 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3098 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3099 if (ifp->if_mtu <= ETHERMTU)
3100 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3101 }
3102 if (sc->bge_flags & BGEF_TSO) {
3103 val |= BGE_RDMAMODE_TSO4_ENABLE;
3104 if (BGE_IS_5717_PLUS(sc))
3105 val |= BGE_RDMAMODE_TSO6_ENABLE;
3106 }
3107
3108 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3109 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3110 BGE_RDMAMODE_H2BNC_VLAN_DET;
3111 /*
3112 * Allow multiple outstanding read requests from
3113 * non-LSO read DMA engine.
3114 */
3115 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3116 }
3117
3118 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3119 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3120 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3121 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3122 BGE_IS_57765_PLUS(sc)) {
3123 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3124 /*
3125 * Adjust tx margin to prevent TX data corruption and
3126 * fix internal FIFO overflow.
3127 */
3128 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3129 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3130 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3131 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3132 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3133 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3134 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3135 }
3136 /*
3137 * Enable fix for read DMA FIFO overruns.
3138 * The fix is to limit the number of RX BDs
3139 * the hardware would fetch at a fime.
3140 */
3141 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3142 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3143 }
3144
3145 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3146 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3147 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3148 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3149 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3150 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3151 /*
3152 * Allow 4KB burst length reads for non-LSO frames.
3153 * Enable 512B burst length reads for buffer descriptors.
3154 */
3155 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3156 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3157 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3158 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3159 }
3160 /* Turn on read DMA state machine */
3161 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3162 /* 5718 step 52 */
3163 delay(40);
3164
3165 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3166 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3167 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
3168 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
3169 if ((val & 0xFFFF) > BGE_FRAMELEN)
3170 break;
3171 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
3172 break;
3173 }
3174 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
3175 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
3176 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
3177 val |= BGE_RDMA_TX_LENGTH_WA_5719;
3178 else
3179 val |= BGE_RDMA_TX_LENGTH_WA_5720;
3180 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
3181 }
3182 }
3183
3184 /* 5718 step 56, 57XX step 84 */
3185 /* Turn on RX data completion state machine */
3186 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3187
3188 /* Turn on RX data and RX BD initiator state machine */
3189 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3190
3191 /* 57XX step 85 */
3192 /* Turn on Mbuf cluster free state machine */
3193 if (!BGE_IS_5705_PLUS(sc))
3194 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3195
3196 /* 5718 step 57, 57XX step 86 */
3197 /* Turn on send data completion state machine */
3198 val = BGE_SDCMODE_ENABLE;
3199 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3200 val |= BGE_SDCMODE_CDELAY;
3201 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3202
3203 /* 5718 step 58 */
3204 /* Turn on send BD completion state machine */
3205 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3206
3207 /* 57XX step 88 */
3208 /* Turn on RX BD initiator state machine */
3209 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3210
3211 /* 5718 step 60, 57XX step 90 */
3212 /* Turn on send data initiator state machine */
3213 if (sc->bge_flags & BGEF_TSO) {
3214 /* XXX: magic value from Linux driver */
3215 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3216 BGE_SDIMODE_HW_LSO_PRE_DMA);
3217 } else
3218 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3219
3220 /* 5718 step 61, 57XX step 91 */
3221 /* Turn on send BD initiator state machine */
3222 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3223
3224 /* 5718 step 62, 57XX step 92 */
3225 /* Turn on send BD selector state machine */
3226 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3227
3228 /* 5718 step 31, 57XX step 60 */
3229 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3230 /* 5718 step 32, 57XX step 61 */
3231 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3232 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3233
3234 /* ack/clear link change events */
3235 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3236 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3237 BGE_MACSTAT_LINK_CHANGED);
3238 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3239
3240 /*
3241 * Enable attention when the link has changed state for
3242 * devices that use auto polling.
3243 */
3244 if (sc->bge_flags & BGEF_FIBER_TBI) {
3245 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3246 } else {
3247 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3248 mimode = BGE_MIMODE_500KHZ_CONST;
3249 else
3250 mimode = BGE_MIMODE_BASE;
3251 /* 5718 step 68. 5718 step 69 (optionally). */
3252 if (BGE_IS_5700_FAMILY(sc) ||
3253 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3254 mimode |= BGE_MIMODE_AUTOPOLL;
3255 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3256 }
3257 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3258 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3259 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3260 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3261 BGE_EVTENB_MI_INTERRUPT);
3262 }
3263
3264 /*
3265 * Clear any pending link state attention.
3266 * Otherwise some link state change events may be lost until attention
3267 * is cleared by bge_intr() -> bge_link_upd() sequence.
3268 * It's not necessary on newer BCM chips - perhaps enabling link
3269 * state change attentions implies clearing pending attention.
3270 */
3271 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3272 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3273 BGE_MACSTAT_LINK_CHANGED);
3274
3275 /* Enable link state change attentions. */
3276 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3277
3278 return 0;
3279 }
3280
3281 static const struct bge_revision *
3282 bge_lookup_rev(uint32_t chipid)
3283 {
3284 const struct bge_revision *br;
3285
3286 for (br = bge_revisions; br->br_name != NULL; br++) {
3287 if (br->br_chipid == chipid)
3288 return br;
3289 }
3290
3291 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3292 if (br->br_chipid == BGE_ASICREV(chipid))
3293 return br;
3294 }
3295
3296 return NULL;
3297 }
3298
3299 static const struct bge_product *
3300 bge_lookup(const struct pci_attach_args *pa)
3301 {
3302 const struct bge_product *bp;
3303
3304 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3305 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3306 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3307 return bp;
3308 }
3309
3310 return NULL;
3311 }
3312
3313 static uint32_t
3314 bge_chipid(const struct pci_attach_args *pa)
3315 {
3316 uint32_t id;
3317
3318 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3319 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3320
3321 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3322 switch (PCI_PRODUCT(pa->pa_id)) {
3323 case PCI_PRODUCT_BROADCOM_BCM5717:
3324 case PCI_PRODUCT_BROADCOM_BCM5718:
3325 case PCI_PRODUCT_BROADCOM_BCM5719:
3326 case PCI_PRODUCT_BROADCOM_BCM5720:
3327 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3328 BGE_PCI_GEN2_PRODID_ASICREV);
3329 break;
3330 case PCI_PRODUCT_BROADCOM_BCM57761:
3331 case PCI_PRODUCT_BROADCOM_BCM57762:
3332 case PCI_PRODUCT_BROADCOM_BCM57765:
3333 case PCI_PRODUCT_BROADCOM_BCM57766:
3334 case PCI_PRODUCT_BROADCOM_BCM57781:
3335 case PCI_PRODUCT_BROADCOM_BCM57782:
3336 case PCI_PRODUCT_BROADCOM_BCM57785:
3337 case PCI_PRODUCT_BROADCOM_BCM57786:
3338 case PCI_PRODUCT_BROADCOM_BCM57791:
3339 case PCI_PRODUCT_BROADCOM_BCM57795:
3340 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3341 BGE_PCI_GEN15_PRODID_ASICREV);
3342 break;
3343 default:
3344 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3345 BGE_PCI_PRODID_ASICREV);
3346 break;
3347 }
3348 }
3349
3350 return id;
3351 }
3352
3353 /*
3354 * Return true if MSI can be used with this device.
3355 */
3356 static int
3357 bge_can_use_msi(struct bge_softc *sc)
3358 {
3359 int can_use_msi = 0;
3360
3361 switch (BGE_ASICREV(sc->bge_chipid)) {
3362 case BGE_ASICREV_BCM5714_A0:
3363 case BGE_ASICREV_BCM5714:
3364 /*
3365 * Apparently, MSI doesn't work when these chips are
3366 * configured in single-port mode.
3367 */
3368 break;
3369 case BGE_ASICREV_BCM5750:
3370 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3371 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3372 can_use_msi = 1;
3373 break;
3374 default:
3375 if (BGE_IS_575X_PLUS(sc))
3376 can_use_msi = 1;
3377 }
3378 return (can_use_msi);
3379 }
3380
3381 /*
3382 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3383 * against our list and return its name if we find a match. Note
3384 * that since the Broadcom controller contains VPD support, we
3385 * can get the device name string from the controller itself instead
3386 * of the compiled-in string. This is a little slow, but it guarantees
3387 * we'll always announce the right product name.
3388 */
3389 static int
3390 bge_probe(device_t parent, cfdata_t match, void *aux)
3391 {
3392 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3393
3394 if (bge_lookup(pa) != NULL)
3395 return 1;
3396
3397 return 0;
3398 }
3399
3400 static void
3401 bge_attach(device_t parent, device_t self, void *aux)
3402 {
3403 struct bge_softc *sc = device_private(self);
3404 struct pci_attach_args *pa = aux;
3405 prop_dictionary_t dict;
3406 const struct bge_product *bp;
3407 const struct bge_revision *br;
3408 pci_chipset_tag_t pc;
3409 const char *intrstr = NULL;
3410 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3411 uint32_t command;
3412 struct ifnet *ifp;
3413 uint32_t misccfg, mimode;
3414 void * kva;
3415 u_char eaddr[ETHER_ADDR_LEN];
3416 pcireg_t memtype, subid, reg;
3417 bus_addr_t memaddr;
3418 uint32_t pm_ctl;
3419 bool no_seeprom;
3420 int capmask;
3421 int mii_flags;
3422 int map_flags;
3423 char intrbuf[PCI_INTRSTR_LEN];
3424
3425 bp = bge_lookup(pa);
3426 KASSERT(bp != NULL);
3427
3428 sc->sc_pc = pa->pa_pc;
3429 sc->sc_pcitag = pa->pa_tag;
3430 sc->bge_dev = self;
3431
3432 sc->bge_pa = *pa;
3433 pc = sc->sc_pc;
3434 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3435
3436 aprint_naive(": Ethernet controller\n");
3437 aprint_normal(": %s\n", bp->bp_name);
3438
3439 /*
3440 * Map control/status registers.
3441 */
3442 DPRINTFN(5, ("Map control/status regs\n"));
3443 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3444 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3445 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3446 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3447
3448 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3449 aprint_error_dev(sc->bge_dev,
3450 "failed to enable memory mapping!\n");
3451 return;
3452 }
3453
3454 DPRINTFN(5, ("pci_mem_find\n"));
3455 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3456 switch (memtype) {
3457 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3458 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3459 #if 0
3460 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3461 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3462 &memaddr, &sc->bge_bsize) == 0)
3463 break;
3464 #else
3465 /*
3466 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3467 * system get NMI on boot (PR#48451). This problem might not be
3468 * the driver's bug but our PCI common part's bug. Until we
3469 * find a real reason, we ignore the prefetchable bit.
3470 */
3471 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3472 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3473 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3474 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3475 map_flags, &sc->bge_bhandle) == 0) {
3476 sc->bge_btag = pa->pa_memt;
3477 break;
3478 }
3479 }
3480 #endif
3481 default:
3482 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3483 return;
3484 }
3485
3486 /* Save various chip information. */
3487 sc->bge_chipid = bge_chipid(pa);
3488 sc->bge_phy_addr = bge_phy_addr(sc);
3489
3490 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3491 &sc->bge_pciecap, NULL) != 0) {
3492 /* PCIe */
3493 sc->bge_flags |= BGEF_PCIE;
3494 /* Extract supported maximum payload size. */
3495 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3496 sc->bge_pciecap + PCIE_DCAP);
3497 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3498 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3499 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3500 sc->bge_expmrq = 2048;
3501 else
3502 sc->bge_expmrq = 4096;
3503 bge_set_max_readrq(sc);
3504 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3505 /* PCIe without PCIe cap */
3506 sc->bge_flags |= BGEF_PCIE;
3507 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3508 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3509 /* PCI-X */
3510 sc->bge_flags |= BGEF_PCIX;
3511 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3512 &sc->bge_pcixcap, NULL) == 0)
3513 aprint_error_dev(sc->bge_dev,
3514 "unable to find PCIX capability\n");
3515 }
3516
3517 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3518 /*
3519 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3520 * can clobber the chip's PCI config-space power control
3521 * registers, leaving the card in D3 powersave state. We do
3522 * not have memory-mapped registers in this state, so force
3523 * device into D0 state before starting initialization.
3524 */
3525 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3526 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3527 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3528 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3529 DELAY(1000); /* 27 usec is allegedly sufficent */
3530 }
3531
3532 /* Save chipset family. */
3533 switch (BGE_ASICREV(sc->bge_chipid)) {
3534 case BGE_ASICREV_BCM5717:
3535 case BGE_ASICREV_BCM5719:
3536 case BGE_ASICREV_BCM5720:
3537 sc->bge_flags |= BGEF_5717_PLUS;
3538 /* FALLTHROUGH */
3539 case BGE_ASICREV_BCM57765:
3540 case BGE_ASICREV_BCM57766:
3541 if (!BGE_IS_5717_PLUS(sc))
3542 sc->bge_flags |= BGEF_57765_FAMILY;
3543 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3544 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3545 /* Jumbo frame on BCM5719 A0 does not work. */
3546 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3547 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3548 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3549 break;
3550 case BGE_ASICREV_BCM5755:
3551 case BGE_ASICREV_BCM5761:
3552 case BGE_ASICREV_BCM5784:
3553 case BGE_ASICREV_BCM5785:
3554 case BGE_ASICREV_BCM5787:
3555 case BGE_ASICREV_BCM57780:
3556 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3557 break;
3558 case BGE_ASICREV_BCM5700:
3559 case BGE_ASICREV_BCM5701:
3560 case BGE_ASICREV_BCM5703:
3561 case BGE_ASICREV_BCM5704:
3562 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3563 break;
3564 case BGE_ASICREV_BCM5714_A0:
3565 case BGE_ASICREV_BCM5780:
3566 case BGE_ASICREV_BCM5714:
3567 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3568 /* FALLTHROUGH */
3569 case BGE_ASICREV_BCM5750:
3570 case BGE_ASICREV_BCM5752:
3571 case BGE_ASICREV_BCM5906:
3572 sc->bge_flags |= BGEF_575X_PLUS;
3573 /* FALLTHROUGH */
3574 case BGE_ASICREV_BCM5705:
3575 sc->bge_flags |= BGEF_5705_PLUS;
3576 break;
3577 }
3578
3579 /* Identify chips with APE processor. */
3580 switch (BGE_ASICREV(sc->bge_chipid)) {
3581 case BGE_ASICREV_BCM5717:
3582 case BGE_ASICREV_BCM5719:
3583 case BGE_ASICREV_BCM5720:
3584 case BGE_ASICREV_BCM5761:
3585 sc->bge_flags |= BGEF_APE;
3586 break;
3587 }
3588
3589 /*
3590 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3591 * not actually a MAC controller bug but an issue with the embedded
3592 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3593 */
3594 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3595 sc->bge_flags |= BGEF_40BIT_BUG;
3596
3597 /* Chips with APE need BAR2 access for APE registers/memory. */
3598 if ((sc->bge_flags & BGEF_APE) != 0) {
3599 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3600 #if 0
3601 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3602 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3603 &sc->bge_apesize)) {
3604 aprint_error_dev(sc->bge_dev,
3605 "couldn't map BAR2 memory\n");
3606 return;
3607 }
3608 #else
3609 /*
3610 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3611 * system get NMI on boot (PR#48451). This problem might not be
3612 * the driver's bug but our PCI common part's bug. Until we
3613 * find a real reason, we ignore the prefetchable bit.
3614 */
3615 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3616 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3617 aprint_error_dev(sc->bge_dev,
3618 "couldn't map BAR2 memory\n");
3619 return;
3620 }
3621
3622 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3623 if (bus_space_map(pa->pa_memt, memaddr,
3624 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3625 aprint_error_dev(sc->bge_dev,
3626 "couldn't map BAR2 memory\n");
3627 return;
3628 }
3629 sc->bge_apetag = pa->pa_memt;
3630 #endif
3631
3632 /* Enable APE register/memory access by host driver. */
3633 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3634 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3635 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3636 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3637 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3638
3639 bge_ape_lock_init(sc);
3640 bge_ape_read_fw_ver(sc);
3641 }
3642
3643 /* Identify the chips that use an CPMU. */
3644 if (BGE_IS_5717_PLUS(sc) ||
3645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3646 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3647 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3649 sc->bge_flags |= BGEF_CPMU_PRESENT;
3650
3651 /* Set MI_MODE */
3652 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3653 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3654 mimode |= BGE_MIMODE_500KHZ_CONST;
3655 else
3656 mimode |= BGE_MIMODE_BASE;
3657 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3658
3659 /*
3660 * When using the BCM5701 in PCI-X mode, data corruption has
3661 * been observed in the first few bytes of some received packets.
3662 * Aligning the packet buffer in memory eliminates the corruption.
3663 * Unfortunately, this misaligns the packet payloads. On platforms
3664 * which do not support unaligned accesses, we will realign the
3665 * payloads by copying the received packets.
3666 */
3667 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3668 sc->bge_flags & BGEF_PCIX)
3669 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3670
3671 if (BGE_IS_5700_FAMILY(sc))
3672 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3673
3674 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3675 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3676
3677 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3678 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3679 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3680 sc->bge_flags |= BGEF_IS_5788;
3681
3682 /*
3683 * Some controllers seem to require a special firmware to use
3684 * TSO. But the firmware is not available to FreeBSD and Linux
3685 * claims that the TSO performed by the firmware is slower than
3686 * hardware based TSO. Moreover the firmware based TSO has one
3687 * known bug which can't handle TSO if ethernet header + IP/TCP
3688 * header is greater than 80 bytes. The workaround for the TSO
3689 * bug exist but it seems it's too expensive than not using
3690 * TSO at all. Some hardwares also have the TSO bug so limit
3691 * the TSO to the controllers that are not affected TSO issues
3692 * (e.g. 5755 or higher).
3693 */
3694 if (BGE_IS_5755_PLUS(sc)) {
3695 /*
3696 * BCM5754 and BCM5787 shares the same ASIC id so
3697 * explicit device id check is required.
3698 */
3699 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3700 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3701 sc->bge_flags |= BGEF_TSO;
3702 /* TSO on BCM5719 A0 does not work. */
3703 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3704 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3705 sc->bge_flags &= ~BGEF_TSO;
3706 }
3707
3708 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3709 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3710 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3711 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3712 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3713 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3714 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3715 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3716 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3717 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3718 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3719 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3720 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3721 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3722 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3723 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3724 /* These chips are 10/100 only. */
3725 capmask &= ~BMSR_EXTSTAT;
3726 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3727 }
3728
3729 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3730 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3731 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3732 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3733 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3734
3735 /* Set various PHY bug flags. */
3736 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3737 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3738 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3739 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3740 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3741 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3742 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3743 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3744 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3745 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3746 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3747 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3748 if (BGE_IS_5705_PLUS(sc) &&
3749 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3750 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3751 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3752 !BGE_IS_57765_PLUS(sc)) {
3753 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3754 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3755 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3756 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3757 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3758 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3759 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3760 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3761 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3762 } else
3763 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3764 }
3765
3766 /*
3767 * SEEPROM check.
3768 * First check if firmware knows we do not have SEEPROM.
3769 */
3770 if (prop_dictionary_get_bool(device_properties(self),
3771 "without-seeprom", &no_seeprom) && no_seeprom)
3772 sc->bge_flags |= BGEF_NO_EEPROM;
3773
3774 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3775 sc->bge_flags |= BGEF_NO_EEPROM;
3776
3777 /* Now check the 'ROM failed' bit on the RX CPU */
3778 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3779 sc->bge_flags |= BGEF_NO_EEPROM;
3780
3781 sc->bge_asf_mode = 0;
3782 /* No ASF if APE present. */
3783 if ((sc->bge_flags & BGEF_APE) == 0) {
3784 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3785 BGE_SRAM_DATA_SIG_MAGIC)) {
3786 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3787 BGE_HWCFG_ASF) {
3788 sc->bge_asf_mode |= ASF_ENABLE;
3789 sc->bge_asf_mode |= ASF_STACKUP;
3790 if (BGE_IS_575X_PLUS(sc))
3791 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3792 }
3793 }
3794 }
3795
3796 int counts[PCI_INTR_TYPE_SIZE] = {
3797 [PCI_INTR_TYPE_INTX] = 1,
3798 [PCI_INTR_TYPE_MSI] = 1,
3799 [PCI_INTR_TYPE_MSIX] = 1,
3800 };
3801 int max_type = PCI_INTR_TYPE_MSIX;
3802
3803 if (!bge_can_use_msi(sc)) {
3804 /* MSI broken, allow only INTx */
3805 max_type = PCI_INTR_TYPE_INTX;
3806 }
3807
3808 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3809 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3810 return;
3811 }
3812
3813 DPRINTFN(5, ("pci_intr_string\n"));
3814 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3815 sizeof(intrbuf));
3816 DPRINTFN(5, ("pci_intr_establish\n"));
3817 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3818 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3819 if (sc->bge_intrhand == NULL) {
3820 pci_intr_release(pc, sc->bge_pihp, 1);
3821 sc->bge_pihp = NULL;
3822
3823 aprint_error_dev(self, "couldn't establish interrupt");
3824 if (intrstr != NULL)
3825 aprint_error(" at %s", intrstr);
3826 aprint_error("\n");
3827 return;
3828 }
3829 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3830
3831 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3832 case PCI_INTR_TYPE_MSIX:
3833 case PCI_INTR_TYPE_MSI:
3834 KASSERT(bge_can_use_msi(sc));
3835 sc->bge_flags |= BGEF_MSI;
3836 break;
3837 default:
3838 /* nothing to do */
3839 break;
3840 }
3841
3842 /*
3843 * All controllers except BCM5700 supports tagged status but
3844 * we use tagged status only for MSI case on BCM5717. Otherwise
3845 * MSI on BCM5717 does not work.
3846 */
3847 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3848 sc->bge_flags |= BGEF_TAGGED_STATUS;
3849
3850 /*
3851 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3852 * lock in bge_reset().
3853 */
3854 CSR_WRITE_4(sc, BGE_EE_ADDR,
3855 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3856 delay(1000);
3857 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3858
3859 bge_stop_fw(sc);
3860 bge_sig_pre_reset(sc, BGE_RESET_START);
3861 if (bge_reset(sc))
3862 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3863
3864 /*
3865 * Read the hardware config word in the first 32k of NIC internal
3866 * memory, or fall back to the config word in the EEPROM.
3867 * Note: on some BCM5700 cards, this value appears to be unset.
3868 */
3869 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3870 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3871 BGE_SRAM_DATA_SIG_MAGIC) {
3872 uint32_t tmp;
3873
3874 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3875 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3876 BGE_SRAM_DATA_VER_SHIFT;
3877 if ((0 < tmp) && (tmp < 0x100))
3878 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3879 if (sc->bge_flags & BGEF_PCIE)
3880 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3881 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3882 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3883 if (BGE_IS_5717_PLUS(sc))
3884 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3885 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3886 bge_read_eeprom(sc, (void *)&hwcfg,
3887 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3888 hwcfg = be32toh(hwcfg);
3889 }
3890 aprint_normal_dev(sc->bge_dev,
3891 "HW config %08x, %08x, %08x, %08x %08x\n",
3892 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3893
3894 bge_sig_legacy(sc, BGE_RESET_START);
3895 bge_sig_post_reset(sc, BGE_RESET_START);
3896
3897 if (bge_chipinit(sc)) {
3898 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3899 bge_release_resources(sc);
3900 return;
3901 }
3902
3903 /*
3904 * Get station address from the EEPROM.
3905 */
3906 if (bge_get_eaddr(sc, eaddr)) {
3907 aprint_error_dev(sc->bge_dev,
3908 "failed to read station address\n");
3909 bge_release_resources(sc);
3910 return;
3911 }
3912
3913 br = bge_lookup_rev(sc->bge_chipid);
3914
3915 if (br == NULL) {
3916 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3917 sc->bge_chipid);
3918 } else {
3919 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3920 br->br_name, sc->bge_chipid);
3921 }
3922 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3923
3924 /* Allocate the general information block and ring buffers. */
3925 if (pci_dma64_available(pa)) {
3926 sc->bge_dmatag = pa->pa_dmat64;
3927 sc->bge_dmatag32 = pa->pa_dmat;
3928 sc->bge_dma64 = true;
3929 } else {
3930 sc->bge_dmatag = pa->pa_dmat;
3931 sc->bge_dmatag32 = pa->pa_dmat;
3932 sc->bge_dma64 = false;
3933 }
3934
3935 /* 40bit DMA workaround */
3936 if (sizeof(bus_addr_t) > 4) {
3937 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3938 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3939
3940 if (bus_dmatag_subregion(olddmatag, 0,
3941 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3942 BUS_DMA_NOWAIT) != 0) {
3943 aprint_error_dev(self,
3944 "WARNING: failed to restrict dma range,"
3945 " falling back to parent bus dma range\n");
3946 sc->bge_dmatag = olddmatag;
3947 }
3948 }
3949 }
3950 SLIST_INIT(&sc->txdma_list);
3951 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3952 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3953 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3954 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3955 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3956 return;
3957 }
3958 DPRINTFN(5, ("bus_dmamem_map\n"));
3959 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3960 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3961 BUS_DMA_NOWAIT)) {
3962 aprint_error_dev(sc->bge_dev,
3963 "can't map DMA buffers (%zu bytes)\n",
3964 sizeof(struct bge_ring_data));
3965 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3966 sc->bge_ring_rseg);
3967 return;
3968 }
3969 DPRINTFN(5, ("bus_dmamem_create\n"));
3970 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3971 sizeof(struct bge_ring_data), 0,
3972 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3973 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3974 bus_dmamem_unmap(sc->bge_dmatag, kva,
3975 sizeof(struct bge_ring_data));
3976 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3977 sc->bge_ring_rseg);
3978 return;
3979 }
3980 DPRINTFN(5, ("bus_dmamem_load\n"));
3981 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3982 sizeof(struct bge_ring_data), NULL,
3983 BUS_DMA_NOWAIT)) {
3984 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3985 bus_dmamem_unmap(sc->bge_dmatag, kva,
3986 sizeof(struct bge_ring_data));
3987 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3988 sc->bge_ring_rseg);
3989 return;
3990 }
3991
3992 DPRINTFN(5, ("bzero\n"));
3993 sc->bge_rdata = (struct bge_ring_data *)kva;
3994
3995 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3996
3997 /* Try to allocate memory for jumbo buffers. */
3998 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3999 if (bge_alloc_jumbo_mem(sc)) {
4000 aprint_error_dev(sc->bge_dev,
4001 "jumbo buffer allocation failed\n");
4002 } else
4003 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
4004 }
4005
4006 /* Set default tuneable values. */
4007 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
4008 sc->bge_rx_coal_ticks = 150;
4009 sc->bge_rx_max_coal_bds = 64;
4010 sc->bge_tx_coal_ticks = 300;
4011 sc->bge_tx_max_coal_bds = 400;
4012 if (BGE_IS_5705_PLUS(sc)) {
4013 sc->bge_tx_coal_ticks = (12 * 5);
4014 sc->bge_tx_max_coal_bds = (12 * 5);
4015 aprint_verbose_dev(sc->bge_dev,
4016 "setting short Tx thresholds\n");
4017 }
4018
4019 if (BGE_IS_5717_PLUS(sc))
4020 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4021 else if (BGE_IS_5705_PLUS(sc))
4022 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
4023 else
4024 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4025
4026 /* Set up ifnet structure */
4027 ifp = &sc->ethercom.ec_if;
4028 ifp->if_softc = sc;
4029 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
4030 ifp->if_ioctl = bge_ioctl;
4031 ifp->if_stop = bge_stop;
4032 ifp->if_start = bge_start;
4033 ifp->if_init = bge_init;
4034 ifp->if_watchdog = bge_watchdog;
4035 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
4036 IFQ_SET_READY(&ifp->if_snd);
4037 DPRINTFN(5, ("strcpy if_xname\n"));
4038 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
4039
4040 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
4041 sc->ethercom.ec_if.if_capabilities |=
4042 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
4043 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
4044 sc->ethercom.ec_if.if_capabilities |=
4045 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
4046 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
4047 #endif
4048 sc->ethercom.ec_capabilities |=
4049 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
4050
4051 if (sc->bge_flags & BGEF_TSO)
4052 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
4053
4054 /*
4055 * Do MII setup.
4056 */
4057 DPRINTFN(5, ("mii setup\n"));
4058 sc->bge_mii.mii_ifp = ifp;
4059 sc->bge_mii.mii_readreg = bge_miibus_readreg;
4060 sc->bge_mii.mii_writereg = bge_miibus_writereg;
4061 sc->bge_mii.mii_statchg = bge_miibus_statchg;
4062
4063 /*
4064 * Figure out what sort of media we have by checking the hardware
4065 * config word. Note: on some BCM5700 cards, this value appears to be
4066 * unset. If that's the case, we have to rely on identifying the NIC
4067 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4068 * The SysKonnect SK-9D41 is a 1000baseSX card.
4069 */
4070 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4071 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4072 if (BGE_IS_5705_PLUS(sc)) {
4073 sc->bge_flags |= BGEF_FIBER_MII;
4074 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4075 } else
4076 sc->bge_flags |= BGEF_FIBER_TBI;
4077 }
4078
4079 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4080 if (BGE_IS_JUMBO_CAPABLE(sc))
4081 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4082
4083 /* set phyflags and chipid before mii_attach() */
4084 dict = device_properties(self);
4085 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4086 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4087
4088 if (sc->bge_flags & BGEF_FIBER_TBI) {
4089 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4090 bge_ifmedia_sts);
4091 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4092 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4093 0, NULL);
4094 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4095 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4096 /* Pretend the user requested this setting */
4097 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4098 } else {
4099 /*
4100 * Do transceiver setup and tell the firmware the
4101 * driver is down so we can try to get access the
4102 * probe if ASF is running. Retry a couple of times
4103 * if we get a conflict with the ASF firmware accessing
4104 * the PHY.
4105 */
4106 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4107 bge_asf_driver_up(sc);
4108
4109 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4110 bge_ifmedia_sts);
4111 mii_flags = MIIF_DOPAUSE;
4112 if (sc->bge_flags & BGEF_FIBER_MII)
4113 mii_flags |= MIIF_HAVEFIBER;
4114 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4115 MII_OFFSET_ANY, mii_flags);
4116
4117 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4118 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4119 ifmedia_add(&sc->bge_mii.mii_media,
4120 IFM_ETHER|IFM_MANUAL, 0, NULL);
4121 ifmedia_set(&sc->bge_mii.mii_media,
4122 IFM_ETHER|IFM_MANUAL);
4123 } else
4124 ifmedia_set(&sc->bge_mii.mii_media,
4125 IFM_ETHER|IFM_AUTO);
4126
4127 /*
4128 * Now tell the firmware we are going up after probing the PHY
4129 */
4130 if (sc->bge_asf_mode & ASF_STACKUP)
4131 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4132 }
4133
4134 /*
4135 * Call MI attach routine.
4136 */
4137 DPRINTFN(5, ("if_attach\n"));
4138 if_attach(ifp);
4139 if_deferred_start_init(ifp, NULL);
4140 DPRINTFN(5, ("ether_ifattach\n"));
4141 ether_ifattach(ifp, eaddr);
4142 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4143 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4144 RND_TYPE_NET, RND_FLAG_DEFAULT);
4145 #ifdef BGE_EVENT_COUNTERS
4146 /*
4147 * Attach event counters.
4148 */
4149 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4150 NULL, device_xname(sc->bge_dev), "intr");
4151 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4152 NULL, device_xname(sc->bge_dev), "intr_spurious");
4153 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4154 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4155 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4156 NULL, device_xname(sc->bge_dev), "tx_xoff");
4157 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4158 NULL, device_xname(sc->bge_dev), "tx_xon");
4159 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4160 NULL, device_xname(sc->bge_dev), "rx_xoff");
4161 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4162 NULL, device_xname(sc->bge_dev), "rx_xon");
4163 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4164 NULL, device_xname(sc->bge_dev), "rx_macctl");
4165 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4166 NULL, device_xname(sc->bge_dev), "xoffentered");
4167 #endif /* BGE_EVENT_COUNTERS */
4168 DPRINTFN(5, ("callout_init\n"));
4169 callout_init(&sc->bge_timeout, 0);
4170
4171 if (pmf_device_register(self, NULL, NULL))
4172 pmf_class_network_register(self, ifp);
4173 else
4174 aprint_error_dev(self, "couldn't establish power handler\n");
4175
4176 bge_sysctl_init(sc);
4177
4178 #ifdef BGE_DEBUG
4179 bge_debug_info(sc);
4180 #endif
4181 }
4182
4183 /*
4184 * Stop all chip I/O so that the kernel's probe routines don't
4185 * get confused by errant DMAs when rebooting.
4186 */
4187 static int
4188 bge_detach(device_t self, int flags __unused)
4189 {
4190 struct bge_softc *sc = device_private(self);
4191 struct ifnet *ifp = &sc->ethercom.ec_if;
4192 int s;
4193
4194 s = splnet();
4195 /* Stop the interface. Callouts are stopped in it. */
4196 bge_stop(ifp, 1);
4197 splx(s);
4198
4199 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4200
4201 /* Delete all remaining media. */
4202 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4203
4204 ether_ifdetach(ifp);
4205 if_detach(ifp);
4206
4207 bge_release_resources(sc);
4208
4209 return 0;
4210 }
4211
4212 static void
4213 bge_release_resources(struct bge_softc *sc)
4214 {
4215
4216 /* Detach sysctl */
4217 if (sc->bge_log != NULL)
4218 sysctl_teardown(&sc->bge_log);
4219
4220 #ifdef BGE_EVENT_COUNTERS
4221 /* Detach event counters. */
4222 evcnt_detach(&sc->bge_ev_intr);
4223 evcnt_detach(&sc->bge_ev_intr_spurious);
4224 evcnt_detach(&sc->bge_ev_intr_spurious2);
4225 evcnt_detach(&sc->bge_ev_tx_xoff);
4226 evcnt_detach(&sc->bge_ev_tx_xon);
4227 evcnt_detach(&sc->bge_ev_rx_xoff);
4228 evcnt_detach(&sc->bge_ev_rx_xon);
4229 evcnt_detach(&sc->bge_ev_rx_macctl);
4230 evcnt_detach(&sc->bge_ev_xoffentered);
4231 #endif /* BGE_EVENT_COUNTERS */
4232
4233 /* Disestablish the interrupt handler */
4234 if (sc->bge_intrhand != NULL) {
4235 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4236 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4237 sc->bge_intrhand = NULL;
4238 }
4239
4240 if (sc->bge_dmatag != NULL) {
4241 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4242 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4243 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4244 sizeof(struct bge_ring_data));
4245 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4246 sc->bge_ring_rseg);
4247 }
4248
4249 /* Unmap the device registers */
4250 if (sc->bge_bsize != 0) {
4251 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4252 sc->bge_bsize = 0;
4253 }
4254
4255 /* Unmap the APE registers */
4256 if (sc->bge_apesize != 0) {
4257 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4258 sc->bge_apesize);
4259 sc->bge_apesize = 0;
4260 }
4261 }
4262
4263 static int
4264 bge_reset(struct bge_softc *sc)
4265 {
4266 uint32_t cachesize, command;
4267 uint32_t reset, mac_mode, mac_mode_mask;
4268 pcireg_t devctl, reg;
4269 int i, val;
4270 void (*write_op)(struct bge_softc *, int, int);
4271
4272 /* Make mask for BGE_MAC_MODE register. */
4273 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4274 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4275 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4276 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4277 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4278
4279 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4280 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4281 if (sc->bge_flags & BGEF_PCIE)
4282 write_op = bge_writemem_direct;
4283 else
4284 write_op = bge_writemem_ind;
4285 } else
4286 write_op = bge_writereg_ind;
4287
4288 /* 57XX step 4 */
4289 /* Acquire the NVM lock */
4290 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4291 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4292 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4293 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4294 for (i = 0; i < 8000; i++) {
4295 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4296 BGE_NVRAMSWARB_GNT1)
4297 break;
4298 DELAY(20);
4299 }
4300 if (i == 8000) {
4301 printf("%s: NVRAM lock timedout!\n",
4302 device_xname(sc->bge_dev));
4303 }
4304 }
4305
4306 /* Take APE lock when performing reset. */
4307 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4308
4309 /* 57XX step 3 */
4310 /* Save some important PCI state. */
4311 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4312 /* 5718 reset step 3 */
4313 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4314
4315 /* 5718 reset step 5, 57XX step 5b-5d */
4316 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4317 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4318 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4319
4320 /* XXX ???: Disable fastboot on controllers that support it. */
4321 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4322 BGE_IS_5755_PLUS(sc))
4323 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4324
4325 /* 5718 reset step 2, 57XX step 6 */
4326 /*
4327 * Write the magic number to SRAM at offset 0xB50.
4328 * When firmware finishes its initialization it will
4329 * write ~BGE_MAGIC_NUMBER to the same location.
4330 */
4331 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4332
4333 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4334 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4335 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4336 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4337 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4338 }
4339
4340 /* 5718 reset step 6, 57XX step 7 */
4341 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4342 /*
4343 * XXX: from FreeBSD/Linux; no documentation
4344 */
4345 if (sc->bge_flags & BGEF_PCIE) {
4346 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4347 !BGE_IS_57765_PLUS(sc) &&
4348 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4349 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4350 /* PCI Express 1.0 system */
4351 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4352 BGE_PHY_PCIE_SCRAM_MODE);
4353 }
4354 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4355 /*
4356 * Prevent PCI Express link training
4357 * during global reset.
4358 */
4359 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4360 reset |= (1 << 29);
4361 }
4362 }
4363
4364 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4365 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4366 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4367 i | BGE_VCPU_STATUS_DRV_RESET);
4368 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4369 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4370 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4371 }
4372
4373 /*
4374 * Set GPHY Power Down Override to leave GPHY
4375 * powered up in D0 uninitialized.
4376 */
4377 if (BGE_IS_5705_PLUS(sc) &&
4378 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4379 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4380
4381 /* Issue global reset */
4382 write_op(sc, BGE_MISC_CFG, reset);
4383
4384 /* 5718 reset step 7, 57XX step 8 */
4385 if (sc->bge_flags & BGEF_PCIE)
4386 delay(100*1000); /* too big */
4387 else
4388 delay(1000);
4389
4390 if (sc->bge_flags & BGEF_PCIE) {
4391 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4392 DELAY(500000);
4393 /* XXX: Magic Numbers */
4394 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4395 BGE_PCI_UNKNOWN0);
4396 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4397 BGE_PCI_UNKNOWN0,
4398 reg | (1 << 15));
4399 }
4400 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4401 sc->bge_pciecap + PCIE_DCSR);
4402 /* Clear enable no snoop and disable relaxed ordering. */
4403 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4404 PCIE_DCSR_ENA_NO_SNOOP);
4405
4406 /* Set PCIE max payload size to 128 for older PCIe devices */
4407 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4408 devctl &= ~(0x00e0);
4409 /* Clear device status register. Write 1b to clear */
4410 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4411 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4412 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4413 sc->bge_pciecap + PCIE_DCSR, devctl);
4414 bge_set_max_readrq(sc);
4415 }
4416
4417 /* From Linux: dummy read to flush PCI posted writes */
4418 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4419
4420 /*
4421 * Reset some of the PCI state that got zapped by reset
4422 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4423 * set, too.
4424 */
4425 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4426 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4427 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4428 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4429 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4430 (sc->bge_flags & BGEF_PCIX) != 0)
4431 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4432 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4433 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4434 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4435 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4436 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4437 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4438 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4439
4440 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4441 if (sc->bge_flags & BGEF_PCIX) {
4442 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4443 + PCIX_CMD);
4444 /* Set max memory read byte count to 2K */
4445 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4446 reg &= ~PCIX_CMD_BYTECNT_MASK;
4447 reg |= PCIX_CMD_BCNT_2048;
4448 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4449 /*
4450 * For 5704, set max outstanding split transaction
4451 * field to 0 (0 means it supports 1 request)
4452 */
4453 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4454 | PCIX_CMD_BYTECNT_MASK);
4455 reg |= PCIX_CMD_BCNT_2048;
4456 }
4457 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4458 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4459 }
4460
4461 /* 5718 reset step 10, 57XX step 12 */
4462 /* Enable memory arbiter. */
4463 if (BGE_IS_5714_FAMILY(sc)) {
4464 val = CSR_READ_4(sc, BGE_MARB_MODE);
4465 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4466 } else
4467 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4468
4469 /* XXX 5721, 5751 and 5752 */
4470 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4471 /* Step 19: */
4472 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4473 /* Step 20: */
4474 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4475 }
4476
4477 /* 5718 reset step 12, 57XX step 15 and 16 */
4478 /* Fix up byte swapping */
4479 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4480
4481 /* 5718 reset step 13, 57XX step 17 */
4482 /* Poll until the firmware initialization is complete */
4483 bge_poll_fw(sc);
4484
4485 /* 57XX step 21 */
4486 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4487 pcireg_t msidata;
4488
4489 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4490 BGE_PCI_MSI_DATA);
4491 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4492 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4493 msidata);
4494 }
4495
4496 /* 57XX step 18 */
4497 /* Write mac mode. */
4498 val = CSR_READ_4(sc, BGE_MAC_MODE);
4499 /* Restore mac_mode_mask's bits using mac_mode */
4500 val = (val & ~mac_mode_mask) | mac_mode;
4501 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4502 DELAY(40);
4503
4504 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4505
4506 /*
4507 * The 5704 in TBI mode apparently needs some special
4508 * adjustment to insure the SERDES drive level is set
4509 * to 1.2V.
4510 */
4511 if (sc->bge_flags & BGEF_FIBER_TBI &&
4512 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4513 uint32_t serdescfg;
4514
4515 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4516 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4517 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4518 }
4519
4520 if (sc->bge_flags & BGEF_PCIE &&
4521 !BGE_IS_57765_PLUS(sc) &&
4522 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4523 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4524 uint32_t v;
4525
4526 /* Enable PCI Express bug fix */
4527 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4528 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4529 v | BGE_TLP_DATA_FIFO_PROTECT);
4530 }
4531
4532 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4533 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4534 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4535
4536 return 0;
4537 }
4538
4539 /*
4540 * Frame reception handling. This is called if there's a frame
4541 * on the receive return list.
4542 *
4543 * Note: we have to be able to handle two possibilities here:
4544 * 1) the frame is from the jumbo receive ring
4545 * 2) the frame is from the standard receive ring
4546 */
4547
4548 static void
4549 bge_rxeof(struct bge_softc *sc)
4550 {
4551 struct ifnet *ifp;
4552 uint16_t rx_prod, rx_cons;
4553 int stdcnt = 0, jumbocnt = 0;
4554 bus_dmamap_t dmamap;
4555 bus_addr_t offset, toff;
4556 bus_size_t tlen;
4557 int tosync;
4558
4559 rx_cons = sc->bge_rx_saved_considx;
4560 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4561
4562 /* Nothing to do */
4563 if (rx_cons == rx_prod)
4564 return;
4565
4566 ifp = &sc->ethercom.ec_if;
4567
4568 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4569 offsetof(struct bge_ring_data, bge_status_block),
4570 sizeof (struct bge_status_block),
4571 BUS_DMASYNC_POSTREAD);
4572
4573 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4574 tosync = rx_prod - rx_cons;
4575
4576 if (tosync != 0)
4577 rnd_add_uint32(&sc->rnd_source, tosync);
4578
4579 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4580
4581 if (tosync < 0) {
4582 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4583 sizeof (struct bge_rx_bd);
4584 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4585 toff, tlen, BUS_DMASYNC_POSTREAD);
4586 tosync = -tosync;
4587 }
4588
4589 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4590 offset, tosync * sizeof (struct bge_rx_bd),
4591 BUS_DMASYNC_POSTREAD);
4592
4593 while (rx_cons != rx_prod) {
4594 struct bge_rx_bd *cur_rx;
4595 uint32_t rxidx;
4596 struct mbuf *m = NULL;
4597
4598 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4599
4600 rxidx = cur_rx->bge_idx;
4601 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4602
4603 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4604 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4605 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4606 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4607 jumbocnt++;
4608 bus_dmamap_sync(sc->bge_dmatag,
4609 sc->bge_cdata.bge_rx_jumbo_map,
4610 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4611 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4612 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4613 ifp->if_ierrors++;
4614 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4615 continue;
4616 }
4617 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4618 NULL)== ENOBUFS) {
4619 ifp->if_ierrors++;
4620 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4621 continue;
4622 }
4623 } else {
4624 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4625 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4626
4627 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4628 stdcnt++;
4629 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4630 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4631 if (dmamap == NULL) {
4632 ifp->if_ierrors++;
4633 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4634 continue;
4635 }
4636 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4637 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4638 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4639 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4640 ifp->if_ierrors++;
4641 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4642 continue;
4643 }
4644 if (bge_newbuf_std(sc, sc->bge_std,
4645 NULL, dmamap) == ENOBUFS) {
4646 ifp->if_ierrors++;
4647 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4648 continue;
4649 }
4650 }
4651
4652 #ifndef __NO_STRICT_ALIGNMENT
4653 /*
4654 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4655 * the Rx buffer has the layer-2 header unaligned.
4656 * If our CPU requires alignment, re-align by copying.
4657 */
4658 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4659 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4660 cur_rx->bge_len);
4661 m->m_data += ETHER_ALIGN;
4662 }
4663 #endif
4664
4665 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4666 m_set_rcvif(m, ifp);
4667
4668 bge_rxcsum(sc, cur_rx, m);
4669
4670 /*
4671 * If we received a packet with a vlan tag, pass it
4672 * to vlan_input() instead of ether_input().
4673 */
4674 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4675 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4676 }
4677
4678 if_percpuq_enqueue(ifp->if_percpuq, m);
4679 }
4680
4681 sc->bge_rx_saved_considx = rx_cons;
4682 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4683 if (stdcnt)
4684 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4685 if (jumbocnt)
4686 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4687 }
4688
4689 static void
4690 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4691 {
4692
4693 if (BGE_IS_57765_PLUS(sc)) {
4694 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4695 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4696 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4697 if ((cur_rx->bge_error_flag &
4698 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4699 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4700 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4701 m->m_pkthdr.csum_data =
4702 cur_rx->bge_tcp_udp_csum;
4703 m->m_pkthdr.csum_flags |=
4704 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4705 M_CSUM_DATA);
4706 }
4707 }
4708 } else {
4709 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4710 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4711 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4712 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4713 /*
4714 * Rx transport checksum-offload may also
4715 * have bugs with packets which, when transmitted,
4716 * were `runts' requiring padding.
4717 */
4718 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4719 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4720 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4721 m->m_pkthdr.csum_data =
4722 cur_rx->bge_tcp_udp_csum;
4723 m->m_pkthdr.csum_flags |=
4724 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4725 M_CSUM_DATA);
4726 }
4727 }
4728 }
4729
4730 static void
4731 bge_txeof(struct bge_softc *sc)
4732 {
4733 struct bge_tx_bd *cur_tx = NULL;
4734 struct ifnet *ifp;
4735 struct txdmamap_pool_entry *dma;
4736 bus_addr_t offset, toff;
4737 bus_size_t tlen;
4738 int tosync;
4739 struct mbuf *m;
4740
4741 ifp = &sc->ethercom.ec_if;
4742
4743 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4744 offsetof(struct bge_ring_data, bge_status_block),
4745 sizeof (struct bge_status_block),
4746 BUS_DMASYNC_POSTREAD);
4747
4748 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4749 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4750 sc->bge_tx_saved_considx;
4751
4752 if (tosync != 0)
4753 rnd_add_uint32(&sc->rnd_source, tosync);
4754
4755 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4756
4757 if (tosync < 0) {
4758 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4759 sizeof (struct bge_tx_bd);
4760 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4761 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4762 tosync = -tosync;
4763 }
4764
4765 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4766 offset, tosync * sizeof (struct bge_tx_bd),
4767 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4768
4769 /*
4770 * Go through our tx ring and free mbufs for those
4771 * frames that have been sent.
4772 */
4773 while (sc->bge_tx_saved_considx !=
4774 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4775 uint32_t idx = 0;
4776
4777 idx = sc->bge_tx_saved_considx;
4778 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4779 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4780 ifp->if_opackets++;
4781 m = sc->bge_cdata.bge_tx_chain[idx];
4782 if (m != NULL) {
4783 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4784 dma = sc->txdma[idx];
4785 if (dma->is_dma32) {
4786 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4787 0, dma->dmamap32->dm_mapsize,
4788 BUS_DMASYNC_POSTWRITE);
4789 bus_dmamap_unload(
4790 sc->bge_dmatag32, dma->dmamap32);
4791 } else {
4792 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4793 0, dma->dmamap->dm_mapsize,
4794 BUS_DMASYNC_POSTWRITE);
4795 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4796 }
4797 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4798 sc->txdma[idx] = NULL;
4799
4800 m_freem(m);
4801 }
4802 sc->bge_txcnt--;
4803 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4804 ifp->if_timer = 0;
4805 }
4806
4807 if (cur_tx != NULL)
4808 ifp->if_flags &= ~IFF_OACTIVE;
4809 }
4810
4811 static int
4812 bge_intr(void *xsc)
4813 {
4814 struct bge_softc *sc;
4815 struct ifnet *ifp;
4816 uint32_t pcistate, statusword, statustag;
4817 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4818
4819 sc = xsc;
4820 ifp = &sc->ethercom.ec_if;
4821
4822 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4823 if (BGE_IS_5717_PLUS(sc))
4824 intrmask = 0;
4825
4826 /* It is possible for the interrupt to arrive before
4827 * the status block is updated prior to the interrupt.
4828 * Reading the PCI State register will confirm whether the
4829 * interrupt is ours and will flush the status block.
4830 */
4831 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4832
4833 /* read status word from status block */
4834 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4835 offsetof(struct bge_ring_data, bge_status_block),
4836 sizeof (struct bge_status_block),
4837 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4838 statusword = sc->bge_rdata->bge_status_block.bge_status;
4839 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4840
4841 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4842 if (sc->bge_lasttag == statustag &&
4843 (~pcistate & intrmask)) {
4844 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4845 return (0);
4846 }
4847 sc->bge_lasttag = statustag;
4848 } else {
4849 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4850 !(~pcistate & intrmask)) {
4851 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4852 return (0);
4853 }
4854 statustag = 0;
4855 }
4856 /* Ack interrupt and stop others from occurring. */
4857 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4858 BGE_EVCNT_INCR(sc->bge_ev_intr);
4859
4860 /* clear status word */
4861 sc->bge_rdata->bge_status_block.bge_status = 0;
4862
4863 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4864 offsetof(struct bge_ring_data, bge_status_block),
4865 sizeof (struct bge_status_block),
4866 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4867
4868 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4869 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4870 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4871 bge_link_upd(sc);
4872
4873 if (ifp->if_flags & IFF_RUNNING) {
4874 /* Check RX return ring producer/consumer */
4875 bge_rxeof(sc);
4876
4877 /* Check TX ring producer/consumer */
4878 bge_txeof(sc);
4879 }
4880
4881 if (sc->bge_pending_rxintr_change) {
4882 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4883 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4884
4885 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4886 DELAY(10);
4887 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4888
4889 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4890 DELAY(10);
4891 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4892
4893 sc->bge_pending_rxintr_change = 0;
4894 }
4895 bge_handle_events(sc);
4896
4897 /* Re-enable interrupts. */
4898 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4899
4900 if (ifp->if_flags & IFF_RUNNING)
4901 if_schedule_deferred_start(ifp);
4902
4903 return 1;
4904 }
4905
4906 static void
4907 bge_asf_driver_up(struct bge_softc *sc)
4908 {
4909 if (sc->bge_asf_mode & ASF_STACKUP) {
4910 /* Send ASF heartbeat aprox. every 2s */
4911 if (sc->bge_asf_count)
4912 sc->bge_asf_count --;
4913 else {
4914 sc->bge_asf_count = 2;
4915
4916 bge_wait_for_event_ack(sc);
4917
4918 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4919 BGE_FW_CMD_DRV_ALIVE3);
4920 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4921 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4922 BGE_FW_HB_TIMEOUT_SEC);
4923 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4924 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4925 BGE_RX_CPU_DRV_EVENT);
4926 }
4927 }
4928 }
4929
4930 static void
4931 bge_tick(void *xsc)
4932 {
4933 struct bge_softc *sc = xsc;
4934 struct mii_data *mii = &sc->bge_mii;
4935 int s;
4936
4937 s = splnet();
4938
4939 if (BGE_IS_5705_PLUS(sc))
4940 bge_stats_update_regs(sc);
4941 else
4942 bge_stats_update(sc);
4943
4944 if (sc->bge_flags & BGEF_FIBER_TBI) {
4945 /*
4946 * Since in TBI mode auto-polling can't be used we should poll
4947 * link status manually. Here we register pending link event
4948 * and trigger interrupt.
4949 */
4950 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4951 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4952 } else {
4953 /*
4954 * Do not touch PHY if we have link up. This could break
4955 * IPMI/ASF mode or produce extra input errors.
4956 * (extra input errors was reported for bcm5701 & bcm5704).
4957 */
4958 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4959 mii_tick(mii);
4960 }
4961
4962 bge_asf_driver_up(sc);
4963
4964 if (!sc->bge_detaching)
4965 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4966
4967 splx(s);
4968 }
4969
4970 static void
4971 bge_stats_update_regs(struct bge_softc *sc)
4972 {
4973 struct ifnet *ifp = &sc->ethercom.ec_if;
4974
4975 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4976 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4977
4978 /*
4979 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4980 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4981 * (silicon bug). There's no reliable workaround so just
4982 * ignore the counter
4983 */
4984 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4985 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
4986 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
4987 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4988 }
4989 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4990 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4991 }
4992
4993 static void
4994 bge_stats_update(struct bge_softc *sc)
4995 {
4996 struct ifnet *ifp = &sc->ethercom.ec_if;
4997 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4998
4999 #define READ_STAT(sc, stats, stat) \
5000 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5001
5002 ifp->if_collisions +=
5003 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
5004 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
5005 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
5006 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
5007 ifp->if_collisions;
5008
5009 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
5010 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
5011 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
5012 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
5013 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
5014 READ_STAT(sc, stats,
5015 xoffPauseFramesReceived.bge_addr_lo));
5016 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
5017 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
5018 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
5019 READ_STAT(sc, stats,
5020 macControlFramesReceived.bge_addr_lo));
5021 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
5022 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
5023
5024 #undef READ_STAT
5025
5026 #ifdef notdef
5027 ifp->if_collisions +=
5028 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
5029 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
5030 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
5031 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
5032 ifp->if_collisions;
5033 #endif
5034 }
5035
5036 /*
5037 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5038 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5039 * but when such padded frames employ the bge IP/TCP checksum offload,
5040 * the hardware checksum assist gives incorrect results (possibly
5041 * from incorporating its own padding into the UDP/TCP checksum; who knows).
5042 * If we pad such runts with zeros, the onboard checksum comes out correct.
5043 */
5044 static inline int
5045 bge_cksum_pad(struct mbuf *pkt)
5046 {
5047 struct mbuf *last = NULL;
5048 int padlen;
5049
5050 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
5051
5052 /* if there's only the packet-header and we can pad there, use it. */
5053 if (pkt->m_pkthdr.len == pkt->m_len &&
5054 M_TRAILINGSPACE(pkt) >= padlen) {
5055 last = pkt;
5056 } else {
5057 /*
5058 * Walk packet chain to find last mbuf. We will either
5059 * pad there, or append a new mbuf and pad it
5060 * (thus perhaps avoiding the bcm5700 dma-min bug).
5061 */
5062 for (last = pkt; last->m_next != NULL; last = last->m_next) {
5063 continue; /* do nothing */
5064 }
5065
5066 /* `last' now points to last in chain. */
5067 if (M_TRAILINGSPACE(last) < padlen) {
5068 /* Allocate new empty mbuf, pad it. Compact later. */
5069 struct mbuf *n;
5070 MGET(n, M_DONTWAIT, MT_DATA);
5071 if (n == NULL)
5072 return ENOBUFS;
5073 n->m_len = 0;
5074 last->m_next = n;
5075 last = n;
5076 }
5077 }
5078
5079 KDASSERT(!M_READONLY(last));
5080 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5081
5082 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5083 memset(mtod(last, char *) + last->m_len, 0, padlen);
5084 last->m_len += padlen;
5085 pkt->m_pkthdr.len += padlen;
5086 return 0;
5087 }
5088
5089 /*
5090 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5091 */
5092 static inline int
5093 bge_compact_dma_runt(struct mbuf *pkt)
5094 {
5095 struct mbuf *m, *prev;
5096 int totlen;
5097
5098 prev = NULL;
5099 totlen = 0;
5100
5101 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5102 int mlen = m->m_len;
5103 int shortfall = 8 - mlen ;
5104
5105 totlen += mlen;
5106 if (mlen == 0)
5107 continue;
5108 if (mlen >= 8)
5109 continue;
5110
5111 /* If we get here, mbuf data is too small for DMA engine.
5112 * Try to fix by shuffling data to prev or next in chain.
5113 * If that fails, do a compacting deep-copy of the whole chain.
5114 */
5115
5116 /* Internal frag. If fits in prev, copy it there. */
5117 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5118 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5119 prev->m_len += mlen;
5120 m->m_len = 0;
5121 /* XXX stitch chain */
5122 prev->m_next = m_free(m);
5123 m = prev;
5124 continue;
5125 }
5126 else if (m->m_next != NULL &&
5127 M_TRAILINGSPACE(m) >= shortfall &&
5128 m->m_next->m_len >= (8 + shortfall)) {
5129 /* m is writable and have enough data in next, pull up. */
5130
5131 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5132 shortfall);
5133 m->m_len += shortfall;
5134 m->m_next->m_len -= shortfall;
5135 m->m_next->m_data += shortfall;
5136 }
5137 else if (m->m_next == NULL || 1) {
5138 /* Got a runt at the very end of the packet.
5139 * borrow data from the tail of the preceding mbuf and
5140 * update its length in-place. (The original data is still
5141 * valid, so we can do this even if prev is not writable.)
5142 */
5143
5144 /* if we'd make prev a runt, just move all of its data. */
5145 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5146 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5147
5148 if ((prev->m_len - shortfall) < 8)
5149 shortfall = prev->m_len;
5150
5151 #ifdef notyet /* just do the safe slow thing for now */
5152 if (!M_READONLY(m)) {
5153 if (M_LEADINGSPACE(m) < shorfall) {
5154 void *m_dat;
5155 m_dat = (m->m_flags & M_PKTHDR) ?
5156 m->m_pktdat : m->dat;
5157 memmove(m_dat, mtod(m, void*), m->m_len);
5158 m->m_data = m_dat;
5159 }
5160 } else
5161 #endif /* just do the safe slow thing */
5162 {
5163 struct mbuf * n = NULL;
5164 int newprevlen = prev->m_len - shortfall;
5165
5166 MGET(n, M_NOWAIT, MT_DATA);
5167 if (n == NULL)
5168 return ENOBUFS;
5169 KASSERT(m->m_len + shortfall < MLEN
5170 /*,
5171 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5172
5173 /* first copy the data we're stealing from prev */
5174 memcpy(n->m_data, prev->m_data + newprevlen,
5175 shortfall);
5176
5177 /* update prev->m_len accordingly */
5178 prev->m_len -= shortfall;
5179
5180 /* copy data from runt m */
5181 memcpy(n->m_data + shortfall, m->m_data,
5182 m->m_len);
5183
5184 /* n holds what we stole from prev, plus m */
5185 n->m_len = shortfall + m->m_len;
5186
5187 /* stitch n into chain and free m */
5188 n->m_next = m->m_next;
5189 prev->m_next = n;
5190 /* KASSERT(m->m_next == NULL); */
5191 m->m_next = NULL;
5192 m_free(m);
5193 m = n; /* for continuing loop */
5194 }
5195 }
5196 }
5197 return 0;
5198 }
5199
5200 /*
5201 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5202 * pointers to descriptors.
5203 */
5204 static int
5205 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5206 {
5207 struct ifnet *ifp = &sc->ethercom.ec_if;
5208 struct bge_tx_bd *f, *prev_f;
5209 uint32_t frag, cur;
5210 uint16_t csum_flags = 0;
5211 uint16_t txbd_tso_flags = 0;
5212 struct txdmamap_pool_entry *dma;
5213 bus_dmamap_t dmamap;
5214 bus_dma_tag_t dmatag;
5215 int i = 0;
5216 int use_tso, maxsegsize, error;
5217 bool have_vtag;
5218 uint16_t vtag;
5219 bool remap;
5220
5221 if (m_head->m_pkthdr.csum_flags) {
5222 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5223 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5224 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5225 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5226 }
5227
5228 /*
5229 * If we were asked to do an outboard checksum, and the NIC
5230 * has the bug where it sometimes adds in the Ethernet padding,
5231 * explicitly pad with zeros so the cksum will be correct either way.
5232 * (For now, do this for all chip versions, until newer
5233 * are confirmed to not require the workaround.)
5234 */
5235 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5236 #ifdef notyet
5237 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5238 #endif
5239 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5240 goto check_dma_bug;
5241
5242 if (bge_cksum_pad(m_head) != 0)
5243 return ENOBUFS;
5244
5245 check_dma_bug:
5246 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5247 goto doit;
5248
5249 /*
5250 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5251 * less than eight bytes. If we encounter a teeny mbuf
5252 * at the end of a chain, we can pad. Otherwise, copy.
5253 */
5254 if (bge_compact_dma_runt(m_head) != 0)
5255 return ENOBUFS;
5256
5257 doit:
5258 dma = SLIST_FIRST(&sc->txdma_list);
5259 if (dma == NULL) {
5260 ifp->if_flags |= IFF_OACTIVE;
5261 return ENOBUFS;
5262 }
5263 dmamap = dma->dmamap;
5264 dmatag = sc->bge_dmatag;
5265 dma->is_dma32 = false;
5266
5267 /*
5268 * Set up any necessary TSO state before we start packing...
5269 */
5270 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5271 if (!use_tso) {
5272 maxsegsize = 0;
5273 } else { /* TSO setup */
5274 unsigned mss;
5275 struct ether_header *eh;
5276 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5277 unsigned bge_hlen;
5278 struct mbuf * m0 = m_head;
5279 struct ip *ip;
5280 struct tcphdr *th;
5281 int iphl, hlen;
5282
5283 /*
5284 * XXX It would be nice if the mbuf pkthdr had offset
5285 * fields for the protocol headers.
5286 */
5287
5288 eh = mtod(m0, struct ether_header *);
5289 switch (htons(eh->ether_type)) {
5290 case ETHERTYPE_IP:
5291 offset = ETHER_HDR_LEN;
5292 break;
5293
5294 case ETHERTYPE_VLAN:
5295 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5296 break;
5297
5298 default:
5299 /*
5300 * Don't support this protocol or encapsulation.
5301 */
5302 return ENOBUFS;
5303 }
5304
5305 /*
5306 * TCP/IP headers are in the first mbuf; we can do
5307 * this the easy way.
5308 */
5309 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5310 hlen = iphl + offset;
5311 if (__predict_false(m0->m_len <
5312 (hlen + sizeof(struct tcphdr)))) {
5313
5314 aprint_error_dev(sc->bge_dev,
5315 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5316 "not handled yet\n",
5317 m0->m_len, hlen+ sizeof(struct tcphdr));
5318 #ifdef NOTYET
5319 /*
5320 * XXX jonathan (at) NetBSD.org: untested.
5321 * how to force this branch to be taken?
5322 */
5323 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5324
5325 m_copydata(m0, offset, sizeof(ip), &ip);
5326 m_copydata(m0, hlen, sizeof(th), &th);
5327
5328 ip.ip_len = 0;
5329
5330 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5331 sizeof(ip.ip_len), &ip.ip_len);
5332
5333 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5334 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5335
5336 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5337 sizeof(th.th_sum), &th.th_sum);
5338
5339 hlen += th.th_off << 2;
5340 iptcp_opt_words = hlen;
5341 #else
5342 /*
5343 * if_wm "hard" case not yet supported, can we not
5344 * mandate it out of existence?
5345 */
5346 (void) ip; (void)th; (void) ip_tcp_hlen;
5347
5348 return ENOBUFS;
5349 #endif
5350 } else {
5351 ip = (struct ip *) (mtod(m0, char *) + offset);
5352 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5353 ip_tcp_hlen = iphl + (th->th_off << 2);
5354
5355 /* Total IP/TCP options, in 32-bit words */
5356 iptcp_opt_words = (ip_tcp_hlen
5357 - sizeof(struct tcphdr)
5358 - sizeof(struct ip)) >> 2;
5359 }
5360 if (BGE_IS_575X_PLUS(sc)) {
5361 th->th_sum = 0;
5362 csum_flags = 0;
5363 } else {
5364 /*
5365 * XXX jonathan (at) NetBSD.org: 5705 untested.
5366 * Requires TSO firmware patch for 5701/5703/5704.
5367 */
5368 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5369 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5370 }
5371
5372 mss = m_head->m_pkthdr.segsz;
5373 txbd_tso_flags |=
5374 BGE_TXBDFLAG_CPU_PRE_DMA |
5375 BGE_TXBDFLAG_CPU_POST_DMA;
5376
5377 /*
5378 * Our NIC TSO-assist assumes TSO has standard, optionless
5379 * IPv4 and TCP headers, which total 40 bytes. By default,
5380 * the NIC copies 40 bytes of IP/TCP header from the
5381 * supplied header into the IP/TCP header portion of
5382 * each post-TSO-segment. If the supplied packet has IP or
5383 * TCP options, we need to tell the NIC to copy those extra
5384 * bytes into each post-TSO header, in addition to the normal
5385 * 40-byte IP/TCP header (and to leave space accordingly).
5386 * Unfortunately, the driver encoding of option length
5387 * varies across different ASIC families.
5388 */
5389 tcp_seg_flags = 0;
5390 bge_hlen = ip_tcp_hlen >> 2;
5391 if (BGE_IS_5717_PLUS(sc)) {
5392 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5393 txbd_tso_flags |=
5394 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5395 } else if (BGE_IS_5705_PLUS(sc)) {
5396 tcp_seg_flags =
5397 bge_hlen << 11;
5398 } else {
5399 /* XXX iptcp_opt_words or bge_hlen ? */
5400 txbd_tso_flags |=
5401 iptcp_opt_words << 12;
5402 }
5403 maxsegsize = mss | tcp_seg_flags;
5404 ip->ip_len = htons(mss + ip_tcp_hlen);
5405 ip->ip_sum = 0;
5406
5407 } /* TSO setup */
5408
5409 have_vtag = vlan_has_tag(m_head);
5410 if (have_vtag)
5411 vtag = vlan_get_tag(m_head);
5412
5413 /*
5414 * Start packing the mbufs in this chain into
5415 * the fragment pointers. Stop when we run out
5416 * of fragments or hit the end of the mbuf chain.
5417 */
5418 remap = true;
5419 load_again:
5420 error = bus_dmamap_load_mbuf(dmatag, dmamap,
5421 m_head, BUS_DMA_NOWAIT);
5422 if (__predict_false(error)) {
5423 if (error == EFBIG && remap) {
5424 struct mbuf *m;
5425 remap = false;
5426 m = m_defrag(m_head, M_NOWAIT);
5427 if (m != NULL) {
5428 KASSERT(m == m_head);
5429 goto load_again;
5430 }
5431 }
5432 return error;
5433 }
5434 /*
5435 * Sanity check: avoid coming within 16 descriptors
5436 * of the end of the ring.
5437 */
5438 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5439 BGE_TSO_PRINTF(("%s: "
5440 " dmamap_load_mbuf too close to ring wrap\n",
5441 device_xname(sc->bge_dev)));
5442 goto fail_unload;
5443 }
5444
5445 /* Iterate over dmap-map fragments. */
5446 f = prev_f = NULL;
5447 cur = frag = *txidx;
5448
5449 for (i = 0; i < dmamap->dm_nsegs; i++) {
5450 f = &sc->bge_rdata->bge_tx_ring[frag];
5451 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5452 break;
5453
5454 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5455 f->bge_len = dmamap->dm_segs[i].ds_len;
5456 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5457 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5458 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5459 (prev_f != NULL &&
5460 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5461 ) {
5462 /*
5463 * watchdog timeout issue was observed with TSO,
5464 * limiting DMA address space to 32bits seems to
5465 * address the issue.
5466 */
5467 bus_dmamap_unload(dmatag, dmamap);
5468 dmatag = sc->bge_dmatag32;
5469 dmamap = dma->dmamap32;
5470 dma->is_dma32 = true;
5471 remap = true;
5472 goto load_again;
5473 }
5474
5475 /*
5476 * For 5751 and follow-ons, for TSO we must turn
5477 * off checksum-assist flag in the tx-descr, and
5478 * supply the ASIC-revision-specific encoding
5479 * of TSO flags and segsize.
5480 */
5481 if (use_tso) {
5482 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5483 f->bge_rsvd = maxsegsize;
5484 f->bge_flags = csum_flags | txbd_tso_flags;
5485 } else {
5486 f->bge_rsvd = 0;
5487 f->bge_flags =
5488 (csum_flags | txbd_tso_flags) & 0x0fff;
5489 }
5490 } else {
5491 f->bge_rsvd = 0;
5492 f->bge_flags = csum_flags;
5493 }
5494
5495 if (have_vtag) {
5496 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5497 f->bge_vlan_tag = vtag;
5498 } else {
5499 f->bge_vlan_tag = 0;
5500 }
5501 prev_f = f;
5502 cur = frag;
5503 BGE_INC(frag, BGE_TX_RING_CNT);
5504 }
5505
5506 if (i < dmamap->dm_nsegs) {
5507 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5508 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5509 goto fail_unload;
5510 }
5511
5512 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5513 BUS_DMASYNC_PREWRITE);
5514
5515 if (frag == sc->bge_tx_saved_considx) {
5516 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5517 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5518
5519 goto fail_unload;
5520 }
5521
5522 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5523 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5524 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5525 sc->txdma[cur] = dma;
5526 sc->bge_txcnt += dmamap->dm_nsegs;
5527
5528 *txidx = frag;
5529
5530 return 0;
5531
5532 fail_unload:
5533 bus_dmamap_unload(dmatag, dmamap);
5534 ifp->if_flags |= IFF_OACTIVE;
5535
5536 return ENOBUFS;
5537 }
5538
5539 /*
5540 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5541 * to the mbuf data regions directly in the transmit descriptors.
5542 */
5543 static void
5544 bge_start(struct ifnet *ifp)
5545 {
5546 struct bge_softc *sc;
5547 struct mbuf *m_head = NULL;
5548 struct mbuf *m;
5549 uint32_t prodidx;
5550 int pkts = 0;
5551 int error;
5552
5553 sc = ifp->if_softc;
5554
5555 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5556 return;
5557
5558 prodidx = sc->bge_tx_prodidx;
5559
5560 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5561 IFQ_POLL(&ifp->if_snd, m_head);
5562 if (m_head == NULL)
5563 break;
5564
5565 #if 0
5566 /*
5567 * XXX
5568 * safety overkill. If this is a fragmented packet chain
5569 * with delayed TCP/UDP checksums, then only encapsulate
5570 * it if we have enough descriptors to handle the entire
5571 * chain at once.
5572 * (paranoia -- may not actually be needed)
5573 */
5574 if (m_head->m_flags & M_FIRSTFRAG &&
5575 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5576 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5577 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5578 ifp->if_flags |= IFF_OACTIVE;
5579 break;
5580 }
5581 }
5582 #endif
5583
5584 /*
5585 * Pack the data into the transmit ring. If we
5586 * don't have room, set the OACTIVE flag and wait
5587 * for the NIC to drain the ring.
5588 */
5589 error = bge_encap(sc, m_head, &prodidx);
5590 if (__predict_false(error)) {
5591 if (ifp->if_flags & IFF_OACTIVE) {
5592 /* just wait for the transmit ring to drain */
5593 break;
5594 }
5595 IFQ_DEQUEUE(&ifp->if_snd, m);
5596 KASSERT(m == m_head);
5597 m_freem(m_head);
5598 continue;
5599 }
5600
5601 /* now we are committed to transmit the packet */
5602 IFQ_DEQUEUE(&ifp->if_snd, m);
5603 KASSERT(m == m_head);
5604 pkts++;
5605
5606 /*
5607 * If there's a BPF listener, bounce a copy of this frame
5608 * to him.
5609 */
5610 bpf_mtap(ifp, m_head, BPF_D_OUT);
5611 }
5612 if (pkts == 0)
5613 return;
5614
5615 /* Transmit */
5616 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5617 /* 5700 b2 errata */
5618 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5619 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5620
5621 sc->bge_tx_prodidx = prodidx;
5622
5623 /*
5624 * Set a timeout in case the chip goes out to lunch.
5625 */
5626 ifp->if_timer = 5;
5627 }
5628
5629 static int
5630 bge_init(struct ifnet *ifp)
5631 {
5632 struct bge_softc *sc = ifp->if_softc;
5633 const uint16_t *m;
5634 uint32_t mode, reg;
5635 int s, error = 0;
5636
5637 s = splnet();
5638
5639 ifp = &sc->ethercom.ec_if;
5640
5641 /* Cancel pending I/O and flush buffers. */
5642 bge_stop(ifp, 0);
5643
5644 bge_stop_fw(sc);
5645 bge_sig_pre_reset(sc, BGE_RESET_START);
5646 bge_reset(sc);
5647 bge_sig_legacy(sc, BGE_RESET_START);
5648
5649 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5650 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5651 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5652 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5653 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5654
5655 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5656 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5657 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5658 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5659
5660 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5661 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5662 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5663 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5664
5665 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5666 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5667 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5668 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5669 }
5670
5671 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5672 pcireg_t aercap;
5673
5674 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5675 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5676 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5677 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5678 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5679
5680 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5681 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5682 | BGE_PCIE_EIDLE_DELAY_13CLK;
5683 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5684
5685 /* Clear correctable error */
5686 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5687 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5688 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5689 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5690
5691 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5692 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5693 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5694 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5695 }
5696
5697 bge_sig_post_reset(sc, BGE_RESET_START);
5698
5699 bge_chipinit(sc);
5700
5701 /*
5702 * Init the various state machines, ring
5703 * control blocks and firmware.
5704 */
5705 error = bge_blockinit(sc);
5706 if (error != 0) {
5707 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5708 error);
5709 splx(s);
5710 return error;
5711 }
5712
5713 ifp = &sc->ethercom.ec_if;
5714
5715 /* 5718 step 25, 57XX step 54 */
5716 /* Specify MTU. */
5717 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5718 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5719
5720 /* 5718 step 23 */
5721 /* Load our MAC address. */
5722 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5723 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5724 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5725
5726 /* Enable or disable promiscuous mode as needed. */
5727 if (ifp->if_flags & IFF_PROMISC)
5728 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5729 else
5730 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5731
5732 /* Program multicast filter. */
5733 bge_setmulti(sc);
5734
5735 /* Init RX ring. */
5736 bge_init_rx_ring_std(sc);
5737
5738 /*
5739 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5740 * memory to insure that the chip has in fact read the first
5741 * entry of the ring.
5742 */
5743 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5744 uint32_t v, i;
5745 for (i = 0; i < 10; i++) {
5746 DELAY(20);
5747 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5748 if (v == (MCLBYTES - ETHER_ALIGN))
5749 break;
5750 }
5751 if (i == 10)
5752 aprint_error_dev(sc->bge_dev,
5753 "5705 A0 chip failed to load RX ring\n");
5754 }
5755
5756 /* Init jumbo RX ring. */
5757 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5758 bge_init_rx_ring_jumbo(sc);
5759
5760 /* Init our RX return ring index */
5761 sc->bge_rx_saved_considx = 0;
5762
5763 /* Init TX ring. */
5764 bge_init_tx_ring(sc);
5765
5766 /* 5718 step 63, 57XX step 94 */
5767 /* Enable TX MAC state machine lockup fix. */
5768 mode = CSR_READ_4(sc, BGE_TX_MODE);
5769 if (BGE_IS_5755_PLUS(sc) ||
5770 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5771 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5772 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5773 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5774 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5775 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5776 }
5777
5778 /* Turn on transmitter */
5779 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5780 /* 5718 step 64 */
5781 DELAY(100);
5782
5783 /* 5718 step 65, 57XX step 95 */
5784 /* Turn on receiver */
5785 mode = CSR_READ_4(sc, BGE_RX_MODE);
5786 if (BGE_IS_5755_PLUS(sc))
5787 mode |= BGE_RXMODE_IPV6_ENABLE;
5788 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5789 /* 5718 step 66 */
5790 DELAY(10);
5791
5792 /* 5718 step 12, 57XX step 37 */
5793 /*
5794 * XXX Doucments of 5718 series and 577xx say the recommended value
5795 * is 1, but tg3 set 1 only on 57765 series.
5796 */
5797 if (BGE_IS_57765_PLUS(sc))
5798 reg = 1;
5799 else
5800 reg = 2;
5801 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5802
5803 /* Tell firmware we're alive. */
5804 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5805
5806 /* Enable host interrupts. */
5807 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5808 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5809 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5810
5811 if ((error = bge_ifmedia_upd(ifp)) != 0)
5812 goto out;
5813
5814 ifp->if_flags |= IFF_RUNNING;
5815 ifp->if_flags &= ~IFF_OACTIVE;
5816
5817 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5818
5819 out:
5820 sc->bge_if_flags = ifp->if_flags;
5821 splx(s);
5822
5823 return error;
5824 }
5825
5826 /*
5827 * Set media options.
5828 */
5829 static int
5830 bge_ifmedia_upd(struct ifnet *ifp)
5831 {
5832 struct bge_softc *sc = ifp->if_softc;
5833 struct mii_data *mii = &sc->bge_mii;
5834 struct ifmedia *ifm = &sc->bge_ifmedia;
5835 int rc;
5836
5837 /* If this is a 1000baseX NIC, enable the TBI port. */
5838 if (sc->bge_flags & BGEF_FIBER_TBI) {
5839 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5840 return EINVAL;
5841 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5842 case IFM_AUTO:
5843 /*
5844 * The BCM5704 ASIC appears to have a special
5845 * mechanism for programming the autoneg
5846 * advertisement registers in TBI mode.
5847 */
5848 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5849 uint32_t sgdig;
5850 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5851 if (sgdig & BGE_SGDIGSTS_DONE) {
5852 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5853 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5854 sgdig |= BGE_SGDIGCFG_AUTO |
5855 BGE_SGDIGCFG_PAUSE_CAP |
5856 BGE_SGDIGCFG_ASYM_PAUSE;
5857 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5858 sgdig | BGE_SGDIGCFG_SEND);
5859 DELAY(5);
5860 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5861 sgdig);
5862 }
5863 }
5864 break;
5865 case IFM_1000_SX:
5866 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5867 BGE_CLRBIT(sc, BGE_MAC_MODE,
5868 BGE_MACMODE_HALF_DUPLEX);
5869 } else {
5870 BGE_SETBIT(sc, BGE_MAC_MODE,
5871 BGE_MACMODE_HALF_DUPLEX);
5872 }
5873 DELAY(40);
5874 break;
5875 default:
5876 return EINVAL;
5877 }
5878 /* XXX 802.3x flow control for 1000BASE-SX */
5879 return 0;
5880 }
5881
5882 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5883 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5884 uint32_t reg;
5885
5886 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5887 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5888 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5889 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5890 }
5891 }
5892
5893 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5894 if ((rc = mii_mediachg(mii)) == ENXIO)
5895 return 0;
5896
5897 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5898 uint32_t reg;
5899
5900 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5901 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5902 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5903 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5904 delay(40);
5905 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5906 }
5907 }
5908
5909 /*
5910 * Force an interrupt so that we will call bge_link_upd
5911 * if needed and clear any pending link state attention.
5912 * Without this we are not getting any further interrupts
5913 * for link state changes and thus will not UP the link and
5914 * not be able to send in bge_start. The only way to get
5915 * things working was to receive a packet and get a RX intr.
5916 */
5917 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5918 sc->bge_flags & BGEF_IS_5788)
5919 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5920 else
5921 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5922
5923 return rc;
5924 }
5925
5926 /*
5927 * Report current media status.
5928 */
5929 static void
5930 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5931 {
5932 struct bge_softc *sc = ifp->if_softc;
5933 struct mii_data *mii = &sc->bge_mii;
5934
5935 if (sc->bge_flags & BGEF_FIBER_TBI) {
5936 ifmr->ifm_status = IFM_AVALID;
5937 ifmr->ifm_active = IFM_ETHER;
5938 if (CSR_READ_4(sc, BGE_MAC_STS) &
5939 BGE_MACSTAT_TBI_PCS_SYNCHED)
5940 ifmr->ifm_status |= IFM_ACTIVE;
5941 ifmr->ifm_active |= IFM_1000_SX;
5942 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5943 ifmr->ifm_active |= IFM_HDX;
5944 else
5945 ifmr->ifm_active |= IFM_FDX;
5946 return;
5947 }
5948
5949 mii_pollstat(mii);
5950 ifmr->ifm_status = mii->mii_media_status;
5951 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5952 sc->bge_flowflags;
5953 }
5954
5955 static int
5956 bge_ifflags_cb(struct ethercom *ec)
5957 {
5958 struct ifnet *ifp = &ec->ec_if;
5959 struct bge_softc *sc = ifp->if_softc;
5960 int change = ifp->if_flags ^ sc->bge_if_flags;
5961
5962 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5963 return ENETRESET;
5964 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5965 return 0;
5966
5967 if ((ifp->if_flags & IFF_PROMISC) == 0)
5968 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5969 else
5970 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5971
5972 bge_setmulti(sc);
5973
5974 sc->bge_if_flags = ifp->if_flags;
5975 return 0;
5976 }
5977
5978 static int
5979 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5980 {
5981 struct bge_softc *sc = ifp->if_softc;
5982 struct ifreq *ifr = (struct ifreq *) data;
5983 int s, error = 0;
5984 struct mii_data *mii;
5985
5986 s = splnet();
5987
5988 switch (command) {
5989 case SIOCSIFMEDIA:
5990 /* XXX Flow control is not supported for 1000BASE-SX */
5991 if (sc->bge_flags & BGEF_FIBER_TBI) {
5992 ifr->ifr_media &= ~IFM_ETH_FMASK;
5993 sc->bge_flowflags = 0;
5994 }
5995
5996 /* Flow control requires full-duplex mode. */
5997 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5998 (ifr->ifr_media & IFM_FDX) == 0) {
5999 ifr->ifr_media &= ~IFM_ETH_FMASK;
6000 }
6001 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
6002 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
6003 /* We can do both TXPAUSE and RXPAUSE. */
6004 ifr->ifr_media |=
6005 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
6006 }
6007 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
6008 }
6009 /* FALLTHROUGH */
6010 case SIOCGIFMEDIA:
6011 if (sc->bge_flags & BGEF_FIBER_TBI) {
6012 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
6013 command);
6014 } else {
6015 mii = &sc->bge_mii;
6016 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
6017 command);
6018 }
6019 break;
6020 default:
6021 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
6022 break;
6023
6024 error = 0;
6025
6026 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
6027 ;
6028 else if (ifp->if_flags & IFF_RUNNING)
6029 bge_setmulti(sc);
6030 break;
6031 }
6032
6033 splx(s);
6034
6035 return error;
6036 }
6037
6038 static void
6039 bge_watchdog(struct ifnet *ifp)
6040 {
6041 struct bge_softc *sc;
6042 uint32_t status;
6043
6044 sc = ifp->if_softc;
6045
6046 /* If pause frames are active then don't reset the hardware. */
6047 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6048 status = CSR_READ_4(sc, BGE_RX_STS);
6049 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6050 /*
6051 * If link partner has us in XOFF state then wait for
6052 * the condition to clear.
6053 */
6054 CSR_WRITE_4(sc, BGE_RX_STS, status);
6055 ifp->if_timer = 5;
6056 return;
6057 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6058 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6059 /*
6060 * If link partner has us in XOFF state then wait for
6061 * the condition to clear.
6062 */
6063 CSR_WRITE_4(sc, BGE_RX_STS, status);
6064 ifp->if_timer = 5;
6065 return;
6066 }
6067 /*
6068 * Any other condition is unexpected and the controller
6069 * should be reset.
6070 */
6071 }
6072
6073 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
6074
6075 ifp->if_flags &= ~IFF_RUNNING;
6076 bge_init(ifp);
6077
6078 ifp->if_oerrors++;
6079 }
6080
6081 static void
6082 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6083 {
6084 int i;
6085
6086 BGE_CLRBIT_FLUSH(sc, reg, bit);
6087
6088 for (i = 0; i < 1000; i++) {
6089 delay(100);
6090 if ((CSR_READ_4(sc, reg) & bit) == 0)
6091 return;
6092 }
6093
6094 /*
6095 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6096 * on some environment (and once after boot?)
6097 */
6098 if (reg != BGE_SRS_MODE)
6099 aprint_error_dev(sc->bge_dev,
6100 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6101 (u_long)reg, bit);
6102 }
6103
6104 /*
6105 * Stop the adapter and free any mbufs allocated to the
6106 * RX and TX lists.
6107 */
6108 static void
6109 bge_stop(struct ifnet *ifp, int disable)
6110 {
6111 struct bge_softc *sc = ifp->if_softc;
6112
6113 if (disable) {
6114 sc->bge_detaching = 1;
6115 callout_halt(&sc->bge_timeout, NULL);
6116 } else
6117 callout_stop(&sc->bge_timeout);
6118
6119 /* Disable host interrupts. */
6120 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6121 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6122
6123 /*
6124 * Tell firmware we're shutting down.
6125 */
6126 bge_stop_fw(sc);
6127 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6128
6129 /*
6130 * Disable all of the receiver blocks.
6131 */
6132 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6133 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6134 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6135 if (BGE_IS_5700_FAMILY(sc))
6136 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6137 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6138 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6139 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6140
6141 /*
6142 * Disable all of the transmit blocks.
6143 */
6144 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6145 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6146 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6147 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6148 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6149 if (BGE_IS_5700_FAMILY(sc))
6150 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6151 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6152
6153 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6154 delay(40);
6155
6156 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6157
6158 /*
6159 * Shut down all of the memory managers and related
6160 * state machines.
6161 */
6162 /* 5718 step 5a,5b */
6163 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6164 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6165 if (BGE_IS_5700_FAMILY(sc))
6166 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6167
6168 /* 5718 step 5c,5d */
6169 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6170 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6171
6172 if (BGE_IS_5700_FAMILY(sc)) {
6173 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6174 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6175 }
6176
6177 bge_reset(sc);
6178 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6179 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6180
6181 /*
6182 * Keep the ASF firmware running if up.
6183 */
6184 if (sc->bge_asf_mode & ASF_STACKUP)
6185 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6186 else
6187 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6188
6189 /* Free the RX lists. */
6190 bge_free_rx_ring_std(sc, disable);
6191
6192 /* Free jumbo RX list. */
6193 if (BGE_IS_JUMBO_CAPABLE(sc))
6194 bge_free_rx_ring_jumbo(sc);
6195
6196 /* Free TX buffers. */
6197 bge_free_tx_ring(sc, disable);
6198
6199 /*
6200 * Isolate/power down the PHY.
6201 */
6202 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6203 mii_down(&sc->bge_mii);
6204
6205 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6206
6207 /* Clear MAC's link state (PHY may still have link UP). */
6208 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6209
6210 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6211 }
6212
6213 static void
6214 bge_link_upd(struct bge_softc *sc)
6215 {
6216 struct ifnet *ifp = &sc->ethercom.ec_if;
6217 struct mii_data *mii = &sc->bge_mii;
6218 uint32_t status;
6219 uint16_t phyval;
6220 int link;
6221
6222 /* Clear 'pending link event' flag */
6223 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6224
6225 /*
6226 * Process link state changes.
6227 * Grrr. The link status word in the status block does
6228 * not work correctly on the BCM5700 rev AX and BX chips,
6229 * according to all available information. Hence, we have
6230 * to enable MII interrupts in order to properly obtain
6231 * async link changes. Unfortunately, this also means that
6232 * we have to read the MAC status register to detect link
6233 * changes, thereby adding an additional register access to
6234 * the interrupt handler.
6235 */
6236
6237 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6238 status = CSR_READ_4(sc, BGE_MAC_STS);
6239 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6240 mii_pollstat(mii);
6241
6242 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6243 mii->mii_media_status & IFM_ACTIVE &&
6244 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6245 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6246 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6247 (!(mii->mii_media_status & IFM_ACTIVE) ||
6248 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6249 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6250
6251 /* Clear the interrupt */
6252 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6253 BGE_EVTENB_MI_INTERRUPT);
6254 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6255 BRGPHY_MII_ISR, &phyval);
6256 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6257 BRGPHY_MII_IMR, BRGPHY_INTRS);
6258 }
6259 return;
6260 }
6261
6262 if (sc->bge_flags & BGEF_FIBER_TBI) {
6263 status = CSR_READ_4(sc, BGE_MAC_STS);
6264 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6265 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6266 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6267 if (BGE_ASICREV(sc->bge_chipid)
6268 == BGE_ASICREV_BCM5704) {
6269 BGE_CLRBIT(sc, BGE_MAC_MODE,
6270 BGE_MACMODE_TBI_SEND_CFGS);
6271 DELAY(40);
6272 }
6273 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6274 if_link_state_change(ifp, LINK_STATE_UP);
6275 }
6276 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6277 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6278 if_link_state_change(ifp, LINK_STATE_DOWN);
6279 }
6280 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6281 /*
6282 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6283 * bit in status word always set. Workaround this bug by
6284 * reading PHY link status directly.
6285 */
6286 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6287 BGE_STS_LINK : 0;
6288
6289 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6290 mii_pollstat(mii);
6291
6292 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6293 mii->mii_media_status & IFM_ACTIVE &&
6294 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6295 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6296 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6297 (!(mii->mii_media_status & IFM_ACTIVE) ||
6298 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6299 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6300 }
6301 } else {
6302 /*
6303 * For controllers that call mii_tick, we have to poll
6304 * link status.
6305 */
6306 mii_pollstat(mii);
6307 }
6308
6309 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6310 uint32_t reg, scale;
6311
6312 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6313 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6314 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6315 scale = 65;
6316 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6317 scale = 6;
6318 else
6319 scale = 12;
6320
6321 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6322 ~BGE_MISCCFG_TIMER_PRESCALER;
6323 reg |= scale << 1;
6324 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6325 }
6326 /* Clear the attention */
6327 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6328 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6329 BGE_MACSTAT_LINK_CHANGED);
6330 }
6331
6332 static int
6333 bge_sysctl_verify(SYSCTLFN_ARGS)
6334 {
6335 int error, t;
6336 struct sysctlnode node;
6337
6338 node = *rnode;
6339 t = *(int*)rnode->sysctl_data;
6340 node.sysctl_data = &t;
6341 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6342 if (error || newp == NULL)
6343 return error;
6344
6345 #if 0
6346 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6347 node.sysctl_num, rnode->sysctl_num));
6348 #endif
6349
6350 if (node.sysctl_num == bge_rxthresh_nodenum) {
6351 if (t < 0 || t >= NBGE_RX_THRESH)
6352 return EINVAL;
6353 bge_update_all_threshes(t);
6354 } else
6355 return EINVAL;
6356
6357 *(int*)rnode->sysctl_data = t;
6358
6359 return 0;
6360 }
6361
6362 /*
6363 * Set up sysctl(3) MIB, hw.bge.*.
6364 */
6365 static void
6366 bge_sysctl_init(struct bge_softc *sc)
6367 {
6368 int rc, bge_root_num;
6369 const struct sysctlnode *node;
6370
6371 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6372 0, CTLTYPE_NODE, "bge",
6373 SYSCTL_DESCR("BGE interface controls"),
6374 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6375 goto out;
6376 }
6377
6378 bge_root_num = node->sysctl_num;
6379
6380 /* BGE Rx interrupt mitigation level */
6381 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6382 CTLFLAG_READWRITE,
6383 CTLTYPE_INT, "rx_lvl",
6384 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6385 bge_sysctl_verify, 0,
6386 &bge_rx_thresh_lvl,
6387 0, CTL_HW, bge_root_num, CTL_CREATE,
6388 CTL_EOL)) != 0) {
6389 goto out;
6390 }
6391
6392 bge_rxthresh_nodenum = node->sysctl_num;
6393
6394 return;
6395
6396 out:
6397 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6398 }
6399
6400 #ifdef BGE_DEBUG
6401 void
6402 bge_debug_info(struct bge_softc *sc)
6403 {
6404
6405 printf("Hardware Flags:\n");
6406 if (BGE_IS_57765_PLUS(sc))
6407 printf(" - 57765 Plus\n");
6408 if (BGE_IS_5717_PLUS(sc))
6409 printf(" - 5717 Plus\n");
6410 if (BGE_IS_5755_PLUS(sc))
6411 printf(" - 5755 Plus\n");
6412 if (BGE_IS_575X_PLUS(sc))
6413 printf(" - 575X Plus\n");
6414 if (BGE_IS_5705_PLUS(sc))
6415 printf(" - 5705 Plus\n");
6416 if (BGE_IS_5714_FAMILY(sc))
6417 printf(" - 5714 Family\n");
6418 if (BGE_IS_5700_FAMILY(sc))
6419 printf(" - 5700 Family\n");
6420 if (sc->bge_flags & BGEF_IS_5788)
6421 printf(" - 5788\n");
6422 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6423 printf(" - Supports Jumbo Frames\n");
6424 if (sc->bge_flags & BGEF_NO_EEPROM)
6425 printf(" - No EEPROM\n");
6426 if (sc->bge_flags & BGEF_PCIX)
6427 printf(" - PCI-X Bus\n");
6428 if (sc->bge_flags & BGEF_PCIE)
6429 printf(" - PCI Express Bus\n");
6430 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6431 printf(" - RX Alignment Bug\n");
6432 if (sc->bge_flags & BGEF_APE)
6433 printf(" - APE\n");
6434 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6435 printf(" - CPMU\n");
6436 if (sc->bge_flags & BGEF_TSO)
6437 printf(" - TSO\n");
6438 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6439 printf(" - TAGGED_STATUS\n");
6440
6441 /* PHY related */
6442 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6443 printf(" - No 3 LEDs\n");
6444 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6445 printf(" - CRC bug\n");
6446 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6447 printf(" - ADC bug\n");
6448 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6449 printf(" - 5704 A0 bug\n");
6450 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6451 printf(" - jitter bug\n");
6452 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6453 printf(" - BER bug\n");
6454 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6455 printf(" - adjust trim\n");
6456 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6457 printf(" - no wirespeed\n");
6458
6459 /* ASF related */
6460 if (sc->bge_asf_mode & ASF_ENABLE)
6461 printf(" - ASF enable\n");
6462 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6463 printf(" - ASF new handshake\n");
6464 if (sc->bge_asf_mode & ASF_STACKUP)
6465 printf(" - ASF stackup\n");
6466 }
6467 #endif /* BGE_DEBUG */
6468
6469 static int
6470 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6471 {
6472 prop_dictionary_t dict;
6473 prop_data_t ea;
6474
6475 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6476 return 1;
6477
6478 dict = device_properties(sc->bge_dev);
6479 ea = prop_dictionary_get(dict, "mac-address");
6480 if (ea != NULL) {
6481 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6482 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6483 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6484 return 0;
6485 }
6486
6487 return 1;
6488 }
6489
6490 static int
6491 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6492 {
6493 uint32_t mac_addr;
6494
6495 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6496 if ((mac_addr >> 16) == 0x484b) {
6497 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6498 ether_addr[1] = (uint8_t)mac_addr;
6499 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6500 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6501 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6502 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6503 ether_addr[5] = (uint8_t)mac_addr;
6504 return 0;
6505 }
6506 return 1;
6507 }
6508
6509 static int
6510 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6511 {
6512 int mac_offset = BGE_EE_MAC_OFFSET;
6513
6514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6515 mac_offset = BGE_EE_MAC_OFFSET_5906;
6516
6517 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6518 ETHER_ADDR_LEN));
6519 }
6520
6521 static int
6522 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6523 {
6524
6525 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6526 return 1;
6527
6528 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6529 ETHER_ADDR_LEN));
6530 }
6531
6532 static int
6533 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6534 {
6535 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6536 /* NOTE: Order is critical */
6537 bge_get_eaddr_fw,
6538 bge_get_eaddr_mem,
6539 bge_get_eaddr_nvram,
6540 bge_get_eaddr_eeprom,
6541 NULL
6542 };
6543 const bge_eaddr_fcn_t *func;
6544
6545 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6546 if ((*func)(sc, eaddr) == 0)
6547 break;
6548 }
6549 return (*func == NULL ? ENXIO : 0);
6550 }
6551