if_bge.c revision 1.323 1 /* $NetBSD: if_bge.c,v 1.323 2019/02/03 03:19:27 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.323 2019/02/03 03:19:27 mrg Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *m, bool);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 /*
306 * The BCM5700 documentation seems to indicate that the hardware
307 * still has the Alteon vendor ID burned into it, though it
308 * should always be overridden by the value in the EEPROM. We'll
309 * check for it anyway.
310 */
311 { PCI_VENDOR_ALTEON,
312 PCI_PRODUCT_ALTEON_BCM5700,
313 "Broadcom BCM5700 Gigabit Ethernet",
314 },
315 { PCI_VENDOR_ALTEON,
316 PCI_PRODUCT_ALTEON_BCM5701,
317 "Broadcom BCM5701 Gigabit Ethernet",
318 },
319 { PCI_VENDOR_ALTIMA,
320 PCI_PRODUCT_ALTIMA_AC1000,
321 "Altima AC1000 Gigabit Ethernet",
322 },
323 { PCI_VENDOR_ALTIMA,
324 PCI_PRODUCT_ALTIMA_AC1001,
325 "Altima AC1001 Gigabit Ethernet",
326 },
327 { PCI_VENDOR_ALTIMA,
328 PCI_PRODUCT_ALTIMA_AC1003,
329 "Altima AC1003 Gigabit Ethernet",
330 },
331 { PCI_VENDOR_ALTIMA,
332 PCI_PRODUCT_ALTIMA_AC9100,
333 "Altima AC9100 Gigabit Ethernet",
334 },
335 { PCI_VENDOR_APPLE,
336 PCI_PRODUCT_APPLE_BCM5701,
337 "APPLE BCM5701 Gigabit Ethernet",
338 },
339 { PCI_VENDOR_BROADCOM,
340 PCI_PRODUCT_BROADCOM_BCM5700,
341 "Broadcom BCM5700 Gigabit Ethernet",
342 },
343 { PCI_VENDOR_BROADCOM,
344 PCI_PRODUCT_BROADCOM_BCM5701,
345 "Broadcom BCM5701 Gigabit Ethernet",
346 },
347 { PCI_VENDOR_BROADCOM,
348 PCI_PRODUCT_BROADCOM_BCM5702,
349 "Broadcom BCM5702 Gigabit Ethernet",
350 },
351 { PCI_VENDOR_BROADCOM,
352 PCI_PRODUCT_BROADCOM_BCM5702X,
353 "Broadcom BCM5702X Gigabit Ethernet" },
354 { PCI_VENDOR_BROADCOM,
355 PCI_PRODUCT_BROADCOM_BCM5703,
356 "Broadcom BCM5703 Gigabit Ethernet",
357 },
358 { PCI_VENDOR_BROADCOM,
359 PCI_PRODUCT_BROADCOM_BCM5703X,
360 "Broadcom BCM5703X Gigabit Ethernet",
361 },
362 { PCI_VENDOR_BROADCOM,
363 PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 "Broadcom BCM5703 Gigabit Ethernet",
365 },
366 { PCI_VENDOR_BROADCOM,
367 PCI_PRODUCT_BROADCOM_BCM5704C,
368 "Broadcom BCM5704C Dual Gigabit Ethernet",
369 },
370 { PCI_VENDOR_BROADCOM,
371 PCI_PRODUCT_BROADCOM_BCM5704S,
372 "Broadcom BCM5704S Dual Gigabit Ethernet",
373 },
374 { PCI_VENDOR_BROADCOM,
375 PCI_PRODUCT_BROADCOM_BCM5705,
376 "Broadcom BCM5705 Gigabit Ethernet",
377 },
378 { PCI_VENDOR_BROADCOM,
379 PCI_PRODUCT_BROADCOM_BCM5705F,
380 "Broadcom BCM5705F Gigabit Ethernet",
381 },
382 { PCI_VENDOR_BROADCOM,
383 PCI_PRODUCT_BROADCOM_BCM5705K,
384 "Broadcom BCM5705K Gigabit Ethernet",
385 },
386 { PCI_VENDOR_BROADCOM,
387 PCI_PRODUCT_BROADCOM_BCM5705M,
388 "Broadcom BCM5705M Gigabit Ethernet",
389 },
390 { PCI_VENDOR_BROADCOM,
391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 "Broadcom BCM5705M Gigabit Ethernet",
393 },
394 { PCI_VENDOR_BROADCOM,
395 PCI_PRODUCT_BROADCOM_BCM5714,
396 "Broadcom BCM5714 Gigabit Ethernet",
397 },
398 { PCI_VENDOR_BROADCOM,
399 PCI_PRODUCT_BROADCOM_BCM5714S,
400 "Broadcom BCM5714S Gigabit Ethernet",
401 },
402 { PCI_VENDOR_BROADCOM,
403 PCI_PRODUCT_BROADCOM_BCM5715,
404 "Broadcom BCM5715 Gigabit Ethernet",
405 },
406 { PCI_VENDOR_BROADCOM,
407 PCI_PRODUCT_BROADCOM_BCM5715S,
408 "Broadcom BCM5715S Gigabit Ethernet",
409 },
410 { PCI_VENDOR_BROADCOM,
411 PCI_PRODUCT_BROADCOM_BCM5717,
412 "Broadcom BCM5717 Gigabit Ethernet",
413 },
414 { PCI_VENDOR_BROADCOM,
415 PCI_PRODUCT_BROADCOM_BCM5718,
416 "Broadcom BCM5718 Gigabit Ethernet",
417 },
418 { PCI_VENDOR_BROADCOM,
419 PCI_PRODUCT_BROADCOM_BCM5719,
420 "Broadcom BCM5719 Gigabit Ethernet",
421 },
422 { PCI_VENDOR_BROADCOM,
423 PCI_PRODUCT_BROADCOM_BCM5720,
424 "Broadcom BCM5720 Gigabit Ethernet",
425 },
426 { PCI_VENDOR_BROADCOM,
427 PCI_PRODUCT_BROADCOM_BCM5721,
428 "Broadcom BCM5721 Gigabit Ethernet",
429 },
430 { PCI_VENDOR_BROADCOM,
431 PCI_PRODUCT_BROADCOM_BCM5722,
432 "Broadcom BCM5722 Gigabit Ethernet",
433 },
434 { PCI_VENDOR_BROADCOM,
435 PCI_PRODUCT_BROADCOM_BCM5723,
436 "Broadcom BCM5723 Gigabit Ethernet",
437 },
438 { PCI_VENDOR_BROADCOM,
439 PCI_PRODUCT_BROADCOM_BCM5750,
440 "Broadcom BCM5750 Gigabit Ethernet",
441 },
442 { PCI_VENDOR_BROADCOM,
443 PCI_PRODUCT_BROADCOM_BCM5751,
444 "Broadcom BCM5751 Gigabit Ethernet",
445 },
446 { PCI_VENDOR_BROADCOM,
447 PCI_PRODUCT_BROADCOM_BCM5751F,
448 "Broadcom BCM5751F Gigabit Ethernet",
449 },
450 { PCI_VENDOR_BROADCOM,
451 PCI_PRODUCT_BROADCOM_BCM5751M,
452 "Broadcom BCM5751M Gigabit Ethernet",
453 },
454 { PCI_VENDOR_BROADCOM,
455 PCI_PRODUCT_BROADCOM_BCM5752,
456 "Broadcom BCM5752 Gigabit Ethernet",
457 },
458 { PCI_VENDOR_BROADCOM,
459 PCI_PRODUCT_BROADCOM_BCM5752M,
460 "Broadcom BCM5752M Gigabit Ethernet",
461 },
462 { PCI_VENDOR_BROADCOM,
463 PCI_PRODUCT_BROADCOM_BCM5753,
464 "Broadcom BCM5753 Gigabit Ethernet",
465 },
466 { PCI_VENDOR_BROADCOM,
467 PCI_PRODUCT_BROADCOM_BCM5753F,
468 "Broadcom BCM5753F Gigabit Ethernet",
469 },
470 { PCI_VENDOR_BROADCOM,
471 PCI_PRODUCT_BROADCOM_BCM5753M,
472 "Broadcom BCM5753M Gigabit Ethernet",
473 },
474 { PCI_VENDOR_BROADCOM,
475 PCI_PRODUCT_BROADCOM_BCM5754,
476 "Broadcom BCM5754 Gigabit Ethernet",
477 },
478 { PCI_VENDOR_BROADCOM,
479 PCI_PRODUCT_BROADCOM_BCM5754M,
480 "Broadcom BCM5754M Gigabit Ethernet",
481 },
482 { PCI_VENDOR_BROADCOM,
483 PCI_PRODUCT_BROADCOM_BCM5755,
484 "Broadcom BCM5755 Gigabit Ethernet",
485 },
486 { PCI_VENDOR_BROADCOM,
487 PCI_PRODUCT_BROADCOM_BCM5755M,
488 "Broadcom BCM5755M Gigabit Ethernet",
489 },
490 { PCI_VENDOR_BROADCOM,
491 PCI_PRODUCT_BROADCOM_BCM5756,
492 "Broadcom BCM5756 Gigabit Ethernet",
493 },
494 { PCI_VENDOR_BROADCOM,
495 PCI_PRODUCT_BROADCOM_BCM5761,
496 "Broadcom BCM5761 Gigabit Ethernet",
497 },
498 { PCI_VENDOR_BROADCOM,
499 PCI_PRODUCT_BROADCOM_BCM5761E,
500 "Broadcom BCM5761E Gigabit Ethernet",
501 },
502 { PCI_VENDOR_BROADCOM,
503 PCI_PRODUCT_BROADCOM_BCM5761S,
504 "Broadcom BCM5761S Gigabit Ethernet",
505 },
506 { PCI_VENDOR_BROADCOM,
507 PCI_PRODUCT_BROADCOM_BCM5761SE,
508 "Broadcom BCM5761SE Gigabit Ethernet",
509 },
510 { PCI_VENDOR_BROADCOM,
511 PCI_PRODUCT_BROADCOM_BCM5764,
512 "Broadcom BCM5764 Gigabit Ethernet",
513 },
514 { PCI_VENDOR_BROADCOM,
515 PCI_PRODUCT_BROADCOM_BCM5780,
516 "Broadcom BCM5780 Gigabit Ethernet",
517 },
518 { PCI_VENDOR_BROADCOM,
519 PCI_PRODUCT_BROADCOM_BCM5780S,
520 "Broadcom BCM5780S Gigabit Ethernet",
521 },
522 { PCI_VENDOR_BROADCOM,
523 PCI_PRODUCT_BROADCOM_BCM5781,
524 "Broadcom BCM5781 Gigabit Ethernet",
525 },
526 { PCI_VENDOR_BROADCOM,
527 PCI_PRODUCT_BROADCOM_BCM5782,
528 "Broadcom BCM5782 Gigabit Ethernet",
529 },
530 { PCI_VENDOR_BROADCOM,
531 PCI_PRODUCT_BROADCOM_BCM5784M,
532 "BCM5784M NetLink 1000baseT Ethernet",
533 },
534 { PCI_VENDOR_BROADCOM,
535 PCI_PRODUCT_BROADCOM_BCM5785F,
536 "BCM5785F NetLink 10/100 Ethernet",
537 },
538 { PCI_VENDOR_BROADCOM,
539 PCI_PRODUCT_BROADCOM_BCM5785G,
540 "BCM5785G NetLink 1000baseT Ethernet",
541 },
542 { PCI_VENDOR_BROADCOM,
543 PCI_PRODUCT_BROADCOM_BCM5786,
544 "Broadcom BCM5786 Gigabit Ethernet",
545 },
546 { PCI_VENDOR_BROADCOM,
547 PCI_PRODUCT_BROADCOM_BCM5787,
548 "Broadcom BCM5787 Gigabit Ethernet",
549 },
550 { PCI_VENDOR_BROADCOM,
551 PCI_PRODUCT_BROADCOM_BCM5787F,
552 "Broadcom BCM5787F 10/100 Ethernet",
553 },
554 { PCI_VENDOR_BROADCOM,
555 PCI_PRODUCT_BROADCOM_BCM5787M,
556 "Broadcom BCM5787M Gigabit Ethernet",
557 },
558 { PCI_VENDOR_BROADCOM,
559 PCI_PRODUCT_BROADCOM_BCM5788,
560 "Broadcom BCM5788 Gigabit Ethernet",
561 },
562 { PCI_VENDOR_BROADCOM,
563 PCI_PRODUCT_BROADCOM_BCM5789,
564 "Broadcom BCM5789 Gigabit Ethernet",
565 },
566 { PCI_VENDOR_BROADCOM,
567 PCI_PRODUCT_BROADCOM_BCM5901,
568 "Broadcom BCM5901 Fast Ethernet",
569 },
570 { PCI_VENDOR_BROADCOM,
571 PCI_PRODUCT_BROADCOM_BCM5901A2,
572 "Broadcom BCM5901A2 Fast Ethernet",
573 },
574 { PCI_VENDOR_BROADCOM,
575 PCI_PRODUCT_BROADCOM_BCM5903M,
576 "Broadcom BCM5903M Fast Ethernet",
577 },
578 { PCI_VENDOR_BROADCOM,
579 PCI_PRODUCT_BROADCOM_BCM5906,
580 "Broadcom BCM5906 Fast Ethernet",
581 },
582 { PCI_VENDOR_BROADCOM,
583 PCI_PRODUCT_BROADCOM_BCM5906M,
584 "Broadcom BCM5906M Fast Ethernet",
585 },
586 { PCI_VENDOR_BROADCOM,
587 PCI_PRODUCT_BROADCOM_BCM57760,
588 "Broadcom BCM57760 Gigabit Ethernet",
589 },
590 { PCI_VENDOR_BROADCOM,
591 PCI_PRODUCT_BROADCOM_BCM57761,
592 "Broadcom BCM57761 Gigabit Ethernet",
593 },
594 { PCI_VENDOR_BROADCOM,
595 PCI_PRODUCT_BROADCOM_BCM57762,
596 "Broadcom BCM57762 Gigabit Ethernet",
597 },
598 { PCI_VENDOR_BROADCOM,
599 PCI_PRODUCT_BROADCOM_BCM57765,
600 "Broadcom BCM57765 Gigabit Ethernet",
601 },
602 { PCI_VENDOR_BROADCOM,
603 PCI_PRODUCT_BROADCOM_BCM57766,
604 "Broadcom BCM57766 Gigabit Ethernet",
605 },
606 { PCI_VENDOR_BROADCOM,
607 PCI_PRODUCT_BROADCOM_BCM57780,
608 "Broadcom BCM57780 Gigabit Ethernet",
609 },
610 { PCI_VENDOR_BROADCOM,
611 PCI_PRODUCT_BROADCOM_BCM57781,
612 "Broadcom BCM57781 Gigabit Ethernet",
613 },
614 { PCI_VENDOR_BROADCOM,
615 PCI_PRODUCT_BROADCOM_BCM57782,
616 "Broadcom BCM57782 Gigabit Ethernet",
617 },
618 { PCI_VENDOR_BROADCOM,
619 PCI_PRODUCT_BROADCOM_BCM57785,
620 "Broadcom BCM57785 Gigabit Ethernet",
621 },
622 { PCI_VENDOR_BROADCOM,
623 PCI_PRODUCT_BROADCOM_BCM57786,
624 "Broadcom BCM57786 Gigabit Ethernet",
625 },
626 { PCI_VENDOR_BROADCOM,
627 PCI_PRODUCT_BROADCOM_BCM57788,
628 "Broadcom BCM57788 Gigabit Ethernet",
629 },
630 { PCI_VENDOR_BROADCOM,
631 PCI_PRODUCT_BROADCOM_BCM57790,
632 "Broadcom BCM57790 Gigabit Ethernet",
633 },
634 { PCI_VENDOR_BROADCOM,
635 PCI_PRODUCT_BROADCOM_BCM57791,
636 "Broadcom BCM57791 Gigabit Ethernet",
637 },
638 { PCI_VENDOR_BROADCOM,
639 PCI_PRODUCT_BROADCOM_BCM57795,
640 "Broadcom BCM57795 Gigabit Ethernet",
641 },
642 { PCI_VENDOR_SCHNEIDERKOCH,
643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 },
646 { PCI_VENDOR_3COM,
647 PCI_PRODUCT_3COM_3C996,
648 "3Com 3c996 Gigabit Ethernet",
649 },
650 { PCI_VENDOR_FUJITSU4,
651 PCI_PRODUCT_FUJITSU4_PW008GE4,
652 "Fujitsu PW008GE4 Gigabit Ethernet",
653 },
654 { PCI_VENDOR_FUJITSU4,
655 PCI_PRODUCT_FUJITSU4_PW008GE5,
656 "Fujitsu PW008GE5 Gigabit Ethernet",
657 },
658 { PCI_VENDOR_FUJITSU4,
659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 },
662 { 0,
663 0,
664 NULL },
665 };
666
667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
676
677 static const struct bge_revision {
678 uint32_t br_chipid;
679 const char *br_name;
680 } bge_revisions[] = {
681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 /* 5754 and 5787 share the same ASIC ID */
738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
747 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
748 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
749
750 { 0, NULL }
751 };
752
753 /*
754 * Some defaults for major revisions, so that newer steppings
755 * that we don't know about have a shot at working.
756 */
757 static const struct bge_revision bge_majorrevs[] = {
758 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
759 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
760 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
761 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
762 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
763 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
764 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
765 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
766 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
767 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
768 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
769 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
770 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
771 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
772 /* 5754 and 5787 share the same ASIC ID */
773 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
774 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
775 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
776 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
777 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
778 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
779 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
780 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
781
782 { 0, NULL }
783 };
784
785 static int bge_allow_asf = 1;
786
787 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
788 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
789
790 static uint32_t
791 bge_readmem_ind(struct bge_softc *sc, int off)
792 {
793 pcireg_t val;
794
795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
796 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
797 return 0;
798
799 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
800 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
801 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
802 return val;
803 }
804
805 static void
806 bge_writemem_ind(struct bge_softc *sc, int off, int val)
807 {
808
809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
811 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
812 }
813
814 /*
815 * PCI Express only
816 */
817 static void
818 bge_set_max_readrq(struct bge_softc *sc)
819 {
820 pcireg_t val;
821
822 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
823 + PCIE_DCSR);
824 val &= ~PCIE_DCSR_MAX_READ_REQ;
825 switch (sc->bge_expmrq) {
826 case 2048:
827 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
828 break;
829 case 4096:
830 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
831 break;
832 default:
833 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
834 break;
835 }
836 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
837 + PCIE_DCSR, val);
838 }
839
840 #ifdef notdef
841 static uint32_t
842 bge_readreg_ind(struct bge_softc *sc, int off)
843 {
844 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
845 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
846 }
847 #endif
848
849 static void
850 bge_writereg_ind(struct bge_softc *sc, int off, int val)
851 {
852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
853 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
854 }
855
856 static void
857 bge_writemem_direct(struct bge_softc *sc, int off, int val)
858 {
859 CSR_WRITE_4(sc, off, val);
860 }
861
862 static void
863 bge_writembx(struct bge_softc *sc, int off, int val)
864 {
865 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
866 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
867
868 CSR_WRITE_4(sc, off, val);
869 }
870
871 static void
872 bge_writembx_flush(struct bge_softc *sc, int off, int val)
873 {
874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
875 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
876
877 CSR_WRITE_4_FLUSH(sc, off, val);
878 }
879
880 /*
881 * Clear all stale locks and select the lock for this driver instance.
882 */
883 void
884 bge_ape_lock_init(struct bge_softc *sc)
885 {
886 struct pci_attach_args *pa = &(sc->bge_pa);
887 uint32_t bit, regbase;
888 int i;
889
890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
891 regbase = BGE_APE_LOCK_GRANT;
892 else
893 regbase = BGE_APE_PER_LOCK_GRANT;
894
895 /* Clear any stale locks. */
896 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
897 switch (i) {
898 case BGE_APE_LOCK_PHY0:
899 case BGE_APE_LOCK_PHY1:
900 case BGE_APE_LOCK_PHY2:
901 case BGE_APE_LOCK_PHY3:
902 bit = BGE_APE_LOCK_GRANT_DRIVER0;
903 break;
904 default:
905 if (pa->pa_function == 0)
906 bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 else
908 bit = (1 << pa->pa_function);
909 }
910 APE_WRITE_4(sc, regbase + 4 * i, bit);
911 }
912
913 /* Select the PHY lock based on the device's function number. */
914 switch (pa->pa_function) {
915 case 0:
916 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
917 break;
918 case 1:
919 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
920 break;
921 case 2:
922 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
923 break;
924 case 3:
925 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
926 break;
927 default:
928 printf("%s: PHY lock not supported on function\n",
929 device_xname(sc->bge_dev));
930 break;
931 }
932 }
933
934 /*
935 * Check for APE firmware, set flags, and print version info.
936 */
937 void
938 bge_ape_read_fw_ver(struct bge_softc *sc)
939 {
940 const char *fwtype;
941 uint32_t apedata, features;
942
943 /* Check for a valid APE signature in shared memory. */
944 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
945 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
946 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
947 return;
948 }
949
950 /* Check if APE firmware is running. */
951 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
952 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
953 printf("%s: APE signature found but FW status not ready! "
954 "0x%08x\n", device_xname(sc->bge_dev), apedata);
955 return;
956 }
957
958 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
959
960 /* Fetch the APE firwmare type and version. */
961 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
962 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
963 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
964 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
965 fwtype = "NCSI";
966 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
967 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
968 fwtype = "DASH";
969 } else
970 fwtype = "UNKN";
971
972 /* Print the APE firmware version. */
973 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
974 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
975 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
976 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
977 (apedata & BGE_APE_FW_VERSION_BLDMSK));
978 }
979
980 int
981 bge_ape_lock(struct bge_softc *sc, int locknum)
982 {
983 struct pci_attach_args *pa = &(sc->bge_pa);
984 uint32_t bit, gnt, req, status;
985 int i, off;
986
987 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
988 return (0);
989
990 /* Lock request/grant registers have different bases. */
991 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
992 req = BGE_APE_LOCK_REQ;
993 gnt = BGE_APE_LOCK_GRANT;
994 } else {
995 req = BGE_APE_PER_LOCK_REQ;
996 gnt = BGE_APE_PER_LOCK_GRANT;
997 }
998
999 off = 4 * locknum;
1000
1001 switch (locknum) {
1002 case BGE_APE_LOCK_GPIO:
1003 /* Lock required when using GPIO. */
1004 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1005 return (0);
1006 if (pa->pa_function == 0)
1007 bit = BGE_APE_LOCK_REQ_DRIVER0;
1008 else
1009 bit = (1 << pa->pa_function);
1010 break;
1011 case BGE_APE_LOCK_GRC:
1012 /* Lock required to reset the device. */
1013 if (pa->pa_function == 0)
1014 bit = BGE_APE_LOCK_REQ_DRIVER0;
1015 else
1016 bit = (1 << pa->pa_function);
1017 break;
1018 case BGE_APE_LOCK_MEM:
1019 /* Lock required when accessing certain APE memory. */
1020 if (pa->pa_function == 0)
1021 bit = BGE_APE_LOCK_REQ_DRIVER0;
1022 else
1023 bit = (1 << pa->pa_function);
1024 break;
1025 case BGE_APE_LOCK_PHY0:
1026 case BGE_APE_LOCK_PHY1:
1027 case BGE_APE_LOCK_PHY2:
1028 case BGE_APE_LOCK_PHY3:
1029 /* Lock required when accessing PHYs. */
1030 bit = BGE_APE_LOCK_REQ_DRIVER0;
1031 break;
1032 default:
1033 return (EINVAL);
1034 }
1035
1036 /* Request a lock. */
1037 APE_WRITE_4_FLUSH(sc, req + off, bit);
1038
1039 /* Wait up to 1 second to acquire lock. */
1040 for (i = 0; i < 20000; i++) {
1041 status = APE_READ_4(sc, gnt + off);
1042 if (status == bit)
1043 break;
1044 DELAY(50);
1045 }
1046
1047 /* Handle any errors. */
1048 if (status != bit) {
1049 printf("%s: APE lock %d request failed! "
1050 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1051 device_xname(sc->bge_dev),
1052 locknum, req + off, bit & 0xFFFF, gnt + off,
1053 status & 0xFFFF);
1054 /* Revoke the lock request. */
1055 APE_WRITE_4(sc, gnt + off, bit);
1056 return (EBUSY);
1057 }
1058
1059 return (0);
1060 }
1061
1062 void
1063 bge_ape_unlock(struct bge_softc *sc, int locknum)
1064 {
1065 struct pci_attach_args *pa = &(sc->bge_pa);
1066 uint32_t bit, gnt;
1067 int off;
1068
1069 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1070 return;
1071
1072 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1073 gnt = BGE_APE_LOCK_GRANT;
1074 else
1075 gnt = BGE_APE_PER_LOCK_GRANT;
1076
1077 off = 4 * locknum;
1078
1079 switch (locknum) {
1080 case BGE_APE_LOCK_GPIO:
1081 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1082 return;
1083 if (pa->pa_function == 0)
1084 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1085 else
1086 bit = (1 << pa->pa_function);
1087 break;
1088 case BGE_APE_LOCK_GRC:
1089 if (pa->pa_function == 0)
1090 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 else
1092 bit = (1 << pa->pa_function);
1093 break;
1094 case BGE_APE_LOCK_MEM:
1095 if (pa->pa_function == 0)
1096 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 else
1098 bit = (1 << pa->pa_function);
1099 break;
1100 case BGE_APE_LOCK_PHY0:
1101 case BGE_APE_LOCK_PHY1:
1102 case BGE_APE_LOCK_PHY2:
1103 case BGE_APE_LOCK_PHY3:
1104 bit = BGE_APE_LOCK_GRANT_DRIVER0;
1105 break;
1106 default:
1107 return;
1108 }
1109
1110 /* Write and flush for consecutive bge_ape_lock() */
1111 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1112 }
1113
1114 /*
1115 * Send an event to the APE firmware.
1116 */
1117 void
1118 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1119 {
1120 uint32_t apedata;
1121 int i;
1122
1123 /* NCSI does not support APE events. */
1124 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1125 return;
1126
1127 /* Wait up to 1ms for APE to service previous event. */
1128 for (i = 10; i > 0; i--) {
1129 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1130 break;
1131 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1132 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1133 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1134 BGE_APE_EVENT_STATUS_EVENT_PENDING);
1135 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1136 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1137 break;
1138 }
1139 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 DELAY(100);
1141 }
1142 if (i == 0) {
1143 printf("%s: APE event 0x%08x send timed out\n",
1144 device_xname(sc->bge_dev), event);
1145 }
1146 }
1147
1148 void
1149 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1150 {
1151 uint32_t apedata, event;
1152
1153 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1154 return;
1155
1156 switch (kind) {
1157 case BGE_RESET_START:
1158 /* If this is the first load, clear the load counter. */
1159 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1160 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1161 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1162 else {
1163 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1164 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1165 }
1166 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1167 BGE_APE_HOST_SEG_SIG_MAGIC);
1168 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1169 BGE_APE_HOST_SEG_LEN_MAGIC);
1170
1171 /* Add some version info if bge(4) supports it. */
1172 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1173 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1174 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1175 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1176 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1177 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1178 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1179 BGE_APE_HOST_DRVR_STATE_START);
1180 event = BGE_APE_EVENT_STATUS_STATE_START;
1181 break;
1182 case BGE_RESET_SHUTDOWN:
1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 BGE_APE_HOST_DRVR_STATE_UNLOAD);
1185 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1186 break;
1187 case BGE_RESET_SUSPEND:
1188 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1189 break;
1190 default:
1191 return;
1192 }
1193
1194 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1195 BGE_APE_EVENT_STATUS_STATE_CHNGE);
1196 }
1197
1198 static uint8_t
1199 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1200 {
1201 uint32_t access, byte = 0;
1202 int i;
1203
1204 /* Lock. */
1205 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1206 for (i = 0; i < 8000; i++) {
1207 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1208 break;
1209 DELAY(20);
1210 }
1211 if (i == 8000)
1212 return 1;
1213
1214 /* Enable access. */
1215 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1216 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1217
1218 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1219 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1220 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1221 DELAY(10);
1222 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1223 DELAY(10);
1224 break;
1225 }
1226 }
1227
1228 if (i == BGE_TIMEOUT * 10) {
1229 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1230 return 1;
1231 }
1232
1233 /* Get result. */
1234 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1235
1236 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1237
1238 /* Disable access. */
1239 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1240
1241 /* Unlock. */
1242 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1243
1244 return 0;
1245 }
1246
1247 /*
1248 * Read a sequence of bytes from NVRAM.
1249 */
1250 static int
1251 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1252 {
1253 int error = 0, i;
1254 uint8_t byte = 0;
1255
1256 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1257 return 1;
1258
1259 for (i = 0; i < cnt; i++) {
1260 error = bge_nvram_getbyte(sc, off + i, &byte);
1261 if (error)
1262 break;
1263 *(dest + i) = byte;
1264 }
1265
1266 return (error ? 1 : 0);
1267 }
1268
1269 /*
1270 * Read a byte of data stored in the EEPROM at address 'addr.' The
1271 * BCM570x supports both the traditional bitbang interface and an
1272 * auto access interface for reading the EEPROM. We use the auto
1273 * access method.
1274 */
1275 static uint8_t
1276 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1277 {
1278 int i;
1279 uint32_t byte = 0;
1280
1281 /*
1282 * Enable use of auto EEPROM access so we can avoid
1283 * having to use the bitbang method.
1284 */
1285 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1286
1287 /* Reset the EEPROM, load the clock period. */
1288 CSR_WRITE_4(sc, BGE_EE_ADDR,
1289 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1290 DELAY(20);
1291
1292 /* Issue the read EEPROM command. */
1293 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1294
1295 /* Wait for completion */
1296 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1297 DELAY(10);
1298 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1299 break;
1300 }
1301
1302 if (i == BGE_TIMEOUT * 10) {
1303 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1304 return 1;
1305 }
1306
1307 /* Get result. */
1308 byte = CSR_READ_4(sc, BGE_EE_DATA);
1309
1310 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Read a sequence of bytes from the EEPROM.
1317 */
1318 static int
1319 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1320 {
1321 int error = 0, i;
1322 uint8_t byte = 0;
1323 char *dest = destv;
1324
1325 for (i = 0; i < cnt; i++) {
1326 error = bge_eeprom_getbyte(sc, off + i, &byte);
1327 if (error)
1328 break;
1329 *(dest + i) = byte;
1330 }
1331
1332 return (error ? 1 : 0);
1333 }
1334
1335 static int
1336 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1337 {
1338 struct bge_softc *sc = device_private(dev);
1339 uint32_t data;
1340 uint32_t autopoll;
1341 int rv = 0;
1342 int i;
1343
1344 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1345 return -1;
1346
1347 /* Reading with autopolling on may trigger PCI errors */
1348 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1349 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1350 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1351 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1352 DELAY(80);
1353 }
1354
1355 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1356 BGE_MIPHY(phy) | BGE_MIREG(reg));
1357
1358 for (i = 0; i < BGE_TIMEOUT; i++) {
1359 delay(10);
1360 data = CSR_READ_4(sc, BGE_MI_COMM);
1361 if (!(data & BGE_MICOMM_BUSY)) {
1362 DELAY(5);
1363 data = CSR_READ_4(sc, BGE_MI_COMM);
1364 break;
1365 }
1366 }
1367
1368 if (i == BGE_TIMEOUT) {
1369 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1370 rv = ETIMEDOUT;
1371 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1372 rv = -1;
1373 else
1374 *val = data & BGE_MICOMM_DATA;
1375
1376 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1377 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1378 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1379 DELAY(80);
1380 }
1381
1382 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1383
1384 return rv;
1385 }
1386
1387 static int
1388 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1389 {
1390 struct bge_softc *sc = device_private(dev);
1391 uint32_t autopoll;
1392 int i;
1393
1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1396 return 0;
1397
1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 return -1;
1400
1401 /* Reading with autopolling on may trigger PCI errors */
1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 DELAY(80);
1407 }
1408
1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411
1412 for (i = 0; i < BGE_TIMEOUT; i++) {
1413 delay(10);
1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 delay(5);
1416 CSR_READ_4(sc, BGE_MI_COMM);
1417 break;
1418 }
1419 }
1420
1421 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 delay(80);
1425 }
1426
1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428
1429 if (i == BGE_TIMEOUT) {
1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 return ETIMEDOUT;
1432 }
1433
1434 return 0;
1435 }
1436
1437 static void
1438 bge_miibus_statchg(struct ifnet *ifp)
1439 {
1440 struct bge_softc *sc = ifp->if_softc;
1441 struct mii_data *mii = &sc->bge_mii;
1442 uint32_t mac_mode, rx_mode, tx_mode;
1443
1444 /*
1445 * Get flow control negotiation result.
1446 */
1447 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1448 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1449 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1450
1451 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 mii->mii_media_status & IFM_ACTIVE &&
1453 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1454 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1455 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1456 (!(mii->mii_media_status & IFM_ACTIVE) ||
1457 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1458 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1459
1460 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1461 return;
1462
1463 /* Set the port mode (MII/GMII) to match the link speed. */
1464 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1465 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1466 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1467 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1468 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1469 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1470 mac_mode |= BGE_PORTMODE_GMII;
1471 else
1472 mac_mode |= BGE_PORTMODE_MII;
1473
1474 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1475 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1476 if ((mii->mii_media_active & IFM_FDX) != 0) {
1477 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1478 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1479 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1480 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1481 } else
1482 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1483
1484 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1485 DELAY(40);
1486 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1487 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1488 }
1489
1490 /*
1491 * Update rx threshold levels to values in a particular slot
1492 * of the interrupt-mitigation table bge_rx_threshes.
1493 */
1494 static void
1495 bge_set_thresh(struct ifnet *ifp, int lvl)
1496 {
1497 struct bge_softc *sc = ifp->if_softc;
1498 int s;
1499
1500 /* For now, just save the new Rx-intr thresholds and record
1501 * that a threshold update is pending. Updating the hardware
1502 * registers here (even at splhigh()) is observed to
1503 * occasionaly cause glitches where Rx-interrupts are not
1504 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1505 */
1506 s = splnet();
1507 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1508 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1509 sc->bge_pending_rxintr_change = 1;
1510 splx(s);
1511 }
1512
1513
1514 /*
1515 * Update Rx thresholds of all bge devices
1516 */
1517 static void
1518 bge_update_all_threshes(int lvl)
1519 {
1520 struct ifnet *ifp;
1521 const char * const namebuf = "bge";
1522 int namelen;
1523 int s;
1524
1525 if (lvl < 0)
1526 lvl = 0;
1527 else if (lvl >= NBGE_RX_THRESH)
1528 lvl = NBGE_RX_THRESH - 1;
1529
1530 namelen = strlen(namebuf);
1531 /*
1532 * Now search all the interfaces for this name/number
1533 */
1534 s = pserialize_read_enter();
1535 IFNET_READER_FOREACH(ifp) {
1536 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1537 continue;
1538 /* We got a match: update if doing auto-threshold-tuning */
1539 if (bge_auto_thresh)
1540 bge_set_thresh(ifp, lvl);
1541 }
1542 pserialize_read_exit(s);
1543 }
1544
1545 /*
1546 * Handle events that have triggered interrupts.
1547 */
1548 static void
1549 bge_handle_events(struct bge_softc *sc)
1550 {
1551
1552 return;
1553 }
1554
1555 /*
1556 * Memory management for jumbo frames.
1557 */
1558
1559 static int
1560 bge_alloc_jumbo_mem(struct bge_softc *sc)
1561 {
1562 char *ptr, *kva;
1563 bus_dma_segment_t seg;
1564 int i, rseg, state, error;
1565 struct bge_jpool_entry *entry;
1566
1567 state = error = 0;
1568
1569 /* Grab a big chunk o' storage. */
1570 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1571 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1572 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1573 return ENOBUFS;
1574 }
1575
1576 state = 1;
1577 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1578 BUS_DMA_NOWAIT)) {
1579 aprint_error_dev(sc->bge_dev,
1580 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1581 error = ENOBUFS;
1582 goto out;
1583 }
1584
1585 state = 2;
1586 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1587 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1588 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1589 error = ENOBUFS;
1590 goto out;
1591 }
1592
1593 state = 3;
1594 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1595 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1596 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1597 error = ENOBUFS;
1598 goto out;
1599 }
1600
1601 state = 4;
1602 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1603 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1604
1605 SLIST_INIT(&sc->bge_jfree_listhead);
1606 SLIST_INIT(&sc->bge_jinuse_listhead);
1607
1608 /*
1609 * Now divide it up into 9K pieces and save the addresses
1610 * in an array.
1611 */
1612 ptr = sc->bge_cdata.bge_jumbo_buf;
1613 for (i = 0; i < BGE_JSLOTS; i++) {
1614 sc->bge_cdata.bge_jslots[i] = ptr;
1615 ptr += BGE_JLEN;
1616 entry = malloc(sizeof(struct bge_jpool_entry),
1617 M_DEVBUF, M_NOWAIT);
1618 if (entry == NULL) {
1619 aprint_error_dev(sc->bge_dev,
1620 "no memory for jumbo buffer queue!\n");
1621 error = ENOBUFS;
1622 goto out;
1623 }
1624 entry->slot = i;
1625 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1626 entry, jpool_entries);
1627 }
1628 out:
1629 if (error != 0) {
1630 switch (state) {
1631 case 4:
1632 bus_dmamap_unload(sc->bge_dmatag,
1633 sc->bge_cdata.bge_rx_jumbo_map);
1634 /* FALLTHROUGH */
1635 case 3:
1636 bus_dmamap_destroy(sc->bge_dmatag,
1637 sc->bge_cdata.bge_rx_jumbo_map);
1638 /* FALLTHROUGH */
1639 case 2:
1640 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1641 /* FALLTHROUGH */
1642 case 1:
1643 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1644 break;
1645 default:
1646 break;
1647 }
1648 }
1649
1650 return error;
1651 }
1652
1653 /*
1654 * Allocate a jumbo buffer.
1655 */
1656 static void *
1657 bge_jalloc(struct bge_softc *sc)
1658 {
1659 struct bge_jpool_entry *entry;
1660
1661 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1662
1663 if (entry == NULL) {
1664 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1665 return NULL;
1666 }
1667
1668 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1669 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1670 return (sc->bge_cdata.bge_jslots[entry->slot]);
1671 }
1672
1673 /*
1674 * Release a jumbo buffer.
1675 */
1676 static void
1677 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1678 {
1679 struct bge_jpool_entry *entry;
1680 struct bge_softc *sc;
1681 int i, s;
1682
1683 /* Extract the softc struct pointer. */
1684 sc = (struct bge_softc *)arg;
1685
1686 if (sc == NULL)
1687 panic("bge_jfree: can't find softc pointer!");
1688
1689 /* calculate the slot this buffer belongs to */
1690
1691 i = ((char *)buf
1692 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1693
1694 if ((i < 0) || (i >= BGE_JSLOTS))
1695 panic("bge_jfree: asked to free buffer that we don't manage!");
1696
1697 s = splvm();
1698 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1699 if (entry == NULL)
1700 panic("bge_jfree: buffer not in use!");
1701 entry->slot = i;
1702 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1703 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1704
1705 if (__predict_true(m != NULL))
1706 pool_cache_put(mb_cache, m);
1707 splx(s);
1708 }
1709
1710
1711 /*
1712 * Initialize a standard receive ring descriptor.
1713 */
1714 static int
1715 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1716 bus_dmamap_t dmamap)
1717 {
1718 struct mbuf *m_new = NULL;
1719 struct bge_rx_bd *r;
1720 int error;
1721
1722 if (dmamap == NULL)
1723 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1724
1725 if (dmamap == NULL) {
1726 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1727 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1728 if (error != 0)
1729 return error;
1730 }
1731
1732 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1733
1734 if (m == NULL) {
1735 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1736 if (m_new == NULL)
1737 return ENOBUFS;
1738
1739 MCLGET(m_new, M_DONTWAIT);
1740 if (!(m_new->m_flags & M_EXT)) {
1741 m_freem(m_new);
1742 return ENOBUFS;
1743 }
1744 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1745
1746 } else {
1747 m_new = m;
1748 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1749 m_new->m_data = m_new->m_ext.ext_buf;
1750 }
1751 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1752 m_adj(m_new, ETHER_ALIGN);
1753 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1754 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1755 m_freem(m_new);
1756 return ENOBUFS;
1757 }
1758 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1759 BUS_DMASYNC_PREREAD);
1760
1761 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1762 r = &sc->bge_rdata->bge_rx_std_ring[i];
1763 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1764 r->bge_flags = BGE_RXBDFLAG_END;
1765 r->bge_len = m_new->m_len;
1766 r->bge_idx = i;
1767
1768 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1769 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1770 i * sizeof (struct bge_rx_bd),
1771 sizeof (struct bge_rx_bd),
1772 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1773
1774 return 0;
1775 }
1776
1777 /*
1778 * Initialize a jumbo receive ring descriptor. This allocates
1779 * a jumbo buffer from the pool managed internally by the driver.
1780 */
1781 static int
1782 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1783 {
1784 struct mbuf *m_new = NULL;
1785 struct bge_rx_bd *r;
1786 void *buf = NULL;
1787
1788 if (m == NULL) {
1789
1790 /* Allocate the mbuf. */
1791 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1792 if (m_new == NULL)
1793 return ENOBUFS;
1794
1795 /* Allocate the jumbo buffer */
1796 buf = bge_jalloc(sc);
1797 if (buf == NULL) {
1798 m_freem(m_new);
1799 aprint_error_dev(sc->bge_dev,
1800 "jumbo allocation failed -- packet dropped!\n");
1801 return ENOBUFS;
1802 }
1803
1804 /* Attach the buffer to the mbuf. */
1805 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1806 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1807 bge_jfree, sc);
1808 m_new->m_flags |= M_EXT_RW;
1809 } else {
1810 m_new = m;
1811 buf = m_new->m_data = m_new->m_ext.ext_buf;
1812 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1813 }
1814 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1815 m_adj(m_new, ETHER_ALIGN);
1816 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1817 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1818 BUS_DMASYNC_PREREAD);
1819 /* Set up the descriptor. */
1820 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1821 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1822 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1823 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1824 r->bge_len = m_new->m_len;
1825 r->bge_idx = i;
1826
1827 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1828 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1829 i * sizeof (struct bge_rx_bd),
1830 sizeof (struct bge_rx_bd),
1831 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1832
1833 return 0;
1834 }
1835
1836 /*
1837 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1838 * that's 1MB or memory, which is a lot. For now, we fill only the first
1839 * 256 ring entries and hope that our CPU is fast enough to keep up with
1840 * the NIC.
1841 */
1842 static int
1843 bge_init_rx_ring_std(struct bge_softc *sc)
1844 {
1845 int i;
1846
1847 if (sc->bge_flags & BGEF_RXRING_VALID)
1848 return 0;
1849
1850 for (i = 0; i < BGE_SSLOTS; i++) {
1851 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1852 return ENOBUFS;
1853 }
1854
1855 sc->bge_std = i - 1;
1856 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1857
1858 sc->bge_flags |= BGEF_RXRING_VALID;
1859
1860 return 0;
1861 }
1862
1863 static void
1864 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1865 {
1866 int i;
1867
1868 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1869 return;
1870
1871 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1872 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1873 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1874 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1875 if (disable) {
1876 bus_dmamap_destroy(sc->bge_dmatag,
1877 sc->bge_cdata.bge_rx_std_map[i]);
1878 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1879 }
1880 }
1881 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1882 sizeof(struct bge_rx_bd));
1883 }
1884
1885 sc->bge_flags &= ~BGEF_RXRING_VALID;
1886 }
1887
1888 static int
1889 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1890 {
1891 int i;
1892 volatile struct bge_rcb *rcb;
1893
1894 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1895 return 0;
1896
1897 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1898 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1899 return ENOBUFS;
1900 }
1901
1902 sc->bge_jumbo = i - 1;
1903 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1904
1905 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1906 rcb->bge_maxlen_flags = 0;
1907 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1908
1909 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1910
1911 return 0;
1912 }
1913
1914 static void
1915 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1916 {
1917 int i;
1918
1919 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1920 return;
1921
1922 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1923 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1924 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1925 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1926 }
1927 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1928 sizeof(struct bge_rx_bd));
1929 }
1930
1931 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1932 }
1933
1934 static void
1935 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1936 {
1937 int i;
1938 struct txdmamap_pool_entry *dma;
1939
1940 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1941 return;
1942
1943 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1944 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1945 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1946 sc->bge_cdata.bge_tx_chain[i] = NULL;
1947 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1948 link);
1949 sc->txdma[i] = 0;
1950 }
1951 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1952 sizeof(struct bge_tx_bd));
1953 }
1954
1955 if (disable) {
1956 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1957 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1958 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1959 if (sc->bge_dma64) {
1960 bus_dmamap_destroy(sc->bge_dmatag32,
1961 dma->dmamap32);
1962 }
1963 free(dma, M_DEVBUF);
1964 }
1965 SLIST_INIT(&sc->txdma_list);
1966 }
1967
1968 sc->bge_flags &= ~BGEF_TXRING_VALID;
1969 }
1970
1971 static int
1972 bge_init_tx_ring(struct bge_softc *sc)
1973 {
1974 struct ifnet *ifp = &sc->ethercom.ec_if;
1975 int i;
1976 bus_dmamap_t dmamap, dmamap32;
1977 bus_size_t maxsegsz;
1978 struct txdmamap_pool_entry *dma;
1979
1980 if (sc->bge_flags & BGEF_TXRING_VALID)
1981 return 0;
1982
1983 sc->bge_txcnt = 0;
1984 sc->bge_tx_saved_considx = 0;
1985
1986 /* Initialize transmit producer index for host-memory send ring. */
1987 sc->bge_tx_prodidx = 0;
1988 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1989 /* 5700 b2 errata */
1990 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1991 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1992
1993 /* NIC-memory send ring not used; initialize to zero. */
1994 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1995 /* 5700 b2 errata */
1996 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1997 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1998
1999 /* Limit DMA segment size for some chips */
2000 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
2001 (ifp->if_mtu <= ETHERMTU))
2002 maxsegsz = 2048;
2003 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2004 maxsegsz = 4096;
2005 else
2006 maxsegsz = ETHER_MAX_LEN_JUMBO;
2007
2008 if (SLIST_FIRST(&sc->txdma_list) != NULL)
2009 goto alloc_done;
2010
2011 for (i = 0; i < BGE_TX_RING_CNT; i++) {
2012 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
2013 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2014 &dmamap))
2015 return ENOBUFS;
2016 if (dmamap == NULL)
2017 panic("dmamap NULL in bge_init_tx_ring");
2018 if (sc->bge_dma64) {
2019 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
2020 BGE_NTXSEG, maxsegsz, 0,
2021 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2022 &dmamap32)) {
2023 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2024 return ENOBUFS;
2025 }
2026 if (dmamap32 == NULL)
2027 panic("dmamap32 NULL in bge_init_tx_ring");
2028 } else
2029 dmamap32 = dmamap;
2030 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
2031 if (dma == NULL) {
2032 aprint_error_dev(sc->bge_dev,
2033 "can't alloc txdmamap_pool_entry\n");
2034 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2035 if (sc->bge_dma64)
2036 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
2037 return ENOMEM;
2038 }
2039 dma->dmamap = dmamap;
2040 dma->dmamap32 = dmamap32;
2041 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2042 }
2043 alloc_done:
2044 sc->bge_flags |= BGEF_TXRING_VALID;
2045
2046 return 0;
2047 }
2048
2049 static void
2050 bge_setmulti(struct bge_softc *sc)
2051 {
2052 struct ethercom *ac = &sc->ethercom;
2053 struct ifnet *ifp = &ac->ec_if;
2054 struct ether_multi *enm;
2055 struct ether_multistep step;
2056 uint32_t hashes[4] = { 0, 0, 0, 0 };
2057 uint32_t h;
2058 int i;
2059
2060 if (ifp->if_flags & IFF_PROMISC)
2061 goto allmulti;
2062
2063 /* Now program new ones. */
2064 ETHER_FIRST_MULTI(step, ac, enm);
2065 while (enm != NULL) {
2066 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2067 /*
2068 * We must listen to a range of multicast addresses.
2069 * For now, just accept all multicasts, rather than
2070 * trying to set only those filter bits needed to match
2071 * the range. (At this time, the only use of address
2072 * ranges is for IP multicast routing, for which the
2073 * range is big enough to require all bits set.)
2074 */
2075 goto allmulti;
2076 }
2077
2078 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2079
2080 /* Just want the 7 least-significant bits. */
2081 h &= 0x7f;
2082
2083 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2084 ETHER_NEXT_MULTI(step, enm);
2085 }
2086
2087 ifp->if_flags &= ~IFF_ALLMULTI;
2088 goto setit;
2089
2090 allmulti:
2091 ifp->if_flags |= IFF_ALLMULTI;
2092 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2093
2094 setit:
2095 for (i = 0; i < 4; i++)
2096 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2097 }
2098
2099 static void
2100 bge_sig_pre_reset(struct bge_softc *sc, int type)
2101 {
2102
2103 /*
2104 * Some chips don't like this so only do this if ASF is enabled
2105 */
2106 if (sc->bge_asf_mode)
2107 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2108
2109 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2110 switch (type) {
2111 case BGE_RESET_START:
2112 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2113 BGE_FW_DRV_STATE_START);
2114 break;
2115 case BGE_RESET_SHUTDOWN:
2116 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2117 BGE_FW_DRV_STATE_UNLOAD);
2118 break;
2119 case BGE_RESET_SUSPEND:
2120 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2121 BGE_FW_DRV_STATE_SUSPEND);
2122 break;
2123 }
2124 }
2125
2126 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2127 bge_ape_driver_state_change(sc, type);
2128 }
2129
2130 static void
2131 bge_sig_post_reset(struct bge_softc *sc, int type)
2132 {
2133
2134 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2135 switch (type) {
2136 case BGE_RESET_START:
2137 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2138 BGE_FW_DRV_STATE_START_DONE);
2139 /* START DONE */
2140 break;
2141 case BGE_RESET_SHUTDOWN:
2142 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2143 BGE_FW_DRV_STATE_UNLOAD_DONE);
2144 break;
2145 }
2146 }
2147
2148 if (type == BGE_RESET_SHUTDOWN)
2149 bge_ape_driver_state_change(sc, type);
2150 }
2151
2152 static void
2153 bge_sig_legacy(struct bge_softc *sc, int type)
2154 {
2155
2156 if (sc->bge_asf_mode) {
2157 switch (type) {
2158 case BGE_RESET_START:
2159 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2160 BGE_FW_DRV_STATE_START);
2161 break;
2162 case BGE_RESET_SHUTDOWN:
2163 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2164 BGE_FW_DRV_STATE_UNLOAD);
2165 break;
2166 }
2167 }
2168 }
2169
2170 static void
2171 bge_wait_for_event_ack(struct bge_softc *sc)
2172 {
2173 int i;
2174
2175 /* wait up to 2500usec */
2176 for (i = 0; i < 250; i++) {
2177 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2178 BGE_RX_CPU_DRV_EVENT))
2179 break;
2180 DELAY(10);
2181 }
2182 }
2183
2184 static void
2185 bge_stop_fw(struct bge_softc *sc)
2186 {
2187
2188 if (sc->bge_asf_mode) {
2189 bge_wait_for_event_ack(sc);
2190
2191 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2192 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2193 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2194
2195 bge_wait_for_event_ack(sc);
2196 }
2197 }
2198
2199 static int
2200 bge_poll_fw(struct bge_softc *sc)
2201 {
2202 uint32_t val;
2203 int i;
2204
2205 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2206 for (i = 0; i < BGE_TIMEOUT; i++) {
2207 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2208 if (val & BGE_VCPU_STATUS_INIT_DONE)
2209 break;
2210 DELAY(100);
2211 }
2212 if (i >= BGE_TIMEOUT) {
2213 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2214 return -1;
2215 }
2216 } else {
2217 /*
2218 * Poll the value location we just wrote until
2219 * we see the 1's complement of the magic number.
2220 * This indicates that the firmware initialization
2221 * is complete.
2222 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2223 */
2224 for (i = 0; i < BGE_TIMEOUT; i++) {
2225 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2226 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2227 break;
2228 DELAY(10);
2229 }
2230
2231 if ((i >= BGE_TIMEOUT)
2232 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2233 aprint_error_dev(sc->bge_dev,
2234 "firmware handshake timed out, val = %x\n", val);
2235 return -1;
2236 }
2237 }
2238
2239 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2240 /* tg3 says we have to wait extra time */
2241 delay(10 * 1000);
2242 }
2243
2244 return 0;
2245 }
2246
2247 int
2248 bge_phy_addr(struct bge_softc *sc)
2249 {
2250 struct pci_attach_args *pa = &(sc->bge_pa);
2251 int phy_addr = 1;
2252
2253 /*
2254 * PHY address mapping for various devices.
2255 *
2256 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2257 * ---------+-------+-------+-------+-------+
2258 * BCM57XX | 1 | X | X | X |
2259 * BCM5704 | 1 | X | 1 | X |
2260 * BCM5717 | 1 | 8 | 2 | 9 |
2261 * BCM5719 | 1 | 8 | 2 | 9 |
2262 * BCM5720 | 1 | 8 | 2 | 9 |
2263 *
2264 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2265 * ---------+-------+-------+-------+-------+
2266 * BCM57XX | X | X | X | X |
2267 * BCM5704 | X | X | X | X |
2268 * BCM5717 | X | X | X | X |
2269 * BCM5719 | 3 | 10 | 4 | 11 |
2270 * BCM5720 | X | X | X | X |
2271 *
2272 * Other addresses may respond but they are not
2273 * IEEE compliant PHYs and should be ignored.
2274 */
2275 switch (BGE_ASICREV(sc->bge_chipid)) {
2276 case BGE_ASICREV_BCM5717:
2277 case BGE_ASICREV_BCM5719:
2278 case BGE_ASICREV_BCM5720:
2279 phy_addr = pa->pa_function;
2280 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2281 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2282 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2283 } else {
2284 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2285 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2286 }
2287 }
2288
2289 return phy_addr;
2290 }
2291
2292 /*
2293 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2294 * self-test results.
2295 */
2296 static int
2297 bge_chipinit(struct bge_softc *sc)
2298 {
2299 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2300 int i;
2301
2302 /* Set endianness before we access any non-PCI registers. */
2303 misc_ctl = BGE_INIT;
2304 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2305 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2306 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2307 misc_ctl);
2308
2309 /*
2310 * Clear the MAC statistics block in the NIC's
2311 * internal memory.
2312 */
2313 for (i = BGE_STATS_BLOCK;
2314 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2315 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2316
2317 for (i = BGE_STATUS_BLOCK;
2318 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2319 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2320
2321 /* 5717 workaround from tg3 */
2322 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2323 /* Save */
2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325
2326 /* Temporary modify MODE_CTL to control TLP */
2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2329
2330 /* Control TLP */
2331 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2332 BGE_TLP_PHYCTL1);
2333 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2334 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2335
2336 /* Restore */
2337 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2338 }
2339
2340 if (BGE_IS_57765_FAMILY(sc)) {
2341 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2342 /* Save */
2343 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2344
2345 /* Temporary modify MODE_CTL to control TLP */
2346 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2347 CSR_WRITE_4(sc, BGE_MODE_CTL,
2348 reg | BGE_MODECTL_PCIE_TLPADDR1);
2349
2350 /* Control TLP */
2351 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2352 BGE_TLP_PHYCTL5);
2353 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2354 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2355
2356 /* Restore */
2357 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2358 }
2359 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2360 /*
2361 * For the 57766 and non Ax versions of 57765, bootcode
2362 * needs to setup the PCIE Fast Training Sequence (FTS)
2363 * value to prevent transmit hangs.
2364 */
2365 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2366 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2367 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2368
2369 /* Save */
2370 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2371
2372 /* Temporary modify MODE_CTL to control TLP */
2373 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2374 CSR_WRITE_4(sc, BGE_MODE_CTL,
2375 reg | BGE_MODECTL_PCIE_TLPADDR0);
2376
2377 /* Control TLP */
2378 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2379 BGE_TLP_FTSMAX);
2380 reg &= ~BGE_TLP_FTSMAX_MSK;
2381 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2382 reg | BGE_TLP_FTSMAX_VAL);
2383
2384 /* Restore */
2385 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2386 }
2387
2388 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2389 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2390 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2391 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2392 }
2393
2394 /* Set up the PCI DMA control register. */
2395 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2396 if (sc->bge_flags & BGEF_PCIE) {
2397 /* Read watermark not used, 128 bytes for write. */
2398 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2399 device_xname(sc->bge_dev)));
2400 if (sc->bge_mps >= 256)
2401 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2402 else
2403 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2404 } else if (sc->bge_flags & BGEF_PCIX) {
2405 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2406 device_xname(sc->bge_dev)));
2407 /* PCI-X bus */
2408 if (BGE_IS_5714_FAMILY(sc)) {
2409 /* 256 bytes for read and write. */
2410 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2411 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2412
2413 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2414 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2415 else
2416 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2417 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2418 /*
2419 * In the BCM5703, the DMA read watermark should
2420 * be set to less than or equal to the maximum
2421 * memory read byte count of the PCI-X command
2422 * register.
2423 */
2424 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2425 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2426 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2427 /* 1536 bytes for read, 384 bytes for write. */
2428 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2429 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2430 } else {
2431 /* 384 bytes for read and write. */
2432 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2433 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2434 (0x0F);
2435 }
2436
2437 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2438 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2439 uint32_t tmp;
2440
2441 /* Set ONEDMA_ATONCE for hardware workaround. */
2442 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2443 if (tmp == 6 || tmp == 7)
2444 dma_rw_ctl |=
2445 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2446
2447 /* Set PCI-X DMA write workaround. */
2448 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2449 }
2450 } else {
2451 /* Conventional PCI bus: 256 bytes for read and write. */
2452 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2453 device_xname(sc->bge_dev)));
2454 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2455 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2456
2457 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2458 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2459 dma_rw_ctl |= 0x0F;
2460 }
2461
2462 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2463 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2464 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2465 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2466
2467 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2468 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2469 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2470
2471 if (BGE_IS_57765_PLUS(sc)) {
2472 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2473 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2474 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2475
2476 /*
2477 * Enable HW workaround for controllers that misinterpret
2478 * a status tag update and leave interrupts permanently
2479 * disabled.
2480 */
2481 if (!BGE_IS_57765_FAMILY(sc) &&
2482 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2483 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2484 }
2485
2486 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2487 dma_rw_ctl);
2488
2489 /*
2490 * Set up general mode register.
2491 */
2492 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2493 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2494 /* Retain Host-2-BMC settings written by APE firmware. */
2495 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2496 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2497 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2498 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2499 }
2500 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2501 BGE_MODECTL_TX_NO_PHDR_CSUM;
2502
2503 /*
2504 * BCM5701 B5 have a bug causing data corruption when using
2505 * 64-bit DMA reads, which can be terminated early and then
2506 * completed later as 32-bit accesses, in combination with
2507 * certain bridges.
2508 */
2509 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2510 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2511 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2512
2513 /*
2514 * Tell the firmware the driver is running
2515 */
2516 if (sc->bge_asf_mode & ASF_STACKUP)
2517 mode_ctl |= BGE_MODECTL_STACKUP;
2518
2519 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2520
2521 /*
2522 * Disable memory write invalidate. Apparently it is not supported
2523 * properly by these devices.
2524 */
2525 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2526 PCI_COMMAND_INVALIDATE_ENABLE);
2527
2528 #ifdef __brokenalpha__
2529 /*
2530 * Must insure that we do not cross an 8K (bytes) boundary
2531 * for DMA reads. Our highest limit is 1K bytes. This is a
2532 * restriction on some ALPHA platforms with early revision
2533 * 21174 PCI chipsets, such as the AlphaPC 164lx
2534 */
2535 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2536 #endif
2537
2538 /* Set the timer prescaler (always 66MHz) */
2539 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2540
2541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2542 DELAY(40); /* XXX */
2543
2544 /* Put PHY into ready state */
2545 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2546 DELAY(40);
2547 }
2548
2549 return 0;
2550 }
2551
2552 static int
2553 bge_blockinit(struct bge_softc *sc)
2554 {
2555 volatile struct bge_rcb *rcb;
2556 bus_size_t rcb_addr;
2557 struct ifnet *ifp = &sc->ethercom.ec_if;
2558 bge_hostaddr taddr;
2559 uint32_t dmactl, mimode, val;
2560 int i, limit;
2561
2562 /*
2563 * Initialize the memory window pointer register so that
2564 * we can access the first 32K of internal NIC RAM. This will
2565 * allow us to set up the TX send ring RCBs and the RX return
2566 * ring RCBs, plus other things which live in NIC memory.
2567 */
2568 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2569
2570 if (!BGE_IS_5705_PLUS(sc)) {
2571 /* 57XX step 33 */
2572 /* Configure mbuf memory pool */
2573 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2574 BGE_BUFFPOOL_1);
2575
2576 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2577 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2578 else
2579 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2580
2581 /* 57XX step 34 */
2582 /* Configure DMA resource pool */
2583 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2584 BGE_DMA_DESCRIPTORS);
2585 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2586 }
2587
2588 /* 5718 step 11, 57XX step 35 */
2589 /*
2590 * Configure mbuf pool watermarks. New broadcom docs strongly
2591 * recommend these.
2592 */
2593 if (BGE_IS_5717_PLUS(sc)) {
2594 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2595 if (ifp->if_mtu > ETHERMTU) {
2596 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2597 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2598 } else {
2599 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2600 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2601 }
2602 } else if (BGE_IS_5705_PLUS(sc)) {
2603 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2604
2605 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2606 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2607 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2608 } else {
2609 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2610 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2611 }
2612 } else {
2613 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2614 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2615 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2616 }
2617
2618 /* 57XX step 36 */
2619 /* Configure DMA resource watermarks */
2620 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2621 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2622
2623 /* 5718 step 13, 57XX step 38 */
2624 /* Enable buffer manager */
2625 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2626 /*
2627 * Change the arbitration algorithm of TXMBUF read request to
2628 * round-robin instead of priority based for BCM5719. When
2629 * TXFIFO is almost empty, RDMA will hold its request until
2630 * TXFIFO is not almost empty.
2631 */
2632 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2633 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2634 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2635 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2636 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2637 val |= BGE_BMANMODE_LOMBUF_ATTN;
2638 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2639
2640 /* 57XX step 39 */
2641 /* Poll for buffer manager start indication */
2642 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2643 DELAY(10);
2644 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2645 break;
2646 }
2647
2648 if (i == BGE_TIMEOUT * 2) {
2649 aprint_error_dev(sc->bge_dev,
2650 "buffer manager failed to start\n");
2651 return ENXIO;
2652 }
2653
2654 /* 57XX step 40 */
2655 /* Enable flow-through queues */
2656 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2657 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2658
2659 /* Wait until queue initialization is complete */
2660 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2661 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2662 break;
2663 DELAY(10);
2664 }
2665
2666 if (i == BGE_TIMEOUT * 2) {
2667 aprint_error_dev(sc->bge_dev,
2668 "flow-through queue init failed\n");
2669 return ENXIO;
2670 }
2671
2672 /*
2673 * Summary of rings supported by the controller:
2674 *
2675 * Standard Receive Producer Ring
2676 * - This ring is used to feed receive buffers for "standard"
2677 * sized frames (typically 1536 bytes) to the controller.
2678 *
2679 * Jumbo Receive Producer Ring
2680 * - This ring is used to feed receive buffers for jumbo sized
2681 * frames (i.e. anything bigger than the "standard" frames)
2682 * to the controller.
2683 *
2684 * Mini Receive Producer Ring
2685 * - This ring is used to feed receive buffers for "mini"
2686 * sized frames to the controller.
2687 * - This feature required external memory for the controller
2688 * but was never used in a production system. Should always
2689 * be disabled.
2690 *
2691 * Receive Return Ring
2692 * - After the controller has placed an incoming frame into a
2693 * receive buffer that buffer is moved into a receive return
2694 * ring. The driver is then responsible to passing the
2695 * buffer up to the stack. Many versions of the controller
2696 * support multiple RR rings.
2697 *
2698 * Send Ring
2699 * - This ring is used for outgoing frames. Many versions of
2700 * the controller support multiple send rings.
2701 */
2702
2703 /* 5718 step 15, 57XX step 41 */
2704 /* Initialize the standard RX ring control block */
2705 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2706 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2707 /* 5718 step 16 */
2708 if (BGE_IS_57765_PLUS(sc)) {
2709 /*
2710 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2711 * Bits 15-2 : Maximum RX frame size
2712 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2713 * Bit 0 : Reserved
2714 */
2715 rcb->bge_maxlen_flags =
2716 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2717 } else if (BGE_IS_5705_PLUS(sc)) {
2718 /*
2719 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2720 * Bits 15-2 : Reserved (should be 0)
2721 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2722 * Bit 0 : Reserved
2723 */
2724 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2725 } else {
2726 /*
2727 * Ring size is always XXX entries
2728 * Bits 31-16: Maximum RX frame size
2729 * Bits 15-2 : Reserved (should be 0)
2730 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2731 * Bit 0 : Reserved
2732 */
2733 rcb->bge_maxlen_flags =
2734 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2735 }
2736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2737 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2738 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2739 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2740 else
2741 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2742 /* Write the standard receive producer ring control block. */
2743 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2744 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2745 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2746 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2747
2748 /* Reset the standard receive producer ring producer index. */
2749 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2750
2751 /* 57XX step 42 */
2752 /*
2753 * Initialize the jumbo RX ring control block
2754 * We set the 'ring disabled' bit in the flags
2755 * field until we're actually ready to start
2756 * using this ring (i.e. once we set the MTU
2757 * high enough to require it).
2758 */
2759 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2760 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2761 BGE_HOSTADDR(rcb->bge_hostaddr,
2762 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2763 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2764 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2765 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2766 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2767 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2768 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2769 else
2770 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2771 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2772 rcb->bge_hostaddr.bge_addr_hi);
2773 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2774 rcb->bge_hostaddr.bge_addr_lo);
2775 /* Program the jumbo receive producer ring RCB parameters. */
2776 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2777 rcb->bge_maxlen_flags);
2778 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2779 /* Reset the jumbo receive producer ring producer index. */
2780 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2781 }
2782
2783 /* 57XX step 43 */
2784 /* Disable the mini receive producer ring RCB. */
2785 if (BGE_IS_5700_FAMILY(sc)) {
2786 /* Set up dummy disabled mini ring RCB */
2787 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2788 rcb->bge_maxlen_flags =
2789 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2790 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2791 rcb->bge_maxlen_flags);
2792 /* Reset the mini receive producer ring producer index. */
2793 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2794
2795 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2796 offsetof(struct bge_ring_data, bge_info),
2797 sizeof (struct bge_gib),
2798 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2799 }
2800
2801 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2802 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2803 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2804 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2805 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2806 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2807 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2808 }
2809 /* 5718 step 14, 57XX step 44 */
2810 /*
2811 * The BD ring replenish thresholds control how often the
2812 * hardware fetches new BD's from the producer rings in host
2813 * memory. Setting the value too low on a busy system can
2814 * starve the hardware and recue the throughpout.
2815 *
2816 * Set the BD ring replenish thresholds. The recommended
2817 * values are 1/8th the number of descriptors allocated to
2818 * each ring, but since we try to avoid filling the entire
2819 * ring we set these to the minimal value of 8. This needs to
2820 * be done on several of the supported chip revisions anyway,
2821 * to work around HW bugs.
2822 */
2823 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2824 if (BGE_IS_JUMBO_CAPABLE(sc))
2825 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2826
2827 /* 5718 step 18 */
2828 if (BGE_IS_5717_PLUS(sc)) {
2829 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2830 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2831 }
2832
2833 /* 57XX step 45 */
2834 /*
2835 * Disable all send rings by setting the 'ring disabled' bit
2836 * in the flags field of all the TX send ring control blocks,
2837 * located in NIC memory.
2838 */
2839 if (BGE_IS_5700_FAMILY(sc)) {
2840 /* 5700 to 5704 had 16 send rings. */
2841 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2842 } else if (BGE_IS_5717_PLUS(sc)) {
2843 limit = BGE_TX_RINGS_5717_MAX;
2844 } else if (BGE_IS_57765_FAMILY(sc)) {
2845 limit = BGE_TX_RINGS_57765_MAX;
2846 } else
2847 limit = 1;
2848 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2849 for (i = 0; i < limit; i++) {
2850 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2851 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2852 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2853 rcb_addr += sizeof(struct bge_rcb);
2854 }
2855
2856 /* 57XX step 46 and 47 */
2857 /* Configure send ring RCB 0 (we use only the first ring) */
2858 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2859 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2860 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2861 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2862 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2863 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2864 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2865 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2866 else
2867 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2868 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2869 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2870 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2871
2872 /* 57XX step 48 */
2873 /*
2874 * Disable all receive return rings by setting the
2875 * 'ring diabled' bit in the flags field of all the receive
2876 * return ring control blocks, located in NIC memory.
2877 */
2878 if (BGE_IS_5717_PLUS(sc)) {
2879 /* Should be 17, use 16 until we get an SRAM map. */
2880 limit = 16;
2881 } else if (BGE_IS_5700_FAMILY(sc))
2882 limit = BGE_RX_RINGS_MAX;
2883 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2884 BGE_IS_57765_FAMILY(sc))
2885 limit = 4;
2886 else
2887 limit = 1;
2888 /* Disable all receive return rings */
2889 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2890 for (i = 0; i < limit; i++) {
2891 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2892 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2893 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2894 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2895 BGE_RCB_FLAG_RING_DISABLED));
2896 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2897 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2898 (i * (sizeof(uint64_t))), 0);
2899 rcb_addr += sizeof(struct bge_rcb);
2900 }
2901
2902 /* 57XX step 49 */
2903 /*
2904 * Set up receive return ring 0. Note that the NIC address
2905 * for RX return rings is 0x0. The return rings live entirely
2906 * within the host, so the nicaddr field in the RCB isn't used.
2907 */
2908 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2909 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2910 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2911 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2912 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2913 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2914 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2915
2916 /* 5718 step 24, 57XX step 53 */
2917 /* Set random backoff seed for TX */
2918 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2919 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2920 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2921 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2922 BGE_TX_BACKOFF_SEED_MASK);
2923
2924 /* 5718 step 26, 57XX step 55 */
2925 /* Set inter-packet gap */
2926 val = 0x2620;
2927 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2928 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2929 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2930 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2931
2932 /* 5718 step 27, 57XX step 56 */
2933 /*
2934 * Specify which ring to use for packets that don't match
2935 * any RX rules.
2936 */
2937 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2938
2939 /* 5718 step 28, 57XX step 57 */
2940 /*
2941 * Configure number of RX lists. One interrupt distribution
2942 * list, sixteen active lists, one bad frames class.
2943 */
2944 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2945
2946 /* 5718 step 29, 57XX step 58 */
2947 /* Inialize RX list placement stats mask. */
2948 if (BGE_IS_575X_PLUS(sc)) {
2949 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2950 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2951 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2952 } else
2953 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2954
2955 /* 5718 step 30, 57XX step 59 */
2956 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2957
2958 /* 5718 step 33, 57XX step 62 */
2959 /* Disable host coalescing until we get it set up */
2960 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2961
2962 /* 5718 step 34, 57XX step 63 */
2963 /* Poll to make sure it's shut down. */
2964 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2965 DELAY(10);
2966 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2967 break;
2968 }
2969
2970 if (i == BGE_TIMEOUT * 2) {
2971 aprint_error_dev(sc->bge_dev,
2972 "host coalescing engine failed to idle\n");
2973 return ENXIO;
2974 }
2975
2976 /* 5718 step 35, 36, 37 */
2977 /* Set up host coalescing defaults */
2978 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2979 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2980 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2981 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2982 if (!(BGE_IS_5705_PLUS(sc))) {
2983 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2984 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2985 }
2986 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2987 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2988
2989 /* Set up address of statistics block */
2990 if (BGE_IS_5700_FAMILY(sc)) {
2991 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2992 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2993 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2994 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2995 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2996 }
2997
2998 /* 5718 step 38 */
2999 /* Set up address of status block */
3000 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
3001 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
3002 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
3003 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
3004 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
3005 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
3006
3007 /* Set up status block size. */
3008 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
3009 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
3010 val = BGE_STATBLKSZ_FULL;
3011 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
3012 } else {
3013 val = BGE_STATBLKSZ_32BYTE;
3014 bzero(&sc->bge_rdata->bge_status_block, 32);
3015 }
3016
3017 /* 5718 step 39, 57XX step 73 */
3018 /* Turn on host coalescing state machine */
3019 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
3020
3021 /* 5718 step 40, 57XX step 74 */
3022 /* Turn on RX BD completion state machine and enable attentions */
3023 CSR_WRITE_4(sc, BGE_RBDC_MODE,
3024 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
3025
3026 /* 5718 step 41, 57XX step 75 */
3027 /* Turn on RX list placement state machine */
3028 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3029
3030 /* 57XX step 76 */
3031 /* Turn on RX list selector state machine. */
3032 if (!(BGE_IS_5705_PLUS(sc)))
3033 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3034
3035 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
3036 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
3037 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
3038 BGE_MACMODE_FRMHDR_DMA_ENB;
3039
3040 if (sc->bge_flags & BGEF_FIBER_TBI)
3041 val |= BGE_PORTMODE_TBI;
3042 else if (sc->bge_flags & BGEF_FIBER_MII)
3043 val |= BGE_PORTMODE_GMII;
3044 else
3045 val |= BGE_PORTMODE_MII;
3046
3047 /* 5718 step 42 and 43, 57XX step 77 and 78 */
3048 /* Allow APE to send/receive frames. */
3049 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3050 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3051
3052 /* Turn on DMA, clear stats */
3053 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3054 /* 5718 step 44 */
3055 DELAY(40);
3056
3057 /* 5718 step 45, 57XX step 79 */
3058 /* Set misc. local control, enable interrupts on attentions */
3059 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3060 if (BGE_IS_5717_PLUS(sc)) {
3061 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3062 /* 5718 step 46 */
3063 DELAY(100);
3064 }
3065
3066 /* 57XX step 81 */
3067 /* Turn on DMA completion state machine */
3068 if (!(BGE_IS_5705_PLUS(sc)))
3069 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3070
3071 /* 5718 step 47, 57XX step 82 */
3072 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3073
3074 /* 5718 step 48 */
3075 /* Enable host coalescing bug fix. */
3076 if (BGE_IS_5755_PLUS(sc))
3077 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3078
3079 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3080 val |= BGE_WDMAMODE_BURST_ALL_DATA;
3081
3082 /* Turn on write DMA state machine */
3083 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3084 /* 5718 step 49 */
3085 DELAY(40);
3086
3087 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3088
3089 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3090 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3091
3092 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3093 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3094 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3095 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3096 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3097 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3098
3099 if (sc->bge_flags & BGEF_PCIE)
3100 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3101 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3102 if (ifp->if_mtu <= ETHERMTU)
3103 val |= BGE_RDMAMODE_JMB_2K_MMRR;
3104 }
3105 if (sc->bge_flags & BGEF_TSO) {
3106 val |= BGE_RDMAMODE_TSO4_ENABLE;
3107 if (BGE_IS_5717_PLUS(sc))
3108 val |= BGE_RDMAMODE_TSO6_ENABLE;
3109 }
3110
3111 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3112 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3113 BGE_RDMAMODE_H2BNC_VLAN_DET;
3114 /*
3115 * Allow multiple outstanding read requests from
3116 * non-LSO read DMA engine.
3117 */
3118 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3119 }
3120
3121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3122 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3123 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3124 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3125 BGE_IS_57765_PLUS(sc)) {
3126 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3127 /*
3128 * Adjust tx margin to prevent TX data corruption and
3129 * fix internal FIFO overflow.
3130 */
3131 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3132 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3133 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3134 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3135 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3136 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3137 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3138 }
3139 /*
3140 * Enable fix for read DMA FIFO overruns.
3141 * The fix is to limit the number of RX BDs
3142 * the hardware would fetch at a fime.
3143 */
3144 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3145 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3146 }
3147
3148 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3149 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3150 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3151 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3152 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3153 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3154 /*
3155 * Allow 4KB burst length reads for non-LSO frames.
3156 * Enable 512B burst length reads for buffer descriptors.
3157 */
3158 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3159 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3160 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3161 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3162 }
3163 /* Turn on read DMA state machine */
3164 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3165 /* 5718 step 52 */
3166 delay(40);
3167
3168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3169 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3170 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
3171 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
3172 if ((val & 0xFFFF) > BGE_FRAMELEN)
3173 break;
3174 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
3175 break;
3176 }
3177 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
3178 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
3179 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
3180 val |= BGE_RDMA_TX_LENGTH_WA_5719;
3181 else
3182 val |= BGE_RDMA_TX_LENGTH_WA_5720;
3183 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
3184 }
3185 }
3186
3187 /* 5718 step 56, 57XX step 84 */
3188 /* Turn on RX data completion state machine */
3189 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3190
3191 /* Turn on RX data and RX BD initiator state machine */
3192 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3193
3194 /* 57XX step 85 */
3195 /* Turn on Mbuf cluster free state machine */
3196 if (!BGE_IS_5705_PLUS(sc))
3197 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3198
3199 /* 5718 step 57, 57XX step 86 */
3200 /* Turn on send data completion state machine */
3201 val = BGE_SDCMODE_ENABLE;
3202 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3203 val |= BGE_SDCMODE_CDELAY;
3204 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3205
3206 /* 5718 step 58 */
3207 /* Turn on send BD completion state machine */
3208 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3209
3210 /* 57XX step 88 */
3211 /* Turn on RX BD initiator state machine */
3212 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3213
3214 /* 5718 step 60, 57XX step 90 */
3215 /* Turn on send data initiator state machine */
3216 if (sc->bge_flags & BGEF_TSO) {
3217 /* XXX: magic value from Linux driver */
3218 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3219 BGE_SDIMODE_HW_LSO_PRE_DMA);
3220 } else
3221 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3222
3223 /* 5718 step 61, 57XX step 91 */
3224 /* Turn on send BD initiator state machine */
3225 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3226
3227 /* 5718 step 62, 57XX step 92 */
3228 /* Turn on send BD selector state machine */
3229 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3230
3231 /* 5718 step 31, 57XX step 60 */
3232 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3233 /* 5718 step 32, 57XX step 61 */
3234 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3235 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3236
3237 /* ack/clear link change events */
3238 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3239 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3240 BGE_MACSTAT_LINK_CHANGED);
3241 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3242
3243 /*
3244 * Enable attention when the link has changed state for
3245 * devices that use auto polling.
3246 */
3247 if (sc->bge_flags & BGEF_FIBER_TBI) {
3248 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3249 } else {
3250 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3251 mimode = BGE_MIMODE_500KHZ_CONST;
3252 else
3253 mimode = BGE_MIMODE_BASE;
3254 /* 5718 step 68. 5718 step 69 (optionally). */
3255 if (BGE_IS_5700_FAMILY(sc) ||
3256 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3257 mimode |= BGE_MIMODE_AUTOPOLL;
3258 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3259 }
3260 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3261 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3262 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3263 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3264 BGE_EVTENB_MI_INTERRUPT);
3265 }
3266
3267 /*
3268 * Clear any pending link state attention.
3269 * Otherwise some link state change events may be lost until attention
3270 * is cleared by bge_intr() -> bge_link_upd() sequence.
3271 * It's not necessary on newer BCM chips - perhaps enabling link
3272 * state change attentions implies clearing pending attention.
3273 */
3274 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3275 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3276 BGE_MACSTAT_LINK_CHANGED);
3277
3278 /* Enable link state change attentions. */
3279 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3280
3281 return 0;
3282 }
3283
3284 static const struct bge_revision *
3285 bge_lookup_rev(uint32_t chipid)
3286 {
3287 const struct bge_revision *br;
3288
3289 for (br = bge_revisions; br->br_name != NULL; br++) {
3290 if (br->br_chipid == chipid)
3291 return br;
3292 }
3293
3294 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3295 if (br->br_chipid == BGE_ASICREV(chipid))
3296 return br;
3297 }
3298
3299 return NULL;
3300 }
3301
3302 static const struct bge_product *
3303 bge_lookup(const struct pci_attach_args *pa)
3304 {
3305 const struct bge_product *bp;
3306
3307 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3308 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3309 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3310 return bp;
3311 }
3312
3313 return NULL;
3314 }
3315
3316 static uint32_t
3317 bge_chipid(const struct pci_attach_args *pa)
3318 {
3319 uint32_t id;
3320
3321 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3322 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3323
3324 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3325 switch (PCI_PRODUCT(pa->pa_id)) {
3326 case PCI_PRODUCT_BROADCOM_BCM5717:
3327 case PCI_PRODUCT_BROADCOM_BCM5718:
3328 case PCI_PRODUCT_BROADCOM_BCM5719:
3329 case PCI_PRODUCT_BROADCOM_BCM5720:
3330 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3331 BGE_PCI_GEN2_PRODID_ASICREV);
3332 break;
3333 case PCI_PRODUCT_BROADCOM_BCM57761:
3334 case PCI_PRODUCT_BROADCOM_BCM57762:
3335 case PCI_PRODUCT_BROADCOM_BCM57765:
3336 case PCI_PRODUCT_BROADCOM_BCM57766:
3337 case PCI_PRODUCT_BROADCOM_BCM57781:
3338 case PCI_PRODUCT_BROADCOM_BCM57782:
3339 case PCI_PRODUCT_BROADCOM_BCM57785:
3340 case PCI_PRODUCT_BROADCOM_BCM57786:
3341 case PCI_PRODUCT_BROADCOM_BCM57791:
3342 case PCI_PRODUCT_BROADCOM_BCM57795:
3343 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3344 BGE_PCI_GEN15_PRODID_ASICREV);
3345 break;
3346 default:
3347 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3348 BGE_PCI_PRODID_ASICREV);
3349 break;
3350 }
3351 }
3352
3353 return id;
3354 }
3355
3356 /*
3357 * Return true if MSI can be used with this device.
3358 */
3359 static int
3360 bge_can_use_msi(struct bge_softc *sc)
3361 {
3362 int can_use_msi = 0;
3363
3364 switch (BGE_ASICREV(sc->bge_chipid)) {
3365 case BGE_ASICREV_BCM5714_A0:
3366 case BGE_ASICREV_BCM5714:
3367 /*
3368 * Apparently, MSI doesn't work when these chips are
3369 * configured in single-port mode.
3370 */
3371 break;
3372 case BGE_ASICREV_BCM5750:
3373 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3374 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3375 can_use_msi = 1;
3376 break;
3377 default:
3378 if (BGE_IS_575X_PLUS(sc))
3379 can_use_msi = 1;
3380 }
3381 return (can_use_msi);
3382 }
3383
3384 /*
3385 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3386 * against our list and return its name if we find a match. Note
3387 * that since the Broadcom controller contains VPD support, we
3388 * can get the device name string from the controller itself instead
3389 * of the compiled-in string. This is a little slow, but it guarantees
3390 * we'll always announce the right product name.
3391 */
3392 static int
3393 bge_probe(device_t parent, cfdata_t match, void *aux)
3394 {
3395 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3396
3397 if (bge_lookup(pa) != NULL)
3398 return 1;
3399
3400 return 0;
3401 }
3402
3403 static void
3404 bge_attach(device_t parent, device_t self, void *aux)
3405 {
3406 struct bge_softc *sc = device_private(self);
3407 struct pci_attach_args *pa = aux;
3408 prop_dictionary_t dict;
3409 const struct bge_product *bp;
3410 const struct bge_revision *br;
3411 pci_chipset_tag_t pc;
3412 const char *intrstr = NULL;
3413 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3414 uint32_t command;
3415 struct ifnet *ifp;
3416 uint32_t misccfg, mimode;
3417 void * kva;
3418 u_char eaddr[ETHER_ADDR_LEN];
3419 pcireg_t memtype, subid, reg;
3420 bus_addr_t memaddr;
3421 uint32_t pm_ctl;
3422 bool no_seeprom;
3423 int capmask;
3424 int mii_flags;
3425 int map_flags;
3426 char intrbuf[PCI_INTRSTR_LEN];
3427
3428 bp = bge_lookup(pa);
3429 KASSERT(bp != NULL);
3430
3431 sc->sc_pc = pa->pa_pc;
3432 sc->sc_pcitag = pa->pa_tag;
3433 sc->bge_dev = self;
3434
3435 sc->bge_pa = *pa;
3436 pc = sc->sc_pc;
3437 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3438
3439 aprint_naive(": Ethernet controller\n");
3440 aprint_normal(": %s\n", bp->bp_name);
3441
3442 /*
3443 * Map control/status registers.
3444 */
3445 DPRINTFN(5, ("Map control/status regs\n"));
3446 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3447 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3448 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3449 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3450
3451 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3452 aprint_error_dev(sc->bge_dev,
3453 "failed to enable memory mapping!\n");
3454 return;
3455 }
3456
3457 DPRINTFN(5, ("pci_mem_find\n"));
3458 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3459 switch (memtype) {
3460 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3461 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3462 #if 0
3463 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3464 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3465 &memaddr, &sc->bge_bsize) == 0)
3466 break;
3467 #else
3468 /*
3469 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3470 * system get NMI on boot (PR#48451). This problem might not be
3471 * the driver's bug but our PCI common part's bug. Until we
3472 * find a real reason, we ignore the prefetchable bit.
3473 */
3474 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3475 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3476 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3477 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3478 map_flags, &sc->bge_bhandle) == 0) {
3479 sc->bge_btag = pa->pa_memt;
3480 break;
3481 }
3482 }
3483 #endif
3484 /* FALLTHROUGH */
3485 default:
3486 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3487 return;
3488 }
3489
3490 /* Save various chip information. */
3491 sc->bge_chipid = bge_chipid(pa);
3492 sc->bge_phy_addr = bge_phy_addr(sc);
3493
3494 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3495 &sc->bge_pciecap, NULL) != 0) {
3496 /* PCIe */
3497 sc->bge_flags |= BGEF_PCIE;
3498 /* Extract supported maximum payload size. */
3499 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3500 sc->bge_pciecap + PCIE_DCAP);
3501 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3502 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3503 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3504 sc->bge_expmrq = 2048;
3505 else
3506 sc->bge_expmrq = 4096;
3507 bge_set_max_readrq(sc);
3508 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3509 /* PCIe without PCIe cap */
3510 sc->bge_flags |= BGEF_PCIE;
3511 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3512 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3513 /* PCI-X */
3514 sc->bge_flags |= BGEF_PCIX;
3515 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3516 &sc->bge_pcixcap, NULL) == 0)
3517 aprint_error_dev(sc->bge_dev,
3518 "unable to find PCIX capability\n");
3519 }
3520
3521 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3522 /*
3523 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3524 * can clobber the chip's PCI config-space power control
3525 * registers, leaving the card in D3 powersave state. We do
3526 * not have memory-mapped registers in this state, so force
3527 * device into D0 state before starting initialization.
3528 */
3529 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3530 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3531 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3532 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3533 DELAY(1000); /* 27 usec is allegedly sufficent */
3534 }
3535
3536 /* Save chipset family. */
3537 switch (BGE_ASICREV(sc->bge_chipid)) {
3538 case BGE_ASICREV_BCM5717:
3539 case BGE_ASICREV_BCM5719:
3540 case BGE_ASICREV_BCM5720:
3541 sc->bge_flags |= BGEF_5717_PLUS;
3542 /* FALLTHROUGH */
3543 case BGE_ASICREV_BCM57765:
3544 case BGE_ASICREV_BCM57766:
3545 if (!BGE_IS_5717_PLUS(sc))
3546 sc->bge_flags |= BGEF_57765_FAMILY;
3547 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3548 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3549 /* Jumbo frame on BCM5719 A0 does not work. */
3550 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3551 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3552 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3553 break;
3554 case BGE_ASICREV_BCM5755:
3555 case BGE_ASICREV_BCM5761:
3556 case BGE_ASICREV_BCM5784:
3557 case BGE_ASICREV_BCM5785:
3558 case BGE_ASICREV_BCM5787:
3559 case BGE_ASICREV_BCM57780:
3560 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3561 break;
3562 case BGE_ASICREV_BCM5700:
3563 case BGE_ASICREV_BCM5701:
3564 case BGE_ASICREV_BCM5703:
3565 case BGE_ASICREV_BCM5704:
3566 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3567 break;
3568 case BGE_ASICREV_BCM5714_A0:
3569 case BGE_ASICREV_BCM5780:
3570 case BGE_ASICREV_BCM5714:
3571 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3572 /* FALLTHROUGH */
3573 case BGE_ASICREV_BCM5750:
3574 case BGE_ASICREV_BCM5752:
3575 case BGE_ASICREV_BCM5906:
3576 sc->bge_flags |= BGEF_575X_PLUS;
3577 /* FALLTHROUGH */
3578 case BGE_ASICREV_BCM5705:
3579 sc->bge_flags |= BGEF_5705_PLUS;
3580 break;
3581 }
3582
3583 /* Identify chips with APE processor. */
3584 switch (BGE_ASICREV(sc->bge_chipid)) {
3585 case BGE_ASICREV_BCM5717:
3586 case BGE_ASICREV_BCM5719:
3587 case BGE_ASICREV_BCM5720:
3588 case BGE_ASICREV_BCM5761:
3589 sc->bge_flags |= BGEF_APE;
3590 break;
3591 }
3592
3593 /*
3594 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3595 * not actually a MAC controller bug but an issue with the embedded
3596 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3597 */
3598 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3599 sc->bge_flags |= BGEF_40BIT_BUG;
3600
3601 /* Chips with APE need BAR2 access for APE registers/memory. */
3602 if ((sc->bge_flags & BGEF_APE) != 0) {
3603 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3604 #if 0
3605 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3606 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3607 &sc->bge_apesize)) {
3608 aprint_error_dev(sc->bge_dev,
3609 "couldn't map BAR2 memory\n");
3610 return;
3611 }
3612 #else
3613 /*
3614 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3615 * system get NMI on boot (PR#48451). This problem might not be
3616 * the driver's bug but our PCI common part's bug. Until we
3617 * find a real reason, we ignore the prefetchable bit.
3618 */
3619 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3620 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3621 aprint_error_dev(sc->bge_dev,
3622 "couldn't map BAR2 memory\n");
3623 return;
3624 }
3625
3626 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3627 if (bus_space_map(pa->pa_memt, memaddr,
3628 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3629 aprint_error_dev(sc->bge_dev,
3630 "couldn't map BAR2 memory\n");
3631 return;
3632 }
3633 sc->bge_apetag = pa->pa_memt;
3634 #endif
3635
3636 /* Enable APE register/memory access by host driver. */
3637 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3638 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3639 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3640 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3641 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3642
3643 bge_ape_lock_init(sc);
3644 bge_ape_read_fw_ver(sc);
3645 }
3646
3647 /* Identify the chips that use an CPMU. */
3648 if (BGE_IS_5717_PLUS(sc) ||
3649 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3650 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3651 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3652 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3653 sc->bge_flags |= BGEF_CPMU_PRESENT;
3654
3655 /* Set MI_MODE */
3656 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3657 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3658 mimode |= BGE_MIMODE_500KHZ_CONST;
3659 else
3660 mimode |= BGE_MIMODE_BASE;
3661 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3662
3663 /*
3664 * When using the BCM5701 in PCI-X mode, data corruption has
3665 * been observed in the first few bytes of some received packets.
3666 * Aligning the packet buffer in memory eliminates the corruption.
3667 * Unfortunately, this misaligns the packet payloads. On platforms
3668 * which do not support unaligned accesses, we will realign the
3669 * payloads by copying the received packets.
3670 */
3671 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3672 sc->bge_flags & BGEF_PCIX)
3673 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3674
3675 if (BGE_IS_5700_FAMILY(sc))
3676 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3677
3678 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3679 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3680
3681 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3682 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3683 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3684 sc->bge_flags |= BGEF_IS_5788;
3685
3686 /*
3687 * Some controllers seem to require a special firmware to use
3688 * TSO. But the firmware is not available to FreeBSD and Linux
3689 * claims that the TSO performed by the firmware is slower than
3690 * hardware based TSO. Moreover the firmware based TSO has one
3691 * known bug which can't handle TSO if ethernet header + IP/TCP
3692 * header is greater than 80 bytes. The workaround for the TSO
3693 * bug exist but it seems it's too expensive than not using
3694 * TSO at all. Some hardwares also have the TSO bug so limit
3695 * the TSO to the controllers that are not affected TSO issues
3696 * (e.g. 5755 or higher).
3697 */
3698 if (BGE_IS_5755_PLUS(sc)) {
3699 /*
3700 * BCM5754 and BCM5787 shares the same ASIC id so
3701 * explicit device id check is required.
3702 */
3703 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3704 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3705 sc->bge_flags |= BGEF_TSO;
3706 /* TSO on BCM5719 A0 does not work. */
3707 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3708 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3709 sc->bge_flags &= ~BGEF_TSO;
3710 }
3711
3712 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3713 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3714 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3715 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3716 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3717 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3718 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3719 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3720 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3721 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3722 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3723 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3724 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3725 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3726 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3727 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3728 /* These chips are 10/100 only. */
3729 capmask &= ~BMSR_EXTSTAT;
3730 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3731 }
3732
3733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3734 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3735 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3736 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3737 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3738
3739 /* Set various PHY bug flags. */
3740 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3741 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3742 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3743 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3744 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3745 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3746 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3747 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3748 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3749 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3750 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3751 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3752 if (BGE_IS_5705_PLUS(sc) &&
3753 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3754 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3755 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3756 !BGE_IS_57765_PLUS(sc)) {
3757 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3758 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3759 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3760 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3761 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3762 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3763 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3764 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3765 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3766 } else
3767 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3768 }
3769
3770 /*
3771 * SEEPROM check.
3772 * First check if firmware knows we do not have SEEPROM.
3773 */
3774 if (prop_dictionary_get_bool(device_properties(self),
3775 "without-seeprom", &no_seeprom) && no_seeprom)
3776 sc->bge_flags |= BGEF_NO_EEPROM;
3777
3778 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3779 sc->bge_flags |= BGEF_NO_EEPROM;
3780
3781 /* Now check the 'ROM failed' bit on the RX CPU */
3782 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3783 sc->bge_flags |= BGEF_NO_EEPROM;
3784
3785 sc->bge_asf_mode = 0;
3786 /* No ASF if APE present. */
3787 if ((sc->bge_flags & BGEF_APE) == 0) {
3788 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3789 BGE_SRAM_DATA_SIG_MAGIC)) {
3790 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3791 BGE_HWCFG_ASF) {
3792 sc->bge_asf_mode |= ASF_ENABLE;
3793 sc->bge_asf_mode |= ASF_STACKUP;
3794 if (BGE_IS_575X_PLUS(sc))
3795 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3796 }
3797 }
3798 }
3799
3800 int counts[PCI_INTR_TYPE_SIZE] = {
3801 [PCI_INTR_TYPE_INTX] = 1,
3802 [PCI_INTR_TYPE_MSI] = 1,
3803 [PCI_INTR_TYPE_MSIX] = 1,
3804 };
3805 int max_type = PCI_INTR_TYPE_MSIX;
3806
3807 if (!bge_can_use_msi(sc)) {
3808 /* MSI broken, allow only INTx */
3809 max_type = PCI_INTR_TYPE_INTX;
3810 }
3811
3812 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3813 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3814 return;
3815 }
3816
3817 DPRINTFN(5, ("pci_intr_string\n"));
3818 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3819 sizeof(intrbuf));
3820 DPRINTFN(5, ("pci_intr_establish\n"));
3821 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3822 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3823 if (sc->bge_intrhand == NULL) {
3824 pci_intr_release(pc, sc->bge_pihp, 1);
3825 sc->bge_pihp = NULL;
3826
3827 aprint_error_dev(self, "couldn't establish interrupt");
3828 if (intrstr != NULL)
3829 aprint_error(" at %s", intrstr);
3830 aprint_error("\n");
3831 return;
3832 }
3833 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3834
3835 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3836 case PCI_INTR_TYPE_MSIX:
3837 case PCI_INTR_TYPE_MSI:
3838 KASSERT(bge_can_use_msi(sc));
3839 sc->bge_flags |= BGEF_MSI;
3840 break;
3841 default:
3842 /* nothing to do */
3843 break;
3844 }
3845
3846 /*
3847 * All controllers except BCM5700 supports tagged status but
3848 * we use tagged status only for MSI case on BCM5717. Otherwise
3849 * MSI on BCM5717 does not work.
3850 */
3851 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3852 sc->bge_flags |= BGEF_TAGGED_STATUS;
3853
3854 /*
3855 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3856 * lock in bge_reset().
3857 */
3858 CSR_WRITE_4(sc, BGE_EE_ADDR,
3859 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3860 delay(1000);
3861 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3862
3863 bge_stop_fw(sc);
3864 bge_sig_pre_reset(sc, BGE_RESET_START);
3865 if (bge_reset(sc))
3866 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3867
3868 /*
3869 * Read the hardware config word in the first 32k of NIC internal
3870 * memory, or fall back to the config word in the EEPROM.
3871 * Note: on some BCM5700 cards, this value appears to be unset.
3872 */
3873 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3874 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3875 BGE_SRAM_DATA_SIG_MAGIC) {
3876 uint32_t tmp;
3877
3878 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3879 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3880 BGE_SRAM_DATA_VER_SHIFT;
3881 if ((0 < tmp) && (tmp < 0x100))
3882 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3883 if (sc->bge_flags & BGEF_PCIE)
3884 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3885 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3886 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3887 if (BGE_IS_5717_PLUS(sc))
3888 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3889 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3890 bge_read_eeprom(sc, (void *)&hwcfg,
3891 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3892 hwcfg = be32toh(hwcfg);
3893 }
3894 aprint_normal_dev(sc->bge_dev,
3895 "HW config %08x, %08x, %08x, %08x %08x\n",
3896 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3897
3898 bge_sig_legacy(sc, BGE_RESET_START);
3899 bge_sig_post_reset(sc, BGE_RESET_START);
3900
3901 if (bge_chipinit(sc)) {
3902 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3903 bge_release_resources(sc);
3904 return;
3905 }
3906
3907 /*
3908 * Get station address from the EEPROM.
3909 */
3910 if (bge_get_eaddr(sc, eaddr)) {
3911 aprint_error_dev(sc->bge_dev,
3912 "failed to read station address\n");
3913 bge_release_resources(sc);
3914 return;
3915 }
3916
3917 br = bge_lookup_rev(sc->bge_chipid);
3918
3919 if (br == NULL) {
3920 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3921 sc->bge_chipid);
3922 } else {
3923 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3924 br->br_name, sc->bge_chipid);
3925 }
3926 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3927
3928 /* Allocate the general information block and ring buffers. */
3929 if (pci_dma64_available(pa)) {
3930 sc->bge_dmatag = pa->pa_dmat64;
3931 sc->bge_dmatag32 = pa->pa_dmat;
3932 sc->bge_dma64 = true;
3933 } else {
3934 sc->bge_dmatag = pa->pa_dmat;
3935 sc->bge_dmatag32 = pa->pa_dmat;
3936 sc->bge_dma64 = false;
3937 }
3938
3939 /* 40bit DMA workaround */
3940 if (sizeof(bus_addr_t) > 4) {
3941 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3942 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3943
3944 if (bus_dmatag_subregion(olddmatag, 0,
3945 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3946 BUS_DMA_NOWAIT) != 0) {
3947 aprint_error_dev(self,
3948 "WARNING: failed to restrict dma range,"
3949 " falling back to parent bus dma range\n");
3950 sc->bge_dmatag = olddmatag;
3951 }
3952 }
3953 }
3954 SLIST_INIT(&sc->txdma_list);
3955 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3956 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3957 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3958 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3959 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3960 return;
3961 }
3962 DPRINTFN(5, ("bus_dmamem_map\n"));
3963 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3964 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3965 BUS_DMA_NOWAIT)) {
3966 aprint_error_dev(sc->bge_dev,
3967 "can't map DMA buffers (%zu bytes)\n",
3968 sizeof(struct bge_ring_data));
3969 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3970 sc->bge_ring_rseg);
3971 return;
3972 }
3973 DPRINTFN(5, ("bus_dmamem_create\n"));
3974 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3975 sizeof(struct bge_ring_data), 0,
3976 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3977 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3978 bus_dmamem_unmap(sc->bge_dmatag, kva,
3979 sizeof(struct bge_ring_data));
3980 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3981 sc->bge_ring_rseg);
3982 return;
3983 }
3984 DPRINTFN(5, ("bus_dmamem_load\n"));
3985 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3986 sizeof(struct bge_ring_data), NULL,
3987 BUS_DMA_NOWAIT)) {
3988 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3989 bus_dmamem_unmap(sc->bge_dmatag, kva,
3990 sizeof(struct bge_ring_data));
3991 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3992 sc->bge_ring_rseg);
3993 return;
3994 }
3995
3996 DPRINTFN(5, ("bzero\n"));
3997 sc->bge_rdata = (struct bge_ring_data *)kva;
3998
3999 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
4000
4001 /* Try to allocate memory for jumbo buffers. */
4002 if (BGE_IS_JUMBO_CAPABLE(sc)) {
4003 if (bge_alloc_jumbo_mem(sc)) {
4004 aprint_error_dev(sc->bge_dev,
4005 "jumbo buffer allocation failed\n");
4006 } else
4007 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
4008 }
4009
4010 /* Set default tuneable values. */
4011 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
4012 sc->bge_rx_coal_ticks = 150;
4013 sc->bge_rx_max_coal_bds = 64;
4014 sc->bge_tx_coal_ticks = 300;
4015 sc->bge_tx_max_coal_bds = 400;
4016 if (BGE_IS_5705_PLUS(sc)) {
4017 sc->bge_tx_coal_ticks = (12 * 5);
4018 sc->bge_tx_max_coal_bds = (12 * 5);
4019 aprint_verbose_dev(sc->bge_dev,
4020 "setting short Tx thresholds\n");
4021 }
4022
4023 if (BGE_IS_5717_PLUS(sc))
4024 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4025 else if (BGE_IS_5705_PLUS(sc))
4026 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
4027 else
4028 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
4029
4030 /* Set up ifnet structure */
4031 ifp = &sc->ethercom.ec_if;
4032 ifp->if_softc = sc;
4033 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
4034 ifp->if_ioctl = bge_ioctl;
4035 ifp->if_stop = bge_stop;
4036 ifp->if_start = bge_start;
4037 ifp->if_init = bge_init;
4038 ifp->if_watchdog = bge_watchdog;
4039 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
4040 IFQ_SET_READY(&ifp->if_snd);
4041 DPRINTFN(5, ("strcpy if_xname\n"));
4042 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
4043
4044 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
4045 sc->ethercom.ec_if.if_capabilities |=
4046 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
4047 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
4048 sc->ethercom.ec_if.if_capabilities |=
4049 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
4050 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
4051 #endif
4052 sc->ethercom.ec_capabilities |=
4053 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
4054
4055 if (sc->bge_flags & BGEF_TSO)
4056 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
4057
4058 /*
4059 * Do MII setup.
4060 */
4061 DPRINTFN(5, ("mii setup\n"));
4062 sc->bge_mii.mii_ifp = ifp;
4063 sc->bge_mii.mii_readreg = bge_miibus_readreg;
4064 sc->bge_mii.mii_writereg = bge_miibus_writereg;
4065 sc->bge_mii.mii_statchg = bge_miibus_statchg;
4066
4067 /*
4068 * Figure out what sort of media we have by checking the hardware
4069 * config word. Note: on some BCM5700 cards, this value appears to be
4070 * unset. If that's the case, we have to rely on identifying the NIC
4071 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4072 * The SysKonnect SK-9D41 is a 1000baseSX card.
4073 */
4074 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4075 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4076 if (BGE_IS_5705_PLUS(sc)) {
4077 sc->bge_flags |= BGEF_FIBER_MII;
4078 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4079 } else
4080 sc->bge_flags |= BGEF_FIBER_TBI;
4081 }
4082
4083 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
4084 if (BGE_IS_JUMBO_CAPABLE(sc))
4085 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4086
4087 /* set phyflags and chipid before mii_attach() */
4088 dict = device_properties(self);
4089 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4090 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4091
4092 if (sc->bge_flags & BGEF_FIBER_TBI) {
4093 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4094 bge_ifmedia_sts);
4095 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4096 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4097 0, NULL);
4098 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4099 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4100 /* Pretend the user requested this setting */
4101 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4102 } else {
4103 /*
4104 * Do transceiver setup and tell the firmware the
4105 * driver is down so we can try to get access the
4106 * probe if ASF is running. Retry a couple of times
4107 * if we get a conflict with the ASF firmware accessing
4108 * the PHY.
4109 */
4110 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4111 bge_asf_driver_up(sc);
4112
4113 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4114 bge_ifmedia_sts);
4115 mii_flags = MIIF_DOPAUSE;
4116 if (sc->bge_flags & BGEF_FIBER_MII)
4117 mii_flags |= MIIF_HAVEFIBER;
4118 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4119 MII_OFFSET_ANY, mii_flags);
4120
4121 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4122 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4123 ifmedia_add(&sc->bge_mii.mii_media,
4124 IFM_ETHER|IFM_MANUAL, 0, NULL);
4125 ifmedia_set(&sc->bge_mii.mii_media,
4126 IFM_ETHER|IFM_MANUAL);
4127 } else
4128 ifmedia_set(&sc->bge_mii.mii_media,
4129 IFM_ETHER|IFM_AUTO);
4130
4131 /*
4132 * Now tell the firmware we are going up after probing the PHY
4133 */
4134 if (sc->bge_asf_mode & ASF_STACKUP)
4135 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4136 }
4137
4138 /*
4139 * Call MI attach routine.
4140 */
4141 DPRINTFN(5, ("if_attach\n"));
4142 if_attach(ifp);
4143 if_deferred_start_init(ifp, NULL);
4144 DPRINTFN(5, ("ether_ifattach\n"));
4145 ether_ifattach(ifp, eaddr);
4146 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4147 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4148 RND_TYPE_NET, RND_FLAG_DEFAULT);
4149 #ifdef BGE_EVENT_COUNTERS
4150 /*
4151 * Attach event counters.
4152 */
4153 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4154 NULL, device_xname(sc->bge_dev), "intr");
4155 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4156 NULL, device_xname(sc->bge_dev), "intr_spurious");
4157 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4158 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4159 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4160 NULL, device_xname(sc->bge_dev), "tx_xoff");
4161 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4162 NULL, device_xname(sc->bge_dev), "tx_xon");
4163 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4164 NULL, device_xname(sc->bge_dev), "rx_xoff");
4165 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4166 NULL, device_xname(sc->bge_dev), "rx_xon");
4167 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4168 NULL, device_xname(sc->bge_dev), "rx_macctl");
4169 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4170 NULL, device_xname(sc->bge_dev), "xoffentered");
4171 #endif /* BGE_EVENT_COUNTERS */
4172 DPRINTFN(5, ("callout_init\n"));
4173 callout_init(&sc->bge_timeout, 0);
4174
4175 if (pmf_device_register(self, NULL, NULL))
4176 pmf_class_network_register(self, ifp);
4177 else
4178 aprint_error_dev(self, "couldn't establish power handler\n");
4179
4180 bge_sysctl_init(sc);
4181
4182 #ifdef BGE_DEBUG
4183 bge_debug_info(sc);
4184 #endif
4185 }
4186
4187 /*
4188 * Stop all chip I/O so that the kernel's probe routines don't
4189 * get confused by errant DMAs when rebooting.
4190 */
4191 static int
4192 bge_detach(device_t self, int flags __unused)
4193 {
4194 struct bge_softc *sc = device_private(self);
4195 struct ifnet *ifp = &sc->ethercom.ec_if;
4196 int s;
4197
4198 s = splnet();
4199 /* Stop the interface. Callouts are stopped in it. */
4200 bge_stop(ifp, 1);
4201 splx(s);
4202
4203 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4204
4205 /* Delete all remaining media. */
4206 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4207
4208 ether_ifdetach(ifp);
4209 if_detach(ifp);
4210
4211 bge_release_resources(sc);
4212
4213 return 0;
4214 }
4215
4216 static void
4217 bge_release_resources(struct bge_softc *sc)
4218 {
4219
4220 /* Detach sysctl */
4221 if (sc->bge_log != NULL)
4222 sysctl_teardown(&sc->bge_log);
4223
4224 #ifdef BGE_EVENT_COUNTERS
4225 /* Detach event counters. */
4226 evcnt_detach(&sc->bge_ev_intr);
4227 evcnt_detach(&sc->bge_ev_intr_spurious);
4228 evcnt_detach(&sc->bge_ev_intr_spurious2);
4229 evcnt_detach(&sc->bge_ev_tx_xoff);
4230 evcnt_detach(&sc->bge_ev_tx_xon);
4231 evcnt_detach(&sc->bge_ev_rx_xoff);
4232 evcnt_detach(&sc->bge_ev_rx_xon);
4233 evcnt_detach(&sc->bge_ev_rx_macctl);
4234 evcnt_detach(&sc->bge_ev_xoffentered);
4235 #endif /* BGE_EVENT_COUNTERS */
4236
4237 /* Disestablish the interrupt handler */
4238 if (sc->bge_intrhand != NULL) {
4239 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4240 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4241 sc->bge_intrhand = NULL;
4242 }
4243
4244 if (sc->bge_dmatag != NULL) {
4245 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4246 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4247 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4248 sizeof(struct bge_ring_data));
4249 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4250 sc->bge_ring_rseg);
4251 }
4252
4253 /* Unmap the device registers */
4254 if (sc->bge_bsize != 0) {
4255 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4256 sc->bge_bsize = 0;
4257 }
4258
4259 /* Unmap the APE registers */
4260 if (sc->bge_apesize != 0) {
4261 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4262 sc->bge_apesize);
4263 sc->bge_apesize = 0;
4264 }
4265 }
4266
4267 static int
4268 bge_reset(struct bge_softc *sc)
4269 {
4270 uint32_t cachesize, command;
4271 uint32_t reset, mac_mode, mac_mode_mask;
4272 pcireg_t devctl, reg;
4273 int i, val;
4274 void (*write_op)(struct bge_softc *, int, int);
4275
4276 /* Make mask for BGE_MAC_MODE register. */
4277 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4278 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4279 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4280 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4281 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4282
4283 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4284 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4285 if (sc->bge_flags & BGEF_PCIE)
4286 write_op = bge_writemem_direct;
4287 else
4288 write_op = bge_writemem_ind;
4289 } else
4290 write_op = bge_writereg_ind;
4291
4292 /* 57XX step 4 */
4293 /* Acquire the NVM lock */
4294 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4295 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4296 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4297 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4298 for (i = 0; i < 8000; i++) {
4299 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4300 BGE_NVRAMSWARB_GNT1)
4301 break;
4302 DELAY(20);
4303 }
4304 if (i == 8000) {
4305 printf("%s: NVRAM lock timedout!\n",
4306 device_xname(sc->bge_dev));
4307 }
4308 }
4309
4310 /* Take APE lock when performing reset. */
4311 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4312
4313 /* 57XX step 3 */
4314 /* Save some important PCI state. */
4315 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4316 /* 5718 reset step 3 */
4317 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4318
4319 /* 5718 reset step 5, 57XX step 5b-5d */
4320 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4321 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4322 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4323
4324 /* XXX ???: Disable fastboot on controllers that support it. */
4325 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4326 BGE_IS_5755_PLUS(sc))
4327 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4328
4329 /* 5718 reset step 2, 57XX step 6 */
4330 /*
4331 * Write the magic number to SRAM at offset 0xB50.
4332 * When firmware finishes its initialization it will
4333 * write ~BGE_MAGIC_NUMBER to the same location.
4334 */
4335 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4336
4337 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4338 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4339 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4340 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4341 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4342 }
4343
4344 /* 5718 reset step 6, 57XX step 7 */
4345 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4346 /*
4347 * XXX: from FreeBSD/Linux; no documentation
4348 */
4349 if (sc->bge_flags & BGEF_PCIE) {
4350 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4351 !BGE_IS_57765_PLUS(sc) &&
4352 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4353 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4354 /* PCI Express 1.0 system */
4355 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4356 BGE_PHY_PCIE_SCRAM_MODE);
4357 }
4358 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4359 /*
4360 * Prevent PCI Express link training
4361 * during global reset.
4362 */
4363 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4364 reset |= (1 << 29);
4365 }
4366 }
4367
4368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4369 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4370 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4371 i | BGE_VCPU_STATUS_DRV_RESET);
4372 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4373 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4374 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4375 }
4376
4377 /*
4378 * Set GPHY Power Down Override to leave GPHY
4379 * powered up in D0 uninitialized.
4380 */
4381 if (BGE_IS_5705_PLUS(sc) &&
4382 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4383 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4384
4385 /* Issue global reset */
4386 write_op(sc, BGE_MISC_CFG, reset);
4387
4388 /* 5718 reset step 7, 57XX step 8 */
4389 if (sc->bge_flags & BGEF_PCIE)
4390 delay(100*1000); /* too big */
4391 else
4392 delay(1000);
4393
4394 if (sc->bge_flags & BGEF_PCIE) {
4395 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4396 DELAY(500000);
4397 /* XXX: Magic Numbers */
4398 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4399 BGE_PCI_UNKNOWN0);
4400 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4401 BGE_PCI_UNKNOWN0,
4402 reg | (1 << 15));
4403 }
4404 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4405 sc->bge_pciecap + PCIE_DCSR);
4406 /* Clear enable no snoop and disable relaxed ordering. */
4407 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4408 PCIE_DCSR_ENA_NO_SNOOP);
4409
4410 /* Set PCIE max payload size to 128 for older PCIe devices */
4411 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4412 devctl &= ~(0x00e0);
4413 /* Clear device status register. Write 1b to clear */
4414 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4415 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4416 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4417 sc->bge_pciecap + PCIE_DCSR, devctl);
4418 bge_set_max_readrq(sc);
4419 }
4420
4421 /* From Linux: dummy read to flush PCI posted writes */
4422 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4423
4424 /*
4425 * Reset some of the PCI state that got zapped by reset
4426 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4427 * set, too.
4428 */
4429 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4430 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4431 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4432 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4433 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4434 (sc->bge_flags & BGEF_PCIX) != 0)
4435 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4436 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4437 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4438 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4439 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4440 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4441 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4442 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4443
4444 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4445 if (sc->bge_flags & BGEF_PCIX) {
4446 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4447 + PCIX_CMD);
4448 /* Set max memory read byte count to 2K */
4449 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4450 reg &= ~PCIX_CMD_BYTECNT_MASK;
4451 reg |= PCIX_CMD_BCNT_2048;
4452 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4453 /*
4454 * For 5704, set max outstanding split transaction
4455 * field to 0 (0 means it supports 1 request)
4456 */
4457 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4458 | PCIX_CMD_BYTECNT_MASK);
4459 reg |= PCIX_CMD_BCNT_2048;
4460 }
4461 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4462 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4463 }
4464
4465 /* 5718 reset step 10, 57XX step 12 */
4466 /* Enable memory arbiter. */
4467 if (BGE_IS_5714_FAMILY(sc)) {
4468 val = CSR_READ_4(sc, BGE_MARB_MODE);
4469 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4470 } else
4471 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4472
4473 /* XXX 5721, 5751 and 5752 */
4474 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4475 /* Step 19: */
4476 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4477 /* Step 20: */
4478 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4479 }
4480
4481 /* 5718 reset step 12, 57XX step 15 and 16 */
4482 /* Fix up byte swapping */
4483 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4484
4485 /* 5718 reset step 13, 57XX step 17 */
4486 /* Poll until the firmware initialization is complete */
4487 bge_poll_fw(sc);
4488
4489 /* 57XX step 21 */
4490 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4491 pcireg_t msidata;
4492
4493 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4494 BGE_PCI_MSI_DATA);
4495 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4496 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4497 msidata);
4498 }
4499
4500 /* 57XX step 18 */
4501 /* Write mac mode. */
4502 val = CSR_READ_4(sc, BGE_MAC_MODE);
4503 /* Restore mac_mode_mask's bits using mac_mode */
4504 val = (val & ~mac_mode_mask) | mac_mode;
4505 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4506 DELAY(40);
4507
4508 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4509
4510 /*
4511 * The 5704 in TBI mode apparently needs some special
4512 * adjustment to insure the SERDES drive level is set
4513 * to 1.2V.
4514 */
4515 if (sc->bge_flags & BGEF_FIBER_TBI &&
4516 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4517 uint32_t serdescfg;
4518
4519 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4520 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4521 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4522 }
4523
4524 if (sc->bge_flags & BGEF_PCIE &&
4525 !BGE_IS_57765_PLUS(sc) &&
4526 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4527 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4528 uint32_t v;
4529
4530 /* Enable PCI Express bug fix */
4531 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4532 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4533 v | BGE_TLP_DATA_FIFO_PROTECT);
4534 }
4535
4536 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4537 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4538 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4539
4540 return 0;
4541 }
4542
4543 /*
4544 * Frame reception handling. This is called if there's a frame
4545 * on the receive return list.
4546 *
4547 * Note: we have to be able to handle two possibilities here:
4548 * 1) the frame is from the jumbo receive ring
4549 * 2) the frame is from the standard receive ring
4550 */
4551
4552 static void
4553 bge_rxeof(struct bge_softc *sc)
4554 {
4555 struct ifnet *ifp;
4556 uint16_t rx_prod, rx_cons;
4557 int stdcnt = 0, jumbocnt = 0;
4558 bus_dmamap_t dmamap;
4559 bus_addr_t offset, toff;
4560 bus_size_t tlen;
4561 int tosync;
4562
4563 rx_cons = sc->bge_rx_saved_considx;
4564 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4565
4566 /* Nothing to do */
4567 if (rx_cons == rx_prod)
4568 return;
4569
4570 ifp = &sc->ethercom.ec_if;
4571
4572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4573 offsetof(struct bge_ring_data, bge_status_block),
4574 sizeof (struct bge_status_block),
4575 BUS_DMASYNC_POSTREAD);
4576
4577 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4578 tosync = rx_prod - rx_cons;
4579
4580 if (tosync != 0)
4581 rnd_add_uint32(&sc->rnd_source, tosync);
4582
4583 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4584
4585 if (tosync < 0) {
4586 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4587 sizeof (struct bge_rx_bd);
4588 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4589 toff, tlen, BUS_DMASYNC_POSTREAD);
4590 tosync = -tosync;
4591 }
4592
4593 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4594 offset, tosync * sizeof (struct bge_rx_bd),
4595 BUS_DMASYNC_POSTREAD);
4596
4597 while (rx_cons != rx_prod) {
4598 struct bge_rx_bd *cur_rx;
4599 uint32_t rxidx;
4600 struct mbuf *m = NULL;
4601
4602 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4603
4604 rxidx = cur_rx->bge_idx;
4605 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4606
4607 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4608 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4609 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4610 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4611 jumbocnt++;
4612 bus_dmamap_sync(sc->bge_dmatag,
4613 sc->bge_cdata.bge_rx_jumbo_map,
4614 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4615 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4616 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4617 ifp->if_ierrors++;
4618 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4619 continue;
4620 }
4621 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4622 NULL)== ENOBUFS) {
4623 ifp->if_ierrors++;
4624 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4625 continue;
4626 }
4627 } else {
4628 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4629 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4630
4631 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4632 stdcnt++;
4633 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4634 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4635 if (dmamap == NULL) {
4636 ifp->if_ierrors++;
4637 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4638 continue;
4639 }
4640 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4641 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4642 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4643 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4644 ifp->if_ierrors++;
4645 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4646 continue;
4647 }
4648 if (bge_newbuf_std(sc, sc->bge_std,
4649 NULL, dmamap) == ENOBUFS) {
4650 ifp->if_ierrors++;
4651 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4652 continue;
4653 }
4654 }
4655
4656 #ifndef __NO_STRICT_ALIGNMENT
4657 /*
4658 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4659 * the Rx buffer has the layer-2 header unaligned.
4660 * If our CPU requires alignment, re-align by copying.
4661 */
4662 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4663 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4664 cur_rx->bge_len);
4665 m->m_data += ETHER_ALIGN;
4666 }
4667 #endif
4668
4669 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4670 m_set_rcvif(m, ifp);
4671
4672 bge_rxcsum(sc, cur_rx, m);
4673
4674 /*
4675 * If we received a packet with a vlan tag, pass it
4676 * to vlan_input() instead of ether_input().
4677 */
4678 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4679 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4680 }
4681
4682 if_percpuq_enqueue(ifp->if_percpuq, m);
4683 }
4684
4685 sc->bge_rx_saved_considx = rx_cons;
4686 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4687 if (stdcnt)
4688 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4689 if (jumbocnt)
4690 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4691 }
4692
4693 static void
4694 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4695 {
4696
4697 if (BGE_IS_57765_PLUS(sc)) {
4698 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4699 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4700 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4701 if ((cur_rx->bge_error_flag &
4702 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4703 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4704 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4705 m->m_pkthdr.csum_data =
4706 cur_rx->bge_tcp_udp_csum;
4707 m->m_pkthdr.csum_flags |=
4708 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4709 M_CSUM_DATA);
4710 }
4711 }
4712 } else {
4713 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4714 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4715 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4716 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4717 /*
4718 * Rx transport checksum-offload may also
4719 * have bugs with packets which, when transmitted,
4720 * were `runts' requiring padding.
4721 */
4722 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4723 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4724 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4725 m->m_pkthdr.csum_data =
4726 cur_rx->bge_tcp_udp_csum;
4727 m->m_pkthdr.csum_flags |=
4728 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4729 M_CSUM_DATA);
4730 }
4731 }
4732 }
4733
4734 static void
4735 bge_txeof(struct bge_softc *sc)
4736 {
4737 struct bge_tx_bd *cur_tx = NULL;
4738 struct ifnet *ifp;
4739 struct txdmamap_pool_entry *dma;
4740 bus_addr_t offset, toff;
4741 bus_size_t tlen;
4742 int tosync;
4743 struct mbuf *m;
4744
4745 ifp = &sc->ethercom.ec_if;
4746
4747 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4748 offsetof(struct bge_ring_data, bge_status_block),
4749 sizeof (struct bge_status_block),
4750 BUS_DMASYNC_POSTREAD);
4751
4752 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4753 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4754 sc->bge_tx_saved_considx;
4755
4756 if (tosync != 0)
4757 rnd_add_uint32(&sc->rnd_source, tosync);
4758
4759 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4760
4761 if (tosync < 0) {
4762 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4763 sizeof (struct bge_tx_bd);
4764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4765 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4766 tosync = -tosync;
4767 }
4768
4769 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4770 offset, tosync * sizeof (struct bge_tx_bd),
4771 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4772
4773 /*
4774 * Go through our tx ring and free mbufs for those
4775 * frames that have been sent.
4776 */
4777 while (sc->bge_tx_saved_considx !=
4778 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4779 uint32_t idx = 0;
4780
4781 idx = sc->bge_tx_saved_considx;
4782 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4783 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4784 ifp->if_opackets++;
4785 m = sc->bge_cdata.bge_tx_chain[idx];
4786 if (m != NULL) {
4787 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4788 dma = sc->txdma[idx];
4789 if (dma->is_dma32) {
4790 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4791 0, dma->dmamap32->dm_mapsize,
4792 BUS_DMASYNC_POSTWRITE);
4793 bus_dmamap_unload(
4794 sc->bge_dmatag32, dma->dmamap32);
4795 } else {
4796 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4797 0, dma->dmamap->dm_mapsize,
4798 BUS_DMASYNC_POSTWRITE);
4799 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4800 }
4801 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4802 sc->txdma[idx] = NULL;
4803
4804 m_freem(m);
4805 }
4806 sc->bge_txcnt--;
4807 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4808 ifp->if_timer = 0;
4809 }
4810
4811 if (cur_tx != NULL)
4812 ifp->if_flags &= ~IFF_OACTIVE;
4813 }
4814
4815 static int
4816 bge_intr(void *xsc)
4817 {
4818 struct bge_softc *sc;
4819 struct ifnet *ifp;
4820 uint32_t pcistate, statusword, statustag;
4821 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4822
4823 sc = xsc;
4824 ifp = &sc->ethercom.ec_if;
4825
4826 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4827 if (BGE_IS_5717_PLUS(sc))
4828 intrmask = 0;
4829
4830 /* It is possible for the interrupt to arrive before
4831 * the status block is updated prior to the interrupt.
4832 * Reading the PCI State register will confirm whether the
4833 * interrupt is ours and will flush the status block.
4834 */
4835 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4836
4837 /* read status word from status block */
4838 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4839 offsetof(struct bge_ring_data, bge_status_block),
4840 sizeof (struct bge_status_block),
4841 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4842 statusword = sc->bge_rdata->bge_status_block.bge_status;
4843 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4844
4845 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4846 if (sc->bge_lasttag == statustag &&
4847 (~pcistate & intrmask)) {
4848 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4849 return (0);
4850 }
4851 sc->bge_lasttag = statustag;
4852 } else {
4853 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4854 !(~pcistate & intrmask)) {
4855 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4856 return (0);
4857 }
4858 statustag = 0;
4859 }
4860 /* Ack interrupt and stop others from occurring. */
4861 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4862 BGE_EVCNT_INCR(sc->bge_ev_intr);
4863
4864 /* clear status word */
4865 sc->bge_rdata->bge_status_block.bge_status = 0;
4866
4867 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4868 offsetof(struct bge_ring_data, bge_status_block),
4869 sizeof (struct bge_status_block),
4870 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4871
4872 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4873 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4874 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4875 bge_link_upd(sc);
4876
4877 if (ifp->if_flags & IFF_RUNNING) {
4878 /* Check RX return ring producer/consumer */
4879 bge_rxeof(sc);
4880
4881 /* Check TX ring producer/consumer */
4882 bge_txeof(sc);
4883 }
4884
4885 if (sc->bge_pending_rxintr_change) {
4886 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4887 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4888
4889 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4890 DELAY(10);
4891 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4892
4893 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4894 DELAY(10);
4895 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4896
4897 sc->bge_pending_rxintr_change = 0;
4898 }
4899 bge_handle_events(sc);
4900
4901 /* Re-enable interrupts. */
4902 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4903
4904 if (ifp->if_flags & IFF_RUNNING)
4905 if_schedule_deferred_start(ifp);
4906
4907 return 1;
4908 }
4909
4910 static void
4911 bge_asf_driver_up(struct bge_softc *sc)
4912 {
4913 if (sc->bge_asf_mode & ASF_STACKUP) {
4914 /* Send ASF heartbeat aprox. every 2s */
4915 if (sc->bge_asf_count)
4916 sc->bge_asf_count --;
4917 else {
4918 sc->bge_asf_count = 2;
4919
4920 bge_wait_for_event_ack(sc);
4921
4922 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4923 BGE_FW_CMD_DRV_ALIVE3);
4924 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4925 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4926 BGE_FW_HB_TIMEOUT_SEC);
4927 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4928 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4929 BGE_RX_CPU_DRV_EVENT);
4930 }
4931 }
4932 }
4933
4934 static void
4935 bge_tick(void *xsc)
4936 {
4937 struct bge_softc *sc = xsc;
4938 struct mii_data *mii = &sc->bge_mii;
4939 int s;
4940
4941 s = splnet();
4942
4943 if (BGE_IS_5705_PLUS(sc))
4944 bge_stats_update_regs(sc);
4945 else
4946 bge_stats_update(sc);
4947
4948 if (sc->bge_flags & BGEF_FIBER_TBI) {
4949 /*
4950 * Since in TBI mode auto-polling can't be used we should poll
4951 * link status manually. Here we register pending link event
4952 * and trigger interrupt.
4953 */
4954 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4955 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4956 } else {
4957 /*
4958 * Do not touch PHY if we have link up. This could break
4959 * IPMI/ASF mode or produce extra input errors.
4960 * (extra input errors was reported for bcm5701 & bcm5704).
4961 */
4962 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4963 mii_tick(mii);
4964 }
4965
4966 bge_asf_driver_up(sc);
4967
4968 if (!sc->bge_detaching)
4969 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4970
4971 splx(s);
4972 }
4973
4974 static void
4975 bge_stats_update_regs(struct bge_softc *sc)
4976 {
4977 struct ifnet *ifp = &sc->ethercom.ec_if;
4978
4979 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4980 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4981
4982 /*
4983 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4984 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4985 * (silicon bug). There's no reliable workaround so just
4986 * ignore the counter
4987 */
4988 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4989 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
4990 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
4991 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4992 }
4993 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4994 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4995 }
4996
4997 static void
4998 bge_stats_update(struct bge_softc *sc)
4999 {
5000 struct ifnet *ifp = &sc->ethercom.ec_if;
5001 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5002
5003 #define READ_STAT(sc, stats, stat) \
5004 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5005
5006 ifp->if_collisions +=
5007 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
5008 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
5009 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
5010 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
5011 ifp->if_collisions;
5012
5013 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
5014 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
5015 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
5016 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
5017 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
5018 READ_STAT(sc, stats,
5019 xoffPauseFramesReceived.bge_addr_lo));
5020 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
5021 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
5022 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
5023 READ_STAT(sc, stats,
5024 macControlFramesReceived.bge_addr_lo));
5025 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
5026 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
5027
5028 #undef READ_STAT
5029
5030 #ifdef notdef
5031 ifp->if_collisions +=
5032 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
5033 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
5034 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
5035 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
5036 ifp->if_collisions;
5037 #endif
5038 }
5039
5040 /*
5041 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5042 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5043 * but when such padded frames employ the bge IP/TCP checksum offload,
5044 * the hardware checksum assist gives incorrect results (possibly
5045 * from incorporating its own padding into the UDP/TCP checksum; who knows).
5046 * If we pad such runts with zeros, the onboard checksum comes out correct.
5047 */
5048 static inline int
5049 bge_cksum_pad(struct mbuf *pkt)
5050 {
5051 struct mbuf *last = NULL;
5052 int padlen;
5053
5054 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
5055
5056 /* if there's only the packet-header and we can pad there, use it. */
5057 if (pkt->m_pkthdr.len == pkt->m_len &&
5058 M_TRAILINGSPACE(pkt) >= padlen) {
5059 last = pkt;
5060 } else {
5061 /*
5062 * Walk packet chain to find last mbuf. We will either
5063 * pad there, or append a new mbuf and pad it
5064 * (thus perhaps avoiding the bcm5700 dma-min bug).
5065 */
5066 for (last = pkt; last->m_next != NULL; last = last->m_next) {
5067 continue; /* do nothing */
5068 }
5069
5070 /* `last' now points to last in chain. */
5071 if (M_TRAILINGSPACE(last) < padlen) {
5072 /* Allocate new empty mbuf, pad it. Compact later. */
5073 struct mbuf *n;
5074 MGET(n, M_DONTWAIT, MT_DATA);
5075 if (n == NULL)
5076 return ENOBUFS;
5077 n->m_len = 0;
5078 last->m_next = n;
5079 last = n;
5080 }
5081 }
5082
5083 KDASSERT(!M_READONLY(last));
5084 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5085
5086 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5087 memset(mtod(last, char *) + last->m_len, 0, padlen);
5088 last->m_len += padlen;
5089 pkt->m_pkthdr.len += padlen;
5090 return 0;
5091 }
5092
5093 /*
5094 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5095 */
5096 static inline int
5097 bge_compact_dma_runt(struct mbuf *pkt)
5098 {
5099 struct mbuf *m, *prev;
5100 int totlen;
5101
5102 prev = NULL;
5103 totlen = 0;
5104
5105 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5106 int mlen = m->m_len;
5107 int shortfall = 8 - mlen ;
5108
5109 totlen += mlen;
5110 if (mlen == 0)
5111 continue;
5112 if (mlen >= 8)
5113 continue;
5114
5115 /* If we get here, mbuf data is too small for DMA engine.
5116 * Try to fix by shuffling data to prev or next in chain.
5117 * If that fails, do a compacting deep-copy of the whole chain.
5118 */
5119
5120 /* Internal frag. If fits in prev, copy it there. */
5121 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5122 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5123 prev->m_len += mlen;
5124 m->m_len = 0;
5125 /* XXX stitch chain */
5126 prev->m_next = m_free(m);
5127 m = prev;
5128 continue;
5129 }
5130 else if (m->m_next != NULL &&
5131 M_TRAILINGSPACE(m) >= shortfall &&
5132 m->m_next->m_len >= (8 + shortfall)) {
5133 /* m is writable and have enough data in next, pull up. */
5134
5135 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5136 shortfall);
5137 m->m_len += shortfall;
5138 m->m_next->m_len -= shortfall;
5139 m->m_next->m_data += shortfall;
5140 }
5141 else if (m->m_next == NULL || 1) {
5142 /* Got a runt at the very end of the packet.
5143 * borrow data from the tail of the preceding mbuf and
5144 * update its length in-place. (The original data is still
5145 * valid, so we can do this even if prev is not writable.)
5146 */
5147
5148 /* if we'd make prev a runt, just move all of its data. */
5149 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5150 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5151
5152 if ((prev->m_len - shortfall) < 8)
5153 shortfall = prev->m_len;
5154
5155 #ifdef notyet /* just do the safe slow thing for now */
5156 if (!M_READONLY(m)) {
5157 if (M_LEADINGSPACE(m) < shorfall) {
5158 void *m_dat;
5159 m_dat = (m->m_flags & M_PKTHDR) ?
5160 m->m_pktdat : m->dat;
5161 memmove(m_dat, mtod(m, void*), m->m_len);
5162 m->m_data = m_dat;
5163 }
5164 } else
5165 #endif /* just do the safe slow thing */
5166 {
5167 struct mbuf * n = NULL;
5168 int newprevlen = prev->m_len - shortfall;
5169
5170 MGET(n, M_NOWAIT, MT_DATA);
5171 if (n == NULL)
5172 return ENOBUFS;
5173 KASSERT(m->m_len + shortfall < MLEN
5174 /*,
5175 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5176
5177 /* first copy the data we're stealing from prev */
5178 memcpy(n->m_data, prev->m_data + newprevlen,
5179 shortfall);
5180
5181 /* update prev->m_len accordingly */
5182 prev->m_len -= shortfall;
5183
5184 /* copy data from runt m */
5185 memcpy(n->m_data + shortfall, m->m_data,
5186 m->m_len);
5187
5188 /* n holds what we stole from prev, plus m */
5189 n->m_len = shortfall + m->m_len;
5190
5191 /* stitch n into chain and free m */
5192 n->m_next = m->m_next;
5193 prev->m_next = n;
5194 /* KASSERT(m->m_next == NULL); */
5195 m->m_next = NULL;
5196 m_free(m);
5197 m = n; /* for continuing loop */
5198 }
5199 }
5200 }
5201 return 0;
5202 }
5203
5204 /*
5205 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5206 * pointers to descriptors.
5207 */
5208 static int
5209 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5210 {
5211 struct ifnet *ifp = &sc->ethercom.ec_if;
5212 struct bge_tx_bd *f, *prev_f;
5213 uint32_t frag, cur;
5214 uint16_t csum_flags = 0;
5215 uint16_t txbd_tso_flags = 0;
5216 struct txdmamap_pool_entry *dma;
5217 bus_dmamap_t dmamap;
5218 bus_dma_tag_t dmatag;
5219 int i = 0;
5220 int use_tso, maxsegsize, error;
5221 bool have_vtag;
5222 uint16_t vtag;
5223 bool remap;
5224
5225 if (m_head->m_pkthdr.csum_flags) {
5226 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5227 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5228 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5229 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5230 }
5231
5232 /*
5233 * If we were asked to do an outboard checksum, and the NIC
5234 * has the bug where it sometimes adds in the Ethernet padding,
5235 * explicitly pad with zeros so the cksum will be correct either way.
5236 * (For now, do this for all chip versions, until newer
5237 * are confirmed to not require the workaround.)
5238 */
5239 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5240 #ifdef notyet
5241 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5242 #endif
5243 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5244 goto check_dma_bug;
5245
5246 if (bge_cksum_pad(m_head) != 0)
5247 return ENOBUFS;
5248
5249 check_dma_bug:
5250 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5251 goto doit;
5252
5253 /*
5254 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5255 * less than eight bytes. If we encounter a teeny mbuf
5256 * at the end of a chain, we can pad. Otherwise, copy.
5257 */
5258 if (bge_compact_dma_runt(m_head) != 0)
5259 return ENOBUFS;
5260
5261 doit:
5262 dma = SLIST_FIRST(&sc->txdma_list);
5263 if (dma == NULL) {
5264 ifp->if_flags |= IFF_OACTIVE;
5265 return ENOBUFS;
5266 }
5267 dmamap = dma->dmamap;
5268 dmatag = sc->bge_dmatag;
5269 dma->is_dma32 = false;
5270
5271 /*
5272 * Set up any necessary TSO state before we start packing...
5273 */
5274 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5275 if (!use_tso) {
5276 maxsegsize = 0;
5277 } else { /* TSO setup */
5278 unsigned mss;
5279 struct ether_header *eh;
5280 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5281 unsigned bge_hlen;
5282 struct mbuf * m0 = m_head;
5283 struct ip *ip;
5284 struct tcphdr *th;
5285 int iphl, hlen;
5286
5287 /*
5288 * XXX It would be nice if the mbuf pkthdr had offset
5289 * fields for the protocol headers.
5290 */
5291
5292 eh = mtod(m0, struct ether_header *);
5293 switch (htons(eh->ether_type)) {
5294 case ETHERTYPE_IP:
5295 offset = ETHER_HDR_LEN;
5296 break;
5297
5298 case ETHERTYPE_VLAN:
5299 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5300 break;
5301
5302 default:
5303 /*
5304 * Don't support this protocol or encapsulation.
5305 */
5306 return ENOBUFS;
5307 }
5308
5309 /*
5310 * TCP/IP headers are in the first mbuf; we can do
5311 * this the easy way.
5312 */
5313 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5314 hlen = iphl + offset;
5315 if (__predict_false(m0->m_len <
5316 (hlen + sizeof(struct tcphdr)))) {
5317
5318 aprint_error_dev(sc->bge_dev,
5319 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5320 "not handled yet\n",
5321 m0->m_len, hlen+ sizeof(struct tcphdr));
5322 #ifdef NOTYET
5323 /*
5324 * XXX jonathan (at) NetBSD.org: untested.
5325 * how to force this branch to be taken?
5326 */
5327 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5328
5329 m_copydata(m0, offset, sizeof(ip), &ip);
5330 m_copydata(m0, hlen, sizeof(th), &th);
5331
5332 ip.ip_len = 0;
5333
5334 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5335 sizeof(ip.ip_len), &ip.ip_len);
5336
5337 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5338 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5339
5340 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5341 sizeof(th.th_sum), &th.th_sum);
5342
5343 hlen += th.th_off << 2;
5344 iptcp_opt_words = hlen;
5345 #else
5346 /*
5347 * if_wm "hard" case not yet supported, can we not
5348 * mandate it out of existence?
5349 */
5350 (void) ip; (void)th; (void) ip_tcp_hlen;
5351
5352 return ENOBUFS;
5353 #endif
5354 } else {
5355 ip = (struct ip *) (mtod(m0, char *) + offset);
5356 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5357 ip_tcp_hlen = iphl + (th->th_off << 2);
5358
5359 /* Total IP/TCP options, in 32-bit words */
5360 iptcp_opt_words = (ip_tcp_hlen
5361 - sizeof(struct tcphdr)
5362 - sizeof(struct ip)) >> 2;
5363 }
5364 if (BGE_IS_575X_PLUS(sc)) {
5365 th->th_sum = 0;
5366 csum_flags = 0;
5367 } else {
5368 /*
5369 * XXX jonathan (at) NetBSD.org: 5705 untested.
5370 * Requires TSO firmware patch for 5701/5703/5704.
5371 */
5372 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5373 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5374 }
5375
5376 mss = m_head->m_pkthdr.segsz;
5377 txbd_tso_flags |=
5378 BGE_TXBDFLAG_CPU_PRE_DMA |
5379 BGE_TXBDFLAG_CPU_POST_DMA;
5380
5381 /*
5382 * Our NIC TSO-assist assumes TSO has standard, optionless
5383 * IPv4 and TCP headers, which total 40 bytes. By default,
5384 * the NIC copies 40 bytes of IP/TCP header from the
5385 * supplied header into the IP/TCP header portion of
5386 * each post-TSO-segment. If the supplied packet has IP or
5387 * TCP options, we need to tell the NIC to copy those extra
5388 * bytes into each post-TSO header, in addition to the normal
5389 * 40-byte IP/TCP header (and to leave space accordingly).
5390 * Unfortunately, the driver encoding of option length
5391 * varies across different ASIC families.
5392 */
5393 tcp_seg_flags = 0;
5394 bge_hlen = ip_tcp_hlen >> 2;
5395 if (BGE_IS_5717_PLUS(sc)) {
5396 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5397 txbd_tso_flags |=
5398 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5399 } else if (BGE_IS_5705_PLUS(sc)) {
5400 tcp_seg_flags =
5401 bge_hlen << 11;
5402 } else {
5403 /* XXX iptcp_opt_words or bge_hlen ? */
5404 txbd_tso_flags |=
5405 iptcp_opt_words << 12;
5406 }
5407 maxsegsize = mss | tcp_seg_flags;
5408 ip->ip_len = htons(mss + ip_tcp_hlen);
5409 ip->ip_sum = 0;
5410
5411 } /* TSO setup */
5412
5413 have_vtag = vlan_has_tag(m_head);
5414 if (have_vtag)
5415 vtag = vlan_get_tag(m_head);
5416
5417 /*
5418 * Start packing the mbufs in this chain into
5419 * the fragment pointers. Stop when we run out
5420 * of fragments or hit the end of the mbuf chain.
5421 */
5422 remap = true;
5423 load_again:
5424 error = bus_dmamap_load_mbuf(dmatag, dmamap,
5425 m_head, BUS_DMA_NOWAIT);
5426 if (__predict_false(error)) {
5427 if (error == EFBIG && remap) {
5428 struct mbuf *m;
5429 remap = false;
5430 m = m_defrag(m_head, M_NOWAIT);
5431 if (m != NULL) {
5432 KASSERT(m == m_head);
5433 goto load_again;
5434 }
5435 }
5436 return error;
5437 }
5438 /*
5439 * Sanity check: avoid coming within 16 descriptors
5440 * of the end of the ring.
5441 */
5442 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5443 BGE_TSO_PRINTF(("%s: "
5444 " dmamap_load_mbuf too close to ring wrap\n",
5445 device_xname(sc->bge_dev)));
5446 goto fail_unload;
5447 }
5448
5449 /* Iterate over dmap-map fragments. */
5450 f = prev_f = NULL;
5451 cur = frag = *txidx;
5452
5453 for (i = 0; i < dmamap->dm_nsegs; i++) {
5454 f = &sc->bge_rdata->bge_tx_ring[frag];
5455 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5456 break;
5457
5458 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5459 f->bge_len = dmamap->dm_segs[i].ds_len;
5460 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5461 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5462 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5463 (prev_f != NULL &&
5464 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5465 ) {
5466 /*
5467 * watchdog timeout issue was observed with TSO,
5468 * limiting DMA address space to 32bits seems to
5469 * address the issue.
5470 */
5471 bus_dmamap_unload(dmatag, dmamap);
5472 dmatag = sc->bge_dmatag32;
5473 dmamap = dma->dmamap32;
5474 dma->is_dma32 = true;
5475 remap = true;
5476 goto load_again;
5477 }
5478
5479 /*
5480 * For 5751 and follow-ons, for TSO we must turn
5481 * off checksum-assist flag in the tx-descr, and
5482 * supply the ASIC-revision-specific encoding
5483 * of TSO flags and segsize.
5484 */
5485 if (use_tso) {
5486 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5487 f->bge_rsvd = maxsegsize;
5488 f->bge_flags = csum_flags | txbd_tso_flags;
5489 } else {
5490 f->bge_rsvd = 0;
5491 f->bge_flags =
5492 (csum_flags | txbd_tso_flags) & 0x0fff;
5493 }
5494 } else {
5495 f->bge_rsvd = 0;
5496 f->bge_flags = csum_flags;
5497 }
5498
5499 if (have_vtag) {
5500 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5501 f->bge_vlan_tag = vtag;
5502 } else {
5503 f->bge_vlan_tag = 0;
5504 }
5505 prev_f = f;
5506 cur = frag;
5507 BGE_INC(frag, BGE_TX_RING_CNT);
5508 }
5509
5510 if (i < dmamap->dm_nsegs) {
5511 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5512 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5513 goto fail_unload;
5514 }
5515
5516 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5517 BUS_DMASYNC_PREWRITE);
5518
5519 if (frag == sc->bge_tx_saved_considx) {
5520 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5521 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5522
5523 goto fail_unload;
5524 }
5525
5526 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5527 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5528 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5529 sc->txdma[cur] = dma;
5530 sc->bge_txcnt += dmamap->dm_nsegs;
5531
5532 *txidx = frag;
5533
5534 return 0;
5535
5536 fail_unload:
5537 bus_dmamap_unload(dmatag, dmamap);
5538 ifp->if_flags |= IFF_OACTIVE;
5539
5540 return ENOBUFS;
5541 }
5542
5543 /*
5544 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5545 * to the mbuf data regions directly in the transmit descriptors.
5546 */
5547 static void
5548 bge_start(struct ifnet *ifp)
5549 {
5550 struct bge_softc *sc;
5551 struct mbuf *m_head = NULL;
5552 struct mbuf *m;
5553 uint32_t prodidx;
5554 int pkts = 0;
5555 int error;
5556
5557 sc = ifp->if_softc;
5558
5559 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5560 return;
5561
5562 prodidx = sc->bge_tx_prodidx;
5563
5564 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5565 IFQ_POLL(&ifp->if_snd, m_head);
5566 if (m_head == NULL)
5567 break;
5568
5569 #if 0
5570 /*
5571 * XXX
5572 * safety overkill. If this is a fragmented packet chain
5573 * with delayed TCP/UDP checksums, then only encapsulate
5574 * it if we have enough descriptors to handle the entire
5575 * chain at once.
5576 * (paranoia -- may not actually be needed)
5577 */
5578 if (m_head->m_flags & M_FIRSTFRAG &&
5579 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5580 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5581 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5582 ifp->if_flags |= IFF_OACTIVE;
5583 break;
5584 }
5585 }
5586 #endif
5587
5588 /*
5589 * Pack the data into the transmit ring. If we
5590 * don't have room, set the OACTIVE flag and wait
5591 * for the NIC to drain the ring.
5592 */
5593 error = bge_encap(sc, m_head, &prodidx);
5594 if (__predict_false(error)) {
5595 if (ifp->if_flags & IFF_OACTIVE) {
5596 /* just wait for the transmit ring to drain */
5597 break;
5598 }
5599 IFQ_DEQUEUE(&ifp->if_snd, m);
5600 KASSERT(m == m_head);
5601 m_freem(m_head);
5602 continue;
5603 }
5604
5605 /* now we are committed to transmit the packet */
5606 IFQ_DEQUEUE(&ifp->if_snd, m);
5607 KASSERT(m == m_head);
5608 pkts++;
5609
5610 /*
5611 * If there's a BPF listener, bounce a copy of this frame
5612 * to him.
5613 */
5614 bpf_mtap(ifp, m_head, BPF_D_OUT);
5615 }
5616 if (pkts == 0)
5617 return;
5618
5619 /* Transmit */
5620 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5621 /* 5700 b2 errata */
5622 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5623 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5624
5625 sc->bge_tx_prodidx = prodidx;
5626
5627 /*
5628 * Set a timeout in case the chip goes out to lunch.
5629 */
5630 ifp->if_timer = 5;
5631 }
5632
5633 static int
5634 bge_init(struct ifnet *ifp)
5635 {
5636 struct bge_softc *sc = ifp->if_softc;
5637 const uint16_t *m;
5638 uint32_t mode, reg;
5639 int s, error = 0;
5640
5641 s = splnet();
5642
5643 ifp = &sc->ethercom.ec_if;
5644
5645 /* Cancel pending I/O and flush buffers. */
5646 bge_stop(ifp, 0);
5647
5648 bge_stop_fw(sc);
5649 bge_sig_pre_reset(sc, BGE_RESET_START);
5650 bge_reset(sc);
5651 bge_sig_legacy(sc, BGE_RESET_START);
5652
5653 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5654 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5655 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5656 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5657 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5658
5659 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5660 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5661 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5662 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5663
5664 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5665 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5666 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5667 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5668
5669 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5670 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5671 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5672 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5673 }
5674
5675 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5676 pcireg_t aercap;
5677
5678 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5679 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5680 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5681 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5682 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5683
5684 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5685 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5686 | BGE_PCIE_EIDLE_DELAY_13CLK;
5687 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5688
5689 /* Clear correctable error */
5690 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5691 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5692 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5693 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5694
5695 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5696 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5697 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5698 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5699 }
5700
5701 bge_sig_post_reset(sc, BGE_RESET_START);
5702
5703 bge_chipinit(sc);
5704
5705 /*
5706 * Init the various state machines, ring
5707 * control blocks and firmware.
5708 */
5709 error = bge_blockinit(sc);
5710 if (error != 0) {
5711 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5712 error);
5713 splx(s);
5714 return error;
5715 }
5716
5717 ifp = &sc->ethercom.ec_if;
5718
5719 /* 5718 step 25, 57XX step 54 */
5720 /* Specify MTU. */
5721 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5722 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5723
5724 /* 5718 step 23 */
5725 /* Load our MAC address. */
5726 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5727 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5728 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5729
5730 /* Enable or disable promiscuous mode as needed. */
5731 if (ifp->if_flags & IFF_PROMISC)
5732 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5733 else
5734 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5735
5736 /* Program multicast filter. */
5737 bge_setmulti(sc);
5738
5739 /* Init RX ring. */
5740 bge_init_rx_ring_std(sc);
5741
5742 /*
5743 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5744 * memory to insure that the chip has in fact read the first
5745 * entry of the ring.
5746 */
5747 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5748 uint32_t v, i;
5749 for (i = 0; i < 10; i++) {
5750 DELAY(20);
5751 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5752 if (v == (MCLBYTES - ETHER_ALIGN))
5753 break;
5754 }
5755 if (i == 10)
5756 aprint_error_dev(sc->bge_dev,
5757 "5705 A0 chip failed to load RX ring\n");
5758 }
5759
5760 /* Init jumbo RX ring. */
5761 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5762 bge_init_rx_ring_jumbo(sc);
5763
5764 /* Init our RX return ring index */
5765 sc->bge_rx_saved_considx = 0;
5766
5767 /* Init TX ring. */
5768 bge_init_tx_ring(sc);
5769
5770 /* 5718 step 63, 57XX step 94 */
5771 /* Enable TX MAC state machine lockup fix. */
5772 mode = CSR_READ_4(sc, BGE_TX_MODE);
5773 if (BGE_IS_5755_PLUS(sc) ||
5774 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5775 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5776 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5777 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5778 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5779 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5780 }
5781
5782 /* Turn on transmitter */
5783 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5784 /* 5718 step 64 */
5785 DELAY(100);
5786
5787 /* 5718 step 65, 57XX step 95 */
5788 /* Turn on receiver */
5789 mode = CSR_READ_4(sc, BGE_RX_MODE);
5790 if (BGE_IS_5755_PLUS(sc))
5791 mode |= BGE_RXMODE_IPV6_ENABLE;
5792 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5793 /* 5718 step 66 */
5794 DELAY(10);
5795
5796 /* 5718 step 12, 57XX step 37 */
5797 /*
5798 * XXX Doucments of 5718 series and 577xx say the recommended value
5799 * is 1, but tg3 set 1 only on 57765 series.
5800 */
5801 if (BGE_IS_57765_PLUS(sc))
5802 reg = 1;
5803 else
5804 reg = 2;
5805 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5806
5807 /* Tell firmware we're alive. */
5808 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5809
5810 /* Enable host interrupts. */
5811 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5812 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5813 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5814
5815 if ((error = bge_ifmedia_upd(ifp)) != 0)
5816 goto out;
5817
5818 ifp->if_flags |= IFF_RUNNING;
5819 ifp->if_flags &= ~IFF_OACTIVE;
5820
5821 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5822
5823 out:
5824 sc->bge_if_flags = ifp->if_flags;
5825 splx(s);
5826
5827 return error;
5828 }
5829
5830 /*
5831 * Set media options.
5832 */
5833 static int
5834 bge_ifmedia_upd(struct ifnet *ifp)
5835 {
5836 struct bge_softc *sc = ifp->if_softc;
5837 struct mii_data *mii = &sc->bge_mii;
5838 struct ifmedia *ifm = &sc->bge_ifmedia;
5839 int rc;
5840
5841 /* If this is a 1000baseX NIC, enable the TBI port. */
5842 if (sc->bge_flags & BGEF_FIBER_TBI) {
5843 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5844 return EINVAL;
5845 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5846 case IFM_AUTO:
5847 /*
5848 * The BCM5704 ASIC appears to have a special
5849 * mechanism for programming the autoneg
5850 * advertisement registers in TBI mode.
5851 */
5852 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5853 uint32_t sgdig;
5854 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5855 if (sgdig & BGE_SGDIGSTS_DONE) {
5856 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5857 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5858 sgdig |= BGE_SGDIGCFG_AUTO |
5859 BGE_SGDIGCFG_PAUSE_CAP |
5860 BGE_SGDIGCFG_ASYM_PAUSE;
5861 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5862 sgdig | BGE_SGDIGCFG_SEND);
5863 DELAY(5);
5864 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5865 sgdig);
5866 }
5867 }
5868 break;
5869 case IFM_1000_SX:
5870 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5871 BGE_CLRBIT(sc, BGE_MAC_MODE,
5872 BGE_MACMODE_HALF_DUPLEX);
5873 } else {
5874 BGE_SETBIT(sc, BGE_MAC_MODE,
5875 BGE_MACMODE_HALF_DUPLEX);
5876 }
5877 DELAY(40);
5878 break;
5879 default:
5880 return EINVAL;
5881 }
5882 /* XXX 802.3x flow control for 1000BASE-SX */
5883 return 0;
5884 }
5885
5886 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5887 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5888 uint32_t reg;
5889
5890 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5891 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5892 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5893 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5894 }
5895 }
5896
5897 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5898 if ((rc = mii_mediachg(mii)) == ENXIO)
5899 return 0;
5900
5901 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5902 uint32_t reg;
5903
5904 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5905 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5906 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5907 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5908 delay(40);
5909 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5910 }
5911 }
5912
5913 /*
5914 * Force an interrupt so that we will call bge_link_upd
5915 * if needed and clear any pending link state attention.
5916 * Without this we are not getting any further interrupts
5917 * for link state changes and thus will not UP the link and
5918 * not be able to send in bge_start. The only way to get
5919 * things working was to receive a packet and get a RX intr.
5920 */
5921 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5922 sc->bge_flags & BGEF_IS_5788)
5923 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5924 else
5925 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5926
5927 return rc;
5928 }
5929
5930 /*
5931 * Report current media status.
5932 */
5933 static void
5934 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5935 {
5936 struct bge_softc *sc = ifp->if_softc;
5937 struct mii_data *mii = &sc->bge_mii;
5938
5939 if (sc->bge_flags & BGEF_FIBER_TBI) {
5940 ifmr->ifm_status = IFM_AVALID;
5941 ifmr->ifm_active = IFM_ETHER;
5942 if (CSR_READ_4(sc, BGE_MAC_STS) &
5943 BGE_MACSTAT_TBI_PCS_SYNCHED)
5944 ifmr->ifm_status |= IFM_ACTIVE;
5945 ifmr->ifm_active |= IFM_1000_SX;
5946 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5947 ifmr->ifm_active |= IFM_HDX;
5948 else
5949 ifmr->ifm_active |= IFM_FDX;
5950 return;
5951 }
5952
5953 mii_pollstat(mii);
5954 ifmr->ifm_status = mii->mii_media_status;
5955 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5956 sc->bge_flowflags;
5957 }
5958
5959 static int
5960 bge_ifflags_cb(struct ethercom *ec)
5961 {
5962 struct ifnet *ifp = &ec->ec_if;
5963 struct bge_softc *sc = ifp->if_softc;
5964 int change = ifp->if_flags ^ sc->bge_if_flags;
5965
5966 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5967 return ENETRESET;
5968 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5969 return 0;
5970
5971 if ((ifp->if_flags & IFF_PROMISC) == 0)
5972 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5973 else
5974 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5975
5976 bge_setmulti(sc);
5977
5978 sc->bge_if_flags = ifp->if_flags;
5979 return 0;
5980 }
5981
5982 static int
5983 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5984 {
5985 struct bge_softc *sc = ifp->if_softc;
5986 struct ifreq *ifr = (struct ifreq *) data;
5987 int s, error = 0;
5988 struct mii_data *mii;
5989
5990 s = splnet();
5991
5992 switch (command) {
5993 case SIOCSIFMEDIA:
5994 /* XXX Flow control is not supported for 1000BASE-SX */
5995 if (sc->bge_flags & BGEF_FIBER_TBI) {
5996 ifr->ifr_media &= ~IFM_ETH_FMASK;
5997 sc->bge_flowflags = 0;
5998 }
5999
6000 /* Flow control requires full-duplex mode. */
6001 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
6002 (ifr->ifr_media & IFM_FDX) == 0) {
6003 ifr->ifr_media &= ~IFM_ETH_FMASK;
6004 }
6005 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
6006 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
6007 /* We can do both TXPAUSE and RXPAUSE. */
6008 ifr->ifr_media |=
6009 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
6010 }
6011 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
6012 }
6013 /* FALLTHROUGH */
6014 case SIOCGIFMEDIA:
6015 if (sc->bge_flags & BGEF_FIBER_TBI) {
6016 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
6017 command);
6018 } else {
6019 mii = &sc->bge_mii;
6020 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
6021 command);
6022 }
6023 break;
6024 default:
6025 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
6026 break;
6027
6028 error = 0;
6029
6030 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
6031 ;
6032 else if (ifp->if_flags & IFF_RUNNING)
6033 bge_setmulti(sc);
6034 break;
6035 }
6036
6037 splx(s);
6038
6039 return error;
6040 }
6041
6042 static void
6043 bge_watchdog(struct ifnet *ifp)
6044 {
6045 struct bge_softc *sc;
6046 uint32_t status;
6047
6048 sc = ifp->if_softc;
6049
6050 /* If pause frames are active then don't reset the hardware. */
6051 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6052 status = CSR_READ_4(sc, BGE_RX_STS);
6053 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6054 /*
6055 * If link partner has us in XOFF state then wait for
6056 * the condition to clear.
6057 */
6058 CSR_WRITE_4(sc, BGE_RX_STS, status);
6059 ifp->if_timer = 5;
6060 return;
6061 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6062 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6063 /*
6064 * If link partner has us in XOFF state then wait for
6065 * the condition to clear.
6066 */
6067 CSR_WRITE_4(sc, BGE_RX_STS, status);
6068 ifp->if_timer = 5;
6069 return;
6070 }
6071 /*
6072 * Any other condition is unexpected and the controller
6073 * should be reset.
6074 */
6075 }
6076
6077 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
6078
6079 ifp->if_flags &= ~IFF_RUNNING;
6080 bge_init(ifp);
6081
6082 ifp->if_oerrors++;
6083 }
6084
6085 static void
6086 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6087 {
6088 int i;
6089
6090 BGE_CLRBIT_FLUSH(sc, reg, bit);
6091
6092 for (i = 0; i < 1000; i++) {
6093 delay(100);
6094 if ((CSR_READ_4(sc, reg) & bit) == 0)
6095 return;
6096 }
6097
6098 /*
6099 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6100 * on some environment (and once after boot?)
6101 */
6102 if (reg != BGE_SRS_MODE)
6103 aprint_error_dev(sc->bge_dev,
6104 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6105 (u_long)reg, bit);
6106 }
6107
6108 /*
6109 * Stop the adapter and free any mbufs allocated to the
6110 * RX and TX lists.
6111 */
6112 static void
6113 bge_stop(struct ifnet *ifp, int disable)
6114 {
6115 struct bge_softc *sc = ifp->if_softc;
6116
6117 if (disable) {
6118 sc->bge_detaching = 1;
6119 callout_halt(&sc->bge_timeout, NULL);
6120 } else
6121 callout_stop(&sc->bge_timeout);
6122
6123 /* Disable host interrupts. */
6124 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6125 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6126
6127 /*
6128 * Tell firmware we're shutting down.
6129 */
6130 bge_stop_fw(sc);
6131 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6132
6133 /*
6134 * Disable all of the receiver blocks.
6135 */
6136 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6137 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6138 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6139 if (BGE_IS_5700_FAMILY(sc))
6140 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6141 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6142 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6143 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6144
6145 /*
6146 * Disable all of the transmit blocks.
6147 */
6148 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6149 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6150 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6151 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6152 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6153 if (BGE_IS_5700_FAMILY(sc))
6154 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6155 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6156
6157 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6158 delay(40);
6159
6160 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6161
6162 /*
6163 * Shut down all of the memory managers and related
6164 * state machines.
6165 */
6166 /* 5718 step 5a,5b */
6167 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6168 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6169 if (BGE_IS_5700_FAMILY(sc))
6170 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6171
6172 /* 5718 step 5c,5d */
6173 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6174 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6175
6176 if (BGE_IS_5700_FAMILY(sc)) {
6177 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6178 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6179 }
6180
6181 bge_reset(sc);
6182 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6183 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6184
6185 /*
6186 * Keep the ASF firmware running if up.
6187 */
6188 if (sc->bge_asf_mode & ASF_STACKUP)
6189 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6190 else
6191 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6192
6193 /* Free the RX lists. */
6194 bge_free_rx_ring_std(sc, disable);
6195
6196 /* Free jumbo RX list. */
6197 if (BGE_IS_JUMBO_CAPABLE(sc))
6198 bge_free_rx_ring_jumbo(sc);
6199
6200 /* Free TX buffers. */
6201 bge_free_tx_ring(sc, disable);
6202
6203 /*
6204 * Isolate/power down the PHY.
6205 */
6206 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6207 mii_down(&sc->bge_mii);
6208
6209 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6210
6211 /* Clear MAC's link state (PHY may still have link UP). */
6212 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6213
6214 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6215 }
6216
6217 static void
6218 bge_link_upd(struct bge_softc *sc)
6219 {
6220 struct ifnet *ifp = &sc->ethercom.ec_if;
6221 struct mii_data *mii = &sc->bge_mii;
6222 uint32_t status;
6223 uint16_t phyval;
6224 int link;
6225
6226 /* Clear 'pending link event' flag */
6227 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6228
6229 /*
6230 * Process link state changes.
6231 * Grrr. The link status word in the status block does
6232 * not work correctly on the BCM5700 rev AX and BX chips,
6233 * according to all available information. Hence, we have
6234 * to enable MII interrupts in order to properly obtain
6235 * async link changes. Unfortunately, this also means that
6236 * we have to read the MAC status register to detect link
6237 * changes, thereby adding an additional register access to
6238 * the interrupt handler.
6239 */
6240
6241 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6242 status = CSR_READ_4(sc, BGE_MAC_STS);
6243 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6244 mii_pollstat(mii);
6245
6246 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6247 mii->mii_media_status & IFM_ACTIVE &&
6248 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6249 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6250 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6251 (!(mii->mii_media_status & IFM_ACTIVE) ||
6252 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6253 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6254
6255 /* Clear the interrupt */
6256 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6257 BGE_EVTENB_MI_INTERRUPT);
6258 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6259 BRGPHY_MII_ISR, &phyval);
6260 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6261 BRGPHY_MII_IMR, BRGPHY_INTRS);
6262 }
6263 return;
6264 }
6265
6266 if (sc->bge_flags & BGEF_FIBER_TBI) {
6267 status = CSR_READ_4(sc, BGE_MAC_STS);
6268 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6269 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6270 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6271 if (BGE_ASICREV(sc->bge_chipid)
6272 == BGE_ASICREV_BCM5704) {
6273 BGE_CLRBIT(sc, BGE_MAC_MODE,
6274 BGE_MACMODE_TBI_SEND_CFGS);
6275 DELAY(40);
6276 }
6277 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6278 if_link_state_change(ifp, LINK_STATE_UP);
6279 }
6280 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6281 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6282 if_link_state_change(ifp, LINK_STATE_DOWN);
6283 }
6284 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6285 /*
6286 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6287 * bit in status word always set. Workaround this bug by
6288 * reading PHY link status directly.
6289 */
6290 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6291 BGE_STS_LINK : 0;
6292
6293 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6294 mii_pollstat(mii);
6295
6296 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6297 mii->mii_media_status & IFM_ACTIVE &&
6298 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6299 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6300 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6301 (!(mii->mii_media_status & IFM_ACTIVE) ||
6302 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6303 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6304 }
6305 } else {
6306 /*
6307 * For controllers that call mii_tick, we have to poll
6308 * link status.
6309 */
6310 mii_pollstat(mii);
6311 }
6312
6313 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6314 uint32_t reg, scale;
6315
6316 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6317 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6318 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6319 scale = 65;
6320 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6321 scale = 6;
6322 else
6323 scale = 12;
6324
6325 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6326 ~BGE_MISCCFG_TIMER_PRESCALER;
6327 reg |= scale << 1;
6328 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6329 }
6330 /* Clear the attention */
6331 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6332 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6333 BGE_MACSTAT_LINK_CHANGED);
6334 }
6335
6336 static int
6337 bge_sysctl_verify(SYSCTLFN_ARGS)
6338 {
6339 int error, t;
6340 struct sysctlnode node;
6341
6342 node = *rnode;
6343 t = *(int*)rnode->sysctl_data;
6344 node.sysctl_data = &t;
6345 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6346 if (error || newp == NULL)
6347 return error;
6348
6349 #if 0
6350 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6351 node.sysctl_num, rnode->sysctl_num));
6352 #endif
6353
6354 if (node.sysctl_num == bge_rxthresh_nodenum) {
6355 if (t < 0 || t >= NBGE_RX_THRESH)
6356 return EINVAL;
6357 bge_update_all_threshes(t);
6358 } else
6359 return EINVAL;
6360
6361 *(int*)rnode->sysctl_data = t;
6362
6363 return 0;
6364 }
6365
6366 /*
6367 * Set up sysctl(3) MIB, hw.bge.*.
6368 */
6369 static void
6370 bge_sysctl_init(struct bge_softc *sc)
6371 {
6372 int rc, bge_root_num;
6373 const struct sysctlnode *node;
6374
6375 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6376 0, CTLTYPE_NODE, "bge",
6377 SYSCTL_DESCR("BGE interface controls"),
6378 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6379 goto out;
6380 }
6381
6382 bge_root_num = node->sysctl_num;
6383
6384 /* BGE Rx interrupt mitigation level */
6385 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6386 CTLFLAG_READWRITE,
6387 CTLTYPE_INT, "rx_lvl",
6388 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6389 bge_sysctl_verify, 0,
6390 &bge_rx_thresh_lvl,
6391 0, CTL_HW, bge_root_num, CTL_CREATE,
6392 CTL_EOL)) != 0) {
6393 goto out;
6394 }
6395
6396 bge_rxthresh_nodenum = node->sysctl_num;
6397
6398 return;
6399
6400 out:
6401 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6402 }
6403
6404 #ifdef BGE_DEBUG
6405 void
6406 bge_debug_info(struct bge_softc *sc)
6407 {
6408
6409 printf("Hardware Flags:\n");
6410 if (BGE_IS_57765_PLUS(sc))
6411 printf(" - 57765 Plus\n");
6412 if (BGE_IS_5717_PLUS(sc))
6413 printf(" - 5717 Plus\n");
6414 if (BGE_IS_5755_PLUS(sc))
6415 printf(" - 5755 Plus\n");
6416 if (BGE_IS_575X_PLUS(sc))
6417 printf(" - 575X Plus\n");
6418 if (BGE_IS_5705_PLUS(sc))
6419 printf(" - 5705 Plus\n");
6420 if (BGE_IS_5714_FAMILY(sc))
6421 printf(" - 5714 Family\n");
6422 if (BGE_IS_5700_FAMILY(sc))
6423 printf(" - 5700 Family\n");
6424 if (sc->bge_flags & BGEF_IS_5788)
6425 printf(" - 5788\n");
6426 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6427 printf(" - Supports Jumbo Frames\n");
6428 if (sc->bge_flags & BGEF_NO_EEPROM)
6429 printf(" - No EEPROM\n");
6430 if (sc->bge_flags & BGEF_PCIX)
6431 printf(" - PCI-X Bus\n");
6432 if (sc->bge_flags & BGEF_PCIE)
6433 printf(" - PCI Express Bus\n");
6434 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6435 printf(" - RX Alignment Bug\n");
6436 if (sc->bge_flags & BGEF_APE)
6437 printf(" - APE\n");
6438 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6439 printf(" - CPMU\n");
6440 if (sc->bge_flags & BGEF_TSO)
6441 printf(" - TSO\n");
6442 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6443 printf(" - TAGGED_STATUS\n");
6444
6445 /* PHY related */
6446 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6447 printf(" - No 3 LEDs\n");
6448 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6449 printf(" - CRC bug\n");
6450 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6451 printf(" - ADC bug\n");
6452 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6453 printf(" - 5704 A0 bug\n");
6454 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6455 printf(" - jitter bug\n");
6456 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6457 printf(" - BER bug\n");
6458 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6459 printf(" - adjust trim\n");
6460 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6461 printf(" - no wirespeed\n");
6462
6463 /* ASF related */
6464 if (sc->bge_asf_mode & ASF_ENABLE)
6465 printf(" - ASF enable\n");
6466 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6467 printf(" - ASF new handshake\n");
6468 if (sc->bge_asf_mode & ASF_STACKUP)
6469 printf(" - ASF stackup\n");
6470 }
6471 #endif /* BGE_DEBUG */
6472
6473 static int
6474 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6475 {
6476 prop_dictionary_t dict;
6477 prop_data_t ea;
6478
6479 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6480 return 1;
6481
6482 dict = device_properties(sc->bge_dev);
6483 ea = prop_dictionary_get(dict, "mac-address");
6484 if (ea != NULL) {
6485 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6486 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6487 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6488 return 0;
6489 }
6490
6491 return 1;
6492 }
6493
6494 static int
6495 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6496 {
6497 uint32_t mac_addr;
6498
6499 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6500 if ((mac_addr >> 16) == 0x484b) {
6501 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6502 ether_addr[1] = (uint8_t)mac_addr;
6503 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6504 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6505 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6506 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6507 ether_addr[5] = (uint8_t)mac_addr;
6508 return 0;
6509 }
6510 return 1;
6511 }
6512
6513 static int
6514 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6515 {
6516 int mac_offset = BGE_EE_MAC_OFFSET;
6517
6518 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6519 mac_offset = BGE_EE_MAC_OFFSET_5906;
6520
6521 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6522 ETHER_ADDR_LEN));
6523 }
6524
6525 static int
6526 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6527 {
6528
6529 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6530 return 1;
6531
6532 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6533 ETHER_ADDR_LEN));
6534 }
6535
6536 static int
6537 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6538 {
6539 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6540 /* NOTE: Order is critical */
6541 bge_get_eaddr_fw,
6542 bge_get_eaddr_mem,
6543 bge_get_eaddr_nvram,
6544 bge_get_eaddr_eeprom,
6545 NULL
6546 };
6547 const bge_eaddr_fcn_t *func;
6548
6549 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6550 if ((*func)(sc, eaddr) == 0)
6551 break;
6552 }
6553 return (*func == NULL ? ENXIO : 0);
6554 }
6555